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Abstract 
We present a protocol for maintaining multiple paths to 
each destination in a network of processes. For each des-
tination, each process in the network maintains a set of 
neighbors which are used as next-hops to reach the desti-
nation. This set is known as the successor set. Collectively, 
the successor sets from all processes in the network with 
respect to a given destination form a spanning, directed, 
and acyclic graph, whose only sink is the given destina-
tion. The protocol we present has two interesting proper-
ties. First, the graph is maintained acyclic at all times, 
even though the successor set is dynamic. Second, the 
protocol tolerates all types of transient faults, even those 
which may not be detected. Therefore, if the protocol is 
started from an arbitrary initial state, it will converge to a 
normal operating state in which a spanning, directed, and 
acyclic graph is obtained and subsequently maintained. 

1. Introduction 
Consider a network of processes, consisting of a set of 

processes and communication channels between these 
processes. To maintain a route from every process to a 
given destination process, a routing spanning tree is 
maintained in the network, where the root of the tree is the 
given destination process. This routing tree is maintained 
by making every process (other than the root process) 
store the identity of its "parent" in this routing tree. 

In general, there are two approaches to build the above 
routing tree. One approach is link-state routing, also 
known as broadcast routing. Here, each process broadcasts 
the status of its incident channels to all other processes in 
the network. Each process receives these broadcasts, and 
recreates in its memory the topology of the network. Then, 
each process builds in its memory a spanning tree of the 
stored topology, and chooses as its parent in the routing 
tree the same parent it chose in the spanning tree it 
constructed. Examples of link-state routing protocols 
include [15] and [23].  

Although link-state routing quickly obtains a spanning 
tree, it incurs significant message and storage overhead. 
To remedy this, another approach is distributed routing, 

also known as distance vector routing. In this approach, 
each process forwards to each neighbor a copy of its 
metric to the given destination. Based on this information, 
each process chooses its parent in the routing tree and 
updates its metric accordingly. Examples of distributed 
routing protocols include [9][12][13]. Distributed routing 
protocols have the advantage of requiring less memory 
and message overhead. However, they suffer from long-
lived loops and the counting to infinity problem [5], which 
can deteriorate performance. 

To eliminate the disadvantage of long-lived loops in 
distributed routing protocols, while maintaining their low 
message and memory overhead, loop-less distributed 
routing protocols were developed [5][6][14][16] (note that 
link-state routing does introduce loops, albeit of shorter 
term). These protocols achieve a loop-less state by  
maintaining at all times a relationship between the metric 
of each process and the metric of all the descendants of 
this process in the routing tree. This relationship is 
maintained through diffusing computations. Thus, loop-
less distributed routing protocols have a quick 
convergence to the desired routing tree while maintaining 
low memory and message overhead, and furthermore, 
have the desirable property of preventing routing loops at 
all times. 

The loop-less routing protocols presented in 
[5][6][14][16] tolerate link failures and fail-safe node 
failures. However, they have not been shown to tolerate a 
broader class of failures, some of which are hard to detect, 
for example, improper initialization of a node, undetected 
corrupted messages, hardware/software bugs in lower 
layers that manifest themselves on rare occasions, and 
temporary disruptions from a network intruder. Since 
loop-less routing is based on diffusing computations, these 
faults could lead to deadlocks and race conditions from 
which the protocol may not recover. 

To overcome this weakness, self-stabilizing protocols 
for loop-less routing were developed. A protocol is said to 
be self-stabilizing iff, starting from any arbitrary state 
(such as the state after an undetected fault), the protocol 
converges to a normal operating state within finite time. 
Self-stabilizing protocols are desirable due to their high 



 

degree of fault-tolerance [18]. They have the advantage of 
not requiring a global initialization and they tolerate all 
types of transient faults. The first loop-less and self-
stabilizing distributed routing protocol was presented in 
[1], followed by the protocols presented in [10][17][3][2]. 

Recently [21][22][23][26], protocols that maintain 
multiple loop-free routes to each destination have been 
presented. In [23], it was shown that network performance 
might be increased considerably if multiple routes to the 
destination are maintained. Therefore, rather than main-
taining a spanning tree rooted at the destination, these 
protocols maintain a spanning, directed, and acyclic graph, 
in which there is only a single sink node, namely, the de-
sired destination. This graph is maintained by making 
every process, other than the destination process, maintain 
a set of neighbors, called the successor set. An edge (v, u) 
is contained in the graph if process u is contained in the 
successor set of process v. 

In this paper, we present the first protocol that is multi-
path, loop-free, and stabilizing. Therefore, the protocol 
maintains, at all times, a spanning, directed, and acyclic 
graph whose only sink node is the destination process. 
Also, the protocol tolerates all types of transient faults, 
even those which may not be detected. Thus, if the proto-
col is started from an arbitrary initial state, it will converge 
to a normal operating state in which a spanning, directed, 
and acyclic graph is obtained and subsequently main-
tained. 

