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Abstract—Learning-based classifiers are increasingly used for
detection of various forms of malicious data. However, if they
are deployed online, an attacker may attempt to evade them
by manipulating the data. Examples of such attacks have been
previously studied under the assumption that an attacker has
full knowledge about the deployed classifier. In practice, such
assumptions rarely hold, especially for systems deployed online.
A significant amount of information about a deployed classifier
system can be obtained from various sources. In this paper, we
experimentally investigate the effectiveness of classifier evasion
using a real, deployed system, PDFRATE, as a test case. We
develop a taxonomy for practical evasion strategies and adapt
known evasion algorithms to implement specific scenarios in our
taxonomy. Our experimental results reveal a substantial drop of
PDFRATE’s classification scores and detection accuracy after it
is exposed even to simple attacks. We further study potential
defense mechanisms against classifier evasion. Our experiments
reveal that the original technique proposed for PDFRATE is only
effective if the executed attack exactly matches the anticipated
one. In the discussion of the findings of our study, we analyze
some potential techniques for increasing robustness of learning-
based systems against adversarial manipulation of data.

I. INTRODUCTION

Data analysis methods such as machine learning are increas-
ingly used in security applications. For tasks like malware
analysis, deployment of learning methods has become almost
imperative. Data-driven analysis enables automatic attribution
of seemingly heterogeneous malware samples to a modest
number of genuine malware families [1], [2]. Recent work
has also witnessed several innovative applications of machine
learning for detection of various kinds of security violations,
e.g., drive-by-downloads [3], [4], malicious web pages [5],
[6], compromised accounts and fake identities in social net-
works [7], [8], unwanted P2P traffic [9] and many others.

Clearly, deployment of learning methods in any security-
critical context requires that they can withstand potential
attacks. The security of machine learning methods has been
previously discussed from conceptual [10], methodical [11],
[12], [13], [14] and practical [15], [16], [17] viewpoints.
Despite the growing evidence for susceptibility of learning-
based approaches to adversarial data manipulation, this seems
to be of little hindrance for their acceptance as a versatile
tool for data-intensive security tasks. Typically, the security
analysis of proposed learning-based techniques is carried out

informally and is occasionally supported by experimental
evaluation.

Security assessment of learning-based approaches faces
several challenges. The main theoretical hurdle is the lack of
formal definitions of security in the context of data analysis.
In contrast to privacy, for which several formalisms have
been proposed, e.g., privacy-preserving data mining [18] or
differential privacy [19], no formal connection to established
security objectives is known for machine learning. From the
practical perspective, the success of attacks against learning
algorithms crucially depends on the amount of knowledge
available to an attacker. Most of the previously reported
successful attacks assume that the attacker has full knowledge
of the learned model [20], [15], [16], [21], [17], [22]. It can,
therefore, be argued that reducing the amount of knowledge
leaked about the model, as well as a proactive response
to potential exploitation of such knowledge should provide
adequate protection against adversarial data manipulation.

Still, it remains largely unclear what an attacker may learn
about a learning-based method deployed “in the wild” and how
this information can be exploited. To investigate this problem,
we present the results of a case study we performed on a
real learning-based system, PDFRATE1, an online service for
detection of PDF malware [23]. For any submitted PDF file,
PDFRATE provides a probabilistic estimate of its malicious-
ness. Our study addresses the case when an attacker attempts
to evade detection by modifying the submitted PDF file so that
its malicious functionality remains intact but the probabilistic
score returned by PDFRATE is decreased.

We proceed by presenting two classes of evasion strategies
suitable for several attack scenarios varying in the amount
of knowledge available to the attacker. Since PDFRATE is
a research system, its method and technical details are rel-
atively well documented in the original research paper [23]
and the accompanying technical report [24]. Based on this
information, it is possible to partially reconstruct the features
used for creation and evaluation of models, reproduce the
training procedures and even independently obtain some of the
training data2. To systematically explore the attacker’s options,

1http://pdfrate.com/.
2One of the training datasets used by PDFRATE is publicly available for

the research community.

http://pdfrate.com/


we define an orthogonal set of evasion strategies reflecting
various degrees of available knowledge, described in detail
in Section II. The general idea of our evasion technique is
based on insertion of dummy content into PDF files which
is ignored by PDF renderers but affects the computation of
features used in PDFRATE, as elucidated in Section V-B.
Once we can influence a subset of PDFRATE’s features, we
develop algorithms for constructing attack instances, presented
in Section V-C. In the experiments of Section VI, we evaluate
the effectiveness of our strategies on a set of 100 malicious
files randomly drawn from a dataset known to PDFRATE.

Our results reveal that even with the smallest amount of
available information, i.e., an ability to freely modify one sixth
and increment another one sixth of the features, our attacks re-
duce the classification scores of PDFRATE from almost 100%
to the median of about 33%. Additional information about
the classifier, such as the knowledge of its type (trivial) and
possession of the training dataset (somewhat more difficult to
obtain), further decreases the median score to about 28%.

We have analyzed the defense strategy suggested and eval-
uated by the authors of PDFRATE, although we do not know
if it is deployed in the online system. The attack scenario
of [23] assumes that the attacker instruments a small subset
of informative features. It was shown that this attack can
be effectively thwarted by including a small portion of the
anticipated attack data into the training set. We reconstructed
this attack and verified the effectiveness of the original de-
fense strategy. However, such proactive defense turns out to
be effective only against the precise “strain” of the attack.
Whenever the executed attack does not match the anticipated
one, the effect of the proactive defense essentially vanishes,
and the detection accuracy falls below 10%.

Our contributions can be summarized as follows:
• We present a general model for practical assessment

of security of learning-based detection techniques. This
model enables systematic exploration of various kinds
of information leaks exploitable by an attacker and is
applicable to systems beyond PDFRATE that have a
modifiable subset of features.

• We present two evasion attacks that can be staged against
a deployed classification model in various scenarios.

• We demonstrate the first automated practical attack
against a learning-based classifier deployed “in the wild”
performed without knowledge of the learned model and
entirely in problem space.

• We provide an open source software framework for all
experiments carried out in our study for independent
verification and extension of our results.

II. EVASION ATTACKS AGAINST LEARNING SYSTEMS

Any learning-based system which is deployed in a real-
world environment and for which there exists a critical amount
of economic, political or military interest is certain to attract
the attention of individuals or groups striving to gain advantage
by manipulating the system in order to influence its decisions.
There are numerous examples of such activities. Besides the

Fig. 1. Taxonomy of evasion scenarios for classifier systems. In every
scenario, represented as a point, the knowledge about a given classifier
component is high if the scenario point is within that component’s circle,
otherwise low.

computer security applications mentioned in the introduction,
potential scenarios for such manipulation include adversarial
advertisements [25], spam detection [26], [27], recognition of
writing style [28], plagiarism detection [29] and many others.

In this work we focus on classifiers, a particular kind of
learning systems, which classify new data into two or more
predefined categories. Classifiers usually make predictions by
computing some numeric or probabilistic score and comparing
it with a fixed threshold. The goal of an adversary aiming
to manipulate a classifier is to confuse it into providing a
false classification. For binary classification problems, false
classifications are called false positives and false negatives.
From an adversarial viewpoint, the more information about
a learning-based system is available, the higher the chances
become that the system can be successfully gamed.

The essential components comprising every learning-based
classifier system are:
• the set of features used by the classifier
• the training dataset used for classifier training
• the classification algorithm with its parameters.
It is, therefore, in the interest of the adversary to maximize

their knowledge about the target classifier’s components. For
example, an adversary A who knows the feature set and
training dataset of a certain classifier has a higher chance of
evading it than an adversary B who only knows the feature
set. In this sense, the two adversaries A and B are operating
under different evasion scenarios. An evasion scenario is a
problem setting for evasion from an adversary’s point of view.
It describes the classifier system information available to the
adversary in a structured way: it outlines whether the adversary
has a low or high amount of knowledge about the feature set,
training dataset and classification algorithm.

