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Abstract—Evaluating the perceptual quality of video is of
tremendous importance in the design and optimization of wireless
video processing and transmission systems. In an endeavor to em-
ulate human perception of quality, various objective video quality
assessment (VQA) algorithms have been developed. However,
the only subjective video quality database that exists on which
these algorithms can be tested is dated and does not accurately
reflect distortions introduced by present generation encoders
and/or wireless channels. In order to evaluate the performance
of VQA algorithms for the specific task of H.264 advanced video
coding compressed video transmission over wireless networks,
we conducted a subjective study involving 160 distorted videos.
Various leading full reference VQA algorithms were tested for
their correlation with human perception. The data from the paper
has been made available to the research community, so that
further research on new VQA algorithms and on the general
area of VQA may be carried out.

Index Terms—H.264 compression, image processing, quality
assessment, subjective quality assessment, video quality, wireless.

I. Introduction

W ITH AN INCREASING demand for entertainment
and with the ever-improving technology to fuel this

demand, the pervasiveness of digital video in everyday life
cannot be debated. From entertainment on the move—hand-
held phones spewing out videos—to entertainment at home,
digital videos are everywhere. Moreover, wireless systems
are rapidly replacing present-day wire-line systems, and new-
generation encoders with tremendously improved compression
efficiency are being standardized. In such an environment,
a digital video passes through numerous processing stages
before it finally reaches the end-user. The original video
sequence at the transmitter end is passed through an encoder
which compresses and restructures the video sequence, which
is then passed over a channel. At the receiver end, a decoder
decompresses the sequence into a format visible to the end-
user. Throughout this process distortions are introduced in the
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video stream which can produce visually annoying artifacts at
the end-user. The encoder, the channel, the decoder, and the
display can introduce distortions in the video sequence. En-
coder errors may include blocking artifacts, blurring, discrete
cosine transform, basis image effect, color bleeding, ringing,
and so on [2] due to restrictions on bit-rate and errors in
the motion estimation process. The channel, being inherently
noisy, can corrupt the video in many ways.

Given that the ultimate receivers of wireless videos are usu-
ally human observers, human subjective opinion is the ultimate
arbiter of video quality. Thus, evaluation of the perceived
quality of degraded video requires selecting a large-enough
sample of the human populace and asking each of them to rate
the quality of the video on some scale. The value of this score
pooled across the human subjects constitutes a score which is
representative of the perceived quality of that video. Such an
estimation of quality is known as a subjective assessment and
studies of this type are time-consuming and cumbersome. Al-
ternatively, one may design algorithms that seek to predict the
quality of distorted videos in agreement with human subjec-
tivity. Indeed, in the recent past, a variety of effective indices
that accurately predict the perceptual quality of images [3] and
videos [4]–[8] have been developed. Algorithmic assessment
of quality is referred to as objective quality assessment.

Evaluation of the effectiveness of objective quality indices
for accurately emulating human perception of quality is impor-
tant, as these algorithms may be used in significant and widely
deployed commercial applications. In [9], an extensive subjec-
tive quality evaluation of the leading still image quality assess-
ment indices was performed, and their suitability for predicting
perceived visual quality was evaluated. Two algorithms—the
multiscale structural similarity index (MS-SSIM) [10] and
visual information fidelity (VIF) [11] index were demonstrated
to correlate significantly higher with human perception than
other algorithms. The only publicly available video database
containing subjective and objective quality evaluation is the
Video Quality Experts Group (VQEG) FRTV Phase I [12],
where ten leading video quality assessment (VQA) algorithms
were compared and their correlation with human opinion
studied. It was found that all the metrics were statistically
indistinguishable from peak signal-to-noise ratio (PSNR) [12].

The video database from the VQEG is dated—the report
was published in 2000, and was made specifically for TV and
hence contains interlaced videos. The presence of interlaced
videos complicates the prediction of quality, since the de-
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Fig. 1. Histogram (normalized) of differential mean opinion scores from the
entire VQEG dataset [12]. Notice how the distribution of scores is highly
skewed demonstrating poor perceptual separation.

interlacing algorithm can introduce further distortion before
computation of algorithm scores. Further, the VQEG paper
included distortions only from old generation encoders such
as the H.263 [13] and MPEG-2 [14], which exhibit different
error patterns compared with present generation encoders like
the H.264 advanced video coding/MPEG-4 Part 10 (referred to
as H.264 henceforth) [15]. Finally, the VQEG Phase I database
of distorted videos suffers from problems with poor percep-
tual separation. Both humans and algorithms have difficulty
in producing consistent judgments that distinguish many of
the videos, lowering the correlations between humans and
algorithms and the statistical confidence of the results. For
example, in Fig. 1, we plot a histogram of all subjective scores
from the VQEG Phase-I dataset. It is clear that the range of
quality that the dataset spans is highly skewed.

