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Abstract 
It has been previously demonstrated that increasing 

structural complexity can lead to lighter weight 
structures.  However, it is not clear that structural 
complexity or hierarchy enables lighter weight 
structures for all architectures and load cases.  In this 
paper, the performance trends in linear truss structures 
are investigated as a function of self-similar hierarchy 
order and of loading conditions.  The investigations 
show the order of structural hierarchy resulting in a 
lightest weight self-similar four longeron solid element 
truss-column is 2nd (a truss made from trusses) for 
requirements representative of space structures.  The 
resulting truss-column is typically an order of 
magnitude lighter than the corresponding 1st order 
truss-column and two to four times larger in diameter.  
Long and lightly loaded columns are shown to have the 
greatest potential for mass reduction with increasing 
hierarchy.  Optimization results for 1st and 2nd order 
self-similar triangular single-laced double-bay trusses 
subject to bending strength and stiffness requirements 
are also presented.  A comparison of 1st and 2nd order 
results show a factor of 30 reduction in truss mass and a 
simultaneous factor of nine increase in truss diameter. 

Introduction 
There is evidence to suggest that continually 

increasing levels of structural hierarchy lead to lighter 
weight, better performing structures.  For example, a 
tube is stronger than a solid rod of equal weight.  
Likewise, a truss constructed of tubes is stronger than a 
truss of solid rods of equal weight.  Indeed, topology 
optimization routines often predict highly latticed 
solutions and can predict hierarchical structures.1  A 
benchmark topology optimization problem is a 
horizontal beam subject to a center load.  Solutions to 
this problem show increased latticing as the mesh 
refinement is increased (Figure 1) and it is standard 

practice to employ filtering techniques to enforce limits 
on minimum element sizes. 

The Eiffel Tower is a popular example of a 
hierarchical structure, Figure 2.  Hierarchy was 
employed primarily for manufacturing concerns (only 
relatively short lengths of steel were available at the 
time), but the resulting structure achieved an 
unprecedented level of low effective density.2  In the 
Eiffel Tower, the lowest order building elements (0th 
order) are rectangular or L-shaped cross-section bars.  
Columns are built-up from these elements to form 
trusses with 1st order hierarchy.  These trusses are tied 
together to build the legs of the tower.  Each leg has 2nd 
order hierarchy.  The four legs are tied together to form 
a tower with 3rd order hierarchy. 

In deployable beam-like space structures, 1st order 
hierarchy is most common and is seen in structures 
built by AEC-Able Engineering (CoilAble, FastMast, 
AdamMast and stem tube).3  Structures with 2nd order 
hierarchy are also common in the form of trusses built 
from tubes (AEC-Able SquareRigger solar array, Astro 
Aerospace AstroMesh antenna, inflatable truss 
structures by ILC Dover and L’Garde, and the Foster-
Miller tubular truss4).  In these structures, the 1st order 
hierarchy is a shell structure and the 2nd is a truss.  
While they have been discussed, no existing space 
structures with 2nd order hierarchy and latticing at all 
levels are known.5  Also, spaces structures with 
hierarchical order greater than 2nd are unknown to the 
authors. 

From a structural performance perspective, one 
wonders for what conditions structures of increasing 
hierarchy offer advantages over lower order structures.  
Similarly, when advantages are perceived, it is 
important to know how great they are.  This paper 
investigates such issues in an attempt to provide insight 
into the performance trends in space structures as their 
hierarchy is increased.  The primary parameter under 
investigation is n , the order of structural hierarchy. 

The first reference to highly hierarchical space 
structures appears to be in a short essay by the 
futurologist, Freeman Dysan,6 however, there are few 
studies that compare the performance of space 
structures with hierarchy.  Mikulas compared the mass 
efficiency of several column configurations in his 
seminal paper on the efficiency of long lightly loaded 
columns, but he was not specifically looking at 
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hierarchy.7  Interest in structural hierarchy is much 
more prolific from an effective continuum or material 
perspective.  In reference 2, Lakes provides a review of 
the work in this area and cites 57 records.  Lake looked 
at the efficiency of various space filling trusses in 
reference 8.  Hierarchical materials are common in 
nature and have inspired the development of new 
materials.9,10 

Preliminary Considerations 
In this paper, an emphasis is placed on self-similar 

structures.  These are structures which are fractal-like in 
that they obey the same construction rule with each 
level of hierarchy.  Figure 3 illustrates a two-
dimensional truss construction rule.  The 0th order 
element is a solid rod.  The 1st order truss is made from 
0th order elements and a 2nd order truss is made from 1st 
order trusses.  This process can be repeated ad 
infinitum.  Self-similar hierarchical structures are not 
promoted here as offering a structural advantage over 
more general hierarchical structures.  They are 
considered here for their analytical simplicity and for 
their clearly defined hierarchical order. 