To systematically explore evasion attacks against classifier
systems, we propose the taxonomy of evasion scenarios, de-
picted in Fig. 1, based on the amount of knowledge adversaries
possess about the three components of a classifier system.

Our taxonomy comprises 8 evasion scenarios. Their names



describe the information available to the adversary. If any of
the letters F , T or C, corresponding to the classifier com-
ponents feature set, training dataset and classifier algorithm,
respectively, is present in the name of a scenario, then the
level of knowledge about the given classifier component the
adversary has in this scenario is high, otherwise low. The
scenario named O refers to the case when the adversary has
low knowledge about all three classifier components.

In our taxonomy, high knowledge does not necessarily mean
complete knowledge, and vice versa. There exist no strict
criteria for deciding whether the knowledge level about a
certain classifier component should be categorized as high or
low. We consider the knowledge level high if it can be used
to the substantial advantage of the adversary, otherwise low.

Our study is limited to the 4 evasion scenarios in which
the level of knowledge about the feature set is high. Without
the knowledge of features, the attacker is faced with a major
challenge of either deducing them from observation of clas-
sification results, or otherwise to attempt to directly measure
the sensitivity of a classifier to changes in the original data.
We are currently not aware of any techniques for addressing
these issues and therefore leave the investigation of scenarios
with low feature knowledge for future work.

In the following subsections, we describe high-level algo-
rithms for staging evasion attacks in the 4 scenarios of interest.

A. Scenario F

In scenario F, only the feature set is available to the
adversary, to a varying extent. The adversary might be aware
of some or all features, mistakenly consider obsolete features
as being used, be capable of reading a subset or all features
or be able to modify some or all features to a varying degree.
Manipulation of a sufficient subset of features is, however,
required in order to be able to modify samples and proceed
with evasion.

An adversary with no knowledge about the classifier and
training dataset may still perform evasion. If he has access to
data samples, certified to be benign by the target classifier,
he can try to align his malicious examples with known
benign examples. This strategy is known as a mimicry attack.
A particular implementation of this attack for PDFRATE is
presented in Section V-C1. In general, mimicry attack is most
effective if an attacker can submit probes to the target system
during the course of attack, in order to ensure the benign
classification of the source examples for the mimicry attack
or to choose among multiple benign sources. However, online
probing of a target system may be detectable and is therefore
less desirable than a fully offline attack, in which only the
final result is submitted to the target system.

An adversary that collects a sufficient amount of malicious
samples, e.g., those found on the black market, may combine
them with a collection of benign samples and thus build a
surrogate dataset. This dataset can be used to train an off-the-
shelf, surrogate classifier, which can then be evaded using
a special-purpose attack tuned for this particular classifier.
The rationale behind the surrogate classifier attack is that the

inference of predictive models is based on general statistical
properties which are shared among many learning methods.
Hence, it is quite likely that one can approximate an unknown
classifier with a suitable proxy classifier whose behavior can
be controlled by the attacker. The effectiveness of this strategy
critically depends on the quality of the data available to the
attacker. If surrogate data is a realistic sample of the true
distribution of the training data, one can expect the resulting
attack to be effective against the original, unknown target
classifier. The attack based on the surrogate classifier can be
performed offline, with only the final result submitted to the
target classifer.

B. Scenario FT

This scenario enables the adversary to take advantage of the
knowledge the target classifier’s training dataset, in addition
to the known features. The dataset may be fully or partially
leaked, enabling more accurate decisions in the process of
generating a successful attack sample.

Knowledge of the benign training points enables the adver-
sary to generate evasion samples which closely mimic them,
using the mimicry attack, thereby increasing the chances of
a successful attack in comparison to scenario F. Training a
potent classifier on the original dataset creates a surrogate
classifier that better approximates the target classifier than the
on trained in scenario F, again opening up the way to the
use of tailored methods for evasion of the surrogate classifier.
Knowledge of training data enables the attacker to perform the
entire attack offline before submitting the final result.

C. Scenario FC

In Scenario FC, the adversary knows the feature set and
some details about the classifier, such as its type, parameters or
the specific implementation. An adversary with no information
about the training dataset at all and without a surrogate dataset
has little advantage of knowing the classifier. With a surrogate
dataset they can train a surrogate classifier of the right type,
yet the accuracy of this approximation depends on the quality
of the gathered data. This attack can also be performed offline,
similar to other attacks based on surrogate classifiers.

D. Scenario FTC

The adversary has the best chance of evading the tar-
get classifier if he knows the details of all three classifier
components. In that case, he can fully reproduce the online
classifier in an offline setting, submitting the attack results only
when a sufficiently good evading sample has been found. An
offline mimicry attack or an offline classifier-specific attack
that defeat the offline classifier have a strong probability of
defeating the online one as well.

Before presenting the target system PDFRATE and the
specific algorithms used to implement the abovementioned
general attack scenarios, we give a short overview of the
Portable Document Format (PDF) in the following section.



Fig. 2. An example PDF file (detail).

III. THE PORTABLE DOCUMENT FORMAT

The Portable Document Format (PDF) is a file format
that enables creation of documents that render and print
consistently, independent of the underlying environment, and
is published as an open standard, ISO 32000-1:2008 [30]. A
PDF file, as depicted in Fig. 2, consists of a header with
the PDF magic number and format version, body, a set of
PDF objects that comprise the structure and content of the
file, the cross-reference table (CRT) that indexes the objects
in the body and trailer, pointing to the CRT. The beginnings of
the header, CRT and trailer are denoted by keywords %PDF,
xref and trailer, respectively. Objects in the file body
are introduced with the keyword obj and a pair of integer
identifiers. Objects can be of different types, e.g., numbers,
strings, names (identifiers), dictionaries (sets of key-value
pairs where key is always a name object and value can be any
object type, including another dictionary), indirect references
(“pointers” to other objects), streams (dictionaries with addi-
tional encoded and/or compressed content) etc. ISO 32000-1
prescribes some dictionaries to carry special meaning, such as
those whose Type is JavaScript (containing executable
JavaScript code), Metadata (with information about the file
such as its author, title, creation and modification dates, etc.)
or Page (describing a single page). A special type of streams,
called object streams, may contain other objects as part of the
encoded and/or compressed stream contents.

The header, body, CRT and trailer constitute the file struc-
ture of a PDF file, i.e., the content of the file’s bytes that can
be directly read by software agnostic of the PDF format. The
objects in the file body form a graph-like logical structure,
called the PDF document structure, by means of indirect links
to other objects or their direct embedding. The appearance of
pages is described by content streams. However, we limit our
interest at the file structure level because PDFRATE does not
parse PDF files, i.e., it only reads their raw bytes.

IV. PDFRATE

PDFRATE employs the Random Forest algorithm to classify
PDF files into benign or malicious based on their metadata and

certain structural features3. The following subsections provide
an overview of PDFRATE’s features, classification algorithm,
datasets and adversarial considerations; further details can be
obtained from the original paper [23].

