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Abstract  Simplified verifiable re-encryption mix-net (SVRM) is revised and a scheme for e-voting systems is 
developed based on it. The developed scheme enables e-voting systems to satisfy all essential requirements of 
elections. Namely, they satisfy requirements about privacy, verifiability, fairness and robustness. It also successfully 
protects voters from coercers except cases where the coercers force voters to abstain from elections. In detail, voters 
can conceal correspondences between them and their votes, anyone can verify the accuracy of election results, and 
interim election results are concealed from any entity. About incoercibility, provided that erasable-state voting 
booths which disable voters to memorize complete information exchanged between them and election authorities for 
constructing votes are available, coercer C cannot know candidates that voters coerced by C had chosen even if the 
candidates are unique to the voters. In addition, elections can be completed without reelections even when votes 
were handled illegitimately. 
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1. Introduction 
E-voting systems are expected to make elections 

efficient, accurate and economical, but when elections are 
computerized, voters are faced with serious threats. For 
example, simple computerization enables election 
authorities to know correspondences between voters and 
their votes. Also, entity C that is coercing voter V becomes 
able to confirm whether V had chosen C’s designating 
candidate or not. E-voting systems applicable to real 
elections must satisfy the following requirements. 

1. Privacy Correspondences between voters and their 
votes must be concealed from others including 
election authorities. It is preferable that voters can 
conceal also their abstentions from others.  

2. Verifiability Anyone including voters and third 
parties must be able to verify the accuracy of 
elections, i.e. e-voting schemes must be able to 
convince anyone that only and all votes from eligible 
voters had been counted. 

3. Fairness Interim election results influence ways 
voters choose candidates; therefore interim election 
results must be concealed from anyone including 
election authorities. 

4. Incoercibility To disable entity C that is coercing 
voter V to confirm that V actually had chosen C’s 
designating candidate S, e-voting schemes must 
disable even V itself to identify its vote in election 
results. Here, C must be disabled to know whether V 
had chosen S or not even if S is unique to V. 

5. Robustness To conduct elections fairly even when 
relevant entities behave dishonestly, voting schemes 
must be able to complete elections without 
reelections or any help of dishonest voters. Here if 
helps from dishonest voters are required, the schemes 
cannot complete the election when they disappear. 

However, despite that many schemes had been 
developed, they cannot satisfy all of the above 
requirements completely [2,4,6,8,10,11,12]. For example, 
although many schemes satisfy receipt freeness, if entity C 
that is coercing voter V asks V to choose candidate S that 
is unique to V, C can easily know whether V had actually 
chosen S or not. Here, receipt freeness is the base of 
incoercibility, i.e. it disables C to force V to show its 
receipt that includes the candidate V had chosen. 

This paper modifies simplified verifiable re-encryption 
mix-net (SVRM) [14] to revised-SVRM, and develops an 
e-voting scheme that satisfies all the above requirements 
based on it together with anonymous tag based credentials 
[13,15,16]. An anonymous credential enables voter V to 
convince others that it is eligible without revealing its 
identity, and provided that erasable-state voting booths are 
available, the verifiable feature of revised-SVRM ensures 
election authorities’ legitimate handling of votes while 
concealing correspondences between voters and their 
votes from entities including voters themselves. In 
addition, the scheme regards votes for candidates that 
could not obtain enough supports as inferior votes and 
does not count them in the tallying phase [13]. Then, 
entity C that is coercing V cannot confirm whether V had 
chosen C’s designating candidate or not even when the 
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candidate is unique to V. About fairness and robustness, it 
is easy to satisfy them as same as in other schemes. 

In the above, an erasable-state voting booth is a one that 
disables voters to memorize complete information 
exchanged between them and election authorities during 
they are constructing their votes.  

2. Security Components 

2.1. Simplified Verifiable Re-encryption  
Mix-net (SVRM) 

Re-encryption mix-net M consists of multiple mutually 
independent mix-servers M1, M2, ---, MQ and MQ, MQ-1, --
-, M1 that are arrayed in encryption and decryption stages 
respectively as shown in Figure 1. Then, M enables 
entities V1, V2, ---, VN that put their attribute values D1, D2, 
---, DN in it to conceal correspondences between them and 
D1, D2, ---, DN from others including mix-servers [2-7]. 

 

Figure 1. Re-encryption mix-net M 

To conceal the above correspondences, firstly each Vj 
encrypts its attribute value Dj to {gaj

mod p, Djy*
aj

mod p} while 
using its secret integer aj, and M1, M2, ---, MQ in the 
encryption stage repeatedly encrypt {gaj

mod p, Djy*
aj

mod p} to 
{gkj*(Q)

mod p, Djy*
kj*(Q)

mod p} by using their secret integers 
kj(1), kj(2), ---, kj(Q) to be decrypted in the decryption 
stage. Here, provided that g and p are publicly known 
appropriate integers (p is a prime number), {x(q), y(q) = 
gx(q)

mod p} is mix-server Mq’s secret decryption and public 
encryption key pair of an ElGamal encryption function, 
and <x* = {x(1)+x(2)+ --- +x(Q)}mod p, y* = y(1)y(2)---
y(Q)mod p = gx*

mod p> is a common secret decryption and 
public encryption key pair. Also, kj

*(q) = aj+kj(1)+kj(2)+ -
-- +kj(q), and in the remainder, notation mod p is omitted 
when confusions can be avoided.  

In detail, each Mq in the encryption stage calculates 
{gkj*(q-1)gkj(q) = gkj*(q), Djy*

kj*(q-1)y*
kj(q) = Djy*

kj*(q)} from 
{gkj*(q-1), Djy*

kj*(q-1)} received from Mq-1. After that Mq 
shuffles its calculation results, and forwards them to Mq+1. 
In the decryption stage, MQ, MQ-1, ---, M1 decrypt each 
{gkj*(Q), Djy*

kj*(Q) = Djgkj*(Q)·x*} to {gkj*(Q), Dj}. Namely, 
each Mq decrypts {gkj*(Q), Djgkj*(Q)·x*(q)} received from 
Mq+1 to {gkj*(Q), Djgkj*(Q)·x*(q)/gkj*(Q)·x(q) = Djgkj*(Q)·x*(q-1)}} by 
using its secret key x(q), and forwards it to Mq-1. Here x*(q) 
= x(1)+x(2)+ --- +x(q).  