Consider the longeron element of a 1st order truss.  
This element behaves as a simply supported column 
subject to both axial stiffness and axial strength 
requirements.  If this column is a slender solid circular 
rod, it will fail first in an Euler buckling mode.  The 
element could be made stronger in buckling through 
redistribution of the existing material in a tubular form, 
without a reduction in axial stiffness.  As the tube 
radius is increased and the wall thickness is decreased 
(to maintain constant axial stiffness and mass), the 
strength continues to increase until local wall buckling 
becomes the first failure mode.  The equations for 
transition between these regions with increasing load 
were derived with the assumptions shown in Figure 4, 
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These equations are graphed in Figure 5 for a high 
modulus graphite-epoxy material system and length of 
1 m.  The longeron design requirement parameters 
(axial stiffness and compressive strength) are given on 
the horizontal and vertical axes, respectively.  The lines 
on the graph distinguish between regions where a solid 
rod is adequate (lowest region), a tube is adequate 
(middle region), and where higher order structural 
configurations may be more appropriate (highest 
region).  For the rod and tube regions, lines of constant 

EA  (vertical) are also lines of constant column mass 
per length. 

Transitions to configurations of increasing 
hierarchical order occur due to a lack of buckling 
strength in the longeron.  For equal diameter and mass, 
trusses of increasing hierarchy are only needed when 
lower order structures are strength limited.  As a result, 
the most appropriate structural form at loads above a 
local wall buckling limited tube is not clear.  
Reconfiguration of the material as a 1st order truss 
would cause a reduction in axial stiffness because 
material used for battens and diagonals do not 
contribute to the element axial stiffness.  This is quite 
significant as half the mass of a truss structure is 
typically in battens and diagonals.  Reconfiguration of 
the material into a cellular cross-section (Figure 6) 
appears to be more efficient since all material 
contributes to axial stiffness.  However, when 
unidirectional composite materials are used the 
difference in axial stiffness contribution between truss 
and cellular architectures may not be very different -- a 
tube made from unidirectional composite material 
requires significant portions of material in the 
transverse direction to resist local wall buckling.   

Actually, truss diameter is not typically fixed and 
the strength and stiffness of a truss can be significantly 
increased through an increase in both truss diameter ( l ) 
and longeron buckling strength (similarly, an increase 
in diameter allows a reduction in mass if requirements 
are only maintained).  The increase in truss diameter 
allows the axial stiffness of elements (EA ) to be 
reduced while keeping truss bending stiffness constant 
( 2EI EAl= ) and herein lies the ambiguity of 
hierarchy.  For equal mass self-similar trusses, 
increasing hierarchy tends to continually reduce 
element axial stiffness.  At some point, the truss 
diameter required to compensate for this reduction in 
element axial stiffness causes an overall increase in 
truss mass; an optimal hierarchical order is expected for 
lightest weight self-similar truss structures. 

This process of element axial stiffness reduction is 
dramatic in trusses.  Consider a 1st order self-similar 
truss construction rule that allocates a fraction, β , of 
the total truss mass to longerons.  For the 2nd order 
structure, the fraction of mass allocated to axial 
members is 2

effβ β= .  In general, 

 n
effβ β=  (2) 

is allocated to axial material.  A 3rd order self-similar 
truss with 0.5β =  allocates only 12.5% of material to 
axial stiffness. 

The above considerations show that performance 
trends with increasing hierarchy are not always 
obvious; regardless of cost and manufacturing 
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considerations, an increase in hierarchy is not always 
better. 

