

An Incoercible E-Voting Scheme Based on Revised Simplified Verifiable Re-encryption Mix-nets

Shinsuke Tamura^{1,*}, Hazim A. Haddad¹, Nazmul Islam², Kazi Md. Rokibul Alam²

¹Graduate School of Engineering, University of Fukui, Japan

²Department of Computer Science and Engineering, Khulna University of Engineering and Technology, Bangladesh

*Corresponding author: tamura@u-fukui.ac.jp

Abstract Simplified verifiable re-encryption mix-net (SVRM) is revised and a scheme for e-voting systems is developed based on it. The developed scheme enables e-voting systems to satisfy all essential requirements of elections. Namely, they satisfy requirements about privacy, verifiability, fairness and robustness. It also successfully protects voters from coercers except cases where the coercers force voters to abstain from elections. In detail, voters can conceal correspondences between them and their votes, anyone can verify the accuracy of election results, and interim election results are concealed from any entity. About incoercibility, provided that erasable-state voting booths which disable voters to memorize complete information exchanged between them and election authorities for constructing votes are available, coercer C cannot know candidates that voters coerced by C had chosen even if the candidates are unique to the voters. In addition, elections can be completed without reelections even when votes were handled illegitimately.

Keywords: revised-SVRM, anonymous credential, inferior votes, erasable-state voting booth

Cite This Article: Shinsuke Tamura, Hazim A. Haddad, Nazmul Islam, and Kazi Md. Rokibul Alam, "An Incoercible E-Voting Scheme Based on Revised Simplified Verifiable Re-encryption Mix-nets." *Information Security and Computer Fraud*, vol. 3, no. 2 (2015): 32-38. doi: 10.12691/iscf-3-2-2.

1. Introduction

E-voting systems are expected to make elections efficient, accurate and economical, but when elections are computerized, voters are faced with serious threats. For example, simple computerization enables election authorities to know correspondences between voters and their votes. Also, entity C that is coercing voter V becomes able to confirm whether V had chosen C's designating candidate or not. E-voting systems applicable to real elections must satisfy the following requirements.

- 1. *Privacy* Correspondences between voters and their votes must be concealed from others including election authorities. It is preferable that voters can conceal also their abstentions from others.
- 2. *Verifiability* Anyone including voters and third parties must be able to verify the accuracy of elections, i.e. e-voting schemes must be able to convince anyone that only and all votes from eligible voters had been counted.
- 3. *Fairness* Interim election results influence ways voters choose candidates; therefore interim election results must be concealed from anyone including election authorities.
- 4. *Incoercibility* To disable entity C that is coercing voter V to confirm that V actually had chosen C's designating candidate S, e-voting schemes must disable even V itself to identify its vote in election results. Here, C must be disabled to know whether V had chosen S or not even if S is unique to V.

5. *Robustness* To conduct elections fairly even when relevant entities behave dishonestly, voting schemes must be able to complete elections without reelections or any help of dishonest voters. Here if helps from dishonest voters are required, the schemes cannot complete the election when they disappear.

However, despite that many schemes had been developed, they cannot satisfy all of the above requirements completely [2,4,6,8,10,11,12]. For example, although many schemes satisfy receipt freeness, if entity *C* that is coercing voter *V* asks *V* to choose candidate *S* that is unique to *V*, *C* can easily know whether *V* had actually chosen *S* or not. Here, receipt freeness is the base of incoercibility, i.e. it disables *C* to force *V* to show its receipt that includes the candidate *V* had chosen.

This paper modifies simplified verifiable re-encryption mix-net (SVRM) [14] to revised-SVRM, and develops an e-voting scheme that satisfies all the above requirements based on it together with anonymous tag based credentials [13,15,16]. An anonymous credential enables voter V to convince others that it is eligible without revealing its identity, and provided that erasable-state voting booths are available, the verifiable feature of revised-SVRM ensures election authorities' legitimate handling of votes while concealing correspondences between voters and their votes from entities including voters themselves. In addition, the scheme regards votes for candidates that could not obtain enough supports as inferior votes and does not count them in the tallying phase [13]. Then, entity C that is coercing V cannot confirm whether V had chosen C's designating candidate or not even when the

candidate is unique to V. About fairness and robustness, it is easy to satisfy them as same as in other schemes.

In the above, an erasable-state voting booth is a one that disables voters to memorize complete information exchanged between them and election authorities during they are constructing their votes.

2. Security Components

2.1. Simplified Verifiable Re-encryption Mix-net (SVRM)

Re-encryption mix-net M consists of multiple mutually independent mix-servers M_1 , M_2 , ---, M_Q and M_Q , M_{Q-1} , ---, M_1 that are arrayed in encryption and decryption stages respectively as shown in Figure 1. Then, M enables entities V_1 , V_2 , ---, V_N that put their attribute values D_1 , D_2 , ---, D_N in it to conceal correspondences between them and D_1 , D_2 , ---, D_N from others including mix-servers [2-7].

Figure 1. Re-encryption mix-net M

To conceal the above correspondences, firstly each V_j encrypts its attribute value D_j to $\{g^{aj}_{mod p}, D_j y^{*aj}_{mod p}\}$ while using its secret integer a_j , and M_1 , M_2 , ---, M_Q in the encryption stage repeatedly encrypt $\{g^{aj}_{mod p}, D_j y^{*aj}_{mod p}\}$ to $\{g^{kj*(Q)}_{mod p}, D_j y^{*kj*(Q)}_{mod p}\}$ by using their secret integers $k_j(1), k_j(2), \dots, k_j(Q)$ to be decrypted in the decryption stage. Here, provided that g and p are publicly known appropriate integers (p is a prime number), $\{x(q), y(q) = g^{x(q)}_{mod p}\}$ is mix-server M_q 's secret decryption and public encryption key pair of an ElGamal encryption function, and $<x_* = \{x(1)+x(2)+\dots+x(Q)\}_{mod p}, y_* = y(1)y(2)-\dots y(Q)_{mod p} = g^{x^*}_{mod p}>$ is a common secret decryption and public encryption key pair. Also, $k_j^*(q) = a_j + k_j(1) + k_j(2) + \dots + k_j(q)$, and in the remainder, notation $_{mod p}$ is omitted when confusions can be avoided.

In detail, each M_q in the encryption stage calculates $\{g^{kj^*(q-1)}g^{kj(q)}=g^{kj^*(q)}, \ D_j y_*^{kj^*(q-1)}y_*^{kj(q)}=D_j y_*^{kj^*(q)}\}$ from $\{g^{kj^*(q-1)}, \ D_j y_*^{kj^*(q-1)}\}$ received from M_{q-1} . After that M_q shuffles its calculation results, and forwards them to M_{q+1} . In the decryption stage, $M_Q, \ M_{Q-1}, \ ---, \ M_1$ decrypt each $\{g^{kj^*(Q)}, \ D_j y_*^{kj^*(Q)}=D_j g^{kj^*(Q)\cdot x^*}\}$ to $\{g^{kj^*(Q)}, \ D_j\}$. Namely, each M_q decrypts $\{g^{kj^*(Q)}, \ D_j g^{kj^*(Q)\cdot x^*(q)}\}$ received from M_{q+1} to $\{g^{kj^*(Q)}, \ D_j g^{kj^*(Q)\cdot x^*(q)}/g^{kj^*(Q)\cdot x^*(q)}=D_j g^{kj^*(Q)\cdot x^*(q-1)\}}\}$ by using its secret key x(q), and forwards it to M_{q-1} . Here $x^*(q)=x(1)+x(2)+\cdots+x(q)$.

Then, no one except V_j can know V_j 's attribute value D_j unless all mix-servers conspire because any one cannot know all integers $k_j(1)$, $k_j(2)$, ---, $k_j(Q)$ or all decryption keys x(1), x(2), ---, x(Q). Entities other than V_j cannot know integer a_j either.

