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Lame Deer, Seeker of Visions
John (Fire) Lame Deer and Richard Erdoes

Medicine, Good and Bad, pag 162-163.

Even animals of the same kind - two deer, two owls - will behave differently from each other.
Even your daughter’s little pet hamsters, they all have their own ways. I have studied many
plants. The leaves of one plant, on the same stem -none is exactly alike. On all the earth
there is not one leaf that is exactly like another. The Great Spirit likes it that way. He only
sketches out the path of life roughly for all the creatures on earth, shows them where to go,
where to arrive at, but leaves them to find their own way to get there. He wants them to act
independently according to their nature, to the urges in each of them.

[...]
I believe that being a medicine man, more than anything else, is a state of mind, a way

of looking at and understanding this earth, a sense of what it is all about. Am I a wićaśa
wakan? I guess so. What else can or would I be? Seeing me in my patched-up, faded shirt,
with my down-at-the-heels cowboys boots, the hearing aid whistling in my ear, looking at the
flimsy shack with its bad-smelling outhouse which I call my home - it all doesn’t add up to
a white man’s idea of a holy man. You have seen me drunk and broke. You heard me curse
or tell sexy jokes. You know I am not better and wiser than other men. But I’ve been up on
the hilltop, got my vision and my power; the rest is just trimmings. That vision never leaves
me - not in jail, not while I’m painting funny signs advertising some hash house, not when
I am in a saloon, not while I am with a woman, especially not then.
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ABSTRACT OF THE DISSERTATION

The X-Legion

A Compiler-Approach to Exploit Locality and Portability of Divide-And-Conquer

Algorithms

by

Paolo Nicola D’Alberto

Doctor in Philosophy in Information and Computer Science

Department of Computer Science

University of California, Irvine, 2005

Professor Alexandru Nicolau, Chair.

The solution of linear systems is an ancient and inexhaustible problem. In time, the

theory and the techniques to solve this problem have evolved and, today, hardware and

software technologies thrive to achieve high-performance systems for the efficient solution

of systems based on what is now defined as matrix linear algebra, and, in turn, efficient

matrix computations and matrix algorithms.

My main contribution is in the investigation and implementation of techniques for the

analysis of data locality in divide-and-conquer (D&C) algorithms, both recursive and

non recursive, and their application to drive novel memory-hierarchy adaptations at compile

time –i.e., static– or at run time –i.e., dynamic. I show the practicality and benefits of these

techniques when applied to algorithms for linear algebra, matrix computation kernels and

graph manipulation. In practice, I investigate and propose techniques for code organization

through data-layout and computation re-organization in order to exploit data locality. Es-

pecially in this work, I present compiler-driven optimizations for the best utilization of the
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memory hierarchy starting from the register files to the efficient utilization of the translation

look-aside buffer (TLB) and, thus, hard-disk access(es).

These compile-time techniques are deployed in an investigative framework: X-Legion

compiler –i.e., the tenth-legion compiler. JuliusC (Julius Caesar) is the leading component of

the X-Legion compiler and it analyzes the division process of recursive D&C algorithms. Such

an information leads to the modeling of the computation unfolding, the (automatic) reduction

of the algorithm division work, and the targeting of optimizations driven by another compiler

component, STAMINA. In fact, STAMINA is an analysis tool for the estimation of cache

interference due to data memory reference in loop nests. In turn, the interference analysis

drives the application of further optimizations to exploit spatial and temporal locality such

as cache-line size adaptation and dynamic mapping.

1



2



CHAPTER 1

Thesis Statement and Contribution

Intuitively in a Divide-and-Conquer (D&C) algorithm, a computation has locality when

we can find a suitable division of the computation into sub-computations, and every sub-

computation has a high ratio between number of operations and number of input data. The

ratio estimates the computation’s inherent ability to amortize the cost of reading the input

data over the amount of processing based on the input data. In practice, a high ratio means

that the computation exploits data reuse and it spends little time reading data and more

time performing useful computations. Otherwise, a low ratio means that the computation

has little data reuse, and, thus, the same data read are used for few computations.

The exploitation of locality is crucial for any applications executed on modern archi-

tectures with deep memory hierarchy. Indeed, if the application has data locality, the ar-

chitecture is able to store the most frequent data in small and fast caches so reducing the

average data access time and speeding up the computation progression. In fact, data locality

exploitation must be addressed starting from the design of the algorithm, while building the

basic blocks of the application, to the design of the algorithms’ data structures and layout.

For a specific application, a developer may devise an estimation-measure and she may

use it to guide the design of cache conscious codes for the application; that is, codes

that are tailored to take advantage of the presence of caches and their specific organization.

Though in practice, an estimation often suffices an experienced developer in the design and
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implementation of specific codes – e.g., for a first and preliminary solution to a problem;

however, an estimation may not suffice an application-specific code generator and, certainly,

it will not suffice a general-purpose compiler.

In practice, an estimate must be validated so as to be reliable and truthful, and it should

be practical to use and apply. Moreover, an automatic approach needs more than a guideline,

it needs a measure, a number, which quantifies the contribution of a technique precisely

and concisely. In fact, the capability to quantify an application locality –within a certain

accuracy– is essential for any automatic approach. For example, an optimizing compiler

needs to determine statically the trade-off among different optimizations for an adaptive

processor-cache system, and it may need to choose a particular configuration among several

ones (e.g., for optimal performance). A compiler must have a quantitative and precise

measure of the benefits, so that it may choose the best solution without any further help

from the developer.

This chapter is organized as follows. In Section 1.1, we state our motivation for the

investigation and we summarize it by a thesis statement. In Section 1.2, we present the

problem in detail and, thus, the compelling reasons for its solution and the effect of such a

solution in its context. In Section 1.3, we outline briefly our contribution and our preliminary

implementation as an investigative compiler aimed at the implementation of our solution.

In this work, we show and enforce the potentiality of compiler-driven approaches such as the

ones implemented in X-Legion compiler (pronounced the tenth-legion compiler) 1

1.1 Thesis Statement

The X-Legion Compiler implements hybrid techniques, that is, software optimizations or

1The name of the compiler emerges from the components and their interaction. In fact, JuliusC is the
first component and it stands for Julius Caesar; JuliusC analyzes the application solution strategies and it
drives some of the optimizations at the highest level of abstraction. Indeed, in the Gaul’s war the tenth
legion was under the direct control of Julius Caesar (on the field), it was composed by the most loyal and
experienced legionaries who showed the most stamina in action.
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hardware adaptations based on compile-time analysis and run-time deployment based on static

analysis. Such techniques are tailored to the optimization of recursive divide-and -conquer

(D&C) matrix algorithms and they exploit data locality and use direct-mapped data caches.

The contribution of this thesis is based on the importance of the applications and on the

importance of the cost/performance/power advantages of using simple data caches and new

hybrid techniques.

In practice, matrix algorithms are the core of scientific computing and applied matrix

algebra, therefore even a small improvement in one of the basic kernels can be extremely

beneficial. The optimal implementation (i.e., with minimum number of cache misses) for

a family of matrix algorithms is compelling for performance purpose and for the efficient

utilization of complex (and often expensive) systems. We explore the extent of D&C ma-

trix algorithms and their cache obliviousness achieving portable and optimal performance.

Moreover, the data locality of these applications yields potential avenues for the automatic

exploitation of coarse and fine grain of parallelism.

A simple cache design has the following effects on the trade-off among performance, cost

and energy consumption:

• Large caches improve average data reuse and therefore performance, and, with the same

cache size, a direct-mapped cache has faster hit access time than an associative cache.

However, an associative cache may reduce cache interference, distributing interfering

memory accesses to different blocks, reducing average access time.

If we achieve the same cache miss ratio using a direct-mapped and an associative cache,

we have better performance using direct-mapped caches only.

• With caches of the same size, direct-mapped caches dissipate less energy per access
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than associative caches, because associative caches perform a search for data in every

block, either in parallel or sequentially.

If we achieve the same cache miss ratio using a direct-mapped and an associative cache,

we obtain better energy consumption using direct-mapped caches only.

• Modern processors have already embedded one or two levels of caches; these caches

occupy the majority of the chip real estate. A direct-mapped data cache will simplify

the design and the saved real estate may be used for other purposes.

• Multiprocessor systems may have thousands of processors and a small cost reduction

per processor can be significant overall. A simple memory hierarchy translates into a

simple architecture design and in low costs.

We evince our thesis as follows: We show how we can exploit locality by using: only code

organization, only memory-hierarchy re-configuration, and a combination of the two. We

explain how performance may vary as a function of the input sets and we show how adapta-

tion of code and architecture is key to achieving optimal performance in any input scenario.

We propose methods for the estimation of locality and we propose practical approaches for

the quantification and exploitation of locality. We show the benefits of our approach by ex-

perimental results that are obtained as a combination of the following: direct measurement

of performance (e.g. wall clock), by simulation (e.g. cache-processor simulators), and by

hardware counters (e.g. MIPS R12K, UltraSparc II). We also discuss an interpretation of

such metrics and their interdependencies.

1.2 The Problem

If we observe the unfolding of the computation of a D&C matrix algorithm and especially its

division in subcomputations, we may measure the locality by counting directly the number

of computations and memory accesses. In this way, for a given fixed application and its
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execution, we may verify whether or not the computation has optimal locality performance

rather quickly –e.g., optimal = the minimum number of cache accesses over the number of

arithmetic computations. However, if we want to steer the algorithm division strategy and

the computation so as to achieve optimal performance, we face an arduous task because this

problem is reducible to the scheduling problem, which, in turn, is an NP -complete problem.

The definition of optimum is dependent on the context, and in general it is the mini-

mization of a goal function. If the goal is to achieve optimal performance, the application

must be reorganized so that it has minimum execution time or minimal number of cycles.

When the goal is to achieve optimal work, the application must be reorganized in such a

way that it has minimum number of (basic) operations. In the literature, the cache miss

ratio –i.e., the ratio of the number of cache misses over the number of cache accesses– is

the common measure for the locality of an application. When the goal is to achieve optimal

locality, the application must have minimum cache miss ratio. Also the term cache miss

rate is commonly used and it is defined as the miss ratio multiplied by 100, that is, the

number of misses as the percentage of accesses. Finally, when the goal is the minimization

of power consumption, we can show that the optimal implementation minimizes a weighted

sum of all of the previous goal functions, such as number of cycles, number of instructions

and number of cache hits and misses.

In modern architectures, the relation among these goal functions can be puzzling at best.

For example, an optimal application for its work may not be optimal for performance or

locality, or vice versa. In general, the choice to optimize an application for one goal function,

instead of another, depends on the context. If the technology advancement continues, the

CPU’s speed will double every 18 months – Moore’s law, caches and memory will be twofold

faster and larger every two-three years, and batteries lasting power will double only every

five years; we can see that caches, memory and battery will be crucial resources: caches will

represent the performance bottleneck of an architecture and the battery power will limit
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considerably mobile computing. In this work, we address these problems by estimating the

effect of our techniques measuring three metrics of performance: execution time (i.e., direct

measure of wall clock or synthesized measure of it as mega floating point operations per

second MFLOPS), data cache miss rate (ratio), and, sometimes, power consumption.

The problem escalates in proportion and difficulty when we search for an optimal im-

plementation for a family of goal functions (or, even more difficult, a family of applications

for a family of goal functions); for example, we may want to find a single implementation

of an algorithm that, unchanged, has optimal performance for several different architec-

tures. Even though in general such a champion does not exist and we need to select one

champion for one application and one architecture, we present examples of algorithms that,

practically unchanged, achieve nearly optimal/predictable performance for several different

architectures.

In this work, we introduce a family of applications that have optimal and inherent data

locality. We also present techniques to reorganize this family of applications to exploit –for

every input– both data locality and system resources fully. D&C algorithms exploit locality

naturally. The division of the main computation in sub-computations exposes an indepen-

dent set of data and computations, which can be divided further. The division process stops

when the computation can be performed –efficiently. If sufficient resources are available, we

may ply low and high levels of parallelism and we may reduce inter-processors communi-

cation. If a single processor is the host of the computation and the memory hierarchy has

multiple levels of caches, the division of the problem in smaller problems is tremendously

beneficial as well. In fact, we divide large problems, for which data must reside in slow

storage devices (e.g., disk and tape), in more manageable problems that we solve as soon as

we bring the data in main memory; if we divide the problem a level further, we can solve

smaller problems as soon as the data is in cache.

Algorithms applying the D&C approach are ubiquitous for problems on volumes of data.
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We present and investigate D&C algorithms for linear algebra for dense matrices [1, 2], and

algorithms characterization for hierarchical memories [3, 4]. We work with the following

examples of linear-algebra applications:

• LU-Matrix Factorization is used in non-iterative algorithms for the solution of

systems of equations, such as Ax = b where A (matrix of coefficients) and b are

known and x is unknown. The solution follows these steps: first, we determine two

matrices L and U so that LU = A, where L is a lower triangular matrix and U is

an upper triangular matrix [5]. Thus, we have reduced the system to two simpler

triangular systems. Second, we solve the system Ly = b and and then Ux = y so to

compute the final solution x.

Notice that the solution of triangular systems (upper and lower), as well as the matrix

factorization, have matrix multiplication as kernel computation, and, they also inherit

the data locality properties of matrix multiply, 2 see the following point.

• Matrix Multiplication (MM), C = AB, where A, C, B are square matrices of size

n×n, is kernel for basic matrix factorization algorithms and linear algebra applications

[6, 7, 8]. There is a countless number of implementations for MM and we can distinguish

them by their computational complexity. For example, if we start from the fastest to

the slowest, we have: Coppersmith-Winograd’s [9] with complexity O(n2.31), Strassen’s

[10] with complexity O(nlog 7), and the definition, ijk-matrix multiply with complexity

O(n3).

The latter, ijk-matrix multiply has been proved to achieve optimal cache locality [11],

and, in fact, MM is one of the cache oblivious algorithms; that is, there is an

implementation that, unchanged, is optimal (asymptotically) in the number of cache

misses for an ideal cache 3 of any cache size.

2We use interchangeably matrix multiplication and matrix multiply
3I.e., fully associative cache with ideal optimal cache line replacement policy
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• Matrix by vector multiplication is basic computation in BLAS 2 and, it is espe-

cially used for the change of representation of a vector using different space bases. In

particular, the spectral analysis of digital signals, such as the application of Discrete

Fourier Transform (DFT) on discrete digital signals, is commonly used for the design

and implementation of discrete digital filters. When the discrete signal is considered

periodic for a certain number of points (i.e., after a certain number of samples or

points the signal has the same repetitive form) the DFT algorithm is amenable to be

optimized: the algorithm is known as the Fast Fourier Transform (FFT). The most

famous implementation of FFT it may be the FFTW[12]. Notice that FFT is another

cache oblivious algorithm.

The inherent cache locality of linear-algebra applications make them an excellent test

set where we are able to investigate optimizations aimed to exploit fully the potentials of

these applications. To exploit locality and performance even further, matrix algorithms may

require ad-hoc organization of the data matrices; in fact, the layout of matrices may speed

up the transfer of data to/from different levels of the memory hierarchy (i.e., allowing fast

data-block transfers), and it may reduce cache interference (i.e., especially self interference).

Aggarwal et al. [13] present the first clear performance model for memory hierarchy

with block transfer. Their model aims to represent the communication cost in real systems,

where in practice, all transfers among different level of the memory hierarchy are among

blocks of data. In fact, all data transfers between disk-memory and memory-caches break

down eventually to a transfer sequence of large blocks of continuous data. For a hard disk,

the seek time –i.e., the time to move the hard-disk head on the wanted data– dominates

the transfer time, because it is of the order of milliseconds; however, when the hard disk

head is moved successfully on top of the first sector, the data transfer involves large data

blocks (of up to 512KB each) and is extremely fast (GB/s). The transfer of data among

caches and memory has similar spatial locality characteristics, but instead of large sectors,
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the data transfer involves smaller data blocks, called lines, usually having sizes between 32B

and 128B.

To return to the subject of how data layout may affect performance, the reorganization

of matrix layouts changes how the computation accesses the data as well as how the data

are mapped in cache during the computation. For example, a careful organization of the

data into the hard disk can minimize data transfer latency and maximize the use of the

data block at every memory level: for example, exploiting page locality in main memory,

exploiting cache-line locality in direct-mapped and associative caches, and, finally, continuous

loads/stores in registers.

Data layouts have been adopted in conjunction with blocked algorithms early in their

design and application, but they have received particular attention for recursive algorithms.

Indeed, these layouts are known as recursive layouts [14, 15, 16]. Recursive layouts have

been applied first for surface-rendering problems with massive data sets, then proposed for

standard linear-algebra applications. In the following, we introduce the most compelling

reasons why recursive algorithms are attractive, and especially for code portability across

architectures and for code analysis by compilers.

In this work also, we propose a new processor-cache system that allows a partial adap-

tation of the data-cache organization to the application requirements at run-time. Our

processor-cache system does not need to change dramatically during the computation; the

system morphs from one configuration to another by small steps and, in general, adapting

the functionality without changing the hardware configuration. That is, we propose a direct-

mapped cache (e.g., 32KB) that may change its cache line size (e.g., 8, 16, 32, 64 or 128B)

or its mapping function (e.g., the memory address x is mapped to the cache line f(x) = `i),

but it will remain a direct-mapped cache of the same size (e.g., 32KB). We show that we can

achieve optimal performance across different architectures, different cache sizes and cache

organizations, because we make the application and the system work together for a common

11



goal. We do this by using compile-time techniques to reorganize the code application and

annotating the application itself; the annotations are read and interpreted at run-time and

the application-architecture adapts.

In our search for optimal performance, even when highly tuned or hand-coded applica-

tions show better performance on a specific architecture than our codes, we find a system con-

figuration (i.e., software and hardware combination) that presents predictable performance

for all input sizes. In a modern view of a system, the interaction between architecture and

application is one component in a more complex equation. We believe that the predictable

performance of an application is a crucial feature –especially for power management– be-

cause it allows the operating system, or the user, to plan in advance the further utilization

of the architecture. For example, the operating system may plan to set to idle part of the

system when the application has reached completion, thus, saving energy.

1.3 Thesis Contribution: The X-Legion Compiler

In the following, we introduce our novel compiler techniques for the analysis and optimiza-

tions of D&C algorithms. In fact, we discuss the implementation of these techniques in an

investigative compiler that we call X-Legion compiler – the tenth-legion compiler. The

main goal of this compiler is the analysis and model of D&C algorithms in such a way to ex-

ploit locality and software portability by addressing code optimizations and compiler-driven

memory-hierarchy adaptations such as cache-line size and cache mapping for data caches.

The organization of the following section mirrors the organization of the thesis. In fact,

we present each component of the experimental compiler X-Legion, in Figure 1.1. In short,

we describe the dynamic of X-Legion as follows. A D&C input application, written in C, is

transformed into an intermediate representation IR, which represents the entire program

in a single hierarchical structure. Then, JuliusC (briefly introduced in Section 2.1 and fully

described in Chapter 3) takes the hierarchical structure of the application and determines the
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call graph of the program. In practice, JuliusC determines whether a function is recursive or

a function is a computation leaf. The main two goals of JuliusC are: first, the analysis of the

problem division and, especially, the division of a recursive D&C implemented in the input

application; and, second, the concise representation of such a process by a recursion-DAG.

A recursion-DAG is a direct acyclic graph that describes the unfolding a recursive function.

If this is possible at compile-time, the recursion-DAG can be used for the analysis of the

leaf computations and their interaction. In fact using the recursion-DAG, we are able to
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synthesize information about the hot spots of the application by computing the frequency of

a function call. Also, the recursion-DAG can be used to collect statistics about the problem

size of each function call and, thus, it can be used to reduce the complexity of specific

analysis performed by STAMINA. So the recursion-DAG has two purposes: to expedite

the application and the compilation execution time.

Otherwise, that is, if the recursion-DAG cannot be built at compile-time, we can reor-

ganize the application so that we can generate the recursion-DAG at runtime and use it to

speed up the execution of the recursive section/part of the application. We introduce this

topic in Section 2.2 and we explain the approach in Chapter 4.

Independently, whether or not the recursion-DAG can be determined at compile time,

STAMINA extracts the loop nests of the application and analyzes only the perfect loop nests,

which are the most computation demanding (leaf computation). We give an introduction to

STAMINA in Section 2.3 and we discuss the approach in Chapter 5. The goal of STAMINA

is to analyze and quantify the cache interference per memory reference in the inner loop of a

loop nest. Such an analysis drives the activation of three possible optimizations/adaptations:

cache-line size, dynamic mapping and spatial scheduling. In fact, if major cache interfer-

ence afflicts the leaf computations, then the leaf computation performance and the overall

application performance will slowdown.

The result of the interference analysis, generated by STAMINA, is used to drive the data

cache-line size –on a per loop nest basis– by introducing a special instruction (or annotation).

In fact, a large cache-line size reduces the number of data fetches but it may increase cache

interference; otherwise a short cache-line size may reduce cache interference, because it also

changes the data cache mapping, but it increases the number of data fetches. We give an

introduction in Section 2.3 and present the approach in Chapter 5.

An adaptation, which is orthogonal to adaptive cache-line size, is dynamic mapping. In

fact, we may tailor the data cache mapping to the application and make the cache believe
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that the memory addresses used to store and retrieve data in cache is different from what it

is actually used in memory. We call this alternative memory space shadow space and the

computation in the new space, shadow computation. This approach introduces extra com-

putations, such as the ones introduced while padding matrices to reduce cache interferences

[17]. The main differences are that no extra space is required, the extra computations are

introduced only when interference is estimated heavy, and the speed-ups achievable overcome

the overhead introduced by the extra computations.

At last, we may circumvent the effects of cache interference by a careful memory access

scheduling and register allocation only. In practice, we propose spatial scheduling: this

is a source-to-source transformation that, using scalar replacement, compacts consecutive

in-memory accesses into a sequence of loads into scalar variables, thus into registers; this

new load scheduling exploits fully spatial cache locality and it reduces the effect of cache

interference. We give an introduction in Section 2.4 and present the approach in Chapter 6.
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CHAPTER 2

Introduction and Related Work

The goal of this chapter is to introduce the thesis contribution and the related work in a

fashion that is context sensitive. Indeed, here we introduce the components of the X-Legion

compiler, Figure 2.1, and the related work, which is interdisciplinary in nature and comprises

ideas ranging from algorithm engineering to data allocation to registers.

This chapter is organized as follows. In Section 2.1, we introduce JuliusC and our ap-

proach to extract information about D&C algorithms by using a data structure that we de-

fine as a recursion-DAG. In Section 2.2, we present four applications for which we used the

recursion-DAG directly so to achieve an efficient implementation. In Section 2.3, we present

the software package STAMINA for the analysis and determination of the best cache-line

size. We present in the following sections how STAMINA’s analysis is used. In practice, in

Section 2.4, we present two techniques exploiting such an analysis: first, we propose a data

allocation to registers to circumvent the effects of cache interference, secondly, we present a

technique to tailor the cache mapping to the application’s needs.

2.1 JuliusC and Recursive-DAG

With the introduction of D&C algorithms for the solution of matrix computations, for ex-

ample, BLAS 3 [18], the performance of scientific applications has improved markedly. In

fact, D&C computations expose spatial and temporal data locality; in turn, this data locality
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results in efficient utilization of resources on modern uniprocessor/multiprocessor systems;

therefore, it results in extremely good performance. In practice, D&C algorithms can be a

priori implemented using either of two language constructs: loop nests or recursion. From

hereafter, we refer to the algorithms implemented using loop nests as blocked, and to those

using recursion as recursive algorithms.

Though, most implementations are blocked algorithms [1, 8] and only a few implementa-

tions are recursive algorithms [6, 19]; however, recursive algorithms are appealing because of
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their intuitive formulation and implementation. In fact, recursive algorithms are top-down

solutions; they exploit data locality naturally at every cache level in architectures with deep

memory hierarchies; they expose data dependency intuitively and, in turn, parallelize natu-

rally along the recursive calls [20]. Indeed, most recursive matrix algorithms, such as matrix

multiply and LU-factorization [5], are cache oblivious [21]. That is, they have optimal cache

reuse at any cache level with no need for tuning –except for the register file [22] where some

code tuning may further increase performance. Ultimately, recursive algorithms represent

an efficient solution in a more abstract and intuitive format because the developer does not

need to know the details of the architecture on which these applications will run.

Despite the above advantages, recursive algorithms have been considered impractical

(for high-performance applications) for two reasons. First, a compiler has a difficult time

optimizing at which point the recursion should stop (leaf computation). Thus, if only

recursion is applied, the leaf computation may have too few instructions leaving little room

for optimizations, exploiting little register reuse, and, especially, incurring a high overhead

due to the (otherwise avoidable) proliferation of small recursive procedure calls. Second,

any recursive algorithm inherits an overhead due to the division process, or partitioning,

which is intrinsic in D&C algorithms, into small subproblems. This overhead is proportional

to the number of function-recursion calls and to the work involved in computing the actual

parameters of a function call.

Due to the importance of such computations, practical and efficient solutions of basic

matrix computations have been the center of substantial efforts in terms of time and money in

the last decades. As a result, ready-to-use and highly-tuned libraries for several systems have

been proposed and used [7] and, more recently, self-installing and self-tuning libraries arose as

new standards [8, 23] delivering astonishingly good performance. Briefly, self-installing and

self-tuning libraries extract the parameters of an architecture and tailor the source codes to

the architectures using exhaustive or tailored search techniques. These libraries are based on
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blocked algorithms rather than recursive ones because of the mentioned recursive algorithm

problems and for a number of other reasons: the first that comes to mind is code legacy,

for example, FORTRAN has no-recursion; a second is the compactness of the code, thus the

amenability to traditional aggressive compiler optimizations; and, finally, the most famous

reasons are the negligible overhead introduced by loops instead of recursive calls, and ability

to tile a loop nest so as to exploit temporal locality of references [24].

However, with the explosive increase in the complexity of systems due to the rapid ad-

vances in semiconductor technology, the number of parameters describing a system also in-

creases. This undermines the portability and efficiency of current self-tuning high-performance

applications. The complexity of probing the parameters as well as the complexity of tailoring

the source code to an architecture will become impractical –if not quixotic. As a result, recur-

sive algorithms for matrix computations should become increasingly appealing, if only they

can be made more efficient by addressing their inherent problems as mentioned previously.

Several authors, among them us, target the solution of the recursive algorithm problems

proposing applications based on both loop nests and recursion [25, 22, 12]. A recursive

algorithm implements the division process, exploiting the oblivious data-cache locality. A

blocked algorithm implements the leaf computation, exploiting aggressive compiler opti-

mizations. These authors propose to stop the recursion at a certain level and then call

high-performance non-recursive routines. This is also known as pruning. Pruning reduces

the number of function calls, and therefore it reduces the overhead; however, it does not

reduce the work per function call; that is, the computation of the actual parameters for

every function call.

We propose a novel technique for greatly improving efficiency of D&C algorithms. We

introduce the concept of a DAG data structure, recursion-DAG, to model recursive algo-

rithms; for example, using a hand-coded implementation of the recursion-DAG, we were able

to reduce the integer computation –index computation to access matrix elements– by 30% in
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matrix multiplication, see Section 4.2, on page 77, [22]. In practice, we propose an automatic

approach for the determination of the recursion-DAG of general recursive algorithms and we

have four main contributions:

1. In Chapter 3, we present JuliusC [26], a (lite) C compiler. We present techniques for

the determination of a recursion-DAG, and provide algorithms to fully automate it.

We also show that the approach has practical time and space complexity.

2. We present techniques to model the run-time unfolding of recursive algorithms concisely

and to abstractly represent function calls with the same division work as a single node

in a recursion-DAG.

The model is a concise and precise representation of the computation and we en-

vision its application as support to drive further compiler techniques/optimizations

such as dynamic cache mapping [27] and automatic parallelization, for example, us-

ing sophisticated abstract data description [28] and in combination with parallelizing

techniques/compilers [29].

3. We show how the system embodying the above techniques can be useful as an analysis

tool for performance evaluation purposes, for software design purposes and also for

debugging purposes.

4. To illustrate our techniques and provide a feel for the improvements achievable, we

show that we can reduce the division work by 14 or more times for the computation

of the binomial coefficients –actually, the original exponential execution time becomes

polynomial– and by 20 million times for all-pair shortest path of an adjacency matrix

(of size 7500 × 7500). We show that the division-work reduction is a function of: the

problem size, the algorithm and the pruning technique.

Notice that in parallel applications on large data sets, the division process constitutes
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the main overhead and it may be driven by a single processor in a multiprocessor system. A

recursion-DAG may be used to reduce the division work, therefore speeding up the sequential

execution of the problem division. Also a recursion-DAG may assist the parallelization

process helping the efficient processor allocation to parallel function calls at run-time; for

example, it may help reduce the number of process spawns, thus, initialization time and

initialization communications.

2.1.1 Recursive-DAG, Related Work

Our approach has several similarities with approaches in two very active research areas: one

is self-applicable partial evaluation and the other is dynamic programming.

Self-applicable partial evaluation is the problem of optimizing an algorithm when a

partial number of arguments is known at compile time and, therefore, specializing a function,

or the entire program, to partially precompute the result to the extent feasible at compile

time. For references, see [30, 31] or a survey by Jones et al. [32]. Object-oriented class

templates, and in particular function specialization in C++, are familiar examples of partial

evaluations. Some general purpose compilers also apply partial evaluation for optimizations

such as dead code elimination [33]. All authors propose an approach composed of two phases:

a static phase and a dynamic phase. The static phase determines what can be computed at

compile time, and what cannot be computed, the residual.

Our approach is also a combination of static and dynamic phases (or analyses). The

static analysis takes the input program and annotates the formals parameters of function

definitions so as to clearly mark the formals involved in the recursive division process only.

1 The dynamic analysis partially executes the program, and using the annotations, binds

1Notice that other algorithms may deploy a few global variables to keep record of the decomposition
process and they may use no auxiliary data structures such as a stack. First, this is not an example of
good programming because the behavior of a function is not dictated by the values assigned to its interface.
Second, and more importantly, all the problems presented in this work have a division work that cannot be
executed correctly using only a fixed number of a few global variables.
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function calls to nodes in the recursion DAG. When no argument values are known at

compile time previous techniques are not applicable; however, our technique is applicable

and enables us to precompute (at run time) data that will be used during the recursive

algorithm execution; in practice, we specialize the computation of the recursive algorithm at

run time.

In dynamic programming, there are basically two philosophies: function caching and

incrementalization. Function caching is a top-down approach to solve a problem remem-

bering the result of a function invocation and reusing this result when the function is invoked

again with the same arguments. For example, Fibonacci number 2 F (4) involves the com-

putation of F (2) + F (1) + F (2). With function caching, the first invocation of F (2) is

computed once, and the result is reused for the second invocation [34, 35, 36, 37]. While

function caching may require an interpretive overhead to manage and store partial results,

incrementalization is a bottom-up approach proposed to reduce or annihilate the over-

head typical in function caching [38] reducing the working set of cached function results to

a minimum –at any time– and having a fast access to them.

In general, dynamic-programming approaches are not applicable for matrix algorithms,

because the final result of matrix algorithms is highly dependent on the contents of the input

matrices (making reuse impossible). However, matrix algorithms have such regularity in their

computation that some of the dynamic-programming techniques may be applied, at least in

principle. In fact, our technique borrows the same basic ideas of function caching, especially

in generating the recursion-DAG. Actually, we may see the recursion-DAG as the collection

of all cached function-call results organized in a DAG. (However, we do not necessarily store

any function return value). In this scenario, incrementalization is no better than function

caching at the expense of a more complex design and implementation.

In addition, our approach is not meant for the conversion of loop nests to recursion

2F (n) = F (n− 1) + F (n− 2).
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[39] or vice versa [40], but it offers a means to speed up the conversion process and a

quantitative measure of the overhead due to recursion. A compiler may then be able to

make an informed choice between recursion or blocked instantiation. Our approach is not

meant to optimize the function call mechanism (e.g., register minimization, solving allocation

of the actuals-formals, inlining or recursion elimination, state elimination) because modern

compiler technology already exists for these tasks and it is orthogonal to (and it could be

use in combination with) our approach.

2.2 Recursive D&C Algorithms: Examples

We applied the concept of the recursion-DAG to four recursive algorithms. In practice, we

analyzed the original recursive algorithm, we then determined the best division process, and

we reorganized the algorithm in a such a way to use the recursion-DAG as guide-line for the

division process and reduction of the division work. In these following sections, we introduce

the applications investigated and the related work; in Chapter 4, we present our complete

investigation.

We investigate a representative set of recursive algorithms to achieve the following goals:

we show that recursion-DAG has practical uses for the developer and, especially, for design

and implementation of linear algebra applications as recursive algorithms. As another result

of our codes implementation, we show the positive effects of a balanced division process on

performance for recursive algorithms: Indeed, a balanced division process produces an algo-

rithm with a more predictable performance, a smaller overhead and a significative reduction

of the division work.

In this thesis, we have turned our attention to the implementation features of LU-

factorization and matrix multiply. In practice, we shall present an introduction here in

Section 2.2.1 and 2.2.2, however we shall present a more detailed investigation in Section

4.1 and 4.2. We have also found that matrix multiply is also a basic computation in an
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important application in graphs theory, all-pair shortest paths (APSP). We shall present

an introduction in Section 2.2.3 and, in detail, our approach and results in Section 4.4.

2.2.1 LU-factorization

The first example of linear algebra application, where we used the recursion-DAG to model

and to drive the computation, is LU-factorization with partial pivoting of non-singular ma-

trices. The beauty of the LU-factorization with partial pivoting lies into its elegant blocked

description [2, 5, 41]. In practice, matrix factorization is used to solve linear, dense and large

systems as well as for the determination of the rank of a matrix; that is the number of inde-

pendent rows/columns of a matrix. For example, in a system AX = B, where A and B are

constant matrices and X is a matrix of free variables, we factorize matrix A as the product

of one lower triangular matrix L by one upper triangular matrix U, that is, A = LU. So the

system is reduced to two easier-to-solve triangular systems: LY = B and UX = Y. This

approach is computationally easier than the direct computation of the matrix inversion U−1

and, in practice, it has also better numerical stability.