A. Features

PDFRATE employs a total of 202 integer, floating point and
boolean features. 135 of those were described in [24], the rest
remain unknown. A subset of features are shown with their
values for one specific file in Fig. 4, Section V-B. The features
reflect various properties such as size and version of the file,
character counts of PDF metadata items such as author name,
creation and modification date, structural properties such as
the count of Acrobat forms and their relative positions in the
file, etc. All features were manually defined by the authors
and selected for best classification performance and robustness
against adversaries, respectively. The features are extracted
by running a set of regular expressions on raw bytes of the
PDF file. By not performing proper PDF parsing, authors of
PDFRATE have consciously given preference to speed and
simplicity rather than completeness and correctness, as some
of the features might lay in encoded and/or compressed object
streams, beyond the reach of regular expressions.

The features exhibit significant interdependence. When one
feature’s value is modified, many others may be affected
because they directly or indirectly depend on the targeted
feature. For example, by modifying the number of lower-case
characters of the Author metadata field (author_lc), the
related feature author_len will be affected, but so will less
directly related ones such as file size (size). A change in size
triggers further changes of seemingly completely unrelated
features pos_acroform_*, that denote the relative file
offset of one or more keywords AcroForm. Feature inter-
dependence makes the adversarial control of feature values
difficult.

B. Datasets

Three datasets were involved in the creation and evaluation
of PDFRATE. Three models have been trained on them, which
are used separately to assess new data submitted by users.

Two of the three datasets were used in the experimental
evaluation of PDFRATE presented in [23]: Contagio and
Operational. The Contagio dataset is a collection of malicious
and benign PDF files contributed by malware researchers,
available for download4. Training of PDFRATE was carried
out on a subsample of the Contagio dataset containing 5,000
benign and 5,000 malicious files5. The trained classifier was
evaluated on the Operational dataset comprising 100,000 PDF
files collected “on a large university campus”. Presumably, the
same dataset was used to train the model currently available
as the George Mason University (GMU) used by PDFRATE.

3 PDFRATE’s structural features describe physical rather than logical
structure, and are not to be confused with the PDF document structure.

4 The Contagio archives are available at the following URL: http://
contagiodump.blogspot.de/2010/08/malicious-documents-archive-for.html.

5 A list of MD5 sums of those files was published: http://pdfrate.com/
contagio md5 class.csv.

http://contagiodump.blogspot.de/2010/08/malicious-documents-archive-for.html
http://contagiodump.blogspot.de/2010/08/malicious-documents-archive-for.html
http://pdfrate.com/contagio_md5_class.csv
http://pdfrate.com/contagio_md5_class.csv


The last dataset, Community, was created from files sub-
mitted and rated by PDFRATE users and was not used in its
original evaluation.

C. Classification Algorithm

PDFRATE employs Random Forest [31], an ensemble learn-
ing method comprising a number tRF of independently trained
decision trees. In the training step, every tree is learned using
CART methodology, but using only a subset of the available
training samples. A different subset is generated for every
tree by randomly sampling a fixed number of times from the
training data, with replacement – a procedure called bootstrap
aggregating or bagging. When a new decision node is added
to a tree, only a randomly chosen subset of fRF features
is considered, where fRF is less than the total number of
features. A decision is made by majority voting among all
decision trees on a given new data point. Random forests are
known for their excellent generalization ability and robustness
against data noise. PDFRATE uses the R port of Leo Breiman’s
and Adele Cutler’s original Random Forest implementation,
available as the package RANDOMFOREST6. tRF and fRF

are parameters of RANDOMFOREST called ntree and mtry,
respectively. The values ntree = 1000 and mtry = 43 are
used by PDFRATE.

All three classifiers deployed by PDFRATE, i.e. the ones
trained on the Contagio, GMU, and Community datasets,
produce as their result the output of their decision function,
i.e., a real value in the interval [0, 1] denoting the percentage
of decision that have labeled the submitted file as malicious.
There is no threshold given in [23] determining at what
percentage should a file be considered malicious. Note that by
providing this percentage value instead of a binary decision,
PDFRATE reveals much more information about its classifi-
cation engines than it is necessary for decision-making and
thus enables the adversaries to make more informed decisions
when developing their evasion methods.

D. Adversarial Considerations

Before describing our attacks, we discuss the properties of
PDFRATE crucial for the adversarial setting of our study.

In our evaluation, we are only concerned with the evasion
of the Contagio classifier. We do not consider the GMU
and Community classifiers because their training datasets
were unavailable to us and hence we could not evaluate
the full spectrum of attack scenarios defined in Section II.
Besides being freely available, the Contagio dataset seems
to remain static. Periodic retraining, an important security
measure, would have complicated the consistent evaluation of
effectiveness of our evasion methods, as every classifier update
would have rendered previous results outdated. Furthermore,
although PDFRATE provides a second level of analysis by
classifying malicious files into “targeted” and “opportunistic”,
our study is limited to evading the initial binary classifier.

From an adversarial perspective, the level of knowledge
available to attackers about PDFRATE is high. The availability

6 http://cran.r-project.org/web/packages/randomForest/index.html

of its feature definitions facilitates the creation of manipulated
samples. Although robust against data noise, the Random
Forest classifier was not designed for resilience against ad-
versarial noise. Periodic retraining is also not carried out in
the deployed system. These weaknesses make PDFRATE an
excellent candidate for our case study. Other, more promi-
nent machine-learning-based malware detectors have features
which are either unknown or much more difficult to control.

Despite its weaknesses, adversarial considerations were
indeed present in PDFRATE’s inital design. The attack model
considered in [23] assumes that the adversary knows the means
and standard deviations of the 6 most important features, i.e.,
those on top of the list of variable importance measures of the
Random Forest model, for the benign training files. The adver-
sarial model assumes that an attacker can create camouflaged
malicious samples in which a subset of top features is set to
random values drawn from the normal distributions with the
given means and standard deviations characterizing the benign
samples. This attack will be referred to as “benign random
noise” (BRN). It was shown in [23] that the BRN attack can
severely degrade the detection accuracy of the classifier. To
counter this attack, a proactive defense strategy was proposed:
to modify a subset of malicious data points in the training set
in exactly the same way as an attacker would proceed. This
simple defense strategy proved to be surprisingly effective.

The BRN attack was implemented synthetically, i.e., by
modifying the top 6 features directly in feature space. There-
fore, it does not address the issue of whether real PDF files can
be generated with the required feature vectors. Due to strong
feature interdependencies, such an assumption is unrealistic
in practice. In our evaluation of the defense mechanisms
presented in Section VI, we depart from the feature space
and evaluate this attack using real PDF files. Furthermore,
we investigate the robustness of the proposed countermeasure
against our own mimicry attack.

V. METHODOLOGY

Since our study of evasion scenarios assumes a stealthy
attacker, the key elements of our methodology involve reim-
plementation of the methods deployed by PDFRATE. We
first reconstructed a subset of PDFRATE’s features using the
available public knowledge. The next step was to develop
a technique for manipulation of PDF files which affects the
selected subset of features. The last step in our methodology
was to design attack algorithms for carrying out the generic
attack strategies presented in Section II.

The above techniques and methods were implemented in
our experimental evasion framework called MIMICUS. The
framework consists of a Python module which supports feature
extraction, PDF file modification, upload to PDFRATE and
score retrieval, training of classifiers and performing attacks
against them. MIMICUS is free and open source software,
suitable for extension with other attacks and attack targets. It
is available for download7, bundled with all training data (as

7 MIMICUS – https://github.com/srndic/mimicus.

http://cran.r-project.org/web/packages/randomForest/index.html
https://github.com/srndic/mimicus


feature vectors), classifier models and code required to fully
reproduce our experimental results. All attack files used in our
experiments can be obtained from the Contagio database.

A. Reimplementation of PDFRATE’s Features

Our four evasion scenarios have one common assumption:
the adversary knows the features of the attacked system. The
level of knowledge about particular features may, however,
vary widely. The attacker may not be aware of some features’
existence at all. Even for features with known description, the
attacker may have partial or no control of their values. Finally,
interdependence between features prevents the attacker from
arbitrary manipulation of their values.

