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Abstract

Fine-grained data parallelism, from media extensions to full streaming or
vector instruction sets, o�er enormous performance potential, if they can be
e�ectively used from the application level. One critical aspect of their de-
sign is the organization of the registers and the generality of operations that
move data between registers. In this paper we focus on this data-movement
problem and demonstrate that starting with a high-level description of a
data-parallel application, we can automatically map certain data-movements
in the program onto a regular set of vector permutation instructions. Our
language and compiler are based on StreamIt from MIT, and our target ma-
chine is the VIRAM processor from Berkeley. We devise new intermediate
representations and operators for analysing data-movements, and demon-
strate our technique on two benchmarks. We show that data-movement
operations give an enormous performance boost for the benchmarks, and
the performance of our technique is close to, and sometimes better than,
hand-coded assembly.

1 Introduction

As the computer industry heads towards an era with billion transistor chips,

the desire to turn chip real estate into high performance will increasingly rely
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on chip-level parallelism. Yet evidence shows that there are diminishing ben-

e�ts from increasing the amount of dynamically discovered instruction-level

parallelism, so hardware designers are turning to explicitly parallel instruc-

tion sets, with the emphasis on data-parallelism. Commercial processors now

include small-scale data parallelism in their SIMD media extensions, such

as Intel's SSE [3] and PA-RISC's MAX-2 [9]. Research prototypes such as

VIRAM [7], Raw [12], and Imagine [4] all take advantage of larger degrees

of parallelism, both to increase arithmetic performance and to mask the ef-

fects of memory latency. In spite of the latency-hiding features, and in the

case of VIRAM the tight integration with DRAM memory, temporal locality

is still critical. The three research processors take di�erent approaches to

the data-movement problem, with Raw at one extreme providing arbitrary

movement between \tiles," providing a kind of on-chip message passing ma-

chine model, and VIRAM at the other providing only a limited set of regular

permutation patterns between vector registers in the register set.

In this paper, we explore the use of StreamIt language and compiler [2],

which generates code for the Raw machine, and extend it to generate data-

movement code in VIRAM, a quite di�erent task than in Raw. We augment

the StreamIt compiler with new intermediate representations and operators

to collect and analyse data-movements between data-parallel `parts' of an

application. The revised compiler that does data-movement analysis is called

StreamIt-to-VIRAM. The data-movement instructions in VIRAM provide

only limited set of permutations to ease the hardware implementation [8].

But, we show that it gives some codes an enormous performance boost as

it avoids using memory to rearrange data, and we show that automatic
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code generation is feasible using the StreamIt model. Previous work has

used these instructions only from hand-coded assembly language [14, 1],

and for the single special case of automatically generated code for reduction

operations [7].

Using two benchmark problems, sorting and Fast Fourier Transforms,

we show that the performance is competitive with the best hand-coding

on VIRAM. The benchmarks were chosen so that they contain data rear-

rangements implementable using both memory accesses and data-movement

instructions, and hence exhibit a tradeo� in the number of register opera-

tions per memory access. Our results have implications for compiler writers

on commercial and research architectures, as the permutation instructures

are quite similar to some SIMD media extensions such as Intel's SSE [3] and

PA-RISC's MAX-2 [9]. The approach of describing applications in StreamIt

as a high-level structure, called the stream-graph, greatly simpli�es data-

movement analysis when compared to a compiler for a language like C or

Fortran. Furthermore, our results support the inclusion of this style of regis-

ter permutations in instruction sets, both because automatic code generation

is practical and e�ective, and this limited set of permutations is suÆcient

to see enormous performance gains.

We �rst introduce a motivating example (Section 2), and use it as a run-

ning example to explain the StreamIt-to-VIRAM compiler (Sections 3, 4, 5).

We then present the results of this work (Section 6), and the contributions

and some future directions for this work (Section 7).

3



Elements
Input

Elements
Output

0

1

2

3

4

5

6

7

Stage3Stage1 Stage2

a
b

min(a,b)
max(a,b)

tail

head

an output vector register

an input vector register

Figure 1: A comparator network CN for 8-element sequences. Each arrow rep-
resents a comparator, and the inset shows the function of a single comparator.
Readers familiar with bitonic sequences would recognize this network as a bitonic
merger that sorts an input bitonic sequence of length 8 [15].