Then, no one except Vj can know Vj’s attribute value Dj 
unless all mix-servers conspire because any one cannot 
know all integers kj(1), kj(2), ---, kj(Q) or all decryption 
keys x(1), x(2), ---, x(Q). Entities other than Vj cannot 
know integer aj either. 

However, because integers k1(q), k2(q), ---, kN(q) and 
decryption key x(q) are known only to Mq and Mq in the 
encryption stage shuffles its encryption results, no one can 
notice even when mix-servers encrypt or decrypt attribute 
values dishonestly. SVRM M* shown in Figure 2 enables 
any entity E to verify behaviors of mix-servers by 
preparing the unknown number generation stage [14]. In 
the following it is assumed that all information sent from 
each entity Vj and mix-server Mq is publicly disclosed.  

 

Figure 2. Simplified verifiable re-encryption mix-net M* 

Firstly, provided that bj, cj are integers secrets of entity 
Vj and rj(q) and sj(q) are integers secrets of each mix 
server Mq, Vj calculates {gbj, cjy*

bj} and {gcj, (Djy*)cj}, and 
forwards them to M1 in the unknown number generation 
stage. After that each Mq calculates <{gsj*(q-1)gsj(q) = gsj*(q), 
Rj(q-1)rj(q)y*

sj*(q-1)y*
sj(q) = Rj(q)y*

sj*(q)}, {gRj(q-1)·rj(q) = gRj(q), 
(Djy*)Rj(q-1)·rj(q) = (Djy*)Rj(q)}> from <{gsj*(q-1), Rj(q-1)y*

sj*(q-

1)}, {gRj(q-1), (Djy*)Rj(q-1)}> calculated by Mq-1. As a result, 
finally MQ calculates <{gsj*(Q), Rjy*

sj*(Q)}, {gRj, (Djy*)Rj}> 
to forward it to Vj, and Vj constructs triplet E0(Dj) = <{gaj, 
Djy*

aj}, {gsj*(Q), Rjy*
sj*(Q)}, {gRj, Dj

ΛDj
Rjy*

Rj = Dj
Rj+Λy*

Rj}> 
to put in mix-net M*. Where, Λ is a publicly known 
constant integer, sj

*(q) = bj+sj(1)+sj(2)+ --- +sj(q), Rj(q) = 
cjrj(1)rj(2) --- rj(q) and Rj = Rj(Q). 

About mix-servers M1, M2, ---, MQ in the encryption 
stage, they repeatedly encrypt E0(Dj) to triplet EQ(Dj) = 
<{gkj*(Q), Djy*

kj*(Q)}, {guj*(Q), Rjy*
uj*(Q)}, {gvj*(Q), 

Dj
Rj+Λy*

vj*(Q)}> while shuffling its all encryption results as 
same as in Figure 1, and MQ, MQ-1, ---, M1 in the decryption 
stage decrypt it to F0(Dj) = <{gkj*(Q), Dj}, {guj*(Q), Rj}, 
{gvj*(Q), Dj

Rj+Λ}>. Namely, Mq in the encryption stage 
calculates Eq(Dj) = <{gkj*(q), Djy*

kj*(q)}, {guj*(q), Rjy*
uj*(q)}, 

{gvj*(q), Dj
Rj+Λy*

vj*(q)}> from Eq-1(Dj) = <{gkj*(q-1), Djy*
kj*(q-

1)}, {guj*(q-1), Rjy*
uj*(q-1)}, {gvj*(q-1), Dj

Rj+Λy*
vj*(q-1)}> 

calculated by Mq-1, and Mq in the decryption stage 
calculates Fq-1(Dj) = <{gkj*(Q), Djgkj*(Q)·x*(q-1)}, {guj*(Q), 
Rjguj*(Q)·x*(q-1)}, {gvj*(Q), Dj

Rj+Λgvj*(Q)·x*(q-1)}> from Fq(Dj) = 
<{gkj*(Q), Djgkj*(Q)·x*(q)}, {guj*(Q), Rjguj*(Q)·x*(q)}, {gvj*(Q), 
Dj

Rj+Λgvj*(Q)·x*(q)}> calculated by Mq+1. Where, uj(q) and 
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vj(q) are secret integers of Mq and uj
*(q) = sj

*(Q) +uj(1) 
+uj(2)+ --- +uj(q) and vj

*(q) = Rj+vj(1)+vj(2)+ --- +vj(q).  
Then, the final decryption results enable M* to convince 

any verifier E of its legitimate encryptions, decryptions 
and shuffling. Namely, because each attribute value Dj is 
finally decrypted to F0(Dj) = <{gkj*(Q), Dj = αj}, {guj*(Q), Rj 
= βj}, {gvj*(Q), Dj

Rj+Λ = γj}>, at least one mix-server is 
dishonest when relation αj

βj+Λ = γj does not hold for some j. 
However, each Mq that knows public encryption keys 

y(1), y(2), ---, y(Q) can easily forge encryption and 
decryption forms Eq(Dj) and Fq-1(Dj) so that their final 
decryption result <{gkj*(Q), αj}, {guj*(Q), βj}, {gvj*(Q), γj}> 
satisfies relation αj

βj+Λ = γj. M* removes this possibility as 
below.  

Firstly each Mq discloses κq = k1(q)+k2(q)+ --- +kN(q), 
and verifier E convinces itself that the product of Eq(D1), 
Eq(D2), ---, Eq(DN) calculated by Mq and that of Eq-1(D1), 
Eq-1(D2), ---, Eq-1(DN) calculated by Mq-1 are consistent. In 
detail, E examines relations Gk1(q) = gκqGk1(q-1) and 
Gk2(q) = y*

κqGk2(q-1), and requests Mq to iterate the 
encryption stage until the relations hold. Where {Gk1(q), 
Gk2(q)} is a product pair {Gk1(q) = gk1*(q)gk2*(q) -- gkN*(q) = 
gκ1+κ2+ --- +κq, Gk2(q) = D1y*

k1*(q)D2y*
k2*(q) --- DNy*

kN*(q) = 
D1D2 --- DNy*

κ1+κ2+ --- +κq}. Therefore Gk1(q) = gκqGk1(q-1) 
and Gk2(q) = y*

κqGk2(q-1) necessarily hold if Eq(D1), 
Eq(D2), ---, Eq(DN) are correct. But if encryption from 
Eq(Dj) is incorrect, because solving discrete logarithm 
problems is difficult, Mq that does not know x* cannot find 
value κq so that Gk1(q) = gκqGk1(q-1) and Gk2(q) = 
y*

κqGk2(q-1) hold [3,4]. On the other hand, although Mq 
discloses κq, it can maintain each kj(q) as its secret.  

