
Information Security and Computer Fraud, 2015, Vol. 3, No. 2, 32-38
Available online at http://pubs.sciepub.com/iscf/3/2/2
© Science and Education Publishing
DOI:10.12691/iscf-3-2-2

An Incoercible E-Voting Scheme Based on Revised
Simplified Verifiable Re-encryption Mix-nets

Shinsuke Tamura1,*, Hazim A. Haddad1, Nazmul Islam2, Kazi Md. Rokibul Alam2

1Graduate School of Engineering, University of Fukui, Japan
2Department of Computer Science and Engineering, Khulna University of Engineering and Technology, Bangladesh

*Corresponding author: tamura@u-fukui.ac.jp

Abstract Simplified verifiable re-encryption mix-net (SVRM) is revised and a scheme for e-voting systems is
developed based on it. The developed scheme enables e-voting systems to satisfy all essential requirements of
elections. Namely, they satisfy requirements about privacy, verifiability, fairness and robustness. It also successfully
protects voters from coercers except cases where the coercers force voters to abstain from elections. In detail, voters
can conceal correspondences between them and their votes, anyone can verify the accuracy of election results, and
interim election results are concealed from any entity. About incoercibility, provided that erasable-state voting
booths which disable voters to memorize complete information exchanged between them and election authorities for
constructing votes are available, coercer C cannot know candidates that voters coerced by C had chosen even if the
candidates are unique to the voters. In addition, elections can be completed without reelections even when votes
were handled illegitimately.

Keywords: revised-SVRM, anonymous credential, inferior votes, erasable-state voting booth

Cite This Article: Shinsuke Tamura, Hazim A. Haddad, Nazmul Islam, and Kazi Md. Rokibul Alam, “An
Incoercible E-Voting Scheme Based on Revised Simplified Verifiable Re-encryption Mix-nets.” Information
Security and Computer Fraud, vol. 3, no. 2 (2015): 32-38. doi: 10.12691/iscf-3-2-2.

1. Introduction
E-voting systems are expected to make elections

efficient, accurate and economical, but when elections are
computerized, voters are faced with serious threats. For
example, simple computerization enables election
authorities to know correspondences between voters and
their votes. Also, entity C that is coercing voter V becomes
able to confirm whether V had chosen C’s designating
candidate or not. E-voting systems applicable to real
elections must satisfy the following requirements.

1. Privacy Correspondences between voters and their
votes must be concealed from others including
election authorities. It is preferable that voters can
conceal also their abstentions from others.

2. Verifiability Anyone including voters and third
parties must be able to verify the accuracy of
elections, i.e. e-voting schemes must be able to
convince anyone that only and all votes from eligible
voters had been counted.

3. Fairness Interim election results influence ways
voters choose candidates; therefore interim election
results must be concealed from anyone including
election authorities.

4. Incoercibility To disable entity C that is coercing
voter V to confirm that V actually had chosen C’s
designating candidate S, e-voting schemes must
disable even V itself to identify its vote in election
results. Here, C must be disabled to know whether V
had chosen S or not even if S is unique to V.

5. Robustness To conduct elections fairly even when
relevant entities behave dishonestly, voting schemes
must be able to complete elections without
reelections or any help of dishonest voters. Here if
helps from dishonest voters are required, the schemes
cannot complete the election when they disappear.

However, despite that many schemes had been
developed, they cannot satisfy all of the above
requirements completely [2,4,6,8,10,11,12]. For example,
although many schemes satisfy receipt freeness, if entity C
that is coercing voter V asks V to choose candidate S that
is unique to V, C can easily know whether V had actually
chosen S or not. Here, receipt freeness is the base of
incoercibility, i.e. it disables C to force V to show its
receipt that includes the candidate V had chosen.

This paper modifies simplified verifiable re-encryption
mix-net (SVRM) [14] to revised-SVRM, and develops an
e-voting scheme that satisfies all the above requirements
based on it together with anonymous tag based credentials
[13,15,16]. An anonymous credential enables voter V to
convince others that it is eligible without revealing its
identity, and provided that erasable-state voting booths are
available, the verifiable feature of revised-SVRM ensures
election authorities’ legitimate handling of votes while
concealing correspondences between voters and their
votes from entities including voters themselves. In
addition, the scheme regards votes for candidates that
could not obtain enough supports as inferior votes and
does not count them in the tallying phase [13]. Then,
entity C that is coercing V cannot confirm whether V had
chosen C’s designating candidate or not even when the

33 Information Security and Computer Fraud

candidate is unique to V. About fairness and robustness, it
is easy to satisfy them as same as in other schemes.

In the above, an erasable-state voting booth is a one that
disables voters to memorize complete information
exchanged between them and election authorities during
they are constructing their votes.

2. Security Components

2.1. Simplified Verifiable Re-encryption
Mix-net (SVRM)

Re-encryption mix-net M consists of multiple mutually
independent mix-servers M1, M2, ---, MQ and MQ, MQ-1, --
-, M1 that are arrayed in encryption and decryption stages
respectively as shown in Figure 1. Then, M enables
entities V1, V2, ---, VN that put their attribute values D1, D2,
---, DN in it to conceal correspondences between them and
D1, D2, ---, DN from others including mix-servers [2-7].

Figure 1. Re-encryption mix-net M

To conceal the above correspondences, firstly each Vj
encrypts its attribute value Dj to {gaj

mod p, Djy*
aj

mod p} while
using its secret integer aj, and M1, M2, ---, MQ in the
encryption stage repeatedly encrypt {gaj

mod p, Djy*
aj

mod p} to
{gkj*(Q)

mod p, Djy*
kj*(Q)

mod p} by using their secret integers
kj(1), kj(2), ---, kj(Q) to be decrypted in the decryption
stage. Here, provided that g and p are publicly known
appropriate integers (p is a prime number), {x(q), y(q) =
gx(q)

mod p} is mix-server Mq’s secret decryption and public
encryption key pair of an ElGamal encryption function,
and <x* = {x(1)+x(2)+ --- +x(Q)}mod p, y* = y(1)y(2)---
y(Q)mod p = gx*

mod p> is a common secret decryption and
public encryption key pair. Also, kj

*(q) = aj+kj(1)+kj(2)+ -
-- +kj(q), and in the remainder, notation mod p is omitted
when confusions can be avoided.

