
s,

 in-
 is
dis-
tic

ut-
ted
d-
te
ts;
re
nd

ge
h
r-
y

ge

ing
n-
bes
 the

ec-
ile
sag-
de-
ed
n 4
e

n 5
lti-
rv-

 are

Supporting Disconnectedness - Transparent Information Delivery for
Mobile and Invisible Computing

Peter Sutton, Rhys Arkins, Bill Segall
School of Computer Science and Electrical Engineering CRC for Enterprise Distributed

The University of Queensland Systems Technology (DSTC)
Brisbane QLD 4072 Australia UQ Brisbane QLD 4072 Australia

p.sutton@csee.uq.edu.au, rarkins@dstc.edu.au, bill@segall.net
Abstract

As computing devices become ubiquitous and increas-
ingly mobile, it is becoming apparent that the directed peer-
to-peer communication model has shortcomings for many
forms of distributed interprocess communication. Undirect-
ed communication, including content-based messaging, is
becoming increasingly common. This paper examines the
issues involved in supporting content-based messaging to
both mobile devices and users using a combination of con-
nected and mobile (possibly disconnected) devices. These
issues include persistence, multi-client shared subscrip-
tions, non-destructive notification receipt, and notification
expiry. The discussion is placed in the context of the devel-
opment of a proxy-server to provide disconnectedness sup-
port for the Elvin content-based messaging service.

1. Introduction

Interprocess communication is commonly achieved us-
ing directed links between tightly coupled senders and re-
ceivers. In this case, the destination of the message must be
known at the time of sending - which is difficult when the
destination is unknown, is changing, or the number of recip-
ients varies. There is a growing trend towards using loosely-
coupled autonomous objects for building large-scale dis-
tributed systems to confront these shortcomings of directed
communication [1].

A common approach to achieving decoupling of inter-
acting objects is using an event-notification or publish-sub-
scribe design style. In an event-based system, object
interactions are modelled as events, which are transmitted
in the form of notifications. In event notification services,
such as Elvin [2], TIB/Rendezvous [3], Siena [4], Gryphon
[11], and OpenQueue [5], consumers can specify which
events they are interested in by submitting subscriptions to
an event router. Some services, such as OpenQueue, sup-

port subject- or topic-based routing, whilst other service
such as Elvin, provide full content-based routing.

The advantage of using an undirected event service
stead of other traditional communication mechanisms
that this method decreases the coupling of objects in a
tributed environment and removes the need for many sta
dependencies. While many of today’s distributed comp
ing interactions already lend themselves to the undirec
model of communication, the new wave of wireless, han
held, mobile, ubiquitous and invisible devices will genera
an even greater need for decoupling of distributed objec
indeed, invisible computing’s fundamental properties a
particularly incompatible with centralised architectures a
tightly coupled communication techniques.

With this new wave of distributed systems comes a ran
of challenges, including: dealing with mobile devices whic
are often disconnected from the network; delivering info
mation to users who have a range of devices on which the
may receive information; and scaling interactions for lar
numbers of devices.

This paper examines the issues involved in support
undirected communication in distributed systems which i
clude mobile (possibly disconnected) devices and descri
how these issues have been resolved in the context of
Elvin content-based messaging service.

The remainder of this paper is organised as follows. S
tion 2 discusses undirected information delivery for mob
devices and in particular describes content-based mes
ing and its appropriateness for supporting disconnected
vices. Section 3 describes the Elvin content-bas
messaging service on which this work is based. Sectio
describes issues involved in delivering information in th
face of disconnectedness and multiple devices. Sectio
describes the implementation of disconnectedness mu
device support for the Elvin content-based messaging se
ice and discusses the lessons learned. Conclusions
drawn in Section 6.

To be published in Proceedings of 2001 IEEE International Symposium on Cluster Computing and the Grid (CCGrid’01), May 2001.

© 2001 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promo-
tional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the IEEE.

e
f

.e. a
 des-

nd
lows
ader

th
 A
nd
nel

 the
nt of
pro-
rs
ers,

ete
ag-

 the
f a

n of
ined
uc-

sed
ts
is
ut of
an
in
an
pen
 run
ork
2. Undirected Information Delivery for
Mobile Devices

The “sometimes disconnected” nature of mobile com-
puting devices means that undirected information delivery
is necessary, i.e. producers and consumers need to be de-
coupled so there is no requirement for a direct network con-
nection (e.g. TCP) between them. This section discusses
this issue in more detail and also describes content-based
messaging and its appropriateness for mobile disconnected
devices. Related work in the area is also considered.

2.1. Hardware Constraints Encourage Undirected
Communication

The hardware constraints imposed by mobile devices
such as personal digital assistants (PDAs) mean that the
amount of data transferred and processed should be kept at
a minimum. This is the result of limited availability of band-
width and memory, as well as other factors such as limited
power supply and computational ability. Undirected com-
munication is advantageous over directed communication
in that filtering can be achieved at an “event server” or rout-
er, and intelligent subscriptions can minimise the amount of
data transferred.

