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Abstract. We present a method for detecting common human actions
in video, common to athletics and surveillance, using intuitive sketches
and motion cues. The framework presented in this paper is an automated
end-to-end system which (1) interprets the sketch input, (2) generates a
query video based on motion cues, and (3) incorporates a new content-
based action descriptor for matching. We apply our method to a publicly-
available video repository of many common human actions and show that
a video matching the concept of the sketch is generally returned in one
of the top three query results.

1 Introduction

Automated human activity detection from video could be used for searching
archived athletic footage or detecting particular actions in a real-time security
setting. However, this type of search is still an open, challenging problem. Com-
mercial solutions (e.g., Google Video) typically employ search methods which
do not operate on the content of the video; instead, a text query is matched
to metadata of the video such as the title, description, or user comments. The
possibility of incomplete or incorrect metadata is a well-known limitation to this
approach. This leads in to a host of methods that fall under the umbrella of
content-based video retrieval (CBVR).

The literature on CBVR is extensive; see [1] and [2] for surveys. Multiple tax-
onomies exist for the classification of CBVR approaches. Most relevant to our
work are two broad classes of techniques characterized by the query method: (1)
text-based (or concept-based) approaches and (2) example-based approaches.
Text-based approaches, such as [3], typically rely on some (semi-supervised or
unsupervised) step of grouping videos together based on some concept and re-
fining the search within each cluster to obtain the desired result. Example-based
approaches, as done in [4], typically match features of a query video against
those in the database and return high-scoring matches.

Text-based approaches work when the content of the videos can be described
succinctly. Also, a user can attempt to fine-tune search results simply by selecting
new keywords to try. However, these methods fail when the query is ambiguous
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(e.g., ”driving” for cars versus swinging a golf club). Additionally, secondary
objects may be overlooked if classification is based upon the primary object or
action in the video. Example-based approaches can overcome the limitation of
ambiguous searches because a query video is generally more informative than
a text label. However, finding representative videos to use for querying other
videos can be difficult. More specifically, if a video strongly matching a search
concept were easily obtainable, it might not be necessary to perform the query
in the first place.

In this paper, we present a method for querying databases of videos of human
actions. Our method relies on using sketches of objects and motion cues as
queries for video retrieval. We believe that allowing the user to provide the input
in this manner combines the best features of both the text- and example-based
approaches. The search query is more informative than a text-based approach
and does not require that the user explicitly provide an example video. The
framework presented in this paper is an automated end-to-end system which (1)
interprets the sketch input, (2) generates a query video based on motion cues,
and (3) incorporates a new content-based action descriptor for matching.

(a) (b)

Fig. 1. Example sketches generated
using (a) the freehand drawing inter-
face and (b) human body model inter-
face

Sketch recognition is a related area
where the goal is to infer the semantics
of an input sketch. Unlike those methods,
(e.g., [5]), we are not interested in classi-
fying the action represented in the sketch,
nor do we need to collect the gesture infor-
mation associated with creating the sketch.
Our goal is to search a video database or
stream for a conceptual match. Searching
image and video databases using sketches
has previously been explored. In [6], the
author presents a method using a sketch-
based system to search a large static im-
age database. In [7], the authors present a
system which queries videos using sketches
of motion cues and mainly provides for
queries focusing on the translation of
objects in a viewing frame and not the
finer-grained articulated motions that our
system is capable of matching.

The paper is organized as follows. In
Section 2, we describe our approach for interpreting sketches. In Section 3, we
explain our method for matching a query video against a database. In Section 4,
we show the results of testing our method on a publicly-available human motion
data set. Finally, in Section 5, we conclude with a discussion of limitations of
our current approach and future directions for this work.
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2 Interpreting Sketches

The query can be provided as a freehand sketch or generated from a human body
model. While the former allows for the motion of arbitrary objects, the latter is
more consistent and robust for human motion. In this section, we describe how
we interpret the input sketches and infer the motion being described.