The objective of most routing protocols is to find a 
path to the destination which is optimal with respect to a 
given metric (e.g., path length [4], bandwidth [24], etc.). 
In this paper, we make no assumptions about the opti-
mality of the paths chosen from each process to the 
destination. Each process is free to add or remove any 
neighbor to or from its successor set. Our only restriction 
is that a loop is not formed when a neighbor is added to 
the successor set of a process, and that each process 
remains connected to the graph, i.e., its successor set never 
becomes empty. However, if it is desired to find an 
optimal path to the destination, the protocol can easily be 
extended to do so. We discuss how to perform this 
extension in the concluding remarks. 

The paper is organized as follows. In Section 2, we 
present the loop-avoidance technique used in our protocol. 
In Section 3, we discuss the problems encountered while 
trying to obtain a stabilizing loop-free protocol. Sections 4 
and 5 present two components of the overall solution to 
the problem. In Section 6, we combine these two 
components into a single self-sufficient protocol. In 
Section 7, we discuss some implementation details of the 
protocol. A comparison of our protocol with existing 
protocols is given in Section 8.  

Due to lack of space, the proofs have been deferred to 
the full paper. 

2. Loop Avoidance  
Consider a network of processes, which consists of a set of 
processes and a set of channels. Each channel allows the 
exchange of messages between two processes. We say that 
processes u and v are neighbors iff there are joined by a 
channel.  

One process in the network is a distinguished process, 
called the destination. We consider the problem of 
maintaining multiple paths from each process to the 
destination process. These paths are represented by each 
process having a set of successors. The successor set of a 
process contains those neighbors that may be used as the 
next hop in the route to the destination process. Therefore, 
if we combine all edges of the form (v, u), where u is in 
the successor set of v, then these edges form an acyclic 
graph which spans all the processes in the network, and 
whose only sink node is the destination process. We refer 
to this graph as the routing graph.  

If process u is in the successor set of process v, we say 
that v is a predecessor of u, and u is a successor of v. If, 
starting from process w, process v can be reached by 
following a path in the routing graph, then we say that w is 
a descendant of v and v is an ancestor of w. 

Each process has the freedom to arbitrarily choose 
which neighbors to add to its successor set, and which 
neighbors to remove from its successor set. However, to 
maintain a consistent routing graph, we impose two 
restrictions. First, the successor set of a process cannot 
become empty, since this would disconnect the node from 
the graph. Second, a neighbor is not allowed to be placed 
in the successor set of a process if by doing so a loop is 
formed. Thus, the requirement that the routing graph 
constitute an acyclic graph must be satisfied at all times, 
and not only at a steady sate of the network. 

The routing graph is maintained free of loops as 
follows. Each process v maintains a non-negative integer 
variable, rk.v, known as the rank of process v. This rank 
will be used to maintain an order on the processes. When a 
process adds a neighbor to its successor set, it must 
preserve this order, and in doing so it avoids loops. We 
explain this in detail below. 

We say that the ordered rank property holds at process 
v, iff, for each process w, where w is a descendant of v, 
rk.w ≥ rk.v. 

If the ordered rank property holds at v, then a simple 
technique to avoid the formation of loops is as follows. 
Process v adds neighbor u to its successor set only if rk.v 
> rk.u. That is, if rk.v > rk.u, then u cannot be a 
descendant of v, because all descendants of v have a rank 
at least rk.v. Thus, v may add u to its successor set without 
creating a loop. This is illustrated in Figure 1(a), where d 
is the destination process. 



 

The above restriction on choosing successors is 
sufficient to prevent loops, whenever the ordered rank 
property holds at a node. However, it is necessary to allow 
each process the freedom to change its rank value, which 
in turn may temporarily violate the ordered rank property. 
For example, if v wants to choose u as a new successor, 
and rk.v ≤ rk.u, then v must increase rk.v to a value greater 
than rk.u before making u its successor. However, this 
increase may violate the ordered rank property at v. 
Therefore, we must carefully consider the effects of an 
increase or decrease of the rank of a process, which we do 
next. 

First, assume that process v wants to decrease its rank. 
If the ordered rank property holds at v, then decreasing 
rk.v preserves this property at v. However, for an ancestor 
u of v, this decrease in the rank of v may violate the 
ordered rank property at u (i.e., rk.v < rk.u could occur). 
Note that this occurrence is unknown to u. Thus, u may 
decide to choose v as a successor, and a loop is formed. 
This scenario is illustrated in Figure 1(b). 

To prevent the above scenario, although we do allow 
each process v to decrease its rank, its new value should 
be at least the maximum of the ranks of its current 
successors. Therefore, the scenario depicted in Figure 1(b) 
is avoided.  

Consider now when process v increases its rank. For 
any ancestor u of v, if the ordered rank property holds at u, 
then it continues to hold as v increases its rank. However, 
the ordered rank property may no longer hold at v, since 
its rank may be greater than that of one of its descendants. 
Therefore, v must initiate a diffusing computation along 
its descendants, forcing them to increase their rank to at 
least the rank of v. During this diffusing computation, v 
may not choose a new successor, since the ordered rank 
property does not hold at v. When this diffusing 
computation terminates, then the ordered rank property is 

restored at v, and v may choose new successors. This is 
illustrated in Figure 2. 