However, because integers $k_1(q)$, $k_2(q)$, ---, $k_N(q)$ and decryption key x(q) are known only to M_q and M_q in the encryption stage shuffles its encryption results, no one can notice even when mix-servers encrypt or decrypt attribute values dishonestly. SVRM M_* shown in Figure 2 enables any entity E to verify behaviors of mix-servers by preparing the unknown number generation stage [14]. In the following it is assumed that all information sent from each entity V_i and mix-server M_q is publicly disclosed.

 $<\!\!\{g^{kj^*(Q)}, D_j y_*^{kj^*(Q)}\}, \, \{g^{uj^*(Q)}, R_j y_*^{uj^*(Q)}\}, \, \{g^{vj^*(Q)}, D_j^{R_{j+d}} y_*^{vj^*(Q)}\}\!\!>$

Figure 2. Simplified verifiable re-encryption mix-net M*

Firstly, provided that b_j, c_j are integers secrets of entity V_j and r_j(q) and s_j(q) are integers secrets of each mix server M_q, V_j calculates { g^{bj} , c_jy_{*}^{bj}} and { g^{cj} , (D_jy_{*})^{cj}}, and forwards them to M₁ in the unknown number generation stage. After that each M_q calculates <{ $g^{sj^{si}(q-1)}g^{sj(q)} = g^{Rj(q)}$, R_j(q-1)r_j(q)y_{*}^{si^s(q-1)}y_{*}^{si(q)} = R_j(q)y_{*}^{si^s(q)}}, { $g^{Rj(q-1),rj(q)} = g^{Rj(q)}$, (D_jy_{*})^{Rj(q-1),rj(q)} = (D_jy_{*})^{Rj(q)} > from <{ $g^{sj^{*}(q-1)}$, R_j(q-1)y_{*}^{sj^{*}(q-1)}}, { $g^{Rj(q-1),rj(q)} = (D_{j}y_*)^{Rj(q)}$ > from <{ $g^{sj^{*}(q-1)}$, R_j(q-1)y_{*}^{sj^{*}(q)}}, to forward it to V_j, and V_j constructs triplet E₀(D_j) = <{ g^{aj} , D_jy_{*}^{aj}}, { $g^{sj^{*}(Q)}$, R_jy_{*}^{sj^{*}(Q)}}, { g^{Rj} , D_j^{Rj}y_{*}^{Rj} = D_j^{Rj+A}y_{*}^{Rj}> to put in mix-net *M*_{*}. Where, Λ is a publicly known constant integer, s_j^{*}(q) = b_j+s_j(1)+s_j(2)+---+s_j(q), R_j(q) = c_ir_i(1)r_i(2) --- r_i(q) and R_i = R_i(Q).

About mix-servers $M_1, M_2, ---, M_Q$ in the encryption stage, they repeatedly encrypt $E_0(D_j)$ to triplet $E_Q(D_j) = <\{g^{kj^*(Q)}, D_j y_*^{kj^*(Q)}\}, \{g^{uj^*(Q)}, R_j y_*^{uj^*(Q)}\}, \{g^{vj^{*}(Q)}, D_j^{R_{j+A}} y_*^{vj^{*}(Q)}\}$ while shuffling its all encryption results as same as in Figure 1, and $M_Q, M_{Q-1}, ---, M_1$ in the decryption stage decrypt it to $F_0(D_j) = <\{g^{kj^*(Q)}, D_j\}, \{g^{uj^{*}(Q)}, R_j\}, \{g^{vj^{*}(Q)}, D_j^{R_{j+A}}\} >$. Namely, M_q in the encryption stage calculates $E_q(D_j) = <\{g^{kj^{*}(q)}, D_j y_*^{kj^{*}(q)}\}, \{g^{vj^{*}(q)}, R_j y_*^{uj^{*}(q)}\}, \{g^{vj^{*}(q)}, D_j^{R_{j+A}} y_*^{vj^{*}(q)}\} >$ from $E_{q-1}(D_j) = <\{g^{kj^{*}(q-1)}, D_j y_*^{kj^{*}(q-1)}\}$ calculated by M_{q-1} , and M_q in the decryption stage calculates $F_{q-1}(D_j) = <\{g^{kj^{*}(Q)}, D_j g^{kj^{*}(Q) \cdot x^{*}(q-1)}\}, \{g^{uj^{*}(Q) \cdot x^{*}(q-1)}\}, \{g^{uj^{*}(Q) \cdot x^{*}(q-1)}\}, \{g^{uj^{*}(Q)}, R_j g^{uj^{*}(Q) \cdot x^{*}(q-1)}\}, \{g^{uj^{*}(Q)}, R_j g^{uj^{*}(Q) \cdot x^{*}(q-1)}\}, \{g^{uj^{*}(Q)}, D_j g^{kj^{*}(Q) \cdot x^{*}(q-1)}\} >$ calculates $F_{q-1}(D_j) = <\{g^{kj^{*}(Q)}, D_j g^{kj^{*}(Q) \cdot x^{*}(q-1)}\}, \{g^{uj^{*}(Q)}, R_j g^{uj^{*}(Q) \cdot x^{*}(q-1)}\}, \{g^{vj^{*}(Q)}, D_j g^{kj^{*}(Q) \cdot x^{*}(q-1)}\}, \{g^{vj^{*}(Q)}, D_j g^{kj^{*}(Q) \cdot x^{*}(q-1)}\} >$ from $F_q(D_j) = <\{g^{kj^{*}(Q)}, D_j g^{kj^{*}(Q) \cdot x^{*}(q)}\}, \{g^{vj^{*}(Q)}, R_j g^{uj^{*}(Q) \cdot x^{*}(q)}\}, \{g^{vj^{*}(Q)}, D_j g^{kj^{*}(Q) \cdot x^{*}(q)}\}, \{g^{vj^{*}(Q)}, R_j g^{uj^{*}(Q) \cdot x^{*}(q)}\}, \{g^{vj^{*}(Q)}, R_j g^{vj^{*}(Q) \cdot x^{*}(q)}\}, \{g^{vj^{*}(Q) \cdot x^{*}(q)}\}$

 $v_j(q)$ are secret integers of M_q and $u_j^{(*)}(q) = s_j^{(*)}(Q) + u_j(1) + u_j(2) + \dots + u_j(q)$ and $v_j^{(*)}(q) = R_j + v_j(1) + v_j(2) + \dots + v_j(q)$.

Then, the final decryption results enable M_* to convince any verifier E of its legitimate encryptions, decryptions and shuffling. Namely, because each attribute value D_j is finally decrypted to $F_0(D_j) = \langle \{g^{kj^*(Q)}, D_j = \alpha_j\}, \{g^{uj^*(Q)}, R_j = \beta_j\}, \{g^{vj^*(Q)}, D_j^{R_j+\Lambda} = \gamma_i\} \rangle$, at least one mix-server is dishonest when relation $\alpha_j^{\beta_j+\Lambda} = \gamma_j$ does not hold for some j.

However, each M_q that knows public encryption keys y(1), y(2), ---, y(Q) can easily forge encryption and decryption forms $E_q(D_i)$ and $F_{q-1}(D_j)$ so that their final decryption result $\{g^{kj^{*}(Q)}, \alpha_j\}, \{g^{uj^{*}(Q)}, \beta_j\}, \{g^{vj^{*}(Q)}, \gamma_j\} >$ satisfies relation $\alpha_j^{\beta j+\lambda} = \gamma_j$. M_* removes this possibility as below.