Here, actually Mq can find integer κq even if Eq(Dj) is 
incorrect when Eq(Dj) is calculated in a specific way, but 
in this case final decryption result <{gkj*(Q), αj}, {guj*(Q), 
βj}, {gvj*(Q), γj}> does not satisfy relation αj

βj+Λ = γj. For 
example, if Mq encrypts {gkj*(q-1), Djy*

kj*(q-1)} in Eq-1(Dj) 
and {gkh*(q-1), Dhy*

kh*(q-1)} in Eq-1(Dh) to {gkj*(q), λDjy*
kj*(q)} 

and {gkh*(q), (1/λ)Dhy*
kh*(q)} instead of {gkj*(q), Djy*

kj*(q)} 
and {gkh*(q), Dhy*

kh*(q)} (λ is an arbitrarily integer), value κq 
= k1(q)+k2(q)+ --- +kN(q) still satisfies Gk1(q) = gκqGk1(q-1) 
and Gk2(q) = y*

κqGk2(q-1). However, Mq that does not 
know Dj, Rj, Dh or Rh cannot calculate {guj*(q), βjy*

uj*(q)}, 
{gvj*(q), γjy*

vj*(q)} in Eq(Dj) or {guh*(q), βhy*
uh*(q)}, {gvh*(q), 

γhy*
vh*(q)} in Eq(Dh) so that relations γi = (λDj)βj+Λ and γh = 

(Dh/λ)βj+Λ hold.  
Secondly to ensure legitimate behaviors of mix-servers 

in the decryption stage, after M1 having decrypted all 
attribute values, verifier E calculates products D1D2 --- DN 
and y*

a1+a2+ --- +aN from {gk1*(Q), D1}, ---, {gkN*(Q), DN} in 
final decryption results F0(D1), ---, F0(DN) and {ga1, 
D1y*

a1}, ---, {gaN, DNy*
aN} in initial encryption forms 

E0(D1), ---, E0(DN), where E can calculate y*
a1+a2+ --- +aN as 

y*
a1+a2+ --- +aN = D1y*

a1D2y*
a2 --- DNy*

aN/(D1D2 --- DN). E 
calculates also Gd from encryption forms EQ(D1), EQ(D2), 
---, EQ(DN) as Gd = (D1y*

k1*(Q)D2y*
k2*(Q) --- 

DNy*
kN*(Q))/(D1D2 --- DN).  

Under these settings, E determines mix-servers in the 
decryption stage are dishonest when relation Gd = y*

a1+a2+ --

- +aN+κ1+κ2+ --- +κQ does not hold. Namely, apparently Gd 
must be equal to y*

a1+a2+ --- +aN+κ1+κ2+ --- +κQ if EQ(D1), ---, 
EQ(DN) are correctly decrypted. On the other hand, it is 
computationally infeasible to find different values that 
satisfy relation Gd = y*

a1+a2+ --- +aN+κ1+κ2+ --- +κQ as the 
decryption forms. In detail, although Mq can forge Fq-1(Dj) 

while satisfying Gd = y*
a1+a2+ --- +aN+κ1+κ2+ --- +κQ as Mq in the 

encryption stage calculates {gkj*(q), λDjy*
kj*(q)}, it cannot 

make final decryption form <{gkj*(Q), αj}, {guj*(Q), βj}, 
{gvj*(Q), γj}> satisfy relation αj

βj+Λ = γj because each Mq 
(q > 1) does not know value Dj at a time when it decrypts 
Fq(Dj). Also, anyone can examine relation Gd = y*

a1+a2+ --- 

+aN+κ1+κ2+ --- +κQ because y* and κ1, κ2, ---, κQ are publicly 
known.  

In the above, mix-server M1 in the decryption stage 
which calculates final decryption forms can know D1, ---, 
DN as an exception. But verifier E can detect dishonesties 
easily if the liable mix-server is M1. Namely, when mix-
servers ML, ML-1, ---, M1 (L < Q) disclose their decryption 
keys x(L), x(L-1), ---, x(1) after all attribute values were 
decrypted, verification of M1’s behavior is trivial. 
Nevertheless, correspondences between entities and their 
attribute values can be concealed because x(L+1), x(L+2), 
---, x(Q) are still secrets of ML+1, ML+2, ---, MQ.  

Then, encryption and decryption forms Eq(D1), Eq(D2), 
---, Eq(DN) and Fq-1(D1), Fq-1(D2), ---, Fq-1(DN) calculated 
by Mq necessarily satisfy Gk1(q) = gκqGk1(q-1) and Gk2(q) 
= y*

κqGk2(q-1) for each q and Gd = y*
a1+a2+ --- +aN+κ1+κ2+ --- +κQ, 

and E becomes able to detect illegitimately calculated 
F0(Dj) = <{gkj*(Q), αj}, {gtj*(Q), βj}, {gvj*(Q), γj}> as the 
violation of relation αj

βj+Λ = γj. 
About entities that are liable for inconsistent decryption 

results, verifier E identifies them by tracing inconsistent 
decryption results back to initial encryption forms 
individually. In detail, provided that F0(Dj) is inconsistent, 
firstly E asks M1 in the decryption stage to show F1(Dj) 
from which it had calculated F0(Dj) and to prove correct 
calculation of F0(Dj). In the same way, E asks each Mq to 
show Fq(Dj) from which it calculated Fq-1(Dj) and to prove 
correct calculation of Fq-1(Dj), and determines Mq that 
cannot show consistent pair {Fq(Dj), Fq-1(Dj)} is dishonest. 
E asks each Mq also in the encryption stage to show Eq-

1(Dj) from which it had calculated Eq(Dj) and to prove 
correct calculation of Eq(Dj). Then it determines Mq is 
dishonest when Mq cannot show consistent pair {Eq-1(Dj), 
Eq(Dj)}.  