In presenting the above restrictions on the methods in 
which a successor is chosen and the rank is updated, the 
least possible restrictions were presented, in order to 
ensure the generality of the protocol. In particular, no 
semantic meaning was assigned to a rank. We simply 
presented some general restrictions for the sole purpose of 
avoiding the formation of loops. Thus, a rank may be 
implemented in various ways.  

One implementation choice is to allow a higher level 
protocol to make a recommendation on which neighbors 
should be added to and removed from the successor set, 
and let our protocol follow these indications. Our protocol 
could ensure through the use of ranks that loops are 
always avoided. 

Another implementation choice is to set the rank to a 
routing metric. For example, assume the rank is the cost to 
the destination. The cost of a process would be set to the 
maximum, over all successors, of the cost of the successor 
plus the cost of the link between the process and the 
successor. Notice that this satisfies the requirement above 
that a process must set its rank (i.e., cost) to at least the 
maximum rank (costs) of all its successors.1 To minimize 
its cost, a process would remove from its successor set 
neighbors with higher costs and add to it neighbors with 
lesser costs. Other routing metrics such as bottleneck 
bandwidth, packet loss probability, etc., may also be used 
to implement a rank. 

3. Fault Recovery  
In this section, we discuss how the loop avoidance 
mechanism is affected by faults, and how it may recover 
from them.  

                                                        
1 Assuming no negative edge costs. 
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If faults occur in the network, they may alter the vari-
ables of a process in such a way that a loop is formed, 
even though loops do not occur during normal execution. 
If a loop exists due to a fault, it may cause a diffusing 
computation along the loop, which may never terminate. 
Since a process cannot change successors until the 
diffusing computation of its rank update has finished, the 
processes involved in the loop may remain in it forever. 

Therefore, a technique to accurately detect the pres-
ence of loops is required. If loops exist, the processes in-
volved in the loop must be able to detect this condition 
within finite time. This allows the processes to change 
successors in an attempt to break the loop. Furthermore, 
the technique should not incorrectly indicate that a loop 
exists if none is present. This would cause the processes to 
change successors unnecessarily. 

A simple technique to detect if a loop exists is for each 
process to keep an estimate of the length of the path to the 
destination along the routing tree. We refer to this as the 
hop count of the process, which is periodically updated to 
the maximum of the hop counts of the successors of the 
process plus one. We assume that all simple paths in the 
network have a length less than D, for some constant D 
known to all processes. Thus, a process only adds a 
neighbor to its successor set if the neighbor's hop count is 
less than D - 1. Furthermore, if a process detects that one 
of its successors has a hop count of at least D - 1, the 
process removes this successor from its successor set in an 
attempt to break the loop. 

This simple technique, however, has its drawbacks. 
Since successors are based on rank and not on hop count, 
it is possible to obtain a race condition in which no loop is 
ever created, yet the hop count of the processes increases 
without bound (an example of this race condition may be 
found in [25]). Thus, a process may incorrectly believe it 

is involved in a loop. Although there are techniques for 
loop detection that do not rely on hop count [3][25], these 
are not amenable for the case of multiple successors. 

To solve the loop detection problem, we must prevent 
the hop count from reaching a value of D during normal 
operation. We accomplish this by introducing a sequence 
number which originates at the destination process and 
propagates downward throughout the entire routing graph. 
That is, when all the successors of a process v have the 
same sequence number, and this sequence number is 
different from v's sequence number, then v adopts the 
sequence number of its successors. 

Once the sequence number has reached all processes in 
the routing graph, then the destination process can change 
its sequence number. Since a new sequence number is not 
introduced until the previous one has finished propagating, 
a sequence number in the range 0 .. 1 suffices. 

When a process changes its sequence number, the 
process may increase or decrease its rank. However, while 
the process maintains the same sequence number, it does 
not increase its rank, it may only decrease it. If the 
process wishes to increase its rank, it must do so the next 
time its sequence number changes. 

Therefore, the approach can be considered as a 
periodic global diffusing computation that begins at the 
destination process, and expands throughout the entire 
routing graph. 

As an example, consider Figure 3(a). Here, all 
processes have the same sequence number, namely one, 
and the rank of each process is at least the rank of its 
successors. Since all processes have the same sequence 
number, the destination process changes its sequence 
number to zero, and this sequence number propagates 
down the routing graph, as shown in Figure 3(b). As it 
propagates, each process updates its rank, which may now 
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be greater than before. Notice, however, that the ranks of 
any path from a process to the destination are decreasing, 
provided there is no change in the sequence number along 
the path. Thus, the ordered rank property holds for 
processes sharing the same sequence number. This allows 
a process to choose as its successor any neighboring 
process with the same sequence number and smaller rank, 
without forming a loop. 

It is easy to show that the hop count of each process 
under the above scheme will never reach the value D 
under a fault-free execution. Therefore, a process will not 
falsely detect the presence of a loop. However, in an 
execution with faults, a loop may occur, causing the hop 
count of a process to reach D. Thus, to break loops, a 
process should remove from its successor set any neighbor 
whose hop count is at least D - 1. 

