

Coordinated Visualisation of Video and System Log Data

Alistair Morrison, Paul Tennent, Matthew Chalmers

Department of Computing Science, University of Glasgow

{morrisaj, pt, matthew}@dcs.gla.ac.uk

Abstract

In this paper we present Replayer, a distributed, cross

platform toolkit for utilising multiple coordinated

visualisations in the analysis and understanding of

heterogeneous data. In particular we analyse the

methods used to combine recorded media such as video

with numerical visualisations such as histograms and

time series graphs. We examine in some detail the

architecture behind the system, and the techniques used

to maintain synchronicity and coordination when

interactively brushing components. We demonstrate how

Replayer can be used to explore data sets using an array

of available visualisations, can focus analysis of video

data on the most salient periods and can provide context

for every area of the recorded data.

1. Introduction

As mobile computing technologies become more

profuse, there is an ever-greater interest in evaluation and

analysis of such systems. Evaluating the use of large,

multi-user, mobile systems can be a challenging task.

Onwuegbuzie and Leech [1] comment on the need to

blend quantitative and qualitative analysis techniques to

provide a coherent view of any data. The intention of

Replayer is to present all these heterogeneous forms of

data simultaneously to a collaborating interdisciplinary

set of analysts in a coherent, synchronised whole.

The multi-user, distributed nature of ubiquitous

computing systems often renders them unsuitable for

study with many traditional usability assessments.

Usability studies for non-mobile applications often focus

on observation techniques, making use of lab-based trials

and video analysis to evaluate participants’ experiences

with a system and assess their ability to successfully

complete common tasks. There are a number of reasons

why such methods can prove less useful for studies of

ubiquitous computing systems. Video equipment in a

usability lab setting would often be precisely placed in

order to capture user activity. Evaluation of mobile

systems will often be performed in a more natural

setting, with non-stationary participants. This makes it

difficult to capture user interactions with mobile devices,

or information being presented on small displays.

In a particular evaluation, it might also be important

to record the activity of a number of users

simultaneously. This creates a problem of managing a

large amount of video data, especially if activity is

monitored over a long time. Although data can readily

be recorded by deploying several video cameras, it

would be impractical for an analyst to sit through hours

or days of footage in order to uncover potentially

interesting incidents.

A study based solely on data recorded in system logs

would also be insufficient to adequately evaluate a

system. Although every system event and user

interaction might be logged, it is hard to make such

detailed accounts of environmental or social factors that

might influence a user’s behaviour. For example, a

pause in interaction might be explained by a participant

becoming distracted from the task, or a usage error might

be due to lack of concentration while a participant speaks

to a passer-by. The capturing of such contextual

information is one of the strengths of video-based

analysis.

Replayer [2] is a system designed to support both

log and video analysis through the synchronised

presentation of video data and information visualisation

style data exploration tools. A number of visualisation

tools are provided for the visual exploration of log data,

allowing an analyst to summarise all statistical data from

a trial, or focus on a particular factor of interest. The

video data are synchronised with the log visualisations,

allowing analysts to make selections in one view and

immediately jump to the corresponding section of the

video. As well as supporting a richer appreciation of the

recorded data, the provision of these multiple views

allows an analyst to gain a fast overview of the recorded

events and perform time-consuming video analysis on

only the most salient areas. Figure 1 shows an example

of Replayer, displaying synchronisation between video

and map components.

This paper focuses on the use of coordinated views

in Replayer. Through a description of the system

architecture, it is explained how audio, video and

information visualisation brushing between separate

components can be linked to support synchronisation and

Figure 1. The Replayer system supports analysis of recorded activity from studies of mobile

applications. The figure shows two of the visualisations provided in the Replayer system. A map

component on the left illustrates the geographical spread of locations at which participants performed

a certain system event (the yellow dots). The video tool on the right (including footage from two

separate cameras) is synchronised with the map tool. The time slider control below the videos has

several green lines corresponding to temporal distribution of the same system event. Playing the

videos automatically jumps between the marked time periods, showing every occurrence of the event

and highlighting the location on the map.

views and across different machines. A discussion is

presented as to how such a coordinated environment

allows sociologists and computer scientists to interact

around a coherent visualisation that couples resources

usually associated with just one of these two

communities of research practice.

The remainder of the paper is divided into a number

of sections. The following section summarises related

work in this area. In Section 3, the Replayer system

architecture is described, and then Section 4 explains the

format of logs required for Replayer compatibility and

introduces a tool designed to automate this process.

Section 5 details the individual visualisation components,

before Section 6 discusses synchronisation in Replayer.

Section 7 provides a discussion of the topics raised, and

this is followed by conclusions.

2. Related Work

There has been a wealth of applications offering

multiple views of data. One set of input data can be

processed in a number of different ways and give rise to

numerous graphical configurations. As each view shows

distinct features, their use in combination reduces the

risk of misinterpreting the data’s structure [3]. Recent

examples of such systems include a coordinated display

of different aspects of recorded data on gene activity [4]

and the City ’O’ Scope system, which provided multiple

views of statistical information to compare world cities

[5].

