
Submitted to Physics of Plasmas, 2014

Magnetic antenna excitation of whistler modes. 2. Antenna

arrays

R. L. Stenzel and J. M. Urrutia

Department of Physics and Astronomy,

University of California, Los Angeles, CA 90095-1547

Abstract

The excitation of whistler modes from magnetic loop antennas has been investigated experimen-

tally. The field topology of the excited wave driven by a single loop antenna has been measured

for different loop orientations with respect to the uniform background field. The fields from two or

more antennas at different locations are then obtained by superposition of the single-loop data. It is

shown that an antenna array can produce nearly plane waves which cannot be achieved with single

antennas. By applying a phase shift along the array, oblique wave propagation is obtained. This

allows a meaningful comparison with plane wave theory. The Gendrin mode and oblique cyclotron

resonance are demonstrated. Wave helicity and polarization in space and time are demonstrated

and distinguished from the magnetic helicity of the wave field. The superposition of two oblique

plane whistler modes produces in a “whistler waveguide” mode whose polarization and helicity

properties are explained. The results show that single point measurements cannot properly estab-

lish the wave character of wave packets. The laboratory observations are relevant for excitation

and detection of whistler modes in space plasmas.

PACS numbers: 52.35.Hr Electromagnetic waves, 52.50.Dg Plasma sources, 52.40.Fd Plasma interactions

with antennas, 94.80.+g Instrumentation for space plasma physics, 94.05.Rx Experimental techniques and

laboratory studies
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I. INTRODUCTION

Most experiments on whistler mode excitation or detection use electric or magnetic

dipoles antennas [1, 2, 3, 4, 5, 6]. In active space plasma experiments, large magnetic

loop antennas have not been successfully deployed [7]. However, loop antennas are standard

in helicon plasma sources [8, 9, 10]. Dipole antennas do not produce plane waves, yet the

basic theories for whistler modes are formulated for plane waves. It would thus be desirable

to develop antennas which excite and receive plane waves. The present work suggests that

antenna arrays can solve this problem. Unlike arrays in free space, the present antennas do

not produce narrow radiation patterns by interference, but the closely spaced array elements

impose a wavenumber along the array. The wavenumber vanishes for equal phasing of all

array elements. When the array is perpendicular to B0, it excites plane waves propagating

along B0. With a phase delay along the array, the wave propagates oblique to B0. Gendrin

modes and waves near the resonance cone can be excited. The polarization and magnetic

helicity of oblique whistler modes have been demonstrated. Interference of oblique whistlers

has been shown to result in whistler “waveguide modes,” i.e., standing waves across B0 and

propagating along B0. These are the simplest helicon modes and avoid the complications

due to radial density gradients, boundaries, surface modes, and ionization effects in helicon

devices [8, 9]. The interference leads to magnetic null points. The spatial and temporal

polarization changes locally from linear to circular, implying that one cannot obtain the

propagation of wavepackets from single point polarization measurements ascommonly done

in space plasmas.

This paper is organized as follows: After reviewing the experimental setup in Section II,

the observations are shown in Section III for loop arrays across B0, phased arrays, directional

arrays and interference of oblique whistlers which form whistler waveguide modes. The

findings are summarized in the Conclusion, Section IV.

II. EXPERIMENTAL ARRANGEMENT

The experiments are performed in a pulsed dc discharge plasma of density ne ≃ 1011 cm−3,

electron temperature kTe ≃ 2 eV, and uniform axial magnetic field B0 = 5 G in a large

device shown in Fig. 1 and schematically in Fig. 1 of the companion paper [11]. Whistler
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modes are excited with a 4 cm diam loop antenna in the middle of the plasma column.

The dipole moment has been aligned either along or across the axial dc field B0 and the

rf field Brf has been measured for each configuration with a single triple magnetic probe

(6 mm diam orthogonal loops). The frequency is chosen at f = 5 MHz, or ω/ωce = 0.357

when normalized to the electron cyclotron frequency. The field topology is measured in

three dimensions (3D) by repeating the experiment under identical conditions. All data are

collected with a four-channel digital oscilloscope at a 10 ns time resolution. Since we are

interested in the wave field, the free-space field of the antenna is measured in vacuum and

subtracted from the total field present in the plasma.

