
A Framework for Effective Scheduling of Data-Parallel

Applications in Grid Systems

A Thesis

Presented to

the faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the requirements for the Degree of

Master of Science in Computer Science

Michael Walker

May 2001

ii

APPROVAL SHEET

This thesis is submitted in partial fulfillment of the
requirements for the degree of Master of Science in Computer Science

Michael P. Walker

This thesis has been read and approved by the examining Committee:

Thesis advisor: Andrew Grimshaw

Committee Chair: Marty Humphrey

Minor Representative: Anand Natrajan

Accepted for the School of Engineering and Applied Science:

Dean Miksad
School of Engineering and Applied Science
August 2001

iii

Abstract

Grid systems – a unified collection of resources connected by a network – have

potential to deliver high performance for many applications and many system users.

Achieving high performance in a grid system requires effective resource scheduling. The

heterogeneous and dynamic nature of the grid, as well as the differing demands of

applications run on the grid, makes grid scheduling complicated. Existing schedulers in

wide-area heterogeneous systems require a large amount of information about the

application and the grid environment to produce reasonable schedules

[Lo88][Wei95][Wei00]. However, this information may not be available, may be too

costly to collect, or may increase the run-time overhead of the scheduler such that the

scheduler is rendered ineffective. We believe that no one scheduler is appropriate for all

grid systems. Instead, grid systems require a scheduling framework that produces

reasonable schedules for a variety of applications, and allows for more sophisticated

scheduling mechanisms to be added to the framework as they are needed.

We propose a scalable, extensible framework for statically1 scheduling parallel

applications in a grid system. By default, a scheduler built within the framework will

require only a small amount of information about the application and the state of the

network. We then evaluate a scheduler implemented within the framework, and show that

it produces reasonable task assignments for a variety of data-parallel applications without

consuming much run-time overhead.

1 In this context, a static schedule is produced before job execution, and is not modified during the course
of execution.

iv

Table of Contents

Abstract ..iii
List of Figures.. v
List of Tables ..vi
List of Symbols ..vii
Chapter 1 Introduction ... 1

1.1 Thesis .. 5
1.2 Solution Strategy.. 5

Chapter 2 Related Work ... 7
2.1 Scheduling Taxonomy.. 7
2.2 Grid System Scheduling... 12
2.3 Existing Scheduling Heuristics ... 15

Chapter 3 Scheduling Framework.. 19
3.1 Grid Scheduling Solution Space ... 19
3.2 Grid System Model .. 20

3.2.1 Resource Information Collection.. 21
3.3 Application Model ... 22
3.4 Performance Model .. 23

3.4.1 Identifying Scheduling Candidates ... 23
3.4.2 Network Organization Model ... 24
3.4.3 Fitness Equation... 26

3.6 Scheduling Policy... 28
Chapter 4 Scheduler Implementation... 31

4.1 Resource Information Collection.. 31
4.2 Grid System Model .. 32
4.3 Application Model ... 32
4.4 Performance Model .. 33

4.4.1 Performance Fitness Function .. 33
4.4.2 Network Organization .. 34
4.4.3 Latency Cost Function ... 35

Chapter 5 Evaluation .. 38
5.1 Evaluation Test Suite ... 38
5.2 Testing Environments .. 39
5.3 Scheduling Policy Evaluation... 40
5.3.1 Scheduling Policy Evaluation Results.. 41

5.3.2 Scheduling Policy Run Time Evaulation .. 46
5.4 Evaluation Summary .. 47

Chapter 6 Future Work .. 48
6.1 Further Evaluation.. 48
6.2 Framework Extensions ... 49

References.. 50

v

List of Figures

vi

List of Tables

vii

List of Symbols

T = set of tasks, or a job

k = number of tasks

ti = the ith task

N = set of machines

n = number of machines

hx = a particular machine

Ci = the ith machine cluster

pi = the ith processor

R = network router

τn = network topology

ASSIGNMENT = set of assignments of tasks to machines

Performance(ti, hx) = relative performance function

Max_performance(ti, hx) = maximum architectural performance function

Latency(ti, hx) = relative communication latency function

processors(hx) = number of processors function

speed(hx) = clock speed function

load(hx) = processor load function

ASF(ti, hx) = architectural scale factor function

Topology(hx, hy, τn) = topology communication cost function

ratio = ratio of job communication to computation

RAND = random scheduling algorithm

MP = Max_performance scheduling algorithm

MPL = Max_performance and latency scheduling algorithm

1

Chapter 1 Introduction

A grid computing infrastructure is a collection of resources connected by a

network. In a typical grid infrastructure, the resource collection is a heterogeneous group

of computers, and high-speed networking is used to accelerate communication between

resources. Each computer may exhibit heterogeneity in its underlying hardware,

operating system, file system, or network configuration.

A grid computing system, or grid system, runs programs on the resources in a grid

infrastructure to form a unified system of interacting resources. The programs facilitate

interaction with other resources in the system. The collection of programs managing the

resource interaction is called grid system middleware because it forms a software layer

above the native operating system that controls the interaction of the resource in the grid.

The grid system middleware manages the underlying resource heterogeneity, and

provides the abstraction of a unified system. The grid system middleware may support

multiple grid system users.

 A grid system user can run applications on various grid resources by running the

application on top of the middleware layer. The benefits of exploiting a grid system for

user applications are significant. For example, heterogeneous machines can be used for

parallel program execution to shorten the overall application execution time. High-

performance applications may benefit from the diversity of the grid infrastructure, since

different pieces of the application can be run on the resources for which they are best

suited.

A typical grid system may run a variety of user applications concurrently. One

class of applications typically run on a grid system is a single-program, multiple-data

2

(SPMD) application, also known as a data-parallel application. Data-parallel applications

are partitioned into tasks that perform computations on separate pieces of a data set. The

tasks work together to process the entire data set, and are collectively called a job. The

data-parallel program model is often used to solve scientific computing problems. These

jobs may run for many hours or days, and can consume a large amount of system

resources. The job may perform a large amount of computation, communication between

tasks, or both.

A parameter space study is a job that repeatedly performs a large amount of

computation over a range of program parameters. The total set of parameters can be

considered the program data set. Each iteration of the program can be run in parallel on a

grid system. Parameter space studies can therefore be considered a compute-intensive

data-parallel application.

A high performance grid system should strive to maximize the total job

throughput of the system, and minimize job execution time. These two goals can

sometimes be complementary [Ber99]. For instance, if two jobs require p processors, and

the grid infrastructure only provides 2p – 1 processors, it may not be possible to obtain

optimal performance for both jobs simultaneously. If both jobs are run concurrently, then

at least two tasks will share the same processor, which increases the execution time of

both jobs. However, serial execution of each job will lower the total job throughput of the

system.

A grid resource management system controls resource usage to leverage the goals

of a high performance grid system. A grid scheduler is the part of a grid resource

management system that uses grid system and job information to produce an assignment

3

of tasks to machines for a given grid job. The assignment decision is known as task

allocation or task placement, and the assignment itself is called a schedule. Effective task

placement decisions produce schedules that strive to minimize job execution time.

Given a collection of jobs and their schedules, the resource management system

may then create a separate sequencing of job execution times, or meta-schedule, that

strives to maximize the total job throughput of the grid system2. In this way, scheduling

and meta-scheduling work together to facilitate high performance in a grid system. The

simplest meta-schedule policy allows all jobs to execute simultaneously. Determining the

best meta-schedule policy for a grid system is an open problem, and is the subject of

future work. We focus on job scheduling in grid systems.

A grid resource management system must be able to produce schedules with

effective task placement decisions. Poor task placement will increase job execution time,

which may reduce the total job throughput of the grid system. A grid system may run

hundreds of jobs simultaneously. Thus, poor task placement decisions can dramatically

reduce the performance of a grid system. However, producing good schedules (i.e.

schedules with effective task placement) for grid jobs is a difficult problem.

Task placement is complicated by the composition of the grid system. Certain

resources may finish the same task earlier than other resources. Placement decisions that

do not consider the performance of a given task on a specific resource can result in

increased execution time. The communication topology of the job may favor certain

placement strategies over others. The resource characteristics of a grid may change

2 The concept of meta-scheduling is sometimes known as grid co-scheduling. However, the term co-
scheduling has other meanings in the context of networks of workstations (NOWs), and can be confused
with the related concepts of co-allocation and advance reservation. The term meta-scheduling is used to
emphasize the fact that the execution of individual job schedules is being sequenced in a meta-schedule.