The coordination of multiple views allows still

greater insight to be made into data. This is often

achieved through brushing and linking [6], whereby a

user’s selection in one view will highlight the

corresponding subset of objects in the others. For

example, a particular group of data might have been

clustered together when processed by one component.

Being able to select this region and immediately see how

the same group has been handled by complementary

visualisation tools can greatly increase an analyst’s

understanding of the inherent structure of the data.

One system which focuses on collaborative video

analysis is Fraser et al’s VidGrid [7]. This is a cross-site

system where videos can be studied simultaneously and

dynamically annotated by a number of researchers. The

GRUMPS system from McLeod et al. [8] was developed

to dynamically and invisibly record log data from any

java program, into a common format by directly

instrumenting the compiled bytecode.

Creating replays of systems is not unique to

Replayer. One example of a system where a replay was

created from the data the Savannah system – an

educational mobile game that required children to act out

the life of a lion in the Savannah [9]. A replay tool was

used in the analysis, showing player location on a map

and messages being sent between devices. The George

Square project, a collaborative tourist support system,

underwent a similar-style analysis. A map tool was

displayed, along with photos taken at various marked

positions, and location-based recommendations made to

other tourists.

In these examples, however, new replay tools were

built specifically for each system. This obviously

required considerable time and effort in each case, and

the created systems were tightly coupled to the evaluated

system, offering limited potential for re-use. Replayer

improves upon this by providing a generic extensible

tool for such analyses.

3. System Architecture

This section details the Replayer system architecture.

An overview is provided, then the roles of certain critical

controls are explained, before issues particular to

visualisation, networking and database systems are

discussed.

3.1 Component Architecture

Replayer uses an extensible distributed component

architecture. Each component of the system runs in its

own process, communicating via a TCP interface with

the server and is literally a separate program. Replayer

uses a client-server paradigm to provide data from a

centrally managed database to each of several

visualisation components.

This system has a number of benefits: firstly

distribution – any computer on the same subnet as the

server is able to run visualisation components, with the

same inter-component communication as those running

on a single machine. A second benefit is extensibility –

it is possible to add new components to the system at

runtime. Stability is another advantage of this

architecture – any programmatical error that may occur

in any of the components cannot affect the others; it is

therefore unlikely that current work will be lost if a third

party component fails. A final benefit is cross-platform

and cross-language support – it is possible to run

visualisation components on different machines running

different operating systems and still maintain the same

level of interactivity. Indeed in some cases, components

are written specifically to take advantage of the facilities

available on a particular platform. Because the interface

between components is that of generic TCP, components

can also be written in any language that supports socket

programming. The majority of the system is written in

Java with Swing for cross platform portability, but

certain areas are written in C# and Applescript.

Figure 2. The Replayer system architecture.

The shaded background represents two

separate machines. A control unit runs on one

machine and keeps all visual modules

synchronised.

Replayer’s central repository of data is an SQL

capable database. SQL offers the user a very powerful

way of querying the database to retrieve exactly the

correct data for display in one of the visualisation

components. Indeed, in some cases SQL queries alone

are sufficient to retrieve much information about the

data, such as counts of events or averages of numerical

data.

3.2 The Control Unit and the Meta-Tool

The control unit acts as the central server for all

Replayer’s components. At its heart is a database

management system built using the Hypersonic SQL

system (http://www.hsqldb.org). This allows the

database to be run in main memory, making it fast and,

more importantly, offering an SQL-capable database that

does not rely on another application, but can run within

the control unit process. The architecture of the database

will be discussed in Section 3.5.

Users do not interact directly with the server, but

register commands through the meta-tool, as seen in

Figure 3. This is due to the distributed nature of the

system; only one server can be running at a given time

for a particular set of components, so in order for users

on all active machines to have the same facilities

available, each is able to run a meta-tool. The meta-tools

are kept synchronised automatically, so that any

interactions performed in one are propagated throughout

the network.

The meta tool provides various facilities for

managing the Replayer system. A table at the top

maintains a list of active components, along with the

machine on which they are running and the queries used

to load each with data. SQL queries can be composed in

the text box at the bottom of the component and a

column of buttons at the right provide a number of

functions.

New components can be opened and seeded with

data, and replacement data can be pushed at each

component if required. The meta tool also allows users to

examine the raw data tables. This can be of particular use

when constructing appropriate SQL queries for

components.

Figure 3. The meta tool component shows the

open components and provides controls for

viewing the tables or opening new components.

Clicking the Open New Component button displays

a selection of tools. This list of the available tools is

automatically generated by scanning for executable JAR

(Java Archive) files. These files will contain executable

code, classpath dependencies and a screenshot to add to

the tool selection menu. Components can be written in

any language, with the executable being placed in the

JAR wrapper.

Using this scheme, Replayer is extensible at run

time, as new components can be written and are

immediately for use without the need for termination of a

running system or re-compilation.

