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Abstract. The ‘kernel approach’ has attracted great attention with the development of support
vector machine (SVM) and has been studied in a general way. It offers an alternative solution
to increase the computational power of linear learning machines by mapping data into a high
dimensional feature space.This ‘approach’ is extended to the well-known nearest-neighbor algo-
rithm in this paper. It can be realized by substitution of a kernel distance metric for the original
one in Hilbert space, and the corresponding algorithm is called kernel nearest-neighbor
algorithm. Three data sets, an arti¢cial data set, BUPA liver disorders database and USPS
database, were used for testing. Kernel nearest-neighbor algorithm was compared with conven-
tional nearest-neighbor algorithm and SVM Experiments show that kernel nearest-neighbor
algorithm is more powerful than conventional nearest-neighbor algorithm, and it can compete
with SVM
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1. Introduction

The nearest-neighbor (nn) algorithm is extremely simple and is open to a wide variety
of variations [1]. It is intuitive, accurate and applicable to various problems. The
simplest l-nn algorithm assigns an unknown input sample to the category of its
nearest neighbor from a stored labeled reference set. Instead of looking at the closest
reference sample, the k-nn algorithm looks at the k samples in the reference set that
are closest to the unknown sample and carries out a vote to make a decision.
The computation time of l-nn can be reduced by constructing the reference set
properly. There are two basic methods for structuring the reference set: Hart’s
condensed nearest-neighbor rule [2] and Wilson’s editing algorithm [3]. The con-
densed rule guarantees zero resubstitution errors on the residual set by using the
resultant set as new reference set (the resultant set is called a consistent subset
of the original set). It tends to retain reference samples along the classi¢cation
boundaries and to abandon samples that are inside the reference set. On the con-
trary, Wilson’s editing algorithm runs k-nn with leave-one-out on the original
reference set and deletes all misclassi¢ed samples. It tends to rule out those along
the boundaries and to retain those who are likely to belong to their own
Bayes-optimal classi¢cation region.
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The ‘kernel approach’ [4, 5] provides one of the main blocks of support vector
machine (SVM) [6] and has attracted great attention. It offers an alternative solution
to increase the computational power of linear learning machines by mapping the
data into a high dimensional feature space. By replacing the inner product with
an appropriate ‘kernel’ function, one can implicitly perform a nonlinear mapping
to a high dimensional feature space without increasing the number of parameters.
The ‘approach’ can also be studied in a general way and has been extended to dif-
ferent learning systems, such as Kernel Principal Component Analysis (KPCA) [7].
Nearest-neighbor algorithm, to a certain extent, has shown good applicability to

nonlinear problems. However in some complicated problems, especially when
the sample distribution is arbitrary, it will often lose power. In fact, conventional
nearest-neighbor algorithms, such as 1-nn, k-nn, edited nn or condensed nn etc.,
are appropriate for problems that have a sample distribution similar to a ‘sphere’.
However, the ‘kernel approach’ can change the classi¢cation interface, therefore
the distribution of samples, by nonlinear mapping. If an appropriate kernel is chosen
to reshape the distribution of samples, the nearest-neighbor algorithm may improve
its performance.
In Section 2, we discuss the ‘kernel approach’ and its application to nearest-

neighbor algorithm. To demonstrate the effectiveness of kernel nearest-neighbor
algorithm compared with conventional nearest-neighbor algorithm and SVM, three
experiments were conducted and results will be described in Section 3. Conclusion
and discussion are given in Section 4.