The knowledge about PDFRATE’s features comes from
three sources: the original research paper [23], the technical
report [24], and the behavior of PDFRATE as deployed online.
As stated in [23], a total of 202 features are employed by
PDFRATE. However, only 135 of them are described in [24],
to a varying extent. This limits the set of features potentially
under attacker’s control to roughly two thirds of the reported
number. Furthermore, it cannot be ruled out that the deployed
system does not have a different set of features compared to
the reported ones due to a natural progress in development.

As a first step, we reimplemented the extraction of 135
known features by following the general guidelines on feature
extraction from [24]. Subsequently, regular expressions were
developed for each feature except for size, which was read
directly. During this process we also examined metadata output
produced by PDFRATE for a fixed test suite comprising PDF
files with a broad range of values for many features. Values
of some features, e.g., counts of Page or obj keywords, can
be accurately deduced from the metadata output. The regular
expressions were further refined until consistent behavior was
achieved across all test files. Although the reimplementation
process required time-consuming expert work, it would be a
small hurdle for an incentivized adversary.

Thanks to the availability of the Contagio dataset, we were
able to verify the correctness of our reimplementation by
comparing our classification results on that dataset with those
reported in [23]. We, furthermore, verified that despite the dis-
crepancy in the set of implemented features, our local clone of
PDFRATE produces similar classification scores as the online
system on a benchmark dataset presented in Section VI-A3.

B. Modification of PDFRATE Feature Values

The development of the PDF file modification method for
our study was guided by the following design goal: once mod-
ified, the file in question has to appear indistinguishable from
the original to any PDF parser, yet reliably affect PDFRATE’s
feature extraction. The reason for this is that such a semantics-
preserving method can be safely applied to malicious PDF files
in our experiments, regardless of the diverse vulnerabilities
they may exploit, without the risk of breaking their potentially
subtle modus operandi.

The feature modification component of MIMICUS can ar-
bitrarily modify values of 35 and increment values of 33

Fig. 3. The PDF modification method takes the original PDF (left) and injects
new content between the cross-reference table (CRT) and the trailer. Such
a modified file (right) confuses PDFRATE into accepting the newly-injected
content as part of the file, while the PDF readers jump from the trailer directly
to the CRT, skipping the injected content completely.

features of PDFRATE, as detailed in Appendix A. Modification
of further features would have required delicate changes to
the structure of PDF files, increasing both the implementation
effort and the risk of breaking the malicious functionality.

Our approach to file modification was motivated by the dis-
crepancy between the operation of PDF readers and PDFRATE.
This approach was described in [32] as an example of a
semantic gap in the interpretation of various file formats.
PDFRATE evaluates a set of regular expressions over the raw
bytes in a PDF file, reading from the beginning to the end of
the file. In contrast, PDF readers parse PDF files in adherence
to the PDF syntax prescribed by ISO 32000-1. A conformant
PDF reader reads a file starting from its end. It checks the
trailer to find the location of the cross-reference table (CRT)
and then jumps directly to it in order to locate the objects in
the file body. This difference is illustrated in Fig. 3, showing
the layout of a PDF file before and after our modifications.

Our solution exploits this semantic gap: as long as the file
header, body and CRT are not modified or moved, the trailer
can be moved arbitrarily far away from the CRT8, thereby
generating an empty space in the file where arbitrary content
can be injected. Such content will be processed by PDFRATE,
but PDF readers will always ignore it.

The described content injection approach leaves behind file
modifications which are trivial to detect if one knows what to
look for. We believe that it is possible to rewrite the PDF files,
modifying the content in-place instead, thereby concealing
the modifications alltogether. However, this approach would
not come without technical complications. It could potentially
affect PDF readers by breaking the rendering of the PDF file
and might negatively impact the reliability of the embedded
exploit – problems which content injection avoids completely.

Our modification method proceeds by injecting a set of
whitespace-separated string patterns into the gap between the

8 It is only important that the trailer remains at the end of the file.



CRT and the trailer of the target PDF file. The patterns are
crafted to make specific PDFRATE regular expressions match
them, thereby influencing the extracted feature values. For
example, injecting into a file with 5 obj keywords the string
“obj obj” will change its count_obj feature value from 5
to 7, as PDFRATE’s regular expressions will match them all.
As another example, the length of the Author metadata field
can be “reduced” from 10 to 3 by injecting a new Author
field with 3 characters, “/Author(abc)”, as PDFRATE
tends to only take into account the content of the last metadata
field in the file. By injecting our payload just before the trailer
we can ensure that this condition is fulfilled.

Using the described modification method it can be safely
assumed that the behavior of PDF readers will not be altered9,
but PDFRATE would be tricked into reading the desired
feature values from the modified file. Our experiments have
confirmed this behavior for two PDF readers, ADOBE READER
and EVINCE. In addition, we have submitted all malicious
files involved in our evasion experiments to WEPAWET [3]
before and after modification and verified that the exploit
effectiveness was not affected for any sample.

As already mentioned, the features of PDFRATE are heavily
interdependent, i.e., it is, in general, impossible to perfectly
translate data points in feature space into files in problem
space. Given a malicious file before the attack, FB , and
a data point PA generated by the attack algorithm run on
FB , the adversary wants to generate the attack file FA that
optimally defeats the classifier by modifying FB’s feature
values to PA. However, due to feature interdependence, the
resulting file F ′A 6= FA, has different features, which may
or may not defeat the classifier. Fig. 4 shows a concrete
example using the GD-KDE attack, described in Section V-C2.
Feature pos_acroform_min denotes the relative file offset
of the first occurence of the keyword AcroForm and is not
modifiable by MIMICUS, however, it was indirectly influenced
by the increase of the total file size. On the other hand,
although feature author_len, denoting the length of the
Author metadata field, is directly modifiable, it got the
value 11 instead of the desired 0 because other modifiable
features, i.e., author_lc, author_num, author_oth
and author_uc, denoting different character classes in the
Author field, drove the total character count to 11.

Another important consideration regarding the translation of
data points from the feature space into the problem space is
that algorithms operating in the feature space may construct
data points which are not feasible in the problem space.
Examples are the size and version features to which the
attack algorithms attempted to assign negative values. It is
neither feasible to enumerate all feature interdependencies and
account for their effects a priori, nor to identify invalid data
points before translation to problem space.

Our approach to dealing with these two limitations is
opportunistic: we generate the file from the feature vector

9 Provided that they do not parse the injected content, but perform the
direct jump prescribed by ISO 32000-1 instead.

FEATURE BEFORE AFTER FILE
author_lc: 0 2 2
author_len: 0 0 11
author_num: 0 3 3
author_oth: 0 5 5
author_uc: 0 1 1

count_acroform: 1 0 1
count_endobj: 11 918 465

count_endstream: 1 169 85
count_eof: 0 2 2
count_font: 0 86 86

count_image_large: 0 1 1
count_image_small: 0 6 6
count_image_total: 0 0 11
count_image_xsmall: 0 4 4
count_javascript: 3 0 3

count_obj: 14 922 922
count_objstm: 0 28 28

count_page: 0 29 29
count_stream: 1 169 85
count_trailer: 1 0 1

count_xref: 1 0 1
createdate_ts: -1 7.52e+8 7.52e+8
image_totalpx: 0 0 813898

moddate_ts: -1 1.0e+09 1.0e+09
pos_acroform_avg: 0.07043 0.07043 0.00716
pos_acroform_min: 0.07043 0.07043 0.00716
pos_acroform_min: 0.07043 0.07043 0.00716

size: 2726 -426760 26782
version: 0 -4 0

Fig. 4. Changes of feature values for a subset of features in an example
GD-KDE attack in scenario F. The BEFORE column shows the feature
values extracted from a malicious candidate file, FB , with the SHA-1 hash
a39cf14b806db14a9e877b665324d203e5a5a666. GD-KDE transformed these
values in feature space into data point PA (AFTER). Point PA was used to
modify file FB in file space and generate the attack file FA. However, feature
interdependence caused the file F ′

A to be generated instead, with slightly
different feature values (FILE).

by translating features one by one, independently from each
other and without accounting for the limitations, in the hope
that the resulting file’s features are not too far away from
the desired values. Although this approach results in hardly
predictable outcome, the resulting files have feature values
sufficiently close to the desired ones and are suitable for
evasion. As a concrete example, compare columns AFTER
(desired outcome) and FILE (actual outcome) of Fig. 4.