In practice, partial pivoting is a simple and efficient technique adopted to achieve

numerical stability for most practical cases. Basically, one column of the matrix at a time,

we seek for the matrix element with maximum absolute value in the leading column. We

permute the matrix rows in order to set this matrix element as top element in the leading

column. Finally, we execute the Gaussian elimination in such a way to reduce the element

below the top element in the leading column to zero. We repeat the process until all elements

below the major diagonal are reduced to zero. Partial pivoting assures a bounded value to

the components of the lower triangular matrix L and, thus, a bounded error. Unfortunately,

there are ill conditioned matrices, for which partial pivoting is not numerically stable, and

the components of the factor U can become arbitrary large. To assure numerical stability

for both matrix factors L and U, we may deploy a complete pivoting: it is a technique to
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seek the element with the maximum in absolute value of the leading sub-matrix and perform

both rows and columns permutation in order to have this element as a new pivot for the

Gaussian elimination.

Complete and partial pivoting differ by their numerical properties and by their compu-

tational complexities. For example, consider a square matrix A of size m × m, then the

application of partial pivoting during the entire factorization algorithm takes O(m2) steps

and, in contrast, complete pivoting takes O(m3) steps –which is dominant for any implemen-

tation of the LU-factorization O(m3), [2, 42, 5]. Notice that matrix permutations involve

data movements without computation and, in general, stored in slow components (e.g., mem-

ory) and, in practice, a two-row permutation may slow down the factorization computation

noticeably [43, 44].

In Section 4.1, we shall show how we implemented Toledo’s algorithm [5] using non-

standard layout [14, 15]. In short, LU-factorization is the composition of three basic matrix

computations: a lower triangular system solver, LX = B, an upper triangular system solver,

UX = B and a matrix multiplication. In turn, triangular system solvers are based on matrix

multiply as basic kernel, Section 4.2.

We have three major contributions:

1. We explore the implementation issues involved in the computation of LU factorization

for any square matrices stored in non-standard format, that is, Z-Morton [15].

(a) We present algorithms for efficient row permutation and

(b) We present algorithms for efficient column access of matrices stored in non-

standard format.

2. We present how a matrix multiplication, even if designed only for square matrices, can

be applied for the matrix multiplications among rectangular matrices involved in the

LU-factorization.
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3. We show that the recursion-DAG for LU-factorization is a sub-DAG of the recursion-

DAG for matrix multiply.

We tested the performance of our code by cache simulations and by measure of the

execution time. In fact, we have simulated the cache performance of our algorithm for seven

architectures, such as SPARC 1 and Alpha 21164, and we show that our codes have high data

and instruction locality. We also measure the execution time of our codes for four different

systems and we show that we achieve good performance in comparison to, and often better

performance than, hand-coded/tuned codes such as in SunPerformance library and ATLAS.

2.2.2 Matrix Multiply (MM)

In practice, the memory hierarchy helps performance only if the computation exhibits data

and code locality. So algorithm design and compiler optimization increasingly need to take

into account data locality.

An early paper by Aggarwal et al. [45] introduced the Hierarchical Memory Model

(HMM) of computation, as a basis to design and evaluate memory efficient algorithms,

then extended [46, 47]. In this model, the time to access a location x is a function f(x);

the authors observe that optimal algorithms are achieved for a large family of functions f .

More recently, similar results have been obtained for a different model, with automatically

managed caches [21]. The optimality is established by deriving a lower bound to the access

complexity Q(S), which is the number of accesses that necessarily miss any given set of S

memory locations. Lower bounds techniques were pioneered in the early 80s [11] and recently

extended by Bilardi et al. [48, 49]; these techniques are crucial to establish the existence of

portable implementations for some algorithms, such as matrix multiplication (MM).

The question whether or not arbitrary computations admit optimal and portable imple-

mentations has been investigated by Bilardi et al. [50]. Though the answer is generally

negative, however the computations that admit portable and optimal implementations in-
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clude relevant classes such as linear algebra kernels [51, 18].

In this section, we turn our attention on MM algorithms with complexity O(n3), rather

than O(nlog2 7) [10] or O(n2.376) [9], and in particular we study the effect on performance

of data layout with respect to: latency hiding, register allocation, instruction scheduling,

instruction parallelism and their interdependencies. For examples of projects implementing

libraries for linear algebra using optimized MM algorithms see ATLAS, PHiPAC, ESSL and

others [8, 23, 52, 44, 53].

For compiler techniques exploiting locality used for linear algebra kernels, we may cite the

loop transformations such as tiling [54, 55, 24, 56], the data dependency theory introduced

by Banerjee for loop nests [57] and the effects of copy techniques to reduce interference [58].

The interdependence between tiling and sizes of caches is probably the most investigated in

the literature [24, 17, 54, 59, 58, 44].

For example, vendor libraries (such as BLAS from SGI and SUN) exploit their knowledge

of the destination platform and they offer efficient routines, but these routines loose optimal-

ity when used across different platforms. Automatically tuned packages, such as ATLAS and

PHiPAC [8, 23] for MM, and FFTW [12] for FFT, measure the machine parameters by

micro-benchmarking and then produce machine tuned code. This approach achieves optimal

performance and portability at the level of package, rather than the actual application code.

In contrast, another approach defined as auto-blocking, has the potential to yield

portable performance for the individual code. Intuitively, one can think of a tile whose

size is not determined by any a priori information but arises automatically from a recursive

decomposition of the problem. This approach has been advocated in [60], with applications

to LAPACK, and its asymptotic optimality is discussed in [21]. Our algorithms belong to

this framework because it is a recursive algorithm.

Recursion-based algorithms often exploit various features of non-standard layouts, re-

cursive layouts, [15, 14, 61], and algorithms on recursive arrays layouts [6, 62, 25, 16]).
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However, conversion from and to standard layouts (i.e., row-major and column-major) in-

troduces O(n2) overhead, which is negligible, except for matrices small enough for the n2/n3

ratio to be significant, or large enough to require disk access.

Our approach, hereafter fractal approach, combines a number of known ideas and

techniques, as well as some novel ones to achieve the following results.

1. We show that a single MM implementation exists and it achieves excellent and portable

cache performance, and we prove it using simulation cache tools and collecting exper-

imental results for seven different systems.

• We show that the overall performance (FLOPS) is competitive by comparison

with either the upper bound implied by peak performance or the best known

code ATLAS [8].

• We show that at least on one system, R5000 IP32, our approach yields the fastest

known algorithm.

2. We show in Sections 4.2.1 and 4.2.1 how to apply the recursion-DAG to lead to efficient

implementations of recursive procedures.

3. However, we do not consider and discuss any numerical stability problems (Lemma

2.4.1 [2], Lemma 3.4 in [42]). Nonetheless, we can assume that fractal approach has

the same numerical stability than other approaches proposed in the literature because

we do not change the order or the type of the multiplications and additions.

2.2.3 All Pair Shortest Path (APSP)

The all-pair shortest-paths problem (APSP) is a well studied and basic problem in graph

theory but it is also a crucial and real problem in large networks such as sensor networks,

switch networks or complex targeting systems.
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Consider the scenario where many thousands of nodes are located across a large area

and every node has a processor with little memory space and computational power. In

this scenario, the computation of APSP is neither feasible nor practical by a single node,

nonetheless it is a key feature for the efficient data routing and broadcasting. Despite

the node-processor computational/memory limitations, a node in the network is able to

determine the locations and distances of its neighbors rather easily. Such a local information

can be coded, sent on the network and collected by an observer node such as a satellite, a

global router or a computer cluster. Then, the observer node may construct the adjacent

matrix, compute the solution and send the result back on the network where each node will

store the necessary local information.

Any network is naturally represented by a directed graph and we formalize the APSP

as follows. Given a graph G = (V, E) where V is a set of nodes and E is a set of directed

edges, we label every node in the graph by an integer ι ∈ [0, n− 1] where n = |V | (n = |V |

is the cardinality of the set V ), and an edge in E is defined by a unique ordered pair of

integers (i, j) with i, j ∈ [0, n−1]. In fact, we assume that there is at most one directed edge

connecting two nodes and therefore, the graph has no more than |E| = m <= n2 edges. To

represent G, we use an adjacent matrix, A ∈ Zn×n. That is, an entry in row i and column

j in matrix A, ai,j ∈ Z, stands for the cost to reach node j from node i through the edge

(i, j) ∈ E. Also, we assume that ai,i = 0 for every i ∈ [0, n − 1] –i.e., there is no cost to

stay in one node– and, if there is no direct edge from node i to node j, then ai,j = ∞. An

elementary path [63] of length k from node i to j in a graph G, is a sequence of k edges

connecting i to j with no nodes repeated. In fact, we denote an elementary path as the

set of edges Pk(i, j). The cost of an elementary path Pk(i, j) is denoted as C[Pk(i, j)]

and it is equal to
∑k−1

`=0 aι`,ι`+1
, where (ι`, ι`+1) ∈ Pk(i, j). Thus, the solution to the APSP

problem is the matrix closure A∗ such as for all i, j ∈ [0, n− 1] the matrix element a∗i,j is

mink∈[0,n−1] C[Pk(i, j)].
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In this section, we propose a practical recursive D&C algorithm inspired by Kleene’s

algorithm [64], which is optimal in the number of addition–comparison operations and mem-

ory accesses, Θ(n3). Indeed, fast MM algorithms [10, 9] that could speed up performance

as proposed by Zwick [65] are not applicable, because the adjacent-matrix entries have no

constraint and can be any positive or negative integer –as we shall explain in Section 2.2.3.

Though, our approach is based on MM, however it is independent of the algorithm used to

code MM. So we may apply R-Kleene in combination with fast-MM –see Section 4.4.1– but

this is beyond the scope of this preliminary investigation. We have two major contributions

and we summarize them in the following.

• First, we formulate our algorithm as a recursive MM where the result is computed

in-place for dense adjacent matrices. As such, we are able to replicate the classic

properties of MM, such as performance, space, I/O complexity and register utilization.

In fact, Kleene’s algorithm and Floyd-Warshall algorithm [64, 66, 67] impose a specific

computation order exploiting little parallelism and register reuse. In contrast, with

the same number of comparison-addition operations, R-Kleene leads to an in-place

implementation that yields an efficient register utilization and exposes a larger number

of independent operations, and, in turn, better performance. (This idea can be taken a

step further and we may apply the same optimization and fine tuning used by software

libraries such as ATLAS [8]; but this is beyond the scope of this work.)

• Second, we present a quantitative measure of R-Kleene performance using row-major

and Z-Morton data layout [15], and we present an upper bound to the performance

achievable by a recursive algorithm such as R-Kleene. We achieve this by collecting

experimental results for our algorithm and three other representative algorithms on five

different systems and for adjacent matrices of sizes ranging from 200 to 5,000. In fact,

we show that R-Kleene achieves good, predictable, scalable and portable performance.
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APSP Related Work

The literature available for APSP and its solutions is copious and, for sake of explanation, we

may distinguish four main categories: APSP algorithms for dense graphs, for sparse graphs,

for static networks and dynamic networks (changing in time).

For a general overview on static approaches, Zwick [68] presents a complete survey on

algorithms computing the exact distances in graphs and the author also discusses the linger-

ing open problems in the topic. We may notice that the most efficient algorithms discussed

in the survey are based on Dijkstra’s algorithm [69]. To gain a feel about the algorithms

complexity, if we count the comparison–addition operations, compadd for short, as basic

operation, then Dijkstra’s algorithms perform O(mn) ≤ O(n3) compadds.

Our original contribution is a static solution of the APSP problem for dense graphs

and Floyd-Warshall algorithm [66, 67] was our starting point. This algorithm has the

same complexity as Dijkstra’s (i.e., O(n3)) but it is often preferred for its practical per-

formance for dense adjacent matrices [63]. In practice, Floyd-Warshall algorithm is an in-

place algorithm that constructs the shortest paths during the computation using a clever

dynamic-programming approach. To exploit data locality, the algorithm can be reorganized

as Kleene’s algorithm [64], which can be seen as the blocked Floyd-Warshall algorithm, where

the classic MM is used as basic routine. Notice that if the adjacent matrix has values that

belong to a finite and small set, the domain where APSP is defined, a semiring, can be

extended to a ring. Thus, we may use fast MMs [10, 9] for the solution of APSP as proposed

by Zwick [65]. However, in the scenario assumed throughout this work, we are not able to

extend the APSP domain to a ring and, in turn, we cannot use fast MM.

Our work is similar to the work by Park et al. and Penner et al. [19, 70], because we

investigate the performance for APSP algorithms on dense adjacent matrices using different

data layouts. However, our algorithm is 100% faster because it utilizes more efficiently data

in registers, reducing the number of memory accesses and, thus, improving performance.
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In this work, we propose an algorithm that is oblivious of the graph structure and,

therefore, it performs n2 compadd per node (but it is still optimal for dense and generic

graphs). This approach seems less efficient than the algorithms presented by Cherkassky et

al. [71]. In fact, Cherkassky et al. show that algorithms based on Dijkstra’s algorithm achieve

an average of 1 compadd per node because applied to a representative set of sparse graphs.

This is a large work difference obviously. However, we shall show in Section 4.4.1, that

our algorithm can be parallelized naturally, and used efficiently in multiprocessor systems,

offering an appealing performance edge.

To conclude the review on related work, we may notice that all of the previous approaches

are static solutions, because they assume the network is fixed and unchangeable. However,

in the scenario where nodes can be introduced dynamically, and the APSP solution must

be dynamically updated as well, then the solution must be dynamic as well; for example of

dynamic approaches see Demetrescu et al. [72, 73].

2.3 Compiler-Driven Cache-Line Size Adaption

Caches are crucial components of modern processors; they allow high-performance proces-

sors to access data fast and, due to their small sizes, they enable low-power processors to

save energy - by circumventing memory accesses. We examine efficient utilization of data

caches in an adaptive memory hierarchy. We exploit data reuse through the static analysis

of cache-line size adaptivity. We present an approach that enables the quantification of data

misses with respect to cache-line size at compile-time using (parametric) equations, which

model interference. Our approach aims at the analysis of perfect loop nests in scientific appli-

cations, it is applied to direct mapped cache and it is an extension and generalization of the

Cache Miss Equation (CME) proposed by Ghosh et al. (1999). Part of this analysis is imple-

mented in a software package STAMINA. We present analytical results in comparison with

simulation-based methods and we show evidence of both expressiveness and practicability of
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the analysis.

In modern uniprocessor systems, the memory hierarchy is an important concern for per-

formance, area and energy. It is also the component requiring most of the die area in

systems-on-chip and it is the principal power consumer, accounting for as much as 20-50%

of the total chip power [74, 75]. In recent years, there has been a great endeavor to engineer

several levels of cache for the exploitation of performance and power. In particular, we have

studied the effect of adaptivity in cache subsystems and we have built an architecture as

prototype that enables static and dynamic adaptation of memory hierarchy: its configura-

tion and policies [76]. In this section, we turn our attention to (compiler-driven) cache-line

size adaptation of direct mapped data caches [77, 76]. In fact, the architecture changes the

cache-line size dynamically (by hardware monitoring or application instruction) during the

execution of the application. To exploit fully the potential of this adaptation, we need a way

to target it; that is, (statically) determine the application cache behavior to trace adapta-

tion for maximum performance and minimum energy dissipation. The related work on cache

behavior analysis can be distinguished in profiling-based and static approaches.

Profiling is an approach that uses the direct measure of performance as feed-back to drive

the fine-tuning of some architecture parameters. The main goal is to improve performance

of an application when applied on a representative input [78]. The approach is flexible and it

can be used for the analysis of the whole application as well as part of it. However, profiling

has two limitations: the performance of an application is often dependent on the inputs and,

of course, the analysis cannot be faster than the execution of the application itself.

Static approaches are basically independent of the inputs and, thus, the analysis can

be performed just once at compile time. In particular, static approaches analyze mostly

perfect loop nests and these loop nests are ubiquitous in scientific applications. (As reported

by Ghosh et al. [79], 244 loop nests are statically analyzable, 289 are parameterized loop

nests and 189 are not analyzable - Table I, page 707 - for SPECfp 95 benchmarks.) In fact,
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static approaches model data-cache misses of a memory reference in a perfect loop nest by

using cache miss equations (CME) [79]. When the CMEs are defined for a given memory

reference and a loop nest, every iteration in the loop nest (or a sampled version such as in

[80, 81]) is checked as whether or not it satisfies the equations. If an iteration satisfies the

equations, then the memory reference has a cache miss at that particular iteration. Thus,

the approaches count the solutions of the equations to achieve an estimation of the number

of cache misses. As an extension of this idea, Vera and Xue [82] propose an approach to

analyze the whole program based on their cache-miss solver developed by the same group

[81]. For parameterized loop nests, the authors (both Ghosh et al. and Vera et al.) suggest

that the approach can be applied at run time in similar fashion, because the parameters

are known. However, there are two limitations in the current static approaches. First, the

loop nest bounds must be known at compile time. This is not realistic (e.g. 289 loop nest

in SPECfp) because they are often parameterized. Also, even if the analysis is performed

at run time, it may be impractical, because these loop nests can be very large. Second,

the analyzable loops are sensitive to tiling loop transformation. For example, if tiling is

performed on the three-loop-algorithm for MM and the tile sizes do not divide evenly the

loop bounds, the inner loops bounds cannot be represented by affine functions. The resulting

nest is not analyzable.

To attack and overcome these limitations, we propose a static approach to investigate

perfect (parameterized) loop nests and to determine the relation between cache-line size

and number of misses on a per-nest-base for a direct-mapped cache. The analysis result is

annotated in the code and it can be used at run time to set the line size. The approach is

especially suitable for applications with references having reuse within few iterations in the

inner loop and exploiting spatial locality [83].

A well known paper on optimizing for data locality and parallelism exploitation, is by

McKinley and Kennedy [84]. In practice, they assume that there is little or no interference
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for a small number of iterations in the innermost loop. Spatial locality is exploited, if any

is available in the inner loop, under the assumption that cache misses are independent of

any interference. The authors propose different loop optimizations (i.e. loop permutations),

to exploit maximum spatial and temporal locality in the innermost loop. The examples

presented in this work and in particular in Chapter 5, as many other loop nests in real

applications, do not satisfy McKinley and Kennedy’s assumption. Cache interference can be

the major contributor of cache misses in inner loops. Instead, our approach considers such

interference and, in practice, the two approaches are orthogonal.

2.3.1 An Example and Related Work

In this section, we present the novel contribution of our approach using a simple example.

We break down the problem and the solution –as our approach does– in order to present the

following three points: first, the challenges that current analysis tools face determining data

cache misses; second, the terminology that is adopted in our framework; third, a quantitative

and informal application of our approach - we shall see a rigorous notation and analysis in

Section 5.1 and 5.2.

Consider the example shown in Fig. 2.2. The two memory references A[i][j + start] and

B[i][j] in the inner loop body are affine functions of the loop indices; that is, the indices i

and j. The indices are represented as a vector k = (i, j)t: the first entry is the outermost

index, the second entry is the innermost index. A particular iteration of the loop nest is

simply identified by k0 = (i0, j0)
t.

The memory references exploit spatial reuse in the inner loop. Two consecutive accesses

to matrix A (i.e., A[i][j + start] and A[i][j + 1 + start]) and to matrix B tend to exploit

spatial locality. We describe this reuse property by the vector r = (0, 1)t. The reuse vector

is relative to an iteration; that is, the cache line read at iteration (i0, j0)
t will be read again

at the next iteration (i0, j0 +1)t (i.e., r = (i0, j0 +1)t− (i0, j0)
t). Note that the reuse depends
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extern double A[2000][1024],B[100][1024];

void foo(int m, int start) {
  int i,j;
  for (i=0;i<m;i++)              /* 0<=m<100 */  
    for (j=0;j<m;j++)
      A[i][j+start] += B[i][j];  /* 0<= start <1024−100 */ 
} 
void update(int start) {
  int start1=0; /* compile time */ 
  int start2;   
  int startin;  
  
  start2 = start+2; /* not really at compile time */  
  foo(50,start1); 
  foo(50,start2); 
  
  scanf(‘‘\%d’’,\&startin); /* run time */
  foo(50,startin);
} 

Figure 2.2: Parameterized loop bounds and index computation, thus interference.

on no parameters.

When the two references of matrices A and B at an iteration (i0, j0)
t are mapped to the

same cache line, there is interference in cache. The cache interference prevents the spatial

reuse as the same line may be reloaded. Without cache interference, we can estimate the

number of cache misses as 2m2/`, where ` = L/8 is the number of double precision float

numbers in a cache line, L cache-line size.

Let us consider the order of memory accesses in the loop body as follows: a read of A

precedes a read of B, which precedes a write of A. The read of A has spatial reuse (0, 1)t

and temporal reuse (0, 0)t. The read of B has spatial reuse only. The temporal and spatial

reuse of A is not exploited when the access to B is mapped to the same cache line; in

other words, when the address of B[i][j] is the address of A[i][j + start] plus a multiple

of the cache size and an offset no larger than the cache-line size at the iteration specified

by k = (i, j)t (where 0 ≤ i, j < m). We model interference by the following equation:

B−1 + 8192i + 8j = B−1 + 16384000 + 8192i + 8j + 8start + nC + q. The constant B−1 is
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the start addresses of B; the constant C = 16 ∗ 1024 is the cache size; the variable n has

positive integer values and q has integer value so that |q| < L. We simplify the equation

to: 16384000− 8start = nC + q. The set of inequalities defines a parameterized polyhedron.

Notice that static approaches based on the one proposed by Ghosh at el. are not practical

for large polyhedra, because the analysis must be repeated for each parameter value.

When 8start mod C < L, we have a solution (e.g., for n = 1000 and q = 8start mod C).

The solution of the equation stands for a cache interference. The interference prevents the

cache-line reuse, and we have a cache miss.

Note that the optimal cache-line size and the number of cache misses are a function of the

parameter start. The optimal line size is Lopt = 8start mod C (i.e., no cache interference).

Notice that Polylib achieves an equivalent result. The number of cache misses is M =

2m2(L−∆)/L; the term m2 specifies the number of iterations; the constant 2 is the number

of references we analyze; the last term (L −∆)/L, where ∆ = 8start mod C, specifies the

fraction of accesses that effect cache misses caused by cache-line underutilization. Notice that

profiling approaches use a black-box approach about the application, therefore they should

test all possible values of start just to be confident of the performance measurements.

Now consider matrix B[100][512] instead of B[100][1024]. The interference equation is

16384000− 4096i = 8start + nC + q. When i is 0, it is the previous equation. Both memory

references interfere in cache for the first m iterations, when 8start mod C < L. For i = 1

and for the same values of start, there is no interference. Indeed, we have interference every

four iterations of i. We define this ratio as interference density, denoted by ρ = 512∗8
C

= 1/4.

In the presence of cache interference, the number of cache misses is 2m2ρ (L−∆)
L

. Notice that

Polylib achieves an equivalent result, but it has to determine solution of the equation for

512 different values of start, and then it has to solve a system of 512 unknowns. This is a

limitation of Ehrahrt’s polynomial approach, rather than a Polylib limitation.

The main idea of our approach is to decouple the estimate of cache misses from the loop
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iteration space so that the approach can be fast even for large loop nests. Our approach

combines a static symbolic analysis with an efficient and practical implementation. We use

SUIF 1.3 and the framework developed by Ghosh et al. for the determination of eligible

loop nests, memory references, reuse vectors and for the manipulation of CMEs. We use

Polylib for the estimation of the total number of iterations (e.g., m2) and representation

of parameterized polyhedra. We developed the software package STAMINA: it sorts the

memory references as a function of their reuse vectors (i.e., temporal and spatial reuse,

length); it determines their interference densities and it computes the total number of cache

misses for each loop nest in an application. STAMINA annotates the original code with

directives for the adaptation of the cache-line size for each eligible loop nest.

2.4 Application-Aware Cache Mapping

In this section, we aim to investigate means of adapting data cache locality of memory

intensive application to minimize the effects of some of the most common idiosyncrasies of

modern caches in embedded systems and DSP processors.

In practice, cache hierarchy can efficiently exploit the inherent data and instruction lo-

cality of applications, however, the performance and power consumption of a system –i.e.,

application and architecture combination– are a function of the design choices in the memory

hierarchy (i.e. from memory to register file), and its utilization. This problem is exacerbated

in multiprocessor systems and distributed systems because of extremely high demand of data

and instructions, and because of communication through relatively slow devices. To avoid

CPU stalls due to data and instruction starvation, several approaches have been proposed.

In this thesis, we turn our attention to one particular approach that we summarize in the

following.

Hybrid adaptive approaches: we consider in this class, on-the-fly hardware and soft-

ware adaptations. An example of at-run-time hardware adaptation is cache-associativity
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adaptation, and an example of the software adaptation is the at-run-time reorganization of

registers allocation to reduce register file power dissipation, [85, 86, 87]. Another example

of algorithm adaptation is the work by Gatlin et al. [88], where data-copy strategies are

applied to exploit cache locality.

In practice, our approach is a hybrid approach and we propose it to solve the problem of

cache interference in blocked algorithms. Blocked algorithms, such as MM and FFT, achieve

good cache performance on average; however, we notice a quite erratic cache behavior on

individual input sets – due to cache interference. We propose an approach to minimize cache

misses due to cache interference changing the cache mapping for some memory references

dynamically.

We enforce the problem by an example quantitatively. We implemented an optimal

blocked implementation of MM for an architecture with a direct-mapped data cache of size

16KB. We opt for matrices stored in row-major format, which are used commonly. We

design the algorithm with no pre-fetching –because pre-fetching hides the latency but does

not reduce cache misses. The blocked algorithm can be the result of tiling exploiting cache

locality on a uniprocessor system, or the result of a parallelizing compiler for shared-memory

multiprocessor systems (or both). We achieve on a uniprocessor system an average 3% data-

cache miss rate. The average cache miss is close to the optimal cache performance (roughly

0.5%, [11]). When we observe the cache performance for square matrices of size 2k×2k only,

the miss rate soars because of data-cache interference. For example, for square matrix of

size 2048× 2048, the data cache miss rate is 16%.

In the following, we present two approaches designed to tackle and solve such a data-cache

interference problem: spatial scheduling and dynamic cache mapping.
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Spatial Scheduling

Cache interference arises when we issue a sequence of memory accesses that share the same

cache line in a short interval of time. We may avoid interference by just changing the order

of accesses. In fact, there exist situations where just a proper scheduling of memory accesses

is sufficient to minimize cache interference. In Section 6.1, we shall show a register allocation

that exploits spatial locality at register level. It serializes the loads from the same cache line

into registers. When data are in register there are no accesses and therefore there are no

more interference. We apply our register allocation on a benchmark from SPEC 2000, swim.

We show that we achieve predictable and, in general, better performance than using other

register allocations. [89].

Dynamic Cache Mapping

Otherwise, if the computation cannot be reorganized to exploit spatial locality at register-file

level, we may tailor the cache mapping in such a way to reduce the interference. We propose

a hybrid approach to remove data cache miss spikes by changing the cache mapping only

when needed. The name of our approach is Dynamic Mapping:

1. We produce a blocked algorithm, either by tiling of a loop nest or by a recursive

implementation, so that we maximize temporal locality –for one or more cache levels.

2. The blocked algorithm has each elementary block computation (i.e., loop tile) accessing

rectangular tiles of data (i.e., tile of matrices).

3. For each memory reference in the elementary block computation, we determine a phys-

ical address and an alternative –and unique– address, twin address. The physical

address is used to map the element in memory; the twin address is used to map the

element in cache (the details, how to determine and use twin addresses are explained

through an example in Section 6.3.1).
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The twin address space does not need to be physically present and, in practice, the

twin space is larger than the physical space. A 64bit-register can address 264 ∼ 1∗1019

bytes of memory, relatively few bytes are physically available.

4. The physical address is used whenever there is a miss in cache to access the second

level of cache or memory; we assume the cache is physical tagged, and we can modify

the processor and the load queue for our purpose (we shall give more details in Section

6.3.3).

In Section 6.2.1, we show that it exists a general mapping that can be driven by

a dedicated hardware device. The cache is logically divided in buckets, each bucket is

associated with a continuous memory space, which contains elements from a unique vector

or matrix. When a memory reference is issued, the reference is sorted towards the unique

bucket and therefore a cache location.

In Section 6.3, we show that dynamic mapping is a specific mapping that uses the pro-

cessor computational power to determine the cache mapping at run time. In fact, such

mapping is introduced in the code as affine functions. The affine functions are computed at

run time and the results used as alternative addresses. These addresses are used to map the

data in cache. It has the same effect as to have the data layout reorganized in memory at

runtime [17], using the computational power of the processor, with no data movement [58],

no overhead or extra accesses.

Dynamic mapping differs from IMPULSE project [90, 91], which introduces a new mem-

ory controller leaving the memory hierarchy untouched. IMPULSE supports a configurable

physical address mapping and pre-fetching at memory controller. Our approach is simpler in

the sense that it does not require an operating system layer and any changes to the memory

controller. The cache mapping is defined completely by the application, and it can be driven

automatically by a compiler.
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Dynamic mapping does not need any profile-based approach or dynamic computation

changes [88]; it improves portability and lets the developer focus on the solution of the

original problem. We differ from Johnson et al. work [92, 93], because we do not use any

dedicated hardware to keep track of memory references; the reference pattern is recognized

statically.

Dynamic mapping does not change the physical data cache mapping [94, 95, 96] and,

potentially, it has no increase in data-cache access latency.

Dynamic mapping is not a bypass technique: we are able to exploit data locality fully -

for a level of cache - when algorithms have data locality; the processor does not need bypass a

cache entirely. Cache bypassing is an efficient technique designed to increase the bandwidth

between processor and memory hierarchy. In general, cache bypassing increases traffic on

larger caches, which are slower and more energy demanding (see processors as R5k), and it

does not aim to reduce data cache misses. Furthermore, cache bypassing makes the design

more complicated and suitable for a general-purpose and high-performance processor.

Dynamic mapping is a 1-1 mapping among spaces; therefore it assures cache mapping con-

sistency for any loads and writes to/from the same memory location. Hardware verification

approaches for stale-data in registers - used by processors-compilers that allow speculative

loads; for example, IA64 microprocessor [97, 98] - can be safely applied.
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CHAPTER 3

JuliusC and Recursion-DAG

The development of blocked algorithms for matrix computations has led the spread use of

high-performance scientific libraries. As we introduced previously, blocked algorithms can be

implemented using loop nests or recursion. Recursion is extremely appealing to developers

because it allows the deployment of top-down techniques naturally. However, recursion is

considered non-practical for high-performance routines, mostly because of the overhead of

the division process. To make recursion practical, we propose to model the behavior of

recursive algorithms in such a way that a compiler can estimate and reduce such overhead.

In this chapter, we present JuliusC, a (lite) C compiler. JuliusC unfolds the application call

graph partially and it extracts the dynamic behavior. As a final result, it produces a direct

acyclic graph (DAG) modeling the function calls, recursion-DAG. JuliusC combines static

and dynamic analysis and we show that both have negligible time and space complexity.

3.1 JuliusC

JuliusC is a lite compiler that models the division process of a recursive D&C algorithm.

Briefly, we illustrate JuliusC’s application on the recursive Fast Fourier transform in

Figure 3.1. Consider that, at run time, JuliusC reaches a function call fft(*,*,200,1) (where

* is wild, any valid vector pointers). JuliusC then generates a recursion-DAG rooted at

the function call fft(*,*,200,*). In Figure 3.2, we present a graphical representation of the
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void fft(MATRIX_TYPE *re, MATRIX_TYPE *im, int n, int stride) {
  int p,q,i,prime,k;

  p = find_balance_factorization(n);
  q= n/p;

  /* leaf or n is prime */  
  if (n<=LEAF || p==n ) DFT_1(re,im,n,stride,cos(M_PI/n),sin(M_PI/n));
  else { 
    for (i=0;i<q;i++) {  // by column
      k = i*stride;
      fft(re+k, im+k,p, stride*q);
    }
    distribute_twiddles(re,im,n,p,q,stride);
    for (i=0;i<p;i++) {  // by row
      k = i*stride*q;
      fft(re+k, im+k,q, stride);
    }
  }

}

Figure 3.1: Fast Fourier Transform. The factorization is determined at run-time and the
recursion stops when n is prime or no larger than LEAF = 5.

recursion-DAG. Each node in the DAG represents a function call (of a certain problem size)

during the execution of the function call fft(*,*,200,1). Embedded in the recursion-DAG, we

may recognize a familiar structure: the plan, which is used in scientific libraries - e.g., FFTW

[12] - to guide the self-installation of recursive algorithms. The only difference is that the

recursion-DAG is not a tree (a plan is a binary tree), because of the node fft<5> associated

with the function call fft(*,*,5,*), which is a child node shared by two nodes-function calls - in

the recursion-DAG, (e.g., fft<10> and fft<20> associated with the function calls fft(*,*,10,*)

and fft(*,*,20,*), respectively).

