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CHANG-YEON CHOUGH

Abstract. For a proper normal geometrically connected algebraic space over a separably
closed field, Arnav Tripathy proved that there is a weak equivalence from the symmetric
power of étale homotopy type of the algebraic space to the étale homotopy type of symmetric
power of the algebraic space. By applying the qfh topology to the theory of topological types
developed by the author, we provide a totally different proof that can be generalized to study
coarse moduli spaces.

Contents

1. Introduction 1

2. Topological types via qfh topology 4

3. Quotients by algebraic spaces 6

4. Symmetric power 9

5. The proof of the Dold-Thom theorem for topological types 14

References 15

1. Introduction

1.1. Motivation.

1.1.1. LetX be a pointed connected CW-complex. There is a canonical action of the symmet-
ric group Sn of the n letters on the n-fold product Xn. The nth symmetric power Symn(X)
is defined as the quotient space Xn/Sn. The classical Dold-Thom theorem [5, 6.10] states
that for each i > 0 there is an isomorphism

Hi(X;Z) ' πi(Sym∞(X))

where Sym∞(X) is the colimit of Symn(X) as n varies.

1.1.2. Recently, Arnav Tripathy showed [13] that the Dold-Thom theorem is still valid in the
algebro-geometric world:

Theorem 1.1.3. ([13, Theorem 1]) Let X be a proper, normal, noetherian, geometrically
connected algebraic space over a separably closed field k. The natural map

Symn(hAM(X))→ hAM(SymnX)

of pro-objects in the homotopy category of simplicial sets is a weak equivalence. Here hAM(−)
denotes Artin-Mazur’s étale homotopy type functor.
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1.1.4. Formally, the theorem above says that Artin-Mazur’s étale homotopy type functor
commutes with the symmetric power functor. This type of formality fits better into the
theory of topological types developed by the author [4]. Indeed, the topological types of
algebraic stacks are defined by using model categories and derived functors, which generalizes
the derived functor reformulation of étale homotopy type by Ilan Barnea and Tomer Schlank
[2]. From this point of view, we expect the Dold-Thom theorem for étale homotopy types to
follow formally from the machinery in [4].

1.2. Statement of the main results.

1.2.1. The main goal of this paper is to provide an alternate proof for the Dold-Thom theorem
for étale homotopy types via the tools developed in [4]. We expect the generality of the idea
of the proof to be applied to the study of algebraic stacks and their coarse moduli spaces.

1.2.2. As we use model category theory, we restate [13, Theorem 1] as following with the
removal of the connected assumption:

The Dold-Thom Theorem for Topological types. (Theorem 5.0.4) Let X be a geomet-
rically normal and proper algebraic space over a separably closed field k. Then there is a
canonical isomorphism

(1.2.2.1) Symn(hét(X))
∼ // hét(Symn(X))

in Ho(pro− SSet).

1.2.3. Firstly, we formally obtain the theorem by using the qfh topological types 2.2.10.
Then show that the usual étale topological type for the symmetric power of algebraic space
is nothing but the qfh topological type of the symmetric power. This comparison is mainly
due to the cohomological comparison by Vladimir Voevodsky [14, 3.4.4]. We also use the
computation on the fundamental group of the symmetric power by Indranil Biswas and Amit
Hogadi [3, 1.2].

1.2.4. This formal approach is different from the work of Tripathy. He concretely analyzed
the étale fundamental group of X, and used Deligne’s work on the cohomology of Symn(X).

1.2.5. Let us explain in more detail how this new strategy works. Let X be a geometrically
normal and proper algebraic space over a separably closed field k. The symmetric group Sn

acts on the n-fold fiber product (X/S)n of X over S. The nth symmetric power Symn(X)
exists as a GC quotient of the groupoid of algebraic spaces (see [11, 5.5] for details):

(1.2.5.1) Sn × (X/S)n //// (X/S)n // Symn(X/S)

Note that the Sn-action is not free and hence the GC quotient Symn(X) is not a sheaf
quotient. So the canonical map

(X/S)n → Symn(X/S)

is not an étale covering. Nonetheless, it is a covering with respect to the qfh topology [14,
3.1.2]. In particular, Symn(X) is a quotient sheaf with respect to the qfh topology. Namely,
for the morphism of topoi 2.2.7

i = (i∗, i∗) : LFQ(S)∼ → LFÉ(S)∼
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the diagram (1.2.5.1) is pulled-back to a coequalizer in the category qfh sheaves 4.1.12. This
is the reason why we prefer working with the qfh topology to the étale topology.