2. Kernel Nearest-Neighbor Algorithm

2.1. COMPUTING INNER PRODUCT BY KERNEL FUNCTION IN IMAGE FEATURE SPACE

Consider a case of mapping an n-dimension feature space to an m-dimension feature
space:

x ¼ ðx1; . . . ; xnÞ ����������!
feature mapping

cðxÞ ¼ ðj1ðxÞ; . . . ;jmðxÞÞ; x 2 S1;cðxÞ 2 S2

Where S1 is the original n-dimension feature space and S2 is the new m-dimension
image feature space. x is an arbitrary vector in S1;cðxÞ is the corresponding vector in
S2. c can be an arbitrary nonlinear mapping from the original space to a possibly
high-dimensional space S2 and ji; i ¼ 1 . . .m, are feature mapping functions.
A kernel denotes a function K, such that for all x; y 2 S1

Kðx; yÞ ¼ hcðxÞ;cðyÞi ð2:1Þ

Where hcðxÞ;cðyÞi denotes the inner product of cðxÞ and cðyÞ;Kðx; yÞ is a function of
x and y, which often appears as a speci¢c arithmetic function of hx; yi.
The de¢nition of kernel function implies that the inner product in the new image

feature space can be computed without actually carrying out the mapping c. A
speci¢c choice of kernel function might then correspond to an inner product of
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samples mapped by a suitable nonlinear function c [4, 5]. The ‘approach’ was applied
to SVM and achieved great success [6]. According to the Hilbert^Schmidt theory,
Kðx; yÞ can be an arbitrary symmetric function that satis¢es the Mercer condition
[8]. Three kernel functions are commonly used [6]. They are:

(1) Polynomial kernel:

Kðx; yÞ ¼ ð1þ hx; yiÞp ð2:2Þ

(2) Radial basis kernel:

Kðx; yÞ ¼ exp �
kx� yk2

s2

� �
ð2:3Þ

(3) Sigmoid kernel:

Kðx; yÞ ¼ tanhðahx; yi þ bÞ ð2:4Þ

Where p; s; a; b are adjustable parameters of the above kernel functions. For a
sigmoid kernel, only partial parameters are available [6].
According to the Mercer condition, if Kðx; yÞ is positive semi-de¢nite, it can be a

kernel [8]. Thus the degree of polynomial kernel can be extended to fractions such
as 2/3, 2/5 and so on.

2.2. APPLYING ‘KERNEL APPROACH’ TO NEAREST-NEIGHBOR ALGORITHM

In conventional nearest-neighbor algorithm, a norm distance metric, such as
Euclidean distance, is often used. By rede¢ning the distance metric, the ‘kernel
approach’ can be applied to conventional nearest-neighbor algorithm. The ‘kernel
approach’ relies on the fact that we exclusively need to compute inner products
between mapped samples. Since inner products are available in Hilbert space only,
norm distance metrics in Hilbert space are concerned here.
The norm distance dðx; yÞ between vector x and y denotes as:

dðx; yÞ ¼ kx� yk ð2:5Þ

Suppose nearest-neighbor algorithm is used in a high dimensional feature space,
norm distance in such a space should be computed. Thus a feature mapping can
be applied as described in Section 2.1. The square of norm distance in the image
feature space can be obtained by applying the ‘kernel approach’.
It is trivial to prove that the square of norm distance in Hilbert space can be

expressed by inner products. By decomposition of d2ðcðxÞ;cðyÞÞ into inner products
and substitution of (2.1) for the inner products, we have

d2ðcðxÞ;cðyÞÞ ¼ Kðx; xÞ � 2Kðx; yÞ þ Kðy; yÞ ð2:6Þ
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Thus norm distance in the new image feature space can be calculated by using a
kernel function and the input vectors in the original feature space. When we compute
kernel norm distance and apply nearest-neighbor algorithm in the image feature
space, we get a kernel nearest-neighbor classi¢er.
It can be proved that kernel nearest-neighbor algorithm will degenerate to con-

ventional nearest-neighbor algorithm when radial basis kernel or polynomial kernel
with p ¼ 1 is chosen (Appendix I). Thus, all results of nearest-neighbor algorithm
can be seen as speci¢c results of kernel nearest-neighbor algorithm. This guarantees
that the results of kernel nearest-neighbor algorithm with optimal kernel are always
no worse than those of conventional nearest-neighbor algorithm. By similar theor-
etical analysis, kernel nearest-neighbor algorithm and its variations can be proved
to asymptotically approach the same optimal Bayes result as conventional
nearest-neighbor algorithm does [1]. Since kernel nearest-neighbor algorithm only
changes the procedure of distance calculation, it will not introduce more com-
putational complexity and the fast nearest-neighbor algorithm can also be used
for kernel nearest-neighbor algorithm.