In Figure 3.2, we count only 18 different nodes. Each node is identified by the function

name and by an integer summarizing the problem size (i.e., fft <5>). The integer number

is determined by the factorization of the problem size of the parent node(s) (e.g., the number

<5> in fft<5> is a factor of <10> and <20>). So building the recursion-DAG, we may

store the factorization results and avoid recomputation. (For this example, if, in the worst

case scenario, the factorization of an integer n takes O(
√

n) operations, the function call

fft(*,*,20,*) associated with node fft<20> executes 10 ∗ (
√

20 + 5
√

2 + 4
√

5) ∼ 170 integer
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fft<10>

fft<200>

twiddle<20,10>

DFT_1<5> DFT_1<2>

find_fact<2>

twiddle<2,5>

find_fact<200>

find_fact<10>

find_fact<5>

find_fact<20> fft<20>

DFT_1<4>

twiddle<5,4> find_fact<4> fft<4>fft<5> fft<2>

Figure 3.2: Recursion-DAG having fft(*,*,200,*) as root associated with node fft<200>. To
simplify the recursion-DAG presentation, find fact = find balance factorization and twid-
dle = distribute twiddle as in Figure 3.1.

operations for its recursive factorization, and the function call fft(*,*,10,*) associated with

node fft<10> executes 20∗(
√

10+2
√

5+5) ∼ 200 integer operations, for a total of 370 integer

operations. Instead, if we compute the factorization of 200 once and we store the factors in

the recursion-DAG, it takes 14 - i.e.,
√

200 - integer operations and 5 store instructions - i.e.,

5 factors, respectively.)

3.2 JuliusC: an Overview

JuliusC is a (lite) C compiler written in C/C++. To simplify the compiler design, we accept

a subset of the C language (e.g., no struct and no union are handled). For linear-algebra

applications, our C-language simplifications have little effect on the design and implementa-

tion of D&C algorithms (and were chosen to allow a quick demonstration of our ideas). In

the longer run, we will port our techniques into more advanced and robust compilers (e.g.;

SUIF [99]) thus avoiding these limitations.
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Type−DAG

Type−DAG
AST +DG+
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Figure 3.3: JuliusC block Diagram. Acronyms: intermediate representation = IR, abstract
syntax tree = AST, data dependency graph = DG.

In different phases of the compilation, we manipulate an intermediate representation (IR)

of the input program. After lexical and syntactical analysis, we create an abstract syntax

tree (AST).

We perform static type checking and we annotate the result of the analysis on the AST.

Using the AST for each function definition, we determine all function-call expressions. We

then determine a call-graph and its all-pair shortest-path matrix closure. Using this analysis,

we may mark whether a function definition is explicitly self recursive, recursive, non-recursive

or a leaf (a leaf is a non-recursive function that has calls to non-recursive functions only).
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For example, if the closure matrix shows a loop for a function definition, the function is

recursive; otherwise it is not recursive.

We employ a simplified inter-procedural data dependency analysis: the data dependency

of each function definition is executed in one pass; arrays are considered as monolithic units

(we do not need more accurate analysis because we rediscover the array decomposition

from the recursive algorithm - which we assume is correct); for loops, we perform the data

dependency in one pass (i.e., we do not determine the loop carried dependencies) of the loop

body. We would benefit from a more powerful data dependency analysis, which we plan to

obtain by using a more sophisticated infrastructure, but this is not necessary to demonstrate

the proposed techniques on useful applications. As a result of the data-dependency analysis,

we enrich our IR, building a data dependency graph structure (DG) upon the AST.

The last three steps of JuliusC are our original contributions, and we shall discuss them

shortly from Section 3.2.1 to Section 3.2.2.

3.2.1 Static Analysis: the Art of Divide et Impera

Our static analysis summarizes the division process of a recursive algorithm by annotating the

formal parameters of function definitions (composing the application) with three attributes,

described as follows:

Divide and Conquer (D&C) formal is a formal that specifies the size of the problem

and how the algorithm divides the problem into smaller problems. In practice, a formal is

int factorial(int N) { 
 if (N<=1) 
    return 1;
 else 
    return N*factorial(N−1);
}

Figure 3.4: Factorial: N is a D&C formal.

annotated as D&C, if it is used as an operand in the conditions of flow-of-control statements,
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such as if-then-else and while-do statement, and these statements have an execution path

leading to a function call of a recursive function. For example, consider the factorial function

in Figure 3.4, the formal N is a D&C formal. A D&C attribute is an inherited attribute. 1

Matrix Operand (MO): a formal is annotated as MO, if it is a pointer to a vector. For

void update(int *M, int n) { 
 int i;
 for (i=0;i<n;i++)
   M[i] = i;
}

Figure 3.5: Update: M is a MO formal

example, the formal M in Figure 3.5 is annotated as MO. A MO attribute is a synthesized

attribute.

Location Operand (LO): a formal is annotated as LO, if it is used in the index

computation of a vector - identifying a particular element in the vector. For example, the

formal m in Figure 3.6 is annotated as MO and formal L as LO. An LO attribute is a

synthesized attribute.

void set(int *m, int L; int n) { 
 int i;
 for (i=0;i<n;i++)
   m[i+L] = i;
}

Figure 3.6: Set: L is a LO formal.

The attribute-annotation process is based on two steps. First, the formals of self-recursive

function definitions are annotated with D&C attributes, and the formals of leaf function

definitions are annotated with MO and LO attributes (as described previously). Second, we

determine an in-order left-to-right visit of the call graph (e.g., by a depth-first search) starting

from the main() function definition. The visit determines a tree: the leaf function definitions

1Inherited and synthesized come from the way we annotate these attributes when visiting the call graph,
corresponding to inherited and synthesized attributes in syntax-directed translation [100].
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correspond to the leaves of the tree. As any syntax-directed translation process (e.g., type

checking [100]), we visit the tree and we compute inherited and synthesized attributes using

the data dependency among function calls.

Consider the example in Figure 3.7. We annotate the formals of the self-recursive function

int M[100];

void main() {
  int size;

  initialize(M);
  get(size);
  if (size>0 && size<100)
    put(f(M,size);
}

int f(int *m, int n) { 
  if (n<5) { 
    return g(m,n);
  }
  return f(m,n/2)+n;
}
int g(int *p, int q) { 
  return p[q+1];
}

main() main()

main() main()

f(int *m, int n D&C)

f(int *m, int n D&C) f(int *m MO, int n LO,D&C)

(a) (b)

(c) (d)

f(int *m, int n D&C)

g(int *p MO, int q LO) g(int *p MO, int q LO,D&C )

g(int *p MO, int q LO,D&C ) g(int *p MO, int q LO,D&C )

Figure 3.7: Example of multiple attributes: n is eventually a D&C and a LO formal, the
evaluation process is schematically represented in Figure (a), (b), (c) and (d).

definition int f(int *m, int n): formal n is annotated as D&C. We annotate the formals of

leaf function definition int g(int *p, int q): the first formal has attribute MO and the second

formal has attribute LO (Figure 3.7 (a)).

We start the second phase of the annotating process from main(), which does not have

formals. We then visit f(): the second formal q of g() inherits an attribute D&C (Figure

3.7 (b)) from the formal n of function definition f(). We then visit g() (Figure 3.7 (c)). We

then backtrack to f() and we synthesize the attributes from its child g(): the first formal

has attribute MO, and the second has attribute LO (Figure 3.7 (d)). Eventually, the formals

n in f() and p in g() have attributes D&C and LO. For example, n in f() is an operand
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in the condition of the only if-then-else statement in f() and, indirectly, it is used to access

the vector p in function g().

An attribute summarizes the use of a formal in the body of the function definition and,

in turn, in the functions called as well.

3.2.2 Dynamic Analysis: Interpretation and Recursion-DAG

During the dynamic analysis, each function call will be associated with a node in a recursion-

DAG as follows.

When we reach an function call (e.g., ftt(Re,Im,n,stride) as in our example in Section

3.1), we evaluate the actuals (e.g., fft(Re,Im,200,1)). We look up for the definition of the

function call (e.g.,void fft(MATRIX TYPE *re, MATRIX TYPE *im, int n /*D&C*/, int stride)

{ } ). Because only D&C formals are used by the recursive algorithm for the division process,

we consider the function name and the actual values associated with D&C formals as the

key of a function call (e.g., fft(*,*,200,*)). Using this key, we look up whether or not a

node in the recursion-DAG already exists (with the same key). If it does not exist, a new

node is added.

The recursion-DAG is an unfolding of the call graph for an initial input, where only the

division work is recorded using function caching.

Static Profiler

The recursion-DAG can be used as a means for a fast and precise collection of statistics

about the execution of the recursive algorithm. For example, to compute how many times

a function (solving a particular problem size) is called, we just need to exploit the acyclic

nature of the recursion-DAG. In fact, we determine a topological sort of the recursion-DAG

by a depth-first search. The first node is associated with main() and we set its count = 1.

For every node in the topological sort v, we consider each child u and we update the child

count u.count+ = v.count. In this way, while we compute the number of function calls per
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node by visiting each node once, we can compute the total number of function calls and the

total number of nodes in the recursion-DAG.

The reuse ratio, R, is the ratio between the number of functions calls over the number

of nodes in the recursion-DAG. It represents a concise estimate of the work reduction. For

example, we may precompute the common computations and store them in the recursion-

DAG, the reuse ratio represents how many time we reuse those precomputed values during

the execution of the recursive algorithm.

R =
#function calls

#nodes in recursion-DAG
. (3.1)

3.3 Experimental Results

In this section, we show that our approach is practical; that is, the execution time of our

static and dynamic analysis is negligible. We show that we may exploit reuse of the division

work and we present the reuse ratio for 6 recursive algorithms for various inputs.

Our compiler does not yet fully implement the more traditional optimizations (e.g., reg-

ister allocation) and thus we cannot present here automated results of actual speedups.

However, our contribution is to present the automatic derivation of the recursion-DAG. The

practicality of the overall approach has been already demonstrated previously [22, 101, 27]

via ad-hoc implementations of matrix multiply and FFT, that use the same ideas as we

advocate here. Specifically, these recursive implementations used DAG structures that were

hand derived and with optimized leaf codes; they produced actual performance - on a range

of architectures - comparable to that of the best blocked-tuned approaches.

We apply JuliusC to 6 recursive algorithms (for various inputs); three algorithms are

from linear algebra; two algorithms are from number theory and one is a classic graph

algorithm. The results presented in Table 3.1 are a significant excerpt and they can be

reproduced running JuliusC on-line (see author website www.ics.uci.edu/~paolo). Table
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3.1 reports the reuse ratio (Equation 3.1) for recursive algorithms, the ratio represents the

work reduction we can achieve.

Table 3.1: Reuse ratio R is a function of the problem size, the algorithm definition and the
static analysis.

Notation Name R Inputs(
n
k

)
Binomial 14

(
10
5

)
3053

(
20
10

)
n = pq Integer factorization 93 n = 65536

133 n = 524288
FFTn Balanced Cooley-Tookey 34 n = 128

2076 n = 5000
12683 n = 65536

A∗ All-pair shortest path 60728 A ∈ Z750×750,
23967500 A ∈ Z7500×7500

A = LU LU-factorization 16110 A ∈ R300×300,
93757 A ∈ R500×500

C+=AB Matrix multiply 1950 C,A,B ∈ R100×100

107176 C,A,B ∈ R517×517

2765800 C,A,B ∈ R1123×1123

We consider briefly each illustrative example as follows.

Binomial is a straightforward recursive algorithm but its time complexity is exponential.

Function caching - in JuliusC - allows the reuse of already computed values such that the

final time complexity is just polynomial. For the input
(
10
5

)
, the reuse is 14; however, larger

reuse ratios are achievable for larger problems.

Integer factorization is used in algorithms such as Cooley-Tookey FFT. Given an

integer n, we determine the factors p and q so that n = pq and minp,q |p− q|. We determine

the factorization for p and q recursively. We analyze an exact and a heuristic factorization

(e.g., integer factorization is important in cryptography [102]).

Balanced Cooley-Tookey is the Cooley-Tookey FFT algorithm using balanced fac-

torizations (e.g., Cormen et al. [63] and D’Alberto et al. 2003 [27]). In Section 4.3, we

introduce the detail of our implementation.

All-pair shortest path is an algorithm based on matrix multiplication and Floyd-
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Wharshall algorithm (Floyd 19962, Ullman et al. 1990 [66, 64]). In Section 4.4, we present

a detailed investigation.

LU-factorization is an algorithm based on matrix multiply with no row pivoting [101, 5].

In Section 4.1, we present the LU-factorization with partial pivoting.

Matrix multiply is matrix multiplication with matrices stored in non-standard layout

[22, 6]. In Section 4.2, we present our original work.

For completeness, in Figure 3.8 we show results for a representative example, FFT (the

main algorithm is presented in Figure 3.1 Section 3.1). In Figure 3.8, we present an excerpt

from JuliusC’s output, which is reproducible on-line on the native system - Fujitsu HAL

100MHz. The data dependency analysis takes 0.05 seconds and the annotation of the formals

Call Graph from Main .... 
−−−−−−−−−−> get time 0 sec<−−−−−−
Function calls properties .... 
−−−−−−−−−−> get time 0 sec<−−−−−−
Data Dependency Analysis ... 
−−−−−−−−−−> get time 0.05 sec<−−−−−−
Data dependecy result .... 
−−−−−−−−−−> get time 0 sec<−−−−−−
Marking D&C formals ... 
−−−−−−−−−−> get time 0.01 sec<−−−−−−
Check the formals on the function definitions ... 
Interpretation ...
−−−−−−−−−−> get time 5.4 sec<−−−−−−
On count
Reuse Ratio 1007.26
−−−−−−−−−−> get time 0 sec<−−−−−−
main<> [1] {} |Rec|
   fft<3780> [1] {0} |Rec|
      find_balance_factorization<3780> [1] {60} |LeaF|
      fft<60> [63] {0} |Rec|
         find_balance_factorization<60> [63] {6} |LeaF|
         fft<6> [630] {0} |Rec|
            find_balance_factorization<6> [630] {3} |LeaF|
            fft<3> [3780] {0} |Rec|
               find_balance_factorization<3> [3780] {3} |LeaF|
               DFT_1<1260,3> [3780] {0} |LeaF|

 Figure 3.8: JuliusC’s output excerpt for Balanced Cooley-Tookey

using attributes is negligible (static analysis). The interpretation takes 5.4 seconds (dynamic

analysis). The collection of the statistics is negligible. The result of the analysis is a text-

55



based recursion-DAG. Each function call has an entry that we can describe using a single

line:

name< size > [ number of times this function is called ] |Rec| or |LeaF|

The problem fft() has size <6>; it is called 630 times; the last attribute is |Rec|, which

stands for Recursive. The problem DFT_1() has problem size <1260,3> (problem size and

stride ); it is called 3780 times; the last attribute is |LeaF|, non recursive.

We use a somewhat limited graphical representation of the final recursion-DAG. We use

indentation to present the relation among function calls so we can identify the root immedi-

ately: the node main. Using this simplified format, two siblings function calls have the same

indentation and two function calls with a caller-callee relation have different indentation; for

example, fft(*,*,3,*) is called by fft(*,*,6,*):

Conclusions

Our original contribution is a concise representation of recursive algorithm unfolding by

using an intuitive data structure, the recursion-DAG. In this chapter, we have presented an

automatic approach to determine such a data structure. We showed that the approach is

practical and it can be incorporated into a generic compiler. We apply our approach to 6

recursive algorithms and we present an estimation of the potential improvements.
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CHAPTER 4

Recursive D&C Examples from Linear
Algebra

Though, matrix algebra was formulated as theory in the eighteenth century by mathemati-

cians such as Gauss, however, the topic of matrix computations (and algorithms) has at-

tracted the interest of applied mathematicians for about two thousand years. In fact, Chinese

mathematicians discovered and used algorithms for the solution of systems of equations in

the third century; unfortunately, most of the Chinese early contributions were destroyed by

emperor dictation.

In this chapter, we present four applications following a top-down approach. In Section

4.1, we shall present LU-factorization with partial pivoting. We show that though the recur-

sive algorithm is elegant and natural, however the division process hides an implementation

problem that affects performance and correctness of the computation. In Section 4.1, we

explain the problem and we present our solution and implementation. In Section 4.2, we

introduce our approach for matrix multiply (MM), fractal matrix multiply. We inves-

tigate the effects of matrix-layout optimizations as well as data allocation to registers on

performance. In fact, we show that a recursive matrix layouts exploit cache locality, however

aggressive data allocation to registers have easier implementation for matrices stored in row-

major format. In Section 4.3, we shall conclude with our implementation of FFT. Finally

in Section 4.4, we introduce algorithms for the all-pairs shortest path (APSP) problem (and
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Transitive Closure). We show that the same optimizing techniques proposed for MM can be

applied for APSP achieving twofold speedups with respect to previous algorithms.

4.1 LU-factorization

This section is organized as follows. In Section 4.1.1, we recall Toledo’s algorithm. In Section

4.1.2, we show that Theorem 2.1 in [5] can be applied and therefore we estimate data cache

misses for LU-factorization. In Section 4.1.3, we present the details of our implementation.

In Section 4.1.4, we present experimental results for seven different memory hierarchies (with

fixed code) and performance evaluation on a subset of four machines.

4.1.1 LU-factorization with Partial Pivoting

LU-factorization with partial pivoting for a square matrix A m×m is an algorithm able to

find three matrices P, L and U such that PA = LU. The matrix L is a m × m unitary

lower triangular matrix (i.e., the diagonal elements are all one, all the elements above the

diagonal are zero), U is an m×m upper triangular matrix and P is a row permutation

matrix (or plane rotation matrix). .

Algorithm (Toledo’s algorithm) [5] Matrix A can be logically composed of four sub-

blocks:

A =

[
A0 A1

A2 A3

]
(4.1)

where A0 is a dm/2e × dm/2e square matrix. For any M > 0:

1. Leaf Computation: if m < M , determine directly the row permutation matrix P, the

lower triangular matrices L, and the upper triangular matrix U so that PA = LU.

2. Otherwise, recursively determine the row permutation matrix P1, the lower triangular

58



matrices L0, the matrix L2, and the upper triangular matrix U0 so that

P1

[
A0

A2

]
=

[
L0

L2

]
U0 =

[
L0U0

L2U0

]
(4.2)

3. Apply permutation P1 on the other half of the matrix:[
A1

A3

]
= P1

[
A1

A3

]
(4.3)

4. Determine U1 in the lower triangular system A1 = L0U1.

5. Compute A3− = L2U1.

6. Recursively determine the permutation matrix P2, the lower triangular matrix L3 and

the upper triangular matrix U3 so that P2A3 = L3U3.

7. Permute L2 by P2, that is, L2 = P2L2

8. The final permutation matrix is the combination P = P1P2.

♠

4.1.2 Access Complexity of LU Factorization

In this section, we demonstrate the optimal data locality of LU-factorization by following

the same approach proposed by Toledo in his original work [5]. In practice, we show that

QLU(s, m) ≤ ζ[2m2(
m

2
√

s/3
+ log2 m) + 2m2(1 + log2 m)] (4.4)

Where QLU(s, m) is the memory-access number of the LU-factorization applied to a matrix

of size m2 and the data cache has size s, and where ζ ≥ 0 is introduced to model interference

in the data cache.

To show that the factorization has the access complexity represented in Equation 4.4,

we must address the access complexity for the components of the algorithm such as the
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lower triangular system (LTS) solver and MM. In fact in this section, we show the access

complexity of such algorithms and then we apply Toledo’s proof – not reported here.

First we consider the MM algorithm. MM has access complexity QMM(s, m) = Θ(γ
√

3
s

3m3

2
)

for m ≥
√

s/3 (details of the analysis can be found in Section 4.2, otherwise see Hong and

Kung 1981 [11] or Frigo et al. [21]). The coefficient γ is introduced to consider the fact that

caches are not ideal. The MM satisfies Equation 2.2 [5] - when γ = 1.

Second, we consider the LTS algorithm. LTS is represented by an equation LX = B,

where L is a lower unitary triangular matrix of constants (e.g., L =

[
L0 0
L2 L3

]
with L0 and

L3 lower unitary triangular matrices), B is a matrix of constants and X is a matrix of free

variables, X is computed in place of B. In Figure 4.1, we present the LTS pseudo-code.

LTS(L,X,B) {
   if (|L|+|B| < s) solve AX=B and store X in B. 
   else {
     LTS(L0,X0,B0)
     LTS(L0,X1,B1)
     B3 −= L2X1;    
     B2 −= L2X0;
     LTS(L3,X2,B2)
     LTS(L3,X3,B3)
   }
}

Figure 4.1: Lower triangular system solver

Theorem 1 The access complexity of LTS for square matrices of size m is QLTS(s, m) ≤
m3√
s/3

+ m2 for m >
√

s/2.

Proof: When m is an integer power of two, the recurrence equations for the access complexity

is QLTS(s, m) ≤ 4iQLTS(s, m
2i ) +

∑i−1
j=0 4j2QMM(s, m

2j+1 ). We stop when i = 1/2 log2(2m
2/s)

achieving QLTS(s, m) ≤ 2m2

s
QLTS(s,

√
s/2) + γ 3

√
3m3

2
√

s
[1 −

√
s

2m2 ]. At the leaves, there is

locality exploited among LTSs and MMs so that QLTS(s,
√

s/2) ≤ 3s/4. For n >
√

s/2, the

solution to the equation is 3m2/4 + γ 3m3

4
√

s/3
(1−

√
s

2m2 ). 2
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Thus, we have Equation 4.4 because the LTS algorithm satisfies Equation 2.1 and the

MM satisfies Equation 2.2 in Toledo’s original proof [5], and thus the result.

To conclude this section, we define here and we use in the experimental results section

(i.e., Section 4.1.4) the number of cache misses per floating point operation as µ(m).

In practice, µLU(m) = QLU(s, m)/(2
3
m3), which is asymptotically a function of the cache

size; that is, µ(m) = O(1/
√

s).

4.1.3 Factorization Implementation

We present the pseudo-code of our algorithm in Figure 4.2.

/****************
 *      | A0 A1 |
 *  A = | A2 A3 |
 *       
 * */

int  LU(A,min_col,max_col) {
  width = max_col − min_col;
  if  (width<=ENDFRACTALLAYOUT ) {          /* Stop Recursion */ 
    flag = MAX(a,min_col,max_col);          /* Find Pivot */
    if (flag) PERMUTATION_ROWS();           /* Permute */
    for (i=0; i<width;i++) {                /* classic LU*/ 
      if (PIVOT==Zero) return 0;            /* singular */
      flag= GELM(A,min_col+i);              /* Gauss elimination */ 
      if (flag) PERMUTATION_ROWS();         /* Pivoting */ 
    }    
  } 
  else {                                    /* Recursion */ 
    if (!LU(A,min_col,max_col−(width/2)))   /* First Half */ 
      return 0;
    PERMUTE(A1,A3);                         /* Permute */
    LTS_and_GEMM(A,min_col,max_col);        /* LTS + MM */ 
    if (max_col==ColumnOf(A)) {             /* Second Half */ 
      return LU(A+width/2,0,max_col/2);     /* Rectangular */
    }
    else 
      return LU(A3,max_col−width/2,max_col);/* Near Square */     
  }
}

Figure 4.2: LU factorization

For explanation purpose, we hide some of the implementation details and we turn our
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attention to the main ideas of the algorithm. In practice, the algorithm is composed of two

parts: the recursive computation and the leaf computation.

During the recursive computation, the matrix A is logically divided into two rectangular

matrices: the first half is

[
A0

A2

]
and the second half is

[
A1

A3

]
. The recursive algorithm

determines the factorization of the first half; then it performs a conquer work such as row

permutations, LTS and MM; at last, it factorizes the second half of the matrix A and it

distinguishes two cases: whether the second half of A is a rectangular matrix or a (near)

square matrix (i.e., A3).

The leaf computation is composed of three basic steps. First, we search for the maximum

element in absolute value, the pivot. Second, we permute the current row with the pivot

row; that is, where we have found the pivot. Third, we perform the Gaussian elimination

and scaling and we store the result in place. All these steps are a column computation

because the computation accesses a set of sub matrices of A stacked as a column.

A column computation can be described as a set of MM of the type Ax = Lx ∗ Ux0

where x is an ordered set of indices {x0, x1, . . . , xk}. The indices determine uniquely what

sub-matrices the computation accesses and they can be are determined in two steps. First,

the column computation determines Ax0 = Lx0 ∗ Ux0 . In fact, the computation performs

a binary search of the column of the matrix A following this rule: the column x0 must be

in either A0 = L0U0 or A3 = L3U3. The result of this binary search is stored in a trace.

Second, when a leaf computation is found and the result is stored, the search backtracks

the binary search tree using the trace and it determines the next index, thus,the next leaf

computation.

The computation, Ax = Lx ∗Uy, is associated with a node at any level in a recursion-

DAG. Type and size of a node specify computation and data lay out of the operands. When

we perform Gaussian elimination, the matrices Lx and Uy are stored as results in Ax.

In practice, especially if we use a recursive data layout for matrices that are not power-
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of-two size, we must address the possibility that the operands can be stored in different

formats. Thus, the computation should be aware of the operands layout and access the data

correctly.

In fact, we use the following recursive layout of an m×n matrix A into a one-dimensional

array v of size m ∗ n that we identify as fractal layout. If m < M and n < M where M

is a specific threshold, then v[i ∗ n + j] = ai,j. Otherwise, v is the ordered concatenation of

the layouts of the submatrices A0,A1,A2, and A3 of the following balanced composition.

• A0 = {ai,j : 0 ≤ i < dm/2e, 0 ≤ j < dn/2e},

• A1 = {ai,j : 0 ≤ i < dm/2e, dn/2e ≤ j < n},

• A2 = {ai,j : dm/2e ≤ I < m, 0 ≤ j < dn/2e} and

• A3 = {ai,j : dm/2e ≤ i < m, dn/2e ≤ j < n}.

A m × n matrix is near square when |n − m| ≤ 1. Notice that if A is a near-square

matrix, so are the submatrices A0, A1, A2, and A3 of its balanced composition. Indeed, a

straightforward case analysis (m = n−1, n, n+1 and m even or odd) shows that, if |n−m| ≤ 1

and S = {bm/2c, dm/2e, bn/2c, dn/2e}, then max(S)−min(S) ≤ 1. (This layout layout just

defined can be viewed as a generalization of the Z-Morton layout for square matrices, [14, 6]

or as a special case of the Quad-Tree layout [16]).

The factorization computation may stop at a level where the operands are stored in

different formats, as a function of the threshold MM and the we can enumerate the following

four cases: Ax = Lx = Ux, all matrices coincide, and they are in either Z-Morton format

or in row-major format; Ax = Lx is in Z-Morton format and Uy is in row-major format;

and, finally, Ax = Lx is in row-major format and Uy is in Z-Morton format. The leaf

computations must use carefully the information available so that they can perform the

computation correctly.
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Gaussian Elimination Routine

When the pivot is determined and the permutation takes place, the row determined as leading

row for Gaussian elimination is defined as normalizing row. In practice, Gaussian elimina-

tion subtracts the normalizing row multiplied by a proper scalar value to each following row.

Gaussian elimination and scaling is logically composed of two steps; in Figure 4.3, we can

see a possible access pattern on different stages in the computation. First, Ax = Lx∗Ux, the

A  = L  Ux

A  = L  Ux

A  = L  Ux

x x

y y

z z

Comparisons and Mult-Sub
Mult-Sub

Division

Figure 4.3: Visualization of the access pattern when consecutive Gaussian eliminations are
computed.

normalizing row is locally stored and the computation always accesses a square sub matrix

of Ax. Second, Ay = Ly ∗Ux, the normalizing row is not locally stored (i.e., it is stored into

another submatrix not currently under computation) and the computation always accesses

a sequence of sub-matrices of A composing a column of the original matrix.

Notice that, we compute only a sub matrix at each step: on the right side of Figure 4.3,
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we can see, through a zoom effect, the operations performed in the first step. Notice that we

determine the next pivot element (comparison operation) while we compute the Gaussian

elimination.

In our implementation, for the computation of Ax = Lx ∗Ux, there are three possible

cases and we present them in Figure 4.4, because of the sub-matrix may be composed of four

blocks in row-major format.

Case A Case B Case C

Mult-Sub
Comparisons and Mult-Sub

Divisions

Figure 4.4: Case A: The first quadrant has all types of computations. Case B: first quadrant
has only a pivot element. Case C: the computation is done only in the fourth quadrant

Case A: we perform the normalization of the rows in every quadrant.

Case B: we perform the normalization only in the fourth quadrant and divisions only in

the third.

Case C: the computation involves only the fourth quadrant.

We present the computation involving the other sub-matrices in Figure 4.5. The com-

putation is described by the equation Ay = Ly ∗Ax and, notice that the sub-matrices are

composed of four blocks in row-major format.
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Mult-Sub
Comparisons and Mult-Sub

Divisions

Case I Case II Case III

Figure 4.5: Case I: in all four quadrants there are multiplication-subtractions. Case II:
divisions are performed in the first and third quadrant and Multiplication-subtractions in
the others. Case III: the computation is limited in the second and fourth quadrants.

Once the normalizing row is determined, every row computation is independent and

involves a division between scalar values in single/double precision. In modern processor,

though a division floating point unit is not pipelined and it has a long latency, however it

does not stall the microprocessor execution. For example, SparcUltraIIi has a non-blocking

division floating point unit that takes 22 cycles for operands in double precision format. In

practice, we can hide such a long computation latency by exploiting the parallelism among

rows. Though, the division at the first row cannot be hidden, however we can issue the

division of the second row as soon as the first division is committed and while the operations

in the first row are not committed yet.

Permutation

In the original definition of LU-factorization, partial pivoting involves the permutation of full

rows of A. Instead, Toledo’s Algorithm proposes the application of a lazy row permutations.

A row is logically divided in segments and the permutation takes place among segments

at different times during the computation. The application of a Z-Morton layout explicitly
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breaks a matrix row among different segments across different submatrices.

Due to the importance of row permutation in the matrix factorization, we introduce a

specific data structure used to ease the implementation. In fact, we use a sub structure

of the recursion-DAG, the data-layout DAG (DLDAG), which is a Quad Tree. A C-like

description of the structure follows:

typedef struct node_structure_layout DLDAG;
struct node_structure_layout {
DLDAG *sons[4]; /* links to the sub-blocks A0, A1, A2 and A3 */
int m,n; /* size of A */
int di[3]; /* offset of A1, A2, A3 with respect to A */

};

In practice, row permutation using the DLDAG involves similar algorithms to the ones

implemented for the column computations described previously. Notice that the row permu-

tation using DLDAG for matrices stored in Z-Morton layout involves extra computations to

access and to move data; however, its complexity it is still linear to the size of the rows to

permute.

4.1.4 Experimental Result

This section is organized as follows. In Section 4.1.4, we present the cache performance of

our algorithm with respect to the codes available in the SunPerformance library. In Section

4.1.4, we present the actual performance of our implementation.

Cache Miss

The results of this section are based on simulations. We simulate the cache miss rates (on

an SPARC Ultra 5) using the Shade software package for Solaris, of Sun Microsystems.

The applications are compiled for the SPARC ultra2 processor architecture (V8+) and then

simulated for various cache configurations. We choose specific configurations to correspond

to those of a number of commercial systems. Thus, when we refer to the R5000 IP32, we

are really simulating an ultra2 CPU with the memory hierarchy of the R5000 IP32.
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Table 4.1: Summary of simulated configurations
Configurations Cache Size Line Size Ways/ Write Policy ζ(1300)

SPARC 1
U1 64KB 16B 1 / through 0.249

SPARC 5
I1 16KB 16B 1

D1 8KB 16B 1 / through 0.311
Ultra 5

I1 16KB 32B 2
D1 16KB 32B 1 / through 0.285
U2 2MB 64B 1 / back 0.020

R5000 IP32
I1 32KB 32B 2 / back

D1 32KB 32B 2 / back 0.042
U2 512KB 32B 1 / back 0.085

Pentium II
I1 16KB 32B 1

D1 16KB 32B 1 / through 0.181
U2 512KB 32B 1 / back 0.063

HAL Station
I1 128KB 128B 4 / back

D1 128KB 128B 4 / back 0.020
ALPHA 21164

I1 8KB 32B 1
D1 8KB 32B 1 / through 0.212
U2 96KB 32B 3 / back 0.077

We also simulate the code for Sun Performance Library, which is available as standard

library for WorkShop compiler. This offers a reference, and generally fractal has fewer misses.

However, it would be unfair to regard this as a competitive comparison.

In Table 4.1, we summarize the 7 memory hierarchies. We use Shade notation: I=

Instruction cache, D=Data cache, U=Unified cache and L=any cache at a level.

In the last column in Table 4.1, we compute the value of ζ when matrix has size 1300. In

fact, ζ(1300) = µmeasured(1300)
µ(1300)

where µ(m) is the number of misses per FLOP. The coefficient

represents briefly the discrepancy between the upper bound and the experimental results,

due to the cache line effect, the cache associativity of each cache level, the hierarchy and the

over estimation of the accesses complexity.

We can notice three interesting features: the cache line size ` ∈ {2, 4, 8, 16} for direct-
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mapped cache has an (inverse) proportional effect; cache line ` and cache associativity α

have more than multiplicative effect (ζ/(`α)); and for the second level of cache the overall

effect is super-linear, only exception for R5000, (ζ/(α1α2`1`2)).

We present separately from Fig. 4.6 to 4.12 (from page 75), we present µ(m) and also

the number of code misses.

Performance: MFLOPS

We compare the performance of our code with two other implementations and with peak per-

formance (when no best algorithm is known). When available, we compare the performance

of native implementations by vendor libraries or of LU-decomposition based on ATLAS MM.

Four architectures have been tested and we present a summary of their characteristics and

performance in Table 4.2. We present our experimental results from Figure 4.13 to 4.16

(from page 75).