When a new visualisation component is opened it

must be seeded with a subset of data to display. This can

be achieved by directly typing the SQL query into the

meta tool and sending that query to the new component.

Alternatively there is the option of creating a visual

query with the component loader, as seen in Figure 4.

Figure 4. The component loader can automate

SQL statement construction. Time-based data

distribution is illustrated with a histogram.

The component loader is only capable of visually

constructing very simple queries; anything more

complex still requires SQL. However the user is able to

select which table they wish to use from a drop down

list, and constrain the time using a double ended slider.

For convenience a temporal distribution of the events in

the table is displayed in a histogram above the slider. The

generated SQL is displayed below and can be edited if

necessary.

3.3 Visualisation Components

Replayer contains several information visualisation-

style components. These can operate in a stand-alone

capacity to show certain characteristics of a data set, but

show their full worth when operating in coordination via

selection brushing. Each component will be discussed in

more detail in Section 5.

Log parser components are also supplied. While

Replayer and its supplied parser are intended to operate

primarily on logs in the format specified and generated

as part of the toolkit, it is often the case that users have

logs in legacy formats. It is possible to build a

component to parse these logs and record the data into

the Replayer database – indeed using the same technique

it is actually possible to update the Replayer database in

real time form a currently running system.

There are a number of bridging components – used

to connect a stream of Replayer data to the inputs of

other programs. One such component acts as a bridge

between the Replayer data and Google’s Google Earth

client (http://earth.google.com). Another acts as a

connection between the Replayer data and Apple’s

QuickTime.

While it is possible to construct a component which

will examine or affect the data in any number of ways,

some constraints are applied to the development of

components. These are primarily concerned with

ensuring the components meet the appropriate

networking protocols. Replayer uses a simple grammar

to distinguish between different forms of network data,

and this is made available to component builders. Each

component must register with the control unit when it

starts up, inform the control unit when it shuts down, and

be able to handle the input of data and selection

information. Other than these four rules, component

builders are free to implement the components in

whatever manner they see fit.

3.4 Network Architecture

The majority of the communication in Replayer

takes place over bi-directional TCP links between the

components and the server. In some cases, such as that of

the Google Earth component there is a further

communicative step to connect to some third party

program. A single control unit broadcasts its existence

across a subnet on a particular port. In this broadcast are

details of its IP address and the ‘admin’ port to which

TCP requests for new connections should be made. A

new component listens for that broadcast, and then

makes a TCP connection to the control unit’s admin port.

It is the assigned a pair of TCP connections, on for

sending and one for receiving – this is required because

of the asynchronous nature of Replayer’s

communication.

While it may have been possible to achieve this

effect with a single port, the intention was to keep the

communication protocol as simple as possible,

theoretically yielding the broadest range of additional

components.

Once connected, a component will receive data and

selection information when the control unit pushes data

at it through one TCP connection, and may use the other

to either request specific data or to send selection

information. The control unit sends out administrative

data to all components whenever a component starts up

or shuts down, or a query is made. Most components

ignore this administrative data, but some such as the

meta-tool, may wish to maintain an awareness of its

peers.

3.5 Database Architecture

The heart of the Replayer system is the database.

The basic structure of the database remains fairly

constant, irrelevant of the particular data populating it,

though it may differ considerably in detail.

To properly understand the layout of the database, it

is of benefit to summarise the types of data it will hold.

These can be broken into four main areas: state data,

event data, media and provenance data.

State data is defined by its continuity. It is a

representation of the current state of a system – a

regularly logged set of values, all of the same type. This

can be represented in a single table.

Event data, conversely, refers to irregular data – it is

a representation of a system event, or something that

happens, rather than something that is. Because it is non-

continuous, and there may be any number of different

event types, this is stored differently. A central event

table is maintained, containing timestamps, usernames,

and the names of the event. Each event name

corresponds to a separate table (assuming one is

required) which stores the attributes associated with that

event. An example of this type of data might be an event

where the system being evaluated has recorded the

detecting of a wireless access point. The main event table

is updated with the username, the timestamp and the

string “AccessPointSpotted”. Following this, the table

called “AccessPointSpotted” is updated with the MAC

address, SSID, and security type of the access point.

The next data type is media, which is a table

containing references to all the recorded media from the

system. This may consist of such data as videos, audio

recordings of participants or audio field notes. Each

media file is tagged with a timestamp, allowing it to be

synchronised with the data, and a username, which

connects it to the user it concerns.

The final data type is provenance. This is data that

has no timestamp associated with it. Typically,

provenance data contains information gathered from

participants during the trial, and any required

information about each participant. In a study of a team-

based game, for example, it might contain information

mapping each participant to a team.

All the data in the Replayer database is tagged with

a unique Replayer Identifier (RID). RIDs are used to

identify data quickly within the system for selection

purposes – selections are passed between components as

a list of RIDs to achieve the interactive brushing effect.