Undirected communication is well suited to PDAs as
these devices are commonly used for collection of data, yet
due to the nature of their frequent disconnectedness, the lo-
cation and number of recipients may be continually chang-
ing. This characteristic communication paradigm is an
example of where decoupling the producer and consumer of
data provides greater flexibility, as the producer can send its
data without being concerned with the location or availabil-
ity of its recipients.

2.2. Decoupled Communication

Decoupled communication can take many forms and
names, including publish-subscribe, store-and-forward,
event notification, message queuing, subject-based routing
and content-based messaging. Sometimes these terms are
used interchangeably and there is indeed overlap between
many of the concepts. In this work we will classify decou-
pled communication as one of two types: message queuing
or subject/content based messaging.

2.2.1. Message Queuing. Message queuing is essentially a
form of directed communication that doesn’t require a con-
nection. Messages are usually directed to a particular desti-
nation and are queued on both the disconnected device and
a server, so that when the device is reconnected to the net-
work, messages are transferred in both directions.

2.2.2. Subject/Content Based Messaging. Subject or con-
tent based messaging1 decouples the producers from th
consumers. Producers publish messages but are unaware o
the destination. Consumers subscribe to particular groups
of messages and one-to-many messaging is possible (i
message produced by a source may be passed to many
tinations).

There are significant differences between subject a
content based messaging. Subject-based addressing al
consumers to subscribe only on the basis of message he
information (or meta-data), usually the subject or channel
or some combination of meta-data items2. This form of
communication lends itself to multicast propagation wi
multicast groups corresponding to particular channels.
limited amount of coupling remains between producers a
consumers - they are coupled on the basis of the chan
name [6].

Content-based addressing, on the other hand, allows
consumer to subscribe based on any aspect of the conte
a message - not just the subject or other header. This
vides greater flexibility to users and application develope
as there is less coupling between producers and consum
for example, consumers aren’t forced to take a compl
channel feed, they can selectively filter appropriate mess
es at the router (or server).

Content-based schemes have neither restrictions on
visibility of messages nor restrictions on what elements o
message can be used for selection. The major distinctio
content-based routers is that message routing is determ
by the consumers of the information rather than the prod
ers [6].

2.3. Disconnected Devices

Current mobile devices such as PDAs are characteri
by frequent disconnectedness which significantly affec
how distributed network communication can occur. Th
disconnectedness can be due to a number of reasons - o
range, device turned off, or application swapped away if
operating system is single tasking. For example,
the PalmOS operating system, a network application c
be connected only when the user has that application o
as the focus. It is not possible to set these applications to
in the background - every time they are opened the netw

1. This is sometimes called subject or content-based routing.
This work will consider content-based routing to be at a
lower level than content-based messaging, e.g. routing algo-
rithms or network techniques (e.g. mapping to multicast
groups) to support such messaging. Content-based messag-
ing would normally be based on content-based routing, but
need not be.

2. The subject or channel is also sometimes known as the topic
or group.

n
.
”

r ar-
ther
ach
liv-

 by

n
a-
 to
rk
ver
ted

-
n-

hed
 ab-

lients
”
s a
fore

g and

to
e-
on-
.

e
net-
es.
ed,

over
ed
nel
he
-
eral,
up-
ed

the
nd
connections need to be completely re-established.
Most work in dealing with the disconnectedness of com-

puting devices (usually mobile devices) revolves around is-
sues of data replication and synchronization. Data
replication involves copying data (e.g. a database or part
thereof) from some central repository to a mobile device so
that the data can be accessed whilst the device is discon-
nected (e.g.a salesperson on the road). Synchronization is a
similar concept but also includes the idea that changes made
in either copy of the data need to be propagated (synchro-
nized) to the other. There are many commercial software of-
ferings (e.g. [7-10]) which support synchronization and
replication for mobile devices.

Message queuing3 (described above) is a frequently used
communication paradigm for mobile devices as it supports
disconnectedness; however, it is typically not undirected.

2.4. User Characteristics

One of the key features of PDA use is that, as opposed to
desktop applications, portable devices are used frequently
for short periods and often on the move [14]. Content must
therefore be selective and minimised so that users need not
spend excessive time trying to locate the information they
are after. PDAs are not well suited to the storage or display
of large amounts of information - they are better suited to
the display of data such as news headlines, weather, and
stock prices.

Content-based messaging provides an excellent method
for filtering data and selecting content of interest, as filter-
ing will be done at the server, not at the PDA. A similar con-
cept is the recent advent of web clipping [13] which is
performed to reduce the amount of data in normal web pag-
es.

2.5. Related Work

There are many systems available which support decou-
pled communication. A representative selection of these are
examined in this section.

2.5.1. TIB/Rendezvous. TIBCO’s TIB/Rendezvous prod-
uct [3] is an established messaging middleware with many
customer installations worldwide. TIB/Rendezvous decou-
ples producers and consumers by using publish/subscribe;
however, it uses subject-based addressing and does not pro-
vide full addressability of content.