Here, E can verify the consistency of {Fq(Dj), Fq-1(Dj)}, 
i.e. consistency between {gkj*(Q), Djgkj*(Q)·x*(q)} and {gkj*(Q), 
Djgkj*(Q)·x*(q-1)} without knowing secret key x(q) by 
exploiting the scheme of Diffie and Hellman. Firstly, E 
generates secret integer Ψ, and calculates gkj*(Q)∙Ψ = G* and 
{Djgkj*(Q)·x*(q)/Djgkj*(Q)·x*(q-1)}Ψ = {gkj*(Q)·x(q)}Ψ. After that it 
asks Mq to calculate G*

x(q) by showing G*, and determines 
Mq is dishonest when G*

x(q) is not equal to 
{Djgkj*(Q)·x*(q)/Djgkj*(Q)·x*(q-1)}Ψ.  

Verification of {Eq-1(Dj), Eq(Dj)} is trivial, i.e. Mq can 
disclose integer kj(q), because its value is changed at 
every encryption different from secret key x(q). Also, 
although E must verify behaviors of mix-servers in the 
unknown number generation stage if mix-servers in the 
encryption and decryption stages are honest, these 
verifications are trivial. As same as in the encryption stage 
each Mq can disclose its secret integers sj(q) and rj(q).  

Provided that a dishonest mix-server is not M1 in the 
encryption stage or a mix-server in the unknown number 
generation stage, it is also straightforward to recalculate 
consistent final decryption result F0(Dj) without knowing 
corresponding entity Vj. But, when M1 in the encryption 
stage or a mix-server in the unknown number generation 
stage is dishonest, entities other than Vj may know the 
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correspondence between Vj and Dj, i.e. EQ(Dj) was 
decrypted already and the above procedure for identifying 
dishonest mix-servers reaches E0(Dj) that was put by Vj. 
By the same reason, Vj cannot maintain Dj as its secret 
when it put Dj illegitimately. M* removes these threats by 
making Vj anonymous. In addition about the latter threat, 
Vj itself is responsible for the disclosure of its secrets. 

Finally, it must be noted that because y*, ga1+ --- +aN and 
κ1, κ2, ---, κQ are publicly known, any entity can confirm 
correct behaviors of SVRM without communicating with 
mix-servers. Therefore, although Diffie and Hellman 
scheme that requires interactions between a verifier and 
mix-servers is necessary to identify dishonest mix-servers, 
actual efficiency of SVRM is not degraded. Usually mix-
servers are honest, i.e. they cannot continue their 
businesses once their dishonesties are detected.  

2.2. Anonymous Tag Based Credential 
Provided that A is an authority that issues credentials 

and Z is a secret integer of entity V, anonymous tag based 
credential T(A, V, Z) enables V to show its eligibility to 
any entity E without revealing its identity. In addition, E 
can force V to calculate used seal UZ

mod B from given 
integer U by using integer Z in T(A, V, Z) honestly 
without knowing Z itself (B is a publicly known 
appropriate integer associated with T(A, V, Z), and 
notation mod B is omitted in the following). Then, E can use 
UZ as an evidence that V had shown T(A, V, Z) to it. Here, 
actually V shows T(A, V, Z) to E in form T(A, V, Z)W 
while generating secret integer W. Also, to maintain 
uniqueness of used seal UZ, V calculates a set of values 
U1

Z, U2
Z, ---, UT

Z from multiple integers U1, U2, ---, UT. 
In conclusion, together with used seal UZ anonymous 

credential T(A, V, Z) satisfies unforgeability, soundness, 
anonymity, unlinkability, revocability and verifiability as 
below [13,15,16].  

Unforgeability no one other than A can generate valid 
credentials, 
Soundness entities that do not know Z in T(A, V, Z) 
cannot prove the ownership of T(A, V, Z) to other entity 
E. In addition, when E illegitimately accepts T(A, V, Z) 
shown by other entity V* possibly while conspiring with 
it, A can detect that and identify liable entities,  
Anonymity anyone except V cannot identify V from 
T(A, V, Z)W shown by V,  
Unlinkability even if V shows T(A, V, Z) n-times in 
forms T(A, V, Z)W1, T(A, V, Z)W2, ---, T(A, V, Z)Wn 
while generating different secret integers W1, W2, ---, 
Wn, no one except V can know links between them,  
Revocability A can invalidate T(A, V, Z) without 
knowing secrets of honest entities, when its holder V 
behaved dishonestly while showing T(A, V, Z)W or 
when A reissued new credential to V as a replacement 
of T(A, V, Z), and  
Verifiability anyone can verify the validity of T(A, V, 
Z), in other words, entities can verify the validity 
without knowing any secret of A. 

3. Revised-SVRM 
To adapt SVRM to e-voting systems this section 

modifies it to revised-SVRM. Provided that Vj and Dj in 
Figure 2 are a voter and its vote respectively, SVRM 

cannot protect Vj from coercer C, who is forcing Vj to 
choose C’s designating candidate S. Namely, Vj must 
disclose integers bj, cj and pair <{gbj, cjy*

bj}, {gcj, 
(Djy*)cj}> that it had put in the unknown number 
generation stage in Figure 2 when C requests. Then, C can 
know whether Vj actually had chosen S or not by 
examining the consistency between <{gbj, cjy*

bj}, {gcj, 
(Djy*)cj}> and S. In the same way, C can confirm Vj’s 
choice also from {gaj, Djy*

aj} in E0(Dj).  

3.1. Modified Unknown Number Generation 
Stage 

To disable entities to force Vj to reveal attribute value 
Dj, revised-SVRM modifies the unknown number 
generation stage as shown in Figure 3. Here, as same as in 
Figure 2, although there is an exception information sent 
from mix-servers and each entity Vj is publicly disclosed 
also in revised-SVRM. The modified unknown number 
generation stage proceeds as follow. 