1.2.6. From that Symn(X) is a quotient qfh sheaf, one can formally obtain the Dold-Thom
theorem for qfh topological types. Fix a locally noetherian scheme S. Consider the big qfh site
LFQ(S) which is the full category of the category of schemes over S, whose objects are locally
of finite type morphisms to S with coverings induced by coverings in the qfh topology on S
([14, 3.1.2]). Denote by LFQ(S)∼ the associated topos. For any simplicial object F• in the
big qfh topos LFQ(S)∼, the constant sheaf Sn associated to the symmetric group canonically
acts on the n-fold product F n

• of F•. We define the nth symmetric power Symn(F•) to be the
coequalizer of the following diagram in the category (LFQ(S)∼)∆op of simplicial qfh sheaves:

Sn × F n
•

//// F n
•

where the two arrows are the Sn-action and the projection onto F n
• .

1.2.7. The importance of the qfh topology is that as an immediate consequence of the defi-
nition, the symmetric power functor

Symn : (LFQ(S)∼)∆op → (LFQ(S)∼)∆op

preserves local weak equivalences as one can check at stalks 4.2.10. Note that for simplicial
sets, we already know that the symmetric power functor preserves weak equivalences 4.1.5.
Consider the connected component functor Πqfh of the topos LFQ(S)∼, which is a left adjoint
of the constant sheaf functor. Then the following diagram commutes:

(LFQ(S)∼)∆op

Πqfh
��

Symn

// (LFQ(S)∼)∆op

Πqfh
��

SSet
Symn

// SSet
By applying the Quillen derived functors to the diagram with respect to Barnea-Schlank’s
model category structure on pro− (LFQ(S)∼)∆op and Isaksen’s model category structure on
pro− SSet (see [4, §2.3] for details), we see that the canonical map

Symn(hqfh(F•))→ hqfh(Symn(F•))

is an isomorphism in the homotopy category of pro-simplicial sets 4.2.11 where hqfh is the
topological type functor using the qfh topology 2.2.10. Therefore, the Dold-Thom for qfh
topological types is a formal consequence of the machinery in [4].

1.2.8. Finally, we compare the qfh topological types to the usual étale topological types.
Consider a commutative diagram in Ho(pro− SSet):

Symn(hqfh(X))

��

// hqfh(Symn(X))

��
Symn(hét(X)) // hét(Symn(X))

We already know that the top map is an isomorphism. By the classical Dold-Thom, the left
vertical map is an isomorphism because it can be reduced to the cohomological comparison
5.0.3. This comparison comes from the work of Voevodsky [14, 3.4.4] that the cohomology
groups of schemes for the étale and qfh topologies coincide. On the other hand, it is already
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known by Biswas-Hogadi [3, 1.2] that the abelianization of the étale fundamental group of
X is isomorphic to the étale fundamental group of Symn(X). This combined again with
Voevodsky’s cohomological comparison shows that the right vertical map is an isomorphism
5.0.2. Therefore, the bottom map is a weak equivalence. Namely, we obtain the Dold-Thom
theorem for topological types.

1.3. Convention.

1.3.1. In what follows, for schemes, algebraic spaces, and algebraic stacks, we work over
a fixed bases scheme S unless stated otherwise. Moreover, we assume that S is locally
noetherian throughout the paper.

1.3.2. There could be some set-theoretical issue when working with the big topologies on
schemes. Whenever this issue arises, we invoke [10, Tag 020M] so that we can assume the
smallness on the sites LFQ(S) and LFÉ(S).

1.4. Acknowledgements. TO BE ADDED LATER

2. Topological types via qfh topology

In this section we define the topological types via qfh topology, and compare them to the
usual étale topological types.

2.1. Qfh topology on schemes. The qfh topology of schemes was developed by Vladimir
Voevodsky [14] to study the homology of schemes. In this subsection we briefly review the
qfh topology.

Definition 2.1.1.

(i) A continuous map f : X → Y of topological spaces is submersive if it is surjective and
Y has the quotient topology, i.e., a subset V ⊂ Y is open if and only if its preimage
f−1V is open in X.

(ii) A morphism f : X → Y algebraic spaces is submersive if its associated map |X| → |Y |
of topological spaces is submersive.

(iii) A morphism f : X → Y algebraic spaces is universally submersive if for every morphism
Z → Y of algebraic spaces, its base change X ×Y Z → Z is submersive.

Definition 2.1.2. ([14, 3.1.2]) Let X be a scheme. A collection {fi : Xi → X} of morphisms
of schemes is a h covering if it is a finite family of morphisms of finite type such that the
morphism

∐
fi :

∐
Xi → X is a universally submersive. If we furthermore require each fi to

be quasi-finite, then we call it a qfh covering.