We assume each process has a time-delayed 
knowledge of the sequence number of the destination. 
That is, each process eventually learns the correct 
sequence number of the destination, even though its 
successors have a different sequence number than the 
destination. Processes use this knowledge in the selection 
of successors: a successor is added to the successor set 
only i f it has the same sequence number as the destination. 
This is necessary for the protocol to converge from an 
arbitrary state to a normal operating state.  

Below, we present two protocols. The first protocol is 
the ordered rank protocol, and is based on the above 
assumption of knowledge of the destination's sequence 
number. The second is a core tree protocol, which is used 
to implement the above assumption. Finally, we combine 
both protocols into a single self-sufficient protocol.  

4. Ordered Rank Protocol 
For clarity and simplicity, the processes in the ordered 
rank protocol are specified using a shared memory 
notation.  A message-passing version of the protocol will 
be presented in detail in the full version of the paper. In 
this notation, each process is specified by a set of con-
stants, inputs, a set of variables, an optional parameter, 
and a set of actions as follows (similar notations for de-
fining network protocols are discussed in [7] and [8]). 

process  <process name> 
const <constant name>  :  <type>   
inp  <input name>    : <type> 
var  <variable name>   :  <type>  
par  <parameter name>  :  <type>  
begin 
 <action>   
[]   
 <action> 
end 

The inputs declared in a process may only by read by 
the process, and the values of inputs may change over 
time. The variables declared in a process can be read and 
written by the process. Also, a process may read, but not 
write, the variables of its neighboring processes. 

Every action in a process is of the form <guard> 
�

 
<statement>. The <guard> is a Boolean expression over 
the variables, inputs, and the parameter declared in the 
process and the variables declared in the neighbors of that 
process. The <statement> is a sequence of skip, 
assignment, and conditional (if  fi) statements that update 
only the variables declared in that process. We assume that 
the execution of actions is fair, that is, an action whose 
guard continuously evaluates to true will be eventually 
executed. 

successor
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The parameter declared in a process is used to write a 
set of actions as one action, provided these actions differ 
only by the parameter value. For example, let j be a pa-
rameter whose type is the range 0 . . 1. The action 

 x < j 
�

     y[j] := true 

is a shorthand notation for the following two actions. 

     x < 0 
�

     y[0] := true 
              [] 

    x < 1 
�

     y[1] := true 

When referring to the variables of a process, we use 
the process name as a suffix. Thus, x.v is variable x in 
process v. When it is clear from the context to which 
process we are referring, we omit the suffix. In particular, 
in the code of each process v, variables without suffix 
correspond to variables of v. 

Each non-destination process v in the ordered rank 
protocol has three inputs: D, G, and ds. Input D is an 
upper bound on the length of any simple path in the 
network. We assume all processes are given the same 
value for D. Input G is the set of neighboring processes of 
v. Input ds is the sequence number of the destination 
process. Although v cannot read directly the sequence 
number of the destination if the destination is not a 
neighbor, in the next section we show how v can obtain a 
time-delayed estimate of this value. 

Process v has four variables, S, rk, sn, and hc, which 
are, respectively, the set of successors of v, the rank of v, 
the sequence number of process v, and an estimated hop 
count of the longest path to the destination via the 
successor set. 

Finally, process v has a parameter g, which is instanti-
ated with the identity of any neighbor of v. 

The specification of a non-destination process v is as 
follows. 
process v 

const D : integer   { network diameter}  

inp  G : set { u | u is a neighbor of v} , 
ds  :  0 . . 1   { destination seq. #}  

var  S  :  subset of N,  { set of successors}  
rk  :  integer,   { rank}  
sn  : 0 . . 1,   { sequence #}  
hc :  0 . . D   { hop count to dest.}  

par  g : element of N  { any neighbor}  

begin 
   sn ≠ ds ∧ (∀ u, u ∈ S, sn.u = ds) ∧ S ≠ ∅ 

�
  

   sn := ds; 
   hc := min(D, max{hc.u | u ∈ S}  + 1); 
   rk := atleast(max{ rk.u | u ∈ S} ) 
[] 
   (∃ u, u ∈ S, sn.u = sn)  

�
  

  hc := min(D, max{hc.u | u ∈ S ∧ sn.u = sn}  + 1); 
  rk := min(rk, atleast(max{ rk.u| u∈S ∧ sn.u=sn} )) 

[] 
   g ∈ S 

�
 if hc.g ≥ D-1 ∨ |S| > 1 

�
  S := S - { g}  

   [] hc.g < D-1      
�

  skip 
   fi 
[] 
   sn.g = ds ∧ ds = sn ∧ hc.g < D-1 ∧ rk.g < rk   

�
  S := S ∪ { g}  

[] 
   S = ∅ 

�
 if sn.g = ds ∧ sn ≠ ds  

�
  

S := S ∪ { g} ; 
     sn := ds;   
     rk := atleast(rk.g);   
     hc := min(D, hc.g + 1) 

   [] sn.g ≠ ds ∨ sn = ds 
�

 hc := D 
   fi 
end 

Process v has five actions. In the first action, v checks 
if it should change its sequence number. Process v should 
change its sequence number if it is different from the 
destination's sequence number. Before doing so, process v 
must wait for all of its successors to have the same 
sequence number as the destination. This is required to 
avoid the following scenario. Assume ds = 0, sn.v = 1, and 
assume v sets sn.v to 0. Assume v still has a successor x 
with sn.x = 1, and x changes sn.x to 0. Since x changed its 
sequence number, it is allowed to increase its rank to any 
value. If x increases its rank to a value larger than v's rank, 
then the ordered rank property is violated for sequence 
number 0.  