In detail, each Mq in the encryption stage calculates
{gkj*(q-1)gkj(q) = gkj*(q), Djy*

kj*(q-1)y*
kj(q) = Djy*

kj*(q)} from
{gkj*(q-1), Djy*

kj*(q-1)} received from Mq-1. After that Mq
shuffles its calculation results, and forwards them to Mq+1.
In the decryption stage, MQ, MQ-1, ---, M1 decrypt each
{gkj*(Q), Djy*

kj*(Q) = Djgkj*(Q)·x*} to {gkj*(Q), Dj}. Namely,
each Mq decrypts {gkj*(Q), Djgkj*(Q)·x*(q)} received from
Mq+1 to {gkj*(Q), Djgkj*(Q)·x*(q)/gkj*(Q)·x(q) = Djgkj*(Q)·x*(q-1)}} by
using its secret key x(q), and forwards it to Mq-1. Here x*(q)
= x(1)+x(2)+ --- +x(q).

Then, no one except Vj can know Vj’s attribute value Dj
unless all mix-servers conspire because any one cannot
know all integers kj(1), kj(2), ---, kj(Q) or all decryption
keys x(1), x(2), ---, x(Q). Entities other than Vj cannot
know integer aj either.

However, because integers k1(q), k2(q), ---, kN(q) and
decryption key x(q) are known only to Mq and Mq in the
encryption stage shuffles its encryption results, no one can
notice even when mix-servers encrypt or decrypt attribute
values dishonestly. SVRM M* shown in Figure 2 enables
any entity E to verify behaviors of mix-servers by
preparing the unknown number generation stage [14]. In
the following it is assumed that all information sent from
each entity Vj and mix-server Mq is publicly disclosed.

Figure 2. Simplified verifiable re-encryption mix-net M*

Firstly, provided that bj, cj are integers secrets of entity
Vj and rj(q) and sj(q) are integers secrets of each mix
server Mq, Vj calculates {gbj, cjy*

bj} and {gcj, (Djy*)cj}, and
forwards them to M1 in the unknown number generation
stage. After that each Mq calculates <{gsj*(q-1)gsj(q) = gsj*(q),
Rj(q-1)rj(q)y*

sj*(q-1)y*
sj(q) = Rj(q)y*

sj*(q)}, {gRj(q-1)·rj(q) = gRj(q),
(Djy*)Rj(q-1)·rj(q) = (Djy*)Rj(q)}> from <{gsj*(q-1), Rj(q-1)y*

sj*(q-

1)}, {gRj(q-1), (Djy*)Rj(q-1)}> calculated by Mq-1. As a result,
finally MQ calculates <{gsj*(Q), Rjy*

sj*(Q)}, {gRj, (Djy*)Rj}>
to forward it to Vj, and Vj constructs triplet E0(Dj) = <{gaj,
Djy*

aj}, {gsj*(Q), Rjy*
sj*(Q)}, {gRj, Dj

ΛDj
Rjy*

Rj = Dj
Rj+Λy*

Rj}>
to put in mix-net M*. Where, Λ is a publicly known
constant integer, sj

*(q) = bj+sj(1)+sj(2)+ --- +sj(q), Rj(q) =
cjrj(1)rj(2) --- rj(q) and Rj = Rj(Q).

About mix-servers M1, M2, ---, MQ in the encryption
stage, they repeatedly encrypt E0(Dj) to triplet EQ(Dj) =
<{gkj*(Q), Djy*

kj*(Q)}, {guj*(Q), Rjy*
uj*(Q)}, {gvj*(Q),

Dj
Rj+Λy*

vj*(Q)}> while shuffling its all encryption results as
same as in Figure 1, and MQ, MQ-1, ---, M1 in the decryption
stage decrypt it to F0(Dj) = <{gkj*(Q), Dj}, {guj*(Q), Rj},
{gvj*(Q), Dj

Rj+Λ}>. Namely, Mq in the encryption stage
calculates Eq(Dj) = <{gkj*(q), Djy*

kj*(q)}, {guj*(q), Rjy*
uj*(q)},

{gvj*(q), Dj
Rj+Λy*

vj*(q)}> from Eq-1(Dj) = <{gkj*(q-1), Djy*
kj*(q-

1)}, {guj*(q-1), Rjy*
uj*(q-1)}, {gvj*(q-1), Dj

Rj+Λy*
vj*(q-1)}>

calculated by Mq-1, and Mq in the decryption stage
calculates Fq-1(Dj) = <{gkj*(Q), Djgkj*(Q)·x*(q-1)}, {guj*(Q),
Rjguj*(Q)·x*(q-1)}, {gvj*(Q), Dj

Rj+Λgvj*(Q)·x*(q-1)}> from Fq(Dj) =
<{gkj*(Q), Djgkj*(Q)·x*(q)}, {guj*(Q), Rjguj*(Q)·x*(q)}, {gvj*(Q),
Dj

Rj+Λgvj*(Q)·x*(q)}> calculated by Mq+1. Where, uj(q) and

 Information Security and Computer Fraud 34

vj(q) are secret integers of Mq and uj
*(q) = sj

*(Q) +uj(1)
+uj(2)+ --- +uj(q) and vj

*(q) = Rj+vj(1)+vj(2)+ --- +vj(q).
Then, the final decryption results enable M* to convince

any verifier E of its legitimate encryptions, decryptions
and shuffling. Namely, because each attribute value Dj is
finally decrypted to F0(Dj) = <{gkj*(Q), Dj = αj}, {guj*(Q), Rj
= βj}, {gvj*(Q), Dj

Rj+Λ = γj}>, at least one mix-server is
dishonest when relation αj

βj+Λ = γj does not hold for some j.
However, each Mq that knows public encryption keys

y(1), y(2), ---, y(Q) can easily forge encryption and
decryption forms Eq(Dj) and Fq-1(Dj) so that their final
decryption result <{gkj*(Q), αj}, {guj*(Q), βj}, {gvj*(Q), γj}>
satisfies relation αj

βj+Λ = γj. M* removes this possibility as
below.