TIBCO’s service is referred to by themselves as “reliable
delivery”, and this “reliable” message delivery is imple-
mented in the TIB/Rendezvous daemon. The routing dae-
mon retains outbound messages for sixty seconds, and

retransmits if clients have intermittent network failure - a
insufficient period to support most disconnected devices

TIBCO also has a feature known as “Certified Delivery
which has a decentralised, stream-oriented, peer-to-pee
chitecture. Rather than using a queuing mechanism at ei
the server or a proxy, producers store messages until e
consumer has acknowledged receipt. This message de
ery, acknowledgement, and retransmission is all done
the client libraries.

2.5.2. Siena. Siena (Scalable Internet Event Notificatio
Architecture) [4] is an example of wide-area event notific
tion content-based routing. Siena allows subscriptions
address all fields of notifications. The emphasis in this wo
is on scalability - supporting content-based messaging o
a wide area network. There is no support for disconnec
devices.

2.5.3. OpenQueue. OpenQueue [5] is an open source pro
tocol for publish/subscribe message queuing. While co
nected to a server, a subscribing client receives publis
messages in real time. When a client reconnects after an
sence, the server sends all messages queued for that c
while it was off-line. Messages are published in “topics
and for each subscriber to a topic the server maintain
queue of messages in that topic. OpenQueue can there
be considered a cross between subject-based addressin
message queuing.

OpenQueue identifies each client by requiring them
authenticate or “log in” each time they connect. Clients r
mained subscribed at the server even while they are disc
nected, and authenticate themselves upon reconnection

2.5.4. Gryphon. Gryphon [11] is a distributed messag
brokering system - it maps a subscription database to a
work of underlying brokers that distribute the messag
Gryphon supports content-based subscription and inde
supplies content-based routing. Like Siena, the emphasis in
this project is on scalability

2.6. Summary

Content-based messaging has many advantages
other forms of decoupled communication for disconnect
devices. These include greater decoupling (no chan
names); reduced data flow (more filtering can occur at t
“server”); and greater flexibility. However, support for con
tent-based messaging to disconnected devices is, in gen
lacking. This work aims to address this issue by adding s
port for disconnected devices to the Elvin content-bas
messaging service. The following section describes
Elvin content-based messaging service in more detail a

3. Message queuing can form the basis for synchronization.

ve
de-

pe
-

n
ce.
pe
and
nd
ess
er,
tion

e
es.
ions
ice

e
ra-
ile

a
a-

ing
on-
d de-
ilst
 ap-
es.
ec-

or
 re-
section 4 describes some of the issues involved in providing
support for disconnectedness.

3. Elvin Content-Based Messaging Service

Elvin [2] began as a publish-subscribe notification serv-
ice, but has since evolved into a content-based messaging
service [12][6]. Elvin consists of:

• An easy to use API, allowing application developers to
generate and consume information simply. There are
language bindings for C/C++, Java, Python, Smalltalk,
Emacs Lisp, and Tcl, which are supported by a number
of development tools.

• Dynamic definition of both information formats (mes-
sages) and subscriptions. This is a key feature required
to allow scalability across organisational boundaries.

• Flexible and dynamic message content delivery defined
as the application developer requires. Information is dis-
tributed only to the points where it is needed, allowing
greater system throughput to be achieved. The impor-
tance of bandwidth efficiency over individual through-
put is a fundamental design criterion of the Elvin
service.

• A simple but powerful subscription language able to ex-
press complex constraints on the information routed to
applications. Elvin allows all of the information to be
used for routing choices - everything behaves like an ad-
dressable subject in a more traditional publish/subscribe
system.

• Quenching is an unique feature of the Elvin service. It
allows producers to receive information about what con-
sumers are expecting of them so that they need only
generate the events that are in demand. This is important
for some classes of producers where the act of produc-
ing the event is expensive.

• A decoupled security model designed to maintain the
flexibility of publish/subscribe messaging. Traditional
security mechanisms are point-to-point, allowing for
authenticated communication between two parties.
Elvin provides a flexible security mechanism where
producers and consumers can have overlapping key sets
that combine to allow multiple-party authorisation. This
is used to control the delivery of notifications whilst
maintaining the flexibility of loosely-coupled compo-
nents.
In its basic form, Elvin operates by having a server act-

ing as a notification router between multiple connected cli-
ents. Clients can act as producers and/or consumers of
events, and the server is responsible for routing notifica-
tions of interest to consumers. This has been extended to in-
clude “federations” of multiple servers but the concept of
routing notifications based on content to interested clients
remains the same.

3.1. Elvin Applications and Concepts

Elvin has several established applications which ha
mostly been implemented for desktop PCs. This section
scribes two of these applications.

3.1.1. Tickertape. By far the most common Elvin applica-
tion in terms of deployment numbers is DSTC’s Tickerta
[16]. The Tickertape application is a scrolling one-line win
dow providing users with a wide variety of informatio
from many sources, using a minimum of screen spa
DSTC also provides a number of producers for Tickerta
for retrieving updates of web pages such as Slashdot
various news services. Tickertape is built using Elvin a
functions as both an event consumer, receiving awaren
information in the form of events, and an event produc
which enables Tickertape to be used as a communica
application.