To address this need, we have conducted a large-scale hu-
man and algorithm study using H.264 compressed videos and
simulated wireless transmission errors as distortions. An effort
has been made to include a wide variety of distortion types
having good perceptual separations. For wireless applications
H.264 is being widely included in relevant technologies as
the Digital Video Broadcasting—Handheld [16], [17] and
Mediaflo [17] broadcast standards. As another example, the
World Airline Entertainment Association (WAEA) has stan-
dardized the H.264 encoder for delivery of wireless video
entertainment [18], for on-board video presentations.

This paper is aimed at studying the effectiveness of video
quality assessment algorithms in predicting human perception
of quality. Our paper is organized as follows. Section II
describes the original and distorted videos used, the human
study, and the various objective quality assessment algorithms
evaluated. Section III describes the performance of the algo-
rithms in terms of their correlation with human opinion,
and also evaluates the statistical significance of the obtained
results. Finally, we conclude this paper in Section IV.

II. Details of the Subjective Study

A. Source Sequences

The source videos are in RAW uncompressed progressive
scan YUV420 format with a resolution of 768 × 480 and
a frame rate of 30 frames per second (f/s). They were

provided by Boeing. From a large collection, the chosen
videos were those which incorporated a diverse range of
interesting motions, objects, and people. Some of the videos
are night-sequences. Many of the videos chosen contain scene
cuts—in order to include as much of the space of videos as
possible. There are ten source sequences, each ten seconds
long and hence containing 300 frames. The various videos are
as described below:

1) vid a: shows a plane driving up to the camera, with two
vehicles flanking it on either side. The flanking vehicles
have their blinkers on. Almost zero camera motion;

2) vid b: still camera as object moves toward the left of
screen with human motion at the bottom left;

3) vid c: camera pans to the left inside a hangar on a scene
with little motion;

4) vid d: camera moves to the right, covering a side of a
still plane in a hangar;

5) vid e: camera moves up, covering the front of a still
plane in a hangar;

6) vid f: camera still as back-half of a plane moves toward
a stationary front half. Scene cuts. Still camera focuses
at the point of joining of the two halves;

7) vid g: still camera captures an object moving in a
curved path. Scene cuts. Camera moves toward the left
covering a scene with little motion;

8) vid h: camera zooms out of still scene with human
motion at bottom left, then moves downward;

9) vid i: camera slowly moves, covering the right engine
of a plane. Scene cuts. Camera moves upward covering
the engine and the plane;

10) vid j: Night sequence. Camera zooms out as object and
humans move toward the right of the screen.

Fig. 2 shows frames from the various video sequences.
In this paper, we did not use the raw YUV videos as the

pristine videos, but instead converted the videos first into
H.264 compressed videos, which are visually lossless (i.e.,
having a PSNR > 40 dB). Since the user is never likely to
see the pristine YUV videos, such a visually lossless H.264
serves as a good reference for assessing the quality of videos
degraded over the channel as well as due to compression. Our
reasons for using visually lossless, low-compression H.264
videos as the elements of the reference test set are two-fold.
First, the overall compressed test set is enormously smaller in
size than the original raw video dataset. While this was not an
advantage for conducting the human or algorithmic studies,
it is a major advantage in allowing others to conduct the
studies. As we intend to make all the videos and human scores
freely available, the use of visually lossless reference videos
is highly convenient for delivering the video set electronically.
Second, the visually lossless reference videos have available
quality motion vectors which can be used by others (as well
as ourselves) to develop VQA algorithms that use motion. By
making available quality motion vectors, we make it possible
for developers to focus their efforts on other aspects of VQA
algorithm development. To date, very few VQA algorithms
use motion information.

In order to create perceptually lossless videos, the following
parameters for H.264 compression are used:
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Fig. 2. Example frames of the videos used. (a)–(j) correspond to videos a–j mentioned in the description.

1) quantization parameters (Qp, Qi) = 18;
2) I-frame period = 14.

Although the I-frame period does not influence the per-
ceived quality, we code at a period of 14 frames in order
to reduce the time complexity of the encoding process. We
also note that with the quantization parameters set as above,
the average PSNR is greater than 45 dB, exceeding the 40 dB
level.