Firstly each Mq discloses κq = k1(q)+k2(q)+ --- +kN(q),
and verifier E convinces itself that the product of Eq(D1),
Eq(D2), ---, Eq(DN) calculated by Mq and that of Eq-1(D1),
Eq-1(D2), ---, Eq-1(DN) calculated by Mq-1 are consistent. In
detail, E examines relations Gk1(q) = gκqGk1(q-1) and
Gk2(q) = y*

κqGk2(q-1), and requests Mq to iterate the
encryption stage until the relations hold. Where {Gk1(q),
Gk2(q)} is a product pair {Gk1(q) = gk1*(q)gk2*(q) -- gkN*(q) =
gκ1+κ2+ --- +κq, Gk2(q) = D1y*

k1*(q)D2y*
k2*(q) --- DNy*

kN*(q) =
D1D2 --- DNy*

κ1+κ2+ --- +κq}. Therefore Gk1(q) = gκqGk1(q-1)
and Gk2(q) = y*

κqGk2(q-1) necessarily hold if Eq(D1),
Eq(D2), ---, Eq(DN) are correct. But if encryption from
Eq(Dj) is incorrect, because solving discrete logarithm
problems is difficult, Mq that does not know x* cannot find
value κq so that Gk1(q) = gκqGk1(q-1) and Gk2(q) =
y*

κqGk2(q-1) hold [3,4]. On the other hand, although Mq
discloses κq, it can maintain each kj(q) as its secret.

Here, actually Mq can find integer κq even if Eq(Dj) is
incorrect when Eq(Dj) is calculated in a specific way, but
in this case final decryption result <{gkj*(Q), αj}, {guj*(Q),
βj}, {gvj*(Q), γj}> does not satisfy relation αj

βj+Λ = γj. For
example, if Mq encrypts {gkj*(q-1), Djy*

kj*(q-1)} in Eq-1(Dj)
and {gkh*(q-1), Dhy*

kh*(q-1)} in Eq-1(Dh) to {gkj*(q), λDjy*
kj*(q)}

and {gkh*(q), (1/λ)Dhy*
kh*(q)} instead of {gkj*(q), Djy*

kj*(q)}
and {gkh*(q), Dhy*

kh*(q)} (λ is an arbitrarily integer), value κq
= k1(q)+k2(q)+ --- +kN(q) still satisfies Gk1(q) = gκqGk1(q-1)
and Gk2(q) = y*

κqGk2(q-1). However, Mq that does not
know Dj, Rj, Dh or Rh cannot calculate {guj*(q), βjy*

uj*(q)},
{gvj*(q), γjy*

vj*(q)} in Eq(Dj) or {guh*(q), βhy*
uh*(q)}, {gvh*(q),

γhy*
vh*(q)} in Eq(Dh) so that relations γi = (λDj)βj+Λ and γh =

(Dh/λ)βj+Λ hold.
Secondly to ensure legitimate behaviors of mix-servers

in the decryption stage, after M1 having decrypted all
attribute values, verifier E calculates products D1D2 --- DN
and y*

a1+a2+ --- +aN from {gk1*(Q), D1}, ---, {gkN*(Q), DN} in
final decryption results F0(D1), ---, F0(DN) and {ga1,
D1y*

a1}, ---, {gaN, DNy*
aN} in initial encryption forms

E0(D1), ---, E0(DN), where E can calculate y*
a1+a2+ --- +aN as

y*
a1+a2+ --- +aN = D1y*

a1D2y*
a2 --- DNy*

aN/(D1D2 --- DN). E
calculates also Gd from encryption forms EQ(D1), EQ(D2),
---, EQ(DN) as Gd = (D1y*

k1*(Q)D2y*
k2*(Q) ---

DNy*
kN*(Q))/(D1D2 --- DN).

Under these settings, E determines mix-servers in the
decryption stage are dishonest when relation Gd = y*

a1+a2+ --

- +aN+κ1+κ2+ --- +κQ does not hold. Namely, apparently Gd
must be equal to y*

a1+a2+ --- +aN+κ1+κ2+ --- +κQ if EQ(D1), ---,
EQ(DN) are correctly decrypted. On the other hand, it is
computationally infeasible to find different values that
satisfy relation Gd = y*

a1+a2+ --- +aN+κ1+κ2+ --- +κQ as the
decryption forms. In detail, although Mq can forge Fq-1(Dj)

while satisfying Gd = y*
a1+a2+ --- +aN+κ1+κ2+ --- +κQ as Mq in the

encryption stage calculates {gkj*(q), λDjy*
kj*(q)}, it cannot

make final decryption form <{gkj*(Q), αj}, {guj*(Q), βj},
{gvj*(Q), γj}> satisfy relation αj

βj+Λ = γj because each Mq
(q > 1) does not know value Dj at a time when it decrypts
Fq(Dj). Also, anyone can examine relation Gd = y*

a1+a2+ ---

+aN+κ1+κ2+ --- +κQ because y* and κ1, κ2, ---, κQ are publicly
known.

In the above, mix-server M1 in the decryption stage
which calculates final decryption forms can know D1, ---,
DN as an exception. But verifier E can detect dishonesties
easily if the liable mix-server is M1. Namely, when mix-
servers ML, ML-1, ---, M1 (L < Q) disclose their decryption
keys x(L), x(L-1), ---, x(1) after all attribute values were
decrypted, verification of M1’s behavior is trivial.
Nevertheless, correspondences between entities and their
attribute values can be concealed because x(L+1), x(L+2),
---, x(Q) are still secrets of ML+1, ML+2, ---, MQ.

Then, encryption and decryption forms Eq(D1), Eq(D2),
---, Eq(DN) and Fq-1(D1), Fq-1(D2), ---, Fq-1(DN) calculated
by Mq necessarily satisfy Gk1(q) = gκqGk1(q-1) and Gk2(q)
= y*

κqGk2(q-1) for each q and Gd = y*
a1+a2+ --- +aN+κ1+κ2+ --- +κQ,

and E becomes able to detect illegitimately calculated
F0(Dj) = <{gkj*(Q), αj}, {gtj*(Q), βj}, {gvj*(Q), γj}> as the
violation of relation αj

βj+Λ = γj.
About entities that are liable for inconsistent decryption

results, verifier E identifies them by tracing inconsistent
decryption results back to initial encryption forms
individually. In detail, provided that F0(Dj) is inconsistent,
firstly E asks M1 in the decryption stage to show F1(Dj)
from which it had calculated F0(Dj) and to prove correct
calculation of F0(Dj). In the same way, E asks each Mq to
show Fq(Dj) from which it calculated Fq-1(Dj) and to prove
correct calculation of Fq-1(Dj), and determines Mq that
cannot show consistent pair {Fq(Dj), Fq-1(Dj)} is dishonest.
E asks each Mq also in the encryption stage to show Eq-

1(Dj) from which it had calculated Eq(Dj) and to prove
correct calculation of Eq(Dj). Then it determines Mq is
dishonest when Mq cannot show consistent pair {Eq-1(Dj),
Eq(Dj)}.