Firstly each M_q discloses $\kappa_q = k_1(q)+k_2(q)+ \cdots +k_N(q)$, and verifier *E* convinces itself that the product of $E_q(D_1)$, $E_q(D_2)$, ---, $E_q(D_N)$ calculated by M_q and that of $E_{q-1}(D_1)$, $E_{q-1}(D_2)$, ---, $E_{q-1}(D_N)$ calculated by M_{q-1} are consistent. In detail, *E* examines relations $G_{k1}(q) = g^{\kappa q}G_{k1}(q-1)$ and $G_{k2}(q) = y^{\kappa q}G_{k2}(q-1)$, and requests M_q to iterate the encryption stage until the relations hold. Where $\{G_{k1}(q),$ $G_{k2}(q)\}$ is a product pair $\{G_{k1}(q) = g^{k1^*(q)}g^{k2^*(q)} - g^{kN^*(q)} =$ $g^{\kappa 1+\kappa 2+\cdots+\kappa q}$, $G_{k2}(q) = D_1y^{\kappa 1^*(q)}D_2y^{\kappa 2^*(q)} - D_Ny^{\kappa N^*(q)} =$ $D_1D_2 - D_Ny^{\kappa 1+\kappa 2+\cdots+\kappa q}\}$. Therefore $G_{k1}(q) = g^{\kappa q}G_{k1}(q-1)$ and $G_{k2}(q) = y^{\kappa q}G_{k2}(q-1)$ necessarily hold if $E_q(D_1)$, $E_q(D_2)$, ---, $E_q(D_N)$ are correct. But if encryption from $E_q(D_j)$ is incorrect, because solving discrete logarithm problems is difficult, M_q that does not know x* cannot find value κ_q so that $G_{k1}(q) = g^{\kappa q}G_{k1}(q-1)$ and $G_{k2}(q) =$ $y^{\kappa q}G_{k2}(q-1)$ hold [3,4]. On the other hand, although M_q discloses κ_q , it can maintain each $k_j(q)$ as its secret.

Here, actually M_q can find integer κ_q even if $E_q(D_j)$ is incorrect when $E_q(D_j)$ is calculated in a specific way, but in this case final decryption result $\langle \{g^{kj^*(Q)}, \alpha_i\}, \{g^{uj^*(Q)}, \beta_j\}, \{g^{vj^*(Q)}, \gamma_j\} \rangle$ does not satisfy relation $\alpha_i^{\beta_i + \lambda} = \gamma_j$. For example, if M_q encrypts $\{g^{kj^*(q-1)}, D_j y_*^{kj^*(q-1)}\}$ in $E_{q-1}(D_j)$ and $\{g^{kh^*(q-1)}, D_h y_*^{kh^*(q-1)}\}$ in $E_{q-1}(D_h)$ to $\{g^{kj^*(q)}, \lambda D_j y_*^{kj^*(q)}\}$ and $\{g^{kh^*(q)}, (1/\lambda) D_h y_*^{kh^*(q)}\}$ instead of $\{g^{kj^*(q)}, D_j y_*^{kj^*(q)}\}$ and $\{g^{kh^*(q)}, D_h y_*^{kh^*(q)}\}$ (λ is an arbitrarily integer), value κ_q $= k_1(q) + k_2(q) + \dots + k_N(q)$ still satisfies $G_{k1}(q) = g^{\kappa q} G_{k1}(q-1)$ and $G_{k2}(q) = y_*^{\kappa q} G_{k2}(q-1)$. However, M_q that does not know D_j , R_j , D_h or R_h cannot calculate $\{g^{uj^*(q)}, \beta_j y_*^{uj^*(q)}\}$, $\{g^{vj^{*(q)}}, \gamma_j y_*^{vj^{*(q)}}\}$ in $E_q(D_j)$ or $\{g^{uh^*(q)}, \beta_h y_*^{uh^*(q)}\}$, $\{g^{vh^*(q)}, \gamma_h y_*^{vh^*(q)}\}$ in $E_q(D_h)$ so that relations $\gamma_i = (\lambda D_j)^{\beta_j + \Lambda}$ and $\gamma_h = (D_h/\lambda)^{\beta_j + \Lambda}$ hold.

Secondly to ensure legitimate behaviors of mix-servers in the decryption stage, after M_1 having decrypted all attribute values, verifier *E* calculates products $D_1D_2 \cdots D_N$ and $y_*^{a1+a2+\cdots+aN}$ from $\{g^{k1*(Q)}, D_1\}, \cdots, \{g^{kN*(Q)}, D_N\}$ in final decryption results $F_0(D_1), \cdots, F_0(D_N)$ and $\{g^{a1}, D_1y_*^{a1}\}, \cdots, \{g^{aN}, D_Ny_*^{aN}\}$ in initial encryption forms $E_0(D_1), \cdots, E_0(D_N)$, where *E* can calculate $y_*^{a1+a2+\cdots+aN}$ as $y_*^{a1+a2+\cdots+aN} = D_1y_*^{a1}D_2y_*^{a2} \cdots D_Ny_*^{aN}/(D_1D_2 \cdots D_N)$. *E* calculates also G_d from encryption forms $E_Q(D_1), E_Q(D_2), \cdots, E_Q(D_N)$ as $G_d = (D_1y_*^{k1*(Q)}D_2y_*^{k2*(Q)} \cdots D_Ny_*^{kN*(Q)})/(D_1D_2 \cdots D_N)$.

Under these settings, *E* determines mix-servers in the decryption stage are dishonest when relation $G_d = y_*^{al+a2+\cdots} + aN+\kappa l+\kappa 2+\cdots + \kappa Q}$ does not hold. Namely, apparently G_d must be equal to $y_*^{al+a2+\cdots} + aN+\kappa l+\kappa 2+\cdots + \kappa Q}$ if $E_Q(D_1)$, ---, $E_Q(D_N)$ are correctly decrypted. On the other hand, it is computationally infeasible to find different values that satisfy relation $G_d = y_*^{al+a2+\cdots} + aN+\kappa l+\kappa 2+\cdots + \kappa Q}$ as the decryption forms. In detail, although M_q can forge $F_{q-1}(D_j)$

while satisfying $G_d = {y_*}^{a1+a2+\cdots +aN+\kappa1+\kappa2+\cdots +\kappaQ}$ as M_q in the encryption stage calculates $\{g^{kj^*(q)}, \lambda D_j y_*^{kj^*(q)}\}$, it cannot make final decryption form $\langle \{g^{kj^*(Q)}, \alpha_j\}, \{g^{uj^*(Q)}, \beta_j\}, \{g^{vj^*(Q)}, \gamma_j\} \rangle$ satisfy relation $\alpha_j^{\beta j+\Lambda} = \gamma_j$ because each M_q (q > 1) does not know value D_j at a time when it decrypts $F_q(D_j)$. Also, anyone can examine relation $G_d = y_*^{a1+a2+\cdots} +aN+\kappa1+\kappa2+\cdots +\kappa Q}$ because y_* and $\kappa_1, \kappa_2, \cdots, \kappa_Q$ are publicly known.

In the above, mix-server M_1 in the decryption stage which calculates final decryption forms can know D_1 , ---, D_N as an exception. But verifier *E* can detect dishonesties easily if the liable mix-server is M_1 . Namely, when mixservers M_L , M_{L-1} , ---, M_1 (L < Q) disclose their decryption keys x(L), x(L-1), ---, x(1) after all attribute values were decrypted, verification of M_1 's behavior is trivial. Nevertheless, correspondences between entities and their attribute values can be concealed because x(L+1), x(L+2), ---, x(Q) are still secrets of M_{L+1} , M_{L+2} , ---, M_Q .

Then, encryption and decryption forms $E_q(D_1), E_q(D_2),$ ---, $E_q(D_N)$ and $F_{q-1}(D_1), F_{q-1}(D_2),$ ---, $F_{q-1}(D_N)$ calculated by M_q necessarily satisfy $G_{k1}(q) = g^{kq}G_{k1}(q-1)$ and $G_{k2}(q) = y_*^{*q}G_{k2}(q-1)$ for each q and $G_d = y_*^{a1+a2+\cdots+aN+\kappa1+\kappa2+\cdots+\kappa Q}$ and E becomes able to detect illegitimately calculated $F_0(D_j) = \langle \{g^{kj^*(Q)}, \alpha_j\}, \{g^{tj^*(Q)}, \beta_j\}, \{g^{vj^*(Q)}, \gamma_j\} \rangle$ as the violation of relation $\alpha_j^{\beta j+\Lambda} = \gamma_j$.