Table 4.2: Processor Configurations
Processor Ultra 2i PentiumII R5000 SPARC64
Registers 32 8 32 32
MUL/ADD - latency cycles separate - 3 separate - 8 merged - 2 merged-4
DIV-latency 22 N/A N/A 8
Peak (MFLOPS) 666 400 360 200
Peak Fractal-size 352 - 3000 138 - 2800 112 - 2500 158 -2048
Peak ATLAS-size 260 - N/A 210 - N/A N/A N/A

The running time of the codes can be split in two contributions: T (m) = TM(m, t) +

TG(m, t). Consider a square matrix A of size m × m such as A is recursively composed of

submatrices (i.e., tiles) smaller than t × t (also called blocking factor). Then, TM is the

running time of MM and TG is the running time of Gaussian elimination. If we decide to

have a large t, we can improve the performance of MM because we can exploit better data

reuse in registers (t cannot be larger than a threshold value where performance collapses due

to poor utilization of L1). However, if we use a too large t, the algorithm will call fewer
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Figure 4.6: SPARC 1: * code misses, + data misses

times MM and the execution time of the Gaussian elimination, TG, will take longer. An

optimal parameter t for matrix multiply may be non optimal for LU-factorization. As proof

of the previous observation, but not reported here, we increased the tile size from 32 × 32

to 48 × 48, which is optimal for MM. The performance got worse. By profiling, we could

measure that the improvements of TM did not overcome the loss of performance of TG.
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Figure 4.7: SPARC 5: * code misses, + data misses
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Figure 4.8: SPARC64: * code misses, + data misses
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Figure 4.9: Ultra SPARC 5: * code misses, + data misses
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Figure 4.10: MIPS R5000: * code misses, + data misses
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Figure 4.11: Pentium II, * code misses, + data misses
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Figure 4.12: Alpha 21164: * code misses, + data misses
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Figure 4.13: Ultra Sparc 5: FLOPS and relative performance
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4.2 Matrix Multiply

In this section, we show the practical portability of a simple version of matrix multiplication

(MM). Our algorithm is designed to exploit maximal and predictable locality at all levels of

the memory hierarchy, with no a priori knowledge of the specific memory system organization

for any particular system. By both simulations and execution on a number of platforms,

we show that memory hierarchies portability does not sacrifice floating point performance;

indeed, it is always a significant fraction of peak and, at least on one machine, is higher

than the tuned routines by both ATLAS and vendor. The results are obtained by careful

algorithm engineering, which combines a number of known as well as novel implementation

ideas.

4.2.1 Fractal Algorithms for Matrix Multiplication

We store matrices using the fractal layout introduced previously in Section 4.1.3 for an m×n

matrix A that we repeat here.

If m < M and n < M where M is a specific threshold, then v[i∗n+ j] = ai,j. Otherwise,

v is the ordered concatenation of the layouts of the submatrices A0,A1,A2, and A3 of the
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following balanced composition.

• A0 = {ai,j : 0 ≤ i < dm/2e, 0 ≤ j < dn/2e},

• A1 = {ai,j : 0 ≤ i < dm/2e, dn/2e ≤ j < n},

• A2 = {ai,j : dm/2e ≤ I < m, 0 ≤ j < dn/2e} and

• A3 = {ai,j : dm/2e ≤ i < m, dn/2e ≤ j < n}.

We remind also that a m × n matrix is near square when |n − m| ≤ 1 and that if a

matrix A is a near-square matrix, so are the submatrices A0, A1, A2, and A3 of its balanced

composition.

We introduce now the fractal algorithms, a class of procedures all variants of a common

scheme, for the operation of matrix multiply-and-add (MADD) C = C + AB, also denoted

C+ = AB. For near square matrices, the fractal scheme to perform C+ = AB is

recursively defined as follows, with reference to the above balanced composition.

fractal(A,B,C)

• If dim(A) = dim(B) = 1, then c = c + a ∗ b (all matrices being scalar).

• Else, execute - in any serial order - the calls fractal(A′,B′,C′) for

(A′,B′,C′) ∈ {(A0,B0,C0), (A1,B2,C0), (A0,B1,C1), (A1,B3,C1),
(A2,B0,C2), (A3,B2,C2), (A2,B1,C3), (A3,B3,C3)}

Of particular interest, from the perspective of temporal locality, are those orderings where

there is always a sub-matrix in common between consecutive calls, which increases data

reuse. We model the problem of finding such orderings by an undirected graph. The vertices

correspond to the 8 recursive calls in the fractal scheme. The edges join calls that share

exactly one sub-matrix (notice that no two calls share more than one sub-matrix). This

graph is a 3D binary cube. An Hamiltonian path in this cube is an ordering that maximizes

data reuse, Figure 4.17.
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ABC-fractalCAB-fractal

Figure 4.17: The cube of calls of the fractal scheme: the Hamiltonian path defining CAB-
fractal and ABC-fractal.

Even when restricting our attention to Hamiltonian orderings, there are many possibil-

ities. The exact performance of each of them depends on the specific structure and policy

of the architecture cache(s) in a way too complex to evaluate analytically and too time con-

suming to evaluate experimentally. In this section, we shall focus on two orderings, Figure

4.17, that we identify as CAB-fractal and ABC-fractal. Briefly, the former reduces write

misses and the latter reduces read misses.

CAB-fractal is the algorithm where the recursive calls are executed in the follow-

ing order: (A0,B0,C0), (A1,B2,C0), (A1,B3,C1), (A0, B1, C1), (A2, B1, C3), (A3, B3, C3),

(A3,B2,C2), (A2, B0, C2). The label “CAB” emphasizes that data sharing between consecu-

tive calls is maximum for C (4 cases), medium for A (2 cases), and minimum for B (1 case).

It is reasonable to expect that CAB-fractal will tend to better reduce write misses, since C

is the matrix being written.

ABC-fractal is the algorithm where the recursive calls are executed in the follow-

ing order: (A0,B0,C0), (A0,B1,C1), (A2,B1,C3), (A2,B0,C2), (A3,B2,C2), (A3,B3,C3),

(A1,B3,C1), (A1,B2,C0).
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Cache Performance

Fractal multiplication algorithms can be implemented with respect to any memory layout of

the matrices. For an ideal fully associative cache with least recently used replacement policy

(LRU) and with cache lines holding exactly one matrix element, the layout is immaterial to

performance. The fractal approach exploits temporal locality for any cache independently

of its size s (in matrix entries). Indeed, consider the case when at the highest level of

recursion all calls use sub matrix that fit in cache simultaneously. Approximately, the matrix

blocks are of size s/3. Each call load will cause about s misses. Each call computes up to

(
√

s/3)3 = s
√

s/3
√

3 scalar MADDs. The ratio misses per FLOP is estimated as µ =

(3
√

3(/(2
√

s) ≈ 2.6/
√

s. (This is within a constant factor of optimal, Corollary 6.2 [11].)

For a real system, the above analysis needs to be refined, keeping into account the effects

of cache-line size ` (in matrix entries) and a low degree of associativity. Here, the fractal

layout, which stores relevant sub matrix in contiguous memory locations, takes full advantage

of cache-line effects and has no self interference for blocks that fit in cache. The misses per

flop is estimated as µ = 2.6γ/`
√

s, where γ accounts for cross interference between different

matrices and other fine effects not captured by our analysis. In general, for a given fractal

algorithm, γ will depend on matrix size (n), relative fractal arrays positions in memory,

cache associativity and, sometimes, register allocation. When interference is negligible, we

can expect γ ≈ 1.

The Structure of the Call Tree

Pursuing efficient implementations for the fractal algorithms, we now face the performance

drawbacks of recursion: overheads and poor register utilization (due to lack of code exposure

to the compiler). To circumvent such drawbacks, we carefully study the structure of the call

tree; that is, how the recursive algorithm unfold in time.

Definition 1 Given a fractal recursive algorithm, its call tree T = (V, E) is an ordered
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and rooted tree with input matrices (A,B,C). In fact, V contains one node for each call

and the root of T corresponds to the main call fractal(A,B,C). Each node has up to eight

ordered children, v1, v2, . . . , v8 and, in practice, a node with children, also an internal node,

corresponds to the call made in order of execution.

If matrix A is m×n and B is n×p, the input is of size < m,n, p > (the triplet specifies the

problem size). If one among m, n, and p is zero, then the size is zero and we use the short

notation < ∅ >. The structure of T is uniquely determined by size of the root. We focus on

square matrices, that is, a problem of size < n, n, n > for which the tree has depth dlog ne+1

and it has 8dlog ne leaves. In fact, n3 leaves have type < 1, 1, 1 > and correspond (from left

to right) to the n3 MADDs of the algorithm. The remaining leaves have zero size. Internal

nodes are essentially responsible for performing the problem division. An internal node has

typically eight non-empty children, except when its size has at least one components equal to

1 (e.g., < 2, 1, 1 > or < 2, 2, 1 > in which the non empty children are 2 and 4, respectively).

The call tree has O(n3) nodes and most of them have the same size. To deal with this

issue systematically, we apply the concept of recursion-DAG. Given a fractal algorithm, an

input size < m,n, p >, and the corresponding call tree T = (V, E), then we identify with

D = (U, F ) the recursion-DAG. See Figure4.18 for an example.

Next, we study the size of the recursion-DAG D for the case of square matrix multipli-

cation. We begin by showing that there are at most 8 types of input for the calls of a given

level of recursion.

Proposition 1 For any integers n ≥ 1 and d ≥ 0, let nd be defined inductively as n0 =

n and nd+1 = dnd/2e. Also, for any integer q ≥ 1, define the set of types Y (q) = {<

r, s, t >: r, s, t ∈ {q, q − 1} }. Then, in the call tree corresponding to a type < n, n, n >,

the type of each call-tree node at distance d from the root belongs to the set Y (nd), for

d = 0, 1, . . . , dlog ne.
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<5,5,5> <5,4,5> <4,4,5><5,5,4> <4,5,4> <5,4,4> <4,5,5> <4,4,4>

<17,17,17>

<9,9,9> <9,8,9> <9,9,8> <8,8,9> <8,9,8> <9,8,8> <8,8,8>

<3,3,3> <3,2,3> <2,2,3> <2,3,2> <3,2,2> <2,3,3> <2,2,2><3,3,2>

<2,1,2> <2,2,1> <1,1,2> <1,2,1> <2,1,1> <1,2,2>

<8,9,9>

Level 2

Level 1

Level 3

Level 4<1,1,1><2,2,2>

Figure 4.18: Example of call-recursion-DAG for Matrix Multiplication < 17, 17, 17 >

Proof: The statement trivially holds for d = 0 (the root), since < n, n, n >∈ Y (n) = Y (n0).

Assume now inductively that the statement holds for a given level d. From the closure

property of the balance decomposition and the recursive decomposition of the algorithm,

it follows that all matrix blocks at level d + 1 have dimensions between b(nd − 1)/2c and

dnd/2e. From the identity b(nd − 1)/2c = dnd/2e − 1, we have that all types at level d + 1

belong to Y (dnd/2e) = Y (nd+1). 2

Now, we can give an accurate size estimate of the call-recursion-DAG.
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Proposition 2 Let n be of the form n = 2ks, with s odd. Let D = (U, F ) be the call-

recursion-DAG corresponding to input type < n, n, n >. Then, |U | ≤ k + 1 + 8(dlog ne − k).

Proof: It is easy to see that, at level d = 0, 1, . . . , k of call tree nodes have type < nd, nd, nd >,

with nd = n/2d. For each of the remaining (dlog ne− k) levels, there are at most 8 types per

level, according to Proposition 1. 2

Thus, we always have |U | = O(log n), with |U | = log n + 1 when n is a power of two, with

|U | ≈ 8dlog ne when n is odd, and with |U | somewhere in between for general n.

Bursting the Recursion

If u is an internal node of the call tree, the corresponding call receives as input a triplet

of matrices A, B, and C, and produces as output the input for each child call. The input

triplet is uniquely determined by the size < r, s, t > and by the initial addresses ai, bj, and

ck of the submatrices.

The submatrix of A is stored in between ai and ai + rs− 1, the submatrix of B is stored

in between bj and bj + st− 1, and the submatrix of C is stored in between ck and ck + rt− 1.

The call at u is then responsible for the computation of the size and initial position of the

sub-blocks processed by the children. For example, for the matrix A of size r× s starting at

ai, the four submatrices have respective dimensions and starting points:

Size Starting at aih = ai + ∆ih

dr/2e × ds/2e ∆i0 = 0
dr/2e × bs/2c ∆i1 = dr/2eds/2e
br/2c × ds/2e ∆i2 = dr/2es
br/2c × bs/2c ∆i3 = ∆i2 + br/2cds/2e

In a similar way, we can define the analogous quantities bjh
= bj +∆jh for the sub-blocks

of B, and ckh
= ck + ∆kh for the sub-blocks of C, for h = 0, 1, 2, 3. Notice that during

the recursion and in any node of the call tree, every ∆ value is computed twice, and, thus,
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the recursive algorithm has redundant work. We may improve performance of the recursive

algorithm following two avenues, separately or in combination. First, rather than executing

the full call tree down to the n3 leaves of type < 1, 1, 1 >, we can execute a pruned version

of the tree. This approach reduces the recursion overheads and the straight-line coded

leaves are amenable to aggressive register allocation, a subject of Section 4.2.2. Second, the

integer operations are mostly the same for all recursive calls. Hence, these operations can be

performed in a preprocessing phase, storing the results in an auxiliary data structure built

around the recursion-DAG D, to be accessed during the actual processing of the matrices.

Counting the number of instructions per node, we can see a reduction of 30%.

4.2.2 Register Issues

The effect of register management on the overall performance is captured by the number

ρ of memory (load or store) operations per floating point operation, required by a given

assembly code. In a single-pipeline machine with at most one FP or memory operation

per cycle, 1/(1 + ρ) is an upper limit to the achievable fraction of FP peak performance.

The fraction lowers to 1/(1 + 2ρ) for machines where MADD is available as a single-cycle

instruction. For machines with parallel pipes, say 1 load/store pipe every f FP pipes, an

upper limit to the achievable fraction of FP peak performance becomes max(1, fρ), so that

memory instructions are not a bottleneck as long as ρ ≤ 1/f . In this section, we explore

two techniques which, for the typical number of registers of current RISC processors, lead to

values of ρ approximately in the range 1/4 to 1/2. The general approach consists in stopping

the recursion at some point and formulating the corresponding leaf computation as a straight-

line code. All matrix entries are copied into a set of scalar variables, scalarization, whose

number R is chosen so that a compiler will keep these variables in registers. For a given R,

the goal is then to choose where to stop the recursion and how to sequence the operations so

as to minimize ρ (i.e., to minimize the number of assignments to and from scalar variables).
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Fractal Sequences. One approach consists in sequencing the operations in the order that

arises from the fractal scheme when the recursive process is followed all the way down to

< 1, 1, 1 > leaves. We have heuristically explored sequences that arise from changing the

order of the subproblems at different nodes of the recursion trees (e.g., from ABC to CAB),

generalizing an approach proposed in [6] (for caches). As an indication, for a < 4, 4, 4 > leaf

we obtain ρ = 0.5 (with R = 28− 32) and for a < 32, 32, 32 > leaf we obtain ρ = 0.33 (with

R = 32).

C-tiling Sequences. The C-tiling approach, which generalizes the register allocation pro-

posed in [103], partitions the result matrix of a generic < m,n, p > leaf multiplication into

rectangular tiles. An r × s submatrix C is the product of an r × n submatrix of A and an

n × s submatrix of B and, hence, can be expressed as the sum of n terms, each term is a

product of a column of the A submatrix by a row of the B submatrix. If R ≥ rs + r + 1

registers (scalar variables) are available: first, we load the C submatrix into rs registers;

second, we load one at the time the n A-subcolumns into r registers; third, we load one at

the time the elements of the corresponding B-subcolumn and execute the r madds involving

it and the elements of A currently in registers; and, finally, we store back the C submatrix.

The number of accesses is 2rs + n(r + s) and the number of FP operations is 2rsn, yielding

ρ = 1
n

+ 1
2r

+ 1
2s

. The value of ρ for the full < m, n, p > product is a sort of average over

the chosen tiles, which might be of different sizes especially at the boundaries of the tiled

submatrices. As an indication, for an < 8, 8, 8 > leaf we obtain ρ = 0.50 (with R ≥ 21) and

for a < 32, 32, 32 > leaf we obtain ρ = 0.25 (with R ≥ 32).

4.2.3 Experimental Results

We have studied experimentally both the cache behavior of fractal algorithms, in terms of

misses, and the overall performance, in terms of running time.
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Cache Misses

The results of this section are based on simulations performed (on an SPARC Ultra 5)

using the Shade software package for Solaris, of Sun Microsystems. Codes are compiled for

the SPARC Ultra2 processor architecture (V8+, no MADD operation available) and then

simulated for various cache configurations, chosen to correspond to those of a number of

commercial machines. Thus when we refer, say, to the R5000 IP32, we are really simulating

an ultra2 CPU with the memory hierarchy of the R5000 IP32.

In practice, we stop the recursion when the size of the leaves is strictly smaller than

problem < 32, 32, 32 >. We set the threshold for the the recursive layout to 32. We imple-

ment the computation leaves using the C-tiling register assignment using R = 24 variables

for scalarization and this approach leaves to the compiler 8 of the 32 registers to buffer

multiplication outputs before they are accumulated into C-entries. We opted to compile the

computation leaf codes with cc WorkShop 4.2 and linked statically (as suggested in [103])

for its superior instruction scheduling. However, we compiled the recursive codes using gcc

2.95.1.

We have also simulated the code for ATLAS DGEMM obtained by installation of the

package on the Ultra 5 architecture. This is used as another term of reference, and, in

general, fractal has fewer misses. However, it would be unfair to regard this as a competitive

comparison with ATLAS, which should be re-installed for each different cache configuration.

We have simulated 7 different cache configurations (Table 4.3); we use the notation: I=

Instruction cache, D=Data cache, and U=Unified cache. We have measured the number

µ(n) of misses per flop and compared it against the value of the estimator (Section 4.2.1)

µ(n) = 2.6γ(n)/(`
√

s), where s and ` are the number of (64 bit) words in the cache and in one

line, respectively, and where we expect values of γ(n) not much greater than one. In Table

4.3, we have reported the value of µ(1000) measured for CAB-fractal and the corresponding

value of γ(1000) (last column). We can see that γ is generally between 1 and 2; thus, our
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Table 4.3: Summary of simulated configurations
Configuration Cache Size Line Size Way - Write µ(1000) - γ(1000)

SPARC 1
U1 64K 16 1 - through 2.65e-2 - 1.84

SPARC 5
I1 16K 16 1

D1 8K 16 1 - through 5.96e-2 - 1.47
Ultra 5

I1 16K 32 2
D1 16K 32 1 - through 2.51e-2 - 1.75
U2 2M 64 1 - back 1.05e-3 - 1.66

R5000 IP32
I1 32K 32 2 - back

D1 32K 32 2 - back 1.06e-2 - 1.04
U2 512K 32 1 - back 3.61e-3 - 1.42

Pentium II
I1 16K 32 1

D1 16K 32 1 - through 2.50e-2 - 1.74
U2 512K 32 1 - back 3.98e-3 - 1.57

HAL Station
I1 128K 128 4 - back

D1 128K 128 4 - back 2.65e-3 - 2.09
Alpha 21164

I1 8K 32 1
D1 8K 32 1 - through 3.75e-2 - 1.85
U2 96K 32 3 - back 5.81e-3 - 0.99

estimator gives a reasonably accurate prediction of cache performance. This performance is

consistently good on the various configurations, indicating efficient portability. We also have

simulation results for code misses: although these misses do increase due to the comparatively

large size of the leaf procedures, they remain negligible with respect to data misses and, thus,

we omitted them.

MFLOPS

Of course, portability of cache performance is desirable, however, it is more important to

explore the extent of these optimizations towards performance –execution time. We have
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tested the fractal approach on four different processors listed in Table 4.4. We always use

the same code for the recursive algorithm, which is responsible for cache behavior essentially.

We vary the code for the leaves, to adapt the number of scalar variables R to the processor:

R = 24 for Ultra 5, R = 8 for Pentium II, and R = 32 for SGI R5K IP32 and HAL Station.

We compare the MFLOPS of fractal algorithms in double precision with peak performance

and with the performance of ATALS-DGEMM, if available. Fractal achieves performances

comparable to those of ATLAS, being at most 2 times slower on PentiumII (which is not a

RISC) and a little faster on SGI R5K. Since no special adaptation to the processor has been

performed on the fractal codes, except for the number of scalar variables, we conclude that

the portability of cache performance can be combined with overall performance.

Table 4.4: Processor Configurations
Processor Ultra 2i PentiumII R5000 SPARC64
Registers 32 8 32 32
MUL/ADD - latency separate - 3 separate - 8 merged - 2 merged - 4
Peak (MFLOPS) 666 400 360 200
Peak Fractal - size 425 - 444 187 - 400 133 - 504 168 - 512
Peak ATLAS - size 455 - 220 318 - 848 113 - NA NA
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4.3 Fast Fourier Transform

In this section, we identify a n-point Discrete Fourier Transform as DFT(n), which is a

matrix-by-vector product y = Ωn ∗ x with x,y ∈ Cn and Ωn ∈ Cn×n. In fact, we may

determine one component of y as the sum: yk =
∑n−1

r=0 xiω
rk
n , where ωrk

n is called twiddle

factor and ωn is the complex number e
i
n .

When n is the product of two factors such as p and q (i.e., n = pq), we may apply

Cooley-Tookey’s algorithm. The input vectors x can be seen as q × p matrix X stored in

row major. The result is computed in place in X. We can write the DFT (n) algorithm as

follows:

1. for every i ∈ [0, p − 1] we compute X[0,q−1],i = ΩqX[0,q−1],i – this is a computation on

the columns of matrix X;

2. distribute the twiddle factors xi,j∗ = ωij
n ;

3. for every i ∈ [0, q − 1] we compute Xi,[0,p−1] = ΩpXi,[0,p−1];

Algorithms implementing DFT (n) on n = 2γ points are well studied. However, they may

be inefficient on a cache using direct mapping f(x) = x mod S, where S = 2k. Interference

prevents the spatial locality exploitation between the computation of X[0,q−1],i = ΩqX[0,q−1],i

and X[0,q−1],i+1 = ΩqX[0,q−1],i+1. In fact, two elements in the same column of X will be

mapped to the same cache line (self interference), therefore preventing the spatial reuse

across the computation of X[0,q−1],i and X[0,q−1],i+1.

The number of misses due to interference are relatively few, but for large n and in a

multilevel memory hierarchy, they are misses at every level –e.g., memory pages too. Any

improvement in the number of misses at the first level of cache, even small, is very beneficial

for a multilevel cache system.

Implementations, such as FFTW [12] and SPIRAL [104], may exploit temporal locality
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through copying the input data on a temporary work space. This approach allows a perfect

data reuse by the following computations, but interference makes extremely slow the first

access therefore the copy. We propose a solution to nullify interference in Section 6.3. Here,

we present the basic structure of the computation using recursion-DAG, which will be used

to solve the interference problem.

We decide to work with balanced FFT, that is, given n points we choose the factors p

and q so that minn=p∗q |p − q|. Such balanced division exploits a short call tree, of height

O(log2 log2 n), however its performance has a time complexity of O(n log2 n) (see also [3, 4]).

The calls tree of FFT is similar to the calls tree for matrix multiplication and the recursion-

DAG size is moderate, O(log2 n).

In the leaves of the computation we use the codelets from FFTW, where the twiddle

factors are precomputed. Our implementation for n prime computes the twiddle factors on

the fly, it is based on a loop nest with the inner loop unrolled twice. We decide this solution

for n prime to exploit temporal locality and parallelism even in the worst case. In fact, this

solution achieves 50% of the peak performance on a Blade 100.

In Figure 4.19 we present the actual implementation of FFT. The implementation is

simple and elegant. The Tree structure is determined off-line. If two sub trees have the

same number of points, they may be merged into one node. For some n-FFT the Tree may

be represented by a linked list.

We shall present the performance of our implementation only in Section 6.3.4, where we

shall discuss the capability to perform efficiently other important computations: then, we

shall consider again the algorithm and we shall give a clear presentation of the context and

performance.
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typedef void (* Leaf_computation)(const Point *, Point *,int , int );

typedef struct decomposition_tree* Tree;

struct decomposition_tree {
  int n;
  Tree left;
  Tree right;

  Leaf_computation leaf;
};

/************
* Recursive FFT
*
*/ 
void fft_tree(Point *V, Tree t, int stride) { 
   int p,q,i,n;

   n = t−>n;
   if (t−>leaf) {  /* leaf */ 
     if (n>LEAF) {
       t−>leaf(V,V,stride,n); /* FFTW codelets */
       return;
     }
     else {
       t−>leaf(V,V,stride,stride); /* large prime: ad hoc loop nest */
       return;
     }
   }
   else {   /* recursive call */
     p = t−>left−>n;
     q = t−>right−>n;

     for (i=0;i<q;i++) 
       fft_tree(V+i*stride,t−>left,q*stride);
          
     distribute_twiddles(V,n,p,q);
     
     for (i=0;i<p;i++) 
       fft_tree(V+i*stride*q,t−>right,stride);
     
   }
} 

Figure 4.19: Our implementation of FFT.
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4.4 All Pair Shortest Path and Matrix Multiply

We propose a novel divide-and-conquer (D&C) algorithm for the solution of all-pair short-

est path (APSP) for graphs with no negative cycles and represented by (dense) adjacency

matrices.

Using registers and data layout optimizations, we derive a compact, portable, and in-place

recursive algorithm that yields optimal performance. We show that our algorithm delivers

competitive performance for both small and very large adjacency matrices; for example, our

algorithm yields between 1/2 and 1/7 of the peak performance for 6 architectures.

4.4.1 A Recursive D&C Algorithm, R-Kleene

In this section, we present a recursive D&C algorithm derived from Kleene’s algorithm

Figure 4.20.(a). Notice that Kleene’s algorithm was originally designed to solve the transi-

tive closure (TC) of an adjacent matrix. That is, finding whether or not there is a path

connecting two nodes in directed graph. However, Kleene’s algorithm is also a standard

algorithm/solution for the APSP. In fact, in a closed semiring TC and APSP are the same

problem and Kleene’s algorithm is a solution (when the scalar operators ∗ and + are specified

as in the following paragraph) and it determines every edge of the (shortest) path directly

[64].

A brief description of Kleene’s algorithm follows. We divide the basic problem into two

sub-problems, and we solve each problem directly using the Floyd-Warshall algorithm, see

Figure 4.20.(a). Then, we perform several MMs to combine the results of the subproblems

using a temporary matrix. Formally, matrix multiplication E+ = FG (with E,F,G ∈ Zn×n)

is simply ei,j+ =
∑n−1

k=0 fi,k ∗ gk,j; where the scalar addition of two numbers is actually the

minimum of the two numbers –i.e., a + b = min(a, b)– and the scalar multiplication of two

numbers is the (regular arithmetic) addition –i.e., a ∗ b = a + b.

In this case, the MM is defined in a closed semiring and using the properties within,
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Kleene(J) {  
  /*      | A  B | */
  /* J = | C  D | */

  1:  A  = FLOYD_WARSHALL(A);  
  2:  A += A*A*A;
  3:  B += A*A*B;
  4:  C += C*A*A;
  5:  D += C*A*B;

  6:  D  = FLOYD_WARSHALL(D);  
  7:  A += B*D*C;
  8:  B += B*D*D;
  9:  C += D*D*C;
 10:  D += D*D*D;
}

R−Kleene(J) { 
  /*      | A  B | */
  /* J  = | C  D | */

  1:  A = R−Kleene(A); 
  2:  B += A*B;
  3:  C += C*A;
  4:  D += C*B; 

  5:  D = R−Kleene(D);  
  6:  B += B*D;
  7:  C += D*C;
  8:  A += B*C;
}

J += J*J {
  /*      | A  B | */
  /* J  = | C  D | */

  A += A*A;
  B += A*B;
  C += C*A;
  D += C*B;

  D += D*D;
  B += B*D;
  C += D*C;
  A += B*C;
}

(a) (b) (c)

Figure 4.20: (a) Kleene, (b) R-Kleene and (c) (Self) Matrix Multiply

we reorganize the algorithm in Figure 4.20.(a) and obtain the R-Kleene algorithm in Figure

4.20.(b). Thus, R-Kleene is solution for APSP in a closed semiring.

In the following, we explain in seven steps how to achieve the algorithm in Figure 4.20.(b):

1. We start by noticing that the computations on line 2 and 10 in Figure 4.20.(a), (i.e.,

A+ = A ∗A ∗A and D+ = D ∗D ∗D) do not have any effect on matrix A and D

respectively, because each is a matrix closure.

A formal proof follows. First, AA is equal to A; in fact, consider F = AA, fi,j =∑n−1
k=0 ai,k ∗ ak,j; because A is matrix closure, fi,j = ai,j ∗ aj,j +

∑
k 6=j ai,k ∗ ak,j =

ai,j +
∑

k 6=j ai,k ∗ ak,j = ai,j +
∑

k 6=j ai,j = ai,j , therefore F = A. Moreover, because +

is idempotent (i.e., a + a = a) we have that A + A is equal to A.

2. Notice that the property that AA = A –when A is matrix closure– is applied elsewhere

such as on line 3 in Figure 4.20.(a), which becomes the operation on line 2 in Figure

4.20.(b).

3. Moreover, consider the computation on line 5 in Figure 4.20.(a) D+ = CAB, this is
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equivalent to D+ = CB –Figure 4.20.(b), on line 4.

A formal proof follows. First, we show that CA ≡ C+CA; in fact, consider F = CA,

then fi,j =
∑n−1

k=0 ci,k ∗ ai,j = ci,j ∗ aj,j +
∑

k 6=j ci,k ∗ ai,j; because aj,j = 0, we have fi,j =

ci,j +
∑

k 6=j ci,k ∗ai,j = ci,j +
∑n−1

k=0 ci,k ∗ai,j, so CA ≡ C+CA. We conclude by noticing

that D+ = (C+CA)A(B+AB) is equivalent to D+ = (CA+CAA)(AB+AAB) =

(CA)(AB) = (C + CA)(B + AB).

4. Similarly, we obtain the simplified computation D+ = CB (i.e., line 4 in Figure

4.20.(b)).

5. Moreover following similar reasoning, we may postpone the computation of line 7 in

Figure 4.20.(a), as last on line 8 in Figure 4.20.(b),

6. The last step is to apply the idea recursively on A and D.

If we look at the algorithm in Figure 4.20.(b), ultimately, this is similar to the recursive

algorithm for MM, Figure 4.20.(c). Though, Kleene’s algorithm and the algorithm proposed

by Park et al. [19], which is basically the algorithm in Figure 4.20.(c), impose a strict order

to the function calls, however MM algorithms (in general) and our algorithm do not require.

In fact, we shall explain shortly that our algorithm is bound loosely to the function call

order.

It is evident that the computations on line 2 and 3 in Figure 4.20.(b) can be executed

in any order and in parallel. We now show that the MMs involved in the computation

have no restrictions and they may exploit a different order than the one specified in Figure

4.20.(c). This is important because certain low-level-optimizations for the solution of MM

need to rearrange the computation order, in general, it is quite different from the algorithm

in Figure 4.20.(c), so as to exploit better locality and performance. Indeed, we show in
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Theorem 2 that we may choose any order and, thus, the order that exploits data reuse in

registers.

Theorem 2 In a closed semiring the matrix multiplications B+ = AB or B+ = BA can

be done in place and in any evaluation order if A is a matrix closure.

A formal proof follows, however we explain the first case B+ = AB only. Consider two

elements in B during the in-place computation. Without loss of generality, consider the

entries b0,j and b1,j, which belong to the same column of B and necessarily are needed for

the computation of each other. Assume we compute first b0,j = a0,m ∗ bm,j, and then, we

compute b1,j = a1,n ∗ bn,j. If we assume that b1,j affects the previous shortest path, then we

must recompute b0,j, which should be ḃ0,j = a0,1 ∗ b1,j. So we unfold the expression and we

obtain ḃ0,j = a0,1 ∗ a1,n ∗ bn,j; because A is matrix closure, we have a0,1 ∗ a1,n = a0,n, thus, in

the first evaluation we had b0,j = a0,m ∗ bm,j ≤ a0,n ∗ bn,1 = ḃ0,j. The following computation

of b1,j does not affect the computation of b0,j, therefore we may perform the computation in

any order and in-place.

Notice that this observation assures that, as long as all terms are computed and written

into the destination matrix without write races, the matrix multiplication can be successfully

parallelized as it would be when source and destination operands are all non-overlapping

matrices.

Intuitively, we can see that our algorithm inherits the properties of MM, and thus, it

is cache oblivious achieving optimal data cache utilization at every cache level (asymp-

totically). We briefly repeat here the major results about the locality property of Kleene’s

algorithms as previously investigated in [64]. In fact, Kleene’s algorithm is the first cache-

aware algorithm with access complexity O( n3
√

S
) (also I/O complexity), where S is the cache

size in number of elements. Matrix Multiply has the same lower and upper bound [11].

To prove that R-Kleene is asymptotically optimal, we determine the upper bound to the
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access complexity as follows. Suppose that S = s2, matrix J has size n × n and (n mod

s) = 0. (The case for general square matrices is similar.) Recursively, R-Kleene divides

the problem n × n in smaller problems and it may compute the solution directly when the

problem has size no larger than s × s. Thus, the algorithm solves 8log n/s = (n
s
)3 problems

directly, each requiring up to 2s2 memory accesses (i.e., s2 reads from memory to cache and

s2 writes from cache to memory), so we achieve a total of O( n3
√

S
) memory accesses, which

is optimal asymptotically. Notice that because the algorithm accesses tiles of the adjacency

matrix, a cache-aware layout can store such tiles continuously in memory improving the

cache behavior of the algorithm. Such a layout reduces self/inter interference, therefore,

cache conflicts further (see also [58, 24, 52]).

Previously [22, 8], we developed techniques to improve the leaf computation of MM

(where the recursion stops). In fact, we may exploit data reuse in registers and, therefore, we

may achieve a sensible reduction of loads/stores for matrix multiplication. Indeed, we may

reduce the memory accesses, for matrix multiply of matrices of size m×m, from 3m3+o(m2)

to 2
r
m3 + o(m2), with 1 ≤ r2 ≤ R where R is the number of registers available. The fewer

memory loads/stores in MM are, the higher the overall performance is, because MM is basic

kernel.