Here, E can verify the consistency of {Fq(Dj), Fq-1(Dj)},
i.e. consistency between {gkj*(Q), Djgkj*(Q)·x*(q)} and {gkj*(Q),
Djgkj*(Q)·x*(q-1)} without knowing secret key x(q) by
exploiting the scheme of Diffie and Hellman. Firstly, E
generates secret integer Ψ, and calculates gkj*(Q)∙Ψ = G* and
{Djgkj*(Q)·x*(q)/Djgkj*(Q)·x*(q-1)}Ψ = {gkj*(Q)·x(q)}Ψ. After that it
asks Mq to calculate G*

x(q) by showing G*, and determines
Mq is dishonest when G*

x(q) is not equal to
{Djgkj*(Q)·x*(q)/Djgkj*(Q)·x*(q-1)}Ψ.

Verification of {Eq-1(Dj), Eq(Dj)} is trivial, i.e. Mq can
disclose integer kj(q), because its value is changed at
every encryption different from secret key x(q). Also,
although E must verify behaviors of mix-servers in the
unknown number generation stage if mix-servers in the
encryption and decryption stages are honest, these
verifications are trivial. As same as in the encryption stage
each Mq can disclose its secret integers sj(q) and rj(q).

Provided that a dishonest mix-server is not M1 in the
encryption stage or a mix-server in the unknown number
generation stage, it is also straightforward to recalculate
consistent final decryption result F0(Dj) without knowing
corresponding entity Vj. But, when M1 in the encryption
stage or a mix-server in the unknown number generation
stage is dishonest, entities other than Vj may know the

35 Information Security and Computer Fraud

correspondence between Vj and Dj, i.e. EQ(Dj) was
decrypted already and the above procedure for identifying
dishonest mix-servers reaches E0(Dj) that was put by Vj.
By the same reason, Vj cannot maintain Dj as its secret
when it put Dj illegitimately. M* removes these threats by
making Vj anonymous. In addition about the latter threat,
Vj itself is responsible for the disclosure of its secrets.

Finally, it must be noted that because y*, ga1+ --- +aN and
κ1, κ2, ---, κQ are publicly known, any entity can confirm
correct behaviors of SVRM without communicating with
mix-servers. Therefore, although Diffie and Hellman
scheme that requires interactions between a verifier and
mix-servers is necessary to identify dishonest mix-servers,
actual efficiency of SVRM is not degraded. Usually mix-
servers are honest, i.e. they cannot continue their
businesses once their dishonesties are detected.

2.2. Anonymous Tag Based Credential
Provided that A is an authority that issues credentials

and Z is a secret integer of entity V, anonymous tag based
credential T(A, V, Z) enables V to show its eligibility to
any entity E without revealing its identity. In addition, E
can force V to calculate used seal UZ

mod B from given
integer U by using integer Z in T(A, V, Z) honestly
without knowing Z itself (B is a publicly known
appropriate integer associated with T(A, V, Z), and
notation mod B is omitted in the following). Then, E can use
UZ as an evidence that V had shown T(A, V, Z) to it. Here,
actually V shows T(A, V, Z) to E in form T(A, V, Z)W
while generating secret integer W. Also, to maintain
uniqueness of used seal UZ, V calculates a set of values
U1

Z, U2
Z, ---, UT

Z from multiple integers U1, U2, ---, UT.
In conclusion, together with used seal UZ anonymous

credential T(A, V, Z) satisfies unforgeability, soundness,
anonymity, unlinkability, revocability and verifiability as
below [13,15,16].

Unforgeability no one other than A can generate valid
credentials,
Soundness entities that do not know Z in T(A, V, Z)
cannot prove the ownership of T(A, V, Z) to other entity
E. In addition, when E illegitimately accepts T(A, V, Z)
shown by other entity V* possibly while conspiring with
it, A can detect that and identify liable entities,
Anonymity anyone except V cannot identify V from
T(A, V, Z)W shown by V,
Unlinkability even if V shows T(A, V, Z) n-times in
forms T(A, V, Z)W1, T(A, V, Z)W2, ---, T(A, V, Z)Wn
while generating different secret integers W1, W2, ---,
Wn, no one except V can know links between them,
Revocability A can invalidate T(A, V, Z) without
knowing secrets of honest entities, when its holder V
behaved dishonestly while showing T(A, V, Z)W or
when A reissued new credential to V as a replacement
of T(A, V, Z), and
Verifiability anyone can verify the validity of T(A, V,
Z), in other words, entities can verify the validity
without knowing any secret of A.

3. Revised-SVRM
To adapt SVRM to e-voting systems this section

modifies it to revised-SVRM. Provided that Vj and Dj in
Figure 2 are a voter and its vote respectively, SVRM

cannot protect Vj from coercer C, who is forcing Vj to
choose C’s designating candidate S. Namely, Vj must
disclose integers bj, cj and pair <{gbj, cjy*

bj}, {gcj,
(Djy*)cj}> that it had put in the unknown number
generation stage in Figure 2 when C requests. Then, C can
know whether Vj actually had chosen S or not by
examining the consistency between <{gbj, cjy*

bj}, {gcj,
(Djy*)cj}> and S. In the same way, C can confirm Vj’s
choice also from {gaj, Djy*

aj} in E0(Dj).

3.1. Modified Unknown Number Generation
Stage

To disable entities to force Vj to reveal attribute value
Dj, revised-SVRM modifies the unknown number
generation stage as shown in Figure 3. Here, as same as in
Figure 2, although there is an exception information sent
from mix-servers and each entity Vj is publicly disclosed
also in revised-SVRM. The modified unknown number
generation stage proceeds as follow.

Figure 3. Modified unknown random number generation stage

1. Each mix-server Mq in the unknown number
generation stage generates its secret integers sj(q),
uj(q) and rj(q).

2. Each entity Vj generates its secret integers δj1, δj2, δj3,
calculates {gδj1, y*

δj2, (gy*)δj3}, and sends them to M1.
At the same time Vj decomposes its attribute value Dj
into a set of values {Dj(1), Dj(2), ---, Dj(Q)} so that
product Dj(1)Dj(2) --- Dj(Q) becomes equal to Dj,
and sends each Dj(q) to Mq. Here as an exception Vj
discloses Dj(q) only to Mq. About δj1, δj2, δj3, no one
except Vj can know them from gδj1, y*

δj2, (gy*)δj3.
3. M1 calculates pairs {gsj(1), Dj(1)y*

sj(1)} and {guj(1),
rj(1)y*

uj(1)} and triplet {gδj1∙sj(1), y*
δj2∙sj(1), (gy*)δj3∙sj(1)},

and sends them to M2.

