
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2, Issue-6, January 2013

241

Abstract— This paper deals with the problem of displaying

large Digital Elevation Model data in 3D GIS. Current

approaches relate to the splitting algorithms by 2D Polygonal

Vector Data such as Particle Swarm Optimization (PSO-TSA) and

Genetic Algorithm (GA-TSA). We will, herein, present another

method based on stochastic optimization for the considered

problem. It also employs some ideas of Wife-Selection scenario

and Stick Procedure. The new method allows us to quickly find

the optimal saving threshold. The comparison with the

state-of-the-art method will be made to verify the efficiency of the

proposed method.

Keywords— Digital Elevation Model, Geographic Information

Systems, Stochastic Optimization, Terrain Splitting.

I. INTRODUCTION

Terrain Splitting Optimization (TSO) problem was

presented by the authors in [4]. Its purpose is to reduce the

displaying time of large terrain data, especially in the format

of Digital Elevation Model (DEM), in 3D Geographic

Information Systems (GIS). Terrain data are used to represent

the three-dimensional compositions in the relation with

geographic factors. Depending on the resolution, the size of a

terrain is varied to express the information attached to that

terrain. For example, a 30m DEM terrain has a volume of 280

Megabytes (MB). The smaller the resolution of terrain is,

more details are shown, and its size is increased as a result.

Indeed, it takes long time to display such a terrain.

Mathematically, this problem is described below.

min
1

1

k

i

iSJ ,
(1)

jikjki

SSS

SS

DEMji

DEMi

,,1,,1

,

(2)

where iS (ki ,1) is the area of a small terrain in a

processor of a computing system . DEMS is the area of

terrain. The parameter is the saving threshold. The last

parameter is the disparity. Normally, its range falls into (0,

5). In equation (2), the first line states that the memory space

in a processor is saved by 100 percents. The second one

confirms that the difference between the memory spaces in

two processors is small.

Several soft computing methods were designed for TSO

problem such as SESA [4], PSO-TSA [6] and GA-TSA [6].

They relied on the ideas of using natural evolution

Manuscript received on January, 2013.

 Le Hoang Son is with VNU University of Science, Vietnam National

University.

Nguyen Dinh Hoa is with VNU Hanoi Information Technology Institute,

Vietnam National University.

combined with heuristic search methods to specify the

solutions. These algorithms achieved successful results as

shown in the experiments of equivalent articles.

The aim of this note is to investigate another optimization

method for this problem. It employs the new ideas of

Wife-Selection scenario and Stick Procedure. The proposed

method is named as Stochastic sImulation Test based Terrain

Splitting Algorithm (SIT-TSA) and is compared with the

algorithms above to verify the efficiency.

The remainder of this paper is organized as follows.

Section 2 presents some related works for this problem. The

proposed method is described in Section 3. Experimental

results and discussions are given in Section 4. Finally, we will

make conclusions and delineate future works in the last

section.

II. RELATED WORKS

The authors in [4] introduced a conditional parallel

partitioning method so-called SESA for TSO problem. The

basic idea of this method is to traverse all partitions dividing

n elements into k blocks. For each block, SESA calculates

its area and checks the constraints. If a suitable partition is

found, the algorithm will stop and output the results.

Certainly, to reduce the number of traversed partitions, a

pre-processing step based on geometric processing between

polygons is carried out to arrange some elements into specific

blocks. Additionally, parallel computing is also employed to

accelerate the running time.

However, the saving threshold found in SESA is not

optimal. Authors [6] presented two algorithms to solve the

original problem. The first one based on Genetic Algorithm

[2] namely GA-TSA employs some ideas of natural evolution,

such as inheritance, mutation, selection, and crossover for

finding the best saving threshold in a search area. In this

algorithm, an individual is a collection of indexes of all

polygons that represent for all blocks in a current solution.

Then, through a fitness function, all individuals are sorted in

the ascending order, and half of them are selected to

reproduce a new generation by the mean of Cross Over and

Mutation operations. After pre-defined maximal iteration

steps, the best generation is found, and the saving threshold

can be extracted from it.