Definition 2.1.3. Let S be a scheme. The qfh site on S, denoted by (Sch/S)qfh, is the
category of schemes over S with coverings induced by coverings in the qfh topology.

2.2. Topoloigcal types via qfh topology and its comparison to étale topology. In
this subsection we define the topological types of algebraic spaces via qfh topology, and
compare it to the usual étale topological types ([4, 2.3.8]).

http://stacks.math.columbia.edu/tag/020M
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2.2.1. In order to study the étale homotopy types of algebraic spaces, we follow the theory of
topological types in [4] where the homotopy theory of algebraic stacks was developed by using
the machinery of Ilan Barnea and Tomer Schlank [2]. It not only extends the étale homotopy
theory of schemes by Michael Artin and Barry Mazur [1], but also the étale topological theory
of simplicial schemes by Eric Friedlander [6]. The main difference compared to these classical
theories lies in the use of model category theory and the generalization to algebraic stacks.
Furthermore, the theory is developed for general topoi so that it can be applied to different
contexts including the qfh topoi which plays a key role in this paper.

2.2.2. Let us briefly review the notion of topological types of topoi. The reference is [4, §2.3].
Let T be a topos and consider the (2-categorical) unique morphism of topoi:

Γ = (Γ∗,Γ∗) : T → Set

Then a left adjoint LΓ∗ of Γ∗ exists for the associated pro-categories of simplicial objects and
it induces a left Quillen functor

LΓ∗ : pro− T∆op → pro− SSet

with respect to Barnea-Schlank’s model category structure on pro−T∆op and Isaksen’s model
category structure on pro− SSet.

Definition 2.2.3. ([4, 2.3.8]) A topological type h(T ) of a topos T is the pro-simplicial set

LLΓ∗(∗)
where ∗ is a final object of T∆op and LLΓ∗ : Ho(pro − T∆op

) → Ho(pro − SSet) is the left
derived functor of LΓ∗ . More generally, a topological type h(F•) (or hT (F•) if we wish to make
the reference to T explicit) of a simplicial object F• in T is the pro-simplicial set

LLΓ∗(F•)

Definition 2.2.4. Let S be a locally noetherian scheme. A site LFQ(S) is the full category of
the category of schemes over S, whose objects are locally of finite type morphisms to S with
coverings induced by coverings in the qfh topology on S. Denote by LFQ(S)∼ the associated
topos.

Remark 2.2.5. When replacing the qfh coverings by the étale coverings, we recover the
topos LFÉ(S)∼ defined in [4, 3.1.2].

2.2.6. We fix a locally noetherian base scheme S throughout the rest of the paper.

2.2.7. To compare the étale and qfh topologies, note that there is a continuous functor

i : LFÉ(S)→ LFQ(S)

which commutes with finite limits, which induces a morphism of topoi

(2.2.7.1) i = (i∗, i∗) : LFQ(S)∼ → LFÉ(S)∼

2.2.8. An algebraic space X/S is a sheaf on the big étale site on S, and is restricted to a sheaf
on LFÉ(S). When pulled-back along the morphism i, we obtain a sheaf i∗X on LFQ(S).

2.2.9. The qfh topos LFQ(S) is locally connected in a sense that the constant sheaf functor
admits a left adjoint, which is denoted by Πqfh and called by the connected component
functor. The proof for LFÉ(S) case works verbatim (see [4, 3.1.6]). So the functor LΓ∗

qfh
in
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the definition of the topological types can be identified with the connected component functor
Πqfh for the associated pro-categories.

Definition 2.2.10. Let X be a locally of finite type algebraic space over S. The qfh-
topological type hqfh(X) of X is the topological type of the qfh sheaf i∗X. Namely, it is
the pro-simplicial set

LΠqfh(i∗X)

2.2.11. Recall from [4, 3.2.2] that the topological type hét(X) of the algebraic space X is
the pro-simplicial set obtained by applying the previous definition to the topos LFÉ(S)∼.
Therefore, for any algebraic space X that is locally of finite type over S, it follows from the
functoriality of topological types [4, 2.3.31] that there is a canonical map between topological
types:

hqfh(X)→ hét(X)

2.2.12. The following theorem shows a partial relationship between the usual étale topological
type and the qfh topological type:

Theorem 2.2.13. ([14, 3.4.4], [9, Theorem 1]) Let X be an algebraic space that is locally of
finite type over S. Then the canonical map of topological types

hqfh(X)→ hét(X)

induces an isomorphism

Hn(hét(X),M)
∼ // Hn(hqfh(X),M)

for every n ≥ 0 and every local coefficient system M of abelian groups. In particular, there
is an isomorphism on the abelianization of fundamental groups