2 Motivating Example and Background

This section introduces a simple example application, and uses it to provide a

brief background on VIRAM and StreamIt. The application is a comparator

network CN shown in Figure 1 [16]. Each stage of CN exhibits data-

parallelism, and hence can be vectorized. Vectorizing one stage involves

executing operations like \vector min" and \vector max" on the stage's two

input vector registers to obtain the stage's two output vector registers. The

stage's �rst input vector register holds the input element at the tail of the 4

comparators of the stage, while the stage's second input register holds the

input element at the head of the comparators (some registers are marked

in Figure 1; in this paper, a register simply means a vector register). The

stage's two output registers similarly hold the output elements at the tail

and head of the 4 comparators. The data rearrangement needed between

one stage's output vector registers and the next stage's input vector registers
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Figure 2: Permutations caused by vhalfup (a) and vhalfdn (b) instructions, il-
lustrated with 8 elements per vector register. The �gure is from [6]. Except for
the direction of elements' motion, a vhalfup and vhalfdn instruction with the same
programmable parameter (set in vindex) are similar. The instructions don't modify
the shaded elements of the destination registers. The vector length must be a power
of two for both the instructions.

are the subject of this work.

2.1 VIRAM

We describe vhalfup and vhalfdn instructions (let vhalfdd refer to either

vhalfup or vhalfdn hereafter), to show that vhalfdd permutations on one

stage's output registers can be used to setup the next stage's input register.

Since vhalfdd permutations are more regular than arbitrary permutations,

they require less chip area and execute fast [8]. We don't look at VIRAM's

other data-movement instructions, as they are either general and hence ex-

ecute slow (eg. vector compress and expand) [6], or are exploited by the

existing compiler (eg. reduction operation). As shown in Figure 2, the

vhalfdd instructions divides the source register into blocks of size 2 � 2vindex,

shifts half of the elements within each block by 2vindex elements, and writes
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void−>void pipeline Main { 
  add DataSource(8);
  add ComparatorStage(4, 1); //Stage1 
  add MiddleStage;           //Stage2 
  add ComparatorStage(4, 2); //Stage3 
  add DataSink(8);
} 

int−>int splitjoin MiddleStage { 
  split roundrobin(4); //splitter
    add ComparatorStage(2, 1); //Stage2a
    add ComparatorStage(2, 1); //Stage2b
  join roundrobin(4);  //joiner
} 

int−>int splitjoin ComparatorStage(int N, int W) { 
  split roundrobin(W); //splitter
  for (int i=0; i<N; i++) {  
    add Comparator; 
  } 
  join roundrobin(W);  //joiner
} 

int−>int filter Comparator { 

    int elem1 = pop(); 
    int elem2 = pop(); 
    int mink = min(elem1, elem2); 
    int maxk = max(elem1, elem2); 

  } 
} 

    push(maxk); 
    push(mink); 

  work push 2 pop 2 { 

Figure 3: StreamIt code for the comparator network CN from Figure 1. The
DataSource(n) �lter (code not shown) only pushes the n input elements from a
"source array", and the DataSink(n) �lter (code not shown) only pops the n output
elements into a "sink array". A roundrobin(W) splitter, in one round, sends the
�rst W items to the �rst stream in the splitjoin, the next W items to the second
stream, and so on. A roundrobin(W) joiner has a similar function.

them into the corresponding position in the destination register.

2.2 StreamIt

We describe a subset of StreamIt here, and continue the running example

from Figure 1. An application is expressed in StreamIt as a network of

computational entities called �lters. Filters communicate with neighboring

�lters via FIFO queues using the operations of push(value) and pop(). The

work function that does the computation is invoked at every �ne-grained

execution of the �lter, and the number of items pushed (popped) during

each invocation, is the push value (pop value). Figure 3 shows the code of

our running example, and Figure 4 the corresponding stream-graph.