4

unexpectedly. The changes may include variations in the number and type of resources in

the system, resource availability, processor load, disk space, hardware configurations,

network traffic, and available memory. Placement decisions that do not consider dynamic

information about the grid system may place tasks on machines that cannot currently

provide the proper resources to minimize completion time. Finally, a grid system may

have multiple administrative domains, each of which allow different access rights to grid

users. The placement decision must schedule tasks only on resources to which the user

has proper access.

Jobs with different behavior characteristics may require different schedules. For

example, differences in computational demands, patterns of communication, memory

footprints, or disk I/O rates may influence the effectiveness of a given schedule for a

particular job.

The amount of system and application information available to the scheduler

determines its ability to make effective task placement decisions. The absence of

information makes good scheduling very difficult to achieve. However, detailed

application and system information may not be available, or may be too costly to collect.

Also, an increase in the amount of information processed by the scheduler may increase

the time to produce schedules. A task placement algorithm for grid systems must scale to

schedule many tasks on many machines in a reasonable amount of time. Thus, a

scheduler should balance the cost of collecting and processing information with the

related benefits of the resulting schedule.

5

1.1 Thesis

The general task placement problem for more than two processors has been

shown to be NP-complete [Ull75]. Various sub-optimal scheduling heuristics have been

proposed in the literature [Lo88][Sal99][Wei95][Wei00][Zom01]. Each of the solutions

is appropriate in certain situations, but may not be appropriate in others. Clearly, no one

scheduling algorithm will be equally appropriate for all grid systems and all applications.

Instead, grid systems require a scheduling framework that produces reasonable schedules

for a variety of applications, and allows for more sophisticated scheduling mechanisms to

be added to the framework as they are needed.

 The main contribution of this thesis is the definition of such a grid scheduling

framework and the evaluation of a simple scheduler built within the framework to

schedule data-parallel applications. We demonstrate that the simple scheduler produces

good schedules for a variety of data-parallel applications without requiring a large

amount of program and system information. It adds little run-time overhead to the overall

program execution, and will therefore scale well to schedule many jobs on the grid. The

scheduling framework is extensible, which allows more sophisticated mechanisms to be

added as needed.

1.2 Solution Strategy

The grid scheduling framework consists of (1) a grid system model, (2) an

application model, (3) a performance model, and (4) a scheduling policy. The grid system

model and application model provide information to influence the task assignment

decision. We assume that a grid system may run many jobs concurrently, and this may

6

influence the grid system state. The grid system model will include information about the

current state of the grid system.

The performance model provides a method of evaluating system and application

information, and produces estimates of the performance of a given task on a particular

resource. The scheduling policy uses the performance estimate to rank placement

decisions according to its policy. Each unit of the framework must be extensible. This

allows improvements to be added to the framework as they are needed.

The simple scheduler built within the framework uses basic grid system and

application models that do not require extensive system benchmarking or application

profiling. The performance model makes simplifying assumptions about expected

performance of the network and each resource within the network. This allows a

performance estimate to be made without extensive information. The scheduling policy

uses a simple heuristic to rank task placement decisions.

We examine the benefits of the implemented scheduler, and show that even a

simple scheduler can produce schedules that outperform random scheduling for a variety

of data-parallel applications and grid infrastructures.

7

Chapter 2 Related Work

In this section, we present a taxonomy of scheduling techniques. We then describe

and classify existing scheduling techniques within the context of that taxonomy. Finally,

we place our scheduling framework within the taxonomy.

2.1 Scheduling Taxonomy

We present a scheduling taxonomy for enumerating possible scheduling

techniques, classifying existing schedulers, and choosing guidelines for new schedulers.

Cassavant and Kuhl present a general taxonomy of scheduling in distributed computing

systems [Cas88]. Weismann presents a taxonomy of traditional parallel scheduling

techniques [Wei95]. We base our taxonomy on their work.

The general scheduling problem has been interpreted a number of different ways

in traditional operating systems and distributed systems [Sil98][Gon77][Wei95]. Running

a data-parallel job on a grid system typically involves (1) job partitioning, (2) information

collection, (3) task assignment, and (4) instantiation. Job partitioning is the division of a

job into tasks. The granularity of the division should allow a high degree of parallelism.

In grid systems, users may prefer to choose their own granularity, especially since the

user may have written the application to be run at a particular granularity. Alternatively,

specialized partitioning tools can be used to produce the partition [Wei95].

Information collection is the process of gathering user preferences, application

information, and resource information. The collected information can be used to build a

simplified model of the application, the grid, and the user preferences. In the task

assignment stage, the scheduling algorithm then uses the available models to estimate

8

task performance and produce effective task assignments. The scheduling algorithm may

use the collected information to produce better task assignments. Since this information is

used in the scheduling algorithm, information collection is an integral part of the grid

scheduling framework. Finally, the tasks are instantiated when they are executed on

resources within the grid. Job instantiation may be user-initiated, or may be controlled by

a meta-scheduler to maximize overall job throughput.

Figure 1: Steps in running a data-parallel job in a grid system. The solid lines surround the stages that
comprise the scheduling framework.

This focus of this research is on global scheduling of data-parallel applications.

Global scheduling is the process of deciding where to execute a job, and is also known as

Application

Grid System

The G
rid

Scheduling
Algorithm

B
in

ar
y

Job Partitioning

Partitioned JobDP Job

Information Models

Task Assignment

Schedule

Instantiation

Data

Information Collection

User Preferences

9

the scheduling problem in distributed systems literature [Wei95], or more generally, the

task placement problem. Local scheduling is the allocation of time slices of a single

processor to its tasks. Local scheduling is usually managed by an operating system rather

than a grid scheduler, and is outside the scope of this work.

Global scheduling strategies can be distinguished by the time at which the

schedule is made. Compile-time scheduling produces schedules during application

compilation, and generally will not formulate placement decisions based on dynamic

system information. Unfortunately, compile-time scheduling strategies may not be useful

for grid environments where system state varies. For instance, a compile-time scheduling

decision may place tasks on unavailable resources, since resource availability information

may not be known until run-time. The resultant schedule will not be effective, since some

tasks cannot run unless their assigned resources become available.

Run-time scheduling can include dynamic system information in its scheduling

decision. Within run-time approaches, scheduling can be done statically or dynamically.

A dynamic run-time scheduler makes an initial assignment of tasks to machines, but it

may change the assignment in response to changes in system performance. Dynamic run-

time scheduling consumes some run-time overhead because it must monitor the grid

system during job execution. A static run-time scheduler will decide task placement at

the outset of program execution, and will not transfer tasks to other machines once they

have begun execution. Static run-time schedulers may not incur the run-time overhead of

the dynamic schedulers, but still require a large amount of program and system

information to make a good initial placement decision.

10

Static run-time scheduling solutions present either an optimal solution to a

simplified version of the scheduling problem, or a sub-optimal solution when the scope of

the problem is NP-hard. For instance, optimal scheduling solutions for less than three

processors have been formulated using graph-theoretic methods such as the max-

flow/min-cut algorithm [Lo88]. However, no existing optimal solution has been

demonstrated to extend to general scheduling of parallel applications on heterogeneous

distributed systems without becoming computationally intractable.

Sub-optimal scheduling solutions provide a near-optimal solution by maximizing

a cost function. The cost function usually calculates the time to job completion given

information about the tasks and the system. Casavant and Kuhl categorize sub-optimal

scheduling as either approximate or heuristic. An approximate algorithm searches a

Run-timeCompile-time

Dynamic
Static

Static

Sub-optimalOptimal

Non-deterministic

ApproximateHeuristic

Deterministic

Figure 2. Partial taxonomy of grid scheduling. The bold letters indicate the position of our
scheduling framework.

GlobalLocal

11

subset of the solution space to find a schedule that satisfies the cost criteria. A heuristic

algorithm uses a non-optimal algorithm to make reasonable schedules. Many current

solutions use a scheduling heuristic to maximize the cost function, while other existing

strategies use genetic algorithms [Zom01], fuzzy logic, mean-field annealing, and

simulated annealing [Sal99] methods.

Most static run-time heuristics require a large amount of program and resource

information to provide near-optimal schedules. Deterministic scheduling heuristics

require that precise information about the application and system resources is present

before the application is executed. Typically, an application provides information about

the task execution time on a given processor, the communication topology of the

application, as well as the amount of communication expected of each task.

Unfortunately, some parallel applications may exhibit non-deterministic behavior, and

information about application behavior may not be completely predictable. Furthermore,

a system shared by multiple users will also exhibit non-deterministic behavior unless it

can make certain guarantees about the quality of service that it can provide. In cases

where application or system behavior is non-deterministic, a non-deterministic scheduler

must make decisions without the aid of precise application or resource information.