3.1.2. Eddie. Eddie [18] is a tool that collects data from th
system it is running on or from nearby systems or servic
Eddie can run rules over the collected data and take act
based on the results, making it a very useful system/serv
monitoring tool. A monitoring front-end such as Eddi
could be written for hand-helds so that system administ
tors can have ready access to network information wh
working around the office.

3.2. Other Elvin Usage

Elvin is also in use in workflow applications, as
USENET filtering service, in various awareness applic
tions, in education, and as infrastructure for CSCW [6].

4. Content-based Messaging for Mobile Users

There are many issues involved in seamlessly support
content-based messaging in the face of mobility and disc
nectedness. This section enumerates these issues an
scribes how they have been addressed in this work. Wh
Elvin has been addressed specifically here, these issues
ply equally to other content-based messaging servic
More advanced implementation issues are described in s
tion 5.

4.1. Persistence

Obviously, in order to support the delivery of events
notifications to disconnected devices, a persistent data
pository is required to store the events.

Elvin by design is non-persistent4 - once clients discon-

4. As are most content-based routing systems.

ti-
ce
her
ho
eir

-
n-
e

-
he
o-
d

 de-
the
y
er

tate
 to
s a
in-

re-
 to
ent
 to
ly
in
tly

ct-
of
er.
tock
es
ys.

h
b-
e

nect from the Elvin server their subscriptions are no longer
active and they miss any arriving notifications until they
next connect and resubscribe. For mobile devices this cre-
ates a problem as they may be frequently disconnected yet
do not wish to miss important notifications.

Rather than modifying (and possibly encumbering) the
Elvin service, a prototype Elvin “proxy” has been devel-
oped which can store notifications while clients are discon-
nected.

In the standard Elvin system, there exist two main com-
ponents: a client and a server. (Multiple clients may exist,
supported by a single server or federation of servers.) The
proxy model extends this by including proxies which act as
normal clients to the server but as a proxy server to clients.
Clients then connect directly to an Elvin proxy server rather
than connecting to the Elvin server itself.

In the Elvin client/server model, an Elvin client must
maintain a connection to its server to keep its subscriptions
active. If the connection is closed (or lost), notifications
may be lost. The Elvin proxy server works by maintaining
a permanent connection to the Elvin server and remaining
subscribed on behalf of the clients. Any notifications deliv-
ered by the server to the proxy while the clients are discon-
nected will result in the notifications being stored on the
proxy until the clients next connect.

4.2. Subscription Groupings

The proxy must be able to handle multiple clients with
separate sets of subscriptions. Therefore, the proxy needs to
be able to distinguish these sets from each other, which was
not possible using the original Elvin protocol. The concept
of a “session” was introduced to refer to a group of sub-
scriptions for a particular client or clients.

4.3. Multiple Receivers

The increasing ubiquity of computing and communica-
tion devices means that users can receive information via
one or many devices. Mobile users characteristically have
some form of PC or laptop which they may use in conjunc-
tion with (and sometimes in preference to) more mobile de-
vices such as PDAs and mobile phones. To accommodate
this and to allow for routing of messages to where the user
wants them, users need to be able to access their subscrip-
tions (or some subset of their subscriptions) from their Elvin
desktop application or some mobile device. This means that
sessions need not be client specific - sessions may span
multiple clients or applications.

4.4. Non-destructive Notification Receipt

Users who use more than one device for receiving no
fications may wish to receive notifications on one devi
but keep a copy on the proxy to be downloaded by anot
device at a later time. An example of this is someone w
uses both a laptop and a PDA. They may wish to use th
PDA for viewing notifications while mobile, but save a
copy of the received notifications on the proxy for down
loading and archiving by the laptop at a later time. Sema
tically this is similar to POP email clients electing to leav
messages on the server or remove them.

To prevent multiple notification deliveries to “non-de
structive” clients which leave and rejoin a session, t
proxy keeps track of clients within a session to which a n
tification is delivered. Notifications are never delivere
more than once to the same client.

4.5. Session Modification

Because a session may be shared amongst multiple
vices or applications, if one registers a subscription then
other will not be aware of it. To handle this, the prox
should return a list of all subscriptions whenever a us
joins an existing session to ensure that client and proxy s
are consistent. Also, if more than one client is connected
the same session, if a client adds, modifies, or remove
subscription then the others should be immediately
formed by way of an update.

4.6. Multiple Concurrent Sessions

Depending on what device they are using and the f
quency with which they intend to use it, users may elect
use alternately configured sessions at different times. Cli
libraries and the proxy allow for a user to be connected
multiple sessions concurrently. The proxy will deliver on
one copy of notifications which match subscriptions
more than one session to which clients are concurren
connected.