The high-level structures in this stream-graph are pipelines, which se-
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Figure 4: A stream-graphGCN modelling the comparator networkCN from Figure
1. The edges in the �gure represent FIFO queues. The numbers inside a splitter
or joiner are the roundrobin weights, and those near the output and input of each
�lter are the push and pop values respectively (this convention is followed in all
�gures). The small number near the bottom of each Comparator �lter (a �lter of
identity `Comparator') is the �lter's 'position' in either of splitjoins, Stage1, Stage2
or Stage3.

quentially compose streams (�lters or other constructs), and splitjoins, which

compose independent streams that diverge from a common splitter and

merge into a common joiner. The splitter and joiner of a splitjoin are

key places in the stream-graph where data-movement happens. StreamIt is

a static language, i.e., the stream-graph structure (including the push and

pop values, and roundrobin weights associated with roundrobin splitters and

joiners) must be known at compile-time. A steady-state schedule is an or-

dering of the executions of �lters, splitters, and joiners of the stream-graph

that satis�es certain data-dependence semantics. A hierarchical steady-state

schedule [2] is used as the underlying schedule for data-movement analysis in

this work. The number of executions in the underlying schedule of a �lter,

splitter or joiner, is referred to as multiplicity in this paper.
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Figure 5: A section of the stream-graph of Figure 4 annotated with the underlying
schedule's execution. The edge vectors represent the corresponding FIFO queues
(the �rst element of the edge vector is the head of the FIFO queue, and so on).
A def vector collects appropriate elements from edge vectors at the output of a
vectorizable set, so it corresponds to an output vector register of the vectorizable
set (this observation, which is similarly true for use vectors, follows from visualizing
a data-parallel execution of the vectorizable set; see also Section 2).

3 Data-movement analysis

Data-movement analysis is the process of obtaining and analysing data-

movements. First, we need a framework (a basis) for doing it, and this

section presents such a framework (Section 3.2) inspired by a subset of fea-

tures of StreamIt (Section 3.1). Our StreamIt-to-VIRAM compiler aug-

ments StreamIt with new representations and operators that help in data-

movement analysis (they are described in this section and the next two).

3.1 Data-movement-speci�c features of StreamIt

The features of StreamIt used in our StreamIt-to-VIRAM compiler for data-

movement analysis are listed below. These features could prove useful to
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extend data-movement analysis to other source languages like C.

1. Static nature: StreamIt's various static requirements let the stream-

graph structure and steady-state schedule [2] to be determinable at compile-

time. The concrete foundation provided by the stream-graph structure and

(underlying) schedule greatly simpli�es data-movement analysis.

2. Data-parallelism construct: A data-parallelism construct like splitjoin

is important, since we are interested mainly in data-movements between

data-parallel components of the application. A vectorizable set captures the

notion of a data-parallel component, and is de�ned as a set of �lters of

same identity (hence same work function, push and pop values, etc.,) and

same multiplicity that additionally satisfy the condition: these �lters are the

only independent �lters in a splitjoin (called the enclosing splitjoin). The

stream-graph in Figure 4 has three vectorizable sets that comprise the �lters

in Stage1, Stage2 and Stage3 splitjoins respectively (the enclosing splitjoin

can also contain other splitjoins; eg. Stage2 splitjoin)

3. Data-centric abstractions: The push and pop FIFO queues and split-

ter and joiner abstractions in StreamIt are very much data-centric. Let's see

their e�ect on data-movement analysis. We assume in this paper that the

multiplicity of the �lters of a vectorizable set is 1 (without loss of generality

[11]). Then, each of these �lters produces push values and consumes pop

values in the underlying schedule. Hence, the vectorizable set as a whole has

push def vectors and pop use vectors, with each def or use vector's length

being the number of �lters in the vectorizable set. Figure 5 illustrates dif-

ferent vectors, and also shows how def and use vectors correspond to output

and input vector registers respectively of a vectorizable set. Thus, data-

9



movement analysis now reduces to the problem of determining how to get a

use vector from the def vector(s) that contributes data to the use vector.

4. Decomposable data-movements: A \global" data-movement cap-

tures how data gets routed between def vectors that contribute data to a

use vector and the use vector itself (for example, the def vectors \b" and

\c" contribute to the use vector VR3 in Figure 5). A global data-movement

is decomposable into a set of simple local data-movements at splitters or

joiners that lie in the path in the stream-graph from the contributing def

vectors to the use vector.