A Simple Example 
To illustrate analytically the trends in hierarchical 

structures, a self-similar hierarchical four longeron 
truss-column is investigated.  This truss is chosen 
because it is representative of real structures and can be 
analytically modeled with simple equations.  The 
following characteristics are assumed: 
• The truss has four longerons, four member batten 

frames and four diagonals per bay. 
• Each bay is identical (a regular truss). 
• Elements are pin jointed. 
• Bays are cubic with edge dimension, l . 
• All lowest order elements have identical solid 

circular cross sections characterized by a diameter, 
d . 

Four bays of a 2nd order example are shown in Figure 7.  
All 1st order bays in the 2nd order structure are assumed 
identical and a similar approach is taken for higher 
orders.  For this truss, a parameter that is useful for 
characterizing the weight per length is the total length 
of elements per length of bay, 

 4 4 2 4
13.66

l l l
l

µ + += =  (3) 

For this truss, the axial material fraction is found as 
4/ 0.29β µ= = . 

The dimensions of lightest weight hierarchical 
trusses subjected to axial compressive loads are now 
derived.  The standard procedure for high strength 
slender structures, and that which is used here, is to 
equate global and local buckling modes.  In doing so, a 
column length (L ) is introduced for the global buckling 
mode.  With the above assumptions, only two design 
variables are required to specify a 1st order truss ( l  and 
d ).  This is convenient since there are two design 
equations (global and local buckling) for sizing the 
column. 

In the following, this sizing procedure is carried 
out for the hierarchical truss from 0th order (single solid 
rod) to higher orders and, upon identifying patterns in 
the resulting performance equations, equations as a 
function of n  are written.  A notation in the form of 
ijx or ix  is used.  i  indicates the top level hierarchical 

order of the truss and j  references an element of thj  
order of the truss ( j i≤ ). 

Consider the 0th order solid rod with area ( 00A ) and 
cross-section moment-of-inertia ( 00I ) given by, 

 2 4
00 0 00 0,

4 64
A d I dπ π= =  (4) 

where 0d  is the element diameter.  Weight per length of 
the rod ( 00 00w Aρ= ) is given by, 

 2
00 04
w dπρ=  (5) 

where E  is Young’s modulus and ρ  is the bulk 
material weight density.  The Euler column buckling 
strength ( 00P ) of this element is, 

 
2

00
00 2

EI
P

L
π= . (6) 

The lightest weight structure is found by solving 
Equation (6) for the single design variable, 0d  with 

00P P= , 
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 =    
 (7) 

The optimized rod weight per length is found through 
substitution of this design variable solution into 
Equation (5), 
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π

 =    
 (8) 

A 1st order truss composed of 0th order solid rods is 
now similarly sized.  The truss will have 0th and 1st 
order element cross-section moment-of-inertias given 
by, 

 4 2
10 1 11 10 10,

64
I d I A lπ= =  (9) 

where 10A  is the area of a single longeron, 

 2
10 14
A dπ=  (10) 

The truss-column weight per length is given by, 
 11 10w Aρµ=  (11) 
and will have global buckling strength ( 11P ) and local 
buckling strength ( 10P ) given by,  

 
2 2

11 10
11 102 2
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,
EI EI

P P
L l

π π= =  (12) 

The lightest weight truss is found by solving Equations 
(12) for the two design variables, 10l  and 1d  with 

10 114P P P= = , 

 

1 1
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10 13 3

1 8,PL PLl d
E Eπ π

    =  =      
 (13) 

Substitution of these design variables into Equation 
(11) gives, 

 

1
2 2 3

11 3 2

1 P Lw
E

ρµ
π

 =    
 (14) 

A similar sizing process was carried out for higher 
orders of hierarchy.  With each order, an additional 
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buckling equation and design variable are added so that 
the system of equations is sufficient to size the 
structure.  This process was carried out sufficiently (6th 
order) to identify the patterns with increasing n .  The 
resulting general equations for element diameter, 
longest longeron length and structure weight per length 
are: 

 
2
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 (15) 
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The column weight per length, which is graphed in 
Figure 8, has a minimum with respect to n  that 
typically ranges from two to four.  The highest order 
element length (which is approximately equal to 
column diameter) and the smallest element diameter 
equations are graphed in Figures 9a and 9b, 
respectively. 