We propose a grid scheduling framework that supports static run-time scheduling

in a non-deterministic environment. This framework will allow the opportunity to use

system information available at run-time to aid in the scheduling process. The framework

does not require deterministic program and system information because this information

may not be available, or may be too costly to collect. The task assignment algorithm

implemented for the framework uses a sub-optimal heuristic designed to schedule a wide

12

range of parallel applications in a reasonable amount of time. Its place in the scheduling

taxonomy is illustrated in figure 2. The framework is described in detail in chapter 3.

2.2 Grid System Scheduling

A number of grid systems have implemented methods of scheduling grid jobs.

The Application-Level Scheduler (AppLeS) [Zag98] is a user-level scheduler designed to

run with an existing grid system. It uses dynamic system information, including network

performance prediction information provided by Network Weather Service (NWS)

[Wol98], to make accurate system performance predictions. AppLeS is a global, run-time

scheduler that allows a variety of static and dynamic scheduling policies.

Each application must have its own AppLeS agent to produce schedules. The

agent requires an application model, an application-specific resource usage function, and

a scheduling policy. The scheduling policy can be user-defined, or can be one of a

number of default strategies. The AppLeS scheduler provides extensibility in that the

agent can be tailored to meet the needs of the application. The information required by an

AppLeS agent may be difficult to provide in some situations, and the overhead of NWS

may be a significant factor in the scheduling process. Our framework is different from

AppLeS because it does not require run-time services like NWS by default, and because

our framework focuses on providing a reasonable default scheduling policy.

The Network-based Information Library (Ninf) [Nak98] provides an extensible

global scheduling framework for grid systems. It uses a resource status predictor and a

global database of system information to make accurate predictions of system

performance. Ninf researchers are currently exploring different scheduling algorithms to

13

use with the scheduling framework. The Bricks performance evaluation system for grid

scheduling algorithms [Tak01] is a useful tool to aid in this exploration.

Nimrod [Abr95] is a tool designed to execute parameterized simulations on

distributed workstations, and has similar scheduling goals as grid systems. The Nimrod

scheduling framework uses a job distribution manager (JDM) to submit host

requirements to an arbitrary trading service. The trading service uses the host

requirements, and possibly other outside information, to produce a schedule. The trading

service can be any scheduling mechanism. The trading service allows scheduling

extensibility for the Nimrod system.

Globus is an integrated toolkit of basic services designed for use in grid systems

[Fos97][Fos99]. A Globus resource broker uses grid system and job information to

produce a resource selection policy. A Globus co-allocator uses the selection policy to

divide the job execution across one or more resource sites that satisfy the policy

requirements. A resource site is a collection of machines controlled by some local

resource management tools. Typically, the local resource management tools are queueing

systems like LSF, NQE, or LoadLeveler, but they can also be tools for managing

heterogeneous clusters. A Globus Resource Allocation Manager, or GRAM, runs on each

site to interact with the local management tools. The GRAM receives the co-allocator job

request and forwards it to the local management tools, which control the site scheduling

policy. The scheduling policy of each site may be different. In this way, Globus uses a

hierarchy of scheduling mechanisms to achieve global job scheduling.

The layered scheduling structure used in Globus resource management allows

local management tools to schedule tasks in any arbitrary fashion. Although this allows

14

site-level scheduling customization, the lack of global scheduling may lead to poor

scheduling decisions. For instance, a simple site scheduler may not take application

characteristics into account during task assignment, which may result in poor

performance for some applications. The GRAM and co-allocator currently cannot

influence the local scheduling decision, although advance reservations may allow the co-

allocator more control in future Globus implementations. Additionally, the Globus

resource broker cannot modify the resource selection in response to dynamic changes in

the grid system. However, grid system state can strongly affect job performance, and

should be a factor in the scheduling decision. The ability to modify resource selection

may also be added to future Globus implementations [Cza01].

Prophet is a scheduling framework designed for grid systems middleware such as

the Legion grid computing system [Wei95]. The Prophet framework presents strategies

for job partitioning, task allocation, and instantiation, and makes detailed models of

applications and grid systems. Our scheduling framework is largely based on the Prophet

framework. However, our framework does not include job partitioning and instantiation,

and focuses on providing a simple scheduler that produces effective schedules for a wide

variety of data-parallel jobs. Prophet uses system benchmarking and application profiling

in its scheduling policy, and makes scheduling decisions based on the assumption that

clusters in a grid infrastructure are homogeneous. Our scheduling policy does not require

extensive system benchmarking or application profiling, and assumes that clusters in a

grid infrastructure may be heterogeneous.

Gallop is a wide-area scheduling system designed to exploit opportunities for

high-performance in Internet-based systems [Wei98]. Gallop uses a layered approach to

15

scheduling parallel applications. A local site with a scheduling request initiates a global

scheduler. The global scheduler selects candidate sites for job assignment prioritized by

nearness to the local site. No information about intra-site resources is considered in the

global scheduling decision. Given the set of sites for job execution, each site uses a local

scheduler to produce the local schedule with the lowest projected completion time. The

local scheduler may be Prophet, or may be any arbitrary scheduling algorithm. The best

local schedule from all selected sites is chosen as the job schedule, and the job is

instantiated on that site.

Gallop differs from our scheduling framework because it assumes the jobs are

determinstic, and because it uses a layered approach to wide-area scheduling. We assume

that jobs may be non-deterministic in their behavior, and that the completion time may

not be predictable. Interactive data-parallel jobs may exhibit non-deterministic behavior,

and a completion time for such jobs is not predictable. Also, the global scheduling in our

framework examines intra-site resource characteristics in the task assignment process.

2.3 Existing Scheduling Heuristics

A detailed discussion of sub-optimal scheduling heuristics is beyond the scope of

this work, and further analysis can be found elsewhere in the literature [Lo88][Wei95]. In

this section, we present a selection of common heuristics that have been used in

distributed systems.

Random and round-robin task assignment can sometimes outperform even

complex algorithms, as shown in scheduling work in operating systems literature [Sil98].

These simple algorithms are effective in homogeneous distributed systems, but are less

16

effective when applied to a heterogeneous computing environment, since certain

machines may far outweigh others in their ability to process tasks, and a random or

round-robin scheduling strategy would ignore these costs. We explore the effectiveness

of random task assignment in chapter 5.

Lo presents a three-part algorithm for task assignment in distributed systems that

aims to reduce overall execution and communication costs [Lo88]. This algorithm does

not take processor load into account when assigning tasks, and attempts to minimize

overall execution and communication costs, rather than overall job completion time. This

algorithm has the undesirable effect of scheduling all tasks to the same processor when

the system is homogeneous in order to minimize communication costs. This strategy

ignores potential parallelism and greatly increases job completion time. A second

algorithm is presented to introduce additional interference costs in execution and

communication time when multiple tasks are scheduled on the same processor. This

solution produces greater task concurrency, but assumes that deterministic information

about the tasks and processors are available, including completion time and execution

and communication interference costs. In order to determine the interference costs of a

set of k tasks T = {t1, t2, … , tk} on a set of n processors P = {p1, p2, … , pn}, one must

measure the cost of each pair {ti, tj} of tasks on every processor in P. In a system of k

tasks and n processors, the algorithm for deriving interference costs consists of 




2
k

n

interference measurements, which may incur excessive overhead when k or n is

sufficiently large and the tasks are non-trivial. A solution for arbitrary interference costs

when n < 3 is presented, and the general case is left for future work.

17

Weissman presents heuristics for scheduling parallel computations in

heterogeneous environments [Wei95][Wei00]. Three common classes of parallel

applications are identified, and reasonable heuristics are presented that assess variations

in processor load and network bandwidth. The heuristic for task assignment is a greedy

algorithm with complexity Ο(nk2), and assumes that k will be small in practice. The

heuristic requires knowledge of the computational cost for each task running on each

processor, as well as knowledge of the communication costs between two tasks on two

processors, for all tasks and all processors. In practice, these exact values may not be

known, or it may be intractable to produce when the number of tasks and processors

grows too large or dynamic load is taken into account.

Massively parallel processing (MPP) systems bear some resemblance to grid

systems running data-parallel applications. MPP scheduling algorithms often coordinate

processing, communication, and data access in their strategy [Ber99]. This coordination

should also be a part of grid scheduling. However, MPP schedulers often operate under

the assumptions that the scheduler controls all resources, the resources are homogeneous,

and there is minimal resource contention. Some or all of these statements may be false for

grid systems. Thus, MPP schedulers typically do not make good grid schedulers.