πab
1 (hqfh(X))

∼ // πab
1 (hét(X))

Proof. The statement on cohomology is the result of Voevodsky [14, 3.4.4]. For the abelianized
fundamental groups, it suffices to show that for any abelian group G, the top horizontal map
in the following commutative diagram is an isomorphism:

Hompro-groups(π1(hqfh(X)), G) //

��

Hompro-groups(π1(hét(X)), G)

��
H1(hqfh(X), G) // H1(hqfh(X), G)

The two vertical maps are isomorphisms by [4, 2.4.7] and the bottom map is an isomorphism
again by Voevodsky [14, 3.4.4]. Therefore, the top map is also an isomorphism. �

3. Quotients by algebraic spaces

In this section we review the notion of geometric quotients of algebraic spaces. Then we
prove that for the case of interest these quotients can be viewed as coequalizers of qfh sheaves.
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3.1. Geometric quotients. In this subsection we summarize some results on geometric
quotients following David Rydh [11].

Definition 3.1.1. ([11, 2.2]) Let s, t : R //// X be a groupoid of algebraic spaces over S,
and q : X → Y be a morphism of algebraic spaces over S. A morphism q is equivariant if
q ◦ s = q ◦ t. If a property of q is stable under flat base change (resp. every base change)
Y ′ → Y , the property is uniform (resp. universal). For an equivariant q,

(i) q is a Zariski quotient if the diagram of associated topoloigcal spaces

|R| // // |X| // |Y |

is a coequalizer in the category of topological spaces.
(ii) q is a constructible quotient if the diagram of associated constructible topoloigcal spaces

|R|cons //// |X|cons // |Y |cons

is a coequalizer in the category of topological spaces.
(iii) q is a topological quotient if it is both a universal Zariski quotient and a universal

constructible quotient.
(iv) q is a strongly topological quotient if it is a topological quotient and jY = (s, t) : R →

X ×Y X is universally submersive.
(v) q is a geometric quotient if it is a topological quotient and if

OY
// q∗OX

//// (q ◦ s)∗OR

is an equalizer in the category sheaves on (Sch/S)ét.
(vi) q is a strongly geometric quotient if it is both a geometric quotient and a strongly

topological quotient.
(vii) q is aGC quotient if it is a strongly geometric quotient that satisfies the descent condition

for separated étale morphisms uniformly (see [11, 3.6] for details).

Definition 3.1.2. Let s, t : R // // X be a groupoid of algebraic spaces over S.

(i) The groupoid is finite locally free if s, or equivalently t, is finitely locally free. That is,
if s is affine and s∗OR is a finite locally free OX-module.

(ii) The stabilizer is the base change of j = (s, t) : R → X ×S X along the diagonal on X
over S:

j−1(∆(X)) //

��

X

∆

��
R

j // X ×S X

(iii) The stabilizer is finite if the structure morphism is a finite morphism.

3.1.3. For a property P of morphism of schemes, we say that a groupoid has P if s, or
equivalently t, has P .

Theorem 3.1.4. ([11, 5.3]) Let S be a locally noetherian scheme and let s, t : R //// X be
a finite locally free groupoid of algebraic spaces over S with finite stabilizer j−1(∆(X))→ X.
Assume X is locally of finite type and separated over S. Then there exists a GC quotient
q : X → X/R with the following properties:
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(i) q is integral and surjective,
(ii) X/R is locally of finite type and separated over S, and
(iii) The diagonal jX/R = (s, t) : R→ X ×X/R X is proper and surjective.

Proof. The existence of GC quotient and that q is affine follow from [11, 5.3]. Since q is a
GC quotient, q and jX/R are, in particular, universally submersive and so they are surjective.
All the other properties follow from [11, 4.7]. �

Corollary 3.1.5. Under the assumption of 3.1.4, the morphism q : X → X/R is a qfh
covering. If we assume further that the groupoid s, t : R //// X is affine, then jX/R : R →
X ×X/R X is also a qfh covering.

Proof. Since q is integral and locally of finite type, it is finite and thus is a qfh covering. If s,
or equivalently t, is affine, then so is jX/R because q is separated. In this case, jX/R is proper
and affine, and thus is finite. In particular, jX/R is a qfh covering. �

3.2. Quotients as qfh sheaves. In this subsection we describe the GC quotient of our
interest as coequalizer in the category of qfh sheaves.