2.1 Input Methods

Figure 1(a) shows an example freehand sketch query. Our system includes a
sketch drawing application which provides two drawing modes: (1) figure mode
and (2) arrow mode. In figure mode, the user has access to various drawing tools,
common to popular image editing applications, to specify the structure of the
figure. In arrow mode, the user can click and drag on the image to add a motion
arrow.

For representing human motion, we also a provide point-and-click interface to
produce sketches by manipulating a human body model, as shown in Figure 1(b).
Here, the user does not draw the figure. Instead, limbs on a human body model
are positioned and resized by clicking and dragging the joint locations. For human
motion queries, this method is a more robust than freehand sketching because the
connectivity of the skeleton, as well as the locations of joints, is already known to
the system.

2.2 Interpreting Motion Cues

While we are primarily concerned with videos involving human motion, a free-
hand sketch could potentially contain objects other than human figures. Also,
an arrow in these images can either refer to a specific component of an object
(e.g., a limb on a human) or the entire object moving as a whole. Thus, we ex-
amine the object’s skeleton to determine the joint locations which separate the
movable components of the figure. We employ a series of basic image processing
techniques to generate a skeleton from a sketch. First, the sketch is blurred using
a Gaussian kernel and thresholded to produce a binary image. Then, a medial
axis transformation algorithm is applied to generate a skeleton of the image.

Figure 2 illustrates the process for interpreting the motion cues relative to
the skeleton. First, the arrows are projected (in the reverse direction) onto the
skeleton. We assume that the point of contact, or origination point, lies on the
moving component being referenced by the arrow. To determine the component
(which we assume to be a line segment) on which each origination point lies, the
Hough transform [8] is used. In our implementation, we restrict this search to a
local neighborhood that is defined by tracing nl pixels along the skeleton from
the origination point in the direction towards the center of mass. Empirically,
we found that 20 pixels accurately sample the line segment in a typical 300 x
300 pixel sketch. The endpoints of the returned line segment are stored as the
endpoints of the component on the skeleton. The endpoint that is closest along
the skeleton towards the center of mass is the detected joint location for the



A Sketch-Based Approach for Detecting Common Human Actions 421

(a) (b) (c)

Fig. 2. (a) A freehand sketch with arrows indicating movement. (b) The image after
skeletonization with arrows projected back onto the skeleton. (c) The detected line
segments and joint locations.

component. If the line segment contains the center of mass, we interpret this to
mean that the arrow motion corresponds to a movement of the entire object.

For sketches produced by manipulating the human body model, interpreting
the arrows is simplified since the connectivity of the skeleton and locations of
joints are known. The origination points are calculated in a similar manner by
projecting each arrow in reverse until the skeleton is contacted.

2.3 Sketch Animation

The next step is to generate a video based on the sketch and motion cues to use
as a search query. First, the image is segmented into individual components at
the joint locations. This is done so that individual components can be translated
and rotated according to the motion cues. At each joint, the image is ”cut” along
the normal to the skeleton, separating the component from the rest of the object.
In complex skeletons such as human figures, components may be the children of
other components (e.g., forearm and upper arm). To account for this possibility,
the parent of each component, if any, is calculated by tracing from the joint
location along the skeleton towards the center of mass to detect other joints.
For images generated from a human body model, the parent-child relationship
between joints is already known.

The angle of component rotation is determined by computing the angular
difference between the component vector and the vector formed by the joint lo-
cation and arrow end point. For each frame, each component is rotated by nr

degrees, where nr is the total angular rotation divided by the (user-specified)
number of frames. For complex motions, where both a child and parent compo-
nent move, we chose to rotate the child component first, then add this to the
rotation of the parent component. Figure 3 shows such an example. Though the
motion sequence may not be visually pleasing, the imperfections in the generated
video will not significantly affect the matching process.
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Fig. 3. (top) A freehand input sketch with multiple arrows and frames from the gener-
ated video sequence. (bottom) A sketch generated from a human body model and the
corresponding video sequence.