The second algorithm in that literature started with an idea

of Swarm Optimization, which is considered to be the most

suitable strategy among all of Heuristic Optimization. The

chosen algorithm to develop is Particle Swarm Optimization

(PSO) which was invented by Kennedy et al. [3]. Indeed, the

algorithm was named PSO-TSA. The basic idea of this

algorithm lies on Seed Procedure. Basically, k seeds are

evenly distributed in the space. Each seed represents for a

number of polygons. If the constraints (2) are not met, PSO

algorithm is used to generate a new population until the

stopping condition is reached. In the last iteration, the particle

holding gBest value will be outputted if it satisfies the

constraints.

A Novel Stochastic-Based Algorithm for Terrain

Splitting Optimization Problem

Le Hoang Son, Nguyen Dinh Hoa

A Novel Stochastic-Based Algorithm for Terrain Splitting Optimization Problem

242

In the experiments, PSO-TSA obtains a smaller saving

threshold than GA-TSA does. However, the running time of

PSO-TSA is longer than that one of GA-TSA. Certainly, two

algorithms are better than SESA both by the saving threshold

and running time. Therefore, PSO-TSA is considered as the

state-of-the-art algorithm for TSO problem.

III. THE PROPOSED METHOD

A. Basic Ideas

In this section, we present another approach for TSO

problem. It is a stochastic, agent - based approach named

Stochastic sImulation Test based Terrain Splitting Algorithm

(SIT-TSA). Keep the problem in mind and temporarily forget

about the previous ideas of using PSO and GA, all we need to

know is a basic principle that covers all activities of SIT-TSA

algorithm. In a simple way, it can be understood as: “It is

supposed to be no satisfied solution with probability p1

after a series of failed stochastic simulation tests on various

possibilities derived from the original sample”. In the other

word, this principle behaves as a similar way to Monte Carlo

method - a class of computational algorithms that rely on

repeated random sampling to compute their results [1].

Monte Carlo method is widely used in various fields such

as in statistical physics, particularly Monte Carlo molecular

modeling as an alternative for computational molecular

dynamics as well as to compute statistical field theories of

simple particle and polymer models. Therefore, a Monte

Carlo - like approach is suitable for our problem in case of the

number of polygons is large, and an intermediate answer is

required. Now, consider the following Wife-Selection

scenario in Fig. 1: “Once upon a time, there is a great

Kingdom with a wise, brave king. Everybody admires him a

lot. However, this king has only a son, and he pays attention to

nothing except hunting or playing with friends. The old man is

very sad because he is getting older, and his son cannot

replace him. Sharing the worries, some servants suggest the

king to find his son a fiancée. He recognizes it a good idea and

immediately announces to all villages in the Kingdom.

Besides, the old king assigns a duke to follow with the prince

to come to each village for searching. Nevertheless, the prince

is very lazy and does not want to go to all villages. The duke,

who is a good mathematician, calculates by probability which

village has more girls satisfying the king‟s conditions.

However, these villages are still much, and it takes a lot of

time to speak with all girls in a specific one. Instead, the duke

chooses random girls from each village and tests. If he finds a

suitable girl, then she will be added to his lists. The test is

repeated in other selected villages. Finally, the duke will give

the prince his list and let him choose the fiancée. If no suitable

girl is found on the duke‟s list, the prince has to wait for next

selection in some following years”.

SIT-TSA acts like the scenario above. An agent is

randomly initiated at a polygon. By using a local search

method, an ordered list of polygons is established. Then, by

multiple tests with random „sticks‟ dividing this list into k

blocks, a candidate list of this agent is set up. This process is

repeatedly performed for other agents. Finally, the optimal

solution with minimal saving threshold parameters will be

chosen from all the candidate lists. Certainly, we use parallel

computing as an important aid for the reduction of total

computing time due to independent works between agents.

B. The Algorithm

Input: a terrain, a polygon shape dataset, the total number

of polygons (l), the number of processors (k), the disparity

 and a test range],[10 tt .