 Information Security and Computer Fraud 36

4. Mq (q > 1) that receives {gsj*(q-1), Dj*(q-1)y*
sj*(q-1)},

{guj*(q-1), rj*(q-1)y*
uj*(q-1)} and {gδj1·sj*(q-1), y*

δj2·sj*(q-1),
(gy*)δj3·sj*(q-1)} from Mq-1 calculates pairs {gsj*(q),
Dj*(q)y*

sj*(q)}, {guj*(q), rj*(q)y*
uj*(q)} and triplet

{gδj1·sj*(q), y*
δj2·sj*(q), (gy*)δj3·sj*(q)}, and forwards them

to Mq+1. Where, sj*(q) = sj(1)+ --- +sj(q), uj*(q) =
uj(1)+ --- +uj(q), Dj*(q) = Dj(1)Dj(2) --- Dj(q), rj*(q) =
rj(1)rj(2) --- rj(q) and Dj*(Q) = Dj, rj*(Q) = Rj.

5. MQ that calculates pairs {gsj*(Q), Djy*
sj*(Q)}, {guj*(Q),

Rjy*
uj*(Q)} and triplet {gδj1·sj*(Q) = μj1, y*

δj2·sj*(Q) = μj2,
(gy*)δj3·sj*(Q) = μj3} in the previous step forwards the
pairs to Vj and M1. MQ sends also {μj1, μj2, μj3} to Vj.

6. Vj which receives {gsj*(Q), Djy*
sj*(Q)}, {guj*(Q), Rjy*

uj*(Q)}
and {μj1, μj2, μj3} confirms that {gsj*(Q), Djy*

sj*(Q)} is a
correct encryption form of Dj, i.e. gsj*(Q) and y*

sj*(Q) (=
Djy*

sj*(Q)/Dj) in it are calculated as g and y* to the
power of same unknown integer sj*(Q).

7. If encryption form {gsj*(Q), Djy*
sj*(Q)} is successfully

verified, provided that Λ is a publicly known integer
and Dj(q) = Dj(q)2, Dj*(q) = (Dj(1)Dj(2) --- Dj(q))2
and Dj = Dj

2, each Mq calculates {guj*(Q)·Dj*(q),
(Rjy*

uj*(Q))Dj*(q)} and {guj*(Q)·Λ∙Dj*(q), (Rjy*
uj*(Q))Λ∙Dj*(q)}

from {guj*(Q)·Dj*(q-1), (Rjy*
uj*(Q))Dj*(q-1)} and

{guj*(Q)·Λ∙Dj*(q-1), (Rjy*
uj*(Q))Λ∙Dj*(q-1)} calculated by Mq-1

to forward them to Mq+1.
8. Vj calculates {guj*(Q)·Dj∙(Dj+Λ)}, (Rjy*

uj*(Q))Dj∙(Dj+Λ)} from
{guj*(Q)·Dj*(Q), (Rjy*

uj*(Q))Dj*(Q)} and {guj*(Q)·Λ∙Dj*(Q),
(Rjy*

uj*(Q))Λ∙Dj*(Q)} sent by MQ.
9. Vj verifies legitimate calculation of {guj*(Q)·Dj∙(Dj+Λ),

(Rjy*
uj*(Q))Dj∙(Dj+Λ)} and constructs initial encryption

form E0
(Dj) = <{gsj(Q), Djy*

sj*(Q)}, {guj*(Q), Rjy*
uj*(Q)},

{guj*(Q)·Dj∙(Dj+Λ), (Rjy*
uj*(Q))Dj∙(Dj+Λ)}> to put in the

encryption stage.
Then, no one can know integer uj*(Q) or Rj unless all

mix-servers conspire. Therefore, entities cannot calculate
Dj from pair {guj*(Q), guj*(Q)·Dj∙(Dj+Λ)} or {Rjy*

uj*(Q),
(Rjy*

uj*(Q))Dj∙(Dj+Λ)} even if they examine every possible
value of Dj. In addition, each Dj(q) sent to Mq is a secret of
Vj and Mq, and as a result, Vj can conceal Dj even from
entity C that is coercing it if erasable-state voting booths
are available. Namely, at a time when C asks Vj to
disclose Dj, Vj can convince C that any value S is
consistent with E0

*(Dj). Here, an erasable-state voting
booth is a one of which memory states are initialized after
an entity in it exits. It also disables entities to record the
information that they had received and generated in it.
This means Vj does not need to reply with the correct
value when it is asked about Dj by others.

Nevertheless both Vj and mix-servers can confirm that
E0

*(Dj) finally generated by Vj is legitimate, i.e. Vj verifies
them as below and components of E0

*(Dj) put by Vj were
calculated by mix-servers themselves. Although Vj and
Mq can construct inconsistent E0

*(Dj) if they conspire, this
dishonesty can be disabled by making Vj anonymous, i.e.
among attribute values of other anonymous entities Mq
cannot identify Vj’s one.

About the verification of {gsj*(Q), Djy*
sj*(Q)} at step 6, Vj

can verify it by confirming relations gsj*(Q)·δj1 = μj1,
y*

sj*(Q)·δj2 = μj2 and (gsj*(Q)y*
sj*(Q))δj3 = μj3 through the

scheme of Diffie and Hellman. Namely, because discrete
logarithm problems are difficult to solve mix-servers that
do not know δj1, δj2 or δj3 must calculate gsj*(Q) and y*

sj*(Q)
by using same sj*(Q) to satisfy the above relations.
Verification of {guj*(Q)·Dj∙(Dj+Λ), (Rjy*

uj*(Q))Dj∙(Dj+Λ)} at step 9

is easy; for Vj that knows Dj and Λ it is trivial to confirm
that guj*(Q)·Dj∙(Dj+Λ) and (Rjy*

uj*(Q))Dj∙(Dj+Λ) in it are calculated
as guj*(Q) and Rjy*

uj*(Q) to the power of Dj(Dj+Λ), i.e.
{guj*(Q)·Dj∙(Dj+Λ), (Rjy*

uj*(Q))Dj∙(Dj+Λ)} is a consistent
encryption form of Rj

Dj∙(Dj+Λ).