3.2 StreamIt-to-VIRAM's Data-movement framework

This section presents a new representation called views as part of a frame-

work for doing data-movement analysis. Vectorizable sets, their use and def

vectors, edge vectors (Figure 5), and views all constitute a natural framework

or basis for doing data-movement analysis. If the user exposes communica-

tion patterns in the application over a suitably �ne-grained stream-graph,

then the data-movements in the stream-graph are readily available for anal-

ysis under this framework. We require the programmer to use only a subset

of StreamIt [11] similar to the one described in Section 2.2. We believe that

this subset has a good chance of covering parts of the application that can

bene�t from vhalfdd permutations. For example, the subset doesn't contain

duplicate splitters, and vhalfdd permutations don't involve duplications.

A view of a edge or use vector (called as edge or use view) describes the

composition of the vector by recording the "origin" (speci�c def vector) and

"position or index in origin" of each element of the vector separately. An ex-
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ample of a edge view in Figure 5 is the ordered set fb[0]; b[1]; b[2]; b[3]; c[0]; c[1]; c[2]; c[3]g

of the contents inside one edge vector. We exploit the contiguous regular-

ity in this view to obtain a compact representation f(<b> + 0, +1, 4),

(<c> + 0, +1, 4)g. Each structure of the form (<x> + o�set, stride,

length) in the view (we call it a subview), indicates a strided access on the

vector x, and picks the (o�set + 0 � stride)-th, (o�set + 1 � stride)-th, : : :,

(o�set+ (length�1) � stride)-th elements of x. Subviews can also be \struct-

strided" accesses [11]. Use views provide suÆcient information for generat-

ing permutation instructions, and edge views provide enough information for

obtaining the use views. Hence, views serve as an important intermediate

representation and key component of data-movement framework.

4 Obtaining views

This section describes our extensions to the StreamIt compiler for obtaining

the use views of all use vectors in the stream-graph, and forms the �rst phase

of data-movement analysis. The task of obtaining use views is broken down

into local tasks of obtaining edge views ("decomposable data-movements"

feature in Section 3.1). The basic principle behind this decomposition strat-

egy is the simulation of �lter invocations and data-movements in the stream-

graph, according to the underlying schedule. The simulation needs only the

static values of the stream-graph, and the work functions of �lters are ab-

stracted out of the simulation. Though the simulation here is analogous to

the one done by the StreamIt-to-Raw compiler [2], its purpose and imple-

mentation are quite di�erent. The simulation here is for recognizing commu-
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Figure 6: Obtaining edge and use views on a section of the stream-graph of Figure
4. Compare the views in this �gure with the vectors in Figure 5.

nication patterns mappable to VIRAM's permutation instructions, but the

one in StreamIt-to-Raw is for communication scheduling. The simulation in

this work records the regularity structure in communication patterns using

views and its associated operator apply stride.

The apply stride operator plays a key role in obtaining edge and use

views. It applies a strided access on an input view to return an output

view. In more detail, it outputs a view of a vector that is obtained by

applying a strided access (speci�ed by o�set, stride and length) on the input

vector (the use or edge vector described by the input view). For example,

an apply stride of (o�set, stride, length) on an input view f(<a> + o�set',

stride', length')g returns the output view, f(<a> + o�set � stride' + o�set',

stride � stride', length)g. For an elaborate description of apply stride, see

[11].
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The edge views are obtained by traversing the edges of the stream-graph

in a topological order (i.e., an edge is visited only after visiting all neigh-

bouring edges coming into that edge). The current edge being visited could

lie at the output of a splitter, joiner or �lter, so the view of edge vector at

the current edge is obtained by merely simulating the working of a splitter,

joiner or �lter, according to the underlying schedule. These simulations can

be done eÆciently using the apply stride operator [11].

Once we have the edge views at a vectorizable set's input, we can readily

obtain its use views. Speci�cally, the pth use view of the vectorizable set

is an apply stride of (p, +pop, vlength) on a view that is the concatenation

of edge views at the vectorizable set's input (here pop is the pop value of a

�lter of this set, and vlength is the number of �lters in this set). Figure 6

illustrates the whole exercise of obtaining edge and use views, and is easily

understood by comparing it with Figure 5.