4.7. Notification Storage

Clients may spend long periods of time without conne
ing to the proxy, which could result in a large number
saved notifications if the proxy was to store them forev
In the case of notifications such as chat messages or s
prices, clients may wish to only receive the last few minut
worth, even if they were disconnected for hours or da
The proxy allows clients to specify a time-to-live (TTL) for
each subscription, which will be the maximum time whic
the proxy should keep any notifications matching that su
scription. Once a notification reaches its TTL it should b

red
Ds
ch
s

n-
ve

ns
d

in-
 is
re-
nt.
 the
he

 of
ns
ap-
ays
ro-
sec-

e
on-
ich
 to

re-
ive
ons

ure
 to
li-
ose
ccur
 be
t ex-
y
o-
or

for
r-
at
on
ub-
m-

ach
“expired” by the proxy.
Similar to TTL values, clients may instead prefer to

specify the maximum number of notifications to keep for a
subscription. The TTL and maximum message number val-
ues should interact so that client requests are evaluated like
“store notifications for up to X hours and store no more than
Y of them”.

5. Elvin Proxy Implementation Issues

The design and implementation of a new proxy protocol
for Elvin raised various challenges to integrate smoothly
with existing Elvin concepts. This section describes some of
the issues which were overcome in developing the proxy
prototype. A brief description of the proxy prototype’s ar-
chitecture is given first, followed by discussions on proxy
security and proxy federation. Greater detail may be found
in [19].

5.1. Proxy Implementation Architecture

The internal architecture of an Elvin proxy is very much
implementation dependent; however, there are several com-
mon challenges faced in any implementation which are dis-
cussed below.

5.1.1. General Description. The Elvin proxy prototype
has been developed using the alpha release Elvin Python
language bindings and hence shares many characteristics of
other Elvin applications which may use the bindings.

The proxy attempts to establish a connection to an Elvin
server using either a supplied URL or server discovery. The
proxy then accepts requests from proxy clients. For client
requests which can be resolved by the proxy alone, such as
a request to join a session, responses are returned immedi-
ately. For requests which require interaction with an Elvin
server, the proxy’s server endpoint is used to send the re-
quest in the same manner as a normal Elvin application. In
each case the callback function for the server request is set
to a function which sends a reply to the client when execut-
ed.

Notifications received by the proxy server from the
Elvin server are delivered to connected clients whose sub-
scription matches the notification. The proxy server may
also store the notification if there are off-line clients which
have matching subscriptions.

5.1.2. Delivering and Storing Notifications. When a no-
tification arrives from the server, the proxy first builds a list
of all the sessions to which the Subscription IDs belong.
The proxy then generates a list of all clients connected to
those sessions and delivers a copy to each. If there are any
remaining matching subscriptions which do not have a cli-

ent connected, the notification is then stored to be delive
later. The proxy strips from the packet any Subscription I
to which the notification has already been delivered. Ea
of the delivered packets include only the Subscription ID
for that client, while the copy stored on disk by the proxy i
cludes only subscriptions to which the notifications ha
not yet been delivered.

5.1.3. Expiring Notifications. The combination of time-
to-lives and maximum message numbers for subscriptio
creates the difficulty of managing stored notifications an
ensuring these values are abided by.

Enforcing the maximum message number is the easier of
the requirements - for each subscription a count is ma
tained of the number of stored notifications. This value
incremented when new notifications are stored and dec
mented as notifications expire or are delivered to the clie
The proxy can check the number of stored messages for
subscription as new notifications arrive, and remove t
oldest one if the maximum has already been reached.

Enforcing time-to-live (TTL) expiry of subscriptions
provides a greater challenge, as given the granularity
TTLs is one second, the proxy may experience notificatio
reaching their TTL as often as once a second. If the
proach taken was to ensure that notifications were alw
removed as soon as they reached their TTL, this could p
duce a large processor overhead due to checks every
ond.

One possible way of expiring notifications which hav
reached their TTL would be to ensure that when clients c
nect and are delivered their saved notifications, those wh
have exceeded their TTL are deleted and not delivered
the client. This alone would ensure that clients never
ceive expired notifications, but could result in an excess
amount of disk space usage, as many expired notificati
could be stored for clients which connect infrequently.

To complement the method described above and ens
that a more efficient use of disk space occurs, a method
“sweep” expired notifications is also required. Because c
ents are guaranteed not to be delivered notifications wh
TTL has been exceeded, sweeping does not need to o
with the same frequency as notifications expire and can
done at a more sensible period, as we are assured tha
pired notifications will not be delivered to clients. Our onl
objective of sweeping is to minimise wasted storage of n
tifications which have expired and should be deleted. F
instance, if notifications are checked every one minute
expiry, this would result in an expired notifications ove
head equivalent to the amount of notifications arriving
the proxy per minute, as only one copy of each notificati
is stored regardless of the number of client matching s
scriptions. This approach appears to provide a good co
promise between processing overhead (required for e

in.

c-
hip
s-
c-
ose
 the
ll

on
ass-
s to
ip-
ion
rse
s.

t
n-

a,
 of

ses-
uld
ra-
ller

nt
r-

en
ac-
ty
ul
 is
ly
 us-
en it

 its
i-
s-

d
he
ers
ms
ls
gle

b-
ed
“sweep”) and space overhead of expired notifications
which have not been removed. The figure of one minute
could be adjusted if it were later found that either the space
or processing overhead was too great.