3.2. Encryption and Decryption Stages
Mix-servers in the encryption and decryption stages

behave in the same way as in Figure 1. Namely, each Mq
in the encryption stage encrypts Eq-1

(Dj) = <{gkj(q-1),
Djy*

kj*(q-1)}, {gvj*(q-1), Rjy*
vj*(q-1)}, {gwj*(q-1), Rj

Dj∙(Dj+Λ)y*
wj*(q-

1)}> received from Mq-1 to Eq
(Dj) = <{gkj(q), Djy*

kj*(q)},
{gvj*(q), Rjy*

vj*(q)}, {gwj*(q), Rj
Dj∙(Dj+Λ)y*

wj*(q)}>. And Mq in
the decryption stage receives Fq

(Dj) = <{gkj(Q), Djgkj*(Q)·x*(q)},
{gvj*(Q), Rjgvj*(Q)·x*(q)}, {gwj*(Q), Rj

Dj∙(Dj+Λ)g*
wj*(q)·x*(q)}> from

Mq+1, and while using decryption key x(q) decrypts it to
Fq-1

(Dj) = <{gkj(Q), Djgkj*(Q)·x*(q-1)}, {gvj*(Q), Rjgvj*(Q)·x*(q-1)},
{gwj*(Q), Rj

Dj∙(Dj+Λ)g*
wj*(q)·x*(q-1)}>. Then, M1 finally decrypts

F1
*(Dj) to F0

(Dj) = <{gkj(Q), Dj}, {gvj*(Q), Rj}, {gwj*(Q),
Rj

Dj∙(Dj+Λ)}>, and convinces others that F0
*(Dj) is legitimate

by pair {Rj, Rj
Dj∙(Dj+Λ)}. Here, kj(q), vj(q) and wj(q) are

secret integers of Mq, kj*(q) = sj*(Q)+kj(1)+kj(2)+ ---
+kj(q), vj*(q) = uj*(Q)+vj(1)+vj(2)+ --- +vj(q), wj*(q) =
uj*(Q)Dj(Dj+Λ)+wj(1)+wj(2)+ --- +wj(q) and x*(q) =
x(1)+x(2)+ ---+x(q).

3.3. Verifying Behaviors of Revised-SVRM
About illegitimate behaviors in the revised-SVRM,

Rj
Dj∙(Dj+Λ) in the 3rd term in Eq

*(Dj) means that final
decryption result F0

(Dj) = <{gk(Q), α}, {gv*(Q), β}, {gw*(Q),
γ}> must satisfy relation γ = βα∙(α+Λ). By using this relation,
although each encryption form Eq

*(Dj) differs from Eq(Dj),
illegitimate behaviors of revised-SVRM can be detected
and liable entities can be identified as same as in the
original SVRM. But to verify behaviors in the decryption
stage, Mq must disclose also σq = s1(q)+s2(q)+ --- +sN(q) in
addition to κq = k1(q)+k2(q)+ --- +kN(q) because Gd in Sec.
3 is calculated as y*

k1*(Q)+ --- +KN*(Q).
When compared with the original SVRM, identification

of dishonest entities becomes simpler. Namely, because Vj
and mix-servers in the unknown number generation stage
had mutually confirmed their legitimate behaviors already,
examination of behaviors in the unknown number
generation stage is not necessary.

4. Revised-SVRM Based Voting Scheme
This section develops a voting scheme while exploiting

revised-SVRM, anonymous tag based credentials and
erasable-state voting booths. The scheme consists of
voters V1, V2, ---, VN, election authority A and mix-servers
M1, M2, ---, MQ in the encryption, decryption and
unknown number generation stages. Elections proceed
through the voter registration, voting, pre-tallying and
tallying phases as below.

4.1 Voter Registration
Firstly, each voter Vj shows its identity to election

authority A at an entrance of an election site. After that, A
gives credential T(A, Vj, Zj) to Vj if it is eligible, and in
exchange for the credential Vj issues a receipt to A.

37 Information Security and Computer Fraud

Then, because A knows who is Vj, Vj cannot obtain
multiple credentials. On the other hand, the receipt ensures
that Vj certainly can obtain its credential, i.e. A must show
the receipt issued by Vj to reject Vj’s request.

4.2. Voting

4.2.1. Entering a Voting Booth
Each voter Vj shows its credential T(A, Vj, Zj) to

authority A and calculates used seal U0
Zj of the credential

from publicly known integer U0 defined by A, and if T(A,
Vj, Zj) is legitimate and U0

Zj was not calculated before, Vj
is allowed to enter its choosing voting booth. Then
features of credentials and used seals allow only eligible
voters to enter voting booths only once.

4.2.2. Vote Construction
In the voting booth, Vj constructs pair E0

(Dj) = <{gsj(Q),
Djy*

sj*(Q)}, {guj*(Q), Rjy*
uj*(Q)}, {guj*(Q)·Dj∙(Dj+Λ), (Rjy*

uj*(Q))Dj∙(Dj+Λ)}>
and E0

(Dj, Ω) = <{gsj(Q), Γjy*
sj*(Q)}, {guj*(Q), Rjy*

uj*(Q)},
{guj*(Q)·Γj·(Γj+Λ), (Rjy*

uj*(Q))Γj·(Γj+Λ)}> as an initial encryption
form of its vote, and forwards it to mix-server M1 in the
encryption stage. Where, Λ is a publicly known constant
integer, Rj is an integer no one knows and Dj represents a
candidate Vj chooses. Also, provided that each sj(q), uj(q),
sj(q) and Ω(q) are Mq’s secret integers, sj*(Q) = sj(1)+ ---
+sj(Q), uj*(Q) = uj(1)+ --- +uj(Q), sj*(Q) = sj(1)+ --- +sj(Q),
Ω = Ω(1)Ω(2) --- Ω(Q) and Γj = Dj

Ω.
In detail, Vj decomposes Dj into {Dj(1), Dj(2), ---, Dj(Q)}

so that Dj = Dj(1)Dj(2) --- Dj(Q) holds, and informs each
mix-server Mq in the unknown number generation stage of
Dj(q). After that, jointly with the mix-servers Vj calculates
E0

*(Dj) as in Sec. 3. About E0
*(Dj, Ω), firstly each Mq

generates its secret integer Ω(q) and calculates Dj(q)Ω(q) to
forward it to Mq+1. Then, Mq* that receives Dj(q)Ω(q)·Ω(q+1) ---

Ω(q*-1) from Mq*-1 calculates Dj(q)Ω(q)·Ω(q+1) ---Ω(q*-1)·Ω(q*), and
sends it to Mq*+1 (M1 is regarded as MQ+1). As a result, Mq
receives Dj(q)Ω = Γj(q) from Mq-1, and Vj and mix-servers
can calculate E0

*(Dj, Ω) from values Γj(1), Γj(2), ---, Γj(Q)
as they calculated E0

*(Dj).
In the above, it must be noted that no one knows the

value of Ω because only Mq knows Ω(q). Also, Vj can
verify legitimate calculation of each Γj(q) through the
scheme of Diffie and Hellman by asking mix-servers to
calculate Dj(q)Φ·Ω from Dj(q)Φ (Φ is Vj’s secret integer).