RIDs are generated by the control unit, which modifies

every incoming SQL CREATE or INSERT statement to

include an RID. The reason this is handled by the control

unit rather than log parser is one of management – it is

possible to have data input from several parsers with no

awareness of their peers, and therefore it would be

challenging to decide which RIDs to use as primary keys

for their data. The only case where duplication of RIDs

takes place is in the events – where they serve as a

foreign key to the main event table. This means that a

component showing all the recorded events can

nevertheless brush and affect one which shows only

events from a particular database table.

3.6 Third Party Software and Exports

Replayer makes use of a number of third party

software packages in its component implementation.

There are two main reasons for this. First, it is the

intention of Replayer to allow users to work with the

tools they are experienced with as much as possible – the

arguments for doing this have been much explored in

studies such as those by Suchman [11] and Dourish 12].

On a more practical note, because of the breadth of

techniques Replayer utilises, it would be time consuming

to recreate systems which have been developed and

refined over time into stable and versatile single task

oriented systems. For example in the case of our video

component, rather than create a whole new tool for

viewing, editing, and exporting video and audio data, we

simply leverage the power of the two most popular

systems for their respective platforms: QuickTime and

Windows Media Player. Equally, Google Earth provides

us with a free and customisable map package which

allows us access to extremely detailed maps of the entire

planet – meaning any geographical data we may have

can be displayed easily. It is also an intention to make as

much of the data as possible exportable. All the

visualisations will be able to save screenshots, and all the

database data can be exported as comma separated value

(CSV) files, which can then be imported into other

software packages. Indeed the database itself is

exportable if the user so wishes.

4. Formatting Input Data

One major area of developing a system such as

Replayer is that of data. It must be collected, collated,

parsed and written correctly into the database before it

becomes possible to begin analysing it. Because

Replayer encourages the use of logged data in a

particular XML based format, Replayer offers

programmers a tool called the Instrumentor.

Figure 5. The Instrumentor Add-In to Microsoft

Visual Studio (highlighted in red on the left).

The instrumentor, shown in Figure 5, is an Add-In to

Microsoft Visual Studio, which inserts logging code

Figure 6. Replayer!s time slider component is shown, along with two videos associated with a particular

dataset. The area of the slider!s track coloured red shows that area where media clips are available.

The green blocks are those areas of time highlighted by making a selection in another tool. The thumb

of the slider points to the current point in time being displayed on the videos. In these particular clips,

the left stream shows a clip recorded from a camera in a building overviewing this trial. Just in shot is

one of the field evaluators, holding a video camera. It is the view from this camera that we see in the

video on the right.

directly and visibly into programs. Any instrumented

program is thus guaranteed to be compatible with

Replayer. Logged events are named with the name of the

method being logged, and can be tagged with a more

descriptive comment if required. Creating state data

takes a little more care. This equates to regularly

sampling the values of a set of variables. The

Instrumentor creates a method called log(), containing

the code required to output the values of those selected

variables, and it is up to the programmer to establish a

place in the program from where to call that method.

Once the logs have been collected, Replayer’s parser

converts each event or state sample to an entry in the

database, dynamically creating new tables as required for

each previously unseen event type.

While Replayer is principally designed to operate on

logged data in this format, it is often the case that legacy

data needs to be analysed, and cases such as these

necessitate the creation of a new parser. This is simply a

matter of generating SQL CREATE and INSERT

commands and sending these to the control unit.

5. Component Modules

This section briefly introduces the components in

Replayer’s suite of tools.

5.1 Media Bridges

A large part of the Replayer system is the inclusion

of media such as video and audio along with more

traditional numerical visualisations in the dataset. To this

end the Media component is included. This description

will focus on the Apple OSX specific QuickTime Bridge

component, the effects (if not the technique) of which are

duplicated for Windows users based on C#’s ability to

control Windows Media Player. The initial visualisation

presented to the user is that of a timeline slider (see

Figure 6).
This can constrained from the full extent of the

database, as with all other components by means of a

suitable SQL query. The timeline slider then requests the

data from the Media table of the database, and colours on

the timeline the places where media is available. This

alone can be important – a system trial may last many

days or even weeks, and video clips may be sparse, so

being able to locate them on a timeline is a useful

visualisation.

It is also from this component that new media clips

are added to the database. To add a video it must first be

synchronised to the data. Video synchronisation is

among the more frustrating and often challenging areas

of qualitative data analysis. We use a tool called QCCI

(Quickie) at the stage of evaluation to help achieve this.

QCCI is a field evaluator’s tool written for windows

mobile, and usually run on a PDA. It includes a number

of functions to support the evaluation recording process,

but the three most significant ones are these: a remotely

synchronised clock display (Figure 7), a GPS log of the

location of the carrier, and the ability to record

timestamped audio field notes. Each of these have a

purpose in Replayer for synchronising media clips. To

time-synchronise a video, the camera is pointed at

QCCI’s clock, which has been synchronised to that of

the system being evaluated. This shows the system time

and allows the offset to be calculated between that frame

and the point at which the video begins.