4.4.2 Experimental Results

In this section, we discuss briefly the characteristics of the algorithms implemented, and how

we measured overall performance. We conclude this section presenting the experimental

results of the algorithms for every system separately. In practice, we compare R-Kleene

versus three other algorithms on five systems using (very different) processors for dense

adjacent matrices with random entries uniformly generated in an interval. In all tests and

for all architectures here presented, we checked the correctness of the matrix closure by direct

comparison with the one generated by FW.
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R-Kleene is our recursive algorithm in Figure 4.20.(b). The basic MM operation is a

recursive algorithm that exploits data locality and aggressive data reuse in registers at the

leaf computations so as to achieve near optimal performance. The algorithm assumes that

the adjacent matrix is stored in a row-major format.

Floyd-Warshall (FW) is the classic algorithm based on a single loop nest. The algo-

rithm assumes that the adjacent matrix is stored in a row-major format. In general, this

algorithm is efficient only for small problem sizes and its performance degrades quickly as

the problem size increases.

Simple Recursive (Z-SR) is the recursive algorithm in Figure 4.20.(c). This is the

algorithm presented by Park et al. [19]– which these authors proposed for power of two

matrices only – and, in fact, the performance presented in this work coincides with the

performance previously published. The algorithm assumes that the adjacent matrix is stored

in a generalized Z-Morton format [14]; that is, logical submatrices of the adjacent matrix are

stored continuously in memory in a recursive fashion.

ZR-Kleene is the R-Kleene algorithm, however it assumes that the adjacent matrix is

stored in a generalized Z-Morton format [14]. This algorithm should have a performance

advantage for very large problems and memory hierarchies with high latency and low asso-

ciativity.

Our goal is to show the performance improvements obtained by register management

only (R-Kleene), by memory layout optimization only (Z-SR) and by the synergy of both

(ZR-Kleene). We measure performance as millions of integer instructions per second

(MIPS) determined as n3/(execution of the algorithm in seconds). This format is consistent

with the one used for classical linear algebra applications (e.g., MM). However, there is a

major difference between APSP and MM. In MM, highly pipelined functional units execute

the basic operation (madd) using a separate register file and the performance measure is

MFLOPS. In contrast, in APSP algorithms, the basic operation is based on a conditional
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branch, that is, a comparison-addition (compadd). This constraint affects the final per-

formance as a function of the values in the adjacent matrix, even if only by a constant factor.

1 In practice, some processors have available branch prediction units - e.g., R12K - allowing

instruction speculation on either branch of a conditional jump. However, because the unpre-

dictable nature of the adjacent matrix, branch predictor may be ineffective. Nevertheless,

we assume that the reference peak performance of any algorithm is the number of cycles per

second.

In the following we discuss our results. For the Fujitsu HAL 100 system based on a

SPARC64 processor (one level of split caches, 128KB 4-way data and instruction caches),

we present the performance results in Figure 4.21. The Z-SR algorithm performs 1 compadd

every 5 cycles while R-Kleene and ZR-Kleene perform 1 compadd every 4 cycles; that is a

20% performance improvement. Notice that the memory layout has no significative effects

on the overall performance of the algorithms. (We used the native compiler, hcc, to generate

the executables.)

For the SGI O2 system based on a MIPS R12K 300MHz processor (with two-level cache:

first level, 32KB 2-way distinct data and instruction cache; second level, 512K 2-way unified

cache), we can achieve the best relative performance as presented in Figure 4.22. The Z-

SR algorithm performs 1 compadd every 5 cycles, while R-Kleene and ZR-Kleene perform

1 compadd every 2 and 3 cycles. R-Kleene and ZR-Kleene achieve a two-fold speed up

with respect to Z-SR. Notice that the memory layout has significative effects on the overall

performance of the algorithms. (We used the native compiler, SGI compiler, to generate the

executables.)

For the Sun microsystems Sun Blade system based on an UltraSparc IIe 500MHz pro-

cessor (two-level cache: first level, 16KB direct mapped distinct data and instruction cache;

second level, 512KB 2-way unified cache), we present the performance results in Figure 4.23.

1But not as much as for algorithms on sparse adjacent matrices
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The Z-SR algorithm performs 1 compadd every 11 cycles. In contrast, R-Kleene and ZR-

Kleene perform 1 compadd every 7 cycles, which is a 30% performance improvement. Notice

that the memory layout has no significative effects on the overall performance of the algo-

rithms. (We used two compilers to generate the executables, gcc/3.0.4 and cc-forte-6, we

present the best performance.)

For the FOSA 3240 system based on a Pentium III 800MHz (two-level cache: first level,

16KB direct mapped distinct data and instruction cache; second level, 256KB direct mapped

unified cache), we present the performance results in Figure 4.24. The Z-SR algorithm

performs 1 compadd every 9 cycles. In contrast, R-Kleene and ZR-Kleene perform 1 compadd

every 6 cycles, which is a 35% performance improvement. Notice that the memory layout has

significative effects on the overall performance of the algorithms. (We used gcc/3.1 compiler

to generate the executables.)

For ASUS system based on an Athlon-XP 2800 (two-level cache: first level, 64KB 2-way

distinct data and instruction cache; second level, 256KB 16-way unified cache), we present

the performance results in Figure 4.25. The Z-SR algorithm performs 1 compadd every 13

cycles. In contrast, R-Kleene and ZR-Kleene perform 1 compadd every 6 cycles. Notice that

the memory layout has no significative effects on the overall performance of the algorithms.

(We used gcc/3.3 compiler to generate the executables.)

4.4.3 APSP Conclusions and Future Work

We presented R-Kleene: a novel D&C algorithm for the solution of APSP; we also presented

a quantitative measure for its performance across five systems. We conclude that an efficient

register allocation is an important feature of any APSP algorithms; we also notice that

non-standard layouts are beneficial for very low associative caches but otherwise row-major

layouts are quite adequate.

We have started the design and implementation of a preliminary parallel R-Kleene al-
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Figure 4.21: Fujitsu HAL 100: best performance 4 cycles per compadd.
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Figure 4.22: SGI O2: best performance 2 cycles per compadd.
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Figure 4.23: Sun Blade 100: best performance 7 cycles per compadd.
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Pentium III - 800MHz
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Figure 4.24: FOSA 3240: best performance 6 cycles per compadd.
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Figure 4.25: ASUS: best performance 5 cycles per compadd.
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gorithm for a two-processor system achieving speed-ups ranging from 1.41 to 1.74. In the

future, we intend to import ATLAS (also multi-thread) routines to improve performance

further and exploit parallelism at processor and thread level.

4.5 Conclusive Remarks

We considered four applications where we apply our approach based on the recursion-DAG

manually.

We presented an evaluation for cache and runtime performance for LU-factorization with

partial pivoting, and therefore for the solution of triangular systems. By simulation, we

show the good cache behavior of Toledo’s algorithm on several memory hierarchies and

we show running time against other LU-factorization algorithms. We have achieved the

following results: the new framework and optimizations are suitable for LU-factorization (in

general, we have obtained the fastest factorization); the cache behavior is extremely good and

predictable; high performance is achieved for different architectures. Our LU-factorization

does not perform well for PentiumII because of our poor register allocation for stack-register

file.

We have developed a careful study of matrix multiplication implementations, showing

that suitable algorithms can efficiently exploit the cache hierarchy without taking cache pa-

rameters into account, thus ensuring portability of cache performance. Clearly, performance

itself does depend on cache parameters and we have provided a reasonable estimator for it.

We have also experimentally shown that, with a careful implementation of recursion, high

performance is achievable.

We applied the register allocation developed for matrix multiplication on the all-pair

shortest path algorithms. We have collected experimental results for six recursive algorithms

across five different architectures. We have shown that the number of parameters used by a

recursive algorithm do not affect performance significantly. We have shown that the choice
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of a recursive layout offers high performance. At the same time, we have shown that for

some architectures, the complexity of the layout does not offer higher performance than the

common row major format. We have found that the myth of ASP being much slower than

matrix multiplication is not justified and we present experimental results. The performance

is comparable to matrix multiply and very close to peak performance.

Eventually, we present implementation for our Fast Fourier Transform using a recursion-

DAG. We present just a proof of concept in this chapter, but we present in Section 6.3.4 a

performance evaluation where we may find a comparison with FFTW.
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CHAPTER 5

STAMINA: Static Modeling of
Interference And Reuse

Caches are crucial components of modern processors; they allow high-performance proces-

sors to access data fast and, due to their small sizes, they enable low-power processors to

save energy - circumventing memory accesses. A high-performance compiler must address

the problem of caches utilization and it must drive code-architecture adaptation, reducing

memory accesses and energy per access.

We examine efficient utilization of data caches in an adaptive memory hierarchy. We

exploit data reuse through the static analysis of cache-line size adaptivity. We present a

framework that enables the quantification of data misses with respect to cache-line size at

compile-time using (parametric) equations modeling interference.

Our approach aims at the analysis of perfect loop nests in scientific applications; it is an

extension and generalization of the Cache Miss Equation (CME) proposed by Ghosh et al

1999 [79], and it is applied to direct mapped cache.

We show evidence of both expressiveness and practicability of the analysis. Part of this

analysis is implemented in a software package STAMINA and we present analytical results

in comparison with simulation-based methods.
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5.1 Notation and Interference Density

In this section, we introduce the notation and terminology used.

A perfect loop nest composed of d loops determines a set of integral points in Nd.

Each point is denoted by a column vector: i = (i0, . . . , id−1)
t; the first component (i.e., i0)

is associated with the outermost loop and the last component (i.e., id−1) is associated with

the innermost loop. The loop order specifies a lexicographic order (as in [79]). In fact, a

point u precedes a point v, denoted by u C v, if there exists an index t, 0 ≤ t ≤ d − 1,

such that un = vn for every n < t and ut < vt. When v = u or v C u, we use the notation

u � v. A partial order 1 between two points v and u is defined as follows: a point u is

smaller than a point v, denoted by u < v, when vn ≤ un for every index n, 0 ≤ n ≤ d− 1,

except at least one index k such that uk < vk. For example, a point u determines a unique

bounded polyhedron: P = {v|0 ≤ v ≤ u}. Note that, if v < u then v C u, but not vice

versa. (For example, (1, 1) < (2, 2) and (1, 1) C (2, 2), and (1, 2) C (2, 1) but (1, 2) < (2, 1)

is not defined!)

We define an iteration space as a bounded polyhedron: Sp = {i|0 � i � n}, where n is

Ai+Bk+Cp with A, B and C are constant matrices of size d×d, k is a vector of constants

and p is a vector of parameters. The parameter p does not affect the shape of the iteration

space but only its cardinality. For example, consider Sp defined as {i|0 � i C (p, p)t, }. The

iteration space Sp has cardinality |Sp| = p2, which is a function of p, and it has a square

shape in N2 independently of any value of p.

An interval is a set P r(s) = {v ∈ Sp|s − r C v � s}, where s, s − r ∈ Sp and 0 � r.

The cardinality of an interval is a function of s. The cardinality of an interval represents the

number of iterations separating the iteration point s− r and the iteration point s. In short,

we specify distance as the cardinality of an interval, |P r(s)|. When r = ed−1 ≡ (0, . . . , 0, 1),

1Also known as geometrical order, it does not always define an order between two iteration points.
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2 we have |P r(s)| ≤ 1. An interval, as well as an iteration space, is the composition of disjoint

elementary rectilinear polyhedra. Note that these polyhedra can be just one point, where

the vertices merge into one. This property assures that the determination of the distance of

any interval is computable and that an Ehrhart polynomial exists [105, 106, 107, 108].

A reference R in the body of a loop nest has temporal reuse if, in different iterations

u and v, the reference accesses the same memory location Ad[R(u)] = Ad[R(v)] [55]. We

represent reuse by a vector r such that we have Ad[R(u)] = Ad[R(u + r)] for every iteration

point u. When the address of a reference is an affine function, that is, Ad[R(u)] = lt(Mu+b),

the reuse vector is a point in the null space of matrix M - i.e., Mr = 0.3 A reference has

spatial reuse, if the reference accesses –in different iterations– the same cache line. Note

that temporal reuse is a particular case of spatial reuse. We have group temporal and

group spatial reuse when different references exploit temporal and spatial locality among

each other –during the computation.

For example, consider a matrix A[100][100] stored in row-major format and starting at

address 0x0. Consider a reference RA = A[u0 + u1][u1] in a loop nest composed of 2 loops.

We have Ad[RA(u)] = (100, 1)t(

[
1 1
0 1

]
u + (0, 0)t). In practice, RA has spatial reuse and

reuse vector (0, 1)t but it has no temporal reuse because

[
1 1
0 1

]
u = 0 only when u = 0

(null(A)=∅).

While we carry on the computation of the loop nest and one reuse of a reference is

accomplished, we have a hit in cache because the same reference is reused successfully.

Otherwise, the memory reference may have been evicted from the cache and a miss may

happen. The reuse r of a reference RA(u) is prevented, when either a reference RB(s) with

s ∈ P r(u) interferes with the reference RA(u), or the iteration u− r does not belong to the

space.4

2The vector ei the i-th column vector of the identity matrix I ∈ Nd.
3Note that linear parameters do not affect the null space.
4Spatial reuse is prevented when a different line is accessed.
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In general, the prevention of a reuse by another memory reference does not mean that

we have a miss in cache. A reference may have multiple reuse vectors and to have a miss in

cache, all reuses must be prevented. We model the prevention of a reuse by an interference

equation as follows.

Given two array references RA –interferer– and RB –interferee, we define an interference

equation as :

Er ≡


atu + a−1 = bts + b−1 + nC + q + dtp

with u ∈ P r(s), s ∈ Sp, n 6= 0, |q| < L,

and with L cache-line size

(5.1)

where a, b and d are constant vectors; the affine function for RA is ati + a−1 and the affine

function for RB is bti + b−1; the parameter vector is p and the reuse vector for RB is r; the

cache size is a constant C; the free variable n is not zero; the offset in the cache is |q| ≤ L−1;

the cache-line size is L. The set of constraints is defined as definition domain.

extern double A[2000][1024],B[100][1024];

void foo(int m, int start) {
  int i,j;
  for (i=0;i<m;i++)              /* 0<=m<100 */  
    for (j=0;j<m;j++)
      A[i][j+start] += B[i][j];  /* 0<= start <1024−100 */ 
} 
void update(int start) {
  int start1=0; /* compile time */ 
  int start2;   
  int startin;  
  
  start2 = start+2; /* not really at compile time */  
  foo(50,start1); 
  foo(50,start2); 
  
  scanf(‘‘\%d’’,\&startin); /* run time */
  foo(50,startin);
} 

Figure 5.1: Parameterized loop bounds and index computation, thus interference.

An interference equation is always represented by an equality constraint –Diophantine
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equation– and by a definition domain, in which the unknowns are defined [79, 57]. For

example, in Fig. 5.1 – introduced in Fig. 2.2 on page 37, the interference equation for

interferer A and interferee B is as follows:

E1 ≡



b−1 + (1024, 8)(s0, s1)
t + nC + q + (0, 8)(m, start)t

= a−1 + (1024, 8)(u0, u1)
t

with u = s, s ∈ Sp, n 6= 0, |q| < L,

and with L cache-line size

(5.2)

We model a direct mapped cache, so when the interference equation has a solution, we

have cache interference and, thus, we have cache misses. Otherwise, if the equation has no

solution and the interferee has only one reuse vector, then we have a hit.

When |P r(s)| = 1, we simplify (5.1). When r = ed−1 ≡ (0, . . . , 1), u = s − ed−1 (u = s

when r = 0) we isolate the term nC + q as follows:5

Eed−1
≡


c−1 + cts = nC + q

with c = a− b, s ∈ Sp

and c−1 = a−1 + ad−1 − b−1 − dtp

(5.3)

For example, we simplify (5.2) as follows

E1 ≡
{
−168384000− 8start = nC + q (5.4)

We define the interference density, denoted by ρE, as the ratio of the number of

points in the iteration space, for which the equation E has solution, over the total number

of iteration points. For example, in (5.4) ρE1 is 1 (if 8start < L).

Property 1 If in (5.3), Eed−1
, a solution exists and c = Cm, then ρEed−1

= 1.

Proof: Because solution exists in (5.3), a point v, an integer n0 and an integer q0 exist for

which c−1 + ctv = n0C + q0. We substitute c with Cm to obtain c−1 + Cmtv = n0C + q0.

5Note that we do not repeat the definition of the domains for the unknowns n and q.

109



For any point s ∈ Sp, we find an integer g such that c−1 + Cmts = gC + q0 (e.g., g =

n0 + mt(v − s)). Therefore, a solution exists and ρEed−1
= 1. 2

We can simplify (5.3) further, because the element ck, which is a multiple of the cache size

(i.e., ck mod C = 0), does not contribute to the interference density:

Emod ≡


f−1 + f ts = nC + q

where fk = ck mod C,∀k ∈ [−1, d− 1]

and s ∈ Sp

(5.5)

In practice, ρEed−1
for (5.3) is equal to ρEmod

for (5.5).

Property 2 For the general case in (5.1), we have ρEr < min(1, maxs∈Sp,p ρEmod
∗ |P r(s)|).

Proof: For every s ∈ Sp, we break the interval P r(s) in smaller intervals with unit distance.

We have up to maxs∈Sp |P r(s)| unit intervals. We consider each interval independently and

we determine its interference density. Every interval has interference density, maxs,p ρEmod
.

2

Property 2 states that we can determine the interference density for a rather complex interval

using an estimate based on unit intervals. We shall present in Section 5.2.3 a technique that

estimates ρEmod
and it is independent of any parameter p and any iteration point in the

iteration space s. Furthermore, when the reuse vectors are short, the reuse intervals have

short distance and therefore we have a simple and tight estimation. McKinley and Temam

present strong evidence that short reuse are common in scientific computations [83]. We

assume that the target of our analysis are applications with short reuse vectors –mostly

spatial reuse.

5.2 Parameterized Loop Analysis

In this section we introduce our approach in a top-down fashion describing the organization

of our software package STAMINA, Fig. 5.2. In Section 5.2.1, we introduce the trade-off
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Figure 5.2: STAMINA

between spatial reuse and cache interference, and we propose our model for the representation

of cache misses as a function of both cache-line size and interference density. In Section

5.2.2, we present how we model interference as set of interference equations. In Section

5.2.3, we discuss the computation of the interference density based on a simplified analysis

of the interference equations. In Section 5.2.3, we introduce a more accurate analysis of the

interference density based on the theory of affine equations using unimodular transformations

[57].
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5.2.1 Spatial Reuse vs. Interference: Optimal Cache-Line Size

Ideally, without cache interference, an application having spatial locality is able to exploit a

large cache-line size by reducing cache misses, by virtue of fewer memory accesses. However,

a large cache-line size may increase interference, which may impede the spatial locality

exploitation and, in the worst case, it may increase cache misses. For some applications,

we find it acceptable to have an increase of cache misses due to interference as long as the

overall performance improves, due to fewer communications to and from the cache.

For one memory reference R, we estimate the total contribution to the interference den-

sity, ηR(L), by distinguishing three different cases and considering two contributions.

ηR(L) =


min(1, s

`
+ µR(L)) if µR(L) < 1 and

spatial&temporal reuse,

min(1, µR(L)) if temporal reuse only,

0 otherwise.

(5.6)

We define ηR(L) in (5.6) as the spatial-temporal interference density per memory

reference.

The memory reference can have spatial and temporal reuse; that is, a reference has

reuse of the same cache line and reuse of the same element located in a cache line. If

a reference R has spatial reuse and there is no interference, we estimate a miss every `
s

access(es) –i.e., iteration(s). The interference density is s
`
, where ` is the line size in data

elements (i.e., ` = L/8 when an element is a double) and s is the length of the spatial reuse

in elements. This contribution to the interference density is due to the spatial reuse only,

and, notice that, it is a monotonically decreasing function in L. Spatial reuse is an artificial

reuse, which is introduced by the memory architecture configuration. A spatial reuse may

be prevented because of the access of a different cache line and not because of interference.

In fact, any other (longer) reuse may be satisfied and, instead of a cache miss, we could

achieve a cache hit. For spatial reuse, it would be convenient to consider the effect of longer

112



(temporal) reuse as well (see Ghosh et al. [109]).

If there is interference, part of the reuse can be prevented and we can have a larger

contribution to the interference density. The factor µR(L) ∈ [0, 1] is the estimate of interfer-

ence density due to cache interference only, interference density per memory reference.

That is, how other references displace reference R from the cache. When µR(L) = 1, it means

that interference is so high that no reuse is possible. The factor µR(L) is a monotonically

increasing function. We shall see how to determine µR(L) in Section 5.2.2.

If a reference R does not have reuse of any kind, then ηR(L) = 0. If there is no reuse,

there is no interference. If there is a cold miss, 6 it is unavoidable in this framework for

every cache-line size.

Finally, the estimate of the number of cache misses, due to one memory reference, is

simply |Sp|ηR(L) (i.e., |Sp| is the number of iterations in the loop nest). We explain shortly,

how we use ηR(L) to estimate the number of cache misses as a function of the cache-line

size. Suppose we have z memory references in a loop nest. We sort the references and we

label them by using a unique integer according to the following criterion. Reference Ri, with

0 ≤ i < x, has spatial reuse and reference Rj, with x ≤ j < z, has temporal reuse. An upper

bound on the number of cache misses is given in (5.7).

|Misses| ≤ |Sp|ε(L)

|Sp|ε(L) = |Sp|
z−1∑
i=0

ηRi
(L)

= |Sp|(
n−1∑
i=0

ηRi
(L) +

m−1∑
i=n

µRi
(L)).

(5.7)

Because the function |Sp| is independent of the cache-line size, the minimum number of cache

misses is a function of ε(L) =
∑n−1

i=0 ηRi
(L). In practice, we seek for the optimal cache-line

size that minimizes ε(L) and we do it by a linear search for increasing values of L (i.e.,

6The first time a reference is read, we have a cache miss and it is defined as cold miss
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L = 8, 16, 32, 64, 128, 256 bytes).

5.2.2 Interference Density per Memory Reference

In this section we introduce two important concepts and estimates: the interference existence

and the interference density per memory reference (i.e., χE(L) and µ(L), respectively).

Consider an interference equation Emod –as in (5.5). We define interference existence

as a 0-1 function expressing whether or not the equation Emod has integer solutions:

χEmod
(L) =

{
1 if Emod has a solution

0 otherwise
(5.8)

where L is the cache-line size.

A CME solver as it counts the number of integer solutions of an interference equation, it

resolves the existence problem as well. However, a solver may be designed for the existence

problem only; in fact, Omega test is an example of such a solver [110, 111]. Note that in the

worst case scenario, searching for one solution is as hard as counting all integer solutions.

Currently, we deploy Polylib, which applies a linear search in parameterized polyhedra

to find whether or not an integer solution exists. In Section 5.3.3 and 5.3.2, we present an

example showing the way we use the interference existence to achieve an accurate estimate

of the number of cache misses.

In the following, we present our approach for the determination of the interference density

per memory reference. We outline the approach describing the following three possible

scenarios:

1. Consider a memory reference RA with one reuse vector r and with k interferers RBi
,

0 ≤ i < k. For each pair of references RA and RBi
, we determine the interference

equation Ei, we estimate the interference density and we compute the interference

existence (i.e., ρEi
and χEi

(L)). Then, we determine the contribution of each interferer
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RBi
independently and we add their contributions:

µ(L) =
k∑

i=0

ρEi
χEi

(L) (5.9)

2. Consider a memory reference RA and one interferer RB. The reference RA has m reuse

vectors {ri}0,m−1 such that rm−1 C . . . C r0. Every reuse vector ri is associated with

an interval P ri(s) and for every i > j we have P ri(s) ⊂ P rj(s). In particular, we have

that ∩m
i=0P

ri(s) = P rm−1(s).

We consider the shortest reuse vector only (i.e., rm−1) and, therefore, we consider the

shortest interval only (e.g., P rm−1(s)). Because, if the shortest reuse is prevented,

all reuses are prevented and there is a cache miss; otherwise, the shortest reuse is

exploited and there is no miss in cache –however, other reuse may be prevented. This

is equivalent to the first case with one interferer: µ(L) is ρEχE(L) (e.g., in (5.9) with

k = 1).

3. Consider a reference RA with k interferers RBi
and m reuse vectors {ri}0,m−1 such that

rm−1 C . . . C r0. Every reuse vector ri is associated with an interval P ri(s) and for

every i > j we have P ri(s) ⊂ P rj(s). In particular, we have that ∩m
i=0P

ri(s) = P rm−1(s).

For each pair of references RA and RBi
we determine the interference equation Ei for

the shortest reuse only, therefore for the shortest interval (e.g., P rm−1(s)). Because,

if the shortest reuse is prevented, all reuses are prevented and there is a cache miss;

otherwise, the shortest reuse is exploited and there is no miss in cache. In fact, in (5.9)

we model this case as well.

The number of cache misses for a direct mapped cache is up to |Sp|µ(L). For a k-way

associative cache, we may estimate the number of cache misses as |Sp|
⌊

µ(L)
k

⌋
. In practice,

our estimate/approach is independent of the approach proposed by Chatterjee et al. [112]
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for associative caches. However, there are three common features we summarize in the fol-

lowing. First, both approaches model cache misses using polyhedra, thus they do not convey

any information on the temporal distribution of the cache interference; second, both are

approximations – not upper bounds; third, we may use these estimations to determine stat-

ically –i.e., at compile time– the minimum associativity that circumvent cache interference

altogether.

The interference equations model cache interference in an interval. This interval must

be a valid interval in the iteration space. Otherwise, no analysis is performed. For example,

given a reuse vector r, our approach does not analyze the set of iterations:

P r
B = {j|j ∈ Sp ∩ (j− r) 6∈ Sp}. (5.10)

We can rewrite (5.10) as the union of non-intersecting elementary rectangular sets, therefore

we may use Polylib to compute its cardinality. If we count the number of iterations in this set,

we determine a confidence index, which is used separately to assess whether the analysis

has any contribution. In fact, the smaller the reuse vector is, the larger is the iteration

space investigated by our approach, therefore the larger the number of cache misses we can

determine through the interference density. For the examples we present in Section 5.3, we

analyze 99.9% of the iterations.

5.2.3 Interference Density Analysis, STAMINA

In this section, we describe our approach to determine the interference density only from the

equality of an interference equation –as in (5.5)– that we repeat here:

Emod ≡



f−1 + f ts = nC + q

where fk = ck mod C ∀k ∈ [−1, d− 1],

ck = ak − ak, d−1 = a−1 − b−1 − dtp,

and with s ∈ Sp

(5.11)

(i.e., we consider f−1 + f ts = nC + q only).
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Theorem 3 states the main result of this section – the interference density is simply a

function of the cache size and cache-line size: ρE ≤ 1
2d−1

2L
C

. To prove this result, we start by

showing that the solutions space –e.g., the iteration points where an interference equation

has a solution– is a regular structure in a rational domain. This structure envelopes all integer

solutions and it has an extremely regular organization in cells –or tiles. We determine the

interference density by computing the ratio of volumes; that is, we determine the volume of

the solutions over the volume of a solution cell.

We begin with the definition of inner product and inverse vector. The inner product of

two vectors u and v is the vector s = u · v, such that sk = ukvk. The vector 1 = (1, · · · , 1)t

is the identity vector for the inner product (i.e., v ·1 = 1 ·v = v). For every nonzero rational

vector v ∈ Qd –i.e., vk 6= 0– there is one and only one inverse vector, denoted by v−1 ∈ Qd,

such that v−1 · v = 1.

From here on, we denote by i0 the smallest rational solution for equation Emod. We now

describe a regular structure that models the solution space. We define a grid as a set of

points:

G(i0) = {j|j = i0 + Cf−1 · s, such that s ∈ Nd}. (5.12)

We define a grid cell as a d-dimensional rectangle determined by the 2 + d vertices i0 +

Cf−1 · s, i0 + Cf−1 · (s + e0),. . . , i0 + Cf−1 · (s + ed−1) and i0 + Cf−1 · (s +
∑d−1

j=0 ej), for any

s ∈ G(i0). Given an integer u, we define a band as the following set of rational points:

B(u) ≡ {b| − L < u + f tb < L

with b ∈ Qd and u ∈ N}.
(5.13)

We define a band cell as the set of rational points:

BC(u) ≡ {b|(−L = u + f tb ∪ L = u + f tb)∩

∩ (∀k 6= j, bk = 0 and j ∈ [0, d− 1])}.
(5.14)
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Figure 5.3: Grid cells and band cells in a plane. In a 2-dimensional space grid cells and band
cells are rectangles. Note that three bands pass through a grid cell.

For every grid point in G(i0), we determine a band; that is, B(n0C +f−1). Every point in the

band is a solution and, in particular, it has the same value for the variable n. The grid and

the bands represent a regular structure (see Fig. 5.3, for a 2-dimensional example). We use

the band cells to express the volume of the bands, therefore of the solution number in a grid

cell; we eventually determine the interference density for a single grid cell as representative

for the entire space determining their volume ratio.

Considering an example as in Fig. 5.3, a grid cell is a rectangle and the band is a line

crossing the grid cell on only two grid points. Two different bands are crossing the remaining

two vertices. In a 2-dimensional space, the grid cell has an area, in a 3-dimensional space it

has a volume. In general, we use the term volume to indicate the same quantity-concept for

any dimension.7

Property 3 Every grid cell has volume CdQd−1
k=0 fk

.

We now determine how many bands cross a grid cell and then we determine their volumes. A

band is determined by two (d−1)-dimensional spaces and, by construction, it passes through

7We avoid the use of the term space because we use it in another context; that is, iteration space.
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grid points. For any grid cell there is only one band splitting the cell in two, so that two

vertices are apart. We have three bands crossing a grid cell.

In the following property, we state how many band cells we may find in a grid cell,

therefore we have an estimate of the volume of a band intersecting a grid cell.

Property 4 Every grid cell intersects three bands and up to 1
2d−1 (

C
2L

)d−1 band cells.

Proof: Consider a grid cell with size C
fk

, 0 ≤ k < d, in a d-dimensional space (i.e., in a

3-dimensional space, it is a cube). The projection of a band on any (d-1)-dimensional space

has a number of band cells as 1
2d−1

∏
k 6=j

C
fk

/2L
fk

(i.e., in a 3-dimensional space, we have three

projections on three planes; on each plane, the band cell projections are 1
2
( C

fk
/2L

fk
) ∗ ( C

fj
/2L

fj
)

with j 6= k). 2

Property 5 Every band cell has volume at most (2L)dQd−1
k=0 fk

.

When we have an estimate of the volume of a band cell and we have the number of bands

cells, we have an estimate of the volume of a band. The last step is to show that this regular

structure, made of a grid and bands, is dense, as it contains all integer solutions.

Lemma 1 For any integer solution z of equation Emod, there is a grid point in the band

passing through z.

Proof: By definition, Cn0 + q0 = f ti0 and Cn1 + q1 = f tz, without loss of generality consider

n1 > n0. A band is a space for which each rational point is a solution for the equation with

same value of n, we prove the lemma as soon as we show that p exists so that Cn2 + q2 =

f t(i0 + Cf−1 · p) and n2 = n1.

We have Cn2 + q2 = f ti0 + f tCf−1 ·p; that is, Cn2 + q2 = f ti0 + C1tp. We determine n2:

n2 =
⌊

f ti0+C1tp
C

⌋
. We obtain n2 =

⌊
f ti0
C

+ 1tp
⌋

=
⌊

f ti0
C

⌋
+ 1tp = n0 + 1tp.

So, n2 = n1 when 1tp = n1 − n2. There is always such a vector p. 2
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Finally, we state and prove our estimate for the interference density.

Theorem 3 If in (5.5), Emod, solution exists and fk mod C 6= 0, ∀k ∈ [0, d − 1] and

C ≥ 2L, then ρE ≤ 1
2d−1

2L
C

.

Proof: By Lemma 1, the grid and the bands on the grid constitute a dense solution space.

Every integer solution is in it. The density is computed on a grid cell as the ratio of the

volume of a band intersecting a cell over the volume of a grid cell. By Property 4 and 5,

there are 1
2d−1 (

C
2L

)d−1 band cells of volume (2L)dQd−1
k=0 fk

in a grid cell. By Property 3 a grid cell

has volume CdQd−1
k=0 fk

. Then, we have ρE ≤ 1
2d−1

2L
C

. 2

Interference Density Analysis, Refined

In this section we present a more detailed analysis of the interference density; we refine the

analysis for the integer domain. First, we present some considerations on the approach to

solve Diophantine equations [57]. Second, we apply this approach when both the variable

n and l are assigned to values, therefore they are constant terms of the equation. We then

consider the case when only the variable l is assigned to a value. At last, we present the

final result of this section in Theorem 6.

Consider the coefficients in (5.5). In fact, Emod is a Diophantine equation. For the

solution of Diophantine equations, we may use the GCD test [57]. We determine the great

common divisor of the coefficients of the equations –g = gcd(d−1, d0, . . . , dd−1, C, 1)– and we

verify whether the constant factor of the equation, for example ζ, is evenly divided by g. If

ζmodg = 0 the equation may have solution –we need to check the domain, otherwise the

equation has no solution.

Because the free variable l has 1 as coefficient, the gcd(d−1, d0, . . . , dd−1, C, 1) = 1, the

GCD test is inconclusive: we cannot conclude whether or not there is any solution. We

need to solve the system and verify the constraints on the definition domain.
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Banerjee presents a general approach to determine all integer solutions for Diophan-

tine equations –without parameters, using the theory of unimodular matrices. We consider

whether or not there is solution for arbitrary values of n = n0 and l = l0. The constant value

will be ζ = f−1 + n0C + l0, which includes the parameters as well. We can rewrite (5.5) as

follows:

Eb ≡
{

ζ = f ts. (5.15)

If g is gcdk∈[0,d−1](fk) and gcd(g, ζ) is not 1, then there exists an unimodular matrix U, so

that all the solutions are determined by the following expression:

Esol ≡



i = Uts

where s = (ζ/g, s1, s2, . . . , sd−1)

and sk ∈ N,∀k ∈ [1, d− 1]

and where U ∈ Rd×d is unimodular

andUf = (g, 0, . . . , 0)t,

(5.16)

A matrix U is unimodular when it is an upper triangular matrix and it has |det(U)| =

1.8 A unimodular matrix U is a linear transformation, it has always an inverse matrix U−1

(i.e., such that U−1U = I, I the identity matrix) and U−1 is unimodular as well. Banerjee

presents an effective technique in Algorithm 2.1 for the determination of U.