If the sequence number is changed, the hop count and 
rank are updated. The hop count is one greater than the 
maximum of the hop counts of all successors. The rank is 
set to any value at least as large as the maximum rank over 
all successors, as required in Section 2. 

In the second action, process v updates its rank and 
hop count from its successors, but without changing its se-
quence number. However, since v is not changing its 
sequence number, it must update its rank relative only to 
the ranks of its successors with the same sequence number 
as v. Notice that the rank of v is not allowed to increase in 
this action. This is necessary to maintain the ordered rank 
property and avoid the formation of loops, as described in 
Section 3. 

In the third action, process v removes a neighbor from 
its successor set. If the neighbor's hop count is at least D - 
1, it implies that the neighbor may be involved in a loop, 
and must be removed. To be flexible, we leave it as an 
option whether the neighbor should be removed or not 
when the neighbor's hop count is less than D - 1. Hence, if 
hc.g < D - 1, either branch of the if statement may be 
taken, as desired. However, the successor set should not be 
allowed to be empty, since this would leave v without a 
path to the destination. 



 

In the fourth action, a neighbor is added to the succes-
sor set. This neighbor is added only if it has the same se-
quence number as v and as the destination, if it will not 
cause v's hop count to become D (i.e., hc.g < D-1), and if 
no loop will be formed (i.e., rk.g < rk.v). 

Note that in the third action we remove successors 
whose hop count is at least D - 1. Therefore, if all the 
successors of v have a hop count of at least D - 1, it is 
possible for v's successor set to become empty. If this is 
the case, the last action has two choices.  If a neighbor is 
found whose sequence number is the same as the 
destination's, and v's sequence number is different, then 
this neighbor is chosen as a successor, and the sequence 
number, rank, and hop count are updated. A process with 
the same sequence number as v is not chosen since it may 
cause a new loop to be formed. If no such neighbor is 
found, the hop count is set to D to indicate all predecessors 
that the destination is not reachable via this process. 

We next present the specification of the destination 
process d. 

process d 
const 
 h : 0, 
 rk : 0 
var 
 sn : 0 . . 1 
begin 
   (∀ v, v ≠ d,  ds.v = sn ∧ sn.v = sn)  

�
 sn :=(sn+1) mod 2 

end 
The hop count and rank of the destination are constants 

whose values are always zero. The destination sequence 
number is variable sn. When the sequence number has 
propagated throughout the entire network, the destination 
changes its sequence number. Although the destination 
cannot read the variables of non-neighboring processes, 
we will see in the next section how the destination can 
implement the guard of its action. 

The above protocol can be proven correct, provided 
the following assumptions hold. 

a) sn.d remains constant until, for all v, where v ≠ d, 
sn.d = ds.v = sn.v.  

b) if ds.v ≠ sn.d, eventually ds.v = sn.d. 
c) if ds.v = sn.d, then ds.v remains constant until sn.d 

changes. 
d) if for all v, where v ≠ d, sn.d = ds.v = sn.v, then 

eventually sn.v changes. 

In the next section, we show one method to implement 
the above assumptions. 

5. Core Tree Protocol 
In this section, we present an abstract protocol to allow 
each non-destination process v a time-delayed estimate of 
the destination sequence number, and to allow the 

destination to know that all processes have received and 
adopted the destination's sequence number. The protocol 
is abstract in the sense that it deals only with sequence 
numbers, and not with ranks and successor sets. However, 
in the next section we combine both protocols to obtain a 
complete version of the multi-path protocol. 

To allow each process v to learn about the destination's 
sequence number, we build a spanning tree in the network, 
whose root is the destination d. We propagate the 
destination's sequence number along this tree from the 
root (i.e. destination) towards the leaves. We refer to this 
tree as the core tree. 

The core tree should be stable, and should not fluctuate 
with changes in the ranks of processes or other network 
conditions. Therefore, we choose to build the core tree as a 
minimum hop tree, i.e., the path from any process v to the 
root d along the tree is a minimum hop path from v to d. 

To build this tree, each non-destination process v 
needs to maintain a parent variable p, with its parent on 
the tree, and a hop count i to the destination2. We 
implement a simple greedy approach based on the 
Bellman-Ford technique to find the minimum hop path to 
the destination.  

Process v has a variable ds, which contains its estimate 
of the sequence number of the destination. Also, in 
variable sn it keeps its own sequence number. Process v 
adopts the root's sequence number when it assigns ds to 
sn. 

Process v also needs an additional bit, called end, 
which indicates if all processes below v on the core tree 
have received the new sequence number from the 
destination and adopted the sequence number. Thus, once 
the end bit is true at the destination process, the 
destination may change its sequence number. 