3.2.1. Recall from [11, 2.16] that for a flat and locally of finitely presented groupoid s, t : R // // X

of algebraic spaces over S with j : R→ X×SX a monomorphism, there is a universal strongly
geometric quotient q : X → X/R which is also the categorical quotient in the category of
algebraic spaces. In fact, the diagram of algebraic spaces

R
s //

t
// X

q // X/R

is a coequalizer in the category of étale sheaves on S. For example, if a group scheme G/S
that is flat and locally of finite presentation over S acts freely on an algebraic space X/S,
then the quotient q : X → X/G is a coequalizer in the category of étale sheaves. However,
if the action is not free, we cannot expect the quotient to be a coequalizer. Nonetheless, we
show that that this is the case when using the qfh topology:

Theorem 3.2.2. Under the assumption of 3.1.4, assume further that the groupoid s, t : R //// X

is affine. Then the diagram

i∗R // // i∗X // i∗(X/R)

is a coequalizer in the category of qfh sheaves on S.

Proof. By the lemma below, it suffices to show that the pull-backs of q and jX/R are epi-
morphisms in the category of qfh sheaves. Note from 3.1.5 that both q and jX/R are qfh
coverings. Hence, it is enough to show that the pull-back of a qfh covering of algebraic spaces
is an epimorphism. So let Y → Z be a qfh cover of algebraic spaces. Choose an étale covering
V → Y (resp. W → Z) with V (resp. W ) a scheme. Consider the diagram of étale sheaves:

V ×Z W //

��

Y ×Z W //

��

W

��
V // Y // Z
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Since W → Z is already an epimorphism in the category of étale sheaves, its pull-back is also
an epimorphism. So it reduces to show that the composition V ×Z W → Y ×Z W → W is an
epimorphism when pulled-back to LFQ(S)∼. The composition is a qfh covering of schemes
and it follows immediately that it pulls back to an epimorphism of qfh sheaves. �

Lemma 3.2.3. Let C be a site with the associated topos T . Let

F1

a //

b
// F2

c // F3

be a diagram in T with c ◦ a = c ◦ b. Assume that c and the morphism (a, b) : F1 → F2×F3 F2

are epimorphisms. Then the diagram is a coequalizer.

Proof. Given a morphism d : F2 → G with d ◦ a = d ◦ b, we need to prove that there exists a
unique dotted arrow filling in the diagram below:

F1

a //

b
// F2

d   

c // F3

��
G

The uniqueness follows from the assumption that c is an epimorphism. For the existence,
let us construct a morphism f : F3 → G. Consider a section x3 of F3(U) for U ∈ C. After
refinement, we can lift it to sections of F2. Then their images under d glue together to give
a section of G because of the assumption that F1 → F2 ×F3 F2 is an epimorphism. The same
assumption also shows that the section of G is independent of the choice of lifts of x3 to the
sections of F2. Hence, given a covering {Ui → U}, there is a well-defined section of G, which
we defined to be f(x3). Once more, the assumption on F1 → F2×F3 F2 shows that the section
f(x3) does not depend on the choice of coverings of U . Therefore, there is a well-defined
morphism f : F3 → G. This finishes the proof because f ◦ c = d by the construction of f . �

4. Symmetric power

In this section we study symmetric powers in various contexts, and then prove the Dold-
Thom theorem for qfh topological types. We also analyze the fundamental group of symmetric
power.

4.1. Symmetric power of algebraic spaces.

4.1.1. Let X be a topological space. There is a canonical action of the symmetric group
Sn on the n-fold product space Xn. The nth symmetric power Symn(X) of X is defined
as the quotient space Xn/Sn. This quotient space behaves well for CW-complexes: For
a map of CW-complexes, the induced map on the symmetric powers preserves homotopy
weak equivalence. Since topological types are defined as pro-simplicial sets rather than pro-
topological spaces, we restate this property in terms of simplicial sets for convenience.
4.1.2. Let X• be a simplicial set. As a constant simplicial set, the symmetric group Sn

canonically acts on the n-fold product Xn
• of X•. So there is a groupoid of simplicial sets

(4.1.2.1) Sn ×Xn
•

// // Xn
•

where the two maps are the Sn-action and the projection onto Xn
• .
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Definition 4.1.3. The nth symmetric power Symn(X•) of a simplicial set X• is the coequal-
izer of the diagram (4.1.2.1) in the category of simplicial sets.

4.1.4. Concretely, Symn(X•) can be described as following: For a set X, there is a Sn-action
on the n-fold product Xn of X. Then we can form the orbit space Xn/Sn. This construction
is functorial in X, and so can be applied to X• degree-wise. So we obtain a simplicial set
whose degree m is the orbit space of Xm by Sn. This is isomorphic to the nth symmetric
power Symn(X•) defined above.

Lemma 4.1.5. For every n ≥ 0, the nth symmetric power functor

Symn : SSet→ SSet : X• 7→ Symn(X•)

preserves weak equivalences of simplicial sets.