Output: The optimal saving threshold .

SIT-TSA:

Step 1: Divide the total number of agents following by the

number of processors in the system. Then, the number of

agents in each processor is calculated as follows,

 klNA 2/ , (3)

where l is the total number of polygons and k is the

number of processors. Started nodes for all agents are

ascending chosen from node 1.

Step 2: For each processor, we find the candidate lists for

all agents in it. In specific, consider a polygon as a node in a

graph. Let CV and DV are the sets containing started nodes

of all agents in this processor and visited nodes in an agent‟s

life, respectively. Initially, DV . Two agent parameters

a , b are also randomly initiated by positive values,

)1,0(randa and ab 1 . (4)

Step 3: Move the first node oI of CV to DV .

 oCC IVV \ , (5)

 oDD IVV . (6)

Step 4: For any node j which is not in DV , calculate the

probability,

jISPbjIda

jIP

0
),(

1
,

0

0

 ,
(7)

where),(0 jId is the distance between polygons 0I and

j , jISP
0

 is the area of two polygons 0I and j .

Fig 1. Wife – Selection scenario

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2, Issue-6, January 2013

243

Step 5: Choose node oj which satisfies the condition

below and add it to DV ,

 jIPjIP ,max, 000 , DVj , (8)

 oDD jVV . (9)

Step 6: Repeat Step 4 and Step 5 with oj is the started

node until all nodes are in DV . Then, we will have a sequence

 lXXX ,..,, 21 extracted from DV where tX is a

polygon, lt ,1 .

Step 7: Select a number of tests for this agent (NoTest)

by the probability in equation (7),

MinTestNoTest

],max)[(jiPMinTestMaxTest ,

(10)

where],[MaxTestMinTest is a given range of the

number of test cases. Indexes i and j are two consecutive

nodes in DV .

Step 8: For each test case, perform Stick Procedure to find

a suitable solution. In essence, we select)1(k random

„stick‟ to put into the sequence lXXX ,..,, 21 .

 8.1),,(iklStick

 8.2 If 0k then stop;

 8.2)1,1()(klrandiStick ;

 8.3)1,1),((ikiSticklStick ;

 8.4 End.

 (11)

Step 9: For each block in this test case separated by two

continuous „sticks‟, calculate the area of all polygons in it

(iSP , ki ,1).

Step 10: Check the constraints (2) for the current solution.

If they are satisfied, we will find the maximum below, and add

this test case‟s solution into the agent‟s candidate list.

DEM

i
CaseTest

S

SP
max_ , ki ,1 .

(12)

Step 11: Repeat from Step 8 to Step 10 with other test

cases. We will receive an agent‟s candidate list with different

values CaseTest _ . Find the optimal solution for this agent,

CaseTestagent _min . (13)

Step 12: Repeat from Step 2 to Step 11 with other agents in

this processor. Extract the optimal solution of the processor

from a list of solutions of agents agent ,

 agentprocessor min . (14)

Step 13: Synchronize all processors in the system and find

the optimal saving thresholds from processor if they exist.

processoroptimal min . (15)

We then conclude that for given , the optimal solution is

optimal . Otherwise, no suitable solution is found.

Some important points can be drawn from this algorithm.

- Firstly, two agent parameters a and b are different to

each agent. As we can see, in equation (7), the probability to

choose a next node depends on these parameters. Because we

have two criterions jISP
0

 and),(0 jId , the larger

parameter will decide which criterion will be followed.

Moreover, the advantage of random agent parameters can be

seen as the way to avoid local solutions between agents due to

different sequences of them.

- Secondly, in Step 8, when selecting „sticks‟ to put into a

sequence, it is possible that some test cases are the same.

Therefore, the number of „real‟ test will be reduced. To

increase it, we supplement a quantity related to the maximal

probability of two nodes in the sequence. Thus, the number of

test cases is still in a given range],[MaxTestMinTest .