Small amplitude signals are used and the linearity between antenna current and wave

field has been established. Under these conditions, the superposition of fields from multiple

antennas is justified. Examples of two antennas have been shown in the companion paper

[11]. Here we extend this concept to multiple antennas in a line, i.e., antenna arrays. The

array axis is perpendicular to the dc magnetic field. The array resembles a line dipole when

closely spaced, i.e., two antiparallel line currents. The dipole moment can be along or across

B0. It will be shown that line currents produce wave fields which do not vary in the direction

of the line. This result suggests that plane waves can be excited by a two-dimensional array

in a plane transverse to B0.

Phased arrays are produced by a time delay from one array element to the next. It

produces a phase shift along the array which leads to a tilt in the phase front of the excited

wave. The propagation angle depends on the phase velocity of the whistler mode and the

array mode.

III. EXPERIMENTAL RESULTS

A. Linear arrays

We start with the field superposition of an increasing number of identical antennas. The

superposition is achieved by initially placing the measured data set in a virtual space. Next,

a new copy of the data set is offset vertically and added to the original set. This process is

then repeated. Given the density of data points, the smaller offset is equivalent to one-half

of the antenna radius, or 1 cm. The largest practical offset is 12 antenna radii (24 cm),
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yielding a virtual space that is vertically three times taller that the measured data set. This

process is shown in Fig. 2 where contours of By(y, z), one of the transverse field component

s, are displayed for antenna offsets of 12, six, three, and one antenna radii. The antennas

have their dipole axis along the x-direction and orthogonal to B0. We have chosen to only

present the central one-third of the virtual space.

For loops separated by an equivalent of 12 antenna radii, the measured field resembles that

of a single loop since it exhibits V -shaped phase fronts. When the separation is halved, i.e.,

six antenna radii, the superposition yields rippled contours of By = const. As the separation

is decreased and the number of elements increased, the ripples decrease and the phase front

becomes constant in the y-direction. Thus, it is a plane wave in 2D with (ky = 0, kz), but it

is not yet a plane wave in 3D since kx 6= 0.

It should be noted that this array differs from antenna arrays used in free-space. There,

the element spacing must be larger than half a wavelength in order to obtain constructive

interference at oblique angles. In the present case, the loops can be stacked closely such

that the array approximates a line dipole formed by two antiparallel line currents in the

y-direction. Stacking such line dipoles also in the x-direction would yield approximately

plane waves.

The field topology of antennas aligned along the y-axis with their dipole moments along

B0 is now explored in a transverse x–y plane at z = 18 cm from the antenna arrays. Three

antenna separation cases are shown in Fig. 3: (a) 12 antenna radii, (b) six antenna radii and

(c) one antenna radius. With the antennas widely separated, the field resembles that of a

single loop and exhibits the familiar whistler vortex [12]. Its topology consists of a poloidal

or dipole field (Br, Bz), linked by a toroidal field (Bx, By) = Bθ, shown in a vector field.

Right-handed linkage implies positive magnetic helicity, identifying wave propagation along

B0. The magnitude Brf , displayed as a contour plot, as well as Bz, are nearly independent

of azimuthal angle θ, similar to the m = 0 modes in helicon devices [8, 9].

The fields obtained with a six antenna radii separation show three overlapping vortices

resulting in rippled amplitude contours of B⊥. For close stacking of loops the fields become

constant along the direction of the array (ky ≃ 0) but there remains a variation along x

(kx 6= 0). The vectors change direction and magnitude along x since the phase front is

wedge-shaped with decreasing amplitude. In time, the vectors rotate counter clockwise.

The arrays are now stacked in y and x directions in Fig. 4, and the loop dipole moments
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are across B0. For the vertical array, the vectors (Bx, By) show no variation along y, hence

ky = 0 [Fig. 4(a)] and likewise for the horizontal array kx = 0 [Fig. 4(b)]. For a 2D array,

either stacked along the x or y direction, the vectors would be identical throughout the x–y

plane, hence the array would excite a plane wave with only kz 6= 0. The contour plots show

that the total field strength maximizes in the x–y plane along x = 0 as defined by the array.

The axial field component vanishes in the x–y plane along x = 0 as defined by the array. For

a 2D stacked array, Bz → 0 throughout the plane as expected for a plane parallel whistler

mode.

Note that a single large loop of the size of the x–y plane would not radiate a plane wave

since the antenna field is not uniform and does not easily penetrate into the loop center.

Its radiation originates at the wire and exhibits a wide k-spectrum. On the other hand, a

loop array provides a uniform antenna field across B0, provided the array dimensions do

not exceed the free space wavelength. It is analogous to a plane grid for exciting plane

electrostatic waves. Since whistler modes are right-hand circularly polarized, two phase

arrays can provide unidirectional radiation as shown earlier for single antennas. Furthermore,

a linear array of smaller loops or a line dipole may be easier to deploy in space than a large

loop antenna.