Hamidzadeh et al. [Ham95] presents global, run-time, dynamic scheduling

techniques for scheduling in heterogeneous computing systems. Their Self-Adjusting

Scheduling for Heterogeneous systems (SASH) algorithm uses a variation of the branch-

and-bound optimal algorithm, and iteratively creates schedules during job execution. The

scheduling process is dynamic, and the SASH algorithm dedicates one processor for

scheduling calculations during job execution. The scheduling calculations use processor

18

type and communication costs in predicting estimated job completion time. This

algorithm has been shown to outperform other dynamic scheduling algorithms when the

number of available processors is large. However, dynamic scheduling techniques that

reserve processors may cause starvation if the number of jobs being run exceed the

number of processors in the system. Furthermore, processor reservation may not even be

possible in a system where resources are shared.

Biological science techniques have been incorporated into distributed system

scheduling to create new scheduling heuristics and approximations. Genetic-based

scheduling [Zom01] employs genetic algorithms (GAs) to evolve schedules through

schedule reproduction, crossover, and mutation. The schedules “survive” one round of

evolution if they meet the cost function criteria (e.g., job completion time). Successive

rounds of evolution have been shown to converge upon near-optimal schedules in a short

period of time when the number of tasks is small. The convergence time for GAs for

large-scale scheduling may be considerably larger, although a sufficiently parallel GA

scheduler has been suggested to reduce the cost. Exactly how this parallel scheduler

would be scheduled has not been discussed. Furthermore, the GA solutions have operated

under the assumption that application behavior is deterministic. A GA heuristic that

assumes a non-deterministic environment may be useful for grid scheduling, and is the

subject of future work.

19

Chapter 3 Scheduling Framework

In this section, we present a scalable, extensible framework for scheduling in a

grid system. First, the solution space of the scheduling framework is discussed. Next,

each component of the scheduling framework is presented. The scheduling framework is

composed of (1) a grid system model, (2) an application model, (3) a performance model,

and (4) a scheduling policy. Each of these components can be extended to support

sophisticated scheduling techniques, or simplified to a base framework.

3.1 Grid Scheduling Solution Space

The grid scheduling problem is the problem of mapping a set of tasks to a set of

machines, or nodes. We consider a set of k tasks T = {t1, t2, … , tk} and a set of n nodes N

= {h1, h2, … , hn}. The set T comprises the total job to be scheduled, and has been

previously partitioned into k tasks by the user, the application writer, or an automated

partitioning tool. The scheduling framework produces some mapping of tasks to nodes

ASSIGNMENT = {(t1, hx),… , (tk, hy)}. Each of the k elements in ASSIGNMENT map each

unique task in T to any node in N, so multiple tasks can be assigned to the same node (see

Figure 3).

We focus on scheduling data-parallel jobs with multiple interacting components.

The framework is suitable for parallel jobs with non-trivial amounts of communication,

as well as massively parallel jobs such as parameter space studies, which do not incur

high communication overhead.

We assume that the behavior of the network and the hosts is dynamic and non-

deterministic. We also assume that multiple users may share the grid system. Multiple

20

schedulers may be simultaneously producing assignments, and some nodes may support

time-sharing. Thus, the scheduling framework must support co-scheduling and tolerate

non-reservable resources that may have significant workloads.

Figure 3: A set of tasks is mapped to hosts through an assignment.

3.2 Grid System Model

The grid system model provides a representation of grid system resources. The

model includes information about resource characteristics and availability, as well as the

topological information about the network configuration. The grid model provides

information used by task assignment algorithms within the scheduling framework.

A grid resource is typically an individual host machine with one or more

processors of the same type. For example, a grid resource might be a workstation, a

vector multiprocessor, a mesh multicomputer, or a network attached storage server. Each

resource has a number of characteristics that may vary over time. We can enumerate

typical characteristics of a grid resource in different categories:

ASSIGNMENT

hnh3h2h1

…

t1 t2 t3 t4 t5 tk…
Tasks

Hosts

21

• Processors (type, number, speed, cache size)

• Processor load (current, peak, sustained)

• Memory (type, real, virtual, swap, peak and sustained bandwidth, latency,

current available)

• Operating system (type, version, configuration)

• Storage devices (type, size, peak and sustained bandwidth, latency)

• Communication devices (type, peak and sustained bandwidth, latency)

• Network location (nearest cluster, nearest router, IP address, geographic

location)

Clearly, the characteristics that define resource type cannot be fully enumerated,

since there is a potentially infinite set of different characteristics. Thus, a grid system

model must necessarily be extensible enough to support arbitrary resource characteristics.

3.2.1 Resource Information Collection

Information agents provide the system data used in the grid system model and the

performance model. All resource information is, in one sense, dynamic. Processor load

and available memory are clearly dynamic entities, but so is node processor type,

operating system, or network topology. The configuration of the grid or resources within

the grid may change as resource owners add, change, or remove components. These

resource characteristics do not change with the frequency of highly dynamic

characteristics like available memory, but should not be considered static. Each grid

resource uses an information agent to take a snapshot of the current resource state.

Snapshots are static lists of resource information used by the scheduling framework.

22

Snapshots can be periodically updated to reflect dynamic changes in resource

characteristics.

The information gathered by an information agent may include the typical

resource characteristics detailed in section 3.1. However, the information acquisition can

be tuned to aid in scheduling specific jobs. The information agent must relay some

minimum performance and network information to the task assignment algorithm as

specified by the scheduling policy. The performance information should allow scheduling

policy to produce an ordering of nodes according to performance. Usually, this is

determined by a combination of system information. The network information should

allow the scheduling policy to produce an estimate of network communication costs. One

implementation of an information collection system is discussed in section 4.1.

3.3 Application Model

The application model provides a representation of application behavior. A grid

scheduler can use the application model as a way to guide the scheduling process. The

user or the application developer familiar with the program normally provides such

information. In typical grid scheduling algorithms, large amounts of application-specific

information are required to produce good schedules. Some of the typical information may

include:

• The number of partitioned tasks k

• The architecture(s) for which the task binaries are valid

• The topology of task communication (e.g., linear, broadcast, tree)

• The ratio of communication to computation for each node

23

• Profiling statistics of the application run on different architectural

configurations

• The expected number and size of network packets sent and received by each

node

Application information is necessary only if a task assignment algorithm requires

it. A simple algorithm may choose to require some or none of the listed application

characteristics, and a specialized scheduler may require different characteristics of the

application. The only exception to this rule is the partitioning information, which must be

supplied if the scheduler is to assign a set of tasks to nodes. By default, very little

application information is required.

3.4 Performance Model

The performance model (1) identifies valid scheduling candidates, (2) builds any

necessary performance prediction models, and (3) defines a fitness function for

performance prediction.

3.4.1 Identifying Scheduling Candidates

The performance model must identify which resources are valid candidates for task

placement. To be a valid scheduling candidate, a machine must be able to run the task

binary. The performance model requires a small amount of information from the grid

system and application models to identify valid scheduling candidates.

The grid system model must provide a small amount of information about each

computing resource by default:

24

• Architecture type

• Operating system

The architecture type and operating system type are used to determine valid scheduling

candidates, and are necessary components of the grid system model.

The application model must also provide a small amount of information by

default:

• The number of partitioned tasks k

• The architecture(s) for which the task binaries are valid

The number of tasks and valid task architectures are both necessary for producing a valid

schedule.

3.4.2 Network Organization Model

Grid resources are fundamentally connected in a network organization. The

network abstraction of a grid resource is called a node. In a traditional network

organization, a node is connected to the majority of other nodes through a wide-area

network, and may be connected to a smaller collection of nodes in a local-area network.

If there are no other nodes in the local area, the “local-area network” consists of only the

node itself.

Because network resources in a grid system are heterogeneous, the arrangement

of nodes is more complex. The network organization in a grid system usually forms a

supercluster (or cluster of clusters). Each cluster is effectively a local-area network of

nodes, connected to other clusters by routers in an increasingly wider area. Nodes in a

25

cluster are identified by their shared local communication link, and not by their

architecture. Thus, heterogeneous, or federated, clusters can compose a grid supercluster.

The performance model may use grid system model information to assemble a

network organization. The model then produces an estimate of the expected bandwidth

and latencies between any two nodes in the system to increase the overall accuracy of the

performance estimation. Accurate prediction of network performance is complicated by

many factors. The composition of each cluster in the grid system may be quite different.