The specification of a non-destination process v 
follows. 
process v 

const D  : integer 

inp  G  : set { u | u is a neighbor of v}  

var  p  : N,   { parent}  
  i  : 0 . . D,  { hop count to dest.}  
  ds  : 0 . . 1,  { dest. seq. number}  
  sn  : 0 . . 1,  { local sequence #}  
  end  : Boolean  { end of seq. #  propagation}  
par  g  : element of G 

begin 
   i ≠ min(D, i.p + 1) 

�
  i := min(D, i.p + 1) 

[] 
   i.g + 1 < i  

�
  p := g;   i := min(D, i.g + 1) 

                                                        
2 Note that his hop count is different from the hop count in 

the ordered rank protocol. The former is the hop count along the 
core tree, and the latter the hop count along any path to the 
destination via the routing graph. 



 

[] 
   ds  ≠ ds.p  

�
  ds := ds.p;   end := false 

[] 
   sn ≠ ds   

�
  sn := ds 

[] 
   end ≠ (∀ w, p.w = v,   sn.w = ds.w ∧ ds.w = ds ∧ end.w)  
    

�
  end := ¬end 

end 
In the first action, the hop count is updated from the 

hop count of the parent of v. In the second action, if a 
neighbor provides a shorter hop count to the destination, 
this pro??cess is chosen as the new parent. In the third 
action, if the parent's destination sequence number ds.p is 
different from v's, v updates ds.v to ds.p. It also sets end to 
false since this new sequence number needs to be 
propagated down the tree. 

In the fourth action, process v adopts ds as its own se-
quence number sn. This represents the behavior of the 
ordered rank protocol, which will eventually choose ds as 
v's local sequence number sn. Finally, in the last action, 
end is updated to reflect if the sequence number has 
propagated down the tree. This will be true if all children 
of v on the tree have learned and adopted the new 
sequence number, and their end bits are equal to true. 

The specification of the destination process follows. 
process d 
const i  : 0 
var  ds  : 0 . . 1, 

end  : Boolean 
begin 
  end ≠ (∀ w, p.w = d,   sn.w = ds.w ∧ ds.w = ds ∧ end.w) 
  

�
 end := ¬end 

[] 
   end 

�
 ds := (ds + 1) mod 2;   end := false 

end 
In the first action, the root updates its end bit. In the 

second action, if end is true, it changes its sequence num-
ber and sets end to false, waiting for the sequence number 
to propagate down the tree. 

6. Complete Protocol 
Now that we have both the ordered rank protocol and the 
core tree protocol, we can combine both protocols into a 
single self-sufficient protocol. The protocol consists of 
merging the actions of both protocols, with the exception 
that the fourth action of process v in the core tree protocol 
is removed, since it is an abstraction of how the sequence 
number is changed by the decreasing metric protocol, and 
an additional action is added to the destination process. 

The complete protocol is as follows. 
process v 

const D : integer   { network diameter}  

inp  G : set { u | u is a neighbor of v} , 
var  S  :  subset of N,  { set of successors}  

sn  : 0 . . 1,   { sequence #}  
rk  :  integer,   { metric}  
hc :  0 . . D   { distance to root}  

  ds  :  0 . . 1   { root sequence #}  
  p : N,    { parent}  
  i : 0 . . D,   { hop count to root}  
  end : Boolean  { end of seq. #  propagation}  
par  g : element of N  { any neighbor}  

begin 
   sn ≠ ds ∧ (∀ u, u ∈ S, sn.u = ds) ∧ S ≠ ∅ 

�
  

   sn := ds; 
   hc := min(D, max{hc.u | u ∈ S}  + 1); 
   rk := atleast(max{ rk.u | u ∈ S} ) 
[] 
   (∃ u, u ∈ S, sn.u = sn)  

�
  

  hc := min(D, max{hc.u | u ∈ S ∧ sn.u = sn}  + 1); 
  rk := min(rk, atleast(max{ rk.u| u∈S ∧ sn.u=sn} )) 
[] 
   g ∈ S 

�
 if hc.g ≥ D-1 ∨ |S| > 1  

�
 S := S - { g}  

   [] hc.g < D-1    
�

  skip 
   fi 
[] 
   sn.g = ds ∧ ds = sn ∧ hc.g < D-1 ∧ rk.g < rk   

�
  S := S ∪ { g}  

[] 
   S = ∅ 

�
 if sn.g = ds ∧ sn ≠ ds  

�
  

S := S ∪ { g} ; 
     sn := ds;   
     rk := atleast(rk.g);   
     hc := min(D, hc.g + 1) 

   [] sn.g ≠ ds ∨ sn = ds   
�

 hc := D 
   fi 
[] 
   i ≠ min(D, i.p + 1) 

�
 i := min(D, i.p + 1) 

[] 
   i.g + 1 < i  

�
  p := g;   i := min(D, i.g + 1) 

[] 
   ds  ≠ ds.p  

�
  ds := ds.p;   end := false 

[] 
   end ≠ (∀ w, p.w = v,   sn.w = ds.w ∧ ds.w = ds ∧ end.w)  