It is of practical interest to determine the relative 
truss weight reduction with increasing n  and the 
parameters the optimal n  is most sensitive to.  The 
ratio of the weight per length of a truss of order 1n +  
to a truss of order n  reveals this,   
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 (18) 

When this ratio first exceeds unity, increasing hierarchy 
just begins to increase the weight of the structure.  This 
point is the optimal n .  Equation (18) is a function of 
n  and the single non-dimensional material, geometry 
and load parameter ( )2P EL  and is graphed in Figure 

10 for µ = 13.66.  The graph shows hierarchy is 
increasingly beneficial as the non-dimensional 
parameter decreases.  It is only for very long and lightly 
loaded applications that a hierarchy greater than two 
results in lighter weight columns.  For example, the 
load supported by a 100 m (328 ft) column with 
E = 200 GPa (29 Msi) should be less than 2 N (0.45 
lb) before 3rd order hierarchy is employed.  The load 
below which the same column is optimally 2nd order is 
2.0E6 N.  Considering a short column of 1 m, the load 
should be less than 200 N for 2nd order hierarchy to be 
optimal.  These results seem to indicate 2nd order 
hierarchy is optimal for most reasonable columns. 

Where appropriate, an increase in hierarchy from 
1st order to 2nd order typically corresponds to a factor of 
10 mass reduction and a factor of two to four increase 

in diameter.  The weight reduction and diameter ratio 
increase as the non-dimensional parameter decreases. 

General Optimization 
While they characterize general trends, Equations 

(15) through (18) may not be representative of efficient 
space structures.  First, space structures are more 
generally subject to bending stiffness and strength 
requirements as opposed to column requirements 
(columns are often considered with space structures 
because the elements of trusses are columns).  Second, 
structures are not typically limited to the constraints of 
cubic bays and uniformly equal element diameters.  
Despite these limitations, the previous example 
analytically demonstrates general trends with increasing 
hierarchy and shows the existence of minima in these 
trends.  In the following, more robust numerical 
optimizations of self-similar trusses are considered for 
1st and 2nd order hierarchy.  Restrictions on the 
similarities between elements within a bay are removed 
and strength and stiffness requirements are more 
accurately calculated.  Straightness imperfection effects 
are also included.  These optimizations are carried out 
for requirements spanning several orders of magnitude 
so that the trends are revealed for a large range of space 
structures. 
Triangular Truss Construction Rule 

A three longeron regular truss construction rule is 
assumed.  This truss has been called a triangular 
double-bay single-laced truss and is shown in Figure 
11.  The geometry of the truss is characterized by two 
parameters, bay length ( l ) and radius (r ).  The batten 
and diagonal lengths are related to these parameters by, 

 
2 2 2 2

3

3

b r

d l b l r

=

= + = +
 (19) 

The longeron, diagonal and batten stiffness properties 
are characterized by their effective axial spring 
stiffnesses: lk , dk  and bk , respectively.  The diagonals 
of successive bays are assumed to be laced in 
alternating directions so that the simplest repeating 
element has length 2l .  The triangular truss was chosen 
because it is simple and commonly used in engineering 
structures.  Solid circular 0th order elements are 
assumed.  The details of nodes (joints where longerons, 
diagonals and battens intersect) are not considered. 
Requirements 

The general set of 12 global requirements of a 
typical beam (stiffness and strength for: axial loads, 
torsional loads and bending and shear loads about two 
axes) are reduced to two.  First, torsion and axial loads 
are not considered (-4) because the structure is assumed 
to act primarily in a bending sense.  The beam is also 
assumed to be isotropic so that bending and shearing 
are respectively equal for both axes (-4).  This leaves 
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four parameters (bending and shear stiffness and 
strength).  For a cantilever beam, bending and shear are 
not independent and this is used to map shear 
requirements into bending requirements (-2).  This 
reduces the optimized beam requirements to two: 
bending stiffness and bending strength.  For trusses, all 
lower order elements act as columns and have 
requirements derived from the global structure 
requirements.   
Bending Stiffness 

A cantilever beam is assumed for mapping shear 
requirements onto bending requirements.  The tip 
displacement ( δ ) of a cantilever beam is due to both 
bending and shearing compliances, 
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 (20) 

An effective bending stiffness ( effEI ) can be defined 
that gives totalδ  when used in the equation for EIδ , 
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 (21) 