- Thirdly, we will try some combinations of adjacency

polygons in a sequence to form solutions. In essence, our

algorithm belongs to the greedy approaches. A sequence, in

this way, is an ordered list of polygons whose combination

between them will create more solutions than original

sequence‟s ones with a specific probability. Consequently, it

is better to investigate in a „good‟ sequence.

- Fourthly, to ensure the time condition and avoid similar

solutions between agents, we limit the number of agents to the

half of the number of polygons, and process it by parallel

computing. Then, the computational time and the solution will

be ameliorated.

- Finally, SIT-TSA method converges to the global

solution instead of the local one due to the best solution

selection process among all agents. Moreover, it can answer

quickly whether a solution may exist for a given parameters

 or not.

C. An Example

Assume that we have a polygon shape dataset below

(Fig.2). The number of processors 3k . The number of

agents in each processor is 1NA . In the first processor,

1CV and DV . Thus, a sequence found by the first

agent and some tests from it is illustrated through Fig. 3.

Fig 2. A polygon shape dataset

A Novel Stochastic-Based Algorithm for Terrain Splitting Optimization Problem

244

IV. EXPERIMENTS

A. Theoretical Evaluation

In this section, we will evaluate the proposed algorithm

both by time and space complexity. In SIT-TSA algorithm,

Step 4 to Step 6 requires 2/)1(ll calculations. Step 7

to Step 11 takes lNoTest operations. Each processor has

 kl 2/ agents. Therefore, the total computing time of the

algorithm is,

)(
2

1

2

)1(

2

3lO
k

lNoTest
ll

k

l

.

(16

)

The memory space in each processor to store DV ,

probabilities of all nodes, and the sequences of all agents is

)(lO . Therefore, the total memory space is)(lOk .

B. Experimental Setup

Theoretical time complexity does not always indicate

clearly the speed of an algorithm. For this, measurements of

CPU time often give better information. Therefore, in this

part, we have implemented the proposed algorithm in addition

to PSO-TSA in C programming language, and executed them

on a Linux Cluster 1350 with eight computing nodes of

51.2GFlops. Each node contains two Intel Xeon dual core 3.2

GHz, 2 GB Ram. In SIT-TSA, the parameters

],[MaxTestMinTest and are initially set as]100,10[

and 001.0 , respectively. In PSO-TSA, the population and

the maximal iteration are 1000 and 100, respectively. Terrain

data are taken from Bolzano - Bolzen province [5].

C. Saving Threshold Comparison

Firstly, we calculate the values of saving threshold for

SIT-TSA and PSO-TSA algorithms following by different

number of polygons and number of processors in two terrain

data. We compare the saving thresholds of two algorithms for

a specific number of polygons and processors, and find the

smallest one. Then, we increase the number of cases for the

algorithm that has the smallest value of saving threshold by

one. The statistics are grouped following by the number of

polygons. Results are illustrated in Fig. 4. Similarly, we

perform another comparison following by the number of

processors, and summarize the results in Fig. 5.

Fig. 4 clearly shows that the number of cases generated by

SIT-TSA is larger than the one of PSO-TSA. For example,

when the number of polygons is 20, SIT-TSA produces six

best cases when PSO-TSA makes three cases only. The

maximal difference between two algorithms is four cases

when the numbers of polygons are 50 and 5000. PSO-TSA is

only better than SIT-TSA when the number of polygons is

500. In general, SIT-TSA still brings more cases than

PSO-TSA does.

Fig. 5 reconfirms that SIT-TSA generates more cases than

PSO-TSA does. The maximal difference between two

algorithms is larger than the result in Fig. 4. In fact, this

number is 7 when the number of processors is 3. PSO-TSA is

better than SIT-TSA when the numbers of processors are 8

and 12. For the remains, SIT-TSA is shown to obtain better

results than PSO-TSA.