About entities that are liable for inconsistent decryption results, verifier *E* identifies them by tracing inconsistent decryption results back to initial encryption forms individually. In detail, provided that $F_0(D_j)$ is inconsistent, firstly *E* asks M_1 in the decryption stage to show $F_1(D_j)$ from which it had calculated $F_0(D_j)$ and to prove correct calculation of $F_0(D_j)$. In the same way, *E* asks each M_q to show $F_q(D_j)$ from which it calculated $F_{q-1}(D_j)$ and to prove correct calculation of $F_{q-1}(D_j)$, and determines M_q that cannot show consistent pair { $F_q(D_j)$, $F_{q-1}(D_j)$ } is dishonest. *E* asks each M_q also in the encryption stage to show $E_{q-1}(D_j)$ from which it had calculated $E_q(D_j)$ and to prove correct calculation of $E_q(D_j)$. Then it determines M_q is dishonest when M_q cannot show consistent pair { $E_{q-1}(D_j)$, $E_q(D_j)$ }.

Here, *E* can verify the consistency of {F_q(D_j), F_{q-1}(D_j)}, i.e. consistency between { $g^{kj^*(Q)}, D_j g^{kj^*(Q)\cdot x^*(q)}$ } and { $g^{kj^*(Q)}, D_j g^{kj^*(Q)\cdot x^*(q)}$ } and { $g^{kj^*(Q)}, D_j g^{kj^*(Q)\cdot x^*(q)}$ } without knowing secret key x(q) by exploiting the scheme of Diffie and Hellman. Firstly, *E* generates secret integer Ψ , and calculates $g^{kj^*(Q)\cdot \Psi} = G_*$ and { $D_j g^{kj^*(Q)\cdot x^*(q)}/D_j g^{kj^*(Q)\cdot x^*(q-1)}$ } $\Psi = {g^{kj^*(Q)\cdot x(q)}}^{\Psi}$. After that it asks M_q to calculate $G_*^{x(q)}$ by showing G_* , and determines M_q is dishonest when $G_*^{x(q)}$ is not equal to { $D_j g^{kj^*(Q)\cdot x^*(q)}/D_j g^{kj^*(Q)\cdot x^*(q-1)}}^{\Psi}$.

Verification of $\{E_{q-1}(D_j), E_q(D_j)\}\$ is trivial, i.e. M_q can disclose integer $k_j(q)$, because its value is changed at every encryption different from secret key x(q). Also, although *E* must verify behaviors of mix-servers in the unknown number generation stage if mix-servers in the encryption and decryption stages are honest, these verifications are trivial. As same as in the encryption stage each M_q can disclose its secret integers $s_i(q)$ and $r_i(q)$.

Provided that a dishonest mix-server is not M_1 in the encryption stage or a mix-server in the unknown number generation stage, it is also straightforward to recalculate consistent final decryption result $F_0(D_j)$ without knowing corresponding entity V_j . But, when M_1 in the encryption stage or a mix-server in the unknown number generation stage is dishonest, entities other than V_j may know the

correspondence between V_j and D_j , i.e. $E_Q(D_j)$ was decrypted already and the above procedure for identifying dishonest mix-servers reaches $E_0(D_j)$ that was put by V_j . By the same reason, V_j cannot maintain D_j as its secret when it put D_j illegitimately. M_* removes these threats by making V_j anonymous. In addition about the latter threat, V_j itself is responsible for the disclosure of its secrets.

Finally, it must be noted that because y_* , $g^{a1+\dots+aN}$ and κ_1 , κ_2 , ---, κ_Q are publicly known, any entity can confirm correct behaviors of SVRM without communicating with mix-servers. Therefore, although Diffie and Hellman scheme that requires interactions between a verifier and mix-servers is necessary to identify dishonest mix-servers, actual efficiency of SVRM is not degraded. Usually mix-servers are honest, i.e. they cannot continue their businesses once their dishonesties are detected.

2.2. Anonymous Tag Based Credential

Provided that A is an authority that issues credentials and Z is a secret integer of entity V, anonymous tag based credential T(A, V, Z) enables V to show its eligibility to any entity E without revealing its identity. In addition, E can force V to calculate used seal $U^{Z}_{mod B}$ from given integer U by using integer Z in T(A, V, Z) honestly without knowing Z itself (B is a publicly known appropriate integer associated with T(A, V, Z), and notation mod B is omitted in the following). Then, E can use U^{Z} as an evidence that V had shown T(A, V, Z) to it. Here, actually V shows T(A, V, Z) to E in form T(A, V, Z)^W while generating secret integer W. Also, to maintain uniqueness of used seal U^{Z} , V calculates a set of values U_{1}^{Z} , U_{2}^{Z} , ---, U_{T}^{Z} from multiple integers U_{1} , U_{2}^{2} , ---, U_{T} .

In conclusion, together with used seal U^Z anonymous credential T(*A*, *V*, Z) satisfies unforgeability, soundness, anonymity, unlinkability, revocability and verifiability as below [13,15,16].

Unforgeability no one other than A can generate valid credentials,

Soundness entities that do not know Z in T(A, V, Z) cannot prove the ownership of T(A, V, Z) to other entity *E*. In addition, when *E* illegitimately accepts T(A, V, Z) shown by other entity V_* possibly while conspiring with it, *A* can detect that and identify liable entities,

Anonymity anyone except V cannot identify V from $T(A, V, Z)^{W}$ shown by V,

Unlinkability even if V shows T(A, V, Z) n-times in forms T(A, V, Z)^{W1}, T(A, V, Z)^{W2}, ---, T(A, V, Z)^{Wn} while generating different secret integers W₁, W₂, ---, W_n, no one except V can know links between them,

Revocability A can invalidate T(A, V, Z) without knowing secrets of honest entities, when its holder V behaved dishonestly while showing $T(A, V, Z)^W$ or when A reissued new credential to V as a replacement of T(A, V, Z), and

Verifiability anyone can verify the validity of T(A, V, Z), in other words, entities can verify the validity without knowing any secret of *A*.

3. Revised-SVRM

To adapt SVRM to e-voting systems this section modifies it to revised-SVRM. Provided that V_j and D_j in Figure 2 are a voter and its vote respectively, SVRM

cannot protect V_j from coercer *C*, who is forcing V_j to choose *C*'s designating candidate *S*. Namely, V_j must disclose integers b_j , c_j and pair $\langle \{g^{bj}, c_j y_*^{bj}\}, \{g^{cj}, (D_j y_*)^{cj}\} \rangle$ that it had put in the unknown number generation stage in Figure 2 when *C* requests. Then, *C* can know whether V_j actually had chosen *S* or not by examining the consistency between $\langle \{g^{bj}, c_j y_*^{bj}\}, \{g^{cj}, (D_j y_*)^{cj}\} \rangle$ and *S*. In the same way, *C* can confirm V_j 's choice also from $\{g^{aj}, D_j y_*^{aj}\}$ in $E_0(D_j)$.

3.1. Modified Unknown Number Generation Stage

To disable entities to force V_j to reveal attribute value D_j , revised-SVRM modifies the unknown number generation stage as shown in Figure 3. Here, as same as in Figure 2, although there is an exception information sent from mix-servers and each entity V_j is publicly disclosed also in revised-SVRM. The modified unknown number generation stage proceeds as follow.