4.2.3. Vote Approval
Before exiting the voting booth, Vj approves that pair

{E0
*(Dj), E0

*(Dj, Ω)} put in the encryption stage is
legitimate. Namely, after confirming that the pair
disclosed by M1 is correct, Vj calculates another used seal
U1

Zj of T(A, Vj, Zj) from publicly known integer U1
defined by A, and A discloses it publicly with U0

Zj. Here,
used seal U1

Zj is Vj’s approval of pair {E0
*(Dj), E0

*(Dj,
Ω)}, i.e. Vj can replace it with new ones until it discloses
U1

Zj. On the other hand, because only Vj can calculate U1
Zj,

A can reject Vj’s requests about replacements of the pair
after U1

Zj is disclosed.

4.2.4. Vote Encryption
Once, {E0

*(Dj), E0
*(Dj, Ω)} is approved, mix-servers in

the encryption stage encrypt it to EQ
(Dj) = <{gkj(Q),

Djy*
kj*(Q)}, {gvj*(Q), Rjy*

vj*(Q)}, {gwj*(Q), Rj
 Dj∙(Dj+Λ)y*

wj*(Q)}>

and EQ
(Dj, Ω) = <{gkj(Q), Γjy*

kj*(Q)}, {gvj*(Q), Rjy*
vj*(Q)},

{gwj*(Q), Rj
Γj·(Γj+Λ)y*

wj*(Q)}> while shuffling their encryption
results. Where, provided that kj(q), vj(q), wj(q), kj(q), vj(q)
and wj(q) are Mq’s secret integers, kj*(q) = sj*(Q)+kj(1)+ --
- +kj(q), vj*(q) = uj*(Q)+vj(1)+ --- +vj(q), wj*(q) =
uj*(Q)Dj(Dj+Λ)+wj(1)+ --- +wj(q), kj*(q) = sj*(Q)+kj(1)+ --
- +kj(q), vj*(q) = uj*(Q)+vj(1)+ --- +vj(q) and wj*(q) =
uj*(Q)Γj(Γj+Λ)+wj(1)+ --- +wj(q).

4.3. Pre-tallying
Votes encrypted in the voting phase are decrypted by

mix-servers MQ, MQ-1, ---, M1 in the decryption stage, but
they decrypt only selected ones. The pre-tallying phase
determines these votes. Namely, mix-servers in this phase
decrypt only EQ

*(Dj, Ω) in each pair {EQ
*(Dj), EQ

*(Dj, Ω)},
and as a result only decryption form F0

(Dj, Ω) = <{gkj(Q),
Γj = Dj

Ω}, {gvj*(Q), Rj}, {gwj*(Q), Rj
Γj·(Γj+Λ)}> is disclosed.

Then, election authority A compares disclosed D1
Ω, D2

Ω,
---, DN

Ω, and determines EQ
*(Dh) that corresponds to

EQ
(Dh, Ω(Q)) is an inferior vote that will not be

decrypted when value Dh
Ω appears less than the

predefined number of times in set {D1
Ω, D2

Ω, ---, DN
Ω}.

Here, because no one knows integer Ω anyone cannot
know Dj from Dj

·Ω. Decryption of EQ
*(Dj, Ω) itself is

carried out totally in the same way as in Sec. 3.

4.4. Tallying
Because authority A can determine election winners

without decrypting inferior votes, mix-servers in the
tallying phase decrypt encryption form EQ

*(Dj) only when
it corresponds to a non-inferior vote. As a result, voters
can conceal correspondences between them and their
votes from others even when they are forced to choose
candidates unique to them.

As same as EQ
*(Dj, Ω), decryption of EQ

*(Dj) is carried
out as in Sec. 3. But mix-servers do not need to decrypt all
non-inferior votes because EQ

*(Dj) and EQ
*(Dh) are

decrypted to same value Dj if EQ
*(Dj, Ω) and EQ

*(Dh, Ω)
were decrypted to Dj

Ω. Therefore, mix-servers decrypt
only 1 encryption form EQ

*(Dj) from a set of encryption
forms that are accompanied by same value Dj

Ω.

4.5. Detecting Dishonesties and Identifying
Liable Entities

Revised-SVRM used in the developed e-voting scheme
enables any entity to detect illegitimately handled votes
efficiently as discussed in Sec. 3. It also enables election
authority A to identify entities liable for dishonesties
without revealing votes of honest voters.

In addition, in cases when mix-servers are determined
dishonest, A can force them to correctly reprocess
illegitimately handled votes. Namely, because voters and
mix-servers in the unknown number generation stage had
verified their behaviors mutually, initial encryption forms
put in the encryption stage are ensured to be legitimate.
Then, once all voters had approved initial encryption
forms of their votes, A and mix-servers can reprocess
illegitimately handled votes until their decryption results
become consistent without reelections.

In the above, even if voter Vj and mix-server Mq in the
unknown number generation stage conspire, they cannot
put an inconsistent initial encryption form. The reason is

 Information Security and Computer Fraud 38

that Vj is anonymous and Mq cannot identify Vj’s vote. To
handle Vj’s vote illegitimately Mq must take a risk that its
dishonesty is revealed, i.e. Vh claims Mq is dishonest if Mq
generates an initial encryption form of Vh’s vote
inconsistently instead of Vj’s one. In the same way, Vj can
protect itself from threats where conspiring mix-server M1
and entity C that coerces Vj know Vj’s vote. In detail,
when M1 in the encryption stage encrypts initial
encryption form {E0

*(Dj), E0
*(Dj, Ω)} of Vj inconsistently,

the dishonest entity identification procedure reveals the
correspondence between final decryption form {F0

*(Dj),
F0

*(Dj, Ω)} and {E0
*(Dj), E0

*(Dj, Ω)}. But M1 cannot
identify {E0

*(Dj), E0
*(Dj, Ω)} because Vj is anonymous.