B. Test Sequences

We created a set of 160 distorted sequences (4 bit-rates ×
4 packet-loss rates = 16 distorted videos per reference se-
quence). The details are as follows.

1) H.264 Compression: We used the JM reference software
(Version 13.1) [19], [20] made available by the Joint Video
Team (JVT) for H.264 encoding. The reference videos were
encoded using different bitrates: 500 kb/s, 1 Mb/s, 1.5 Mb/s,
2 Mb/s; with number of slice groups = 3. The bit-rates chosen
for encoding follow the WAEA recommendations [18] which
recommends a minimum bit-rate of 1 Mb/s for transmission.
Additionally, we simulated a bit-rate of 500 kb/s as well. Rate
control is as described in [21] and implemented by the JM
reference software.

All videos were created using the same value of the I-frame
period (96). We also enabled rate-distortion optimization, and
used real-time transport protocol as the output file mode.
We used the baseline profile for encoding, and hence did
not include B-frames. We aimed for wireless transmission of
the videos and hence restricted the packet size to between
100 and 300 bytes [22]. A detailed explanation of how
packet sizes were computed for the number of slice groups
is shown in the appendix. We set the flexible macroblock
ordering (FMO) mode as “dispersed” and used three slices per
frame.

2) The Wireless Channel: We used the software provided
by International Telecommunication Union (ITU) [23] docu-
mented in [24] to simulate wireless channel errors of packet-
loss. The software allows for six different error patterns and
hence for six different bit-error rates of 9.3×10−3, 2.9×10−3,
5.1 × 10−4, 1.7 × 10−4, 5.0 × 10−4, and 2.0 × 10−4. The bit-
error patterns used are captured from different real or emulated
mobile radio channels. For the packet sizes we simulated,
these bit-error rates correspond on an average to packet-loss
rates are around 0.4%, 0.5%, 1.7–2%, 2%, 5%, and 17–18%.
We assumed that a packet containing an erroneous bit is an
erroneous packet [22]. Under this assumption, we base all
further discussion on packet-loss rates.
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Fig. 3. Distortions induced in video compressed at 1 Mb/s. (a), (c) and (e) are frames from video passed through a channel with packet loss rate = 17%.
(b), (d), and (f) correspond to frames from video passed through a channel with packet-loss rate = 5%. (a) and (b) correspond to frame number 40 (P-frame).
(c) and (d) correspond to frame number 97 (I-frame). (e) and (f) correspond to frame 140 (P-frame)—error propagation due to lost packets from I-frame is
visible here.

It is clear that the packet loss rates can be divided into four
groups instead of the six, since there are two pairs of loss-rates
that are quite similar (0.4%, 0.5% and 1.7–2%, 2%). Hence,
the distorted videos were created using the simulated channel
such that packet loss rates of 0.5%, 2%, 5%, and 17% were
achieved.

In order to see how these different parameters affect visual
quality, Fig. 3 shows different frames from a video with 5%
packet loss rate and 17% packet loss rate (compression rate
= 1 Mb/s). Frames corresponding to a random P-frame, an
I-frame, and another P-frame following the I-frame are shown

in order to visualize the distortions. Loss of information from
the I-frame propagates through the P-frames and this is visible
in the figure.

At the decoder-end, the JM reference software was used to
decode the compressed video stream. The error concealment
procedures undertaken by the reference software in accordance
with the H.264 standard can be found in [25]. Briefly, at
the decoder, all correctly received slices are first decoded
and concealment is initiated for “lost” MBs. The processing
starts at the edge of the frame and moves inward column-by-
column. For lost INTRA frames, a weighted spatial averaging
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is undertaken. For INTER coded frames, a strategy based on
(guessed) motion vectors is utilized for motion compensation
and hence for concealment [25].

3) Comments on Selected Parameters: There are two major
contributions that we wish to make with this paper. One of
them is the creation of a publicly available video quality
assessment database that can be utilized by researchers as
a test-bed for algorithm design and performance evaluation.
By evaluating popular algorithms we also provide an objec-
tive way of assessing the performance of the video quality
assessment algorithms. The other contribution is toward ap-
plication of VQA algorithms in a practical system. Our goal
is to provide the users of these VQA algorithms with an
objective comparison of popular algorithms in terms of not
only their correlation with human perception, but also the
trade-off between performance and computational complexity.
It is clear that the parameters for H.264 compression could be
modified. Since it was not our goal to assess the ability of the
H.264 encoder, we fix certain parameters. The algorithms are
evaluated for this set of parameters. It is not unreasonable to
believe that the performance of VQA algorithms will not be
severely affected by H.264 parameters. Hence, algorithms that
perform well on this dataset should ideally perform equally
well in a general scenario.