3. Experiments and Results

Three data sets were used for experimenting. It is inconvenient to adjust the para-
meters in sigmoid kernel because there are two parameters that may dissatisfy
the Mercer condition. Thus, in our experiments, only polynomial kernel was used.

3.1. AN ARTIFICIAL NONLINEAR DISTRIBUTION DATA SET

This data set consists of two classes. Twenty-one samples are in each class. Data in
class one satisfy y ¼ x1=3 þ 1, while data in class two satisfy y ¼ x1=3 � 1. To get
a standard reference set, we set xn ¼ �1þ 0:09n; n ¼ 0; . . . ; 20. In the test set, there
are total 50 samples randomly distributed along the curve y ¼ x1=3 þ 0:2. One thou-
sand test sets were generated for testing. Figure 1 shows the sketch map of sample
distribution. According to the sample distribution, all samples in the test set should
be classi¢ed to class one.
The arti¢cial data set was created to show the difference between conventional

nearest-neighbor algorithm and kernel nearest-neighbor algorithm. If samples
distribute arbitrarily, conventional nearest-neighbor algorithm may not obtain sat-
isfactory result. However, mapping to a high dimensional space, the kernel
nearest-neighbor algorithm can work better and obtain good results. In the
experiment, the power of polynomial function was set to 11, i.e., the kernel function
is Kðx; yÞ ¼ ð1þ hx; yiÞ11. Correct classi¢cation rates of 5 example experiments,
the average success rate of total 1000 test sets and the standard deviation are shown
in Table I.
In every experiment, the success rate of kernel 1-nn is greater than that of con-

ventional 1-nn. The results show that kernel nearest-neighbor algorithm is more
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powerful than conventional nearest-neighbor algorithm in the speci¢c nonlinear
problem.

3.2. BUPA LIVER DISORDERS DATABASE [9]

BUPA Liver Disorders database was from Richard S. Forsyth at BUPA Medical
Research Ltd [9] (it can be download from http://www.ics.uci.edu/�mlearn/
MLRepository.html). Each record in the data set constitutes a record of a single
male individual. Five features in each record are results from blood tests. They
are thought to be sensitive to liver disorders that might arise from excessive alcohol
consumption. The sixth feature is the number of drinks per day. The data set consists
of two classes: liver disorders and no liver disorders. There are total 345 samples.
One hundred samples were randomly chosen as test set and the rest as reference
set. Since different features have different value ranges, normalization was processed
before classi¢cation.
Several nearest-neighbor algorithms, corresponding kernel nearest-neighbor

algorithms and SVM were compared. Nearest-neighbor algorithms included l-nn,
3-nn and Wilson’s editing algorithm. Polynomial kernel function Kðx; yÞ ¼
ð1þ hx; yiÞ3, was chosen for both kernel nearest-neighbor algorithms and SVM Cor-
rect classi¢cation rates of different algorithms are shown in Table II.
From this experiment, we can draw the conclusion that variations of kernel

nearest-neighbor algorithm, such as k-nn or edited-nn etc., can also achieve classi-

Figure 1. Sketch map of the arti¢cial data set.‘*’ represents class one,‘þ’ represents class two,‘�’ represents
test data set.

Table I. Correct Classi¢cation Rates (%) of Arti¢cial Nonlinear Data

Set1 Set2 Set3 Set4 Set 5 Ave. Std.