In the current work, L  is assumed to be equal to 10 
times the column diameter.  This procedure ensures that 
an optimized beam composed of many bays does not 
avoid the bending stiffness requirement by deforming 
through a shear compliance. 
Effective Continuum Stiffness Equations 

The analysis of hierarchical structures is potentially 
daunting because the number of elements increases 
exponentially with hierarchical order.  In the present 
work, the problem is kept manageable through the 
assumption of regular trusses.  In regular trusses, a 
relatively simple bay that identically repeats itself can 
be identified.  The behavior of a beam constructed from 
many bays is then only a function of the behavior of a 
single bay.  Thus, simplified effective continuum 
equations representing the behavior of a beam of 
arbitrary length can be written as functions of single 
bay geometry and element properties. 

The direct stiffness method of matrix structural 
analysis was implemented symbolically in a 
Mathematica (Wolfram Research Corporation) program 
to derive such equations.  The program generates 
symbolic equations for the deflections and loads in 
arbitrary three dimensional pin jointed truss structures.  
This has been applied to the triangular truss and shown 
to yield results identical to those obtained by Renton 

and Noor.11,12  The program is readily adaptable to 
future structural configurations that may become of 
interest.  The effective continuum stiffness equations 
for the triangular truss are, 
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Strength Equations 
The strength equations are dependent on whether 

the structure under consideration is the highest order 
bay (subject to a bending strength requirement) or a 
lower order element (subject to column strength 
requirements).  Regardless, the structures are subject to 
both multi-bay and single bay requirements. 

Multi-bay strength requirements.  A column 
element must have enough combined bending and shear 
stiffness to resist global buckling.  The equation for 
global buckling with combined bending and shear 
compliance is,13 

 
1

e
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 (23) 

where, 

 
2

2e
EIP
L

π=  (24) 

The battens and diagonals must provide enough support 
to the longerons to enforce local buckling.  Also in 
reference 13, Timoshenko derived an expression for the 
minimum spring stiffness of equally spaced supports on 
a long column required to ensure the first buckling 
mode has a wavelength equal to the support spacing, 

 4 crP
l

α =  (25) 

where crP  is the Euler buckling load of the column 
with length equal to the distance between supports.  For 
the current truss, α  is assumed equal to the shear 
stiffness per length of the face of a bay, 

 
( ) ( )

2

2 2
b d l

b d l b d l

b k k k
b k k k k k k l

α =
+ + +

 (26) 

where b is the length of a batten. 
Single bay strength requirements.  For pure column 

loads and bending moments, only the longerons are 
stressed; diagonals and battens are not loaded and 
hence, not subjected to strength requirements.  The 
longerons of a column must be stiff enough to resist 
local buckling and this strength is predicted with 



 

 
American Institute of Aeronautics and Astronautics 

6

Equation (23).  The load a longeron must support is 
given by, 

 
3l
PF =  (27) 

where P is the compressive load applied to the column.  
For bending loads longerons are stressed according to, 

 
2l
MF
r

=  (28) 

As mentioned, shear strength requirements are mapped 
into a bending strength requirement.  A cantilever beam 
of length L  and root moment M  has tip load 
(maximum shear, V ) given by, 

 MV
L

=  (29) 

A shear load causes the following maximum element 
loads, 
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Equation (23) is used to ensure each element is stiff 
enough to support the load given by Equation (30).   

A material strength limit of  138 MPa (20 Ksi) is 
also enforced for all elements.  This constraint becomes 
active only for very low bending stiffness and high 
bending strength requirements. 
Geometric Imperfection Effects 

As element slenderness (length to diameter ratio) 
increases, straightness imperfections can degrade axial 
stiffness.  An analysis of this stiffness degradation has 
been previously derived for an initially curved beam-
column and the solution is applied here.14-19  
Imperfections are approximated as a sinusoid with half 
wave-length l  and amplitude a .  It can be shown that 
the effective spring stiffness of this element is, 

 
2

o cr
o

o

E A P
k

l lε
= =  (31) 

where crP  is the Euler buckling load of the element and 

oε  is the effective shortening strain due to the 
imperfection, 

 

2
2

22

2

2 2

1
4 41

cr

o

EIP
l

a
l l
a

π

πε

π

=

 = ≈   
+

 (32) 

The imperfection amplitude to length ratio (a l ) can be 
attributed to a dimensional stability strain error 
(potentially due to thermal or manufacturing effects).  