C. Test Methodology

1) Design: The study conducted was a single stimulus
continuous quality evaluation (or SSCQE) as detailed in [26].
The only difference in this paper was the use of a “hidden-
reference.” In recent literature (see, e.g., [27]), this model is
used in order to “equalize” scores. Specifically, in the set of
videos that the subject is shown, the original reference videos
are displayed as well. The subject is unaware of its presence
or its location in the displayed video set. The score that the
subject gives this reference is representative of the supposed
bias that the subject carries, and when the scores for the
distorted videos are subtracted from this bias, a compensation
is achieved, giving us the difference score for that distorted
video sequence.

Single stimulus (SS) methods offer advantages relative to
double stimulus (DS) methods. In the SS studies the viewer
is shown only one video at a time. In DS studies, two
videos are shown simultaneously on a split-screen environment
(simultaneous double stimulus for continuous quality evalua-
tion), which tends to distract the subject [27], or two sequences
are shown one after the other, twice [double stimulus con-
tinuous quality-scale method (DSCQS)], thereby increasing
the length of the study. The case for SSCQE has been made
before in [27]; apart from the arguments provided there, we
were also concerned about the time requirements that a DS
study would need. For example, the DSCQS described in [26]
would require slightly more than twice/four (there are two
types of DSCQS, see [26]) times the amount of time as against
a single-stimulus approach. This would mean that the number
of sessions (see below) would increase by approximately a
factor of 2/4, assuming that the 30 min/session limit is not
violated (see below). This increased number of sessions could
then lead to debates about how to best combine data from

different sessions. For example, in [9], a re-alignment study
was conducted in order to align scores from different sessions.
The memory effects associated with using a SS approach
[26] were debated in [27]; since we use videos spanning a
duration of 10 s, the memory effects are unlikely to influence
the perceived quality [27]. The use of single stimulus thus
reduces the time consumed by the study as well as provides
a more accurate description of the quality of a sequence. We
use a continuous scale for evaluation of quality—i.e., the user
is not limited to only discrete scores, but is allowed to provide
an score that he feels is appropriate between the lowest and
highest ranges on the scale. The use of such a continuous
scale, we believe, is superior to the ITU-R absolute category
scale that uses a 5-category quality scale adopted by the
VQEG studies [12], due to the expanded range of scores that
a continuous scale can provide.

2) Display: The user interface was developed on a PC
running Windows XP, on MATLAB, using the XGL Toolbox
for MATLAB which was developed at The University of Texas
at Austin [28]. The XGL Toolbox allows precise presentation
of psychophysical stimuli to human observers. It is obvious
that any errors in displaying the videos, such as latencies,
must be avoided when conducting such a study, since these
artifacts affect the perceived quality of a video. In order that
display issues do not factor into the quality score provided
by a subject, all the distorted videos were first loaded into
the memory completely before their presentation. The XGL
toolbox interfaces with the ATI Radeon X600 graphics card
in the PC and utilizes its ability to play out the YUV videos.

A cathode ray tube (CRT) monitor was used to display the
videos. Again, the debate between perceiveability of errors on
different monitors is discussed in [29] and [30]. The relevance
of the findings in [29] is questionable since the monitor sizes
for the CRT and liquid crystal display (LCD) were not the
same. However, there has been evidence that effects such
as motion blur are amplified on an LCD screen [31]. The
reproduction of colors on a CRT versus those on an LCD is
another point of debate [32]. Although most of the algorithms
that we test (see below) do not use color information, we
decided to use the CRT for the purposes of this paper. The
monitor was calibrated using the Monaco Optix XR Pro
device. The same monitor was used for the entire course of
the paper. The monitor refresh rate was set at 60 Hz, and
each frame of the 30 Hz video was displayed for two monitor
refresh cycles. The screen was set at a resolution of 1024 ×
768 pixels and the videos were displayed at their native
resolution; the remaining areas of the display were black.