Figure 3. Modified unknown random number generation stage

- 1. Each mix-server M_q in the unknown number generation stage generates its secret integers $s_j(q)$, $u_j(q)$ and $r_j(q)$.
- 2. Each entity V_j generates its secret integers δ_{j1} , δ_{j2} , δ_{j3} , calculates $\{g^{\delta j1}, y_*^{\delta j2}, (gy_*)^{\delta j3}\}$, and sends them to M_1 . At the same time V_j decomposes its attribute value D_j into a set of values $\{D_j(1), D_j(2), \dots, D_j(Q)\}$ so that product $D_j(1)D_j(2) \dots D_j(Q)$ becomes equal to D_j , and sends each $D_j(q)$ to M_q . Here as an exception V_j discloses $D_j(q)$ only to M_q . About $\delta_{j1}, \delta_{j2}, \delta_{j3}$, no one except V_i can know them from $g^{\delta j1}, v_*^{\delta j2}$. (gv*) $^{\delta j3}$.
- $\begin{array}{l} \text{discloses } D_{j}(q) \text{ only to } M_{q}. \text{ About } \delta_{j1}, \, \delta_{j2}, \, \delta_{j3}, \, \text{no one} \\ \text{except } V_{j} \text{ can know them from } g^{\delta j1}, \, y_{*}^{\delta j2}, \, (gy_{*})^{\delta j3}. \\ 3. \ M_{1} \text{ calculates pairs } \{g^{sj(1)}, \ D_{j}(1)y_{*}^{sj(1)}\} \text{ and } \{g^{uj(1)}, \\ r_{j}(1)y_{*}^{uj(1)}\} \text{ and triplet } \{g^{\delta j1\cdot sj(1)}, \, y_{*}^{\delta j2\cdot sj(1)}, \, (gy_{*})^{\delta j3\cdot sj(1)}\}, \\ \text{and sends them to } M_{2}. \end{array}$

- $\begin{array}{l} \label{eq:spinor} 4. \ M_q \ (q>1) \ that \ receives \ \{g^{sj^*(q-1)}, \ D_{j^*}(q-1)y_*^{sj^*(q-1)}\}, \\ \{g^{uj^*(q-1)}, \ r_{j^*}(q-1)y_*^{uj^*(q-1)}\} \ and \ \{g^{\delta j1\cdot sj^*(q-1)}, \ y_*^{\delta j2\cdot sj^*(q-1)}, \\ (gy_*)^{\delta j3\cdot sj^*(q-1)}\} \ from \ M_{q-1} \ calculates \ pairs \ \{g^{sj^*(q)}, \ D_{j^*(q)}y_*^{sj^*(q)}\}, \ \{g^{uj^*(q)}, \ r_{j^*}(q)y_*^{uj^*(q)}\} \ and \ triplet \\ \{g^{\delta j1\cdot sj^*(q)}, \ y_*^{\delta j2\cdot sj^*(q)}, \ (gy_*)^{\delta j3\cdot sj^*(q)}\}, \ and \ forwards \ them \\ to \ M_{q+1}. \ Where, \ s_{j^*(q)} = s_j(1) + \cdots + s_j(q), \ u_{j^*}(q) = u_j(1) + \cdots + u_j(q), \ D_{j^*}(q) = D_j(1) D_j(2) \cdots D_j(q), \ r_{j^*}(q) = r_j(1) r_j(2) \cdots r_j(q) \ and \ D_{j^*}(Q) = D_j(r_j, r_{j^*}(Q) = R_j. \end{array}$
- $\begin{array}{l} r_{j}(1)r_{j}(2) ---r_{j}(q) \mbox{ and } D_{j*}(Q) = D_{j}, r_{j*}(Q) = R_{j}. \\ 5. \mbox{ } M_{Q} \mbox{ that calculates pairs } \{g^{sj^{*}(Q)}, \mbox{ } D_{j}y^{*sj^{*}(Q)}\}, \ \{g^{uj^{*}(Q)}, \ R_{j}y^{*u^{*}(Q)}\} \mbox{ and triplet } \{g^{\delta j1 \cdot sj^{*}(Q)} = \mu_{j1}, \ y^{*\delta j2 \cdot sj^{*}(Q)} = \mu_{j2}, \ (gy_{*})^{\delta j3 \cdot sj^{*}(Q)} = \mu_{j3}\} \mbox{ in the previous step forwards the pairs to } V_{j} \mbox{ and } M_{1}. \ M_{Q} \mbox{ sends also } \{\mu_{j1}, \ \mu_{j2}, \ \mu_{j3}\} \mbox{ to } V_{j}. \end{array}$
- pairs to V_j and M₁. M_Q sends also { μ_{j1} , μ_{j2} , μ_{j3} } to V_j. 6. V_j which receives { $g^{sj^{*}(Q)}$, D_j $y^{*sj^{*}(Q)}$ }, { $g^{uj^{*}(Q)}$, R_j $y^{*uj^{*}(Q)}$ } and { μ_{j1} , μ_{j2} , μ_{j3} } confirms that { $g^{sj^{*}(Q)}$, D_j $y^{*sj^{*}(Q)}$ } is a correct encryption form of D_j, i.e. $g^{sj^{*}(Q)}$ and $y^{*sj^{*}(Q)}$ (= D_j $y^{*sj^{*}(Q)}/D_{j}$) in it are calculated as g and y* to the power of same unknown integer $s_{i^{*}}(Q)$.
- 7. If encryption form $\{g^{sj^{*}(Q)}, D_{j}y^{*j^{*}(Q)}\}$ is successfully verified, provided that Λ is a publicly known integer and $\underline{D}_{j}(q) = D_{j}(q)^{2}, \underline{D}_{j^{*}}(q) = (D_{j}(1)D_{j}(2) D_{j}(q))^{2}$ and $\underline{D}_{j} = D_{j}^{2}$, each M_{q} calculates $\{g^{uj^{*}(Q)}, D^{Dj^{*}(q)}\}$ $(R_{j}y^{*uj^{*}(Q)}, D^{Dj^{*}(q)})^{A \cdot Dj^{*}(q)}$, $(R_{j}y^{*uj^{*}(Q)}, D^{Dj^{*}(q)})^{A \cdot Dj^{*}(q)}$, from $\{g^{uj^{*}(Q)\cdot Dj^{*}(q-1)}, (R_{j}y^{*uj^{*}(Q)}, D^{Dj^{*}(q-1)})\}$ and $\{g^{uj^{*}(Q)\cdot \Delta \cdot Dj^{*}(q-1)}\}$ calculated by M_{q-1} to forward them to M_{q-1} .
- $\begin{array}{l} \text{to forward them to } M_{q+1}. \\ \text{8. } V_j \text{ calculates } \{g^{uj^*(Q)\cdot Dj\cdot(Dj+\Lambda)}\}, (R_j y_*^{uj^*(Q)})^{Dj\cdot(Dj+\Lambda)}\} \text{ from } \\ \{g^{uj^*(Q)\cdot \underline{D}j^*(Q)}, (R_j y_*^{uj^*(Q)})^{\underline{D}j^*(Q)}\} \text{ and } \{g^{uj^*(Q)\cdot\Lambda\cdot Dj^*(Q)}, (R_j y_*^{uj^*(Q)})^{\Lambda\cdot Dj^*(Q)}\} \text{ sent by } M_Q. \end{array}$
- 9. V_j verifies legitimate calculation of { $g^{uj^{*}(Q)\cdot Dj \cdot (Dj+\Lambda)}$, ($R_jy_*^{uj^{*}(Q)}$)^{$Dj \cdot (Dj+\Lambda)$}} and constructs initial encryption form $E_0^{*}(D_j) = \langle \{g^{sj^{*}(Q)}, D_jy_*^{sj^{*}(Q)}\}, \{g^{uj^{*}(Q)}, R_jy_*^{uj^{*}(Q)}\}, \{g^{uj^{*}(Q)}, Dj \cdot (Dj+\Lambda), (R_jy_*^{uj^{*}(Q)})^{Dj \cdot (Dj+\Lambda)}\} > to put in the encryption stage.$

Then, no one can know integer $u_{j*}(Q)$ or R_j unless all mix-servers conspire. Therefore, entities cannot calculate D_j from pair $\{g^{uj*(Q)}, g^{uj*(Q) \cdot D_j \cdot (D_j + \Lambda)}\}$ or $\{R_j y_*^{uj*(Q)}, (R_j y_*^{uj*(Q)})^{D_j \cdot (D_j + \Lambda)}\}$ even if they examine every possible value of D_j . In addition, each $D_j(q)$ sent to M_q is a secret of V_j and M_q , and as a result, V_j can conceal D_j even from entity *C* that is coercing it if erasable-state voting booths are available. Namely, at a time when *C* asks V_j to disclose D_j , V_j can convince *C* that any value *S* is consistent with $E_0^*(D_j)$. Here, an erasable-state voting booth is a one of which memory states are initialized after an entity in it exits. It also disables entities to record the information that they had received and generated in it. This means V_j does not need to reply with the correct value when it is asked about D_j by others.