The matrix U is a 1-1 mapping between the iteration space S and a space T, where

S, T ⊂ Nd. In T, the solution space is the plane s0 = ζ/g; the number of integer solutions in

T are as many as in S and all solutions in S are in a plane.

For example, if T = N2, the solution space is a line s = (ζ/g, s0)
t and the minimum

distance between any two points in T is 1; that is, (ζ/g, 1)− (ζ/g, 0) = (0, 1). Consider the

equation 6i0 − 4i1 = 10.9 The solutions are:

it = (5, s0)

[
1 1
2 3

]
. (5.17)

8Where det(U) is the determinant of matrix U.
9Example 3.5 [57]
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Two solutions in T, such as (5, 0) and (5, 1), are mapped on two solutions in S, (5, 5) and

(7, 3) respectively. We notice that in T the distance is 1 but in S the distance is more than

1. We want to determine the interference density in the original space –i.e., S– using some

of the properties of matrix U.10 Indeed, we estimate the distance computing the volume of

the d-dimensional rectangle that has the two solutions as opposite vertices. To do so, we

estimate the size of the rectangle as follows.

We define

hi =

∣∣∣∣ max
j∈[1,d−1]

uj,i − min
j∈[1,d−1]

uj,i

∣∣∣∣ (5.18)

where uj,i is the element in the i-th column and j-th row in U. Intuitively, the product∏d−1
i=0 hi is a lower bound to the the distance between two solutions in S.

Theorem 4 If equation Eb ≡ ζ = f ts has a solution, then the interference density is at

most ρEb
≤ 1/(

∏d−1
i=0 hi).

Proof: Consider the solutions s + e1, . . . , s + ed−1. These solutions are mapped to Uts +

Ute1, . . . ,U
ts+Uted−1; that is, Uts+u1, . . . ,U

ts+ud−1. The solutions are the d−1 vertices

of a bounded region and
∏d−1

i=0 hi is a lower bound to the number of integer points in the

region. 2

When n is not an arbitrary value but it is a variable, the equation may have solutions

for different values of n (i.e., the equation is ζ = Cn+ f ts). For each solution of n, there is a

different parallel plane in T. As long as the planes are far apart, Theorem 4 holds. Otherwise

the interference density may be reevaluated as the following theorem states.

Theorem 5 If an integer j ∈ [0, d− 1] exists such that hj > C
fj

, then ρEd
b
≤ maxk

2hkfk

C
ρEb

.

Proof: For any n, the solution space is a set of parallel planes. When we determine the image

of the planes and of the set of points s+e1, . . . , s+ed−1 in S. We note that in one dimension,

10Because U is unimodular, we have that |det(U)| = |det(U−1)| = 1 and therefore we cannot use the
determinant to achieve any estimation for the interference density –at least directly.
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the distance between any two planes is (asymptotically) C/fi and in Uts+u1, . . . ,U
ts+ud−1

there can be at most maxk∈[0,d−1]
2hkfk

C
planes intersecting. Each plane contributes with just

one integral solution. By Theorem 4, the proof follows. 2

The last case is when for every solution of n there are different solutions of l. The

following theorem estimates the interference density in this scenario.

Theorem 6 If we have a set J so that hj < 2L with j ∈ J , then ρE ≤ ((2L
C

)|J |
∏

j∈J
1
hj

) ∗

ρ
E

(k=d−|J|)
b

Proof: In this case, each variable in J satisfies the equation in an interval of size C at most

2L/hi (with i ∈ J) times, therefore with density 2L
Chi

. We restrict the investigation on the

other d− |K| variables, and we apply Theorem 5. 2

5.3 STAMINA Implementation Results

The reuse and interference analysis is implemented in the software package STAMINA (ab-

breviation for Static Modeling of Interference And reuse). It is built on top of SUIF 1.3 com-

piler adapting the analysis developed by Ghosh et al. [79] and using Polylib [106, 105, 108].

In this section, we consider three cases to explore three important aspects of our analy-

sis. We analyze loop nests presenting: first, parameterized loop bounds; second, only self

interference among memory accesses; and last, parameterized loop bounds, parameterized

memory accesses and tiling.

STAMINA presents the result of the analysis in two forms (or types): a numeric and a

symbolic form.

Numeric form: the output is a table with two contributions –two rows:

• A row is the contribution at compile time. It presents the estimation of interference

as a function of the cache-line size, at compile time only. We identify the entries in

such a row by εct(L).
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• A row is the contribution at run time. It presents the estimation of the interference

as a function of the numeric value of the parameters. We identify the entries in such

a row by εrt(L)

This distinction between compile time and run time is extremely helpful for an optimizing

compiler: a compiler may use the quantitative measure and decide whether or not any

adaptation is worthwhile to pursue. In other words, if the contribution at run time is overall

negligible, we can set the optimal line size at compile time; otherwise, we may introduce

annotations to the original code and drive adaptation at run time.

Symbolic form: we represent the effect of the cache-line size by a symbolic function.

We insert code computing the symbolic function as header of the loop nest and we evaluate

it at run time, before the loop nest execution.

We assume that the scheduling of the references (i.e., loads and stores) follows two criteria.

First, the computation is performed so that to minimize the number of temporaries [113]

for each statement. Second, a reference may be loaded once or more in the inner loop. We

assume the final scheduling from the source code only, because it is very difficult to retain

high level information from the source code to the assembly code and vice versa (e.g. after

all optimizations such as scheduling and register allocation). For example, we label each

reference with an integer and we assume a possible reference schedule. This schedule is

automatically determined and it is used for the interference analysis. (Note, this is not a

limitation of the approach but of the implementation.) We assume the data cache is a direct

mapped of size 16KB.

5.3.1 Case A: SWIM-SPEC 2000

The first application is swim from SPEC 2000. It has a main loop with four function calls.

Each function has a loop nest for which the loop bounds are parameters introduced at run

time. We present results for two of these loop nests.
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#define N1 1335
#define N2 1335

extern  double U[N1][N2], V[N1][N2], P[N1][N2],UNEW[N1][N2], VNEW[N1][N2],
PNEW[N1][N2], UOLD[N1][N2],  VOLD[N1][N2], POLD[N1][N2],
CU[N1][N2], CV[N1][N2], Z[N1][N2], H[N1][N2], PSI[N1][N2];

extern double D0, DX, DY;

void calc1(int M, int N) {

int i,j;
double FSDX,FSDY;

for (i=0;i<M;i++)
for (j=0;j<N;j++) {

//     RN 0         =       1        2       3
CU[i+1][j] = D0*(P[i+1][j]+P[i][j])*U[i+1][j];
//C     #  1 2 3 0
//C     RN 4                 5        2       6
CV[i][j+1] = D0*(P[i][j+1]+P[i][j])*V[i][j+1];
//C     # 5 2  6 4
//C     RN 7                   8          6               9
Z[i+1][j+1] = (FSDX*(V[i+1][j+1]-V[i][j+1])-FSDY*(U[i+1][j+1]
/* C     RN       3           2      1        10         5   */

-U[i+1][j]))/(P[i][j]+P[i+1][j]+P[i+1][j+1]+P[i][j+1]);
//     # 8 6 9 3 2 1 10 5 7
//        RN 11       2             3        3        12     12
H[i][j] = P[i][j]+D0*(U[i+1][j]*U[i+1][j]+U[i][j]*U[i][j]

//     RN       9        9        13     13
+V[i][j+1]*V[i][j+1]+V[i][j]*V[i][j]);

//     #  3 12  9 13 2 11
}

}

Figure 5.4: SWIM: calc1() in C code. The comment above an instruction presents the
reference numbers (RN), and the comment below an instruction presents the order in which
the memory references are issued.

In Fig. 5.4, we present one of the loop nests in C language. We analyze the interference for

two different matrix sizes, the reference size 1335×1335 and the power of two 1024×1024.

Our analysis states that for the former there is no interference for any cache-line size, but

for the latter there is interference among all references and all cache-line sizes.

Due to the number of equations, it is very difficult to verify the accuracy of the analysis

by hand. We simulate 10 of the 800 calls to the calc1 routine using cachesim5 from Shade

[114]. The routine is compiled with gcc/3.1 with −O2 flag on. The simulation results for

matrix size 1335× 1335 confirm our analysis as follows:
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Table 5.1: Simulation of the data-cache misses due to 10 calls to calc1(); L = cache-line size
in Bytes, DCMR = Data Cache Miss Rate. Spatial locality is fully exploited in calc1().

L 32 64 128 256

DCMR 11.916 % 5.960% 2.982% 1.493%

The case for power of two matrices is confirmed as well –not reported here.

A more interesting case is in procedure calc2(), see Fig. 5.5. STAMINA determines that

reference 16, CU(I + 1, J), interferes with reference 8, H(I + 1, J), when the line size is

larger than 128B. The software determines the trade off between spatial locality exploitation

and interference, but even though only two references are interfering, the optimal line size

proposed is 128B. Note that the analysis is able to indicate which references are involved

and when there is interference.

Using Shade simulator, we validate our the analysis as follows:

Table 5.2: Simulation of the data-cache misses due to 10 calls to calc2(); L = cache-line size
in Bytes, DCMR = Data Cache Miss Rate. Optimal cache-line size is 128B.

L 32 64 128 256

DCMR 11.968 % 6.739% 3.371% 4.091%

The execution of SWIM with reference input (matrices of size 1335× 1335) takes 1 hour

on a Sun ultra 5, 450MHz. Any full simulation takes at least 50 times more. In contrast, our

analysis takes less than one minute for each loop nest whether or not there is interference

(i.e., for SWIM our analysis takes less than 5 minutes).

5.3.2 Case B: Self Interference

We now consider the case when an application has self interference. Self interference happens

when two references of the same array, or the same reference in different iterations, interfere

in cache. The example, Fig. 5.6, is the composition of six loops with only one memory

reference in each.
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      SUBROUTINE CALC2
C
C        COMPUTE NEW VALUES OF U,V,P
C
      IMPLICIT REAL*8 (A−H, O−Z)
      PARAMETER (N1=1335, N2=1335)

      COMMON  U(N1,N2), V(N1,N2), P(N1,N2),
     *        UNEW(N1,N2), VNEW(N1,N2),
     1        PNEW(N1,N2), UOLD(N1,N2),
     *        VOLD(N1,N2), POLD(N1,N2),
     2        CU(N1,N2), CV(N1,N2),
     *        Z(N1,N2), H(N1,N2), PSI(N1,N2)
C
      COMMON /CONS/ DT,TDT,DX,DY,A,ALPHA,ITMAX,MPRINT,M,N,MP1,
     1              NP1,EL,PI,TPI,DI,DJ,PCF
      TDTS8 = TDT/8.D0
      TDTSDX = TDT/DX
      TDTSDY = TDT/DY

C SPEC removed CCMIC$ DO GLOBAL
      DO 200 J=1,N
      DO 200 I=1,M
C           0          1 
         UNEW(I+1,J) = UOLD(I+1,J)+
C                    2          3          4           5 
     1        TDTS8*(Z(I+1,J+1)+Z(I+1,J))*(CV(I+1,J+1)+CV(I,J+1)
C              6       7                  8        9  
     2        +CV(I,J)+CV(I+1,J))−TDTSDX*(H(I+1,J)−H(I,J))
C    #   2 3 4 5 6 7 8 9 1 0
C       10            11                 2          12
         VNEW(I,J+1) = VOLD(I,J+1)−TDTS8*(Z(I+1,J+1)+Z(I,J+1))
C               13          14        15      16
     1        *(CU(I+1,J+1)+CU(I,J+1)+CU(I,J)+CU(I+1,J))
C                      17       9    
     2        −TDTSDY*(H(I,J+1)−H(I,J))
C    # 2 12 13 14 15 16 17 9 11 10
C        18          19                16        15  
         PNEW(I,J) = POLD(I,J)−TDTSDX*(CU(I+1,J)−CU(I,J))
C                      5         6
     1        −TDTSDY*(CV(I,J+1)−CV(I,J))
C     #  16 15 5 6 19 18
 200  CONTINUE
      RETURN
      END

Figure 5.5: SWIM: calc2() in FORTRAN. The comment above an instruction presents the
reference numbers (RN), and the comment below an instruction presents the order in which
the memory references are issued.

127



#define CACHE_SIZE 16384
int A[CACHE_SIZE /16][(CACHE_SIZE+16)/4];
int B[CACHE_SIZE / 32][(CACHE_SIZE+32)/4];
int C[CACHE_SIZE / 64][(CACHE_SIZE+64)/4];
int D[CACHE_SIZE / 128][(CACHE_SIZE+128)/4];
int E[CACHE_SIZE / 256][(CACHE_SIZE+256)/4];
int F[CACHE_SIZE / 512][(CACHE_SIZE+512)/4];

int main ()
{
  int i,j,k,l;
  int step;
  l = 0;

  for (j=0;j<4;j++)   // LOOP 0
    for (k = 0; k < CACHE_SIZE / 16 k++)
      A[k][j]++;
  
  for (j=0;j<8;j++)   // LOOP 1
    for (k = 0; k < CACHE_SIZE / 32; k++)
      B[k][j]++;
  
  for (j=0;j<16;j++)  // LOOP 2
    for (k = 0; k < CACHE_SIZE / 64; k++)
      C[k][j]++;
  
  for (j=0;j<32;j++)  // LOOP 3
    for (k = 0; k < CACHE_SIZE / 128; k++)
      D[k][j]++;
    
  for (j=0;j<64;j++)  // LOOP 4
    for (k = 0; k < CACHE_SIZE / 256; k++)
      E[k][j]++;
  
  for (j=0;j<128;j++) // LOOP 5
    for (k = 0; k < CACHE_SIZE / 512; k++)
      F[k][j]++;
 
}

Figure 5.6: Case B: Self Interference

Each memory reference has a different spatial reuse and the reuse vector is long. Each

loop accesses a matrix by row and updates a small part of it. Even though the matrix access

is done by row, instead of by column, spatial locality may be exploited because of the matrix

size. In practice, the number of columns for each matrix is chosen so that each loop has a

different optimal line size.

For example, in LOOP 0 a cache-line size of 8 Bytes does not have any self interference,

and a cache-line size of 16B has spatial reuse; for larger line size there is always interference

because elements in two contiguous rows share the same cache line.
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STAMINA recognizes that the spatial reuse goes across one iteration of the outermost

loop. In the current implementation, it fixes the value of the interference density at ρ = 1

(STAMINA assumes that there is a capacity miss, because in general the distance is not a

constant and it cannot be compared to the cache size). For this particular case, we achieve

a tight estimation. In general we achieve an over estimation. Notice that the existence of

interference plays the main role, it discriminates when there is interference and when to

count the interferences. In Table 5.3, we report the results of the analysis.

Table 5.3: STAMINA’s result for Self interference example. Loop 4 and 5 have no interference
for any line size, the output is set to zero. In bold face, we present the optimal ε per cache-line
size and loop.

Line 8 16 32 64 128 256

Loop 0 εct(L) 0.50 0.25 1.00 1.00 1.00 1.00
Loop 1 εct(L) 0.50 0.25 0.12 1.00 1.00 1.00
Loop 2 εct(L) 0.50 0.25 0.12 0.06 1.00 1.00
Loop 3 εct(L) 0.50 0.25 0.12 0.06 0.03 1.00
Loop 4 εct(L) 0.00 0.00 0.00 0.00 0.00 0.00
Loop 5 εct(L) 0.00 0.00 0.00 0.00 0.00 0.00

5.3.3 Case C: Matrix Multiply

In the previous cases (Section 5.3.1 and 5.3.2), the optimal cache-line size is set at compile

time and therefore the analysis returns a numeric-form result. In this section, we present a

case where the analysis returns a symbolic-form result, to comply with the dynamic behavior

of the application.

The examples are simple and we check the accuracy of the analysis manually. At the same

time, the problem size is large and it is not practical an exhaustive collection of simulations.

We analyze a variation of the common ikj-matrix-multiply algorithm [2], see Fig. 5.7.

Matrix A, B and C are square matrices, and in particular matrix B and C are power of

two. We choose the size of the matrices so that if there is interference, due the reference
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Figure 5.7: Matrix Multiply. There are two parameters: n and m. The first affects the loop
bounds and the latter affects the access offset on matrix A. We assume that 0 < n,m < 64

to A, it is rare. The index computation for A is parameterized (0 ≤ n ≤ 64). 11 Due

to the upper bounds of the parameters, A does not interfere with any other matrix. Even

if it could, the interference density would be small. We distinguish two different contri-

butions: at compile time, εct(L); at run time, εrt(L). We have εrt(L) = 0 for any L, and

εct({8, 16, 32, 64, 128, 256}) = {2.00,1.00, 2.00, 2.00, 2.00, 2.00}.

The reference to A does not interfere with the references to C and to B for 0 ≤ n, m ≤ 64.

It would, only if we use lager values for the parameters. The suggested optimal cache-line size

is 16 Bytes. We simulate the number of cache misses for some values of m, n (only a subset

of the possible 642 pairs is presented) and for different cache-line sizes. The experimental

results are in Table 5.4.

STAMINA proposes 16B as optimal cache-line size because it currently assumes the

interference density as ρ = 1 for every cache-line size. However ρ is 1/2 for L=32B and the

11Note that we can handle larger cases; this is to yield a clearer example.
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Table 5.4: Data cache misses for Matrix Multiply, Fig. 5.7, using shade cache simulator. We
present cache misses only for cache-line size 16B, 32B and 64B (cache-line size 8B and 128B
are omitted).

m n miss L=16B miss L=32B miss L=64B

4 4 5670 3740 2856
8 8 6107 4160 3531

12 12 7304 5330 5011
16 16 9645 7632 8800
20 20 13532 11507 13818
24 24 19355 17309 23355
28 28 27480 25397 33922
32 32 38283 36159 51881
36 36 52373 50493 70606
40 40 69782 68011 99709
44 44 91390 90106 128561
48 48 116546 115064 170124
52 52 146286 144598 209300
56 56 181488 180018 267866
60 60 221808 220361 321279
63 63 260740 260418 380464

two cache-line sizes (16B and 32B) are equally good, and a larger cache line may improve

overall performance. In practice, simulation results suggest that a cache-line size of 32B is

optimal for a negligible difference (Table 5.4). A solution to this problem is presented shortly

in the next example, where we represent the cache misses as a symbolic expression of the

cache-line size.

We analyze the blocked version of matrix multiplication, see Fig. 5.8. We analyze

only the loop nest in the procedure ikj mm, and we find that εct(L) = 0 for any L and

εrt({8, 16, 32, 64, 128, 256}) = {2.00, 2.00, 2.00, 2.00, 2.01, 2.03}. Every reference interferes

with every other reference. The interference due to matrix A is negligible since the ma-

trix access is an invariant for the inner loop. The interference between C and B can be at

every iteration point. There is no interference whenever |m− n|mod C = L. This example

is very peculiar because the cache-line size is not set once per loop nest, it is determined at
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#define MAX 2048
double A[MAX][MAX],  B[MAX][MAX],  C[MAX][MAX];

void ikj_matrix_multiply_4( int x,int y, int z, int m, int n, int p ) 
{ 
  int i,j,k;
  for(i=0;i<x;i++) 
    for(k=0;k<y;k++)
      for(j=0;j<z;j++) 
        C[i][j+m] += A[i][k+n] * B[k][j+p];
}

void matrix_multiply_new_tiling() {
  int ii,jj,kk;
  for(kk=0;k<MAX/b;kk++)
    for(ii=0;i<MAX/b;ii++) 
      for(jj=0;j<MAX/b;jj++) 
        ikj_matrix_multiply_4(min(b,MAX−ii*b), min(b,MAX−jj*b),
                              min(b,MAX−kk*b), (ii*MAX+jj)*b,
                              (ii*MAX+kk)*b,(kk*MAX+jj));
}

Figure 5.8: Tiling Matrix Multiplication. We have 6 parameters: x, i and k are used to
specify the loop bounds, m, n and p are used to modify the access to matrix C, A and B
respectively.

run time.

We expect to have a symbolic form of the type ε(L) = ηRC
(L) + ηRB

(L) + ηRA
(L). We

know that in this particular case ηRA
< L/16384 ∗ 2 ∼ 0. STAMINA produces a symbolic

output where C0 is 16384, ∆ is |8n− 8m|%C0 and (x) is 1 is x ≥ 0 and 0 otherwise (where

% is the C-language remain operator):

ε(L) = 2 min(1, (∆− L)
8

L
+ (8−∆)

8−∆

L
) (5.19)

which has minimum when L is 16B and 32B. In fact, reference C has spatial reuse and it

may interfere with B, mainly: ηRC
(L) = (L−∆)L−∆

L
+ 8

L
. For example, when n = m = 0,

references RC and RB interfere at any iteration and no optimal line size exists; otherwise,

if m = 3 and n = 0 (notice that this is the example in Fig. 5.7) the optimal line size is

32B. Automatically, the symbolic form and the numerical form are used to insert a function

driving adaptation in the source code, before the loop nest.

For the example in Fig. 5.7, the analysis takes up to two minutes. For the blocked matrix
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multiplication in Fig. 5.8, the analysis takes more than 8 hours, on a Sun ultra 5 450MHz.

The difference of the execution times is expected. For the former case, the existence test

has to investigate a relatively small iteration space. For the latter case, the search for the

existence of the integer solution is extremely time consuming, because we need to search a

space of 20489 points. 12

5.4 Stamina Conclusions

We present a fast approach to determine statically the effect of the data cache-line size on

the performance of scientific applications. We use the static cache model introduced by

Ghosh et al. [79] and we present an approach to analyze parameterized loop bounds and

memory references. The approach is designed to investigate the trade-off between spatial

reuse and interferences of perfect loop nests on direct mapped cache. Experimental results

demonstrate the accuracy and efficiency of our approach.

12The deployment of watch-dogs may be advised at this time, arguably if a solution is difficult to find,
then the interference density should be small and negligible.
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CHAPTER 6

A Cache with Dynamic Mapping

Dynamic Mapping is an approach to cope with the loss of performance due to cache in-

terference and to improve performance predictability of blocked algorithms for modern ar-

chitectures. A classic example of blocked algorithm where cache interference may disrupt

performance is matrix multiply: in practice, if we tile the matrix multiply 3-level loop for

a data cache of size 16KB by using an optimal tile size, we achieve an average data-cache

miss rate of 3%. The average measure does not show that there are data-cache miss peaks

of 16% and they are due to data interference only.

Dynamic Mapping is a software-hardware approach where the mapping in cache is de-

termined at compile time, by either manipulating the address used by the data cache or

by a simple register allocation. This approach makes possible a sensible reduction of cache

misses, which translates into twofold and more speed-ups by eliminating data-cache miss

spikes altogether.

Dynamic mapping has the same goal as other approaches proposed in the literature, but

its main contribution is in the way it achieves the data cache miss reduction. In fact, dynamic

mapping determines a cache mapping statically and, thus, before issuing a load/store with

little hardware support. Dynamic mapping uses the computational power of the processor

–instead of the memory controller or the data cache mapping– and it has no effect on the

data-access time in memory and cache. We may describe dynamic mapping succinctly as
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an approach combining several concepts, such as non-standard cache mapping functions and

data layout reorganization however, potentially, without any of the overheads common in

these approaches.

This chapter is organized in two major sections. First, in Section 6.1, we introduce a

code transformation, more specifically, a register allocation and instruction scheduling, to

reduce the effects of data-cache interference. We start the chapter presenting optimizations

that transform the original code so as to exploit the architecture.

Second, from Section 6.2, we present compiler-driven data cache adaptations, especially

cache mapping. We present a general data-cache mapping and its properties in Section 6.2.1.

Then, we present a dynamic data-cache mapping by hardware only in Section 6.2.2, and by

software only in Section 6.3.

6.1 Spatial Register Allocation

In this section, we introduce a rather simple idea to cope with data cache interference by

using carefully data allocation to the register file (RF), which is the ultimate recipient for

the manipulation of data coming/going from/to memory. Consider the following scenario:

if we know that cache interference will prevent the full reuse of a cache line, we may load

the data, which are in a cache line, into (continuous) registers all at once. We may then

perform the computation and write the data back in cache and memory when needed and

all at once. Such an approach will reduce the effect of cache interference and it will speed

up the performance of the computation.

Conventionally, the scheduling of the instructions in a basic block of a loop nest is deter-

mined by the parallelism available – i.e., based on number of functional units, the number of

registers, the data dependency and the ability to hide as much as possible the cache/memory

latency. Note that the objectives of hiding data access latency and the efficient utilization of

registers are often in contrast, because the former increases the register pressure and often
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forcing the compiler to let go the data stored in register back in memory (i.e., in the stack)

by the introduction of specific instructions called register spills.

In this section, we show that a data-cache interference analysis can be used to decide

the trade off between cache-latency hiding and data allocation to registers and, in practice,

drive the instruction scheduling by a cache aware approach.

Consider the following example, where the functional unit adder is composed of three

stages (i.e., the result of an addition is available after three cycles since the operation has

been issued). If we access data in memory, a load takes T cycles. If we access data in cache,

a load takes one cycle. The cache line can allocate four array elements.

for (i=0;i<n;i++)
C[i] += A[i]+B[i];

This example is vectorizable and we may unroll it three times to exploit more parallelism.

for (i=0;i<n;i+=3) {
C[i ] += A[i ]+B[i ];
C[i+1] += A[i+1]+B[i+1];
C[i+2] += A[i+1]+B[i+2];

}

Loop unrolling is used to expose more (independent) instructions, which may increase the

throughput because of a more efficient utilization of parallel and pipelined functional units.

However, parallelism demands registers to load and write data independently, this pres-

sures the register file. (Other optimizations can be applied as well; for examples on loop

transformations see [115]).

Here, we assume that we have only one adder and one blocking load unit with parallel

write and load port. We use scalar replacement to represent load/write instructions and we

align the code to represent parallelism (as gcc represents a possible loop nest instruction

schedule).

Example 6.1.1 ASAP scheduling:

i=0;
a0 = A[i ];
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b0 = B[i ];
a1 = A[i+1]; b0 = a0+b0;
b1 = B[i+1];
a2 = A[i+2]; b1 = a1+b1;
for (;i<n-3;i+=3) {

b2 = B[i+2]; C[i ] = b0;
a0 = A[i+4]; b2 = a2+b2;
b0 = B[i+4]; C[i+1] = b1;
a1 = A[i+5]; b0 = a0+b0;
b1 = B[i+5]; C[i+2] = b2;
a2 = A[i+5]; b1 = a1+b1;

}
..... (tail) ....

The static scheduling has an efficient utilization of the adder and load unit. Indeed, it issues

a load instruction at any cycle and an addition every other cycle. The loop has inherent

data spatial locality and the computation exploits such a locality by using data stored in

the cache line fully, at least, as long as no interference in cache occurs. We assume that, on

a data miss, the cache stalls for T cycles to retrieve the missing data on higher levels of the

memory hierarchy. Otherwise, on a cache hit, the cache deliver the data in one cycle.

In practice, without cache interference, the execution of the loop nest takes n
3
2(T + 3)

(cycles) if we assume that the array A and B are not in cache already. However, if we have

that the references A[i] and B[i], for any i, interfere in cache, the execution will take longer,

up to n
3
2(3T ) = 2nT , and the load unit is the performance bottleneck.

In general, if we identify as ∆ = |A−B|modC (i.e., the difference of the address starting

point of matrix A and B modulo C, where C is size of the cache), there are max(4−∆, 1)

misses every 4 accesses (4 is the cache line size in matrix element). We can see that the

execution time is 2n[max(4−∆,1)
4

T + min(∆,4)
4

]. We may deploy a scheduling, which is aware of

the interference and prevents the latency penalty of a cache miss as follows:

Example 6.1.2 Spatial scheduling:

i=0;
a0 = A[i ];
a1 = A[i+1];
a2 = A[i+2];
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a3 = A[i+3];
for (;i<n-4;i+=4)

b0 = B[i];
b1 = B[i+1]; b0 = a0+b0;
b2 = B[i+2]; b1 = a1+b1;
b3 = B[i+3]; b2 = a2+b2;
a0 = A[i+4]; b3 = a3+b3; C[i ] = b0;
a1 = A[i+5]; C[i+1] = b1;
a2 = A[i+6]; C[i+2] = b2;
a3 = B[i+7]; C[i+3] = b3;

.... (tail) ....

The execution of this loop nest takes n
4
(2T + 6) cycles.

Note, in case there is interference: we do not use minimum number of registers but we

have optimal execution times; When there is no interference in cache the two scheduling have

should achieve the same performance, however they require a different number of registers.

Notice that the instruction scheduling in Example 6.1.1 shuffles the loads of matrix A

with loads of matrix B so to issue the addition (of the two operands) as soon as possible.

In contrast, the instruction scheduling in Example 6.1.2 exploits the cache spatial locality

storing the cache line in the register file before the beginning of any computation.

These examples are somehow didactic however they present a scenario for which the

optimal scheduling may depend on whether or not there is cache interference. In fact, cache

spatial locality can be exploited at register level to reduce interference. Furthermore, data-

cache analysis is becoming a key feature for embedded compiler and, thanks to new compiler

techniques, practical for general-purpose compilers. Data-cache analysis allows the driving

of a tailored scheduling that may circumvent the performance bottleneck by exploiting cache

locality.

6.1.1 The Algorithm

In the following, we present a brief description of our approach:

1. We analyze every perfect loop nests and every array access. We determine spatial
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reuse, spatial reuse vector and cache interference for each memory reference.

2. We estimate the effects of cache interference w.r.t. the case with full cache line utiliza-

tion. We apply any optimization only when beneficial.

3. We unroll the inner loop (or inner loops) as many times as the cache line size in matrix

elements (`) divided by the length of the shortest spatial reuse vector (smin). We unroll

k = `/smin times. We determine the number of scalar variables/registers to hold each

unique memory reference.

4. For each memory reference in the original loop, we have now up to k new references. We

load them into continuous scalar variables-register. We have cliques of up to k mem-

ory references. The scheduling of the instructions is based on any ASAP scheduling

approach, but when a variable of the clique is loaded, all of them are loaded.

We apply a scalar assignment, removing redundant assignment. If the number of scalar

variables are more than the number of registers, we can tolerate spills. Data are stored

continuously in the stack (no interference and high reuse in the lower level in the

memory hierarchy).

5. When a scalar variable is not used, it is freed and can be used by another clique.

In the following, we apply our approach on SWIM.

6.1.2 Real Case: SWIM from SPEC 2000

SWIM is highly vectorizable application, where there is temporal reuse but mostly spatial

locality. There are four basic loop nests in three different procedures. We present them one

at a time in the following from Example 6.1.3 to Example 6.1.6.

Example 6.1.3 The following loop nest is used to prepare the output matrices –of the whole

computation in SWIM.
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DO 3500 ICHECK = 1, MNMIN
DO 4500 JCHECK = 1, MNMIN
PCHECK = PCHECK + ABS(PNEW(ICHECK,JCHECK))
UCHECK = UCHECK + ABS(UNEW(ICHECK,JCHECK))
VCHECK = VCHECK + ABS(VNEW(ICHECK,JCHECK))

4500 CONTINUE
UNEW(ICHECK,ICHECK) = UNEW(ICHECK,ICHECK)

1 * ( MOD (ICHECK, 100) /100.)
3500 CONTINUE

The inner loop in Example 6.1.3 does not exploit spatial locality, because the matrices are

accessed in row major (in FORTRAN matrices are stored in column major). The loops

can be safely interchanged without change the meaning of the computation and improving

performance.

Example 6.1.4 The following loop nest is from the routine CALC1 and it exploits spatial
locality - as well as some temporal locality.

DO 100 J=1,N
DO 100 I=1,M
CU(I+1,J) = .5D0*(P(I+1,J)+P(I,J))*U(I+1,J)
CV(I,J+1) = .5D0*(P(I,J+1)+P(I,J))*V(I,J+1)
Z(I+1,J+1) = (FSDX*(V(I+1,J+1)-V(I,J+1))-FSDY*(U(I+1,J+1)

1 -U(I+1,J)))/(P(I,J)+P(I+1,J)+P(I+1,J+1)+P(I,J+1))
H(I,J) = P(I,J)+.25D0*(U(I+1,J)*U(I+1,J)+U(I,J)*U(I,J)

1 +V(I,J+1)*V(I,J+1)+V(I,J)*V(I,J))
100 CONTINUE

In practice, in the inner loop in Example 6.1.4, the computation accesses matrix P in two

different columns with leading references P(I,J) and P(I,J+1), respectively. In similar

fashion, the computation accesses matrices V and U.

Example 6.1.5 The following loop nest is from the routine CALC2.

DO 200 J=1,N
DO 200 I=1,M

UNEW(I+1,J)=UOLD(I+1,J) + TDTS8*(Z(I+1,J+1)+Z(I+1,J))*(CV(I+1,J
1 +1)+CV(I,J+1)+CV(I,J)+CV(I+1,J))-TDTSDX*(H(I+1,J) -H(I,J))

VNEW(I,J+1)=VOLD(I,J+1)-TDTS8*(Z(I+1,J+1)+Z(I,J+1)) *(CU(I+1 ,J
1 +1)+CU(I,J+1)+CU(I,J)+CU(I+1,J)) -TDTSDY*(H(I,J+1)-H(I,J))

PNEW(I,J)=POLD(I,J)-TDTSDX*(CU(I+1,J)-CU(I,J)) -TDTSDY*(CV(I ,J
1 +1)-CV(I,J))
200 CONTINUE
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In practice, the computation of the loop nest in Example 6.1.5 accesses the operand matrices

exploiting mostly spatial reuse.