A uniform outer fiber strain error ( ε ) causes a slender 
rod to take the shape of a circle.  This circle can be 
approximated as a parabola so that the rod imperfection 
amplitude to length ratio is given by, 

 
8

a l lc
l r r

ε≈ =  (33) 

In the current work, the strain error is assumed to be 
0.012% so that 0.000015c = .  This corresponds to a 
120 C°  temperature change in a unidirectional graphite 

material with coefficient of thermal expansion of 
1 Cµε ° .  This imperfection is assumed for all 

elements and all hierarchical levels. 
The total effective spring stiffness of an element is 

that due to a combination of stretching and bending, 

 
1

1 1
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k
k k

−  = +   
 (34) 

For a solid rod element, k  is given by, 

 EAk
l

=  (35) 

A reduction in local buckling strength occurs in 
imperfect columns due to non-uniform longeron 
loading.  This strength reduction mechanism is not 
considered here. 
Design Variables 

The optimization method considers a beam of 
arbitrary length subject to both bending stiffness and 
bending strength requirements and finds the lightest 
weight per length bay that satisfies the requirements.  
For the 1st order system, bay length and diameter are 
optimized along with longeron, batten and diagonal 
diameters (five parameters total).  The effective beams 
are assumed regular in that member diameters do not 
vary along their length.  For the 2nd order system, bay 
length and diameter are optimized for the 1st and 2nd 
order elements (eight parameters) along with 
(independently) the diameters of the three 1st order 
elements of the three 2nd order elements (nine 
parameters) for a total of 17 optimization parameters.  
This optimization procedure was carried out for a range 
of bending stiffness and strength requirements. 

Results 
The 1st and 2nd order triangular truss optimization 

results for weight per length, bay radius, 0th order 
longeron diameter and 0th order longeron slenderness 
are shown in Figures 12 and 13, respectively. 
1st Order Optimization Results  

Below an EI  to M  ratio of 100 m, truss weight 
per length and longeron diameter are independent of 
EI .  In this region strength requirements drive the 
truss design.  Above an EI  to M  ratio of 106 m the 
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truss is more stiffness driven and the strength 
requirements are not active. 

Longeron slenderness exhibits two regions of 
relatively constant values of 30 and 115.  The transition 
between the two regions is relatively narrow but 
corresponds to the cases where both stiffness and 
strength constraints are active.  This interesting result 
implies structures should be either slender ( 115l d = ) 

or stout ( 30l d = ), determined by the ratio of EI  to 

M . 
2nd Order Optimization Results 

The 2nd order truss optimization results exhibit 
similar regions of independence of EI  and M  
requirements, but the transition region is much broader.  
Both EI  and M  constraints are active over most of 
the plots.  Interesting minima are observed on the 
longeron diameter contours lines. 
1st to 2nd Order Truss Trends 

The ratio of 2nd order truss weight per length to 1st 
order truss weight per length is shown in Figure 14.  
The optimized 2nd order structure weight per length 
ranges from 0.010 to 0.035 times that of the equivalent 
optimized first order structure.  The greatest weight 
savings is for 1st order structures that are farthest from a 
point where both stiffness and strength constraints are 
active.  Thus, structures with high EI  and low M  
requirements or low EI  and high M  requirements 
receive the greatest weight reduction with an increase to 
2nd order hierarchy. 

The ratio of 2nd order truss diameter to 1st order 
truss diameter is graphed in Figure 15.  While this ratio 
ranges from 1 to 14, there is a broad plateau at 9.  Thus, 
an optimized 2nd order truss is typically an order of 
magnitude larger than an optimized 1st order truss. 

Conclusions 
Space structures often have stringent size 

requirements and are lightly loaded.  Such structures 
are more stiffness limited than strength limited, 
precluding the need to incur the complexities of 
increased hierarchy.20  However, when an increase in 
diameter is allowed, hierarchy greater than 1st improves 
performance.  In the assumed solid element truss-
column, the optimal hierarchy is typically 2nd.  A long, 
lightly loaded truss-column has the greatest potential to 
benefit from an increase in hierarchy.  The weight 
efficiency of the hierarchical truss was shown to be a 
function of the non-dimensional parameter ( )2P El .  