Figure 7. The frame from within a video, where

QCCI!s remotely synchronised clock was

captured. It becomes relatively easy to

synchronise videos with data using this simple

lo-fi technique.

This simple lo-fi synchronisation is generally

sufficient for our purposes, and in fact does not really

require QCCI – it can be achieved simply by filming any

synchronised clock in the video. Synchronising audio is

a little more difficult. If the audio has been recorded with

QCCI then it is already timestamped. If however it has

been recorded on another device, it must be synchronised

with the data using QCCI’S timestamped clapperboard

noise. To actually achieve this synchronisation the user

has merely to select the appropriate frame in the media

file, enter the time displayed and click the button marked

‘Fix in DB’. A dialogue box will then appear, asking for

the name of the evaluator – this allows geographical

synchronisation to be achieved by relating the positional

logs of that evaluator to that media clip. The path to the

media clip, along with its start and end times, and the

name of the evaluator are then written into the media

table. This spatio-temporal synchronisation allows areas

of the video to be selected in a number of ways. The

timeline shows the selection by highlighting the relevant

slices of time in green, as illustrated in Figures 1 and 6.

When a selection is made from here, or from another

component, the media clips will automatically jump to

the first selected frame.

The display and playing of the clips, unlike the time

slider component itself is operating system specific. On

Apple’s OSX, QuickTime is used, and controlled from

the timeline slider using the Applescript application

control protocol. This allows Replayer to directly control

any action available within QuickTime. We are thus able

to leverage this extremely powerful media tool to display

and playback many media clips simultaneously, and to

show and hide media windows as necessitated by their

relative positions within the data. All are initially opened

and hidden as their playback is time critical.

In initial discussions with evaluators and analysts,

one of the requirements highlighted was the ability to

‘scrub’ through the data, that is move the thumb along

the timeline and see the selection (and media) change as

this happens. However, in most cases, it is not desirable

for moving the thumb to actually make a selection in the

data, but rather to simply move the frame in the media

clips. A separate ‘scrub’ mode was thus implemented to

achieve this, and has proved to be a powerful feature.

Making the correct choice of video and audio codecs

is extremely important when saving media clips for use

with Replayer. Playback of video is a CPU intensive

process, especially in the cases where high compression

is used. Playing several of these high-compression

videos simultaneously will result in slowdown, which

will in turn throw the synchronisation off. However,

because of the distributed nature of Replayer, it is

possible to be playing different videos on different

computers, thus minimising this effect and allowing the

user to progress as normal.

5.2 Time Series

A tool has been incorporated into Replayer to plot

various time series data (Figure 8). Each numerical data

variable provided as input is drawn as a line on the plot,

with colours related to variable names by a key on the

right. Axes are labelled automatically, and re-labelled if

the time series module window is resized.

Figure 8. The time series tool graphs a series of

data streams by time. The tool can compare

attributes between users or view a summary of

a single users! performance.

The time series module can be used in combination

with other visualisations, to allow selection and linking

as described in Section 2. A double-ended slider is

provided at the top of the module, with which a specific

section of the series can be selected. If the data are also

being viewed in another connected component, the

system will highlight the corresponding time

measurements. Similarly, marking time periods in other

views will alter the time series display to reflect the

selection. In Figure 9, the time series is reflecting

selections made in another component. The IDs of the

objects contained in the selection have been passed to the

time series so that the corresponding areas of the could

be highlighted. The time series variables are greyed out

at the deselected periods, with the background also

darkened.

Figure 9. The time series has received a

selection and has shaded the de-selected

periods.

5.3 Event Series

The time series module shows system state over

time. While this is a useful tool, it is unsuitable for

much of the data that is likely to be recorded during a

system evaluation. State data is continuous and

represents properties that will have a specific value at

any instant of a system trial. It would also be of benefit

to study event data, which describes discrete events that

happen periodically throughout system use. Examples

would be user interactions such as button clicks, or

server messages.

The event series has the same time-based x-axis as

the time series, but visualises these discrete events as

icons. Figure 10 shows an example, displaying data

recorded over a week-long trial. In this case, each event

is the discovery by a participant’s PDA of a new wireless

access point. Certain pieces of information are logged

each time this occurs, which the user can explore with

controls provided on the event series, as described

below.

The tool is useful in providing an immediate

overview of a whole trial, while allowing users to zoom

to particular periods of interest. A context window in the

top right of the tool shows all of the data currently

loaded into the tool, with a green window illustrating

where the current focus fits into the overall context. The

green widow can be dragged around in the context view

to immediately jump to another area of interest. The

view in the figure is zoomed to show events taking place

over two days, but there is a degree of overlap that could

be resolved by zooming in to an hour or a few minutes of

recorded data.

A drop-down list is provided at the bottom-left of

the tool to allow users to select the input dimension with

which to plot the data in the y-axis. If a numerical

dimension is selected, the y-axis will be scaled

appropriately and each event will be drawn at the

appropriate height in the frame. On the other hand, if a

nominal dimension is selected, the number of unique

nominal values on that dimension is calculated, these are

spaced out evenly on the y-axis and objects are placed

accordingly. The figure shows a selection of “SSID”:

the owner-assigned name of the wireless network.