5 Analysing views

Analysing views forms the second phase of data-movement analysis. Equipped

with the use views of all use vectors returned by the �rst phase, we gener-

ate permutation instructions by looking for access patterns (or structure)

in these views that are mappable to vhalfdd permutations. Instead of work-

ing directly with views, we work with an alternate characterization of a use

vector's composition, called the usage and location patterns that are derived

from use views. These patterns simplify the generation of vhalfdd (especially

multiple vhalfdd) permutations, so we look at them �rst.
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Consider a speci�c use vector UV . The usage and location pattern is

de�ned for each def vector that contributes data to UV . Let contributed

elements of a def vector refer to its data elements that end up in UV . Then,

the position or index of each contributed element of a def vector in the def

vector itself is the usage pattern of the def vector, and that in the use vector

is the location pattern of the def vector. For example, if UV 's composition

is fa[0]; b[0]; a[1]; b[1]g, both a and b contribute their �rst two elements

to UV and hence have the same usage pattern, which is the ordered set

f0,1g. However, a and b's location pattern is the ordered set f0,2g and

f1,3g respectively. To clarify, if the dth element of the def vector ends up

in uth position of UV , then d and u are present (say, as the ith value)

in the ordered set representing a def vector's usage and location pattern

respectively. Having de�ned usage and location patterns using ordered sets,

the next step is to compact these sets using a "block-stride" representation.

A block-stride represents a usage or location pattern using four parameters

(o�set, stride, length, blocking-factor), as follows. Consider a vector of all

possible positions or indices f0; 1; 2; : : :g, and group every blocking-factor

adjacent elements of this vector into blocks. The result is a new vector

V of blocks, and a strided access of (<V > + o�set, stride, length) on V

returns some blocks. The ordered set of positions in the returned blocks gives

the pattern represented by this block-stride. For example, if an usage or

location pattern is the ordered set f0,1,2,6,7,8,12,13,14g, then the pattern is

represented by the block-stride (0, +2, 3, blockf 3) (blockf indicates blocking-

factor). In this example, the vector V of blocks is f(0,1,2), (3,4,5), (6,7,8),

(9,10,11), (12,13,14)g, and the underlined blocks are spaced at a stride of

14



+2.

We now have the machinery to deduce or generate vhalfdd permutations

from usage and location patterns that are represented as block-strides. A

simple claim that lets us generate a single vhalfdd permutation follows. If

(A) exactly two def vectors (allocated in registers VRS1 and VRS2) con-

tribute data to a use vector (allocated in VRD), (B) the usage pattern of

both the def vectors w.r.t the use vector are (o�set, +2, length, blockf 2vidx)

with o�set being 0 or 1 and length being a power of two, and (C) the lo-

cation pattern of the �rst and second def vector w.r.t the use vector are

(0, +2, length, blockf 2vidx) and (1, +2, length, blockf 2vidx) respectively,

then we can generate vhalfup(VRD, VRS1, VRS2, vidx) if o�set is 0 or

vhalfdn(VRD, VRS2, VRS1, vidx) if o�set is 1, to setup data in the use

vector. In the claim, vhalfdd(vrdest, vrsrc1, vrsrc2, vindex) is a shorthand

for the two-instruction sequence: copy vrdest, vrsrc1 and vhalfdd vrdest,

vrsrc2. The claim is easy to verify, and applying it to Figure 6 shows that

VR3 can be setup with proper data by a vhalfup(VR3, VR1, VR2, 1), and

VR4 can be setup by a vhalfdn(VR4, VR2, VR1, 1).

Multiple vhalfdd permutations combine the e�ect of a list (i.e., sequence)

of single vhalfdd permutations to achieve a complex permutation of data.

Here is an example (VRS1 and VRS2 are source, VRD is destination, and

VRT are temporary registers):

Pair 1: vhalfup(VRT1, VRS1, VRS2, 2), vhalfdn(VRT2, VRS2, VRS1, 2)

Pair 2: vhalfup(VRT3, VRT1, VRT2, 1), vhalfdn(VRT4, VRT2, VRT1, 1)

Last: vhalfup(VRD, VRT3, VRT4, 0)