 

Figure 3. Modified unknown random number generation stage 

1. Each mix-server Mq in the unknown number 
generation stage generates its secret integers sj(q), 
uj(q) and rj(q).  

2. Each entity Vj generates its secret integers δj1, δj2, δj3, 
calculates {gδj1, y*

δj2, (gy*)δj3}, and sends them to M1. 
At the same time Vj decomposes its attribute value Dj 
into a set of values {Dj(1), Dj(2), ---, Dj(Q)} so that 
product Dj(1)Dj(2) --- Dj(Q) becomes equal to Dj, 
and sends each Dj(q) to Mq. Here as an exception Vj 
discloses Dj(q) only to Mq. About δj1, δj2, δj3, no one 
except Vj can know them from gδj1, y*

δj2, (gy*)δj3. 
3. M1 calculates pairs {gsj(1), Dj(1)y*

sj(1)} and {guj(1), 
rj(1)y*

uj(1)} and triplet {gδj1∙sj(1), y*
δj2∙sj(1), (gy*)δj3∙sj(1)}, 

and sends them to M2.  
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4. Mq (q > 1) that receives {gsj*(q-1), Dj*(q-1)y*
sj*(q-1)}, 

{guj*(q-1), rj*(q-1)y*
uj*(q-1)} and {gδj1·sj*(q-1), y*

δj2·sj*(q-1), 
(gy*)δj3·sj*(q-1)} from Mq-1 calculates pairs {gsj*(q), 
Dj*(q)y*

sj*(q)}, {guj*(q), rj*(q)y*
uj*(q)} and triplet 

{gδj1·sj*(q), y*
δj2·sj*(q), (gy*)δj3·sj*(q)}, and forwards them 

to Mq+1. Where, sj*(q) = sj(1)+ --- +sj(q), uj*(q) = 
uj(1)+ --- +uj(q), Dj*(q) = Dj(1)Dj(2) --- Dj(q), rj*(q) = 
rj(1)rj(2) --- rj(q) and Dj*(Q) = Dj, rj*(Q) = Rj. 

5. MQ that calculates pairs {gsj*(Q), Djy*
sj*(Q)}, {guj*(Q), 

Rjy*
uj*(Q)} and triplet {gδj1·sj*(Q) = μj1, y*

δj2·sj*(Q) = μj2, 
(gy*)δj3·sj*(Q) = μj3} in the previous step forwards the 
pairs to Vj and M1. MQ sends also {μj1, μj2, μj3} to Vj. 

6. Vj which receives {gsj*(Q), Djy*
sj*(Q)}, {guj*(Q), Rjy*

uj*(Q)} 
and {μj1, μj2, μj3} confirms that {gsj*(Q), Djy*

sj*(Q)} is a 
correct encryption form of Dj, i.e. gsj*(Q) and y*

sj*(Q) (= 
Djy*

sj*(Q)/Dj) in it are calculated as g and y* to the 
power of same unknown integer sj*(Q). 

7. If encryption form {gsj*(Q), Djy*
sj*(Q)} is successfully 

verified, provided that Λ is a publicly known integer 
and Dj(q) = Dj(q)2, Dj*(q) = (Dj(1)Dj(2) --- Dj(q))2 
and Dj = Dj

2, each Mq calculates {guj*(Q)·Dj*(q), 
(Rjy*

uj*(Q))Dj*(q)} and {guj*(Q)·Λ∙Dj*(q), (Rjy*
uj*(Q))Λ∙Dj*(q)} 

from {guj*(Q)·Dj*(q-1), (Rjy*
uj*(Q))Dj*(q-1)} and 

{guj*(Q)·Λ∙Dj*(q-1), (Rjy*
uj*(Q))Λ∙Dj*(q-1)} calculated by Mq-1 

to forward them to Mq+1.  
8. Vj calculates {guj*(Q)·Dj∙(Dj+Λ)}, (Rjy*

uj*(Q))Dj∙(Dj+Λ)} from 
{guj*(Q)·Dj*(Q), (Rjy*

uj*(Q))Dj*(Q)} and {guj*(Q)·Λ∙Dj*(Q), 
(Rjy*

uj*(Q))Λ∙Dj*(Q)} sent by MQ. 
9. Vj verifies legitimate calculation of {guj*(Q)·Dj∙(Dj+Λ), 

(Rjy*
uj*(Q))Dj∙(Dj+Λ)} and constructs initial encryption 

form E0
*(Dj) = <{gsj*(Q), Djy*

sj*(Q)}, {guj*(Q), Rjy*
uj*(Q)}, 

{guj*(Q)·Dj∙(Dj+Λ), (Rjy*
uj*(Q))Dj∙(Dj+Λ)}> to put in the 

encryption stage. 
Then, no one can know integer uj*(Q) or Rj unless all 

mix-servers conspire. Therefore, entities cannot calculate 
Dj from pair {guj*(Q), guj*(Q)·Dj∙(Dj+Λ)} or {Rjy*

uj*(Q), 
(Rjy*

uj*(Q))Dj∙(Dj+Λ)} even if they examine every possible 
value of Dj. In addition, each Dj(q) sent to Mq is a secret of 
Vj and Mq, and as a result, Vj can conceal Dj even from 
entity C that is coercing it if erasable-state voting booths 
are available. Namely, at a time when C asks Vj to 
disclose Dj, Vj can convince C that any value S is 
consistent with E0

*(Dj). Here, an erasable-state voting 
booth is a one of which memory states are initialized after 
an entity in it exits. It also disables entities to record the 
information that they had received and generated in it. 
This means Vj does not need to reply with the correct 
value when it is asked about Dj by others. 

Nevertheless both Vj and mix-servers can confirm that 
E0

*(Dj) finally generated by Vj is legitimate, i.e. Vj verifies 
them as below and components of E0

*(Dj) put by Vj were 
calculated by mix-servers themselves. Although Vj and 
Mq can construct inconsistent E0

*(Dj) if they conspire, this 
dishonesty can be disabled by making Vj anonymous, i.e. 
among attribute values of other anonymous entities Mq 
cannot identify Vj’s one.  