Moving the cursor over any object in the event series

generates a tool tip showing the exact value on the x and

y dimensions.

At the bottom-right of the tool is another drop-down

list, to determine the input dimension with which to

colour objects. In the figure, the user has selected

“NAME”, corresponding to the ID of the participant

whose PDA generated each event. A key is provided, as

in the time series, which can be used to filter data in the

same manner.

Selections can be made in the event series by

dragging a box around the objects of choice. Non-

selected items are then greyed out.

Figure 10. The event series tool plots discrete

events by time. In this example, the y-axis has

been set to display owner-assigned names of

wireless network access points, and each event

is coloured by user name.

5.4 Histogram

The previously described components afforded

temporal-based distributions, and judged events and

states on properties at a given time. Replayer also

contains a histogram tool, which provides a means of

assessing data by distribution. Rather than showing

individual events, a summary is given of the aggregated

measurements. Figure 11 illustrates.

Like the event series, the histogram tool has a drop-

down list from which an input dimension can be

selected. The histogram will then display the

distribution of values recorded on that dimension.

Should the selected attribute be based on nominal data, a

separate bar in the histogram is created for each unique

value. This is the case in the figure, which illustrates the

frequency of each distinct event. If the selected

dimension contains numerical data, the data will be

bucketed by value. Tool tips are used to present the x-

axis labels, with the appropriate nominal being displayed

when the cursor is moved over a bar. This action also

shades the bar red and highlights its height in red on the

y-axis, for easy value comparisons.

As with the other components, support is provided

for brushing between views. Selections can be made by

clicking on individual bars, which will instruct the

histogram to send other components the IDs of the

objects represented therein. The histogram visualises

received selections by shading certain amounts of each

bar. Colour is filled in proportion to the amount of

objects represented in the bar that are selected. In the

figure, every object represented by right-most bars is

included in the selection, whereas less than half the

values in the bars to the left are selected.

Figure 11. The histogram shows a distribution

over time. This example shows the occurrence

of each of a number of events. Bars are filled in

proportion with the number of each such event

that exists in the selection.

5.5 Google Earth Bridge

Replayer’s Google Earth Bridge component works

by creating keyhole markup language (KML) files, then

serving them to Google Earth over HTTP. Google Earth

provides two main techniques for retrieving these files –

the refresh can be manual or automated.

The automated refresh means that the data is

periodically updated, making this ideal for creating

animations, while the manual refresh is better for making

selections. When a refresh is requested, as part of the

HTTP GET request Google Earth sends the current ‘view

box’, that is, the geographical points at the corners of the

currently visible area of the map. By examining these

points, the Google Earth Bridge component is able to

establish the RID of each datum being viewed and send

these out as a selection to the other components.

From a display point of view, there are two different

ways data can be shown: statically or animatedly. Static

displays are used to show spatial distributions of events,

while animation is ideal for showing simultaneously with

videos – showing the location of users moving around on

the map. The system is able to show data of more than

three dimensions (latitude, longitude and altitude) by

first colouring the points on the map by one nominal, for

example by user name. Additional dimensions of data

can be included by making use of the description bubbles

provided for each marker on the map though these are

only visible one at a time.

Figure 12 shows the tool.

Figure 12. The lower part of this figure shows

the Google Earth Bridge, which shows what

data is to be included in the KML, and a key to

the marker colours. Above is Google Earth

showing a spatial distribution of participants!

positions for a particular criterion. On the left of

the Google Earth application is a list view of all

the markers, including additional dimensions of

information. Any point can be selected and

focused on in either of these views.

5.6 Example Of Use

Figure 13 shows Replayer in use, running on two

machines, each with additional monitors attached. This

example is analysing data recorded from Treasure – a

multi-player mobile game that exploited seams in

wireless network connectivity [13]. Each player was

given a PDA showing a map, upon which was scattered a

number of coins. Players had to walk to the physical

locations at which the coins were represented to ‘collect’

them, and then move within wifi connectivity to register

their haul to the server and score points. Players could

steal coins from opponents before they uploaded, but

only while both parties were in network the range. In

exploiting patchy network connectivity, the project

sought to make a positive use of what is generally

considered to be a negative phenomenon.

Figure 13. A photograph of Replayer running on

two machines, each with an additional monitor.

The two computers are running different

operating systems. Five tools are in operation,

and all are operating in coordination. Figure 14

provides further detail.

Figure 14 shows the various components from Figure 13

in greater detail. Starting at the top right, an event series

is displaying wireless network signal strength over time

for each of four users. The data has been sampled every

second over a roughly 25 minute period. It can be seen

that there are a number of points forming a horizontal

line significantly lower than the main body of data.

These represent the periods at which there was no

wireless signal. A rectangle has been drawn around the

upper objects, resulting in all the data captured with a

network signal strength of zero being shaded grey and

deselected.