Nevertheless both V_j and mix-servers can confirm that $E_0^*(D_j)$ finally generated by V_j is legitimate, i.e. V_j verifies them as below and components of $E_0^*(D_j)$ put by V_j were calculated by mix-servers themselves. Although V_j and M_q can construct inconsistent $E_0^*(D_j)$ if they conspire, this dishonesty can be disabled by making V_j anonymous, i.e. among attribute values of other anonymous entities M_q cannot identify V_j 's one.

About the verification of $\{g^{sj^{*}(Q)}, D_{j}y^{sj^{*}(Q)}\}$ at step 6, V_{j} can verify it by confirming relations $g^{sj^{*}(Q)\cdot\delta j1} = \mu_{j1}$, $y_{*}^{sj^{*}(Q)\cdot\delta j2} = \mu_{j2}$ and $(g^{sj^{*}(Q)}y_{*}^{sj^{*}(Q)})^{\delta j3} = \mu_{j3}$ through the scheme of Diffie and Hellman. Namely, because discrete logarithm problems are difficult to solve mix-servers that do not know δ_{j1}, δ_{j2} or δ_{j3} must calculate $g^{sj^{*}(Q)}$ and $y_{*}^{sj^{*}(Q)}$ by using same $s_{j^{*}}(Q)$ to satisfy the above relations. Verification of $\{g^{uj^{*}(Q)\cdot Dj \cdot (Dj+\Lambda)}, (R_{j}y_{*}^{uj^{*}(Q)})^{Dj \cdot (Dj+\Lambda)}\}$ at step 9

is easy; for V_j that knows D_j and Λ it is trivial to confirm that $g^{uj^*(Q)\cdot Dj\cdot (Dj+\Lambda)}$ and $(R_j {y_*}^{uj^*(Q)})^{Dj\cdot (Dj+\Lambda)}$ in it are calculated as $g^{uj^*(Q)}$ and $R_j {y_*}^{uj^*(Q)}$ to the power of $D_j(D_j+\Lambda)$, i.e. $\{g^{uj^*(Q)\cdot Dj\cdot (Dj+\Lambda)}, (R_j {y_*}^{uj^*(Q)})^{Dj\cdot (Dj+\Lambda)}\}$ is a consistent encryption form of R_j .

3.2. Encryption and Decryption Stages

 $\begin{array}{l} \mbox{Mix-servers in the encryption and decryption stages} \\ \mbox{behave in the same way as in Figure 1. Namely, each M_q in the encryption stage encrypts $E_{q-1}^{*}(D_j) = <{g^{kj*(q-1)}}, $D_jy_*^{kj*(q-1)}, $\{g^{vj*(q-1)}, R_jy_*^{vj*(q-1)}\}, $\{g^{vj*(q-1)}, R_j^{D_j\cdot(D_j+\Lambda)}y_*^{vj*(q)}\}, $\{g^{vj*(q-1)}, R_jy_*^{vj*(q)}\}, $\{g^{vj*(q-1)}, R_j^{D_j\cdot(D_j+\Lambda)}y_*^{vj*(q)}\}, $\{g^{vj*(q)}, R_jy_*^{vj*(q)}\}, $\{g^{vj*(q)}, R_j^{D_j\cdot(D_j+\Lambda)}y_*^{vj*(q)}\}, $\{g^{vj*(q)}, R_jy_*^{vj*(q)}\}, $\{g^{vj*(q)}, R_jg^{vj*(Q), x^{v}(q)}\}, $\{g^{vj*(Q)}, R_j^{g^{vj*(Q)}, x^{v}(q)}\}, $\{g^{vj*(Q)}, R_jg^{vj^{v}(Q), x^{v}(q)}\}, $\{g^{vj*(Q)}, R_j^{g^{vj*(Q)}, x^{v}(q)}\}, $\{g^{vj*(Q)}, R_jg^{vj^{v}(Q), x^{v}(q)}\}, $\{g^{vj*(Q)}, R_jg^{vj^{v}(Q), x^{v}(q)}\}, $\{g^{vj^{v}(Q)}, R_jg^{vj^{v}(Q), x^{v}(q)}\}, $\{g^{wj^{v}(Q)}, R_jg^{vj^{v}(Q), x^{v}(q)}, R_jg^{vj^{v}(Q), x^{v}($

3.3. Verifying Behaviors of Revised-SVRM

About illegitimate behaviors in the revised-SVRM, $R_j^{D_j \cdot (D_j + \Lambda)}$ in the 3rd term in $E_q^{*}(D_j)$ means that final decryption result $F_0^{*}(D_j) = <\{g^{k^*(Q)}, \alpha\}, \{g^{v^*(Q)}, \beta\}, \{g^{w^*(Q)}, \gamma\}>$ must satisfy relation $\gamma = \beta^{\alpha \cdot (\alpha + \Lambda)}$. By using this relation, although each encryption form $E_q^{*}(D_j)$ differs from $E_q(D_j)$, illegitimate behaviors of revised-SVRM can be detected and liable entities can be identified as same as in the original SVRM. But to verify behaviors in the decryption stage, M_q must disclose also $\sigma_q = s_1(q) + s_2(q) + \cdots + s_N(q)$ in addition to $\kappa_q = k_1(q) + k_2(q) + \cdots + k_N(q)$ because G_d in Sec. 3 is calculated as $y_*^{k1^*(Q) + \cdots + KN^*(Q)}$.

When compared with the original SVRM, identification of dishonest entities becomes simpler. Namely, because V_j and mix-servers in the unknown number generation stage had mutually confirmed their legitimate behaviors already, examination of behaviors in the unknown number generation stage is not necessary.

4. Revised-SVRM Based Voting Scheme

This section develops a voting scheme while exploiting revised-SVRM, anonymous tag based credentials and erasable-state voting booths. The scheme consists of voters V_1 , V_2 , ---, V_N , election authority *A* and mix-servers M_1 , M_2 , ---, M_Q in the encryption, decryption and unknown number generation stages. Elections proceed through the voter registration, voting, pre-tallying and tallying phases as below.

4.1 Voter Registration

Firstly, each voter V_j shows its identity to election authority *A* at an entrance of an election site. After that, *A* gives credential T(*A*, V_j , Z_j) to V_j if it is eligible, and in exchange for the credential V_j issues a receipt to *A*. Then, because A knows who is V_j , V_j cannot obtain multiple credentials. On the other hand, the receipt ensures that V_j certainly can obtain its credential, i.e. A must show the receipt issued by V_j to reject V_j 's request.

4.2. Voting

4.2.1. Entering a Voting Booth

Each voter V_j shows its credential $T(A, V_j, Z_j)$ to authority *A* and calculates used seal $U_0^{Z_j}$ of the credential from publicly known integer U_0 defined by *A*, and if $T(A, V_j, Z_j)$ is legitimate and $U_0^{Z_j}$ was not calculated before, V_j is allowed to enter its choosing voting booth. Then features of credentials and used seals allow only eligible voters to enter voting booths only once.