Fig 6. Average saving thresholds of algorithms by

number of processors

Fig 5. The number of cases following by the number of

processors

Fig 4. The number of cases following by the number of

polygons

Fig 3. (a) a sequence of an agent; (b) some tests from this

sequence

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2, Issue-6, January 2013

245

In Fig. 6, we calculate the average numbers of saving

threshold following by the number of processors in both

algorithms. A comparison between them is made in this

figure. This test clearly points out that the values of

SIT-TSA are smaller than the ones of PSO-TSA. The

maximal and minimal differences between two lines are found

at 0.96 and 0.02 when the numbers of processors are 4 and 16,

respectively.

Some remarks are extracted through this section:

- Firstly, SIT-TSA really brings better results than

PSO-TSA.

- Secondly, as illustrated in Fig. 5 and Fig. 6, we should

choose the number of processors from 3 to 8 in order to obtain

the best results of SIT-TSA algorithm.

D. Running Times Comparison

In this section, we will make a comparison of the running

times between two algorithms following by the number of

polygons. The results are shown in Fig. 7. Obviously,

SIT-TSA is faster than PSO-TSA when the number of

polygons is smaller than 750. The largest difference between

two algorithms is 595 times when the number of polygons is

20. The difference is getting smaller when the number of

polygon increases. When the number of polygons is larger

than 1000, the difference is below one, and SIT-TSA is

slower than PSO-TSA.

The reason for slow running times of SIT-TSA, when the

number of polygons increases, can be recognized through the

incremental level. In PSO-TSA, the average increment

between two consecutive numbers of polygons is

approximately 2.5. This number in case of SIT-TSA is 17.3.

As such, more polygons are added, the running times of

SIT-TSA are longer.

Some remarks can be found from this test:

- Firstly, SIT-TSA is faster than PSO-TSA when the

number of polygons is below 750.

- Secondly, from Fig. 4 to Fig. 7 we get a remark that the

number of polygons should be smaller than 500 to get the best

results of SIT-TSA algorithm in both the saving threshold and

the running times.

V. CONCLUSION

In this paper, we introduced a novel stochastic-based

optimization algorithm namely SIT-TSA for TSO problem.

This method employed the ideas of Wife-Selection scenario

and Stick Procedure to find the optimal solution with the

supports of parallel computing. It was verified by time and

space complexity as well as numerical experiments. The

experimental results showed that SIT-TSA obtains better

saving thresholds than PSO-TSA and is suitable for TSO

problem.

 Future works will concern some methods to store terrains

in a database as well as perform attribute queries in a 3D GIS

system.

VI. ACKNOWLEDGMENT

This work is sponsored by the research project of VNU

Hanoi Information Technology Institute, Vietnam National

University (VNU-ITI - Project No. QCT.12.07) and the

research grant of National Foundation for Science and

Technology Development (NAFOSTED - Project No.

102.01-2012.14).

REFERENCES

[1] Anderson, H. L., “Metropolis, Monte Carlo and the MANIAC”, Los

Alamos Science, vol. 14, 1986, pp. 96-108.

[2] Holland, J. H., “Adaptation in natural and artificial system”. Ann

Arbor: The University of Michigan Press, 1975.

[3] Kennedy, J., Eberhart, R. C., “Particle swarm optimization”, In:

Proceedings of IEEE International Conference on Neural Networks,

Piscataway, NJ, 1995, pp. 1942-1948.

[4] Son, L. H., Thong, P. H., Linh, N. D., Hoa, N. D., Cuong, T. C., “Some

Results of 3D Terrain Splitting By 2D Polygonal Vector Data”,

International Journal of Machine Learning and Computing, vol.1, no.

3, 2011, pp. 253-262.

[5] Son, L. H., Thong, P. H., Linh, N. D., Cuong, T. C., Hoa, N. D.,

“Developing JSG Framework and Applications in COMGIS Project”,

International Journal of Computer Information Systems and

Industrial Management Applications, vol. 3, 2011, pp. 108-118.

[6] Thien, N. D., Son. L. H., Lanzi, P. L., Thong, P. H., ”Heuristic

Optimization Algorithms For Terrain Splitting and Mapping

Problem”, International Journal of Engineering and Technology, vol.

3, no. 4, 2011, pp. 376-383.

Fig 7. The running times following by the number of

polygons