This selection is reflected in the other tools. The

map in the bottom left shows the game area around the

Computing Science Department of the University of

Glasgow and has plotted player positions based on GPS

(Global Positioning System). The wireless access point

that the game used, housed inside an office in the

building, is shown on the map as a dark blue marker.

Following the event series selection, this visualisation

now also shows only those events where the participants

had a network signal. The map therefore reveals the

curved perimeter of signal availability
1
. Although it is

not shown in the figure, selecting the opposite set of

objects in the event series would show roughly the same

1
 A few outlying objects can be explained by GPS error.

perimeter, but with the rendered positions being those

recorded while outwith wireless range.

Moving on to the video component in the top left, it

can be seen that there are two streams of footage. The

left view was recorded from a fixed position at a window

in the building, while the second stream was recorded by

a field evaluator who walked around the game area

amongst the participants. The time slider directly

beneath the videos has been highlighted in accordance

with the selection, with the green areas representing the

selected periods of time. The analyst has moved the blue

control thumb to a non-selected area towards the end of

the trial. The videos then jump to this location, and it

can be seen that the game participants were in a car park

at this period. This car park can be seen in the top centre

of the map, just outwith the network perimeter.

Finally, turning attention to the visualisation

components in the bottom right of the figure, some

thought can be given to player tactics during the game.

The time series component is plotting the number of

coins held by one particular user over time. It can be

seen that this value gradually builds up, as coins are

accumulated, and then falls instantly to zero as the coins

are either banked to the server or stolen. Examining the

shading from the selection, it can be seen that during

times of connectivity coins were collected in very small

numbers, relatively infrequently, and uploaded instantly.

In contrast, the shaded areas show times when the player

had a large numbers of coins. It seems that the player

would not generally leave the networked zone to collect

just the one coin, but would be drawn out for larger

rewards. It can also be seen that the coin tally reduces to

zero immediately on each occasion that the player re-

enters connectivity.

The histogram confirms this analysis of user

behaviour. It charts the distribution of coins held over

time, taking data from all four participants. The state of

having zero coins was by far the most popular, but was

filtered out using the SQL query and does not appear in

the figure. Unsurprisingly, this leaves one coin held as

the most common state. Looking at the effect of the

selection on this visualisation, it can be seen that the

majority of cases where a user held one or two coins

occurred during network connectivity, corroborating the

findings of the time series, where users would collect

small numbers of coins and upload while in range,

without building up large collections. As the number of

coins increases, however, the proportion of the bar

belonging to the selection decreases. Holding a high

number of coins in the networked area is a risky strategy,

as the player is left open to theft; it can be seen that the

players realised this, and of the sampled occasions when

a lot of coins were in a player’s possession, far more

time was spend out of connectivity than in.

Figure 14. Five Replayer tools operating in coordination. Clockwise from top left, the figure shows the

video component handling two streams, the event series charting signal strength for each user over

time, a histogram and time series showing summary information on a system property and the map

showing the recorded positions of users based on GPS. Data is taken from a multi-user mobile

application.

6. Synchronisation

 With many different visualisations of heterogeneous

data types, the challenge of keeping everything

synchronised is considerable. Replayer is a distributed

network system, so all inter component communication

must take place over TCP network connections.

Additionally, because components are non-language-

specific any communication must also be based on a

simple grammar. There are two specific areas of the

system where synchronisation must be maintained. The

meta tools must remain synchronised showing both the

current list of open components, and the queries

currently associated with them. Secondly, the current

selection of data between components must remain

accurate, including when new components are opened.

 Synchronisation of the meta tools is maintained with

messages from the control unit. Whenever a new

component, including a new meta tool, is opened or a

query is sent to the database, the control unit broadcasts

a list of currently active components. Included in this list

are is a unique identifier for each component; the type of

each; the location of each, that is, what computer it is

running on; and the last query made by each. The meta

tools retrieve this list, and update their display

appropriately.

 Synchronisation of selections is also maintained by

the control unit. Data is referred to in Replayer primarily

by its RID. Each entry in the database has an associated

RID. When a selection is made in a component, it sends

either a list of selected RIDs, or start and end

timestamps, depending on the nature of the component

making the selection. The control unit then calculates the

converse, that is, if the control unit receives a list of

RIDs it calculates the start and end timestamps, whereas

if it receives timestamps, it calculates the appropriate

RIDs. The control unit then broadcasts this pair of data

to all the components. Again depending on the nature of

each component, it will make and display its selection

based either on the list of RIDs or the timestamps.

7. Discussion

 Replayer is a tool which attempts to bind together

lots of heterogeneous data. It encourages different styles

of evaluation to be used collaboratively, aiming to bring

together the best practices of both highly quantitative

data-oriented numerical analysts, and more qualitative

data-oriented researchers such as ethnographers. Taking

these different approaches to analysis separately, both

have strong merits, however when brought together, each

can support the other to create a style of analysis greater

than the sum of its parts.