�
end := ¬end 

end 
 
process r 
const i  : 0 
  hc  : 0, 
  rk  : 0 

var  sn, ds : 0 . . 1, 
end  : Boolean 

begin 
   ds ≠ sn  �  ds := sn 



 

[] 
  end ≠ (∀ w, p.w = r,   sn.w = ds.w ∧ ds.w = ds ∧ end.w) 
  

�
 end := ¬end 

[] 
   end 

�
 ds := (ds + 1) mod 2;   sn := ds; end := false 

end 

7. Protocol Implementation  
As mentioned earlier, ranks may be implemented in many 
possible ways. One of these ways is to set the rank to a 
routing metric, such as the sum of the cost of the edges to 
the destination. If routing metrics are used as ranks, then 
finding an optimum path to the destination would be 
desired. To obtain this optimum path, the routing metric 
must satisfy the properties of monotonicity and 
boundedness, as described in [11]. 

To ensure that each process has in its successor set the 
neighbor along the optimum path to the destination, we 
only need to restrict the behavior of the protocol a little. 
When process v is about to change its sequence number, v 
keeps in its successor set the neighbor g which, if used as 
next hop, would give v the best metric, and v removes all 
others neighbors from its successor set. Process v then 
updates its sequence number and metric from the values in 
g. Finally, after updating its metric, v adds to its successor 
set those neighbors which have a better metric than v's 
metric (even though they don't offer the best path, since 
the weight of their channel with v may be very high). It is 
straightforward to show that with this modification, the 
optimum path to the destination is always found, while at 
the same time maintaining multiple successors to the 
destination. 

Finally, the protocol can be implemented using 
message passing in a similar way as the usual distance 
vector routing protocol. Periodically, each process collects 
the values of its variables and forwards them in a message 
to all its neighboring processes. In particular, the process 
must include the following information in the message it 
forwards to all its neighbors. For each destination, the 
process includes: a) its rank, b) the sequence number sn, c) 
the sequence number ds of the destination, d) the end bit, 
e) the hop count h, and f) the hop count i. Thus, the 
overhead would be four additional bits and two small 
integers per destination. 

8. Related Work 
In our protocol above, it is possible for all processes to 
choose having a single successor at all times. In this case, 
the routing graph would simply be a routing tree. 
Furthermore, if the rank of a process is implemented via a 
routing metric, then this protocol can be used as a loop-
less routing protocol. Below, we compare other loop-less 
routing protocols with our protocol under the restriction 
that only a single successor is chosen at all times.  

In our protocol, we use sequence numbers. The use of 
sequence numbers to propagate information in a network 
of processes and to aid in their self-stabilization was 
introduced in [20]. The use of sequence numbers in a 
loop-less routing protocol was first presented in [1]. Here, 
although the routing tables were loop-less at all times, the 
protocol did not necessarily converge to the best route to 
the destination. This is because the protocol was designed 
for networks with unstable links, and the protocol follows 
any route as soon as it is found, even though it may not 
necessarily be the best route. 

In [10][17], another self-stabilizing loop-less routing 
protocol was presented which also propagates sequence 
numbers. In this protocol, sequence numbers propagate 
between any pair of nodes. Therefore, in [10][17], the 
protocol takes two rounds of sequence number 
propagation to find the best route. The first round is used 
to enforce an ordering on the metrics similar to the ordered 
rank property. During this first round, processes may not 
change parents in the routing tree. During the second 
round, processes are allowed to change parents and 
converge to the best route to the destination.  

In our approach, sequence numbers propagate only 
from parent to child along the routing tree. Also, a node 
may begin to change parents immediately after changing 
its sequence number, without having to wait for the 
sequence number to propagate throughout the entire tree.  

It is difficult to estimate which of the two protocols 
above will reach the best route sooner. On one hand, the 
protocols in [10][17] allow for a faster propagation of the 
sequence number, since it propagates between any pair of 
nodes, and on the other hand, our protocol allows a node 
to immediately begin to change parents in search for the 
best path, rather than having to wait for the next round of 
sequence number propagation. 

In [2], we presented an additional loop-less and 
stabilizing routing protocol (with a single successor to the 
destination). This protocol uses a combination of the 
diffusing computations presented in [3] and the sequence 
number propagation presented in [10][17]. The protocol 
presented in [2] has the advantage that no temporary loops 
are introduced when links fail. Unfortunately, the 
complete protocol of Section 6 may introduce a temporary 
loop in the event of a link failure. However, the likelihood 
of a loop forming can be reduced significantly i f we 
increase the range of the sequence number. Furthermore, 
the protocol of Section 6 has the advantage of allowing 
multiple successors to the destination. 