5.2. Security in the Elvin Proxy

Securing proxies is an important issue to be considered
before they can be deployed widely. An unsecured proxy
could present vulnerabilities such as sessions being mali-
ciously deleted and secret keys being compromised. The
methods for ensuring that such a situation does not occur
are discussed below.

5.2.1. Session Security Schemes. In considering security
for the proxy, three possible security schemes were consid-
ered - single session password security, multi-level session
password security, and access control list security. This sec-
tion gives a brief description of the three methods.

Password Protected Sessions
The current Elvin proxy scheme has sessions as its pri-

mary objects. Although the concept of separate “clients” ex-
ists, clients identifiers are unique only within a session and
do not identify a person, device, or application in a global
sense. The first option in securing the proxy is to have a sin-
gle password which protects a session. The password is sup-
plied when the session is created and is required to join or
delete the session. Once the password is provided to join a
session, users are free to make any modifications to the
properties of the session, such as adding, modifying, or de-
leting subscriptions, quenches, etc. This model assumes that
any object who has the session’s password is trusted and
there is no need to distinguish different levels of access
rights for sessions.

Multi-level Passwords for Sessions
This second password model builds on the first but in-

stead defines multiple session passwords which correspond
to different levels of access control. Although there exist a
large number of operations available (such as joining a ses-
sion, adding/removing subscriptions, etc.), these can easily
be aggregated into two or three levels of security. The bot-
tom level in both cases is a read-only “user level” which
would be a password which only gives people or applica-
tions the right to join and leave a session, and receive noti-
fications while joined.

For two-level access control, the only other password
would be an “admin.” password which gives the ability to
execute all other operations which might be considered de-
structive in some way (e.g. Subscription addition/modifica-
tion/deletion, session deletion, etc.). Under this scheme
anyone with the admin. password has the ability to leave the
session as a shell, or even take ownership of it by deleting it
and then creating a new one in its place with the same Ses-

sionID. Obviously in this scheme, anyone with the adm
password would need to be fully trusted.

Three-level access control is similar to the two-level a
cess control except that it includes the concept of owners
of a session by having not only “user” and “admin.” pas
words but also an “owner” password. The difference in a
cess rights between admin. and owner would be that th
without owner access cannot delete the session. While
admin. password would still provide the ability to delete a
subscriptions, it would not allow a non-owner of the sessi
to delete the session and recreate it with a new admin. p
word. This means a session-owner can allow other user
modify their session (perhaps even removing all subscr
tions or adding bogus ones) but ownership of the sess
can not be seized. The owner password would of cou
have the ability to change the admin. and user password

Access Control Lists
Access control lists (ACLs) could provide a flexible, bu

complicated, method of securing the proxy. This would i
troduce the concept of unique “users” to the proxy schem
with each session belonging to a particular user. Owners
sessions could then define access control lists for each
sion which define the access rights for each user. This co
obviously be made more efficient by aggregating ope
tions and also adding users to groups to generate sma
ACLs. This security scheme would result in a significa
shift of the proxy away from being session-centric to use
centric.

5.2.2. Merits of Security Schemes. In comparing the var-
ious security models, the first comparison must be betwe
the session-password and ACL methodologies. While
cess control lists undoubtedly provide the most flexibili
and advanced configuration possibilities, it is doubtf
whether such a complicated model is necessary. This
quite an important factor when it is considered how unlike
it will be that sessions are shared amongst more than one
er. If there is a need to share sessions amongst users, th
is likely that the users will be trusted.

The major benefit of the single password scheme is
simplicity, with the primary disadvantage being less flex
bility than the other two schemas. Using a multiple pas
word scheme would provide greater flexibility an
introduce the concept of “ownership” of sessions into t
security scheme. Given that, in the majority of cases, us
will be sharing sessions amongst their own devices, it see
unnecessary to bother with the distinction of multiple leve
of access for sessions which will mostly be used by a sin
person.

5.2.3. Integrating with Elvin’s Security Keys. The Elvin
protocol includes its own security layer for securing su
scriptions and notifications which needs to be integrat

ring
k.
m-
-
ing

 an
s,
 be
rv-
ed
-

el
x-

me
ld
the
se

 to
ing
ed

-
x-

eir
re-
 a
be
ing

to
tate
lvin
ot
re-
ion
ch

and
-
ds a
ly

y,
ly
n-
is

 ex-
into the proxy’s client handling.
Existing Key Mechanism
Elvin clients use producer and consumer security keys to

provide access control over the Elvin protocol. The security
keys may be used by producers to restrict which consumers
are authorised to receive notifications and also by consum-
ers to restrict which producers they receive notifications
from.

Clients can specify keys in two ways. The first is to have
connection-based keys that last for all notifications the cli-
ent makes or receives while connected. The second is to use
specific keys for each notification or subscription which is
sent. These keys are added to any connection-based keys to
define the security keys for the subscription or notification.