For instance, two LANs may exhibit widely disparate bandwidths and latencies due to

differences in the number of routers and gateways, fiber and ethernet bandwidths, or

network traffic. Even within a level of the network organization, various sub-levels may

perform differently. Katramatos et al. [Kat01] have shown that even homogeneous

clusters can exhibit significant variations in latency. The grid system model should be

able to represent the differences in network performance at every level. Unexpected

changes in network traffic may skew estimates of network performance dramatically, but

a grid system shared between many users may experience such unexpected changes

frequently.

A number of research groups are investigating services for network performance

prediction in superclusters [Wol98][Glo99][Kat01][Sup99]. Many of these services

collect static information about network configuration, information about observed

performance, and dynamic information about current network traffic. The services may

prove useful for predicting network performance in a complex network environment such

as the grid. The extensibility of the performance model includes support for any number

26

of tools for network performance prediction. One simplified tool for network

performance prediction is described in section 4.2.2.

3.4.3 Fitness Equation

The task assignment framework produces an estimated performance for a task on

each node in the system model by using a cost or fitness equation. The fitness equation is

the method by which the scheduling policy ranks nodes and chooses an appropriate

schedule. The scheduling policy calls a function Performance(ti, hx) to obtain a relative

estimate of the performance, or fitness, of a task ti on a particular node hx. Performance

has access to information provided in the grid system model, the application model, and

the network organization model, and may use the information to produce performance

estimates. Performance can be composed of a number of functions that aid in the

performance estimation. In its most general form, Performance uses a function

Max_performance to determine the maximum performance of a task on the given host (in

cycles/second), and uses a function Latency to estimate the cost of network

communication latency (in seconds):

Performance(ti, hx) = Max_performance(ti, hx) / (1 + Latency(ti, hx))

For example:

Let Max_performance(ti, hx) = 1Ghz, or 109 cycles/sec.

Let Latency(ti, hx) = 1 sec.

Then, Performance(ti, hx) = 109 / (1 + 1) = 5 * 108 cycles/sec., or 500 Mhz.

27

This simple cost equation forms the basis for evaluating task assignment, but does

not dictate how each part of the equation should be calculated. The division of

performance into separate maximum performance and latency predictions allows for a

natural division of architecture-based and network-based prediction functions. Most

existing tools for benchmarking and profiling are usually divided along these lines. For

instance, benchmarking suites like SPECint95 [Spe95] are designed for architectural

evaluation, whereas tools like NWS [Wol98] are designed for network performance

prediction. Both performance metrics are influential in the overall performance of the

node, and they are both included in the fitness function.

An arbitrary combination of prediction functions can be used to calculate the

expected maximum performance and latency. This extensibility allows the cost function

to be refined to calculate accurate performance metrics as needed.

For example, see figure 5. Max_performance might be a weighted combination of

performance estimations. Architecture produces an estimated performance measurement

based on architecture benchmarks. The results of benchmarks like Linpack and

SPECint95 may be weighted according to their effectiveness in performance prediction.

In addition, application profiling may be used to produce an estimated performance

measurement based on previous runs of the program on the given machine. The

combination of application profiling and system benchmarking may produce a more

accurate prediction for Max_performance.

Likewise, the Latency function may be extended to make accurate communication

latency estimations. Communication_cost produces an estimated latency based on MPI

28

benchmarking. This estimate is combined with the Network Weather Service estimate to

produce an accurate estimate of predicted communication latency.

Figure 5: One scenario by which the grid scheduling framework has been extended to make more accurate

predictions of task performance.

3.6 Scheduling Policy

The scheduling policy uses the performance model estimates to rank machines

and choose a schedule. In our scheduling framework, a simple scheduling heuristic is

used to produce an assignment of tasks to machines:

Let Performance(ti, hx) produce the current cost of assignment for a given task ti, and

initialize ASSIGNMENT = ∅

(1) For each task ti

(2) Let 1)(−=itFitness

(3) For each node hx, 0 ≤ x ≤ n

Performance() =
 Max_performance() / (1+Latency())

Max_performance() =
 w1 * Architecture() + w2 * App_profiling()

Latency() =
w3 * Communication_cost() + w4 * NWS()

Linpack SPECint95 MPI benchmarking

29

(4) If)(),(ixi tFitnesshtePerformanc > , then

(5)),()(xii htePerformanctFitness =

 (6) ASSIGNMENT = ASSIGNMENT)},{(xi ht∪

 (7) Increment hx processor load by one.

This is a greedy algorithm with complexity O(nk), similar to previous work in

heterogeneous scheduling algorithms [Lo88][Wei00]. The algorithm iteratively assigns

each task to the machine that produces the best performance. After the best machine for

that round is selected, the machine load on that machine is increased, and the pairing is

added to the ASSIGNMENT set. Machine load is initially a weighted average of recent

load as reported by the operating system, and may effect Max_performance estimates.

We assume data-parallel jobs to be compute-intensive, and increase the new load of a

chosen node by one to reflect this in future task assignments of the job. However, this

possible overestimation does not affect future job schedules, since the load value is not

persistent over multiple scheduling runs. The possible overestimation only affects future

task placement decisions for the current job. Once a task has been assigned to a node, the

task assignment cannot be changed.

The algorithm is different from the Lo and Weismann algorithms because it

produces a relative performance estimate, rather than an absolute predicted completion

time. This can be useful for scheduling jobs with non-deterministic behavior, such as

interactive applications.

This simple heuristic is designed for scalability. The run-time overhead of the

algorithm is small even when n or k grows. This type of scalability is necessary for grid

30

systems, where the number of nodes may range in the thousands, and the task partitioning

may be equally large. The heuristic is also extensible because the fitness function can be

extended to provide the desired accuracy of performance prediction. However, extensions

to the fitness function may add to the algorithmic complexity of the heuristic, since it

may increase the running time of Performance. Thus, the algorithm provides a ranking

method that is not algorithmically complex by default, and it can be extended to provide

more accurate placement decisions as desired.

One weakness of the algorithm is found in its iterative method of task placement.

The fitness function typically estimates latency by calculating the aggregate

communication costs between a given node hx and the nodes listed in ASSIGNMENT.

This latency estimate will not effect the performance estimates when ASSIGNMENT is

initially empty, because the aggregate communication costs will be zero. The algorithm

may make a poor initial placement decision because it will not initially identify nodes

with poor communication facilities as poor candidates.

Modifying the behavior of the fitness function can eliminate this weakness. For

example, the number of partitioned tasks in a job can be used to estimate latency costs

even when ASSIGNMENT is initially empty. Machine latency can be non-zero, even

when no tasks are currently scheduled, in order to avoid a poor local selection. One

solution to this weakness is found in section 4.4.3.

31

Chapter 4 Scheduler Implementation

This chapter describes a grid scheduler implemented for the Legion grid

computing system. Legion is an object-based grid system that allows a grid infrastructure

to be used as a single virtual machine [Gri97]. Legion uses the grid infrastructure to

provide much of the functionality of an operating system, such as a unified persistent

name space and a file system. Legion also provides a high performance computing

environment for a variety of applications.

The goal of implementation was to produce a scheduler that requires only a small amount

of information about the application and the state of the network. In order to avoid run-

time overhead, the scheduling cost function does not require any detailed benchmarking

statistics about the application or the grid system.

In this chapter, we review the resource information collection process in Legion.

Then, the grid system model, application model, and performance model are defined.

4.1 Resource Information Collection

In Legion, a collection acts as a repository for grid system information [Cha98].

The collection stores information records as a set of Legion object attributes, and

supports both push and pull models of data collection. In Legion, everything is

represented as an object. Legion object attributes can be arbitrary information about any

object, including any grid resource. This flexibility allows new scheduling policies to

choose what grid system information is needed to create schedules.

32

4.2 Grid System Model

The grid system model obtains resource information by querying the collection. The

characteristics required by the grid system model do not require extensive system

benchmarking. They are:

• Architecture type

• Number of processors

• Processor speed

• Processor load

• Operating system

• Network location

The architecture type and operating system are necessary components of the grid system

model, as discussed in section 3.4.1. The number of processors, processor speed, and

processor load allows the performance model the basic information to determine the peak

and current processing power of a node. Finally, the network location allows the

performance model to have a networked representation of the grid nodes, which allows

estimation of the cost of communication between nodes. The network representation is

detailed in section 4.4.