Proof. Let X• be a simplicial set. Since the geometric realization functor preserves colimits
and finite limits, we can identify | Symn(X•)| with Symn(|X•|) where the latter is usual
symmetric power of the CW-complex. Then the statement follows from the well-known result
that the nth symmetric power preserves a homotopy equivalence between CW-complexes. �

4.1.6. Now we discuss the nth symmetric power of algebraic spaces. In this case, a careful
approach is necessary. The situation is not as simple as the case of simplicial sets where we
take the categorical quotient. Even for schemes, it is not clear whether such a categorical
quotient is representable by schemes. The well-known case is when X is a quasi-projective
scheme over S. However, we deal with more general case where X is proper. In that case, al-
though the categorical quotient may not be representable by scheme, it could be representable
by algebraic spaces. So we begin with the symmetric powers of algebraic spaces.

4.1.7. Let X/S be an algebraic space. The constant group scheme Sn associated to the
symmetric group Sn canonically acts on the n-fold product (X/S)n = X ×S X ×S · · · ×S X︸ ︷︷ ︸

n

of X over S. So there is a groupoid of algebraic spaces over S

(4.1.7.1) Sn × (X/S)n //// (X/S)n

where the two arrows are the Sn-action and the projection onto (X/S)n.

Definition 4.1.8. Let X/S be an algebraic space. Its nth symmetric power Symn(X/S) is
the GC quotient of the groupoid of algebraic spaces in (4.1.7.1), if exists.

4.1.9. In fact, the nth symmetric power of algebraic spaces exists under mild assumption:

Proposition 4.1.10. ([11, 5.5]) Let X be a separated algebraic space over S. Then the nth
symmetric power Symn(X/S) exists.

Proof. See [11, 5.5]. �

4.1.11. For a separated algebraic space X/S, there is a diagram of algebraic spaces

(4.1.11.1) Sn × (X/S)n //// (X/S)n

The following theorem is the reason why we want to work with the qfh topology instead of
the étale topology. Although (4.1.11.1) is not a coequalizer diagram of étale sheaves on S,
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as indicated in 3.2.2, this is the case for when pulled-back to qfh sheaves provided that X is
locally of finite type over S:

Theorem 4.1.12. Let X be an algebraic space that is locally of finite type and separated over
S. Then the pull-back diagram of (4.1.11.1)

Sn × (i∗X)n //// (i∗X)n // i∗(Symn(X/S))

is a coequalizer in the category LFQ(S)∼

Proof. Note that Symn(X/S) exists from 4.1.10. That X is locally of finite type over S
implies that every condition on 3.1.4 is satisfied. Furthermore, Sn → S is affine and thus the
groupoid in (4.1.7.1) is also affine. So the assumption of 3.1.5 is satisfied. Therefore, we can
apply 3.2.2 to conclude that the symmetric power is the coequalizer as a qfh sheaf. �

4.2. Symmetric power and weak equivalence. In this subsection we provide a formal
proof of the Dold-Thom theorem for qfh topological types.

4.2.1. Let F• be a simplicial object in the qfh topos LFQ(S)∼. The constant group scheme
Sn associated to the symmetric group Sn canonically acts on the n-fold product F n

• of F•.
By regarding Sn as a constant simplicial sheaf, there is a groupoid of simplicial sheaves on
LFQ(S):

(4.2.1.1) Sn × F n
•

//// F n
•

where the two arrows are the Sn-action and the projection onto F n
• .

Definition 4.2.2. The nth symmetric power Symn(F•) of a simplicial object F• in LFQ(S)∼

is the coequalizer of the diagram (4.2.1.1) in the category (LFQ(S)∼)∆op of simplicial qfh
sheaves on S.

4.2.3. This construction is purely categorical and so we can repeat the concrete construction
in the case of simplicial sets 4.1.4. That is, Symn(F•) can be described as following: For a
sheaf F , there is a Sn-action on the n-fold product F n of F . So there is a groupoid of sheaves
on LFQ(S):

Sn × F n //// F n

where the two arrows are the Sn-action and the projection onto F n
• . By taking the coequalizer,

we get the quotient sheaf F n/Sn. This construction is functorial in F , and so can be applied
to F• degree-wise. So we obtain a simplicial sheaf whose degree m is the quotient sheaf of
Fm by Sn. This is isomorphic to the nth symmetric power Symn(F•) defined above.