4.2.2. Vote Construction

In the voting booth, V_j constructs pair $E_0^{*}(D_j) = \langle \{g^{sj^{*}(Q)}, D_j y_*^{sj^{*}(Q)}\}, \{g^{uj^{*}(Q)}, R_j y_*^{uj^{*}(Q)}\}, \{g^{uj^{*}(Q)-Dj(Dj+A)}, (R_j y_*^{uj^{*}(Q)})^{Dj(Dj+A)}\} > and <math display="inline">E_0^{*}(D_j, \Omega) = \langle \{g^{sj^{*}(Q)}, \Gamma_j y_*^{sj^{*}(Q)}\}, \{g^{uj^{*}(Q)}, R_j y_*^{uj^{*}(Q)}\}, \{g^{uj^{*}(Q)-\Gamma_j \cdot (\Gamma_j + A)}, (R_j y_*^{uj^{*}(Q)})^{\Gamma_j \cdot (\Gamma_j + A)}\} > as an initial encryption form of its vote, and forwards it to mix-server <math display="inline">M_1$ in the encryption stage. Where, A is a publicly known constant integer, R_j is an integer no one knows and D_j represents a candidate V_j chooses. Also, provided that each $s_j(q), u_j(q), \underline{s}_j(q)$ and $\Omega(q)$ are M_q 's secret integers, $s_{j^*}(Q) = s_j(1) + \cdots + s_j(Q), u_j^{*}(Q) = u_j(1) + \cdots + u_j(Q), \underline{s}_{j^*}(Q) = \underline{s}_j(1) + \cdots + \underline{s}_j(Q), \Omega = \Omega(1)\Omega(2) \cdots \Omega(Q)$ and $\Gamma_j = D_j^{\Omega}$.

In detail, V_j decomposes D_j into $\{D_j(1), D_j(2), \dots, D_j(Q)\}$ so that $D_j = D_j(1)D_j(2) \dots D_j(Q)$ holds, and informs each mix-server M_q in the unknown number generation stage of $D_j(q)$. After that, jointly with the mix-servers V_j calculates $E_0^*(D_j)$ as in Sec. 3. About $E_0^*(D_j, \Omega)$, firstly each M_q generates its secret integer $\Omega(q)$ and calculates $D_j(q)^{\Omega(q)}$ to forward it to M_{q+1} . Then, M_q^* that receives $D_j(q)^{\Omega(q)\cdot\Omega(q+1)}$, and sends it to $M_{q^{*-1}}$ calculates $D_j(q)^{\Omega(q)\cdot\Omega(q+1)}$, and sends it to $M_{q^{*+1}}(M_1$ is regarded as M_{Q+1}). As a result, M_q receives $D_j(q)^{\Omega} = \Gamma_j(q)$ from $M_{q^{-1}}$, and V_j and mix-servers can calculate $E_0^*(D_j, \Omega)$ from values $\Gamma_j(1), \Gamma_j(2), \dots, \Gamma_j(Q)$ as they calculated $E_0^*(D_j)$.

In the above, it must be noted that no one knows the value of Ω because only M_q knows $\Omega(q)$. Also, V_j can verify legitimate calculation of each $\Gamma_j(q)$ through the scheme of Diffie and Hellman by asking mix-servers to calculate $D_j(q)^{\Phi \cdot \Omega}$ from $D_j(q)^{\Phi}$ (Φ is V_j 's secret integer).

4.2.3. Vote Approval

Before exiting the voting booth, V_j approves that pair $\{E_0^*(D_j), E_0^*(D_j, \Omega)\}$ put in the encryption stage is legitimate. Namely, after confirming that the pair disclosed by M_1 is correct, V_j calculates another used seal U_1^{Zj} of T(A, V_j , Z_j) from publicly known integer U_1 defined by A, and A discloses it publicly with U_0^{Zj} . Here, used seal U_1^{Zj} is V_j 's approval of pair $\{E_0^*(D_j), E_0^*(D_j, \Omega)\}$, i.e. V_j can replace it with new ones until it discloses U_1^{Zj} . On the other hand, because only V_j can calculate U_1^{Zj} , A can reject V_j 's requests about replacements of the pair after U_1^{Zj} is disclosed.

4.2.4. Vote Encryption

Once, $\{E_0^{*}(D_j), E_0^{*}(D_j, \Omega)\}$ is approved, mix-servers in the encryption stage encrypt it to $E_Q^{*}(D_j) = \langle g^{kj^*(Q)}, D_j y_*^{kj^*(Q)} \rangle$, $\{g^{vj^*(Q)}, R_j y_*^{vj^*(Q)} \rangle$, $\{g^{wj^*(Q)}, R_j D_j^{v}(D_j^{i+\Lambda}) y_*^{wj^*(Q)} \rangle$

 $\begin{array}{l} \text{and } E_Q^{\ *}(D_i,\ \Omega) = <\{g^{\underline{k}^{j*(Q)}},\ \Gamma_j y_*^{\underline{k}^{j*(Q)}}\},\ \{g^{\underline{v}^{j*(Q)}},\ R_j y_*^{\underline{v}^{j*(Q)}}\},\ \{g^{\underline{v}^{j*(Q)}},\ R_j y_*^{\underline{v}^{j*(Q)}}\},\ \{g^{\underline{v}^{j*(Q)}},\ R_j y_*^{\underline{v}^{j*(Q)}}\},\ g^{\underline{v}^{j*(Q)}}\} > \text{while shuffling their encryption} \\ \text{results. Where, provided that } k_j(q),\ v_j(q),\ w_j(q),\ \underline{k}_j(q),\ \underline{v}_j(q) \\ \text{and } \underline{w}_j(q) \ \text{are } M_q\text{'s secret integers, } k_{j*}(q) = s_{j*}(Q) + k_j(1) + \cdots \\ + k_j(q),\ v_{j*}(q) = u_{j*}(Q) + v_j(1) + \cdots + v_j(q),\ w_{j*}(q) = u_{j*}(Q) D_j(D_j + \Lambda) + w_j(1) + \cdots + w_j(q),\ \underline{k}_j(q) = \underline{s}_{j*}(Q) + \underline{k}_j(1) + \cdots \\ - + \underline{k}_j(q),\ v_{j*}(q) = u_{j*}(Q) + \underline{v}_j(1) + \cdots + \underline{v}_j(q) \ \text{and }\ \underline{w}_{j*}(q) = u_{j*}(Q) \Gamma_j(\Gamma_j + \Lambda) + \underline{w}_j(1) + \cdots + \underline{w}_j(q). \end{array}$

4.3. Pre-tallying

Votes encrypted in the voting phase are decrypted by mix-servers M_Q , M_{Q-1} , ---, M_1 in the decryption stage, but they decrypt only selected ones. The pre-tallying phase determines these votes. Namely, mix-servers in this phase decrypt only $E_Q^*(D_j, \Omega)$ in each pair $\{E_Q^*(D_j), E_Q^*(D_j, \Omega)\}$, and as a result only decryption form $F_0^*(D_j, \Omega) = \langle g^{kj*(Q)}, \Gamma_j = D_j^{\Omega} \}$, $\{g^{\underline{v}j^*(Q)}, R_j\}$, $\{g^{\underline{w}j^*(Q)}, R_j^{\Gamma_j(\Gamma_j+\Lambda)}\}$ is disclosed.

Then, election authority A compares disclosed D_1^{Ω} , D_2^{Ω} , ---, D_N^{Ω} , and determines $E_Q^*(D_h)$ that corresponds to $E_Q^*(D_h, \Omega_*(Q))$ is an inferior vote that will not be decrypted when value D_h^{Ω} appears less than the predefined number of times in set { D_1^{Ω} , D_2^{Ω} , ---, D_N^{Ω} }. Here, because no one knows integer Ω anyone cannot know D_j from D_j^{Ω} . Decryption of $E_Q^*(D_j, \Omega)$ itself is carried out totally in the same way as in Sec. 3.

4.4. Tallying

Because authority A can determine election winners without decrypting inferior votes, mix-servers in the tallying phase decrypt encryption form $E_Q^{*}(D_j)$ only when it corresponds to a non-inferior vote. As a result, voters can conceal correspondences between them and their votes from others even when they are forced to choose candidates unique to them.

As same as $E_Q^*(D_j, \Omega)$, decryption of $E_Q^*(D_j)$ is carried out as in Sec. 3. But mix-servers do not need to decrypt all non-inferior votes because $E_Q^*(D_j)$ and $E_Q^*(D_h)$ are decrypted to same value D_j if $E_Q^*(D_j, \Omega)$ and $E_Q^*(D_h, \Omega)$ were decrypted to D_j^{Ω} . Therefore, mix-servers decrypt only 1 encryption form $E_Q^*(D_j)$ from a set of encryption forms that are accompanied by same value D_j^{Ω} .