4.3 Application Model

The application model is built from user-provided application characteristics that

do not require extensive application profiling. They are:

• The number of partitioned tasks k

33

• The architecture(s) for which the task binaries are valid

• The ratio of communication to computation for each node

The number of tasks and valid task architectures are both necessary for producing a valid

schedule, as discussed in section 3.4.1. The ratio of communication to computation gives

the performance model a method of weighing the relative importance of communication

rates and computational power for the application without requiring extensive application

profiling.

4.4 Performance Model

The performance model bases the fitness equation on cost estimates provided by

simple Max_performance and Latency functions. The Latency function uses a simple

network organization model to predict the estimated latency between two grid system

nodes.

4.4.1 Performance Fitness Function

Max_performance requires relatively little information about nodes and the

application:

),(*
1)(

)(
*)(),(_ xi

x

x
xxi htASF

hload
hprocessors

hspeedhteperformancMax
+

=

such that:

• processors(hx) produces the number of processors on node hx,

• speed(hx) produces the processor clock speed in cycles/second,

• load(hx) is a weighted average of the currently reported 5-, 10-, and 15-minute load

on the host, and

34

• ASF(ti, hx) returns the architectural scale factor, or estimated relative performance of

the task on the host.

For instance, a machine with two 750 MHz processors, a current weighted load of one,

and a relative architecture scale factor of 1.2 can expect to contribute approximately

9002.1*
11

2*750 =
+

weighted clock cycles per second.

The estimates for processors(hx), speed(hx), and load(hx) are provided by the

collection. The architecture_scale_factor(ti, hx) is a user-provided estimate of the relative

performance of their application on different architectures. This allows applications with

strong affinities towards particular architectures to receive the proper task assignment.

4.4.2 Network Organization

Traditional network classifications, such as WAN and LAN classifications, do not

sufficiently reflect the complexities and differences in the levels of network organization

in a grid. One simple method of organization that allows for these differences is the

distance-based hierarchical model. Each cluster represents a level in the hierarchy, and

the routing distance between any two nodes can easily be derived from the hierarchy.

This organization is extensible because it can accommodate any number of levels of

hierarchy, rather than a limited number of classifications such as WAN, MAN, and LAN.

A hierarchical model simplifies certain network characteristics. For instance, it

assumes that the communication costs between two clusters will be the same for packets

travelling in either direction. Also, the abstraction does not include specific information

about each cluster’s network performance. However, this simple model allows rough

35

communication cost estimates to be made without gathering network statistics. This

simplification reduces the overall cost of scheduling.

Figure 4: A hierarchical representation of a grid topology. The leaves in the tree (boxed) are clusters

containing nodes, and the non-leaf nodes represent clusters of clusters.

4.4.3 Latency Cost Function

The Latency cost function uses the simple network organization model to produce

latency cost estimates without extensive network or application information. It does not

require measurements of peak and sustained network bandwidth and latency from the

collection, and does not use current information about network traffic. Furthermore, it

does not require the application writer to define the communication topology of the

C9

C5

C7

C4

C8

C2

C6C1

C3

36

application. It merely requires the user to submit an approximate ratio of communication

to computation (from 0 to 1) that is expected in the application run, ratio, and uses that

ratio to weigh the estimated cost of network communication.

Typically, network latency increases with the “wideness” of the network, or

decreases as the span becomes more localized. A wide-area parallel processing study

[Wei95] demonstrated that there is approximately an order of magnitude degradation in

communication capacity between different layers of wide-area connectivity. The study

measured bandwidth and latency over department-wide, campus-wide, metropolitan-

wide, and nation-wide area networks. The Topology function exploits this observation:

Topology(hx, hy, τn) = 10n, 0≥n , where

• n is number of network levels between hx and hy, and

• τn is the hierarchical network topology.

Topology calculates the number of levels of network hierarchy n between the two nodes

hx and hy given the network topology τn, and returns an order-of-magnitude value, 10n, to

estimate the communication costs between the two nodes.

The result of Topology is used to calculate the approximate network latency:

Latency(ti, hx)

cost = 0

for each hy in ASSIGNMENT

cost += Topology(hx, hy, τn) * ratio

37

return cost

This algorithm calculates the communication cost for each node in ASSIGNMENT

using Topology, and returns the estimated cost. Clearly, as more tasks are assigned to

nodes, the cost of scheduling a new task many levels removed from other nodes

increases. By default, when no nodes are in ASSIGNMENT, the calculated latency is zero.

To compensate for this problem, Topology uses the number of partitioned tasks

and the network organization model to produce a special latency cost for a given node hx

even when ASSIGNMENT is empty. In this case, Topology calculates the latency by

creating a temporary assignment of tasks to nodes “closest” to the given node hx. Clearly,

the closest node to hx is hx itself, so Topology makes the temporary additional

requirement that only one task is scheduled per processor. This requirement is not related

to the final schedule, or to future calls to Topology. The method merely provides a

ranking of nodes by closeness to other nodes, scaled by the total number of tasks in the

job. This estimate helps avoid poor scheduling decisions during the initial placement.

38

Chapter 5 Evaluation

In this chapter, we present the evaluation of the simple scheduler implemented in

our framework. First, we describe the evaluation test suite. The parameters of the

evaluation are then presented. Finally, the testing results are presented and discussed.

5.1 Evaluation Test Suite

In order to evaluate the implemented scheduler under a variety of conditions, we

created a small test suite to simulate the behavior of a variety of data-parallel

applications. The tests were written using the Legion MPI programming interface for

synchronization. The suite supports six different task communication patterns typical of

such applications. These patterns are linear, two-way ring, mesh, tree, star, and full-way

communication.

Figure 6: Different communication patterns typical of DP jobs.

Linear Two-way ring

Full-wayStarTree

Mesh

39

Each run of the program partitions k tasks to run for a preset amount of time. Each

task divides its time between communicating and computing according to the given

communication to computation ratio and the communication pattern. For instance, one

run of the program might partition 20 tasks to run for 10 seconds with a communication

to computation ratio of 1:4 in linear communication mode. Each task will spend the first

two seconds passing messages in a linear fashion, and then spend the remaining eight

seconds doing matrix calculations. The number of communication and computation

cycles completed after each run is tabulated.

The test suite is used to evaluate the relative performance of tests scheduled using

different scheduling algorithms. In the evaluation procedure, each algorithm is given the

same snapshot of the system state from the collection, as well as a small amount of

information about the current test job. This information is the number of tasks (ranging

from five to 40), the ratio of communication to computation, and the architecture scale

factor. From this information, each algorithm produces a schedule. The job is run on a

grid testbed using each generated schedule, and the relative amount of communication

and computation produced by each run forms a basis for comparison between the

algorithms.

5.2 Testing Environments

The evaluation procedure was run in two testing environments. Npacinet-1 is a

subset of the National Partnership for Advanced Computing Infrastructure (NPACI)

[Npa01] Legion testbed. Npacinet-1 consists of approximately 95 nodes connected

through four layers of network hierarchy. All nodes in Npacinet-1 run Linux on an Intel

40

Pentium-based architecture. Apart from the base architecture, the node characteristics

(e.g., processor speed, physical memory, etc.) vary. One cluster, based at the University

of Minnesota, consists of four dual-processor 533-MHz Pentium machines running Linux

2.2.12-20smp with 256 MB of physical memory, connected by Giganet. The second

cluster is a subset of the Centurion cluster at the University of Virginia. It consists of 128

dual-processor 400-MHz Pentium II machines running Linux 2.2.14-1.3.0 with 512 KB

cache and and 256 MB physical memory. Each node is connected to a 100Mbps fast

Ethernet switch, and these switches are joined via gigabit Ethernet switches. Thus, the

network configuration of Centurion is a cluster of clusters. The disparity in architecture

and network configuration are good examples of grid system heterogeneity, and makes

Npacinet-1 a useful testbed for scheduling algorithm evaluation.

Npacinet-2 is a larger subset of the NPACI Legion testbed. Npacinet-2 contains

Npacinet-1, as well as 64 533-Mhz DEC Alpha machines running Linux 2.2.14-1.3.0

with 256 MB memory, and 6 100-Mhz SGI O2 machines running IRIX 6.5 with 128 MB

memory. The DEC Alpha machines are clustered with Myrinet, and the SGI O2 machines

are connected with Ethernet. The machines are interactively shared with other users, and

exhibit variance in resource usage. Npacinet-2 was used because it is representative of a

typical grid infrastructure. It exhibits heterogeneity in architecture, dynamic resource

usage, and network configuration.