3 Matching Videos

For this problem, it is important to model the content of the video rather than
the appearance, since sketches do not share appearance characteristics with real
video. We extend a recently developed shape descriptor, the R transform [9], into
a motion descriptor. Compared to competing representations, the R transform
is computationally efficient and robust to common image transformations. Here,
we describe the R transform and our extension for matching video sequences.

3.1 R transform

The R transform was developed as a shape descriptor for object classification
from images. The R transform converts a silhouette image to a compact 1D
signal using the two-dimensional Radon transform. The Radon transform, like
the Hough transform, is commonly used to find lines in images. For an image
I(x, y), the Radon transform, g(ρ, θ), using polar coordinate (ρ, θ), is defined as:

g(ρ, θ) =
∑

x

∑

y

I(x, y)δ(x cos θ + y sin θ − ρ), (1)

where δ is the Dirac delta function. Intuitively, g(ρ, θ) is the line integral through
image I of the line with parameters (ρ, θ).

The R transform extends the Radon transform by calculating the sum of the
squared Radon transform values for all lines of the same angle, θ, in an image:

R(θ) =
∑

ρ

g2(ρ, θ). (2)

Figure 4 shows an example image, the derived silhouette showing the segmenta-
tion between the actor and the background, and the R transform.
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(a) (b) (c)

Fig. 4. An image (a) is converted into a silhouette (b) to which R′ (c) is applied

Fig. 5. A set of silhouette keyframes from a video of an actor performing a kick action.
The corresponding R transform curve is shown below each keyframe. The graph on
the right shows the R transform histogram motion descriptor for the video.

The R transform has several properties that make it particularly useful as an
motion descriptor for a sequence of silhouettes. First, the transform is translation-
invariant. Translations of the silhouette do not affect the value of R transform,
which allows us to match images of the same action regardless of the position of
the actor in the frame. Second, the R transform has been shown to be robust to
noisy silhouettes (e.g., holes, disjoint silhouettes). This invariance is useful to our
method in that extremely accurate segmentation of the actor (in the real videos)
from the background is not necessary. Third, when normalized, the R transform
is scale-invariant. Scaling the silhouette image results in an amplitude scaling of
R, so we use the normalized transform:

R′(θ) =
R(θ)

maxθ′(R(θ′))
(3)

3.2 R transform Histograms

The R transform has been previously extended for use in action recognition.
In [10], the authors trained Hidden Markov Models to learn which sets of un-
ordered R transform corresponded to which action and in [11], the authors ex-
tend the R transform to include the natural temporal component of actions by
concatenating sequential R transform curves into an R transform surface. The
motion descriptor presented here combines ideas from these two approaches.



424 E.A. Suma et al.

(a) (b) (c)

Fig. 6. (a) The R transform histogram from a sketch video of a pointing motion.
(b) The R transform histogram from a real video of an actor performing a pointing
motion. (c) The R transform histogram from a real video of an actor performing a
standing motion.

The R transform can be applied to a single silhouette frame. A set of frames,
therefore, can generate a set of R transform curves. The problem of matching
action videos then becomes a problem of matching these sets of curves. For
our representation, we maintain a 2D histogram of the R transform data. We
discretize the 2D space of R transform curves into 180 (angles) * 20 (R′(θ)
values). Figure 5 shows the motion descriptor for a video of an actor kicking. The
top row shows 4 silhouette keyframes and the bottom row shows the associated
R transform for each frame. The graph on the right shows our R transform
histogram motion descriptor for this video.

3.3 Matching R transform Histograms

Figure 6 shows (a) the R transform histograms for a generated sketch video of
a pointing motion, (b) the R transform histogram from real video of the same
action, and (c) a different R transform histogram from a real video of an actor
performing a standing motion. On visual inspection, the histograms of the same
motions, despite being from both sketches and real videos, appear more simi-
lar than the histograms from different motions. To quantify these differences,
we employ a histogram-based distance metric. We use the 2D diffusion distance
metric [12], which approximates the Earth Mover’s Distance [13] between his-
tograms. This computationally efficient metric formulates the problem as a heat
diffusion process by estimating the amount of diffusion from one distribution to
the other. In Section 4, we demonstrate that this distance metric is robust to
individual variations in action videos and can be used to as the basis of a simple
nearest-neighbor classifier to discriminate between dissimilar actions.