Example 6.1.6 The last loop nest is from routine CALC3.

DO 300 J=1,N
DO 300 I=1,M
UOLD(I,J) = U(I,J)+ALPHA*(UNEW(I,J)-2.*U(I,J)+UOLD(I,J))
VOLD(I,J) = V(I,J)+ALPHA*(VNEW(I,J)-2.*V(I,J)+VOLD(I,J))
POLD(I,J) = P(I,J)+ALPHA*(PNEW(I,J)-2.*P(I,J)+POLD(I,J))
U(I,J) = UNEW(I,J)
V(I,J) = VNEW(I,J)
P(I,J) = PNEW(I,J)

300 CONTINUE

The loop nest in Example 6.1.6 has exactly the format of a matrix update, as our intro-

ductory example and for which we presented two possible instruction schedules in Example

6.1.1 and Example 6.1.2.

We apply loop unrolling and scalar replacement to the Examples 6.1.4-6.1.6. We apply

by hand scalar replacement and, then, the code is used as input to the native compiler.

SWIM is an interesting application. We may notice that for power of two matrices,

every matrix access conflicts with every other matrix access. In the following, we present

the optimizations for each example with and without spatial reuse. Example 6.1.3 can be

unrolled and optimized as in Figure 6.1. In the loop nest on the left of Figure 6.1, the loads

of the same matrix elements are gathered together so that four consecutive elements are read

in registers at once - before other data are brought in. The sequence of additions starts as

soon as the first element in the other matrix is in a register. Four registers are allocated for

the matrix elements and, they may be reused as temporaries (if optimal performance is the

goal) to hide the adder latency. In the right loop nest the loads are shuffled, but no registers

are used as temporaries.

For completeness, we present all transformations in Section 6.1.4, from Figure 6.3 to

Figure 6.7. For all loop nests, note there is a very contained code expansion because of the

loop unrolling, see Figure 6.2 and 6.3.
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      DO 3500  JCHECK= 1, MNMIN
         DO 4500 ICHECK = 1, MNMIN−4,4
            PNEW0 = PNEW(ICHECK,JCHECK)
            PNEW1 = PNEW(ICHECK+1,JCHECK)
            PNEW2 = PNEW(ICHECK+2,JCHECK)
            PNEW3 = PNEW(ICHECK+3,JCHECK)
            PCHECK = PCHECK+ABS(PNEW0)+ABS(PNEW1)+ABS(PNEW2)+ABS(PNEW3)
            UNEW0 = UNEW(ICHECK,JCHECK)
            UNEW1 = UNEW(ICHECK+1,JCHECK)
            UNEW2 = UNEW(ICHECK+2,JCHECK)
            UNEW3 = UNEW(ICHECK+3,JCHECK)
            UCHECK = UCHECK+ABS(UNEW0)+ABS(UNEW1)+ABS(UNEW2)+ABS(UNEW3)
            VNEW0 = VNEW(ICHECK,JCHECK)
            VNEW1 = VNEW(ICHECK+1,JCHECK)
            VNEW2 = VNEW(ICHECK+2,JCHECK)
            VNEW3 = VNEW(ICHECK+3,JCHECK)
            VCHECK = VCHECK+ABS(VNEW0)+ABS(VNEW1)+ABS(VNEW2)+ABS(VNEW3)
 4500    CONTINUE
         DO 4600 ICHECK = MNMIN−3,MNMIN
c     DO 4600 ICHECK = 1,MNMIN
            PCHECK = PCHECK + ABS(PNEW(ICHECK,JCHECK))
            UCHECK = UCHECK + ABS(UNEW(ICHECK,JCHECK))
            VCHECK = VCHECK + ABS(VNEW(ICHECK,JCHECK))
 4600    CONTINUE
         UNEW(ICHECK,ICHECK) = UNEW(ICHECK,ICHECK) 
     1        * ( MOD (ICHECK, 100) /100.)
 3500 CONTINUE

        DO 3500 JCHECK = 1, MNMIN
         DO 4505 ICHECK = 1, MNMIN−4,4
            PCHECK = PCHECK + ABS(PNEW(ICHECK  ,JCHECK))
            UCHECK = UCHECK + ABS(UNEW(ICHECK  ,JCHECK))
            VCHECK = VCHECK + ABS(VNEW(ICHECK  ,JCHECK))
            PCHECK = PCHECK + ABS(PNEW(ICHECK+1,JCHECK))
            UCHECK = UCHECK + ABS(UNEW(ICHECK+1,JCHECK))
            VCHECK = VCHECK + ABS(VNEW(ICHECK+1,JCHECK))
            PCHECK = PCHECK + ABS(PNEW(ICHECK+2,JCHECK))
            UCHECK = UCHECK + ABS(UNEW(ICHECK+2,JCHECK))
            VCHECK = VCHECK + ABS(VNEW(ICHECK+2,JCHECK))
            PCHECK = PCHECK + ABS(PNEW(ICHECK+3,JCHECK))
            UCHECK = UCHECK + ABS(UNEW(ICHECK+3,JCHECK))
            VCHECK = VCHECK + ABS(VNEW(ICHECK+3,JCHECK))
 4505    CONTINUE
         DO 4500 ICHECK = MNMIN−3,MNMIN
            PCHECK = PCHECK + ABS(PNEW(ICHECK,JCHECK))
            UCHECK = UCHECK + ABS(UNEW(ICHECK,JCHECK))
            VCHECK = VCHECK + ABS(VNEW(ICHECK,JCHECK))
 4500    CONTINUE

UNEW(ICHECK,ICHECK) = UNEW(ICHECK,ICHECK) 
     1  * ( MOD (ICHECK, 100) /100.)
 3500   CONTINUE

(a) (b)

Figure 6.1: (a) spatial reuse: each line is fully read before its use. (b) only unrolling

6.1.3 Experimental Results

Spatial Scheduling is applied to SWIM’s loops and experimental results are collected on three

different systems: Sun Blade 100, Sun Ultra 5 and Silicon Graphics O2. In practice, the

optimizations are implemented at source level –i.e., rewriting the loop body of the loop nests–

and, a native compiler takes the source code as input and it produces the final executable

codes.

Though we need to make sure the compiler does not reorganize the load/store sequence

disrupting spatial locality, however we may allow the compiler to apply other aggressive

optimizations. The code optimized to exploit spatial locality at register file is compiled with

−O1 (i.e. gcc) flag on (i.e., local optimizations only). We measure the execution time and

we adjust the optimization flags as long as we achieve performance and, by direct inspection

of the assembly code, the sequence of load follows our suggestions. The process is repeated

for every architecture and every compiler.

We present the execution time for two different input sets: first, for matrices of size

509× 509, for which there is no interference; and second, for matrices of size 512× 512, for

which there is always interference. We modified the original number of iterations in SWIM
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so to have a shorter-but-representative execution time of the full application. In fact, now,

the main loop iterates for 20 times and we report the time in seconds.

Table 6.1: Notations: swim m is the execution time of the original application applied to
input matrices of size m×m; spatialswim m is the execution time of the application opti-
mized to exploit spatial locality; and, unrolled m is the execution time for the application
with the basic loop nest simply unrolled four times.

Architecture Compiler swim 509 spatialswim 509 unrolled 509

Sun Blade 100 g77 8.47 7.29 7.59
Sun ULTRA 5 g77 11.43 7.97 8.56

f90 11.26 11.23 8.32
SGI f90 16.62 17.44 17.22

Architecture Compiler swim 512 spatialswim 512 unrolled 512

Sun Blade 100 g77 47.99 20.70 40.61
Sun ULTRA 5 g77 14.94 9.11 10.50

f90 13.91 10.91 10.77
SG O2 f90 pad 20.16 20.76 26.35

f90 no pad 230.24 106.79 145.12

We analyze first the case without interference (matrix of size 509× 509). Independently

from the compiler and the architecture, we can say that exploiting spatial locality at register

level does not harm performance. We can achieve comparable (sometimes better) perfor-

mance w.r.t. the original SWIM and the unrolled SWIM.

Observing the assembly code generated by the different versions of compiler, only the

FORTRAN compiler for SGI reorganizes heavily the code. In this environment, our register

allocation is completely neglected and arrays are padded. To compare the effect of padding

and code reorganization, we turned off the padding optimization and collected the experi-

mental results (see Table 6.1, where the compiler is indicated as “f90 no pad”). Otherwise

the assembly code generated by g77 on Sun architectures, follows our register allocation and

it performs a good job on local optimizations.

The input set with interference is more interesting though. In general our approach
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outperforms the others (but on SGI). On Sun ULTRA 5, the performance improvement is

significant, but not really high. On Sun Blade the improvement is impressive. The main

difference between Blade 100 and ULTRA 5 is the size and the associativity of unified second

level of cache.

To have a better understanding of the effect of cache misses on the overall performance,

we simulated the cache behavior and in particular the reads and the misses on reads

Table 6.2: Read misses on Sun BLADE 100.
Application Data cache misses L1 % Data cache miss L2

swim 46982382 57.53 34736729
unrolled 31372840 48.89 33328515
spatial 19947847 30.87 20119575

In practice, there is a data-cache miss reduction between 36 to 40%, which represents a

good utilization of the data-cache line.

6.1.4 Code Transformations (Appendix)
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      DO 100 J=1,N
         DO 105 I=1,M−4,4
C     Reading a line of P
            P00 = P(I,J)
            P10 = P(I+1,J)
            P20 = P(I+2,J)
            P30 = P(I+3,J)
C     This is a miss because it accesses a new line, we hide latency
C     issuing useful computations
            P40 = P(I+4,J)
C     Reading a line of U
            U00 = U(I,J)
            U10 = U(I+1,J)
            U20 = U(I+2,J)
            U30 = U(I+3,J)
C     This is a miss because it accesses a new line, we hide latency
C     issuing useful computations
            U40 = U(I+4,J)
            T1 = P10  +P00
            T2 = P20  +P10
            T3 = P30  +P20
            T1 = .5D0*T1
            T2 = .5D0*T2
            T3 = .5D0*T3
            T1 = T1*U10
            T2 = T2*U20
            T3 = T3*U30
C     Reading a line of CU
            CU(I+1,J)   = T1
            CU(I+2,J)   = T2
            CU(I+3,J)   = T3
C     Reading a new line of P
            P01 = P(I,J+1)
            P11 = P(I+1,J+1)
            P21 = P(I+2,J+1)
            P31 = P(I+3,J+1)
            P41 = P(I+4,J+1)
C     Reading a new line of V
            V01 = V(I,J+1)
            V11 = V(I+1,J+1)
            V21 = V(I+2,J+1)
            V31 = V(I+3,J+1)
C     These are misses because they accesse new lines, we hide latency
C     issuing useful computations
            V41 = V(I+4,J+1)
            T1 = P01  +P00
            T2 = P11  +P10
            T3 = P21  +P20
            T4 = P31  +P30
            T1 = .5D0*T1
            T2 = .5D0*T2
            T3 = .5D0*T3
            T4 = .5D0*T4
            T1 = T1*V01
            T2 = T2*V11
            T3 = T3*V21
            T4 = T4*V31
C     Reading a line of CV
            CV(I,J+1)   = T1
            CV(I+1,J+1) = T2
            CV(I+2,J+1) = T3
            CV(I+3,J+1) = T4
C     Reading a line of U
            U11 = U(I+1,J+1)
            U21 = U(I+2,J+1)
            U31 = U(I+3,J+1)
C     This is a miss because it accesses a new line, we hide latency
C     issuing useful computations
            U41 = U(I+4,J+1)
            T1 = V11−V01
            T2 = V21−V11
            T3 = V31−V21
            T4 = V41−V31
            T1 = FSDX*T1

            T2 = FSDX*T2
            T3 = FSDX*T3
            T4 = FSDX*T4
c     Reuse of V*0 because they will be read again later, to help the
c     compiler
            V00 = U11−U10
            V10 = U21−U20
            V20 = U31−U30 
            V30 = U41−U40
            V00 = FSDY*V00
            V10 = FSDY*V10
            V20 = FSDY*V20
            V30 = FSDY*V30
            T1 = T1−V00
            P01 = P00+P10+P11+P01
C     Here comes the floating division, usually not pipelined and with
C     very high latency, we shuffle some operation to avoid to stall too
C     badly
            Z(I+1,J+1)= T1/P01
            T2 = T2−V10
            P11 = P10+P20+P21+P11
            Z(I+2,J+1)= T2/P11
            T3 = T3−V20
            P21 = P20+P30+P31+P21
            Z(I+3,J+1)= T3/P21
            P31 = P30+P40+P41+P31
            T4 = T4−V30
C     We access different lines 
            Z(I+4,J+1)= T4/P31
            CU(I+4,J)   = .5*(P40  +P30)  *U40
C     Reading a new line of V
            V00 = V(I,J)
            V10 = V(I+1,J)
            V20 = V(I+2,J)
            V30 = V(I+3,J)
            U10=U10*U10
            U00=U00*U00
            V01=V01*V01
            V00=V00*V00
            U20=U20*U20
            U10=U10*U10
            V11=V11*V11
            V10=V10*V10
            U30=U30*U30
            U20=U20*U20
            V21=V21*V21
            V20=V20*V20
            U40=U40*U40
            U30=U30*U30
            V31=V31*V31
            V30=V30*V30
            U10 = U10 + U00 + V01 + V00
            U20 = U20 + U10 + V11 + V10
            U30 = U30 + U20 + V21 + V20
            U40 = U40 + U30 + V31 + V30
C     write 1 line of H
            H(I,J)      = P00+.25D0*U10
            H(I+1,J)    = P10+.25D0*U20
            H(I+2,J)    = P20+.25D0*U30
            H(I+3,J)    = P30+.25D0*U40
 105     CONTINUE
         DO 106 I=M−3,M
 1          CU(I+1,J) = .5D0*(P(I+1,J)+P(I,J))*U(I+1,J)
            CV(I,J+1) = .5D0*(P(I,J+1)+P(I,J))*V(I,J+1)
            Z(I+1,J+1) = (FSDX*(V(I+1,J+1)−V(I,J+1))−FSDY*(U(I+1,J+1)
     $           −U(I+1,J)))/(P(I,J)+P(I+1,J)+P(I+1,J+1)+P(I,J+1))
            H(I,J) = P(I,J)+.25D0*(U(I+1,J)*U(I+1,J)+U(I,J)*U(I,J)
     1           +V(I,J+1)*V(I,J+1)+V(I,J)*V(I,J))
 106     CONTINUE
 100  CONTINUE
     

Figure 6.2: Loop nest in procedure calc1 using spatial register allocation
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      DO 100 J=1,N
         DO 102 I=1,M−4,4

C     first iteration
            P10 = P(I+1,J)
            P00 = P(I,J)
            U10 = U(I+1,J)
            CU(I+1,J) = .5D0*(P10+P00)*U10
            P01 = P(I,J+1)
            V01 = V(I,J+1)
            U11 = U(I+1,J+1)
            CV(I,J+1) = .5D0*(P01+P00)*V01
            V11 = V(I+1,J+1) 
            T1 = FSDX*(V11−V01)
            T2 = FSDY*(U11 −U10)
            P11 = P(I+1,J+1)
C            P01 = P(I,J+1)
            Z(I+1,J+1) = (T1−T2)/(P00+P10+P11+P01)
            U00 = U(I,J)
            V00 = V(I,J)
            H(I,J) = P00+.25D0*(U10*U10+U00*U00 +V01*V01+V00*V00)

C     second iteration
            P20 = P(I+2,J)
C            P10 = P(I+1,J)
            U20 = U(I+2,J)
            CU(I+2,J) = .5D0*(P20+P10)*U20
C            P11 = P(I+1,J+1)
C            V11 = V(I+1,J+1)
            U21 = U(I+2,J+1)
            CV(I+1,J+1) = .5D0*(P11+P10)*V11
            V21 = V(I+2,J+1) 
            T1 = FSDX*(V21−V11)
            T2 = FSDY*(U21 −U20)
            P21 = P(I+2,J+1)
C            P11 = P(I+1,J+1)
            Z(I+2,J+1) = (T1−T2)/(P10+P20+P21+P11)
C            U10 = U(I+1,J)
            V10 = V(I+1,J)
            H(I+1,J) = P10+.25D0*(U20*U20+U10*U10 +V11*V11+V10*V10)

C     third iteration
            P30 = P(I+3,J)
C            P20 = P(I+2,J)
            U30 = U(I+3,J)
            CU(I+3,J) = .5D0*(P30+P20)*U30
C            P21 = P(I+2,J+1)
C            V21 = V(I+2,J+1)
            U31 = U(I+3,J+1)
            CV(I+2,J+1) = .5D0*(P21+P20)*V21
            V31 = V(I+3,J+1) 
            T1 = FSDX*(V31−V21)
            T2 = FSDY*(U31 −U30)
            P31 = P(I+3,J+1)
C            P21 = P(I+2,J+1)
            Z(I+3,J+1) = (T1−T2)/(P20+P30+P31+P21)
C            U20 = U(I+2,J)
            V20 = V(I+2,J)
            H(I+2,J) = P20+.25D0*(U30*U30+U20*U20 +V21*V21+V20*V20)

C     fourth iteration
            P40 = P(I+4,J)
C            P30 = P(I+3,J)
            U40 = U(I+4,J)
            CU(I+4,J) = .5D0*(P40+P30)*U40
C            P31 = P(I+3,J+1)
C            V31 = V(I+3,J+1)
            U41 = U(I+4,J+1)
            CV(I+3,J+1) = .5D0*(P31+P30)*V31
            V41 = V(I+4,J+1) 
            T1 = FSDX*(V41−V31)
            T2 = FSDY*(U41 −U40)
            P41 = P(I+4,J+1)
C            P31 = P(I+3,J+1)

            Z(I+4,J+1) = (T1−T2)/(P30+P40+P41+P31)
C            U30 = U(I+3,J)
            V30 = V(I+3,J)
            H(I+3,J) = P30+.25D0*(U40*U40+U30*U30 +V31*V31+V30*V30)

 102     CONTINUE
         DO 103 I=M−3,M
            CU(I+1,J) = .5D0*(P(I+1,J)+P(I,J))*U(I+1,J)
            CV(I,J+1) = .5D0*(P(I,J+1)+P(I,J))*V(I,J+1)
            Z(I+1,J+1) = (FSDX*(V(I+1,J+1)−V(I,J+1))−FSDY*(U(I+1,J+1)
     $           −U(I+1,J)))/(P(I,J)+P(I+1,J)+P(I+1,J+1)+P(I,J+1))
            H(I,J) = P(I,J)+.25D0*(U(I+1,J)*U(I+1,J)+U(I,J)*U(I,J) +V(I
     $           ,J+1)*V(I,J+1)+V(I,J)*V(I,J))
 103     CONTINUE
 100  CONTINUE

Figure 6.3: Loop nest in procedure calc1 using loop unrolling
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      DO 200 J=1,N
         DO 203 I=1,M−3,3
           
C     7 registers for Z
            Z10 = Z(I+1,J) 
            Z20 = Z(I+2,J) 
            Z30 = Z(I+3,J) 
            Z01 = Z(I,J+1)
            Z11 = Z(I+1,J+1)
            Z21 = Z(I+2,J+1)
            Z31 = Z(I+3,J+1)

C     Reuse of registers for Z**
            Z10 = Z11+Z10
            Z20 = Z21+Z20
            Z30 = Z31+Z30
            Z01 = Z11+Z01
            Z11 = Z21+Z11
            Z21 = Z31+Z21
            Z10 = TDTS8*Z10
            Z20 = TDTS8*Z20
            Z30 = TDTS8*Z30
            Z01 = TDTS8*Z01
            Z11 = TDTS8*Z11
            Z21 = TDTS8*Z21

C     8 Registers for CV
            CV00 = CV(I ,J)
            CV10 = CV(I+1,J)
            CV20 = CV(I+2,J)
            CV30 = CV(I+3,J)
            CV01 = CV(I,J+1)
            CV11 = CV(I+1,J+1)
            CV21 = CV(I+2,J+1)
            CV31 = CV(I+3,J+1)

C    7 Registers for H
            H00 = H(I ,J)
            H10 = H(I+1,J)
            H20 = H(I+2,J)
            H30 = H(I+3,J) 
            H01 = H(I ,J+1)
            H11 = H(I+1,J+1)
            H21 = H(I+2,J+1)
            
C     Reuse of registers for H**
            H30 = (H30−H20)
            H21 = (H21−H20)
            H20 = (H20−H10)
            H11 = (H11−H10)
            H10 = (H10−H00)
            H01 = (H01−H00)
            H30 = TDTSDX*H30
            H21 = TDTSDY*H21
            H20 = TDTSDX*H20
            H11 = TDTSDY*H11
            H10 = TDTSDX*H10
            H01 = TDTSDY*H01

            UOLD1 = UOLD(I+1,J)
            UOLD2 = UOLD(I+2,J)
            UOLD3 = UOLD(I+3,J)

C     Reuse of registers TO HELP THE COMPILER TO SCHEDULE THE INSTRUCTIONS
            T1 = CV11+CV01+CV00+CV10 
            T2 = CV21+CV11+CV10+CV20
            CV31 = CV31+CV21+CV20+CV30
            Z10 = Z10*T1
            Z20 = Z20*T2
            Z30 = Z30*CV31
           
C     BASIC COMPUTATION !!!!!
            UNEW(I+1,J) = UOLD1+Z10−H10
            UNEW(I+2,J) = UOLD2+Z20−H20

            UNEW(I+3,J) = UOLD3+Z30−H30

C     REUSE OF REGISTERS USED AT THE LAST BASIC COMPUTATION
            CV01 = CV01 − CV00
            CV11 = CV11 − CV10
            CV21 = CV21 − CV20
            CV01 = TDTSDY*CV01
            CV11 = TDTSDY*CV11
            CV21 = TDTSDY*CV21
            H10 = CV01
            H20 = CV11
            H30 = CV21

C     HERE ARE ALIVE H* AND Z*, IF WE WANT WE CAN REUSE COMPLETELY THE
C     CV*, BUT TO HAVE A READABLE CODE WE USE DIFFERENT LABELING, LET’S
C     THE COMPILER TO THE REST

           CU00 = CU(I ,J)
           CU10 = CU(I+1,J)
           CU20 = CU(I+2,J)
           CU30 = CU(I+3,J)
           CU01 = CU(I,J+1)
           CU11 = CU(I+1,J+1)
           CU21 = CU(I+2,J+1)
           CU31 = CU(I+3,J+1)
           
           VOLD0 = VOLD(I,J+1)
           VOLD1 = VOLD(I+1,J+1)
           VOLD2 = VOLD(I+2,J+1)
           
C     REUSE OF REGISTERS
           T1 = CU11+CU01+CU00+CU10 
           T2 = CU21+CU11+CU10+CU20
           T3 = CU31+CU21+CU20+CU30
           Z01  = Z01*T1
           Z11 = Z11*T2
           Z21 = Z21*T3
           
C     BASIC COMPUTATION !!!!!
           VNEW(I,J+1) = VOLD0−Z01−H01
           VNEW(I+1,J+1) = VOLD1−Z11−H11
           VNEW(I+2,J+1) = VOLD2−Z21−H21

C     REUSE OF REGISTERS H*
           H01 = TDTSDX*(CU10−CU00)
           H11 = TDTSDX*(CU20−CU10)
           H21 = TDTSDX*(CU30−CU20)
           
           POLD0 = POLD(I,J)
           POLD1 = POLD(I+1,J)
           POLD2 = POLD(I+2,J)
           
C     BASIC COMPUTATION !!!!!
           PNEW(I,J) = POLD0−H01−H10
           PNEW(I+1,J) = POLD1−H11−H20
           PNEW(I+2,J) = POLD2−H21−H30
           
 203    CONTINUE
        DO 205 I=M−2,M
C     DO 205 I=1,M
           UNEW(I+1,J) = UOLD(I+1,J)+ TDTS8*(Z(I+1,J+1)+Z(I+1,J))*(CV(I
     $          +1,J+1)+CV(I,J+1)+CV(I,J) +CV(I+1,J))−TDTSDX*(H(I+1,J)
     $          −H(I,J))
           VNEW(I,J+1) = VOLD(I,J+1)−TDTS8*(Z(I+1,J+1)+Z(I,J+1)) *(CU(I
     $          +1,J+1)+CU(I,J+1)+CU(I,J)+CU(I+1,J)) −TDTSDY*(H(I,J+1)
     $          −H(I,J))
           PNEW(I,J) = POLD(I,J)−TDTSDX*(CU(I+1,J)−CU(I,J)) −TDTSDY
     $          *(CV(I,J+1)−CV(I,J))
 205    CONTINUE
 200  CONTINUE
  

Figure 6.4: Loop nest in procedure calc2 using spatial register allocation
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      DO 200 J=1,N
         DO 203 I=1,M−3,3
            Z11 = Z(I+1,J+1)
            Z10 = Z(I+1,J)
            T1  = TDTS8*(Z11+Z10)
            CV11 = CV(I+1,J+1)
            CV01 = CV(I,J+1)
            CV00 = CV(I,J)
            CV10 = CV(I+1,J)
            T2 = CV11+CV01+CV00+CV10
            H01 = H(I,J+1)
            H00 = H(I,J)
            T3 = TDTSDY*(H01 −H00)
            UNEW(I+1,J)=UOLD(I+1,J) + T1*T2−T3
            Z01 = Z(I,J+1)
            T1 = TDTS8*(Z11+Z01)
            CU11 = CU(I+1,J+1)
            CU01 = CU(I,J+1)
            CU00 = CU(I,J)
            CU10 = CU(I+1,J)
            T2 = CU11+CU01+CU00+CU10
            H01 = H(I,J+1)
            T3 = TDTSDY*(H01 −H00)
            VNEW(I,J+1)=VOLD(I,J+1)−T1 *T2 −T3
            T1 = TDTSDX*(CU10−CU00)
            T2 = TDTSDY*(CV01−CV00)
            PNEW(I,J)=POLD(I,J)−T1− T2

            Z21 = Z(I+2,J+1)
            Z20 = Z(I+2,J)
            T1  = TDTS8*(Z21+Z20)
            CV21 = CV(I+2,J+1)
C            CV11 = CV(I+1,J+1)
C            CV10 = CV(I+1,J)
            CV20 = CV(I+2,J)
            T2 = CV21+CV11+CV10+CV20
            H11 = H(I+1,J+1)
            H10 = H(I+1,J)
            T3 = TDTSDY*(H11 −H10)
            UNEW(I+2,J)=UOLD(I+2,J) + T1*T2−T3
C            Z11 = Z(I+1,J+1)
            T1 = TDTS8*(Z21+Z11)
            CU21 = CU(I+2,J+1)
C            CU11 = CU(I+1,J+1)
C            CU10 = CU(I+1,J)
            CU20 = CU(I+2,J)
            T2 = CU21+CU11+CU10+CU20
C            H11 = H(I+1,J+1)
            T3 = TDTSDY*(H11 −H10)
            VNEW(I+1,J+1)=VOLD(I+1,J+1)−T1 *T2 −T3
            T1 = TDTSDX*(CU20−CU10)
            T2 = TDTSDY*(CV11−CV10)
            PNEW(I+1,J)=POLD(I+1,J)−T1− T2

            Z31 = Z(I+3,J+1)
            Z30 = Z(I+3,J)
            T1  = TDTS8*(Z31+Z30)
            CV31 = CV(I+3,J+1)
C            CV21 = CV(I+2,J+1)
C            CV20 = CV(I+2,J)
            CV30 = CV(I+3,J)
            T2 = CV31+CV21+CV20+CV30
            H21 = H(I+2,J+1)
            H20 = H(I+2,J)
            T3 = TDTSDY*(H21 −H20)
            UNEW(I+3,J)=UOLD(I+3,J) + T1*T2−T3
C            Z21 = Z(I+2,J+1)
            T1 = TDTS8*(Z31+Z21)
            CU31 = CU(I+3,J+1)
C            CU21 = CU(I+2,J+1)
C            CU20 = CU(I+2,J)
            CU30 = CU(I+3,J)
            T2 = CU31+CU21+CU20+CU30

C            H21 = H(I+2,J+1)
            T3 = TDTSDY*(H21 −H20)
            VNEW(I+2,J+1)=VOLD(I+2,J+1)−T1 *T2 −T3
            T1 = TDTSDX*(CU30−CU20)
            T2 = TDTSDY*(CV21−CV20)
            PNEW(I+2,J)=POLD(I+2,J)−T1− T2

 203     CONTINUE
         DO 204 I=M−2,M
            UNEW(I+1,J)=UOLD(I+1,J) + TDTS8*(Z(I+1,J+1)+Z(I+1,J))*(CV(I
     $           +1,J+1)+CV(I,J+1)+CV(I,J)+CV(I+1,J))−TDTSDX*(H(I+1,J)
     $           −H(I,J))
            VNEW(I,J+1)=VOLD(I,J+1)−TDTS8*(Z(I+1,J+1)+Z(I,J+1)) *(CU(I+1
     $           ,J+1)+CU(I,J+1)+CU(I,J)+CU(I+1,J)) −TDTSDY*(H(I,J+1)
     $           −H(I,J))
            PNEW(I,J)=POLD(I,J)−TDTSDX*(CU(I+1,J)−CU(I,J)) −TDTSDY*(CV(I
     $           ,J+1)−CV(I,J))
 204     CONTINUE
 200  CONTINUE

Figure 6.5: Loop nest in procedure calc2 using loop unrolling

149



      DO 300 J=1,N
         DO 305 I=1,M−4,4
            U0 = U(I  ,J)
            U1 = U(I+1,J)
            U2 = U(I+2,J)
            U3 = U(I+3,J) 
            UOLD0 = UOLD(I  ,J)
            UOLD1 = UOLD(I+1,J)
            UOLD2 = UOLD(I+2,J)
            UOLD3 = UOLD(I+3,J) 
            UNEW0 = UNEW(I  ,J)
            UNEW1 = UNEW(I+1,J)
            UNEW2 = UNEW(I+2,J)
            UNEW3 = UNEW(I+3,J) 

            UOLD(I  ,J) = U0+ALPHA*(UNEW0−2.*U0+UOLD0)
            UOLD(I+1,J) = U1+ALPHA*(UNEW1−2.*U1+UOLD1)
            UOLD(I+2,J) = U2+ALPHA*(UNEW2−2.*U2+UOLD2)
            UOLD(I+3,J) = U3+ALPHA*(UNEW3−2.*U3+UOLD3)

            U0 = V(I  ,J)
            U1 = V(I+1,J)
            U2 = V(I+2,J)
            U3 = V(I+3,J) 
            UOLD0 = VOLD(I  ,J)
            UOLD1 = VOLD(I+1,J)
            UOLD2 = VOLD(I+2,J)
            UOLD3 = VOLD(I+3,J) 
            UNEW0 = VNEW(I  ,J)
            UNEW1 = VNEW(I+1,J)
            UNEW2 = VNEW(I+2,J)
            UNEW3 = VNEW(I+3,J) 

            VOLD(I  ,J) = U0+ALPHA*(UNEW0−2.*U0+UOLD0)
            VOLD(I+1,J) = U1+ALPHA*(UNEW1−2.*U1+UOLD1)
            VOLD(I+2,J) = U2+ALPHA*(UNEW2−2.*U2+UOLD2)
            VOLD(I+3,J) = U3+ALPHA*(UNEW3−2.*U3+UOLD3)

            U0 = P(I  ,J)
            U1 = P(I+1,J)
            U2 = P(I+2,J)
            U3 = P(I+3,J) 
            UOLD0 = POLD(I  ,J)
            UOLD1 = POLD(I+1,J)
            UOLD2 = POLD(I+2,J)
            UOLD3 = POLD(I+3,J) 
            UNEW0 = PNEW(I  ,J)
            UNEW1 = PNEW(I+1,J)
            UNEW2 = PNEW(I+2,J)
            UNEW3 = PNEW(I+3,J) 
           
            POLD(I  ,J) =  U0+ALPHA*(UNEW0−2.*U0+UOLD0)
            POLD(I+1,J) =  U1+ALPHA*(UNEW1−2.*U1+UOLD1)
            POLD(I+2,J) =  U2+ALPHA*(UNEW2−2.*U2+UOLD2)
            POLD(I+3,J) =  U3+ALPHA*(UNEW3−2.*U3+UOLD3)
       
            U0 = UNEW(I  ,J)
            U1 = UNEW(I+1,J)
            U2 = UNEW(I+2,J)
            U3 = UNEW(I+3,J) 
            U(I  ,J) = U0
            U(I+1,J) = U1
            U(I+2,J) = U2
            U(I+3,J) = U3

            U0 = VNEW(I  ,J)
            U1 = VNEW(I+1,J)
            U2 = VNEW(I+2,J)
            U3 = VNEW(I+3,J) 
            V(I  ,J) = U0
            V(I+1,J) = U1
            V(I+2,J) = U2
            V(I+3,J) = U3

            U0 = PNEW(I  ,J)
            U1 = PNEW(I+1,J)
            U2 = PNEW(I+2,J)
            U3 = PNEW(I+3,J) 
            P(I  ,J) = U0
            P(I+1,J) = U1
            P(I+2,J) = U2
            P(I+3,J) = U3

 305     CONTINUE
         DO 306 I=M−3,M
c         DO 306 I=1,M
            UOLD(I,J) = U(I,J)+ALPHA*(UNEW(I,J)−2.*U(I,J)+UOLD(I,J))
            VOLD(I,J) = V(I,J)+ALPHA*(VNEW(I,J)−2.*V(I,J)+VOLD(I,J))
            POLD(I,J) = P(I,J)+ALPHA*(PNEW(I,J)−2.*P(I,J)+POLD(I,J))
            U(I,J) = UNEW(I,J)
            V(I,J) = VNEW(I,J)
            P(I,J) = PNEW(I,J)
 306     CONTINUE
 300  CONTINUE

Figure 6.6: Loop nest in procedure calc3 using spatial register allocation
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      DO 300 J=1,N
         DO 303 I=1,M−4,4
            U00 = U(I,J)
            UOLD(I,J) = U00+ALPHA*(UNEW(I,J)−2.*U00+UOLD(I,J))
            V00 = V(I,J)
            VOLD(I,J) = V00+ALPHA*(VNEW(I,J)−2.*V00+VOLD(I,J))
            P00 =  P(I,J)
            POLD(I,J) = P00+ALPHA*(PNEW(I,J)−2.*P00+POLD(I,J))
            U(I,J) = UNEW(I,J)
            V(I,J) = VNEW(I,J)
            P(I,J) = PNEW(I,J)

            U10 = U(I+1,J)
            UOLD(I+1,J) = U10+ALPHA*(UNEW(I+1,J)−2.*U10+UOLD(I +1,J))
            V10 = V(I+1,J)
            VOLD(I+1,J) = V10+ALPHA*(VNEW(I+1,J)−2.*V10+VOLD(I +1,J))
            P10 = P(I+1,J)
            POLD(I+1,J) = P10+ALPHA*(PNEW(I+1,J)−2.*P10+POLD(I +1,J))
            U(I+1,J) = UNEW(I+1,J)
            V(I+1,J) = VNEW(I+1,J)
            P(I+1,J) = PNEW(I+1,J)

            U20 = U(I+2,J)
            UOLD(I+2,J) = U20+ALPHA*(UNEW(I+2,J)−2.*U20+UOLD(I +2,J))
            V20 = V(I+2,J)
            VOLD(I+2,J) = V20+ALPHA*(VNEW(I+2,J)−2.*V20+VOLD(I +2,J))
            P20 = P(I+2,J)
            POLD(I+2,J) = P20+ALPHA*(PNEW(I+2,J)−2.*P20+POLD(I +2,J))
            U(I+2,J) = UNEW(I+2,J)
            V(I+2,J) = VNEW(I+2,J)
            P(I+2,J) = PNEW(I+2,J)

            U30 = U(I+3,J)
            UOLD(I+3,J) = U30+ALPHA*(UNEW(I+3,J)−2.*U30+UOLD(I +3,J))
            V30 = V(I+3,J)
            VOLD(I+3,J) = V30+ALPHA*(VNEW(I+3,J)−2.*V30+VOLD(I +3,J))
            P30 = P(I+3,J)
            POLD(I+3,J) = P30+ALPHA*(PNEW(I+3,J)−2.*P30+POLD(I +3,J))
            U(I+3,J) = UNEW(I+3,J)
            V(I+3,J) = VNEW(I+3,J)
            P(I+3,J) = PNEW(I+3,J)
 303     CONTINUE
         DO 304 I=M−3,M
            UOLD(I,J) = U(I,J)+ALPHA*(UNEW(I,J)−2.*U(I,J)+UOLD(I,J))
            VOLD(I,J) = V(I,J)+ALPHA*(VNEW(I,J)−2.*V(I,J)+VOLD(I,J))
            POLD(I,J) = P(I,J)+ALPHA*(PNEW(I,J)−2.*P(I,J)+POLD(I,J))
            U(I,J) = UNEW(I,J)
            V(I,J) = VNEW(I,J)
            P(I,J) = PNEW(I,J)
 304     CONTINUE
 300  CONTINUE

Figure 6.7: Loop nest in procedure calc3 using loop unrolling
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6.2 Dynamically Mapped Cache

In this section, we introduce a novel software-hardware approach where the mapping in a

data cache is determined at compile time, by manipulating the address used by the data

cache. Our approach has the same goals of other approaches proposed in the literature, but,

it is an hybrid approach that specify a data-cache mapping at compile time and the actual

application of such a mapping at runtime. Dynamic mapping needs little extra hardware

and it uses the computational power of the processor –instead of the memory controller or

the data cache mapping– and it has no effect on the access time of memory and cache. It

is an approach combining several concepts, such as non-standard cache mapping functions

and data layout reorganization and, potentially, without any overhead.