3) Subjects, Training and Testing: The subjective study
was conducted over a course of two weeks at the University
of Texas at Austin (UT). The subject pool consisted majorly
of under-graduate students from UT. The subjects were a mix
of males and females, with a male majority. No monetary
compensation for participating in the study was offered. The
average subject age was between 22 and 28 years and the sub-
jects were inexperienced with video quality assessments and
perception of quality. Though no vision test was performed,
a verbal confirmation of soundness of (corrected) vision from
the subject was taken to be sufficient.
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Fig. 4. Study setup. (a) Video is shown at the center of the screen and a bar at the bottom is provided to rate the videos as a function of time. The pointer
on the bar is controlled by using the mouse. (b) At the end of the presentation, a similar bar is shown on the screen so that the subject may rate the entire
video. This score is used for further processing.
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Fig. 5. DMOS scores for all video sequences. Notice how the entire DMOS range seems to be covered. This is indicative of good perceptual separation and
a large range of qualities seen in the study.

The study was conducted over two sessions, each lasting
less than half an hour, as per recommendations in [26] in
order to minimize subject fatigue. An informal after-study
feedback conducted indicated that the length of the study
was appropriate, and that the subjects did not experience any
uneasiness or fatigue during the course of the study. The
subjects were briefed as per the recommendations in [26].
Each session consisted of 90 videos each (80 distorted + 10
reference), with a short training set of sequences shown before
the actual session. The training videos shown were different
from the ones used for the actual study and were selected to
span the range of quality that the subject was bound to see
in the study. The training sessions consisted of six and three
training sequences, respectively.

The study consisted of the set of sequences shown in
random order. The order was randomized for each subject
as well as for each session. Care was taken to ensure
that two consecutive sequences did not belong to the same
reference, to minimize memory effects [26]. As mentioned
above, each session consisted of the reference sequence (also
in random order) without the subjects’ knowledge of its
presence.

The sequences were shown at the center of the CRT monitor
with a bar at the bottom of the screen, calibrated—“Bad,”
“Poor,” “Fair,” “Good,” and “Excellent,” equally spaced across
the scale. Although the scale was continuous, the calibrations
served to guide the subject. A screen indicating that the video
was ready to be played was shown, and the video was played
when the user pressed any key on the keyboard. The rating
bar was controlled using a mouse. The subjects were asked to

rate the videos continuously, i.e., as a function of time; at the
end of the sequence a similar bar was shown at the center of
the screen, where the subject was asked to rate the quality of
the video sequence. Once the score was entered, the subject
was not allowed to go back and change the score. The quality
rating was converted into a score between 0 and 100. A sample
screen shot of the setup is seen in Fig. 4.

Although scores of videos as a function of time were
collected, the following analysis is based on the cumulative
scores of the video sequence, as is the norm. The collected
continuous data will be used in the future to better understand
the decision-making process of the human. This will require
accounting for the latency of human response to changes in
visual quality.

D. Processing of the Scores

A total of 31 subjects participated in the study. The score
that each subject assigned to a distorted sequence in a session
was subtracted from the score that the subject assigned to the
reference sequence in that session, thus forming a difference
score. A subject rejection algorithm was run as per the
recommendations of the ITU [26], which rejected one subject.
We used the double stimulus continuous quality evaluation
(DSCQE) subject rejection technique, since the SSCQE with
a hidden reference corresponds in principle to the DSCQE
technique. A detailed explanation of the method is included
in the appendix for completeness.

The scores from the remaining subjects were then averaged
to form a differential mean opinion score (DMOS) for each
sequence. The DMOS score is representative of the perceived
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Fig. 6. Histogram (normalized) of differential mean opinion scores from our
wireless video quality study. Notice how the distribution of scores is uniform
compared to that from the VQEG—Fig. 1.

quality of the video. Specifically, let sijk denote the score
assigned by subject i to video j in session k and let Nik be
the number of test videos seen by subject i in session k. The
difference scores dijk are computed as

dijk = sijk − sijref k.

The DMOS (after subject rejection) is then

DMOSj =
∑
i

∑
k

dijk.

Although the VQEG FRTV phase-I study [12] used the
DMOS scores for further processing, an alternative is the use
of Z-scores [33]. The Z-score for a sequence per session is
calculated as

µik =
1

Nik

Nik∑
j=1

dijk

σik =

√√√√ 1

Nik − 1

Nik∑
j=1

(dijk − µik)2

zijk =
dik − µik

σik
.