1-nn (%) 72 54 58 68 72 64.3 6.74
Kernel 1-nn (%) 90 86 92 94 90 87.1 4.67
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¢cation improvement. Since the BUPA liver disorders data set is highly nonlinear
and hard to classify, kernel nearest-neighbor algorithm performs better than both
of conventional nearest-neighbor algorithm and SVM The experiment shows its
power in complicated classi¢cation problems.
We also obtained success rates of polynomial kernel with different degrees in

experiment 1 and 2. Figure 2 shows the two parameter-performance curves.
The curve of experiment 1 is quite different from that of experiment 2, which

implies that the optimal parameter selection is problem-dependent. The kernel par-
ameter selection is an open problem now. There has not been a good guidance yet.
A practical way is drawing a parameter-performance curve like Figure 2 and then
selecting the parameter corresponding good performance.

Table II. Correct Classi¢cation Rates (%) of BUPA Liver Disorders

1-nn Kernel 1-nn Edited 1-nn Kernel Edited 3-nn Kernel 3-nn SVM
(%) (%) (%) 1-nn (%) (%) (%) (%)

60 63 64 64 65 71 68

Figure 2. Success rates of di¡erent degrees
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3.3. U.S. POSTAL SERVICE DATABASE (USPS) [101]

There are 7291 reference samples and 2007 test samples in USPS database. They
were collected from actual handwritten postal codes. There are 10 classes in USPS,
which represent digits from 0 to 9. The number of features is 256. In this experiment,
we concerned two-class problem, i.e. the data were classi¢ed into two classes: 0
versus other digits, 1 versus other digits, and so on.
Kernel l-nn algorithm was compared with l-nn algorithm and SVM [11]. Poly-

nomial kernel function Kðx; yÞ ¼ ð1þ hx; yiÞ3, was chosen for kernel l-nn and
SVM We also used other values of polynomial degree to get better results.
Misclassi¢cation rates of the 10 digits are shown in Table III.
This experiment shows that by choosing appropriate parameters, kernel

nearest-neighbor algorithm performs better than conventional nearest-neighbor
algorithm and it can compete with SVM Since a trial and error approach was used
to ¢nd appropriate kernel parameters, there might exist better results than the above
ones.
We also tested the performance of kernel nearest-neighbor algorithm in multi-

classi¢cation case. When classifying all the 10 digits in USPS simultaneously, a
misclassi¢cation rate about 4.98% can be achieved, which is better than that of con-
volutional 5-layer neural networks (5.0%) [10]. But it is inferior to SVM, which
obtained 4.0% error with polynomial kernel of degree 3 [12]. However, unlike SVM,
the selection of an appropriate kernel function is more dif¢cult in multi-classi¢cation
cases and affects results greatly.

4. Discussion and Conclusions

Kernel nearest-neighbor algorithm is an extension of conventional nearest-neighbor
algorithm. The ‘kernel approach’ is applied to modify norm distance metric in
Hilbert space, and then nn algorithm becomes kernel nearest-neighbor algorithm.
In some speci¢c conditions, such as polynomial kernel p ¼ 1 or radial basis kernel,
it degenerates to conventional nearest-neighbor algorithm. By choosing an appro-
priate kernel function, the results of kernel nearest-neighbor algorithm are better
than those of conventional nearest-neighbor algorithm. It can compete with

Table III. Misclassi¢cation Rates (%) of USPS in Binary-classi¢cation Case

0 vs. 1 vs. 2 vs. 3 vs. 4 vs. 5 vs. 6 vs. 7 vs. 8 vs. 9 vs.
other other other other other other other other other other Ave.

l-nn (%) 0.95 0.4 1.1 1.35 1.35 1.3 0.45 0.8 1.2 1.1 1.000
SVM (%) 0.75 0.65 1.3 1.05 1.89 1.2 0.55 0.75 1.3 1.1 1.054
Kernel 0.95 0.45 1.1 1.25 1.49 1.3 0.55 0.65 1.44 1.1 1.028
1-nn (%)
Kernel 0.95 0.4 1 1.25 1.35 1.3 0.45 0.65 1.15 0.95 0.945
1-nn (%)1 ðp ¼ 1Þ ðp ¼ 2=3Þ (p ¼ 1) (p ¼ 1) (p ¼ 2=3)
1Some values of parameter p were changed.