5.3 Scheduling Policy Evaluation

The evaluation tested the effectiveness of three scheduling policies: (1) RAND,

(2) MP, and (3) MPL. RAND is a scheduler that uses a random host selection algorithm.

41

This algorithm is sometimes often used in operating systems or homogeneous distributed

systems, but may not extend well to a grid system. It serves as a baseline for comparing

the other algorithms. The MP algorithm uses a fitness function that only uses

Max_performance to make performance estimates. Finally, MPL uses both

Max_performance and Latency to make performance estimates.

Although RAND provides a baseline for evaluation, we cannot compare the

produced schedules to an optimal schedule in this test environment. The complexity and

dynamic nature of the grid system makes finding the optimal schedule impossible. For

instance, the differences in processor load and available memory across the machines in

the testbeds change unpredictably. Finding the optimal schedule requires a way to predict

these changes in order to choose the optimal node for each task. The prediction of these

characteristics in even a simple grid system is difficult, if not impossible, to achieve.

Therefore, we compared our scheduling policies with a baseline policy, rather than with

an optimal one.

MP is useful for comparison with MPL because it should expose the strengths and

weaknesses of using the latency estimation method described in section 4.4.3. However, a

latency-only scheduler is not necessary for testing, since it will always schedule all tasks

on the same processor to minimize the latency costs.

5.3.1 Scheduling Policy Evaluation Results

In the scheduling policy evaluation, we compare (1) MP vs. RAND, (2) MPL vs.

MP, and (3) MPL vs. RAND. In each comparison, the two scheduling policies are given

the same job and system information, and generate schedules according to their

42

respective policy. Each comparison scheduled jobs ranging from five to 40 tasks, with six

ranges of communication to computation ratios, over two testbeds. Each comparison ran

approximately 190 tests per testbed, for a total of approximately 380 tests.

Table 5.1 illustrates the relative performance of the test suite run with schedules

generated by MP and RAND scheduling policies. In both testbeds, MP-scheduled jobs

consistently produced 20-60% more computation than similar jobs scheduled with

RAND. The Max_performance estimation allowed the MP scheduler to predict the

processor availability more effectively than a random scheduling policy. Neither RAND

nor MP evaluated latency costs as part of their performance model, and the resultant

communication performance was unpredictable because of this fact. On average over

both testbeds, MP and RAND produced similarly poor schedules for communicating

tasks. The variance in communication performance is due to the lack of communication

criteria, which results in random communication performance. In these testbeds, RAND

may have had a slight advantage over MP. MP specifically scheduled tasks on nodes with

the highest Max_performance, but RAND chose from a random sampling of the available

nodes. Because the majority of nodes in Npacinet-1 (approximately 90 out of 95) were

part of the same Centurion cluster, RAND had a majority of nodes fall in the same

cluster. This sampling resulted in slightly better communication performance.

Table 5.1: MP versus RAND

Npacinet-1 Npacinet-2
384 Trials total Communication

(%)
Computation

(%)
Communication

(%)
Computation

(%)
Linear 75.38836 120.2711 63.66857 156.9209
Two-way ring 136.2604 120.8976 99.86789 157.1913
Mesh 85.69966 126.9933 125.9631 159.0397
Tree 148.1161 124.8453 165.0605 159.0735

43

Star 78.04896 120.4064 74.89542 153.7328
Full 139.3748 118.4857 246.6633 156.0611
Mean: 107.7419 121.7487 87.81705 156.7893

Table 5.2 illustrates the relative performance of the test suite run with schedules

generated by MPL and MP scheduling policies. In Npacinet-1, MPL-scheduled jobs

performed 5.4% more computation that MP-scheduled jobs, and MPL-scheduled jobs in

Npacinet-2 performed at 90.2% of the computational capacity of MP jobs. The slight

decrease in overall computational performance was compensated by the large differences

in communication performance, which ranged from 97-535% over MP. Clearly, the

Latency calculations made a significant impact on job communication in most cases,

without negatively influencing the produced computation.

Table 5.2: MPL versus MP
Npacinet-1 Npacinet-2

384 Trials total Communication
(%)

Computation
(%)

Communication
(%)

Computation
(%)

Linear 215.6294486 101.4318 457.8429 90.55876
Two-way ring 175.1978118 109.9872 348.457 89.84642
Mesh 96.98183761 94.91566 534.8136 90.03901
Tree 398.836372 98.87442 266.4326 91.80503
Star 242.4777107 103.6321 402.4 89.88453
Full 153.8510937 117.997 135.3367 89.70192
Mean: 213.6160746 105.4309 378.1468 90.22894

Table 5.3 illustrates the relative performance of the test suite run with schedules

generated by MPL and RAND scheduling policies. MPL-scheduled jobs consistently

outperformed RAND-scheduled jobs in communication performance (ranging from 133 –

333%), with moderate gains in computation performance as well (ranging from 96-

169%).

44

Table 5.3: MPL versus RAND
Npacinet-1 Npacinet-2

384 Trials total Communication
(%)

Computation
(%)

Communication
(%)

Computation
(%)

Linear 174.5401 96.00306 253.9795 140.506
Two-way ring 162.6376 114.0959 213.358 142.9694
Mesh 332.8688 120.1422 263.6982 153.0446
Tree 290.8362 118.3486 207.0874 169.8817
Star 182.589 113.1457 200.7836 138.7187
Full 132.902 108.5371 143.8444 147.0409
Mean: 216.3261 111.0118 218.0809 147.0974

Figure 7 summarizes MP- and MPL-scheduled job performance against RAND-

scheduled jobs. Both MP and MPL beat RAND computation performance on both nets.

The higher computational performance yield on Npacinet-2 may be due to the wider

differences in architectural performance. Figure 8 illustrates the relative computational

Figure 7: Schedule Performance Summary Statistics

0

50

100

150

200

250

Computation
Npacinet-1

Computation
Npacinet-2

Communication
Npacinet-1

Communication
Npacinet-2

R
el

at
iv

e
pe

rf
or

m
an

ce
 v

s.
 R

A
N

D

MP
MPL

45

performance of the test suite on the three architectures in Npacinet-2. The SGI O2

machines performed approximately 20% of the computation produced by an Intel 533

MHz, and the DEC Alpha machines performed approximately 25% as much computation

as the Intel on average. In Npacinet-1, the 400-Mhz Intel produced approximately 70% of

the computation of the 533-Mhz machine. Thus, MP and MPL had more opportunity to

outperform RAND in computational performance in Npacinet-2, because of the

architectural variety.

Figure 7 also demonstrates the added value of the Latency calculation. MPL-

scheduled jobs performed an average of 200% more communication on both testbeds,

whereas MP-scheduled jobs performed similarly to RAND jobs. Clearly, the Latency

Figure 8: Relative profiled computational performance

0

0.2

0.4

0.6

0.8

1

1.2

Alpha SGI Intel 400 Intel 533
Architecture

R
el

at
iv

e
pe

rf
or

m
an

ce

46

estimations guided the scheduling process towards better communication performance

without adversely affecting computational performance.

5.3.2 Scheduling Policy Run Time Evaulation

The complexity of each scheduling policy determines its run time. RAND is

complexity O(k) because it randomly chooses an assignment for each task. MP is

complexity O(nk), because it uses the scheduling algorithm from section 3.6 without

adding any significant computational complexity in its calculation of Max_performance.

MPL adds a latency calculation that iterates over the assigned tasks, and has algorithmic

complexity O(nk2). Figure 9 illustrates a comparison of the algorithm run times as k

increases.

Figure 9: Scheduling algorithm running time

0

20

40

60

80

100

120

140

0 1 2 4 8 16 32 64 128 256
k

R
un

ni
ng

 ti
m

e
(s

ec
)

RAND MP MPL

47

The running times were gathered on a Pentium-II 400 Mhz machine with 128 MB

memory. The rapid increase in running time for MPL is due to its exponential

complexity, and makes a large difference in running time when the number of tasks

increases. The MPL policy may not be desirable when the number of tasks is very large,

the expected job running time is very short, or the amount of communication is small.

5.4 Evaluation Summary

MPL was proven to produce effective schedules for a wide-variety of data-

parallel applications. MP and MPL outperformed RAND in producing schedules that

maximized job computation, and MPL outperformed MP and RAND in producing

schedules that maximized job communication. MPL schedules did not significantly

sacrifice computational performance to achieve communication gains in the two testbeds

used for evaluation.