Proxy Key Mechanism
A security challenge faced by using the proxy is that,

with the proxy maintaining a single connection to the serv-
er, the proxy cannot use any connection-based keys or else
suffer possible security breaches between sessions. Proxies
need to keep state information for the connection keys of
connected clients and only when a proxy-add-subscription
request is made should the proxy merge the connection and
subscription keys and put both into the add-subscription re-
quest which is sent to the server. As clients need to know the
existing keys in order to change them, it will also be re-
quired to transmit these keys as part of the subscription’s
details to clients upon joining sessions. This should not be
considered a security risk as we are already assuming that,
through session passwords, all users of a session may be
trusted. The proxy’s handling of client keys should be trans-
parent to the proxy clients and require no change in how cli-
ents use keys.

5.3. Proxy - Server or Service?

As of version 4, Elvin has been established as a service
rather than just a collection of networked servers. With such
tools as server discovery and federation, clients now con-
ceptually connect to an Elvin “service” rather than to just a
server. Given the Elvin service “cloud”, it is important to
consider where a proxy server or service should conceptu-
ally lie and what interconnection of proxies is possible.

5.3.1. Elvin Federation. Elvin has been developed to al-
low both local area and wide area federation of Elvin serv-
ers. With the aid of server discovery, the coupling of Elvin
clients to servers has been decreased and the concept of
connecting to a single Elvin service promoted. The Elvin
service has been extended beyond that of a single server to
a federation of autonomous servers cooperating to route
messages to consumers.

Local area federation provides the ability for organisa-
tions or related groups to federate servers so as to provide

features such as failover to backup servers, load-sha
ability, and the linking of sites into an autonomous networ
Wide area federation is envisioned to provide a global co
munications “backbone” allowing notifications from any
where in the world to be read by consumers with match
subscriptions anywhere.

5.3.2. Proxy Coupling. Acting as both a server to clients
and a client to servers, it is not obvious as to whether
Elvin proxy should be tightly coupled to clients or server
or loosely coupled to both. On one hand the proxy could
considered as a service itself to complement the Elvin se
ice; while, on the other hand, it could also be consider
more of a stand-alone “home” or “docking station” for mo
bile devices.

The current prototype model of the proxy uses a mod
that is closely coupled with connected clients. Clients e
plicitly connect to a proxy and must reconnect to the sa
proxy each time. While introducing proxy discovery cou
reduce the need for knowing Elvin proxy addresses,
problem exists that clients could do this only once becau
after their first connection they’d be required to connect
the same proxy each time. Nevertheless, implement
proxy discovery is certainly a feature which could be add
for the benefit of new clients trying to locate a proxy.

5.3.3. Establishing an Elvin Proxy Service. A united
proxy service could be useful for mobile clients who mi
grate between networks but wish to have notifications pro
ied. Ideally, such clients could use proxy discovery at th
different sites to locate a local proxy and then resume
ceiving and sending notifications. Also, by connecting to
local proxy rather than their home proxy, clients may
able to achieve lower latency in their connection depend
on the topological separation of the two networks.

The problem to overcome in transforming the proxy in
a service is that proxies are highly dependent upon s
whereas Elvin servers are stateless. With a federated E
service, the server to which an Elvin client connects is n
important so long as the server is federated with the
quired servers. In the case of the proxy, state informat
must be stored, so it makes distributed federation mu
more complicated.

One method for providing universal availability of a
proxy service is to have session names globally unique
hence identifiable by all proxies; however, this greatly lim
its the namespace available for naming sessions and ad
large degree of complexity and latency to the previous
simple task of allocating session identifiers. Alternativel
session identifiers could remain unique within a proxy on
and clients could instead use an additional identifier to ide
tify their home proxy and then locate their session. Th
leads to the problem that clients now need to be able to

i-

e
t

a-

-
-
”

ll,
o-

-

t

3/

l
f

ng

,

a-

,

-

plicitly name their home proxy to locate their session, and
if clients are able to do this, they could just connect to their
home proxy each time rather than rely on proxy discovery.

While the benefits of decoupling proxies from their cli-
ents by establishing a proxy service appear limited due to
namespace issues, developing a unified proxy service with
proxy discovery could possibly still prove efficient for
roaming mobile hosts. Where efficiency could be gained is
that notifications sent to an Elvin federation currently need
to be relayed through a client’s home proxy regardless of
the location of the client. If the client spends a considerable
proportion of its connected time topologically separated
from its home network then it could prove efficient to move
details of its session to the closer proxy so that notifications
do not take an inefficient path. This would, however, result
in a complex handover mechanism which would make it
difficult to ensure that no notifications were lost nor dupli-
cated in the process (Elvin does not impose global ordering
of notifications so the two proxies could receive notifica-
tions with differing interleaving).

6. Conclusions

Distributed computing looks to provide some interesting
challenges and opportunities as distributed systems incor-
porate more mobile semi-connected devices. As network
topologies become increasingly dynamic, the challenge of
disseminating data to interested parties will push the bound-
aries of existing communications models. Interprocess
communication based upon a content-based messaging par-
adigm presents itself as an ideal way to decouple autono-
mous network components to promote flexibility and
scalability of mobile devices.