4.2.4. The symmetric power construction is functorial in F• and so induces the symmetric
power functor

Symn : (LFQ(S)∼)∆op → (LFQ(S)∼)∆op

: F• 7→ Symn(F•)

4.2.5. For an algebraic space X/S, one can take its symmetric power as a GC quotient and
pull it back to a qfh sheaf. Or one can first pull it back to a qfh sheaf and take the symmetric
power in the sense of 4.2.2. These two approaches are equivalent:



12 CHANG-YEON CHOUGH

Proposition 4.2.6. Let X be a locally of finite type and separated algebraic space over S.
Then there is a canonical isomorphism

Symn(i∗X)
∼ // i∗(Symn(X/S))

where i∗X is viewed as a constant simplicial qfh sheaf.

Proof. This is an immediate consequence of 4.1.12. �

4.2.7. Let T be a topos with enough points. Recall that a morphism between simplicial
objects in T is a local weak equivalence if and only it induces weak equivalences of simplicial
sets at stalks (see [8, p.64] for details). The topos LFQ(S)∼ has enough points, and thus we
can check the local weak equivalence at stalks:

Lemma 4.2.8. The topos LFQ(S)∼ has enough points.

Proof. The site LFQ(S) has all finite limits and every covering is a finite covering. Then the
statement follows from Deligne [12, Proposition 9.0, Exposé VI]. �

4.2.9. As the symmetric power for qfh sheaves is defined to be the categorical quotient, we
expect it to behave like the symmetric power of simplicial sets 4.1.5:

Theorem 4.2.10. For each n ≥ 0, the symmetric power functor

Symn : (LFQ(S)∼)∆op → (LFQ(S)∼)∆op

preserves local weak equivalences.

Proof. Let F• → G• be a local weak equivalence of simplicial qfh sheaves. We check at stalks
the local weak equivalence of Symn(F•) → Symn(G•). Consider the diagram of simplicial
sets:

Symn(x∗F•) //

��

Symn(x∗G•)

��
x∗(Symn(F•)) // x∗(Symn(G•))

For any point x : Set→ LFQ(S)∼, its pull-back preserves coequalizers and thus two vertical
maps are isomorphisms. Now since x∗F• → i∗G• is a weak equivalence of simplicial sets, it
follows from 4.1.5 that the top map is also a weak equivalence. Therefore, the bottom map
is a weak equivalence, which completes the proof. �

Corollary 4.2.11. (The Dold-Thom theorem for qfh topological types) Let F• be a simplicial
object in LFQ(S)∼. Then there is a canonical isomorphism

Symn(hqfh(F•))
∼ // hqfh(Symn(F•))

in Ho(pro−SSet). Furthermore, these two pro-simplicial sets are strictly weakly equivalent.

Proof. Recall from 4.2.2 that the symmetric power of simplicial qfh sheaves is defined by
coequalizers. Since the connected component functor

Πqfh : LFQ(S)∼ → Set
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commutes with colimits and non-empty finite products, the following diagram commutes:

(LFQ(S)∼)∆op

Πqfh
��

Symn

// (LFQ(S)∼)∆op

Πqfh
��

SSet
Symn

// SSet

Since the top (resp. bottom) symmetric product functor preserves local weak equivalence
(resp. weak equivalences) by 4.2.10 (resp. by 4.1.5), the statement follows by taking the left
derived functors for the associated pro-categories. �

4.3. Fundamental group of symmetric powers. In this subsection we study the funda-
mental group of both the qfh and the étale topological types of symmetric powers.

4.3.1. For a topological space X, the map on fundamental groups

π1(X)→ π1(Symn(X))

factors through the abelianized fundamental group πab
1 (X). Moreover, the Dold-Thom the-

orem implies that π1(Symn(X)) is the first homology group H1(X;Z) of X with integer
coefficient. Since the first homology group is the abelianization of fundamental group, it
follows that there is an isomorphism

(4.3.1.1) πab
1 (X)

∼ // π1(Symn(X))

4.3.2. As the symmetric power for qfh sheaves is defined to be categorical quotients, we
expect a similar result for qfh topological types:

Corollary 4.3.3. Let F• be a simplicial object in LFQ(S)∼, the canonical map

π1(hqfh(F•))→ π1(hqfh(Symn(F•))

factors through the abelianization πab
1 (h(F•)). Furthermore, there is a canonical isomorphism

πab
1 (hqfh(F•))

∼ // π1(hqfh(Symn(F•))

Proof. This is an immediate consequence of 4.2.11. Indeed, as Symn(hqfh(F•)) is isomorphic
to hqfh(Symn(F•)), one can reduce to the case of simplicial sets where we already know the
result by the Dold-Thom theorem. �

4.3.4. In fact, this result is still true for algebraic spaces by the work of Biswas-Hogadi [3,
1.2]: For an integral proper algebraic space over an algebraically closed field k, the canonical
map (4.3.1.1) for étale topological types is an isomorphism. In 5.0.2 we use this result in the
following form:

Theorem 4.3.5. ([3, 1.2]) Let X be a geometrically normal and proper algebraic space over
a separably closed field k. Then there is an canonical isomorphism

πab
1 (hét(X))

∼ // π1(hét(Symn(X)))

Proof. Fix an algebraically closure k of k. Recall from [4, 4.1.16] that there is a strict weak
equivalence

hét(X)→ hét(X)



14 CHANG-YEON CHOUGH

Also, recall from [11, 2.10] that the strongly geometric quotient is stable under flat base
change. That is, the canonical map

Symn(X)→ Symn(X)⊗k k

is an isomorphism of algebraic spaces over k. Again by [4, 4.1.16], there is a strict weak
equivalence

hét(Symn(X))→ hét(Symn(X))

Therefore, we may assume that k is algebraically closed. The n-fold product (X/S)n =
X ×S X ×S · · · ×S X is normal ([10, Tag 06DG]) and thus so is Symn(X). We know that
Symn(X) is locally of finite type and separated by 3.1.4. That X is quasi-compact implies
Symn(X) is also quasi-compact. So hét(Symn(X)) is profinite by [4, 5.3.4]. In particular,
π1(hét(Symn(X))) is profinite. This implies that the fundamental group of hét(Symn(X)) is
isomorphic to the fundamental group of Symn(X) in the sense of Noohi by [4, 3.5.2]. Similarly,
π1(hét(X)) is isomorphic to the fundamental group of X in the sense of Noohi. Then our
statement follows from [3, 1.2]. �

5. The proof of the Dold-Thom theorem for topological types

In this section we compare the topological types of the symmetric power for the qfh and
étale topologies, and prove the the Dold-Thom theorem for étale topological types.

5.0.1. In general, it may not be true that for an algebraic space its étale topological type is
weakly equivalent to its qfh topological type. Nonetheless, this is the case when it comes to
the symmetric powers:

Proposition 5.0.2. Let X be a geometrically normal and proper algebraic space over a
separably closed field k. Then the canonical map of topological types

hqfh(Symn(X))→ hét(Symn(X))

is a strict weak equivalence of pro-simplicial sets.

Proof. It follows from 2.2.13 that the map induces isomorphisms on cohomology groups for
every local coefficient system of abelian groups. So it suffices to show that the map on
fundamental groups is an isomorphism. Consider a commutative diagram of pro-groups:

πab
1 (hqfh(X)) //

��

πab
1 (hét(X))

��
π1(hqfh(Symn(X))) // π1(hét(Symn(X)))

The left vertical map is an isomorphism by 4.3.3 and the top horizontal map is an isomorphism
by 2.2.13. Also, it follows from 4.3.5 that the right vertical map is an isomorphism. Therefore
the bottom map is an isomorphism as desired. �

Lemma 5.0.3. Let X → Y be a morphism of pro-simplicial sets. Assume that

Hn(Y ;M)→ Hn(X;M)

http://stacks.math.columbia.edu/tag/06DG
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is an isomorphism for all n ≥ 0 and all abelian groups M . Then the induced map on sym-
metric powers

Symn(X)→ Symn(Y )

is a weak equivalence of pro-simplicial sets.

Proof. We prove that the map on symmetric powers induces isomorphisms on all homotopy
groups. Recall from [7, 5.5] that the isomorphisms on cohomology groups with abelian coef-
ficients imply that the map on homology pro-groups

Hn(X,Z)→ Hn(Y,Z)

is an isomorphism for all n ≥ 0. Then the statement follows from the classical Dold-Thom
theorem. �

Theorem 5.0.4. Let X be a geometrically normal and proper algebraic space over a separably
closed field k. Then there is a canonical isomorphism

Symn(hét(X))
∼ // hét(Symn(X))

in Ho(pro− SSet).

Proof. Consider the commutative diagram of pro-simplicial sets in Ho(pro− SSet):

Symn(hqfh(X))

��

// hqfh(Symn(X))

��
Symn(hét(X)) // hét(Symn(X))

The top arrow is an isomorphism in the homotopy category of pro-simplicial sets by 4.2.11.
Also, the right vertical map is a strict weak equivalence of pro-simplicial sets by 5.0.2. On
the other hand, the canonical map of topological types

hqfh(X)→ hét(X)

satisfies the assumption of 5.0.3 due to 2.2.13. Hence the left vertical map is a weak equiva-
lence of pro-simplicial sets. Therefore, the bottom map is an isomorphism in the homotopy
category. �
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