We found in subsequent analysis that the performance of
video quality assessment algorithms did not change much,
regardless of which human measure (DMOS, Z-scores) were
used as descriptors of perceived video quality. Hence, in all
further analyses, we use DMOS scores. The DMOS scores are
plotted for each of the distorted video sequences in Fig. 5,
which demonstrates that the videos shown span the entire
range of visual quality and that they exhibit good perceptual
separation. Further, in Fig. 6 we plot a histogram of scores
from our database. Notice how the scores are uniformly dis-
tributed as compared to those from the VQEG studies (Fig. 1).

E. Video Quality Assessment Algorithms

1) PSNR: The peak signal-to-noise ratio, used even today
for image/video quality assessment, is a measure of the mean-
square-error between the two signals being compared. For
video-sequences, the PSNR is calculated for each frame then
averaged across frames (Y component only).

2) Frame-SS-SSIM: The single-scale structural similarity
index (SS-SSIM) [34], designed for still images, is based on
the principle that image “structure” is perceptually important.
It is defined as a product of a structure term, an intensity term,
and a contrast term. The SS-SSIM index value was calculated
on each frame, then averaged across all frames (Y component
only). The software implementation used is available at [35].

3) Frame-MS-SSIM: The multiscale SSIM index [10]
corrects the viewing-distance dependence of SS-SSIM and
accounts for the multiscale nature of both natural images
and human visual system. The MS-SSIM index performs
better (relative to human opinion) than the SS-SSIM index on
images. Here, the MS-SSIM was calculated on every frame
and then averaged across all frames (Y component only). The
software implementation used was obtained from the authors.

4) VQM: Video quality metric [7], proposed by Pinson
and Wolf, was the top performer in the VQEG phase II
video quality study, and is an American National Standards
Institute and International Organization for Standardization
standard. The VQM index was designed for videos and the
inputs are raw YUV—original and distorted. The software
implementation used is available at [36].

5) VSNR: The visual signal-to-noise ratio [37] is a wavelet
domain image quality metric proposed by researchers at
Cornell. Since this is designed as an image quality assessment
metric, the VSNR was applied on each frame, then averaged
across all frames (Y component only). The software imple-
mentation used is available at [38].

6) Speed-Weighted SSIM: Since the regular frame-SS-
SSIM does not incorporate any temporal weighting, a recent
algorithm [5] which accounts for motion was also evaluated.
A weighting scheme is assigned to the frame-SS-SSIM values
on each frame and then the scores are averaged across all
frames (Y component only). This temporally-weighted frame-
SS-SSIM is referred to as “speed-weighted SSIM” (SW-SSIM)
henceforth. The software implementation used was obtained
from the authors.

7) P-SS-SSIM: Human beings tend to perceive poor re-
gions in an image/video with greater severity than an objective
algorithm that pools scores from each region with equal weight
(simple mean across the scores) [39]. The P-SS-SSIM index
changes the pooling strategy by weighting the order statistics
of the scores, and correlates better with the human perception
of quality than the SS-SSIM. This was applied on the Y-
component only and on a frame-by-frame basis, since this was
developed for images.

8) Video VIF: The video VIF [8] is an information-
theoretic approach to video quality assessment—an extension
of the VIF for images [11]. This algorithm evaluates the
quality as a ratio of mutual-informations between quantities
in the wavelet domain. VIF uses natural-scene statistics to
model the image and the distortions, and performs well on
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Fig. 7. Scatter plots. (a) PSNR. (b) Frame-SS-SSIM.

Fig. 8. Scatter plots. (a) Frame-MS-SSIM. (b) VQM.

Fig. 9. Scatter plots. (a) VSNR. (b) SW-SSIM.
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Fig. 10. Scatter plots. (a) P-SS-SSIM. (b) Video VIF.

TABLE I

SROCC: Objective Quality Assessment Algorithms: Distortion

VQA Algorithm Mild Loss Average Loss High Loss Severe
Loss

PSNR 0.6987 0.6501 0.4764 0.4465
Frame-SS-SSIM 0.7270 0.7133 0.6236 0.4604
Frame-MS-SSIM 0.8574 0.8176 0.6989 0.6268
VQM 0.8914 0.7906 0.8598 0.5726
VSNR 0.7174 0.4977 0.5987 0.5629
SW-SSIM 0.8310 0.7287 0.8471 0.7486
P-SS-SSIM 0.8550 0.7388 0.7606 0.5182
Video VIF 0.7959 0.6385 0.7501 0.5775

Mild loss = 0.5%, average loss = 2%, high loss = 5%, severe loss = 17%
packet-loss rate.