About the verification of {gsj*(Q), Djy*
sj*(Q)} at step 6, Vj 

can verify it by confirming relations gsj*(Q)·δj1 = μj1, 
y*

sj*(Q)·δj2 = μj2 and (gsj*(Q)y*
sj*(Q))δj3 = μj3 through the 

scheme of Diffie and Hellman. Namely, because discrete 
logarithm problems are difficult to solve mix-servers that 
do not know δj1, δj2 or δj3 must calculate gsj*(Q) and y*

sj*(Q) 
by using same sj*(Q) to satisfy the above relations. 
Verification of {guj*(Q)·Dj∙(Dj+Λ), (Rjy*

uj*(Q))Dj∙(Dj+Λ)} at step 9 

is easy; for Vj that knows Dj and Λ it is trivial to confirm 
that guj*(Q)·Dj∙(Dj+Λ) and (Rjy*

uj*(Q))Dj∙(Dj+Λ) in it are calculated 
as guj*(Q) and Rjy*

uj*(Q) to the power of Dj(Dj+Λ), i.e. 
{guj*(Q)·Dj∙(Dj+Λ), (Rjy*

uj*(Q))Dj∙(Dj+Λ)} is a consistent 
encryption form of Rj

Dj∙(Dj+Λ). 

3.2. Encryption and Decryption Stages 
Mix-servers in the encryption and decryption stages 

behave in the same way as in Figure 1. Namely, each Mq 
in the encryption stage encrypts Eq-1

*(Dj) = <{gkj*(q-1), 
Djy*

kj*(q-1)}, {gvj*(q-1), Rjy*
vj*(q-1)}, {gwj*(q-1), Rj

Dj∙(Dj+Λ)y*
wj*(q-

1)}> received from Mq-1 to Eq
*(Dj) = <{gkj*(q), Djy*

kj*(q)}, 
{gvj*(q), Rjy*

vj*(q)}, {gwj*(q), Rj
Dj∙(Dj+Λ)y*

wj*(q)}>. And Mq in 
the decryption stage receives Fq

*(Dj) = <{gkj*(Q), Djgkj*(Q)·x*(q)}, 
{gvj*(Q), Rjgvj*(Q)·x*(q)}, {gwj*(Q), Rj

Dj∙(Dj+Λ)g*
wj*(q)·x*(q)}> from 

Mq+1, and while using decryption key x(q) decrypts it to 
Fq-1

*(Dj) = <{gkj*(Q), Djgkj*(Q)·x*(q-1)}, {gvj*(Q), Rjgvj*(Q)·x*(q-1)}, 
{gwj*(Q), Rj

Dj∙(Dj+Λ)g*
wj*(q)·x*(q-1)}>. Then, M1 finally decrypts 

F1
*(Dj) to F0

*(Dj) = <{gkj*(Q), Dj}, {gvj*(Q), Rj}, {gwj*(Q), 
Rj

Dj∙(Dj+Λ)}>, and convinces others that F0
*(Dj) is legitimate 

by pair {Rj, Rj
Dj∙(Dj+Λ)}. Here, kj(q), vj(q) and wj(q) are 

secret integers of Mq, kj*(q) = sj*(Q)+kj(1)+kj(2)+ --- 
+kj(q), vj*(q) = uj*(Q)+vj(1)+vj(2)+ --- +vj(q), wj*(q) = 
uj*(Q)Dj(Dj+Λ)+wj(1)+wj(2)+ --- +wj(q) and x*(q) = 
x(1)+x(2)+ ---+x(q).  

3.3. Verifying Behaviors of Revised-SVRM  
About illegitimate behaviors in the revised-SVRM, 

Rj
Dj∙(Dj+Λ) in the 3rd term in Eq

*(Dj) means that final 
decryption result F0

*(Dj) = <{gk*(Q), α}, {gv*(Q), β}, {gw*(Q), 
γ}> must satisfy relation γ = βα∙(α+Λ). By using this relation, 
although each encryption form Eq

*(Dj) differs from Eq(Dj), 
illegitimate behaviors of revised-SVRM can be detected 
and liable entities can be identified as same as in the 
original SVRM. But to verify behaviors in the decryption 
stage, Mq must disclose also σq = s1(q)+s2(q)+ --- +sN(q) in 
addition to κq = k1(q)+k2(q)+ --- +kN(q) because Gd in Sec. 
3 is calculated as y*

k1*(Q)+ --- +KN*(Q).  
When compared with the original SVRM, identification 

of dishonest entities becomes simpler. Namely, because Vj 
and mix-servers in the unknown number generation stage 
had mutually confirmed their legitimate behaviors already, 
examination of behaviors in the unknown number 
generation stage is not necessary.  

4. Revised-SVRM Based Voting Scheme 
This section develops a voting scheme while exploiting 

revised-SVRM, anonymous tag based credentials and 
erasable-state voting booths. The scheme consists of 
voters V1, V2, ---, VN, election authority A and mix-servers 
M1, M2, ---, MQ in the encryption, decryption and 
unknown number generation stages. Elections proceed 
through the voter registration, voting, pre-tallying and 
tallying phases as below.  

4.1 Voter Registration 
Firstly, each voter Vj shows its identity to election 

authority A at an entrance of an election site. After that, A 
gives credential T(A, Vj, Zj) to Vj if it is eligible, and in 
exchange for the credential Vj issues a receipt to A.  
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Then, because A knows who is Vj, Vj cannot obtain 
multiple credentials. On the other hand, the receipt ensures 
that Vj certainly can obtain its credential, i.e. A must show 
the receipt issued by Vj to reject Vj’s request. 

4.2. Voting 

4.2.1. Entering a Voting Booth  
Each voter Vj shows its credential T(A, Vj, Zj) to 

authority A and calculates used seal U0
Zj of the credential 

from publicly known integer U0 defined by A, and if T(A, 
Vj, Zj) is legitimate and U0

Zj was not calculated before, Vj 
is allowed to enter its choosing voting booth. Then 
features of credentials and used seals allow only eligible 
voters to enter voting booths only once. 