B. Phased arrays

The antenna array could be inclined with respect to B0 in order to generate oblique

whistler modes. However, this can also be accomplished by a phase shift between antenna

array elements. The latter produces a wave propagation along the array, which delays the

wave excitation along B0 and results in inclined phase fronts. This effect is demonstrated in

Fig. 5 which displays contours of the transverse wave magnetic field By for different delays

between the stacked loops. In a practical realization of a phased array, the stacking should

not be so tight that the loops couple, i.e., the mutual inductance should be small compared

to the self inductance.

When all elements radiate in phase (∆t = 0), the phase fronts are parallel to the y-

direction and the wave vector k points along ±B0, However, the linear array along y still

has a kx component. Introducing a phase delay results in inclined phase fronts, i.e., oblique

propagation at a phase velocity angle θ between k and B0. The vertical wavenumber,
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ky = ω/vy, is given by the frequency and propagation speed, vy = ∆y/∆t ,where ∆y is the

loop spacing and ∆t is the delay time between adjacent loops. The parallel wavenumber

is determined by the dispersion relation for oblique whistlers, usually expressed by the

refractive index relation n2 = (kc/ω)2 = 1 + ωpe
2/[ω(ωce cos θ − ω)] where ωpe and ωce are

the electron plasma and cyclotron frequency, respectively. The expression slightly simplifies

to n2 ≃ ω2
pe/[ω(ωce cos θ − ω)] in the high density limit of the present experiment. Thus,

as the delay is increased, the angle θ increases, the refractive index n = c/(fλ) increases

or the wavelength λ decreases as shown in Figs. 5(a-e). Highly oblique waves are observed

because the wave packet of the single antenna contains a wide spectrum of perpendicular

wave numbers. The vacuum field of the antenna array does not extend far into the plasma

to produce oblique modes.

Oblique cyclotron resonance (n → ∞) occurs when cos θ = ω/ωce = 0.357 or θ ≃ 69◦.

Figure 5(f) shows that the wave amplitude nearly vanishes making the direction of wave

propagation difficult to identify. Further increase of the delay time recovers wave propagation

at a negative and decreasing angle until parallel propagation is reached when ∆t = 2π/ω.

The theory for oblique whistler modes is well understood [13], but has not been directly

demonstrated experimentally with oblique plane waves. However, it has been shown via

spatial Fourier transformation that the components B(k) of whistler vortices are those of

oblique plane whistlers [14]. The anisotropic propagation of whistlers is usually summarized

by its refractive index surface, n(θ). For the experimental parameters, Fig. 6(a) shows a plot

of n‖ vs n⊥. With n = c/vphase = kc/ω, the direction of n is parallel to the phase velocity

and the wave vector k. The group velocity vgroup is normal to the refractive index curve

and generally differs from vphase in direction and magnitude. Oblique resonance occurs for

θ ≃ 69◦ where cos θ = ω/ωce. Experimentally, n‖ and n⊥ are obtained from the wavelengths

along and across B0 in Fig. 5 and a best fit for the plasma frequency (fpe ≃ 3250 MHz).

The resulting red data points, shown in Fig. 6(a), lie close to the theoretical curve, although

deviations can arise from the wave dependence in x-direction.

Figure 6(b) shows oblique wave properties vs delay increment ∆t or phase shift ∆φ =

2π × ∆t/Trf , where Trf = 1/f = 200 ns is the rf period. The phase shift introduces a

wave propagation in the y-direction with phase velocity vy = ∆y/∆t = ω/ky. Thus, the

wavenumber varies linearly with time, assumes a peak value ky = 2π×5 MHz ×100 ns/ 2 cm

= 1.5 cm−1, reverses sign for θ > 90◦ and vanishes at ∆t = Trf where the wave propagates
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along B0.

Figure 6(b) also displays the angle of wave propagation, θ = arctan(n‖/n⊥), which rises

up to a maximum at the phase velocity resonance. Note that n⊥ is controlled by the

phase shift but n‖ develops self consistently so as to satisfy the oblique whistler dispersion

properties. The latter also affects the wave damping which is indicated by the observed wave

amplitude By at y = 0, z = 18 cm from the antenna. The amplitude drops for increasingly

oblique propagation and nearly vanishes at the oblique resonance where λ → 0. Collisional

damping and increasing group velocity angle, i.e., wave spread, contribute to the amplitude

loss. Furthermore, the wave energy near the resonance cone is mainly carried by the wave

electric field which is not measured by magnetic probes.