TABLE II

SROCC: Objective Quality Assessment Algorithms:

Compression

VQA Algorithm 0.5 Mb/s 1 Mb/s 1.5 Mb/s 2 Mb/s
PSNR 0.8546 0.8248 0.8570 0.8400
Frame-SS-SSIM 0.8619 0.8681 0.8959 0.8752
Frame-MS-SSIM 0.9567 0.9460 0.9724 0.9480
VQM 0.9561 0.9602 0.9666 0.9565
VSNR 0.9480 0.9148 0.9477 0.9340
SW-SSIM 0.9533 0.9477 0.9477 0.9426
P-SS-SSIM 0.9610 0.9556 0.9655 0.9418
Video VIF 0.9236 0.9094 0.9084 0.9598

the VQEG database. The software implementation used was
obtained from the authors.

III. Results

The scatter plots for various algorithms along with the “best-
fit” regressed curve (see below) are seen in Figs. 7–10.

A. Performance Metrics

The objective metrics were evaluated based on:

1) prediction accuracy;
2) prediction monotonicity.

TABLE III

Performance of Various Objective Quality Assessment

Algorithms Over All Distortion Types

VQA Algorithm SROCC CC RMSE
PSNR 0.8615 0.8639 8.8997
Frame-SS-SSIM 0.8967 0.8875 8.1448
Frame-MS-SSIM 0.9608 0.9588 5.0196
VQM 0.9721 0.9711 4.2172
VSNR 0.9418 0.9484 5.6028
SW-SSIM 0.9599 0.9617 4.8450
P-SS-SSIM 0.9628 0.9637 4.7180
Video VIF 0.9470 0.9524 5.3854

The results for each of the algorithms is seen in Table III.
The metrics used for evaluation are—Spearman rank or-
dered correlation coefficient (SROCC), the linear correlation
coefficient (CC)—after non-linear regression and the root
mean square error (RMSE)—after non-linear regression as
prescribed in [12]. We used a 4-parameter logistic function
[12], constrained to be monotonic to transform the objective
score

Quality(x) =
β1 − β2

1 + exp
(
− x−β3

|β4|
) + β2.

This logistic function was recommended by the VQEG [12]
and has been widely used in evaluating the performance of
algorithms that were tested on the VQEG Phase I dataset
[12]. Further, a similar logistic was used for evaluating the
performance of image quality assessment algorithms [9]. After
such a transformation, we calculated the Linear (Pearson’s)
correlation coefficient, and the root-mean-squared error, be-
tween the transformed score and the DMOS scores.

The CC and the RMSE measure the prediction accuracy,
the SROCC measures the prediction monotonicity. We report
the value of SROCC, CC, RMSE for all data in Table III.
We also report the SROCC across two sets, where the videos
are grouped in terms of the compression rate (Table II) and
packet-loss rate (Table I).
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TABLE IV

Statistical Significance Analysis

PSNR Frame-SS-SSIM Frame-MS-SSIM VQM VSNR SW-SSIM P-SS-SSIM Video VIF
PSNR – – 0 0 0 0 0 0
Frame-SS-SSIM – – 0 0 0 0 0 0
Frame-MS-SSIM 1 1 – 0 – – – 1
VQM 1 1 1 – 1 1 – 1
VSNR 1 1 – 0 – 0 0 –
SW-SSIM 1 1 – 0 1 – – 1
P-SS-SSIM 1 1 – – 1 1 1 1
Video VIF 1 1 0 0 – 0 0 –

A “1” indicates that the metric in that row is statistically better than the metric in the column; a “0” indicates that it is statistically worse and a “–” indicates
that the scores are statistically indistinguishable.

B. Statistical Significance and Hypothesis Testing

Similar to the approach in [9], we perform a statistical
significance analysis based on an assumption of Gaussianity
of the residuals between the VQA algorithm scores (after non-
linear regression) and the DMOS for each video sequence. We
used the Kolmogorov–Smirnov test to evaluate Gaussianity
[40] on the normalized scores. In our analysis, we found
that we could not reject the null hypothesis (the scores
have a standard normal distribution) at the 5% level for any
metric and hence our assumption of Gaussianity is valid for
all metrics. We used the F-statistic [41] for comparing the
variance of sets of samples. The test was performed for the
dataset taken as a whole.

The null hypothesis is that the residuals from one VQA
algorithm come from the same distribution and are statistically
indistinguishable with 95% confidence from the resiudals
from another VQA algorithm. The alternative hypothesis is
that the sample variance of one VQA algorithm is greater
than the other. Table IV shows results from the statistical
significance analysis. A “1” indicates that the metric in that
row is statistically better than the metric in the column; a “0”
indicates that it is statistically worse and a “–” indicates that
we could not reject the null hypothesis at the 5% level, and
hence the scores are statistically indistinguishable.