 With the intention to encourage collaboration,

comes a necessity to understand the different ways an

incident is approached by different types of researchers.

There are two distinct approaches supported by

Replayer. The first is question-led analysis, where the

researcher has a particular question in mind he or she

wishes to have answered by the data. Replayer supports

this technique by providing a wealth of different views

for examining data, allowing almost any question to be

answered, assuming the answer lies within the recorded

data. The converse of question-led analysis is

exploration-led analysis. In this case, the researcher does

not really know what he or she is looking for, and will

simply look for interesting incidents in the data; this is

particularly relevant for video analysis, where the

researcher may watch all the way through a video

looking for interesting areas. It is also often applied to

interviews and questionnaires. Replayer supports this

technique by providing additional views on the data,

which can help to give context to videos, or in the case

of non-synchronised data, such as interviews, Replayer

can be used to support, explain or in some cases, directly

contradict what is being said by participants.

Another effect of bring together a cross discipline

group of analysts is the motivation behind making

Replayer distributed and cross platform. The intention is

to bridge to the kind of tools users are comfortable with.

A Replayer user should be able to arrive into a group of

other Replayer users, start up their own computer, of

whatever type they have a preference for, join the local

network, and instantly begin manipulating the data

across the whole group of machines. Equally we aim to

support the use of as many commonly used software

tools as possible, with direct control in some cases, and

more limited export-based support in others.

Conclusions

We have presented the toolkit Replayer: a powerful,

distributed framework for understanding heterogeneous

data. We have explored the underlying architecture of

the system, some of the diverse range of components,

and the techniques used to maintain synchronicity

between them. We examined the process involved in

creating system logs compatible with Replayer, and

showed how legacy data can be imported if necessary. It

is the aim of the Replayer project to encourage at worst

communication, and at best collaboration between

researchers from different backgrounds examining the

same data. It is with the blend of facilities for

quantitative analysis from logged data, and qualitative

analysis from recorded media, that it becomes possible to

surround any single datum with much context, aiding the

understanding of the researcher and thus improving the

evaluation of the system. The distributed, cross platform

nature of the system makes it generally usable by any

researcher with almost any computing equipment, and

allow users to effectively leverage the particular

strengths of each platform. We have shown a number of

examples of how by making use of multiple views of the

data we are able to explain that which may not be

immediately apparent from a single view.

References

[1] A. Onwuegbuzie, N. Leech, On Becoming a Pragmatic

Researcher: The Importance of Combining Quantitative

and Qualitative Research Methodologies. International

Journal of Social Research Methodology, 8:5, pp. 375 –

387, 2005.

[2] P. Tennent, A. Morrison, M. Chalmers, Replayer:

Bridging the Qualitative-Quantitative Divide, Under

Review.

[3] J.C. Roberts. On Encouraging Multiple Views for

Visualization. IEEE Conference Information

Visualization IV '98, 8—14, 1998.

[4] P. Craig, J. Kennedy, A. Gumming, Coordinated Parallel

Views for the Exploratory Analysis of Microarray Time-

course Data, Coordinated and Multiple Views in

Exploratory Visualization, 3 – 14, 2005

[5] D Brodbeck and L Girardin. Design study: Using

multiple coordinated views to analyze geo-referenced

high-dimensional datasets. In Proceedings of

International Conference on Coordinated and Multiple

Views in Exploratory Visualization, pages 104--111,

London, UK, 2003. IEEE Computer Society

[6] R. A. Becker and W. S. Cleveland. Brushing scatterplots.

Technometrics, 29:127-142, 1987.

[7] M. Fraser, G. Biegel, K. Best, J. Hindmarsh, C. Heath, C.

Greenhalgh, and S. Reeves, Distributing Data Sessions:

Supporting remote collaboration with video data.

Proceedings of the 1st International Conference on e-

Social Science, University of Manchester, 2005.

[8] I. E. McLeod, H; Gray, P; and Mancy, R.,

"Instrumenting Bytecode for the Production of Usage

Data," presented at CADUI, pp. 185-196, 2004.

[9] Benford, Rowland, Flintham, Drozd, Hull, Reid,

Morrison, Facer, Life on the edge: supporting

collaboration in location-based experiences, , CHI2005,

pp.721-730, 2005.

[10] B. Brown, M. Chalmers, M. Bell, I. MacColl, M. Hall, I.

MacColl, P. Rudman. Sharing the square: collaborative

leisure in the city streets. Proceedings of ECSC, p427-

429. Springer, 2005.

[11] L. Suchman, Plans and Situated Actions: Cambridge

University Press, 1987.

[12] P. Dourish, Where the Action Is: The Foundations of

Embodied Interaction: Cambridge: MIT Press, 2001.

[13] L. Barkhuus, M. Chalmers, P. Tennent, M. Hall, M. Bell,

and B. Brown. Picking Pockets on the Lawn: The

Development of Tactics and Strategies in a Mobile

Game. Proceedings of UbiComp 2005, Tokyo, Japan,

p358-374, 2005.