KERNEL NEAREST-NEIGHBOR ALGORITHM 153



SVM especially in nonlinear classi¢cation problems. What’s more, the operation
time of kernel nearest-neighbor algorithm is not much longer than that of conven-
tional nearest-neighbor algorithm.
According to our experiments, different kernel functions and different parameters

of the same kernel affect the results greatly, which is different from that of SVM as
Vapnik guessed [6]. Thus the key point of kernel nearest-neighbor algorithm is
to choose an appropriate kernel function and its parameters. In our experiments,
a trial and error approach was applied to determine the kernel function and its
parameters. We have not found a rigorous theory to guide the selection of the best
kernel function and the parameters yet. This is an open problem for most
kernel-based algorithms. However, in practice, we can plot a parameter-
performance curve in a small scale and then select the parameter that produces good
performance to do the real work. This is a practically effective trial and error
approach.
In this paper, only two-class problems are discussed. Since nearest-neighbor

algorithm is naturally suitable for multi-classi¢cation problems, we can easily gen-
eralize kernel nearest-neighbor algorithm to multi-classi¢cation problems. However,
selection of kernel function should be thoroughly investigated especially in multi-
classi¢cation problems.
It is evident that kernel nearest-neighbor algorithm has good ability of

generalization, especially in complicated nonlinear problems. However, why this
learning machine has good generalization ability is still an enigma. Although the
concept of VC dimension gives satisfactory explanation of SVM [6], it is hard to
explain the generalization ability of kernel nearest-neighbor algorithm using
Vapnik’s theory. This is an important theoretical problem.

Appendix I: Degeneration of Kernel Nearest-Neighbor Algorithm

According to the basic rule of nearest-neighbor algorithm, the classi¢cation only
refers to comparison between distances in feature space. Here we demonstrate that
kernel nearest-neighbor algorithm will degenerate to conventional nearest-neighbor
algorithm by choosing some speci¢c kernel function or parameter.
It is a natural deduction of Equation (2.6) that if we substitute polynomial kernel

(2.2) for K into (2.6) and set the degree p ¼ 1, we have

dðcðxÞ;cðyÞÞ ¼ dðx; yÞ ðA:1Þ

From (A.1), kernel nearest-neighbor algorithm using polynomial kernel with
p ¼ 1 and conventional nearest-neighbor algorithm are equivalent.
In fact, it is not necessary to have identical distance metrics. As long as distance

metric in image feature space is monotonically increasing with that in original fea-
ture space, kernel nearest-neighbor algorithm will obtain the same results as those
of conventional nearest-neighbor algorithm.
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PROPOSITION. Let x; y1; y2 2 S1, cðxÞ;cðy1Þ;cðy2Þ 2 S2, where S1 is the original
feature space and S2 is the image feature space. If radial basis kernel is chosen, then

dðx; y1ÞW dðx; y2Þ , dðcðxÞ;cðy1ÞÞW dðcðxÞ;cðy2ÞÞ ðA:2Þ

Proof. First we demonstrate the form of norm distance metric using radial basis
kernel.
Substitute radial basis kernel (2.3) for K into (2.6), we have:

d2ðcðxÞ;cðyÞÞ ¼ Kðx; xÞ � 2Kðx; yÞ þ Kðy; yÞ

¼ exp �
kx� xk2

s2

� �
� 2 exp �

kx� yk2

s2

� �
þ exp �

ky� yk2

s2

� �

¼ 2� 2 exp �
kx� yk2

s2

� �

¼ 2� 2 exp �
dðx; yÞ2

s2

( )

Since the function expð�tÞ is monotonically decreasing, d2ðcðxÞ;cðyÞÞ is a
monotonically increasing function of d2ðx; yÞ. Considering norm distance is always
non-negative, we have

dðx; y1ÞW dðx; y2Þ , dðcðxÞ;cðy1ÞÞW dðcðxÞ;cðy2ÞÞ

From (A.2), the distance metric using radial basis kernel function with all avail-
able parameters will make kernel nearest-neighbor algorithm degenerate to conven-
tional nearest-neighbor algorithm.
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