Figure 6(c) displays the theoretical relation between the group velocity angle and the

phase velocity angle. The group velocity is parallel to B0 for θphase = 0 and θphase =

±θG, the Gendrin angle. For 0 < θphase < θG the wave spread is rather small (θgroup

< 5◦), hence amplitude decay is mostly due to damping. However, the group velocity

angle becomes θgroup,max ≃ −19◦ near θphase,max = 69◦. Since the angles have opposite sign,

|θphase|+|θgroup| = 88◦, i.e., vgroup is nearly orthogonal to vphase. A measurement of the group

velocity is not possible with cw plane waves since vgroup = dω/dk describes the propagation

of the envelope of wave packets, e.g., formed by a beat mode with two frequencies (ω1−ω2 =

∆ω) and two wavenumbers (k1 − k2 = ∆k), or by a wave burst [15].

The polarization of oblique whistler modes has been described theoretically [16] but not

yet shown experimentally. The vector field (By, Bz) is shown in Fig. 7(a) for an oblique

whistler mode near the Gendrin angle. The direction of the wave magnetic field is parallel

to the phase fronts such that k ·B ≃ 0. A hodogram of the wave magnetic field (Bx, By, Bz)

along the direction of the oblique k-vector is shown in Fig. 7(b). It shows that the spatial

polarization is circular and left-handed, the same as for whistler propagation along B0.

Figure 7(c) shows an end view of the hodogram along k which shows the left-handed rotation

more obviously. The temporal polarization is right-handed.

C. Interference of oblique whistler modes

We now address the interference of two oblique plane whistler modes which can arise

from specular wave reflections. Two arrays are stacked along y with their dipole moments
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orthogonal to B0. Then one array is phased so as to produce oblique propagation at an angle

+θ with respect to B0 and the other array excites waves at −θ. The resultant interference

pattern is shown in Fig. 8(a-c) for each field component as contour plots in the y–z plane.

Only the left half plane of the antenna is shown since the right one is redundant.

In order to visualize the field topology, we simplify the 3D fields into linked 2D field

lines as earlier done for whistler vortices. A white square of sides λ/2 is placed at the

same location in each plane as a visual aid, and the field vectors are identified within the

squares. Figure 8(d) shows that the out-of-plane component Bx maximizes on the corners

with alternating signs and nearly vanishes in the center. The By and Bz components nearly

vanish on the corners as well as in the center. After constructing the (By, Bz) field lines one

identifies an X-type null in the center and an O-type null around each corner. The field line

closure of the alternating Bx vectors shows that the out-of-plane lines link with the in-plane

lines in a left-handed sense, implying negative magnetic helicity. This is consistent with

whistler modes propagating against B0.

Spatial and temporal polarizations depend on position and direction of wave propagation.

The spatial polarization along z is circular along the top and bottom sides of the box, but

linear through the center of the box (±Bz). The temporal polarization is obtained by

observing the field rotation at a fixed point as the wave passes by. For example, as the

wave field shifts to the left, the field −Bx at the left upper corner of the square turns into

−By and then into +Bx, which is a counterclockwise or right-handed rotation around B0

like that of the electrons. The same holds along the bottom of the box, but in the center

the polarization is linear and longitudinal. This example shows again that polarization

measurements from single points are not meaningful unless the wave is a single plane wave,

which of course cannot be established from a single point. No evidence for a left-handed

temporal polarization is observed as has been predicted theoretically for wave interference

[17].

The interference of the waves results in axial wave propagation and radial standing waves,

which is verified in two time-of-flight diagrams. Figure 8(e) shows that the wave propagates

with axial phase velocity vphase,‖ ≃ 75 cm/µs away from the array at z = 0. The y–t diagram

of Fig. 8(f) shows no phase shifts across B0, just alternating signs of By(t), which are the

properties of standing waves. The resultant wave propagation is as in a waveguide, except

that the standing waves are not produced by wave reflection from conducting boundaries.
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Such patterns can also arise from wave reflections of oblique whistlers at sharp gradients in

the refractive index or conductivity.

IV. CONCLUSION

The properties of magnetic antenna arrays for exciting whistler modes have been inves-

tigated. The approach has been to measure the fields of one loop antenna and to construct

the radiation pattern from an antenna array by linear superposition of shifted single-antenna

patterns. The objective is to produce approximate plane waves which cannot be done by

single antennas either small or large compared to the wavelength.