MPL, MP, and RAND running times reflected their respective algorithmic

complexities. RAND may be a useful scheduling technique for very short running jobs,

or for jobs without high communication or computation rates. MP running time also

makes it a good candidate for scheduling short running jobs, or jobs without high

communication rates. The MPL running time grew quickly with k, making it costly for

scheduling short-lived jobs. However, a user may find MPL to be valuable when job run

time is long. Clearly, no one scheduling policy is appropriate for all grid systems and

applications.

48

Chapter 6 Future Work

In this chapter, we present topics worthy of future investigation. Firstly, we

discuss further methods of evaluating the scheduling framework. We then discuss

possible extensions to the scheduling framework.

6.1 Further Evaluation

Our scheduling framework allows the user to provide rough estimates of program

communication and computation rates. These estimates may often be incorrect, and the

impact of the error on job performance is unknown. Further testing should measure the

changes in job performance caused by mistakes in characterizing job behavior. By

measuring the degradation in performance, we can determine guidelines for estimating

job behavior.

Data-parallel jobs in grid systems can be partitioned into hundreds or thousands of

tasks. As grid computing matures, the number of tasks in a data-parallel job may grow

even more. Further testing should increase k values to determine job performance for

larger schedules created in the framework. Better scheduling strategies should be

developed for scheduling in O(nk) time.

The scheduling framework should be tested to determine how well it extends to

different program classes. Multiple-instruction multiple-data (MIMD) jobs may pose

different scheduling requirements. Also, a variety of practical grid jobs should be

assembled into a test suite for scheduling. The programs should be real applications run

by the grid community with different job characteristics. The test suite could serve as a

49

means of benchmarking scheduling policies, much like the SPECint95 suite is used to

benchmark architectural performance.

Specialized tools are currently being developed to evaluate grid scheduling

algorithms. Bricks [Tak01] can be used to compare the effectiveness of our framework,

as well as extensions to the framework. This evaluation may be valuable to users that

may choose from a variety of available extensions to the framework.

6.2 Framework Extensions

The scheduling framework is designed to be extensible. More powerful

performance predictors should be added to the framework, and their contribution to the

performance model should be evaluated. NWS [Wol98] should be tested as a predictor of

future network performance. The Cost-Benefit Estimation Service (CBES) [Kat00] is a

promising developing method of predicting grid performance, including network costs.

Vampir [Vam01] may be useful for evaluating performance for MPI jobs, and could be

used in the framework. Genetic algorithms are being employed in grid schedulers

[App01], and may be a useful extension to the framework.

Advance reservations and co-scheduling may be a promising method of meeting

quality of service requirements for certain grid applications [Cza99]. Co-scheduling is the

simultaneous execution of a group of tasks. Grid resources like queueing systems require

advance reservations to enable co-scheduling. An advance reservation system may prove

useful for extending the grid scheduling framework.

50

References

[App01] AppLeS: Application-Level Scheduler. http://apples.ucsd.edu. April 2001.

[Ber97] Berman, Francine. “High-Performance Schedulers”. In The Grid: Blueprint for a

New Computing Infrastructure. Morgan Kaufmann Publishers, pp. 279-309, 1999.

[Cas88] Casavant, Thomas, and Jon Kuhl. “Taxonomy of Scheduling in General-Purpose

Distributed Computing Systems”. IEEE Transactions on Software Engineering, Vol. 14,

Number 2, pp. 141-154, February 1988.

[Cha98] Chapin, Steve J., Dimitrios Katramatos, John Karpovich, and Andrew

Grimshaw. “Resource Management in Legion”. Future Generation Computer Systems,

Vol. 15, pp. 583-594, 1999.

[Cza99] Czajkowski, Karl, Ian Foster, and Carl Kesselman. “Resource Co-Allocation in

Computational Grids”. Proceedings of the 8th IEEE Transactions on High-Performance

Distributed Computing, pp. 219-228, 1999.

[Cza01] Czajkowski, Karl. Personal communication, April 2001.

[Fos97] Foster, Ian, and Carl Kessleman. “Globus: A metacomputing infrastructure

toolkit”. International Journal of Supercomputer Applications, Vol. 11, Number 2, pp.

115-128, January 1997.

[Fos99] Foster, Ian, and Carl Kessleman. The Grid: Blueprint for a New Computing

Infrastructure. Morgan Kaufmann Publishers, 1999.

[Fre89] Freund, F, and H.J. Siegel. “Heterogeneous Processing”. IEEE Computer, June

1993.

[Glo99] GloPerf webpage. http://www-fp.globus.org/details/gloperf.html. April 1999.

[Gon77] Gonzalez, M. J. “Deterministic Processor Scheduling”. ACM Computing

Surveys, Vol. 9, Number 3, pp. 173-204, September 1997.

[Gri97] Grimshaw, Andrew S., William A. Wulf, and the Legion team. “The Legion

Vision of a Worldwide Virtual Computer”. Communications of the ACM, Vol. 40,

Number 1, pp. 39-45, January 1997.

[Ham95] Hamidzadeh, Babak, David J. Lilja, and Yacine Atif. “Dynamic Scheduling

Techniques for Heterogeneous Computing Systems”. Concurrency: Practice and

Experience, October 1995.

51

[Kat00] Katramatos, Dimitrios, Deepak Saxena, Nehal Mehta, and Steve J. Chapin. “A

Cost/Benefit Model for Dynamic Resource Sharing”. Heterogeneous Computing

Workshop 2000.

[Kat01] Katramatos, Dimitrios, Marty Humphrey, Cheol-Min Hwang, and Steve Chapin.

“Developing a Cost/Benefit Estimating Service for Dynamic Resource Sharing in

Heterogeneous Clusters: Experience with SNL Clusters”. To appear in CCGRID 2001,

report 8519.0616.

[Lo88] Lo, Virginia. “Heuristic Algorithms for Task Assignment in Distributed

Systems”. IEEE Transactions on Computers, Vol. 27, Number 11, pp. 1384-1397,

November 1988.

[Nak98] Nakada, Hidemoto, Mitsuhisa Sato, and Satoshi Sekiguchi. “Design and

Implementations of Ninf: towards a Global Computing Infrastructure”. Future

Generation Computer Systems, Metacomputing Issue, 1999.

[Npa01] National Partnership for Advanced Computing Infrastructure.

http://www.npaci.edu. April 2001.

 [Sal99] Salleh, Shaharuddin, and Albert Zomaya. Scheduling in Parallel Computing

Systems: Fuzzy and Annealing Techniques. Kluwer Academic Publishers, 1999.

[Sil98] Silberschatz, A., and P. Galvin. Operating System Concepts, 5th ed. Addison-

Wesley, 1998.

[Spe95] SPECint95. The Standard Performance Evaluation Corporation, Manassas, VA,

USA. http://open.specbench.org

[Sup99] de Supinski, B.R., and N.T.Karonis. “Accurately Measuring MPI Broadcasts in a

Computational Grid”. Proceedings of the 8th IEEE Symposium on High Performance

Distributed Computing. 1999.

[Tak01] Takefusa, A. “Bricks: A Performance Evaluation System for Scheduling

Algorithms on the Grids”. JSPS Workshop on Applied Information Technology for

Science (JWAITS 2001). January 2001.

[Ull75] Ullman, J. “NP-complete scheduling problems,” Journal of Computing System

Science, Vol. 10, 1975.

[Vam01] Vampir: Visualization and Analysis of MPI programs.

www.pallas.de/pages/vampir.htm. April 2001.

52

[Wei95] Weissman, Jon. Scheduling Parallel Computations in a Heterogeneous

Environment. PhD thesis. University of Virginia, August 1995.

[Wei98] Weissman, Jon. “Gallop: The Benefits of Wide-Area Computing for Parallel

Processing”. Journal of Parallel and Distributed Computing, Vol. 54, Number 2,

November 1998.

[Wei00] Weissman, Jon. “Scheduling Multi-component Applications in Heterogenous

Wide-Area Networks.” Proceedings of the 9th Heterogeneous Computing Workshop,

April 2000.

[Wol98] Wolski, Rich. “Dynamically Forecasting Network Performance Using the

Network Weather Service”, Cluster Computing, 1998.

[Zag98] Zagorodnov, Dmitrii, Francine Berman, and Rich Wolski. “Application

Scheduling on the Information Power Grid”. Submitted to International Journal of High

Performance Computing Applications.

[Zom01] Zomaya, A., Richard Lee, and Stephan Olariu. “An Introduction to Genetic-

Based Scheduling in Parallel-Processor Systems”. In Solutions to Parallel and

Distributed Computing Problems, ed. A. Zomaya, F. Ercal, and S. Olariu. John Wiley &

Sons, 2001.