The transition from 1st to 2nd order hierarchy occurs for 
for values of this parameter near 10-9.  The transition 
from 2nd to 3rd order hierarchy occurs for values of this 
parameter near 10-15.  Very large solar sails are 
potentially in the load range where 3rd order hierarchy 
results in the lightest weight structure. 

General optimization of 1st and 2nd order solid 
element trusses subject to bending requirements 
indicate optimized 2nd order trusses are two orders of 
magnitude lighter than 1st order trusses.  They are also 
typically nine times larger in diameter.  These results 
differ significantly from those for the column 
optimizations.  It is hypothesized that the differences 
are due to the change in requirements (bending vs. 
compressive strength) and a higher effective axial mass 
fraction (β ) for the more generally optimized beams. 

Several assumptions were made in these studies 
that have the potential to influence the results.  For 
example, solid element as opposed to tubular element 
structures were assumed.  The structures were assumed 
self-similar trusses as opposed to allowing lattice and 
shell architectures in the same structure.  Relatively 
non-conservative imperfection amplitudes were 
assumed.  Also, a high modulus, low density and high 
strength material system was assumed.  These are all 
interesting aspects of the current study and warrant 
investigation.  It is hoped that such can be 
accomplished in future work. 
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Figure 1: Increased latticing in topology optimization solutions for a beam with center load as mesh density is 
increased (reference 1). 



 

 
American Institute of Aeronautics and Astronautics 

9

 
Figure 2: Photographs showing the 3 levels of hierarchy in the Eiffel Tower (Paris, France). 
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Figure 3: Increasing structural hierarchy with a two-dimensional self-similar construction rule. 
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Rod to tube transition equation derivation: 

 Cross-section area and inertia:  2 4and
4 64

A d I dπ π= =  

 Axial stiffness requirement determines required d :  ( )
( )

2 4 req
req

EA
EA EA d

Eπ
= → =  

 Transition load determined by Euler buckling constraint:  
( )22

2 24
req

trans

EAEIP
l El

π π= =  

Tube to higher order transition equation derivation: 

 Cross-section area and inertia:  3and
8

A dt I d tππ= =  

 Axial stiffness and global buckling requirements determine tube thickness and diameter: 

( )

( )

( )

2 3 3

2 2

3

22

8
1
2 2

trans

reqtrans

reqreq

trans

PldEI Ed t EAP
l l

EAEA E dt t
El P

π π π

π

   =        = =      →         =      =     

 

Transition load determined by local buckling constraint:   

( )31 22

1
2

12 3
10 20

req
trans trans

EAEtP A P
d lE

π = → =     

Figure 4: Rod-tube-higher order column transition equation derivations. 
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Figure 5: Simplest longeron form as a function of stiffness and strength requirements. 

 
Figure 6: A 2nd order cellular beam cross-section. 
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Figure 7: 2nd order truss-column (2nd order diagonals not shown). 
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Figure 8: Column weight per length as a function of hierarchy order. 
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Figure 9: Column diameter (a) and smallest element diameter (b) as a function of hierarchy order. 
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Figure 10:  Ratio of 1n +  order structure weight per length to n  order structure weight per length. 

 
Figure 11: Four bays of the triangular double-bay single-lacing truss. 
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Figure 12: 1st order optimization results (E = 200 GPa (29 Msi), ρ = 1660 kg/m3 (0.06 lb/in3)). 
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Figure 13: 2nd order optimization results (E = 200 GPa (29 Msi), ρ = 1660 kg/m3 (0.06 lb/in3)). 



 

 
American Institute of Aeronautics and Astronautics 

15

1 10 100 1,000 10,000
M (N-m)

102

103

104

105

106

107

108

E
I 

(N
-m

2 )

2nd Order to 1st Order Weight Ratio

0.0303503

0350.0303

0300.03.03

0250.02002

200.020020

0.015

0.03.030.03

0.025

 
Figure 14: Ratio of 2nd order to 1st order truss weight per length optimization results (E = 200 GPa (29 Msi), ρ 
= 1660 kg/m3 (0.06 lb/in3)). 
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Figure 15: Ratio of 2nd order to 1st order truss radius optimization results (E = 200 GPa (29 Msi), ρ = 1660 
kg/m3 (0.06 lb/in3)). 