The correlations exhibited by the various algorithms are
higher than those seen in the VQEG studies [12], and this
can be attributed to the uniformity of the content as well as
the uniformity of the distortion. However, some observations
with regard to the metrics can be made under the assumption
that the inter-metric performance will remain identical for a
non-uniform dataset. SW-SSIM, VQM, and MS-SSIM seem
to perform the best across distortion types, while VQM, MS-
SSIM, and P-SSIM seem to do well across compression
rates. Overall, VQM, MS-SSIM, and P-SSIM perform the best
amongst the algorithms. The statistical analysis leads to the
conclusion that at 95% confidence level, except frame-SS-
SSIM, all other algorithms are statistically better than PSNR.

C. Complexity Versus Performance

Even though there exists a host of VQA algorithms, PSNR
is still used as an indicator of quality. This stems from the
fact that the computation of PSNR is easy to implement and
real-time estimates for PSNR may be made available. In order
to assist researchers interested in deploying these algorithms

Fig. 11. Performance versus complexity tradeoff. Algorithms which are
statistically indistinguishable in performance are circled together. Figure not
to scale.

practically, we perform a rough complexity analysis of the pro-
posed algorithms. Fig. 11 shows a plot of the trade-off between
complexity and performance. Complexity increases along the
horizontal axis and performance increases along the vertical
axis. Algorithms which are statistically indistinguishable are
grouped together. Note that the figure should act as a guide in
choosing algorithms for applications rather than as an absolute
measure of performance versus complexity.

IV. Conclusion

A subjective study to assess the perceived quality of H.264
compressed video sequences transmitted over a wireless chan-
nel was performed. Based on the results from the study, various
leading objective quality assessment algorithms were evaluated
using popular metrics, to gauge their correlation with human
perception. The ten reference sequences as well as the 160
distorted sequences have been made available to the research
community in order to further research on perceptual video
quality assessment.

APPENDIX A

SELECTION OF H.264 ENCODER PARAMETERS

In this section, we explain how the packet sizes are fixed for
a given number of slice groups. Consider a video to be encoded
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at 1 Mb/s. We fix the number of slice groups at SG = 3. The
video dimensions are 768 × 480 and the frame rate is 30 Hz.
We encode packets such that each packet contains one slice.
In order to fix the packet size between 100 and 300 bytes, we
need that the number of slices per frame SF be

1/8 × 106

300 × 30
≤ SF ≤

1
8 × 106

100 × 30
.

Hence

13.8889 ≤ SF ≤ 41.6667.

We select SF = 18. With SF = 18, the packet size is
1
8 ×106

18×30 =
231.48 bytes. In order for SF = 18 to make sense, we need
that the number of macroblocks per slice MBS be an integer.
We can verify this as: MBS = (768×480)

18×16×16 = 80, where each mac-
roblock is an element of size 16 × 16. Hence, we encode this
video at a rate of 1 Mb/s with three slice groups and 18 slices/
frame with 80 macroblocks per slice to achieve a packet-length
of 231.48 bytes.

APPENDIX B

SUBJECT REJECTION PROCEDURE

The subject rejection procedure we follow is the one
prescribed by the ITU for the DSCQE [26]. For each
presentation, we compute the mean µjkr, standard deviation
σjkr, and kurtosis βjkr where kurtosis is the ratio of the
fourth moment to the square of the second moment. For each
observer i we find the parameters Pi,Qi as follows:

for j, k, r = 1, 1, 1 to J,K,R
if 2 ≤ βjkr,≤ 4 then

if uijkr ≥ µjkr + 2σjkr, then Pi = Pi + 1
if uijkr ≤ µjkr − 2σjkr, then Qi = Qi + 1

else
if uijkr ≥ µjkr +

√
20σjkr, then Pi = Pi + 1

if uijkr ≤ µjkr − √
20σjkr, then Qi = Qi + 1.

We then compute the ratios ψ = Pi+Qi

J×K×R and γ =
∣∣∣Pi−Qi

Pi+Qi

∣∣∣. If
ψ > 0.05 and γ < 0.3 then reject subject i.

In the above equations, J = number of test conditions
including the reference, K = number of test videos, R =
number of repetitions. uijkr is the score assigned by subject
i in condition j for the video k and for repetition r.
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