5. Features of the Developed Scheme
The e-voting scheme developed based on revised-SVRM

satisfies all essential requirements of elections as follow.
Privacy As discussed in Sec. 3 and 5, no one
except voter Vj itself can know candidate Dj that Vj had
chosen. But Vj that did not register itself cannot conceal
its abstention because voters register themselves by
showing their identities. To conceal its abstention from
others Vj must register itself and put an invalid vote or
leave the election site without entering a voting booth.
Verifiability Anonymous credential ensures that only
eligible entities can put votes, and used seals of
credentials disable voters to put votes multiple times.
About tallying, all votes put by voters and vote forms
handled by mix-servers are publicly disclosed and
revised-SVRM is verifiable. Then, anyone including
third parties can verify the accuracy of elections.
Fairness No one can know the interim election
results because the scheme does not disclose votes in
their plain forms until the end of the pre-tallying phase.
Incoercibility Voter Vj can conceal candidate Dj in
{E0

*(Dj), E0
*(Dj, Ω)} from C that is coercing it, i.e.

because Dj is encrypted by using unknown integers, Vj
can declare that {E0

*(Dj), E0
*(Dj, Ω)} is an encryption

form of any candidate S. Also, erasable-state voting
booths disable C to obtain enough information from Vj
to reconstruct Dj even if C is conspiring with several
mix-servers. Because inferior votes are not decrypted,
C cannot confirm whether Vj had chosen C’s designating
candidate S or not even when S is unique to Vj.
Here because Vj is anonymous, as discussed at the end

of Sec. 4.5, C cannot know the correspondence between
initial encryption form {E0

*(Dj), E0
*(Dj, Ω)} and final

decryption result {F0
*(Dj), F0

*(Dj, Ω)} even if it conspires
with 1st mix-server M1 in the encryption stage or mix-
servers in the unknown number generation stage. In detail,
A in the voter registration phase gives credential T(A, Vj,
Zj) to Vj just before Vj enters a voting booth, therefore Vj
cannot inform C or mix-servers of integer Zj in T(A, Vj, Zj)
so that they can identify Vj’s vote.

But it must be noted that C which is forcing Vj to
abstain from the election can confirm whether Vj actually
had abstained or not by asking Vj to recalculate the used
seal Vj had calculated in the voter registration phase. This
threat exists also in usual paper based elections, and
currently an only way to remove this thereat is to
introduce regulations that force all voters to visit election
sites regardless that they choose valid candidates or not.

Even if election authority A gives 2 anonymous
credentials Tα and Tβ to Vj, C can know whether Vj
actually had abstain or not. Namely, although Vj can visit
an election site without revealing its identity by showing
Tβ (where Vj obtains Tβ by showing Tα that it had obtained
in advance while showing its identity), C can know Vj
even from Tβ if it asks Vj to disclose secrets in Tβ.

Robustness Because initial encryption form {E0
*(Dj),

E0
*(Dj, Ω)} of a vote put by voter Vj is verified by mix-

servers and Vj itself, Vj cannot claim that mix-servers
had constructed it illegitimately. Therefore, once
encrypted votes are successfully disclosed, revised-
SVRM enables reprocessing of votes until final decryption
forms are disclosed correctly without reelections.

6. Conclusion
Based on revised-SVRM an e-voting scheme that

satisfies all essential requirements of elections was
developed, i.e. it satisfies requirements about privacy,
verifiability, fairness, incoercibility and robustness. But
the scheme assumes state-erasable voting booths. Therefore
as one of future works, efficient schemes for implementing
state-erasable voting booths must be developed.

References
[1] Diffie and M. E. Hellman, “New directions in cryptography,”

IEEE Trans. On Information Theory, IT-22(6), 644-654, 1976.
[2] D. Boneh and P. Golle, “Almost entirely correct mixing with

applications to voting,” ACM Conference on Computer and
Communication Security, 68-77, 2002.

[3] P. Golle, S. Zhong, D. Boneh, M. Jakobsson and A. Juels,
“Optimistic mixing for exit-polls,” Asiacrypt 2002, 451-465, 2002.

[4] M. Jakobson, A. Juels and R. Rivest, “Making mix nets robust for
electronic voting by randomized partial checking,” USENIX
Security ’02, 339-353, 2002.

[5] L. Nguen, R. Dafavi-Naini and K. Kurosawa, “Verifiable shuffles:
A formal model and a Paillier-based efficient construction with
provable security,” PKC 2004, 61-75, 2004.

[6] B. Lee, C. Boyd, E. Dawson, K. Kim, J. Yang and S. Yoo,
“Providing receipt-freeness in mixnet-based voting protocols,”
Proceedings of the ICISC ’03, 261-74, 2003.

[7] J. Furukawa, “Efficient, Verifiable shuffle decryption and its
requirement of unlinkability,” PKC 2004, 319-332, 2004.

[8] K. Sampigethaya and R. Poovendran, “A framework and
taxonomy for comparison of electronic voting schemes,” Elsevier
Computers and Security, 25, 137-153, 2006.

[9] S. Weber, “A coercion-resistant cryptographic voting protocol -
evaluation and prototype implementation,” Diploma thesis,
Darmstadt University of Technology; 2006

[10] P. Y. A. Ryan, D. Bismark, J. Heather, S,Schneider and Z. Xia, “A
voter verifiable voting system,” IEEE Trans. On Information
Forensics and Security, 4(4), 662-673, 2009.

[11] K. A. Md Rokibul, S. Tamura, S. Taniguchi and T. Yanase, “An
anonymous voting scheme based on confirmation numbers,” IEEJ
Trans. EIS. 130(11), 2065-2073, 2010.

[12] C. C. Lee, T. Y. Chen, S. C. Lin and M. S. Hwang, “A new proxy
electronic voting scheme based on proxy signatures,” Lecture
Notes in Electrical Engineering, 164, Part 1 3-12, 2012.

[13] S. Tamura, “Anonymous security systems and applications:
requirements and solutions,” Information Science Reference, 2012.

[14] S. Tamura and S. Taniguchi, “Simplified verifiable re-encryption
mix-nets,” Information Security and Computer Fraud, 1(1), 1-7,
2013.

[15] S. Tamura and S. Taniguchi, “Enhancement of anonymous tag
based credentials,” Information Security and Computer Fraud,
2(1), 10-20, 2014.

[16] S. Tamura, “Elements of schemes for preserving privacies in e-
society systems,” Lambert Academic Publishing, 2015.