An array of closely spaced loop antennas approximates a line dipole which can be stacked

onto a sheet of dipoles to produce plane phase fronts and constant amplitude. The present

use of antenna arrays differs from those of free-space antenna arrays or optical gratings

which are based on interference from sources spaced at least λ/2 apart. Furthermore, the

anisotropy of the plasma prevents comparison with radiation in free space.

It has been shown that arrays of loops across B0 excite parallel phase fronts when all loops

are driven in phase. This eliminates one k vector component and suggests that extending

the array to two dimensions eliminates both components across B0 for exciting parallel plane

whistlers. This would allow a meaningful comparison with plane wave theories of dispersion

and damping which is not justified for wave packets excited by single antennas.

Antennas with directional radiation patterns have useful applications for exciting and

receiving whistler modes. This has been demonstrated for two loops whose fields rotate like

the whistler wave magnetic field. Likewise, two arrays can be used to produce directional

radiation of plane waves.

One could tilt an array to produce oblique whistlers, but electronic steering by phasing the

array is more versatile. When a constant delay is introduced from one element to the next,

a wave propagates along the array. The antenna array imposes a well-defined perpendicular

wave vector component resulting in an oblique whistler mode in the plasma. Its properties

have been compared to theoretical predictions finding reasonably good agreements. The

Gendrin mode and oblique cyclotron resonance have been excited.

Standing whistler modes have been studied for counter-propagating waves and for oblique

whistler modes. Counter-propagating whistler vortices from two loop antennas propagating
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along B0 have opposite helicities such that toroidal and poloidal fields cancel at different

locations, hence form no absolute nulls or B = 0 nodes. The interference of two oblique

plane whistler modes leads to “whistler waveguide” modes. These exhibit standing waves

across B0 and propagation along B0. The interference produces field minima and maxima

which propagate at a group velocity angle slightly oblique to B0.

The research could be extended to many other applications. For example, a curved phase

front could be generated by uneven phase shifts between array elements. It can be used to

focus whistlers. However, phase focusing is not the same as energy focusing which requires

focusing the group velocity ray.

Using 2D phased arrays, the reflection of plane oblique whistlers from conductivity dis-

continuities can be studied which can produce two reflected waves. This problem arises

in narrow density ducts [18], in helicon devices with glass tubes, and near lunar crustal

magnetic fields where standing whistler modes have been observed [19].

Similarities to the popular helicon devices have been pointed out. Since the m = 0 and

m = 1 modes are also observed in the present unbounded plasma, they are not characteristic

modes of a cylindrical plasma column. However, they are whistler modes excited by loop

antennas with different orientations to B0. When loop antennas are stacked, the m = 1

mode transitions into a plane wave, which is the commonly assumed whistler mode in space

plasmas. However, this concept may not hold in the near-zone of an excitation region or

in the presence of sharp gradients which create wave reflections. Many concepts of whistler

wave theories have not and cannot be tested with single point observations in space plasmas.

Finally, it is also worth pointing out that the interpretation of diagnostic probe data

should be reexamined. Typically magnetic probes in plasmas are assumed to behave as in

free space but they are actually receiving antennas. In plasmas, their radiation patterns can

vastly differ from that in free space, e.g., small electric dipoles [20] and magnetic dipoles [1]

have radiation patterns which peak near the group velocity resonance cone given by sin θ =

ω/ωce. Thus, a small diagnostic loop produces a larger signal for an oblique whistler mode

than for a plane parallel whistler mode. Another example is a directional antenna. When

used as a receiving antenna, it detects predominantly those waves which have the same helic-

ity as the antenna. Transmission between two directional antennas is not reciprocal [21]. If a

phased array were used as a receiving antenna, it would produce a peak signal for an oblique

plane whistler mode rather than a parallel whistler mode. Directional receiving arrays are
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more sensitive than non-directional antennas and can determine the propagation direction

of plane waves without requiring electric field measurements and plane wave assumptions

[22]. Thus, the receiving properties of antennas are useful but need further investigations.
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FIG. 1: Photograph of the discharge plasma source using a 1 m diam oxide coated cathode. A

4 cm diam loop antenna is inserted into the uniform plasma center to excite low frequency whistler

modes (vertical probe shaft). The topology of the wave field is measured with a three-component

magnetic probe movable in three dimensional space (right probe shaft). By superimposing shifted

patterns from the single antenna, the radiation properties of antenna arrays are obtained.
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FIG. 2: Snapshots of the transverse magnetic field By(0, y, z) from (a) widely separated loop an-

tennas, and (b-d) decreasingly separated loops. Wide separation essentially excites waves with

V -shaped phase fronts which propagate to both sides mainly along the dc magnetic field B0.