A list of arbitrary single vhalfdd permutations is diÆcult to deduce, so we
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only consider a "constrained list" [11] of vhalfdd permutations (motivated

by the Bitonic Sort application). A constrained list has three parameters,

orientation, vidxbeg and vidxend. The above example is a constrained list

with orientation 0, vidxbeg 2, and vidxend 1 (orientation would be 1 if the

"Last:" instruction in the example were a vhalfdn(VRD, VRT4, VRT3, 0)

instead). A claim that lets us generate a constrained list, and is similar to

the claim seen above, follows. If (A) exactly two def vectors contribute data

to a use vector, (B) the usage pattern of both the def vectors are (o�set, +2,

length, blockf 2vidxend) with o�set being equal to orientation (and hence only

0 or 1) and length being a power of two, and (C) the location pattern of the

�rst and second def vector are (0, +2, length', blockf 2vidxbeg) and (1, +2,

length', blockf 2vidxbeg ) respectively, then we can generate a constrained list

of vhalfdd permutations with parameters, orientation, vidxbeg and vidxend to

setup data in the use vector. In the claim, length �2vidxend= length' �2vidxbeg .

By the claim, we can generate the example constrained list above if, VRS1

and VRS2 have the same usage pattern (0, +2, length, blockf 1), and location

patterns (0, +2, length', blockf 4) and (1, +2, length', blockf 4) respectively,

w.r.t VRD. The claim can be inductively proved by stepping through the

constrained list's permutations and noticing their e�ect on the patterns.

6 Results

The StreamIt-to-VIRAM compiler described in this work is implemented by

integrating the StreamIt compiler, which we modi�ed to do data-movement

analysis, and the existing VIRAM vectorizing C compiler vcc. The imple-
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Method of Programming Exploits vhalfdd Performance
permutations? (h/w peak: 1,600 MFlops)

C code and vcc compiler No 94 MFlops

StreamIt-to-VIRAM compiler Yes 1,109 MFlops

Hand-optimized assembly Yes 898 MFlops
code based on [13]

Table 1: Performance comparison of di�erent methods of coding FFT in
VIRAM on N = 256 complex elements (the real and imaginary parts are
32-bit 
oating point numbers).

mentation is a proof-of-concept, and the compilation process is fully au-

tomated except for two minor phases. Note that no assembly-level hand

optimizations is done in these two phases [11], and there is no fundamental

obstacle against automating these phases in future. The benchmark ap-

plications FFT [14, 17], and Bitonic Sort [15, 16] were considered to test

our compiler. The benchmarks were chosen so that they contain data re-

arrangements implementable using both memory accesses and permutation

instructions, and hence exhibit a tradeo� in the number of register-register

operations per memory access.

6.1 Performance on VIRAM

VIRAM-1, a prototype VIRAM processor targeted to run at 200 MHz [7],

was recently fabricated. It is not yet running in a test environment, and

we obtain these results using a near cycle-accurate simulator. The perfor-

mance of FFT on VIRAM is shown in Table 1, and two observations are

immediate: Vhalfdd permutations are important in accelerating FFT (this

agrees with the result in [14] on the superiority of vhalfdd permutations

over other assembly optimizations for FFT), and our compiler beats even
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Method of Programming Exploits vhalfdd Performance
permutations? (h/w peak: 1,600 MOps)

C code and vcc compiler No 19 MOps

StreamIt-to-VIRAM compiler Yes 180 MOps

StreamIt-to-VIRAM compiler + cleanup Yes 737 MOps

Hand-optimized assembly code used in Yes 738 MOps*
DIS histogram benchmark [1]

Table 2: Performance comparison of di�erent methods of coding Bitonic
Sort in VIRAM on N = 128 32-bit integers. (* - This code sorts only 64
elements, and is part of the DIS histogram benchmark [1].)

the hand-optimized code of [13]. Our StreamIt-to-VIRAM compiler per-

forms better than the hand-optimized code, because the former uses faster

unit-stride vector loads [1] instead of indexed vector loads during the �nal

few FFT stages. But, in order to use unit-stride loads, the FFT code pro-

duced by our compiler uses roughly 6 times more memory space than the

hand-optimized code.