6.2.1 General Hardware Mapping

The main result of this section is stated in Theorem 7, where we show that if in a loop

nest there are m memory accesses interfering with each other in cache, there is always a

dynamic mapping that takes O(log m) steps per memory access that reduces to zero cache

interference.

Before we introduce the main result, we present the terminology used in this section.

Definition 2 We define the bit-wise operation y = shift(x, l, k) as the following sequence

of bitwise operations (in C-language):

• t = x%(1 << l) (i.e. t = xmod(2l))

• y = ((x− t) << k) + t

The effect of the operations shift is to introduce k-zero bits starting from bit l to l + k into

x. We assume that the bits of x, which are lost shifting to left, are all 0.

Definition 3 We define the bit-wise y = set(x, l, b) as y = x&(b << l).
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The effect is to set k (i.e. k = log b) bits of x starting from bit l to l + k. Now, we state the

main result of this section.

Theorem 7 If there are m vectors, V0 . . .Vm−1 continuously stored with starting address

A0 < A1 · · · < Am−1 respectively, then it exists an integer function f() so that

y = set(shift(x, l, log m), l, f(x))

with 2l = L is the line size, it is a dynamic mapping, which nullifies interference among the

vectors.

Proof: The proof is constructive. We store in a vector of length m the list of the starting

address in increasing order. Each pair of contiguous elements in the vector specifies a bucket

and therefore one of the input vectors. Given an address x and doing a binary search on the

vector, we can check what is the bin the address falls into. This requires up to log m steps,

the position in the vector is a integer i ∈ [0, m − 1]. This is an integer function i = f(x).

The dynamic mapping address is y = set(shift(x, l, log m), l, i) where 2l = L is the line size.

2

Theorem 7 states that there is a mapping, but it does not consider any of the charac-

teristics of the vector involved in the computation, i.e. sizes and relative addresses. The

number of steps required for the computation of f(x) are up to log m and the computation

requires O(m) space. In the following, we shall present stronger premises and, thus, simpler

dynamic mapping.

Lemma 2 If there are m vectors, V0 . . .Vm−1 continuously stored starting from address

A0 < A1 · · · < Am−1 respectively, so that Ai − Ai−1 = ki2
c with i ∈ [1, m − 1] and k0 = 0,

then we can store in a vector of size m the normalized values Ai−A0

2c and we can use a

binary search to identify where the normalized input address z = (x − A0)/2
c belongs to,
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and therefore determine a dynamic mapping, which takes O(log m) integer operations, O(m)

space and nullifies interference among the vectors.

We store in a vector of size m - in increasing order - the normalized starting address

(A0 − A0)/2
c, . . . ,(Am−1 − A0)/2

c. Note that we need m log(
∑

i ki) space. We take the

address x and we normalize it to z = (x − A0)/2
c. Then we use z for a binary search

and we determine the index i in the sorted vector. Then we apply the dynamic mapping

y = set(shift(x, l, log m), l, i) where 2l = L is the line size. We still use a binary search and

the complexity of the search is Θ(log m). In the following, we consider the particular cases

when k = ki is the same for every i, and discover that no binary search is required.

Lemma 3 If there are m vectors, V0 . . .Vm−1 continuously stored starting from address

A0 < A1 · · · < Am−1 respectively, so that Ai − Ai−1 = k2c with i ∈ [1, m − 1], then y =

set(shift(x, l, log m), l, f(x)) with f(x) = (x−A0)/k2c is a programmable dynamic mapping

that takes O(1) integer operations and O(1) space, which nullifies interference among the

vectors.

For the last case we need a simpler version of the shift and set instruction, we may use a

swap.

Definition 4 A swap function is a function y = swap[{i0,i1,...,ik},{j0,j1,...,jk}](x) where x is

represented in a binary base as xn−1, xn−2, . . . , xi0 , xik , . . . , xik , . . . , xj0 , xj1, . . . , xjk
, . . . , x0

and y is xn−1, xn−2, . . . , xj0 , xj1 . . . , xjk
, . . . , xi0 , xi1, . . . , xik , . . . , x0.

While it is arguable the feasibility of such function using regular arithmetic, this can be

easily implemented by a switch or cross bar by hardware.

Theorem 8 If there are m vectors {Vi}i∈[0,m−1] continuously stored starting from address

A0 < A1 · · · < Am−1 respectively, so that Ai − Ai−1 = 2k with 2k > C and C the cache size,
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then the mapping

g(x) = swap[{k+log m,...,k},{`+log m,...,`}](x− A0)) (6.1)

nullifies interference, where 2` = L is the line size.

Proof:

Table 6.3: Vectors range, schematic representation: “*” are wild.
Vector bit-31 k + log m k + 1 k k − 1 0

V0 → 0 . . . 0 . . . 0 0 * * . . . *
V1 → 0 . . . 0 . . . 0 1 * * . . . *
V2 → 0 . . . 0 . . . 1 0 * * . . . *
. . .
Vm → 0 . . . 1 . . . 1 1 * * . . . *

The proof is constructive. The beginning of every vector is normalized to the beginning

of the first vector (V0), therefore to a power of two boundary. In Table 6.3, we show that

log m bits are sufficient to distinguish if any of the accesses belong to a particular vector.

This can be used to map the address to some particular lines. We follow the approach to

associate every access to vector V0 to line 0 mod m, and in general accesses to vector Vi to

line i mod m.

Indeed, the mapping presented in Equation 6.1, indirectly splits the cache in m groups,

and each vector access is going to lines that cannot be shared with any other vector accesses,

therefore there is no interference and the theorem follows. 2

Theorem 8 is a particular case of Lemma 3 but the function f() is so simplified that no

computations are needed at all. We can state the following lemmas.

Lemma 4 g(x) is bijective and g−1(y) = swap[{k+log m,...,k},{`+log m,...,`}](x) + A0

Lemma 5 Given a matrix A of size 2n×2n and any tile of matrix A of size m×m, it exists

a unique mapping s.t. there is no self interference.
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6.2.2 Hardware Dynamic Mapping
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Figure 6.8: Line determination by comparators and decoder.

The main idea in the dynamic mapping is to associate any load on a vector/array with a

particular set of lines in the data cache. The association is done by the determination of the

bucket in memory from which the load is going to access data. We propose a binary search

approach by a comparison of the current load address with the start address of each vector

(or the normalized ones). The placement in a bucket of an address can be performed faster

when special hardware is deployed. In this short section, we present a solution based on fast

components as decoders and comparators. To explain our hardware solution we restrict the

number of buckets, alias the number of vectors interfering, to three (however, the approach
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can be generalized to any number of vectors).

In Figure 6.8 we can see that the starting address of three vectors have been converted

in analog voltage and set as input of one comparator. When a comparator switches off to

high voltage (Logic level 1), all the ones above do as well. When a comparator switches off

to low voltage (logical zero) all the comparators below do as well. The converter take the

outputs of the comparators and return a binary representation between 0 and 2 (with m

vectors, log m bits are enough). The code so determined will be used to determine the cache

line.

This implementation takes O(log n) steps (where n is the number of bits required to

represent a line), it requires O(m log m) space, and it is a mapping as stated in Theorem 7.
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Figure 6.9: Data Cache Line mapping determination using Digital Comparators

The intrinsic beauty of the implementation in Figure 6.8 is its simplicity. The bottleneck

of the mapping is in the A/D converter (theoretically O(log m) steps are required). The idea

can be implemented using digital hardware as we show in the following, Figure 6.9 and 6.10.
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Figure 6.10: Digital comparator implemented as prefix tree

Comparison between two integer numbers can be performed with dedicated hardware.

Comparison at first seems simpler than addition. But using logic with max fan in/out of

two, the best known algorithm to perform addition of two n bits takes O(log2 n) steps,

which is the same of any comparison based on the following recursive Equation 6.2, with

xup = x >> (n/2), yup = y >> (n/2), xr = x−(xup << (n/2)) and yr = y−(yup << (n/2)):

x < y ⇐⇒ (xup < yup) or (xup == yup and xr < yr) (6.2)

The digital comparator in Figure 6.10 takes 1 + log2n steps, and each step is composed

of at most two level of simple logic. It allows a thorough-put on one comparison per cycle.

The reference input (i.e. Ai) is bit-wise negated. A digital comparator takes O(2n) space.
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When the i-th comparators switches off to 1, i.e. Ai < x, then for every j < i Aj < x. When

the i-th comparators switches off to 0, i.e. Ai ≥ x, then for every j > i Aj ≥ x. Therefore

the output of the m comparators have only m possible configurations (as supposed to). The

comparator outputs determined a step function and the m-EXOR transform the step to an

impulse: only one line is set to zero and the others are 0. The encoder is easy to implement

and it will not take more than one level of digital logic.

This approach uses M comparators, a step-to-impulse converter and a m| log m encoder;

in fact, this implements a valid mapping with latency O(log n) and space O(nm + 2nm +

m log m + 2m). Notice that a proper control unit can be deployed to put asleep the part

of the circuit not needed reducing energy consumption. Though the structure proposed is

complex, however it computes a data cache mapping at any cycle. It also has a moderate

latency; for example, a conservative estimation will suggest a latency of up to 7 cycles when

n = 32, which is independent from the cache deployed.

The work of this parallel architecture is O(m2n + 2m) per access/address. If we con-

sider the algorithm presented in the proof of Theorem 7, the work is O(n log m) for each

address/access. Thus, we can see that the solution in Figure 6.9 is not work optimal. In

practice, if we implement the binary search purely in hardware with m comparators, we

can improve the work but at the cost of increasing the latency: we can achieve a latency of

O(log m log n) and work 8n log m per access.

In fact, only two comparators at any time do actual work, one performs a true comparison

and the other switches to zero from the previous comparison. The space is O(m2n log n), thus

we need more space due to the latches to store the input address x during the comparison.

See Figure 6.11 for an skeleton of the actual implementation.
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Figure 6.11: Data Cache Line mapping determination using Digital Comparators and binary
search

6.3 Dynamic Software Mapping

In this section, we investigate a software-hardware approach to minimize data-cache inter-

ferences for perfect loop nest with memory references expressed by affine functions of the

loop indexes. This is a common scenario, and other approaches have been presented and

powerful analysis techniques can be applied as well.

Briefly this section is organized as follows: in Section 6.3.1, we propose our approach in

conjunction with tiling to perfect loop nests, and in Section 6.3.2, we show that the approach

can be successfully applied to recursive algorithms as FFT.

6.3.1 Matrix Multiply

In matrix multiply, every memory reference in the loop nest body is determined by an affine

function of the loop indexes, for short, index function (note: scalar references, if any, are

array references with constant index function). An index function determines an address
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used to access the memory and the cache at a certain loop iteration. The idea is to compute,

in parallel to a regular index function, a twin function. The twin function is an affine

function of the indexes and it maps a regular address to an alternative address space, or

shadow address. The index function is used to access the memory; the twin function is

used to access the cache. In practice, a compiler can determine the twin functions as a result

of an index function analysis and it can tailor the data cache mapping for each load in the

inner loop.

Example 6.3.1 We consider square matrices of size N ×N .

for (i=0;i<N;i++)
for (k=0;k<N;k++)

for (j=0;j<N;j++)
C[i][j] += A[i][k]*B[k][j];

The reference A[i][k] is a constant in the inner loop and it has index function A0 + N ∗ i +

1 ∗ k + 0 ∗ j. The index function for C[i][j] (respectively, B[k][j]) is C0 + N ∗ i + 0 ∗ k + 1 ∗ j

(respectively, B0 + 0 ∗ i + N ∗ k + 1 ∗ j).

Matrix multiply loop nest can be reorganized to exploit temporal locality.

Example 6.3.2 Let us tile the loop nest by square tiles of size s× s; we assume that N is a
multiple of s, and matrices are aligned to the line size, and s is a multiple of the line size L:

for (i=0;i<N/s; i++)
for (j=0;j<N/s;j++)
for (k=0;k<N/s;k++)
for (kk=0;kk<s;kk++)
for (ii=0;ii<s;ii++)
for (jj=0;jj<s;jj++)
C[i*s+ii][j*s+jj] += A[i*s+ii][k*s+kk]*B[k*s+kk][j*s+jj];

When 3s2 < S, we achieve 2
sL

N3 + N2

L
memory accesses (cache misses). Cache misses

may be more, due to interference.

When we tile the loop as in Example 6.3.2, the index function can be described con-

cisely by three vectors (or projections onto 1-dimensional space), one for each matrix:

α1 = [Ns, 0, s, 1, N, 0], β1 = [0, s, Ns, N, 0, 1] and γ1 = [Ns,N, 0, 0, N, 1]. If we indicate
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with ι = [i, j, k, kk, ii, jj]t an iteration in the loop nest, the index function for A, B and C

are α1 ∗ ι + A0, β1 ∗ ι + B0 and γ1 ∗ ι + C0.

When matrix N = 2n > S, S = 2k and all matrices are stored continuously one after

the other (A0 + N2 ∗ ` = B0 and B0 + N2 ∗ ` = C0), there is cross interference between

references to different tiles (e.g., C[i ∗ s + ii][j ∗ s + jj] and B[k ∗ s + kk][j ∗ s + jj]) and

there is self interference between any two rows in the same tile (e.g., A[i ∗ s + ii][k ∗ s + kk]

and A[i ∗ s + ii + 1][k ∗ s + kk]).

When we tile the loop nest, we tile each matrix as well. Every tile is a square, as the

matrix, and it has size s × s. When matrices are aligned to the cache line (i.e.; A0%L =

B0%L = C0%L = 0) and all tiles are aligned to the cache line (i.e., s%L = 0 and N%L = 0),

we can change the data-cache mapping for all memory references safely.

An element in the 6-dimensional space is associated to a twin element in a 6-dimensional

space. The difference is that we enforce the projection of a twin tile to be a convex space on

a 1-dimensional space. The twin tile is stored continuously in memory - but the tile, with

which is associated, needs not. Any two twin tiles are spaced at interval of S elements; so

different twin tiles will be mapped into the same cache portion.

The twin function uses the following vectors: αs =
[

N
s
S, 0, S, 1, s, 0

]
, βs =

[
0, S, N

s
S, s, 0, 1

]
and γs =

[
N
s
S, S, 0, 0, s, 1

]
. The twin functions for A, B and C are αs ∗ ι, βs ∗ ι + s2 and

γs ∗ ι + 2 ∗ s2.

We consider in details the construction of αs =
[

N
s
S, 0, S, 1, s, 0

]
from α1 = [Ns, 0, s, 1, N, 0]

for matrix A. The components α1[0] and α1[2] allow the computation to access different tiles

of matrix A: α1[0] = Ns allows to go from tiles to tiles of size s2 = S in the same column,

and α1[2] = s allows to go from tiles to tiles in the same row. These two components become

αs[0] = N
s
S and αs[0] = S respectively. The coefficients α1[4] = N and α1[3] = 1 allow

the computation to access elements in a tile: α1[4] allows to access element in the same

column of the tile, and α1[3] allows to access elements in the same row of the tile - and
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stored continuously in memory. They become αs[4] = s and αs[3] = 1.

The original coefficient that is unitary is left unchanged (e.g., α1[3] = 1 and αs[3] = 1)

so a line in memory is a line in cache.

6.3.2 Fast Fourier Transform

A n-point Fourier Transform, n-FT, can be represented as the product of a matrix by a

vector: y = Fn ∗ x with x,y ∈ Cn and Fn ∈ Cn×n. Each component of y is the following

sum: yk =
∑n−1

i=0 xiω
ik
n , where ωn is called twiddle factor.

When n is the product of two factors p and q (i.e., n = pq) we can apply Cooley-Tookey’s

algorithm. The input vectors x can be seen as q × p matrix X stored in row major. The

output vector y can be seen as a matrix Y of size q × p but stored column major. We can

write the n-FT algorithm as follows:

1. for every i ∈ [0, p − 1], we compute X[0,q−1],i = FqX[0,q−1],i –this is a computation on

the columns of matrix X;

2. we distribute the twiddle factors, Xi,j = ωij
n Xi,j;

3. for every i ∈ [0, q − 1] we compute Xi,[0,p−1] = FpXi,[0,p−1];

4. Y = X t.

Algorithms implementing n-FT on n = 2µ points are well known, and attractive, because

the designer can reduce the number of computations (twiddle factors reductions). However,

they are inefficient when the cache has size S = 2k due to their intrinsic self interference. Im-

plementations, such as FFTW [12], may exploit temporal locality through copying the input

data on a temporary work space. Nonetheless, the spatial locality between the computation

of X[0,q−1],i = FqX[0,q−1],i and X[0,q−1],i+1 = FqX[0,q−1],i+1 is not exploited fully; because two

elements in the same column of X interfere in cache, preventing the spatial reuse. Even
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though the cache interference is responsible for relatively few misses, it effects every level of

the memory hierarchy - memory pages too. Any improvement in the number of misses at

the first level of cache, even small, is very beneficial for a multilevel cache system.

Sub-problems of n-FT access data in non-convex set, therefore our algorithm cannot be

applied as is. We follow a very simple implementation of a recursive algorithm. When we

execute the algorithms on the columns of X, the original input matrix X of size p × q is

associated with its twin image in X ′ of size p × (q + `) where ` is the number of matrix

elements that can be stored in a cache line. If q%` 6= 0, elements in the last and first column

of X share the same cache line. If the input vector does not fit the cache, the first and the

last column of X are not accessed at the same time; the cache coherence is unaffected.

6.3.3 Architecture

To describe the effects of the dynamic mapping approach on the architecture design we

use the block structure of MIPS R10K microprocessor, Figure 6.12. We use MIPS but these

modifications can be applied to other processors like SPARC64 processors as well. SPARC64

has a large integer register file (RF), 32 registers directly addressable but a total of 56 for

register renaming; it is a true 64 bits architecture, and it has only one level of cache.

The twin function is performed in parallel with the regular index function. The compu-

tations share the same resources, integer units and register file. The twin function result will

be stored in the register file, but it is not really an address. The address calculation unit

(ACU) and TLB do not process the twin function result. The twin functions need not to be

valid addresses in memory at all.

The architecture is as follows. The instruction set is augmented with a new load instruc-

tion with three operands, or registers: the destination register, the index function register

and the twin function register. The load instruction becomes like any other instructions,

with two source operands and one destination. To improve performance, a load can be is-
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Figure 6.12: Proposed architecture, designed based on MIPS R12K

sued as soon as the twin index function is computed to speed up the access in cache. The

twin function can be used directly by the cache without further manipulation. The regular

index function is really necessary in case of a miss and ACU and TLB must process it. We

can imagine that a possible implementation may decide to execute the regular index function

only when a miss happens. We can see there is potential to change cache mapping without

increasing the hit latency time in cache. The design remains simple: the functional units

communicate with the register files only and the register file with the first level of cache only.

The design can be applied even when a cache is multi-ported; that is, when multiple loads

and writes can be issued to cache.
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The proposed approach increases integer register pressure and it issues more integer

instructions because of the index computations. The compiler may introduce register spills

on the stack, but in general, they are not misses in cache (having temporal and spatial

locality). Index function and twin index function are independent and we can issue them in

parallel. If the number of pipelined ALUs does not suffice the parallelism available, the index

function can lead to a slow down. The slow-down factor is independent from the number of

index functions and it is no larger than 2. (The slow-down factor and the total work can be

reduced issuing the index function only in case of a miss; we increase only the cache miss

latency.)

To avoid consistency problems the data cache is virtually indexed and physically tagged.

The new type of load does not affect how many load instructions can be issued or executed

per cycle. We assume that an additional RF output port has a negligible effect on the

register file access time. (Otherwise, twin functions can be processed in parallel with the

index functions and dedicated RF can be used.)

6.3.4 Experimental Results

Dynamic Mapping is applied to two applications, Matrix Multiply (Section 6.3.4, Example

6.3.2) and FFT (Section 6.3.4). We show the potential performance on 5 different systems.

Indeed, the algorithms are performed only using the twin function (no regular index function

is performed).

Matrix Multiply

We implemented the matrix multiply as described in Example 6.3.2 in Section 6.3.1. The

application has spatial and temporal locality. Our goal is to show the cache improvements

due to dynamic mapping, Figure 6.13. We measure the cache performance of matrix mul-

tiplication with either standard index function or dynamic mapping –not both. The two

algorithms have the same number of operations, memory accesses and most probably the
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Figure 6.13: Matrix Multiply on Blade 100, miss rate comparison.

same instruction schedule. The only difference is the access pattern. The dynamic mapping

allows a stable miss ratio across different input size (2% which is close to the expected,

roughly 1

`
√

C/3
=

√
3

2
√

2048
) removing cache miss spikes altogether.

We always improve cache performance. We can see a cache miss reduction of 30% in

average and up to 8 times cache miss reduction for power of two matrices.

In this section, we do not take into account the effects of register allocation, which

can improve cache and overall performance. An optimal register allocation, for both tiled

and recursive algorithms, can reduce the number of memory accesses and exploits a better

data reuse at register level. In general, register allocation is not designed to reduce cache

interference and it is machine dependent - different libraries use different register allocations,

see for examples of register allocation for matrix multiply kernel [22, 103].

n-FFT

We implemented our variation of Cooley-Tookey algorithm as follows.
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Cooley-Tookey algorithm finds a factorization of n in two factors so that n = p∗q. When

two factors are found, the problem is decomposed in two sub-problems. We can represent

this divide and conquer algorithm by a binary tree. An internal node represents a problem of

size m and its children the factors of m - and the two subproblems. The leaves of the binary

tree are the codelets from FFTW [12] - codelets are small FFTs of size between 2 and 16

written as a sequence of straight-line code. The binary tree can have a hight between 1 and

O(log2 n). The tree hight is 1 when n is prime and we need to perform O(n2) operations. In

case one of the two factors is always between 2 and 32, the tree hight is at most O(log2 n) -

when n = 2k - and we need to perform O(n log2 n) operations.

Our algorithm aims at a balanced decomposition of n in two factors, such as n = p ∗ q

and p ∼ q, that is, the difference |p− q| is as small as possible. The binary tree can have a

hight at most O(log2 log2 n) –when n = 22k
– however, we need to execute always O(n log2 n)

operations.

We show the performance of our FFT with and without dynamic mapping in Figure

6.14 and 6.15. The bars represent normalized MFLOPS: given an input of size n, we show

n ∗ log n/(106 ∗ timeOneFFT ), where timeOneFFT is the average running time for one

FFT. Since our implementation does not have the same number of floating point instructions

of FFTW, we opted to measure the execution time and determine a normalized number of

FLOPS –even when n is prime. Every complex point is composed of two float point numbers

of 4 byte each (we want to have spatial locality for 16 B cache line size).

We choose to show performance in MFLOPS instead of data-cache miss rate for two

reasons. First, the reduction of cache misses using dynamic mapping is small, but the

performance improvement is extremely significant. Second, the implementation is one for all

architecture, therefore we may compare performance across architectures.

We collected experimental results for four algorithms: we identify with our FFT, our im-

plementation of Cooley-Tookey algorithm; Dynamic Mapping is our FFT when dynamic
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Figure 6.14: FFT Ultra 5 (330MHz), Enterprise 250 (300MHz) and Blade 100 (500MHz).
Normalized performance: n ∗ log n/(106 ∗ timeOneFFT ), where timeOneFFT is the av-
erage running time for one FFT. The bars from left to right:Upper Bound, Dynamic
Mapping,our FFT and FFTW
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mapping is applied; we identify with Upper Bound a recursive algorithm for FFT that

accesses the cache with an ideal pattern (but invalid). When present, FFTW is the Fastest

Fourier Transform in the West [12]. FFTW is used as reference to understand the rela-

tion between the performance of our implementation, the potential performance of dynamic

mapping and the performance of a well known FFT. Dynamic mapping could be applied to

the FFTW as well, and the improvements would be proportional to the ones shown in this

section.

In Figure 6.14, we show that our implementation is efficient for large power-of-two inputs,

but also, it has no steady performance - as FFTW. The performance is a function of the

input size. Indeed, the performance is a function of the input decomposition. Large leaves

allow fewer computations, therefore better performance. Since the decomposition does not

assure that all leaves have the best size, this behavior is expected.

We can notice that for small n, the performance of our implementations may be faster

than expected (or slower). This is due to several reasons. One of them is the accuracy prob-

lem: the execution of other processes effect the execution-time measure under investigation

(e.g., caches, register file, ALU and FPU pipeline trashing). For fairly large to very large

problems, where the memory hierarchy is utilized intensely, dynamic mapping lays between

its upper bound and our implementation of FFT, as expected.

The characterization of the worst and best performance is twofold: first, it shows the

performance we can achieve, the performance we can achieve with dynamic mapping and

ideal performance if cache locality is fully exploited; second, when there is no reference

for execution time, we are still able to have an estimation of execution time and potential

performance.

FFT is an excellent example of application with a high self interference. Even caches

with a large cache associativity cannot cope with the loss of performance due to interference

for large number of points. In Figure 6.15, we present performance for two systems with
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Figure 6.15: FFT Silicon Graphics O2 and Fujitsu HAL 300 Normalized performance: n ∗ log n/(106 ∗
timeOneFFT ), where timeOneFFT is the average running time for one FFT. The higher the bar the better
the performance. The bars from left to right:Upper Bound, Dynamic Mapping,our FFT
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associative caches: SGI O2 and Fujitsu HAL 300.
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CHAPTER 7

Conclusions and Future Work

For a student, a thesis is often considered as the presentation of years of research and a

major component for the completion of a degree, in this case for a Doctorate in Philosophy.

In fact, a thesis is often considered as the final documentation of the successes (and failures)

associated with an original work (of a student). However, the organization and production of

this thesis has been for me a concrete backbone to drive my curiosity and my research and it

has not been just the last push to achieve a degree. As such, being a research backbone, this

thesis is self contained and it introduces few novel ideas and approaches, and, thus, their

effects; however, for the same reason, this thesis is incomplete and it leaves (unwillingly)

open some questions and applications that I shall answer and apply after this work has been

submitted and retired. In this last section, we shall summarize the main contributions of

this thesis and also draw our conclusions and possible avenues for future work.

The novel contribution of this thesis is the presentation and practice of two basic ideas

for the analysis and optimization of recursive D&C algorithms: first, the recursion-DAG as

computation model for recursive D&C algorithms; and second, the practical and symbolic

data-cache miss analysis for parameterized loop nests.

In fact, the recursion-DAG is a concise structure that can be used as profiling tool for

the unfolding of recursive algorithms so to apply high-level optimizations such as function

specialization and function cloning for applications that previously could not be optimized
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at such level. Though optimizations at compile time are the main topic of this thesis, the

recursion-DAG could be used for synthesis purpose and it could extend the capability of cur-

rent synthesis tools to recursive functions as well. We present the practical implementation

of this idea introducing JuliusC.

The cache-miss static analysis based on the application of the Cache Miss Equation

(CME) Model introduces new ideas for the solution of a difficult problem such as the cache

analysis of loop nests with unknown loop bounds at compile time. The practical application

of data cache miss estimation opens new avenues to a compiler for the application of known

and new optimizations. In fact, such an analysis allows the compiler to estimate statically

whether or not specific optimizations are beneficial previously achievable only by profiling

techniques. We have found and presented three different optimizations such as data-cache

line size adaptation, dynamic mapping and spatial reuse. These optimizations can be driven

by a careful data cache analysis and they aim at either the annihilation of cache interference

or the reduction of the effects of cache interference on the application performance.

The recursion-DAG and the cache miss analysis have a natural application for the design

and optimization of parallel linear algebra applications. In fact, the recursion-DAG can be

used as intermediate representation of the application execution and, with data dependency

analysis, it can be used for the spawning of threads and processes so to exploit parallelism

and high level of granularity. In practice, the spawning should be driven by the problem

size (foot print), which, in turn, can be annotated into the recursion-DAG in advance and

statically.

Then, the spawned thread should be optimized so as to exploit the processor character-

istics and, especially, the memory hierarchy available at processor level. In fact, a process

is spawned so as to have the right problem size for the processor and, thus, an optimal

utilization of the processor resources will translate in high and predictable performance of

the locally running process and of the entire parallel application.
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As an intermediate step for the application of our techniques to parallel application, we

would like to investigate how a compiler or an expert developer would choose the division

strategy (of a D&C algorithm) to exploit parallelism and performance. For example, ma-

trix multiply has different D&C algorithms such as the classical algorithm introduced in

Section 4.2 or Strassen’s algorithms. These two algorithms have very different number of

floating point computations, the classic algorithm has O(n3) madd operations and, in con-

trast, Strassen’s has only O(n2.86). To a closer investigation, the number of basic operation

is not the only difference between these two algorithms. In practice, the two algorithms

exploit different data locality; for example, the classic algorithm has and presents temporal

and spatial data locality; in contrast, Strassen’s algorithm has little temporal data locality

and mostly spatial locality (because Strassen’s requires the application of matrix additions,

which have spatial locality only).

The determination of a recursive algorithm guided by a quantitative and concise measure

of the performance of both algorithms is a basic milestone towards a quantitative evaluation

of the characteristics of the algorithms. This can be used so as the recursive algorithm,

without any further directives by the developer, can choose the optimal algorithm for a

specific system and input problem. Due to the importance of matrix multiply, this approach

should be generalizable to families of applications such as linear algebra routines, where

matrix multiplication is a basic kernel. Moreover, this approach can be used by a parallel

algorithm as well.

The design of parallel applications for multiprocessor systems is complicated by the in-

terconnection among every processor. In fact, the codes should be implemented keeping in

mind the processor interconnections – which is not easy. In practice, the implications of

such an adaptive-code design for a parallel application is a work in progress, however it is

receiving plenty of attention for uniprocessor systems.

In fact, the processor capabilities and its configurations/variations are evolving as such a
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high speed that the software is becoming the slow-changing component of a system and

often the most expensive. Adaptive codes, such as the one using a mix approach of Strassen’s

and the classic algorithm for matrix multiply, are receiving more and more attention by the

research community because they bring back the software to be the malleable and portable

component of a system. A system where both components aim at achieving the best possible

performance.
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