4.2.2. Vote Construction 
In the voting booth, Vj constructs pair E0

*(Dj) = <{gsj*(Q), 
Djy*

sj*(Q)}, {guj*(Q), Rjy*
uj*(Q)}, {guj*(Q)·Dj∙(Dj+Λ), (Rjy*

uj*(Q))Dj∙(Dj+Λ)}> 
and E0

*(Dj, Ω) = <{gsj*(Q), Γjy*
sj*(Q)}, {guj*(Q), Rjy*

uj*(Q)}, 
{guj*(Q)·Γj·(Γj+Λ), (Rjy*

uj*(Q))Γj·(Γj+Λ)}> as an initial encryption 
form of its vote, and forwards it to mix-server M1 in the 
encryption stage. Where, Λ is a publicly known constant 
integer, Rj is an integer no one knows and Dj represents a 
candidate Vj chooses. Also, provided that each sj(q), uj(q), 
sj(q) and Ω(q) are Mq’s secret integers, sj*(Q) = sj(1)+ --- 
+sj(Q), uj*(Q) = uj(1)+ --- +uj(Q), sj*(Q) = sj(1)+ --- +sj(Q), 
Ω = Ω(1)Ω(2) --- Ω(Q) and Γj = Dj

Ω. 
In detail, Vj decomposes Dj into {Dj(1), Dj(2), ---, Dj(Q)} 

so that Dj = Dj(1)Dj(2) --- Dj(Q) holds, and informs each 
mix-server Mq in the unknown number generation stage of 
Dj(q). After that, jointly with the mix-servers Vj calculates 
E0

*(Dj) as in Sec. 3. About E0
*(Dj, Ω), firstly each Mq 

generates its secret integer Ω(q) and calculates Dj(q)Ω(q) to 
forward it to Mq+1. Then, Mq* that receives Dj(q)Ω(q)·Ω(q+1) ---

Ω(q*-1) from Mq*-1 calculates Dj(q)Ω(q)·Ω(q+1) ---Ω(q*-1)·Ω(q*), and 
sends it to Mq*+1 (M1 is regarded as MQ+1). As a result, Mq 
receives Dj(q)Ω = Γj(q) from Mq-1, and Vj and mix-servers 
can calculate E0

*(Dj, Ω) from values Γj(1), Γj(2), ---, Γj(Q) 
as they calculated E0

*(Dj).  
In the above, it must be noted that no one knows the 

value of Ω because only Mq knows Ω(q). Also, Vj can 
verify legitimate calculation of each Γj(q) through the 
scheme of Diffie and Hellman by asking mix-servers to 
calculate Dj(q)Φ·Ω from Dj(q)Φ (Φ is Vj’s secret integer).  

4.2.3. Vote Approval 
Before exiting the voting booth, Vj approves that pair 

{E0
*(Dj), E0

*(Dj, Ω)} put in the encryption stage is 
legitimate. Namely, after confirming that the pair 
disclosed by M1 is correct, Vj calculates another used seal 
U1

Zj of T(A, Vj, Zj) from publicly known integer U1 
defined by A, and A discloses it publicly with U0

Zj. Here, 
used seal U1

Zj is Vj’s approval of pair {E0
*(Dj), E0

*(Dj, 
Ω)}, i.e. Vj can replace it with new ones until it discloses 
U1

Zj. On the other hand, because only Vj can calculate U1
Zj, 

A can reject Vj’s requests about replacements of the pair 
after U1

Zj is disclosed.  

4.2.4. Vote Encryption 
Once, {E0

*(Dj), E0
*(Dj, Ω)} is approved, mix-servers in 

the encryption stage encrypt it to EQ
*(Dj) = <{gkj*(Q), 

Djy*
kj*(Q)}, {gvj*(Q), Rjy*

vj*(Q)}, {gwj*(Q), Rj
 Dj∙(Dj+Λ)y*

wj*(Q)}> 

and EQ
*(Dj, Ω) = <{gkj*(Q), Γjy*

kj*(Q)}, {gvj*(Q), Rjy*
vj*(Q)}, 

{gwj*(Q), Rj
Γj·(Γj+Λ)y*

wj*(Q)}> while shuffling their encryption 
results. Where, provided that kj(q), vj(q), wj(q), kj(q), vj(q) 
and wj(q) are Mq’s secret integers, kj*(q) = sj*(Q)+kj(1)+ --
- +kj(q), vj*(q) = uj*(Q)+vj(1)+ --- +vj(q), wj*(q) = 
uj*(Q)Dj(Dj+Λ)+wj(1)+ --- +wj(q), kj*(q) = sj*(Q)+kj(1)+ --
- +kj(q), vj*(q) = uj*(Q)+vj(1)+ --- +vj(q) and wj*(q) = 
uj*(Q)Γj(Γj+Λ)+wj(1)+ --- +wj(q).  

4.3. Pre-tallying 
Votes encrypted in the voting phase are decrypted by 

mix-servers MQ, MQ-1, ---, M1 in the decryption stage, but 
they decrypt only selected ones. The pre-tallying phase 
determines these votes. Namely, mix-servers in this phase 
decrypt only EQ

*(Dj, Ω) in each pair {EQ
*(Dj), EQ

*(Dj, Ω)}, 
and as a result only decryption form F0

*(Dj, Ω) = <{gkj*(Q), 
Γj = Dj

Ω}, {gvj*(Q), Rj}, {gwj*(Q), Rj
Γj·(Γj+Λ)}> is disclosed. 

Then, election authority A compares disclosed D1
Ω, D2

Ω, 
---, DN

Ω, and determines EQ
*(Dh) that corresponds to 

EQ
*(Dh, Ω*(Q)) is an inferior vote that will not be 

decrypted when value Dh
Ω appears less than the 

predefined number of times in set {D1
Ω, D2

Ω, ---, DN
Ω}. 

Here, because no one knows integer Ω anyone cannot 
know Dj from Dj

·Ω. Decryption of EQ
*(Dj, Ω) itself is 

carried out totally in the same way as in Sec. 3.  

4.4. Tallying 
Because authority A can determine election winners 

without decrypting inferior votes, mix-servers in the 
tallying phase decrypt encryption form EQ

*(Dj) only when 
it corresponds to a non-inferior vote. As a result, voters 
can conceal correspondences between them and their 
votes from others even when they are forced to choose 
candidates unique to them.  