4.5. Detecting Dishonesties and Identifying Liable Entities

Revised-SVRM used in the developed e-voting scheme enables any entity to detect illegitimately handled votes efficiently as discussed in Sec. 3. It also enables election authority A to identify entities liable for dishonesties without revealing votes of honest voters.

In addition, in cases when mix-servers are determined dishonest, A can force them to correctly reprocess illegitimately handled votes. Namely, because voters and mix-servers in the unknown number generation stage had verified their behaviors mutually, initial encryption forms put in the encryption stage are ensured to be legitimate. Then, once all voters had approved initial encryption forms of their votes, A and mix-servers can reprocess illegitimately handled votes until their decryption results become consistent without reelections.

In the above, even if voter V_j and mix-server M_q in the unknown number generation stage conspire, they cannot put an inconsistent initial encryption form. The reason is

that V_j is anonymous and M_q cannot identify V_j 's vote. To handle V_j 's vote illegitimately M_q must take a risk that its dishonesty is revealed, i.e. V_h claims M_q is dishonest if M_q generates an initial encryption form of V_h 's vote inconsistently instead of V_j 's one. In the same way, V_j can protect itself from threats where conspiring mix-server M_1 and entity *C* that coerces V_j know V_j 's vote. In detail, when M_1 in the encryption stage encrypts initial encryption form $\{E_0^*(D_j), E_0^*(D_j, \Omega)\}$ of V_j inconsistently, the dishonest entity identification procedure reveals the correspondence between final decryption form $\{F_0^*(D_j),$ $F_0^*(D_j, \Omega)\}$ and $\{E_0^*(D_j), E_0^*(D_j, \Omega)\}$. But M_1 cannot identify $\{E_0^*(D_j), E_0^*(D_j, \Omega)\}$ because V_j is anonymous.

5. Features of the Developed Scheme

The e-voting scheme developed based on revised-SVRM satisfies all essential requirements of elections as follow.

Verifiability Anonymous credential ensures that only eligible entities can put votes, and used seals of credentials disable voters to put votes multiple times. About tallying, all votes put by voters and vote forms handled by mix-servers are publicly disclosed and revised-SVRM is verifiable. Then, anyone including third parties can verify the accuracy of elections.

Fairness No one can know the interim election results because the scheme does not disclose votes in their plain forms until the end of the pre-tallying phase. *Incoercibility* Voter V_j can conceal candidate D_j in $\{E_0^{*}(D_j), E_0^{*}(D_j, \Omega)\}$ from *C* that is coercing it, i.e. because D_j is encrypted by using unknown integers, V_j can declare that $\{E_0^{*}(D_j), E_0^{*}(D_j, \Omega)\}$ is an encryption form of any candidate *S*. Also, erasable-state voting booths disable *C* to obtain enough information from V_j to reconstruct D_j even if *C* is conspiring with several mix-servers. Because inferior votes are not decrypted, *C* cannot confirm whether V_j had chosen *C*'s designating candidate *S* or not even when *S* is unique to V_j.

Here because V_j is anonymous, as discussed at the end of Sec. 4.5, *C* cannot know the correspondence between initial encryption form $\{E_0^*(D_j), E_0^*(D_j, \Omega)\}$ and final decryption result $\{F_0^*(D_j), F_0^*(D_j, \Omega)\}$ even if it conspires with 1st mix-server M_1 in the encryption stage or mixservers in the unknown number generation stage. In detail, *A* in the voter registration phase gives credential $T(A, V_j,$ $Z_j)$ to V_j just before V_j enters a voting booth, therefore V_j cannot inform *C* or mix-servers of integer Z_j in $T(A, V_j, Z_j)$ so that they can identify V_j 's vote.

But it must be noted that *C* which is forcing V_j to abstain from the election can confirm whether V_j actually had abstained or not by asking V_j to recalculate the used seal V_j had calculated in the voter registration phase. This threat exists also in usual paper based elections, and currently an only way to remove this thereat is to introduce regulations that force all voters to visit election sites regardless that they choose valid candidates or not.

Even if election authority A gives 2 anonymous credentials T_{α} and T_{β} to V_j , C can know whether V_j actually had abstain or not. Namely, although V_j can visit an election site without revealing its identity by showing T_{β} (where V_j obtains T_{β} by showing T_{α} that it had obtained in advance while showing its identity), C can know V_j even from T_{β} if it asks V_j to disclose secrets in T_{β} .

Robustness Because initial encryption form $\{E_0^*(D_j), E_0^*(D_j, \Omega)\}$ of a vote put by voter V_j is verified by mixservers and V_j itself, V_j cannot claim that mix-servers had constructed it illegitimately. Therefore, once encrypted votes are successfully disclosed, revised-SVRM enables reprocessing of votes until final decryption forms are disclosed correctly without reelections.

6. Conclusion

Based on revised-SVRM an e-voting scheme that satisfies all essential requirements of elections was developed, i.e. it satisfies requirements about privacy, verifiability, fairness, incoercibility and robustness. But the scheme assumes state-erasable voting booths. Therefore as one of future works, efficient schemes for implementing state-erasable voting booths must be developed.

References

- Diffie and M. E. Hellman, "New directions in cryptography," *IEEE Trans. On Information Theory*, IT-22(6), 644-654, 1976.
- [2] D. Boneh and P. Golle, "Almost entirely correct mixing with applications to voting," ACM Conference on Computer and Communication Security, 68-77, 2002.
- [3] P. Golle, S. Zhong, D. Boneh, M. Jakobsson and A. Juels, "Optimistic mixing for exit-polls," *Asiacrypt 2002*, 451-465, 2002.
- [4] M. Jakobson, A. Juels and R. Rivest, "Making mix nets robust for electronic voting by randomized partial checking," USENIX Security '02, 339-353, 2002.
- [5] L. Nguen, R. Dafavi-Naini and K. Kurosawa, "Verifiable shuffles: A formal model and a Paillier-based efficient construction with provable security," *PKC 2004*, 61-75, 2004.
- [6] B. Lee, C. Boyd, E. Dawson, K. Kim, J. Yang and S. Yoo, "Providing receipt-freeness in mixnet-based voting protocols," *Proceedings of the ICISC '03*, 261-74, 2003.
- [7] J. Furukawa, "Efficient, Verifiable shuffle decryption and its requirement of unlinkability," *PKC 2004*, 319-332, 2004.
- [8] K. Sampigethaya and R. Poovendran, "A framework and taxonomy for comparison of electronic voting schemes," *Elsevier Computers and Security*, 25, 137-153, 2006.
- [9] S. Weber, "A coercion-resistant cryptographic voting protocol evaluation and prototype implementation," *Diploma thesis, Darmstadt University of Technology*; 2006
- [10] P. Y. A. Ryan, D. Bismark, J. Heather, S,Schneider and Z. Xia, "A voter verifiable voting system," *IEEE Trans. On Information Forensics and Security*, 4(4), 662-673, 2009.
- [11] K. A. Md Rokibul, S. Tamura, S. Taniguchi and T. Yanase, "An anonymous voting scheme based on confirmation numbers," *IEEJ Trans. EIS.* 130(11), 2065-2073, 2010.
- [12] C. C. Lee, T. Y. Chen, S. C. Lin and M. S. Hwang, "A new proxy electronic voting scheme based on proxy signatures," *Lecture Notes in Electrical Engineering*, 164, Part 1 3-12, 2012.
- [13] S. Tamura, "Anonymous security systems and applications: requirements and solutions," *Information Science Reference*, 2012.
- [14] S. Tamura and S. Taniguchi, "Simplified verifiable re-encryption mix-nets," *Information Security and Computer Fraud*, 1(1), 1-7, 2013.
- [15] S. Tamura and S. Taniguchi, "Enhancement of anonymous tag based credentials," *Information Security and Computer Fraud*, 2(1), 10-20, 2014.
- [16] S. Tamura, "Elements of schemes for preserving privacies in esociety systems," *Lambert Academic Publishing*, 2015.