Additional safety mechanisms implemented in MIMICUS
prevent feature modification if the desired value is outside
of valid bounds specific to the feature and the file, e.g., if
there was an attempt to modify size to a positive value less
than the file already had. The specific lower and upper bounds
enforced by our method were collected by enumerating the
features of all of the files in the dataset of PDF files available
to the adversary, described in Section VI-A, and extracting
the minimum and maximum values for each feature. Another
reason for preventing feature modification is a feature data type
mismatch, e.g., when a data-type-agnostic algorithm wants to
set a boolean feature to 7. In the end, the result is a valid
PDF file with features close to the desired ones, suitable for
evasion.

C. Attack Algorithms

The second major component of MIMICUS are its attack
algorithms. Their main goal is to generate PDF files whose



feature vectors are likely to receive low classification scores.
To this end, we have adapted two previously known methods
to the specific context of PDFRATE’s features.

1) Mimicry Attack: The mimicry attack is well-known in
the security literature. Its idea is to transform a malicious
sample in such a way that it mimics a chosen benign sample as
much as possible, making the resulting mimicry sample harder
to detect. This attack is simple to implement, can be applied to
any classification algorithm, and does not necessarily depend
on a particular learned classifier model. Therefore, it is suitable
for evaluation in every evasion scenario. Our implementation
takes a malicious file and simply attempts to modify all
of its modifiable features at once to take on the values of
the features of a chosen mimicry target, a benign file. To
increase the effectiveness of a mimicry attack, we repeat it 30
times using different benign targets for every attack file. The
resulting 30 files are evaluated using a local classifier, and only
the sample which best evades the local classifier is submitted
to PDFRATE.

Due to the existence of undisclosed features and technical
limitations discussed in Section V-B, it is impossible to gener-
ate a file which exactly corresponds to the feature vector result-
ing from a mimicry attack. It is important that the conversion
of a feature vector into a file is performed after the mimicry
is complete in the feature space. The latter is technically
straightforward: we simply merge a malicious feature vector
into a chosen benign one while protecting existing values.
Modifying features one at a time while translating them into
a file is not a good strategy, as the interdependency between
features dominates the transformation and generates a lot of
uncontrollable changes. Using a single-step transformation
makes such interdependency less prominent.

The generality of the mimicry attack, i.e., its independence
of the specific learning algorithm and the underlying dataset,
makes it applicable to other learning-based systems which, like
PDFRATE, have a known and modifiable subset of features.

An inverse attack, performed by injecting malicious content
into a benign PDF file, was described in [33] and demonstrated
to be effective against PDFRATE in a small-scale experiment.

2) Gradient Descent and Kernel Density Estimation (GD-
KDE) Attack: The second attack evaluated against PDFRATE
is based on a method employing gradient descent and kernel
density estimation (hence in this paper we call it GD-KDE)
to defeat a classifier with a known, differentiable decision
function [22]. It requires the knowledge of a specific learned
model and a set of benign samples. Additionally, because it is
based on gradient descent, it is only applicable to differentiable
classifiers, such as SVM, artificial neural network, etc., and
cannot be applied to the Random Forest classifier. Hence,
the GD-KDE attack is applicable only to scenarios with
differentiable surrogate classifiers (F and FT).

The GD-KDE algorithm proceeds by following the gradient
of the weighted sum of the classifier’s decision function
and the estimated density function of benign examples. The
starting point of the gradient descent is the feature vector of
the malicious sample. The starting sample is usually correctly

classified as malicious; the goal is to move to the area where
the classification algorithm classifies points as benign. In order
to avoid moving to infeasible areas of the feature space with
negative classifications, the algorithm’s objective function has
the second term, the density of benign examples. This ensures
that the final result lies close to the region populated by
real benign examples. The density function must be estimated
beforehand, using the standard techniques of kernel density
estimation [34]. Similarly to the mimicry attack, we run GD-
KDE in the feature space to completion before transforming
the result into a file.

VI. EXPERIMENTAL EVALUATION

The experiments to be presented in this section assess the
effectiveness of evasion techniques presented so far. In our
evaluation protocol, we take on the role of an attacker and
combine all available means to defeat an up-to-date version
of PDFRATE as it is deployed. An attacker has no control
over PDFRATE’s deployment, hence no guarantees can be
provided that the system has not changed between individual
experiments. Since our evaluation was carried out against the
model trained on a static dataset and took place within one
week, it is quite unlikely that any changes in the production
system have occurred.

In another set of experiments, we also investigate the impact
of our attack on the defensive measures suggested in the
original paper [23].

A. Datasets

Three datasets were used in our experiments: two datasets,
Contagio and Surrogate, were intended for training of local
classifiers needed for attack implementation, while the Attack
dataset consisted of malicious files used as starting points for
generating attack samples targeting PDFRATE.

1) Contagio dataset: This dataset is an exact copy of the
original PDFRATE training dataset, described in Section IV-B.
It contains 5,000 benign and 4,999 malicious PDF files10. It is
reasonable to assume that an adversary knows that this dataset
was used for training and obtains access to it.

2) Surrogate dataset: This dataset is designed as a dataset
that an adversary without acces to Contagio data might have
collected to approximate it. Malicious files in the dataset are a
random subsample of PDF files uploaded to the online virus-
scanning service VirusTotal11 between the 5th and 22nd of
March, 2012. These files are newer than Contagio data but
were known before PDFRATE was published. Four files in
the dataset were found to be present in the Contagio dataset
and were removed to ensure strict complementarity of data.
Benign files in the Surrogate dataset are randomly subsam-
pled from the files obtained using keywordless Google web
searches for PDF files published between February 5, 2007
and July 25, 2012. The Surrogate dataset has the same size
and composition as the Contagio dataset.

10 We were unable to locate the malicious file with the MD5 hash
35b621f1065b7c6ebebacb9a785b6d69 in the archives.

11 VirusTotal – https://www.virustotal.com/.

https://www.virustotal.com/


3) Attack dataset: This dataset contains 100 malicious files
that are used as starting points for all attacks. This dataset
was deliberately chosen to be small in order to minimize
operational impact on PDFRATE. The adversary has access
to these files in all scenarios. The files were randomly drawn
from the Contagio dataset, already known to the classifier
and therefore make evasion even more challenging to the
attacker. Both PDFRATE and WEPAWET classify all of them
as malicious, PDFRATE with a very high score, as seen in
Fig. 5, “Baseline”. All files are distinct in both the problem
and feature space.

B. Classifiers

Depending on whether the attacker knows the exact clas-
sification algorithm employed by PDFRATE or not, he might
use either the original or an unrelated, surrogate classifier. Our
experimental framework MIMICUS models these two cases by
deploying the Random Forest classifier in scenarios FC and
FTC, where the classifier type is known, and a Support Vector
Machine (SVM) classifier in scenarios F and FT.