This paper has described the issues involved in support-
ing content-based messaging on mobile devices and how
these issues have been overcome in the implementation of a
proxy-server to provide disconnectedness support for the
Elvin content-based messaging service.

Acknowledgements

The work reported in this paper has been funded in part
by the Cooperative Research Centre Program through the
Department of Industry, Science and Resources of the Com-
monwealth Government of Australia.

References

[1] Houston, Peter. Building Distributed Applications with
Message Queueing Middleware. March 1998, Micro-
soft Corporation.

[2] Elvin website. http://elvin.dstc.edu.au/ Last visited 8/
10/00

[3] TIBCO. TIB/Rendezvous Concepts. http://www.rv.ti-
bco.com. Last visited 28/11/00.

[4] Siena website. http://www.cs.colorado.edu/serl/dot/s
ena.html. Last visited 8/10/00.

[5] OpenQueue Home Page. http://openqueue.source-
forge.net. Last visited 2/10/00.

[6] Bill Segall, David Arnold, Julian Boot, Michael Hend-
erson and Ted Phelps. Content Based Routing with
Elvin4. Proceedings AAUG2K, Canberra, Australia,
June 2000.

[7] Information Transport Associates Corp., “Database
Synchronization and Replication Software for remot
and mobile computing,” http://www.itacorp.com. Las
visited 30/11/00.

[8] Synchrologic Corp., “iMobile Suite,” http://www.syn-
chrologic.com/about/about_imobile.html. Last visited
30/11/00.

[9] XcelleNet, Inc., “Afaria,” http://www.afaria.com. Last
visited 30/11/00.

[10]Extended System, “XTNDConnect RPM: Programm
ble Middleware for Mobile and Windows Applica-
tions,” http://www.extendedsystems.com/products/
rpm. Last visited 30/11/00.

[11]Marcos K. Aguilera, Robert E. Strom, Daniel C. Stur
man, Mark Astley, and Tuschar D. Chandra, “Match
ing Events in a Content-based Subscription System,
Principles of Distributed Computing, 1999.

[12]Arnold, D., Boot, J., Henderson, M., Phelps, T., Sega
B. Elvin - Content-Addressed Messaging Client Prot
col, Proposed Internet Draft, 2000. http://
elvin.dstc.edu.au/download/internet-draft.txt. Last vis
ited 28/9/00

[13]Palm.Net Service website. http://www.palm.net/ Las
visited 8/10/00.

[14]DSTC M3 Group website. http://www.dstc.edu.au/m
. Last visited 10/10/00.

[15]Hinze, Annika and Faensen, Daniel. A Unified Mode
of Internet Scale Alerting Services. In Proceedings o
the International Computer Science Conference, Ho
Kong, 1999.

[16]Sara Parsowith, Geraldine Fitzpatrick, Simon Kaplan
Bill Segall, Julian Boot. Tickertape: Notification and
Communication in a Single Line. Proceedings Asia P
cific Computer Human Interaction 1998, Japan.

[17] Carzaniga, A. Architectures for an Event Notification
Service Scalable to Wide-area Networks. PhD thesis
Politecnico di Milano, Milano, Italy, December 1998.

[18]Rod Telford and Chris Miles. Eddie (Essential Distrib
uted Diagnostic and Information Engine). Proceedings
6th SAVE-AU Annual Conference, July 1998.

[19]Arkins, R., Persistent Elvin For Mobile Devices,
BInfTech honours thesis, The University of Queens-
land, November 2000.

	Abstract
	1. Introduction
	2. Undirected Information Delivery for Mobile Devices
	2.1. Hardware Constraints Encourage Undirected Communication
	2.2. Decoupled Communication
	2.2.1. Message Queuing.
	2.2.2. Subject/Content Based Messaging.

	2.3. Disconnected Devices
	2.4. User Characteristics
	2.5. Related Work
	2.5.1. TIB/Rendezvous.
	2.5.2. Siena.
	2.5.3. OpenQueue.
	2.5.4. Gryphon.

	2.6. Summary

	3. Elvin Content-Based Messaging Service
	3.1. Elvin Applications and Concepts
	3.1.1. Tickertape.
	3.1.2. Eddie.

	3.2. Other Elvin Usage

	4. Content-based Messaging for Mobile Users
	4.1. Persistence
	4.2. Subscription Groupings
	4.3. Multiple Receivers
	4.4. Non-destructive Notification Receipt
	4.5. Session Modification
	4.6. Multiple Concurrent Sessions
	4.7. Notification Storage

	5. Elvin Proxy Implementation Issues
	5.1. Proxy Implementation Architecture
	5.1.1. General Description.
	5.1.2. Delivering and Storing Notifications.
	5.1.3. Expiring Notifications.

	5.2. Security in the Elvin Proxy
	5.2.1. Session Security Schemes.
	5.2.2. Merits of Security Schemes.
	5.2.3. Integrating with Elvin’s Security Keys.

	5.3. Proxy - Server or Service?
	5.3.1. Elvin Federation.
	5.3.2. Proxy Coupling.
	5.3.3. Establishing an Elvin Proxy Service.

	6. Conclusions
	Acknowledgements
	References