4 Results

We used the Inria XMAS Motion Acquisition Sequences (IXMAS) dataset [14] to
test our method. This data contains various actors performing multiple, different
actions. We tested the system using 10 actions (check watch, cross arms, sit,
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Sketch First Result Second Result Third Result

Kick Kick Punch Point

Wave Wave Check Watch Cross Arms

Punch Throw Point Punch

Fig. 7. Sample results from 3 queries on the IXMAS dataset. For each query, the input
sketch and keyframes from the 3 top scoring matches are shown.

stand, wave, punch, kick, point, pick up, and throw) from the set. For each
action, we generated a sketch and calculated the matching score to all of the
action videos. Figure 7 shows sample results for 3 of these types of queries.
Each row shows the input sketch and a keyframe from each of the top 3 closest
matching videos from the database.

Table 1 summarizes the results. Each cell contains the distance between a
user-generated sketch (rows) and a labeled video clip of an actor from the data-
base (columns). (Lower values indicate a closer match.) For 9 out of 10 sketch
queries, the intended video was one of the top three scoring matches to our input
sketches. Some of the errors (e.g., punch-throw, cross arms-wave) are due sim-
ply to the similarity of these actions. For other actions (e.g., check watch), the
self-occlusions inherent in the motion leads to ambiguity in the silhouette-based
motion descriptor and unpredictable results.
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Table 1. Query Results. Each cell contains the distance between a user-genereated
sketch and a labeled video clip from the IXMAS data set.

Video Sequence
Sketch Watch Cross Sit Stand Wave Punch Kick Point Take Throw

Watch 3.17 3.20 3.35 3.62 2.58 2.51 3.00 3.02 3.45 3.82
Cross 1.79 1.73 2.83 3.00 1.71 1.91 2.02 2.10 3.18 3.52
Sit 3.14 3.17 1.68 1.88 2.80 2.14 1.91 2.41 1.72 2.30

Stand 3.38 3.43 1.84 1.96 3.09 2.48 2.18 2.62 1.86 2.26
Wave 1.39 1.53 2.57 2.49 1.32 2.18 1.71 1.82 2.94 3.16
Punch 3.06 2.98 2.51 2.22 2.80 2.08 2.30 2.00 2.25 1.94
Kick 2.59 2.64 2.02 2.03 2.10 1.73 1.67 1.91 2.12 2.44
Point 2.63 2.76 2.93 2.54 2.53 2.58 2.61 2.05 3.08 2.59
Take 3.22 3.23 2.81 3.19 3.21 3.32 3.06 3.38 2.71 3.64

Throw 3.88 3.90 2.80 2.41 3.63 2.98 3.02 3.06 2.44 2.06

5 Discussion and Future Work

We presented a method for the detection of human actions based on sketch
input. Sketches are an intuitive input method, but can be flawed, or, worse, not
representative of the user’s intended query. This introduces an additional level of
ambiguity compared to text-based approaches because it is based on the ability
of the user. For our purposes, it makes the results somewhat harder to interpret
as the residuals may be due to dissimilar actions or poorly sketched inputs.

The method introduced in this paper aims to represent 3D motions with 2D
sketches. While a sketch can represent motion that varies with multiple degrees
of freedom, this method is limited to succinct, atomic actions and restricted
in the viewpoint. It may be possible to overcome some of these limitations by
developing more sophisticated (but, perhaps less intuitive) representations for
common human actions. However, we feel that our approach can still be useful
to domains such as athletics and surveillance where the large quantities of video
data contain examples which can be succinctly described by simple motion cues.

Finally, a technical limitation of our current approach is that it requires binary
segmentation for the videos in the search database to generate the motion de-
scriptor. We tried this approach using a different descriptor [15] and a matching
method [16], which doesn’t require segmentation. Currently, this approach is far
more computationally-intensive than our current approach and we are exploring
ways to optimize both methods for use on real-time video feeds.
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