1) Random Forest: The classifier implementation and pa-
rameters are identical to the original classifier of PDFRATE
described in Section IV-C.

2) Support Vector Machine: We have chosen the SVM [35]
as a surrogate classifier because it delivers high classification
performance on many problems, including the discrimination
between malicious and benign PDF files using PDFRATE
features, and is unrelated to the Random Forest. The SVC
implementation of the SCIKIT-LEARN [36] machine learning
toolkit version 0.13.1 was used.

The SVM learns by mapping labeled training points into a
high- or infinite-dimensional feature space, optionally applying
a nonlinear transformation called a kernel function to the
input feature vectors to make them better separable. It then
finds a separating hyperplane in the new space with the
largest possible margin, i.e. the distance between the convex
hulls of the two classes of points, malicious and benign. The
hyperplane vector, represented by a subset of input points, so-
called support vectors, together with their weights, constitutes
an SVM model. When classifying new data, the distance
between the hyperplane and the new data point is calculated.
This distance, called the decision function score, is a real
value whose meaning is similar to the classification score of
PDFRATE. A binary decision can be made by taking the sign
of the decision function score for the new data point. We assign
the positive score to the malicious class by convention. To
evade an SVM, the adversary needs to modify a malicious
data point so that its decision function score changes sign.

Two kernel functions were evaluated: linear and RBF. The
linear kernel klinear(x1, x2) = x1 · x2 provides a linear
transformation of two input vectors x1 and x2, while the
RBF kernel kRBF (x1, x2) = exp(−γ||x1− x2||2) utilizes the
Gaussian radial basis function as a nonlinear transformation
of its arguments. For optimal evasion results, a grid search
was carried out on the two adversary’s datasets, optimizing
the SVM parameters C for the linear, C and γ for the RBF

TABLE I
REALIZED ATTACK SCENARIOS

Scenario Classifier Dataset Attack(s)

F SVM Surrogate Mimicry, GD-KDE

FC Random Forest Surrogate Mimicry
FT SVM Contagio Mimicry, GD-KDE

FTC Random Forest Contagio Mimicry

kernel. The highest achieved accuracy using 10-fold cross-
validation and a 60%:40% training-testing split was 98.7% on
the Contagio and 99.5% on the Surrogate dataset.

The parameters found in the grid search are same for both
datasets: RBF kernel, C = 10, γ = 0.01. However, the
generalization ablility of the two learned models for the two
datasets differs greatly. The SVM trained on Contagio data
achieves an accuracy of 98.5% on Surrogate data, but the
SVM trained on the Surrogate data performs very poorly
on Contagio data, with an accuracy of 61%. Of course, the
adversary in scenarios F and FC, without access to original
training data, would be unable to check how well its SVM
performs on it. Bad approximation of the training data strongly
affects the performance of the GD-KDE attack.

Due to differences in scale among features and as a general
rule when using SVMs, feature standardization was performed
on extracted data points by subtracting the feature mean from
the feature value and dividing the result by the feature’s stan-
dard deviation. Means and standard deviations of all features
were calculated on the Contagio dataset.

C. Attack Scenarios

The following subsections elucidate how the 4 main attack
scenarios described in Section II were implemented in our ex-
periments using the available data and algorithms. A summary
of the realized attack scenarios is presented in Table I.

1) Scenario F: In scenario F, all that the adversary knows
about PDFRATE is how to read 135 and modify 68 features.
Nevertheless, there are two attacks he can perform, depending
on the available datasets, as elaborated in Section II-A. The
mimicry attack uses randomly sampled benign files from
the Surrogate dataset, as the Contagio dataset is unknown.
Similarly, the surrogate classifier is trained on the Surrogate
dataset for evasion using GD-KDE. The classifier parameters
are optimized using grid search on the Surrogate dataset. Both
attacks were performed offline, without classifier feedback,
and their results were uploaded to PDFRATE for evaluation.

2) Scenario FT: In scenario FT, besides the limited knowl-
edge of features, the adversary has a complete knowledge of
the training dataset. Therefore, the Contagio dataset is used
to train a surrogate classifier for the GD-KDE attack in this
scenario, and randomly sampled benign files from Contagio
are used as mimicry targets for the mimicry attack. This time,
the surrogate classifier is optimized using grid search on the
Contagio dataset. Only the final attack results are submitted
to PDFRATE.
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Fig. 5. Populations of PDFRATE scores before (“Baseline”) and after each attack (the rest), for all 100 attack samples from the Attack dataset. Attacks are
grouped by scenario. The boxes extend from the first to the third quartile, with the median value between them (thick line). The whiskers extend to the farthest
datum within 1.5 times the interquartile range from the box, while the squares represent the outliers.

3) Scenario FC: Knowledge about the classifier is added
to the limited knowledge of features in this scenario. The
adversary knows the original classifier, its implementation and
parameters. They use the Surrogate dataset with the original
classifier to produce a surrogate classifier, which they evade
offline using mimicry attack, with mimicry targets randomly
selected from the Surrogate dataset. Results are submitted to
PDFRATE for evaluation.

4) Scenario FTC: Given the limited knowledge of features
and complete knowledge of the training dataset and classifier,
the attacker creates a local clone of PDFRATE and evades it
offline. Only the final attack results are submitted online.

D. Results

Before the attack experiments were run, all 100 files in the
Attack dataset were evaluated by PDFRATE. The results of this
evaluation, shown in Fig. 5, “Baseline”, provide a baseline
with which we compare the attack results. All but 3 files
received a 100% malicious classification score.

Our evaluation followed a simple protocol. For every at-
tack, 100 files from the Attack dataset were used to generate
attack samples. The effectiveness of generated attack files was
evaluated by submitting them to PDFRATE and comparing the
received classification scores with our baseline. All attack sam-
ples were submitted to WEPAWET to verify their maliciousness
after modification.

The summary of PDFRATE’s scores for attack files is
presented in Fig. 5. For each attack, the population of 100
classification scores is represented as a box plot, with the
median shown as a thick line, the 25th and 75th percentiles
(“interquartile range” or IQR) as a box, scores within 1.5 IQR
from the median as “whiskers”, and the remaining outliers as
single points. Plots are grouped by attack scenario.

The results show that PDFRATE was evaded in all 4
attack scenarios. The median score dropped to 28-42% for
mimicry and 29-34% for GD-KDE attacks, depending on the
scenario. For all attacks except mimicry in scenario F, the 75th
percentile of the box plot lies below the 50% mark, implying
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Fig. 6. Populations of SVM decision function values before and after GD-
KDE attacks in scenarios F and FT, for all 100 attack samples from the Attack
dataset. Parameters of the box plot are described in Fig. 5.

that 75% of the attacks would be classified as benign if a 50%
threshold over classification scores were used for decision
making. The significance of these results is further emphasized
by the fact that only a third of features were modifiable, and
the files used for evaluation were already known to PDFRATE
at training and hence more difficult to evade.

Results in scenarios with a surrogate classifier, F and FT,
demonstrate the superiority of GD-KDE over mimicry. Fur-
thermore, the mimicry attack in the scenario with the highest
amount of knowledge, FTC, only marginally outperforms GD-
KDE in scenario FT. Further insights into the behavior of the
GD-KDE attack are given in Fig. 6. It shows the values of the
decision functions of two SVMs, one trained on the Surrogate
dataset in scenario F, the other on the Contagio dataset in
scenario FT, before and after attack. The post-attack SVM
scores demonstrate that the GD-KDE attack reliably steers
all samples far across the decision boundary into the benign
region. If the SVM classifier were deployed by PDFRATE, it
is very likely that the GD-KDE attack would have attained
perfect evasion, driving all scores below zero. Since the



SVM only approximately matches the decision function of a
Random Forest, attacks against PDFRATE fall far from being
perfect, but still significantly decrease the scores.