The results of Bitonic Sort are in Table 2. Hand-coding bitonic sort to

exploit vhalfdd permutations is very tedious as a simple data-movement in

the application can translate to multiple vhalfdd permutations in the assem-

bly code (Section 5), and our StreamIt-to-VIRAM compiler provides a far

better alternative. Some basic backend optimizations are absent in vcc [8],

but a positive note in [8] says that these optimizations are \straightforward

to add in future and have been available for years in all commercial com-

pilers". Recall that the StreamIt-to-VIRAM compiler also uses vcc, and we

tackle the absence of the basic backend optimizations via a \cleanup" (see

Table 2) done by hand, to mainly remove spill and unwanted code from the

�nal assembly �le produced by the StreamIt-to-VIRAM compiler.
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Compiler FFT Bitonic Sort
MFlops Cycles MOps Cycles

StreamIt-to-Raw 90 28339 cycles 392 3425 cycles

StreamIt-to-VIRAM 1109 1846 cycles 180 / 737* 5968 / 1459* cycles

Table 3: Performance comparison of StreamIt-to-Raw and StreamIt-to-
VIRAM compilers. For MFlops/MOPs calculation, the clock frequency used
for Raw is 250 MHz, and VIRAM is 200 MHz. A recent paper [5] says that
Raw core runs at 420 MHz at room temperature and nominal voltage. So,
cycle counts are also given. The VIRAM numbers are same as before. (* -
This number is StreamIt-to-VIRAM compiler + cleanup as in Table 2.)

6.2 Comparison with StreamIt-to-Raw

The StreamIt compiler [2] generates code for Raw, a communication-exposed

architecture, and we extended it to generate data-movement code for VI-

RAM, a vector architecture. The two compilers, StreamIt-to-Raw and

StreamIt-to-VIRAM, hence have very di�erent responsibilities, but interest-

ingly perform the analyses and transformations on the same IR, the stream-

graph. One di�erence in compiler responsibility is generating vs scheduling

communication operations (see also Section 4). The thrust of our StreamIt-

to-VIRAM compiler is in generating permutation instructions, since each

permutation instruction triggers a hardcoded schedule of basic data trans-

fers on VIRAM's on-chip communication network.

Table 3 presents comparison between the two compilers on the same

benchmarks (performance simulators of Raw and VIRAM were used to ob-

tain the results). Since both compilers have the same frontend, we are

infact comparing their backends. The StreamIt-to-VIRAM performs better

on FFT. Some reasons for the current version of StreamIt-to-Raw back-

end's poor performance on FFT are imperfect load-balancing on mapping
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the stream-graph to Raw's tiles, and inter-tile synchronization overhead.

On bitonic sort, the StreamIt-to-Raw performs better than StreamIt-to-

VIRAM's 180 MOps result. But, as discussed before, if vcc is improved to

include some basic backend optimizations, StreamIt-to-VIRAM should be

better with 737 MOps. However, a caveat to note here is that Bitonic Sort

is a suitable sorting algorithm for VIRAM, but not necessarily suitable for

Raw.

7 Contributions and future work

This paper presented a modular approach for automatic code-generation of

vhalfdd permutations in VIRAM. We showed that our approach performs

competitively with hand-coded assembly and vhalfdd permutations provide

an enormous performance boost for the benchmarks considered. Our mod-

ular approach demonstrates StreamIt's usefulness in data-movement analy-

sis. Internal representations like views help achieve modularity by serving

as clean interfaces between di�erent phases of the compiler, which would be

useful in retargeting to other vector or SIMD instruction sets.

A natural question at this juncture is: How extensible is the approach

taken in this work to generate other permutation instructions? The answer is

closely linked with the data-movement speci�c features of StreamIt (Section

3.1). Our approach could be extended to generate a permutation instruction,

if the instruction's data rearrangement can be represented using the struc-

ture of the stream-graph (i.e., using the splitters and joiners that lie along

the path from the relevant def vectors to the use vector). Hence, instruc-

20



tions with dynamic access patterns (eg. the powerful \vperm" instruction

from Motorola's Altivec [10]) cannot be represented in this framework. But,

interesting examples of instructions that could be represented are the \high

or low unpack and interleave" instructions from Intel's SSE [3], and \mixR

or mixL" instructions from PA-RISC's MAX-2 [9] (surprisingly, mixR and

mixL are analogous to vhalfup and vhalfdn instructions respectively). All of

these instructions add explicit parallelism to the instruction set, and history

has shown that the ability to compile for such extensions is critical. Our

work demonstrates that VIRAM-style regular permutation instructions are

not only eÆcient from a hardware perspective, but can also be reasonably

supported by compilers from a high-level parallel language like StreamIt.
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