Decreasing the antenna separation across B0 from (a) 12 antenna radii to (b) six yields rippled

surfaces. Decreasing antenna separation even further reduces the ripples in the phase fronts result-

ing in (d) nearly plane waves propagating along ±B0.
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FIG. 3: Fields generated at a transverse x–y plane situated at z = 18 cm from antenna arrays

consisting of loops whose dipole moments are oriented along B0. Vectors of the transverse field and

contours of the total field magnitude are shown for antenna separation of (a) 12, (b) six and (c)

one antenna radii. Closely spacing the antennas produce nearly constant phases along the antenna

array, i.e., ky = 0. Stacking arrays also in x-direction would excite plane waves with wave vector

k ≃ (0, 0, kz).
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(a) Vertical array (b) Horizontal array
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FIG. 4: Wave fields from two linear loop arrays in the x–y plane at ∆z = 18 cm from the antennas

whose dipole moment is in the x-direction. (a) The array is aligned with the y-axis producing a field

independent of y (ky = 0). Contour and vector plots show that the field amplitude is strongest in

the center and points predominantly in −x direction, although it rotates counterclockwise in time.

(b) The array is aligned with the x-axis producing a field independent of x (kx = 0). Contour plots

show that Bz ≃ 0 near the array. If multiple vertical (horizontal) arrays are stacked horizontally

(vertically), the two-dimensional array would produce whistler modes with kx = ky ≃ 0 and Bz ≃ 0,

i.e., a plane parallel whistler mode.
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FIG. 5: The effect of phasing an antenna array which consists of antennas separated by one antenna

radii whose dipole moments are across B0. Delaying consecutive antenna signals by a time interval

∆t inclines the phase fronts, or propagation angle θ, with respect to B0. The angle increases as

the wave phase velocity vy = ∆y/∆t decreases (a–d). Oblique propagation of whistler modes is

demonstrated. As the propagation angle approaches the resonance cone angle, θ = arccos(ω/ωce) ≃

69◦, the wave amplitude vanishes (e, f). Further delay increases the angle to θ > 90◦, i.e., the wave

propagates downward (g, h) and eventually again along B0 (i).
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FIG. 6: Properties of oblique plane whistler modes and experimental data. (a) Refractive index

surface n(θ) from theory and experimental data (red dots). In general, phase and group velocities

have different angles with respect to B0. A dashed line indicates the oblique cyclotron resonance.

(b) Observed dependence of (i) the wavenumber ky, (ii) the propagation angle θphase, and (iii) the

wave amplitude on the delay time between adjacent loops in the antenna array. (c) Theoretical

group velocity angle vs phase velocity angle for the present experimental conditions. The Gendrin

mode at θG has a parallel group velocity equal to the parallel phase velocity but a highly oblique

phase velocity. Energy spread becomes significant near the resonance cone angle θmax ≃ 69◦.
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FIG. 7: Polarization of oblique whistler waves. (a) Vector field of an obliquely propagating whistler

mode excited by an array of 12 delayed loops antennas. The phase front and orthogonal wave vector

k are indicated. (b) Hodogram of the wave magnetic field Brf = (Bx, By, Bz) along k. The vector

rotation is left-handed which is clearly seen when B is displayed in a plane normal to k (c). This

is the correct polarization for whistlers, even for oblique propagation.
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FIG. 8: Interference of two oblique whistler modes resulting in “whistler waveguide” modes. The

waves are excited with two arrays along y located at z = 0. By delaying each array differently,

two oblique waves with different propagation vectors k are produced, chosen to be at θ ≃ ±45◦.

Displayed are contours of the three field components (a-c) in the y–z plane to the left of the array.

The field topology is displayed schematically in (d). It is derived from the vector components in

the white squares of sides λ/2 shown in (a-c). The field lines (By, Bz) exhibit an X-type null

point in the center of the square and O-points around each corner where Bx has extrema. The

closure of the Bx lines links with the (By, Bz) lines which implies magnetic helicity. The linkage is

left-handed, i.e., the helicity is negative consistent with propagation against B0. (e) A z–t diagram

of By shows that the wave propagates axially. (f) A y–t diagram of By at z = −5 cm [see dashed

line in (b)] shows standing waves across B0. Such modes can arise from oblique reflections.
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