As same as EQ
*(Dj, Ω), decryption of EQ

*(Dj) is carried 
out as in Sec. 3. But mix-servers do not need to decrypt all 
non-inferior votes because EQ

*(Dj) and EQ
*(Dh) are 

decrypted to same value Dj if EQ
*(Dj, Ω) and EQ

*(Dh, Ω) 
were decrypted to Dj

Ω. Therefore, mix-servers decrypt 
only 1 encryption form EQ

*(Dj) from a set of encryption 
forms that are accompanied by same value Dj

Ω.  

4.5. Detecting Dishonesties and Identifying 
Liable Entities 

Revised-SVRM used in the developed e-voting scheme 
enables any entity to detect illegitimately handled votes 
efficiently as discussed in Sec. 3. It also enables election 
authority A to identify entities liable for dishonesties 
without revealing votes of honest voters.  

In addition, in cases when mix-servers are determined 
dishonest, A can force them to correctly reprocess 
illegitimately handled votes. Namely, because voters and 
mix-servers in the unknown number generation stage had 
verified their behaviors mutually, initial encryption forms 
put in the encryption stage are ensured to be legitimate. 
Then, once all voters had approved initial encryption 
forms of their votes, A and mix-servers can reprocess 
illegitimately handled votes until their decryption results 
become consistent without reelections.  

In the above, even if voter Vj and mix-server Mq in the 
unknown number generation stage conspire, they cannot 
put an inconsistent initial encryption form. The reason is 
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that Vj is anonymous and Mq cannot identify Vj’s vote. To 
handle Vj’s vote illegitimately Mq must take a risk that its 
dishonesty is revealed, i.e. Vh claims Mq is dishonest if Mq 
generates an initial encryption form of Vh’s vote 
inconsistently instead of Vj’s one. In the same way, Vj can 
protect itself from threats where conspiring mix-server M1 
and entity C that coerces Vj know Vj’s vote. In detail, 
when M1 in the encryption stage encrypts initial 
encryption form {E0

*(Dj), E0
*(Dj, Ω)} of Vj inconsistently, 

the dishonest entity identification procedure reveals the 
correspondence between final decryption form {F0

*(Dj), 
F0

*(Dj, Ω)} and {E0
*(Dj), E0

*(Dj, Ω)}. But M1 cannot 
identify {E0

*(Dj), E0
*(Dj, Ω)} because Vj is anonymous.  

5. Features of the Developed Scheme 
The e-voting scheme developed based on revised-SVRM 

satisfies all essential requirements of elections as follow. 
Privacy As discussed in Sec. 3 and 5, no one 
except voter Vj itself can know candidate Dj that Vj had 
chosen. But Vj that did not register itself cannot conceal 
its abstention because voters register themselves by 
showing their identities. To conceal its abstention from 
others Vj must register itself and put an invalid vote or 
leave the election site without entering a voting booth.  
Verifiability Anonymous credential ensures that only 
eligible entities can put votes, and used seals of 
credentials disable voters to put votes multiple times. 
About tallying, all votes put by voters and vote forms 
handled by mix-servers are publicly disclosed and 
revised-SVRM is verifiable. Then, anyone including 
third parties can verify the accuracy of elections. 
Fairness No one can know the interim election 
results because the scheme does not disclose votes in 
their plain forms until the end of the pre-tallying phase. 
Incoercibility Voter Vj can conceal candidate Dj in 
{E0

*(Dj), E0
*(Dj, Ω)} from C that is coercing it, i.e. 

because Dj is encrypted by using unknown integers, Vj 
can declare that {E0

*(Dj), E0
*(Dj, Ω)} is an encryption 

form of any candidate S. Also, erasable-state voting 
booths disable C to obtain enough information from Vj 
to reconstruct Dj even if C is conspiring with several 
mix-servers. Because inferior votes are not decrypted, 
C cannot confirm whether Vj had chosen C’s designating 
candidate S or not even when S is unique to Vj.  
Here because Vj is anonymous, as discussed at the end 

of Sec. 4.5, C cannot know the correspondence between 
initial encryption form {E0

*(Dj), E0
*(Dj, Ω)} and final 

decryption result {F0
*(Dj), F0

*(Dj, Ω)} even if it conspires 
with 1st mix-server M1 in the encryption stage or mix-
servers in the unknown number generation stage. In detail, 
A in the voter registration phase gives credential T(A, Vj, 
Zj) to Vj just before Vj enters a voting booth, therefore Vj 
cannot inform C or mix-servers of integer Zj in T(A, Vj, Zj) 
so that they can identify Vj’s vote.  

But it must be noted that C which is forcing Vj to 
abstain from the election can confirm whether Vj actually 
had abstained or not by asking Vj to recalculate the used 
seal Vj had calculated in the voter registration phase. This 
threat exists also in usual paper based elections, and 
currently an only way to remove this thereat is to 
introduce regulations that force all voters to visit election 
sites regardless that they choose valid candidates or not. 

Even if election authority A gives 2 anonymous 
credentials Tα and Tβ to Vj, C can know whether Vj 
actually had abstain or not. Namely, although Vj can visit 
an election site without revealing its identity by showing 
Tβ (where Vj obtains Tβ by showing Tα that it had obtained 
in advance while showing its identity), C can know Vj 
even from Tβ if it asks Vj to disclose secrets in Tβ.  

Robustness Because initial encryption form {E0
*(Dj), 

E0
*(Dj, Ω)} of a vote put by voter Vj is verified by mix-

servers and Vj itself, Vj cannot claim that mix-servers 
had constructed it illegitimately. Therefore, once 
encrypted votes are successfully disclosed, revised-
SVRM enables reprocessing of votes until final decryption 
forms are disclosed correctly without reelections. 

6. Conclusion 
Based on revised-SVRM an e-voting scheme that 

satisfies all essential requirements of elections was 
developed, i.e. it satisfies requirements about privacy, 
verifiability, fairness, incoercibility and robustness. But 
the scheme assumes state-erasable voting booths. Therefore 
as one of future works, efficient schemes for implementing 
state-erasable voting booths must be developed. 
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