By careful observation of Fig. 6 it is evident that over 25%
of pre-attack samples in scenario F have a negative decision
function value, i.e., are classified as benign by the SVM
(but not PDFRATE) before attack. This is a consequence
of operating under scenario F, where the adversary trains
using the Surrogate dataset but attacks using samples from
the Contagio dataset. Because of the poor generalization of
SVM models in this case, as elaborated in Section VI-B2,
the samples are often misclassified. In scenario FT, where the
attacker also trains on the Contagio dataset, the baseline SVM
scores are strictly positive.

Another important observation based on Fig. 5 is the
improvement of attack effectiveness with the increase of
adversary’s knowledge about the target system. This finding is
in agreement with our initial conjecture about the importance
of adversary’s knowledge for classifier robustness. However,
it is curious that the improvement from scenario F to scenario
FTC is not as dramatic as one might expect: mimicry improves
by around 14% and GD-KDE in scenario F is outperformed
by the best overall attack, mimicry in scenario FTC, by a
mere 6%. This is an important finding indicating that merely
knowing a subset of features might provide the adversary more
advantage than previously considered.

The possession of training data is the second most important
contribution to the attackers’ success, after the knowledge of
features. Fig. 7 compares the scores of two local Random
Forests with that of PDFRATE on mimicry attacks in scenarios
FC, using Surrogate, and FTC, using Contagio data. It can
be seen that on Surrogate data, the exact classifier makes
an overly optimistic assessment of the attack effectiveness,
achieving a median score of about 18%, while the same files
get a median score of 37% when submitted to PDFRATE.
However, when staged with the Contagio dataset, the local
estimate of the attack score is almost identical to PDFRATE’s
(29% and 28%, respectively). This similarity is surprizing
taking into account that the local classifier was trained using
only a subset of PDFRATE’s features and that the training
process of Random Forests is heavily randomized.

As a final step in our evaluation, we investigate the impact of
attacks on the detection performance of PDFRATE. Recall that
the classification score still needs to be compared with some
threshold for a binary decision to be made. Earlier, we reported
that 75% of the attack points would have fallen under the radar
if the threshold were set at the specific value of 0.5. To analyze
the detection performance for all possible thresholds, the
Receiver Operating Characteristic (ROC) curves are presented
in Fig. 8 for the baseline and all attacks. The ROC curves were
obtained on a mixed data sample containing the same 100
attack samples and all 1051 benign samples from the original
Contagio database not in the Contagio dataset. It can be clearly
seen from this figure that, especially in the lower range of
false alarm rates (less than 0.5%), the detection performance
of PDFRATE is dramatically decreased by the attacks, and the
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Fig. 7. Populations of Random Forest scores by PDFRATE and two local
Random Forests on two mimicry attacks, for all 100 attack samples from the
Attack dataset. Parameters of the box plot are described in Fig. 5.
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mimicry attack of the FTC scenario has caused a 7% false
positive rate. The relative effectiveness of the attacks with
respect to detection performance is similar to their relative
effectiveness with respect to classification scores (cf. Fig. 5).

E. Defensive Measures

In our last experiment, we have investigated the robustness
of defensive mechanisms proposed in [23] to our evasion tech-
nique. To set the baseline, we have reproduced the mimicry
attack and the defense technique in exactly the same way as
it was proposed by Smutz and Stavrou (cf. Section IV-D),
using the Random Forest classifier trained on the Contagio
dataset. Our classifier ranked the following 10 features12 as
most important, in descending order:

count_font pos_eof_avg count_endobj
count_js pos_eof_max producer_len
count_javascript len_stream_min
pos_box_max count_obj

12 We have used 10 instead of 6 top features for mimicry because they
were ranked significantly above others.
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Fig. 9. Results of the BRN attack applied on data points in feature space
versus files in problem space. The attack was applied 10 times, starting with
only count_font and progressively modifying ever more features.

We have then reimplemented the original “benign random
noise” (BRN) attack of Smutz and Stavrou in the feature space
and extended it to the problem space by generating the target
file for the attack’s ultimate feature vector. The comparison of
the effectiveness of these two attack variants as a function of
the number of features modified is shown in Fig. 9. We observe
that the behavior of the synthetic variant of the BRN attack
(solid line) closely resembles the results reported in [23], with
a slightly higher impact on accuracy13. However, when applied
to files, the BRN attack is ineffective (dashed line). Only the
modification of one or two features exhibits some impact on
detection accuracy. Attempting to modify further features leads
to increasing inadvertent modifications which end up steering
the mimicry samples towards the benign class. Furthermore,
only 5 of the top 10 features are modifiable. Therefore, the
BRN attack in problem space is unpractical and, compared to
other attacks presented in Section VI-D, suboptimal.

Finally, we have evaluated the effectiveness of the “vac-
cination” mechanism proposed by Smutz and Stavrou which
modifies a fraction of malicious samples in the training dataset
in such a way that they are more similar to expected attack
samples. Two scenarios are considered: when the defender
anticipates the (1) right and the (2) wrong kind of attack. Ef-
fectiveness of the vaccination defense against the BRN attack
under both scenarios is compared in Fig. 10. Our experiment
confirms the effectiveness of the vaccination defense when the
right kind of attack, i.e., BRN, is anticipated (dashed curve).
However, the classifier vaccinated with the BRN attack showed
no resistance to our mimicry attack from the FTC scenario
(dotted curve). Repeating the experiment with the vaccination
using our mimicry attack revealed that the resistance to the
attack was restored (Fig. 11). Hence it can be concluded that
the vaccination mechanism is effective against any correctly

13 The accuracy scores might vary because of experiment randomization,
different Random Forest models or different cutoff values.
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Fig. 10. Performance of the defensive measure proposed in [23]. Averaged
results of 5 independent trials, using 10-fold cross-validation.
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Fig. 11. Effect of the defensive measure proposed in [23] on our mimicry
attack. Averaged results of 5 independent trials.

anticipated attack. The latter assumption, however, is rather
unrealistic in practice.

VII. INTERPRETATION OF ATTACKS

From the operational perspective, it is crucial to understand
which features contribute most to the success of the reported
attacks. In general, interpretation of models created by learning
techniques is always difficult. Even though Random Forest
classifiers provide a ranking of features according to their
informativeness, which has been crucial for the design of the
BRN attack, this information is only indirectly related to the
two types of attacks presented in our paper. Hence, a different
analysis technique had to be developed to interpret our attacks.

Our interpretation is based on the binary difference between
feature vectors before and after an attack. While it may be
tempting to claim that the features with largest change are the
most informative, this measure is strongly misleading in our
case since the ranges of feature values are vastly different.
Even re-scaling the changes to valid value ranges is not
suitable since the bounds for specific features can only be
determined on the basis of an empirical sample of PDF files
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Fig. 12. Distribution of the count of features that were changed across 100
GD-KDE attacks in scenario FT.

and are prone to outliers. Furthermore, only one third of the
features is directly modifiable in our approach, yet all of them
may be indirectly modified as a result of some other changes.