In the loop-less protocols presented in [3][5], and the 
self-stabilizing loop-less protocol presented in [6], each 
process on its own may begin a diffusing computation 
whenever it detects a change in the routing metric, as 
opposed to having to wait for the next sequence number to 
be propagated from the destination. This approach has the 
potential advantage of a faster response time to changes in 



 

the routing metric. Unfortunately, we were unable to 
obtain a self-stabilizing protocol with similar diffusing 
computations and that maintains multiple successors to the 
destination. Thus, we chose to use the propagation of 
sequence numbers instead. Nonetheless, although a faster 
response time is lost, more stability may be gained. The 
routing metric is only updated after the destination issues a 
new sequence number, which might help in alleviating the 
route hoarding problem. 

References 
[1] A. Arora, M. G. Gouda, and T. Herman, "Composite 

Routing Protocols", Proc. of the Second IEEE Symposium 
on Parallel and Distributed Processing, 1990. 

[2] Cobb, J.A., Gouda M. G., "Stabilization of General Loop-
Free Routing", submitted for journal publication. 

[3] Cobb, J. A. and M. Waris, "Propagated Timestamps: A 
Scheme for the Stabilization of Maximum-Flow Routing 
Protocols", Proceedings of the Third Workshop on Self-Sta-
bilizing Systems, pp. 185-200, 1997. 

[4] Dijkstra, E. W., "A Note on Two Problems on Connection 
with Graphs", Numerical Mathematics, Vol. 1, pp. 269-271, 
1959. 

[5] Garcia-Luna-Aceves, J. J., "Loop-Free Routing Using Dif-
fusing Computations", IEEE/ACM Transactions on Net-
working, Vol. 1, No. 1, Feb. 1993.  

[6] Garcia-Luna-Aceves, J. J., Murthy S., "A Path-Finding 
Algorithm for Loop-Free Routing", IEEE/ACM Transac-
tions on Networking, Vol. 5, No. 1, Feb. 1997.  

[7] M. Gouda, "Protocol Verification Made Simple", Computer 
Networks and ISDN Systems, Vol. 25, 1993, pp. 969-980. 

[8] M. Gouda, The Elements of Network Protocols, Wyley 
publishers, 1997. 

[9] M.Gouda and M. Schneider, "Stabilization of Maximum 
Flow Trees", Proceedings of the third Annual Joint 
Conference on Information Sciences, 1994, pp. 178-181. 

[10] Gouda, M. G. and M. Schneider, "Maximum Flow Rout-
ing", Proceedings of the Second Workshop on Self-Stabi-
lizing Systems, Technical Report, Department of Computer 
Science, University of Nevada, Las Vegas, May 1995. 

[11] Gouda, M. G. and M Schneider, "Maximizable Routing 
Metrics", Proceedings of the IEEE International Conference 
on Network Protocols, pp. 71-78, 1998. 

[12] Hedrick, C. "Routing Information Protocol", RFC 1058, 
June 1998. 

[13] Hinden, R., Sheltzer, A., "DARPA Internet Gateway", RFC 
823, September 1982. 

[14] Merlin, P. M. and A. Segall, "A Failsafe Distributed Rout-
ing Protocol", IEEE Transactions on Communications, Vol. 
COM-27, No. 9, pp. 1280-1288, 1979. 

[15] Moy J, "OSPF Version 2", RFC 1247, August 1991. 
[16] Segall, A. , "Distributed Network Protocols", IEEE Trans-

actions on Information Theory, Vol. IT-29, No. 1, pp. 23-
35, Jan. 1983. 

[17] Schneider, M., "Flow Routing in Computer Networks", 
Ph.D. dissertation, The University of Texas at Austin, 
December 1997. 

[18] Schneider, M., "Self-Stabilization", ACM Computing 
Surveys, Vol. 25, No. 1, 1983. 

[19] Sur, S. and P. K. Srimani, "A Self-Stabilizing Distributed 
Algorithm for BFS Spanning Tree of a Symmetric Graph", 
Parallel processing Letters, Vol. 2, pp. 171-179, 1992. 

[20] Varghese, G., "Self-Stabilization by Counter Flushing", 
Proceedings of the ACM Principles of Distributed 
Computing (PODC) conference, 1994. 

[21] Vutukury, S., Garcia-Luna-Aceves, J. J., "A Distributed 
Algorithm for Multi-Path Computation", Proceedings of the 
1999 Global Telecommunications Conference. 

[22] Vutukury, S., Garcia-Luna-Aceves, J. J., "An Algorithm for 
Multi-Path Computation using Distance-Vectors with 
Predecessor Information", Proceedings of the 1999 ICCCN 
conference. 

[23] Vutukury, S., Garcia-Luna-Aceves, J. J., "A Simple Ap-
proximation to Minimum Delay Routing", Proceedings of 
the 1999 SIGCOMM conference. 

[24] Wang, Z. and J. Crowcroft, "Bandwidth-Delay Based 
Routing Algorithm", Proceedings of the IEEE Global Tele-
communications Conference, 1995. 

[25] M. Waris, "Propagated Timestamps: A Scheme for the Sta-
bilization of Maxmum-Flow Routing Protocols", Master's 
Thesis, The University of Houston, Fall 1997. 

[26] Zaumen, W., Garcia-Luna-Aceves, J.J., "Loop-Free Mul-
tipath Routing Using Generalized Diffusing Computations", 
Proceedings of the 1998 INFOCOM conference. 
 