The only conceivable characterization of the mimicry attack
is the empirical support of specific features, i.e., the percentage
of files for which a given feature was changed by the attack.
The histograms of feature support are shown in Figures 12
and 13 for the GD-KDE and mimicry attack, respectively. It
can be seen that both attacks perform a significant amount of
feature modifications, hence one cannot explain the attacks by
a small number of essential features. Between the two attacks,
the modifications produced by GD-KDE are more uniform,
having a set of 45 features that are changed in almost every
attack. The remaining 23 features are rarely modified, most
likely due to the opposite direction of change (recall that 35
features are only incrementable in our setup) or due to the
infeasibility of the requested change. The changes effected
by the mimicry attack exhibit higher variability of support.
It is also interesting to observe that direct modifications
are accompanied by an almost balanced amount of indirect
modifications. This serves as another example for the high
interdependency of PDFRATE’s features.

A practical way to interpret attacks is to observe concrete
changes in feature values produced by the attacks. Although
it does not scale to cases with many features and files, this
kind of investigation provides deep insight into the modus
operandi of the attack at hand. Fig. 4 shows how the features
of one specific file changed in the GD-KDE attack. Recall that
GD-KDE operates by steering malicious data points across the
decision boundary into the benign area using gradient descent,
and at the same time utilizes kernel density estimation to push
them towards seen benign samples. This “benignization” is ev-
ident in the provided example. By comparing the BEFORE and
AFTER columns, we see that the attack has added an author
(author* features), set the creation (createdate_ts)
and modification (moddate_ts) date into recent past, re-
duced JavaScript occurences (count_javascript), added
some pages (count_page), fonts (count_font), images
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Fig. 13. Distribution of the count of features that were changed across 100
mimicry attacks in scenario FTC.

(count_image*), etc. – all changes towards the benign
class. Some features, e.g., size and version, were changed
to invalid values, possibly due to the influence of the gradient
descent component.

VIII. DISCUSSION AND RELATED WORK

While the results of our study are only applicable to a single
system, our findings suggest several important implications. It
was the first attempt to perform a comprehensive practical
evaluation of a deployed learning-based system, hence we
cannot expect that our results can be exactly reproduced for
a large number of similar systems. Still, some key issues
revealed by our experiments deserve careful consideration, as
they pinpoint some general problems that need to be addressed
in the design of future data-driven systems.

The main message of our experiments is that an attacker can
significantly decrease the accuracy of a learning-based system
if he has sufficient knowledge of its features and methods. The
main factor that contributes to this insecurity is the knowledge
of features. For PDFRATE we have observed that even the
simplest attack from our arsenal, with no further knowledge
of the system except for its features, can reduce maliciousness
scores for a chosen representative set of malicious samples
from 100% to the median of 33%. This was possible despite
the fact that roughly one third of the classifier’s features was
completely unknown to us and another third not modifiable by
our tools. Such an impact suggests that even a small amount
of knowledge about the features can be exploited for staging
evasion attacks. Additional factors such as the knowledge of
the training data and the precise type of the algorithm are
helpful but not crucial for the attack, as this information can
be well approximated by surrogate sources.

The fundamental problem underlying the insecurity of
learning-based approaches lies in the design of features. The
growing popularity of machine learning in various kinds of
information systems – far beyond security – is largely due to
its ability to predict, with greater or lesser success, causes from
side effects. It is this generalization ability that makes machine



learning algorithms the means of choice for finding solutions
to problems shrouded by uncertainty, when one has neither
enough understanding of the problem to design a solution, nor
can figure it out from looking at the raw data. The prevailing
approach for designing features for learning algorithms by
hand-picking a set of easily computable side effects, or “expert
features”, obviously has the peril that the attacker may do
exactly the same. To protect such methods against evasion,
there seems to be no other way than to hide the cricial mass
of knowledge about features. Otherwise, as our study shows,
there exist principled ways to automatically extend the missing
knowledge for staging a successful evasion attack.

Are there alternative solutions that can make learning meth-
ods more robust to evasion? One potential solution is to use
features that inherently represent, at least to a reasonable de-
gree, the causes to be detected. One example of such features
can be found in previous work on shellcode detection and
classification, e.g., [37], [38], [39], [40], which uses n-grams,
or short byte sequences, as basic features. Similar approach has
been recently explored for detection of JavaScript malware,
with the same techniques applied to sequences of syntactic
tokens [41], [42]. The discriminative power of these methods
lies in the inherent statistical difference between shellcode and
usual packet content, as well as between malicious JavaScript
code and benign programs. Hence one can expect such features
to be less prone to malicious manipulation than “expert
features”. If fact, it has been shown that exact evasion of n-
gram based features is NP-complete [20], and approximate
solutions are widely believed to be difficult in practice.

Another potential solution can be offered by methods
attempting to uniformly spread the “discriminative power”
across as many features as possible. Some methods of this kind
have been recently proposed for learning on problems with
potential feature deletion or corruption [43], [44]. At the cost
of a significant increase in the complexity of training problems,
such methods offer a reasonable protection for limited amount
of feature noise, regardless of the type of features. Assuming
that the attacker has modification access to a limited number
of features, as it was the case in our study, one can expect
such methods to deliver a good tradeoff for the cases when no
“intrinsic features” can be devised.

Finally, methods based on multiple classifier systems [45]
should be mentioned as a potential solution. Evading a number
of complementary classifiers can be significantly harder than
a single classifier. For example, we were unable to design
an optimal attack against a Random Forest classifier using a
set of heterogeneous decision functions. Some applications of
multiple classifier systems in security and other adversarial
scenarios have recently been considered [46], [47].

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented the first empirical security
evaluation of a deployed learning-based system. Our study
assumed that an attacker has no specific insider information
about the system. It demonstrated, however, that enough in-
formation can be gathered from various sources and extended

with appriximations and automatic inference algorithms in
order to stage a successful evasion attack. In our experiments
carried out on an established system for detection of PDF mal-
ware, PDFRATE, the significant drop in classification scores
(from almost 100% to 28-33%) as well as deterioration of
detection rates has been observed. We have also observed
that simple countermeasures against evasion attacks, such as
including a small fraction of attacks in the training data, are
only effective if the anticipated attack exactly matches the
performed one.

The findings of our study suggest that careful attention
should be paid to the design of features and algorithms used in
data-driven security techniques. Our future work will attempt
to tackle the limitations of learning methods discovered in
the presented experiments, especially in understanding of the
general properties for construction of attack-resilient features.
Our evaluation methods are applicable to other learning-based
systems with modifiable features and we intend to extend
our methods for security assessment of related systems for
detection of malicious JavaScript and PDF files. By publishing
our experimental code online we hope to share our experience
with other researchers and to facilitate reproducibility of
experimental results in security assessment of real systems.

APPENDIX A
PDFRATE FEATURE REIMPLEMENTATION

The MIMICUS experimental framework supports reading
of 135 PDFRATE features (66%) described in [24]. The
remaining 67 of 202 features were not disclosed. Modification
of values of the following 68 features (33%) is supported:
• Features whose value can only be incremented (33):

count_acroform count_image_xlarge
count_acroform_obs count_image_xsmall
count_action count_javascript
count_action_obs count_javascript_obs
count_box_a4 count_js
count_box_legal count_js_obs
count_box_letter count_obj
count_box_other count_objstm
count_box_overlap count_objstm_obs
count_endobj count_page
count_endstream count_page_obs
count_eof count_startxref
count_font count_stream
count_font_obs count_trailer
count_image_large count_xref
count_image_med size
count_image_small

• Features whose value can be both incremented and decre-
mented (35):
author_dot keywords_dot subject_dot
author_lc keywords_lc subject_lc
author_num keywords_num subject_num
author_oth keywords_oth subject_oth
author_uc keywords_uc subject_uc
createdate_ts moddate_ts title_dot
createdate_tz moddate_tz title_lc
creator_dot producer_dot title_num
creator_lc producer_lc title_oth
creator_num producer_num title_uc
creator_oth producer_oth version
creator_uc producer_uc
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