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Abstract

We present a class of dilation integral equations. The equations in this class depend on a dilation parameter a ∈ R.
The existence of non trivial solutions in L1(R) is studied as a function of the dilation parameter. The main result

establishes the non existence of these solutions for |a| < 1, a necessary and sufficient condition for the existence

of solutions with non vanishing integrals in case |a| > 1, and sufficient conditions for these equations to have no

solutions but the trivial one or to have an infinitude of non trivial solutions in case |a| = 1. In all these cases, the

dimension of the space of L1(R)-solutions is determined. When |a| > 1 we have succeeded in writing the frequency

domain representation of the solutions as convergent infinite products.

Keywords: Convolution, Dilation integral equation, Existence of solutions, Fourier transform, Uniqueness of

solution

1. Introduction

A functional equation is called a dilation equation when the unknown function f is calculated at least at the

arguments x and ax, a � 1, and these values simultaneously appear in this equation. In general these equations are

not easy to solve. In this work we present a class of integral equations with dilation. They are of convolution type

and this permits the use of Fourier transform methods to successfully study them. The transformed equations are

simple, i.e., are neither differential nor integral, dilation equations. See Strang (1989), Heil (1994) and references

therein for an introduction to this type of equations.

Let g : R → R, be an integrable function, i.e., g ∈ L1(R).We will be interested in the following class of integral

equations:

f (x) =

∫
R

f (a (x − z)) g(z)dz, (1)

or, in shorter notation,

f = f (a · ) ∗ g (2)

where f (a · )(x) = f (ax), and ∗ is the convolution product.

In this work we will be interested in L1(R) solutions only. We will use the following notations:

The Fourier transform of a function f ∈ L1(R), will be denoted by f̂ . The Fourier transform is denoted by F .We

use the following definition of this transform:

f → F ( f ) = f̂ f̂ (ω) =

∫
R

f (x)e−iωxdx (3)

This article is organized as follows: In section two we state and prove the main result and in section three we finish

this work with some final remarks.
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2. Main Results

Let us denote by S the set of solutions of the dilation integral equation (1). Clearly, S � ∅, since f = 0 is a solution

of (1) whatever the value of a is. From here on we will refer to this solution as the trivial one.

Proposition 1 The integral equation (1) is linear, i.e., if f1 and f2 are solutions to (1) so is α f1 + β f2 for all α and
β in R.

Proof. α f1 + β f2 = α f1(a · ) ∗ g + β f2(a · ) ∗ g = (α f1(a · ) + β f2(a · )) ∗ g = ((α f1 + β f2) (a · )) ∗ g

Thus, S is a vector space.

Proposition 2 If ‖g‖1 < |a| then the only solution to (1) is the trivial solution f = 0 ∈ L1(R).

Proof. Suppose f is a solution and remember that
(
L1(R),+, ·, ∗

)
is a Banach Algebra.

Thus

‖ f ‖1 = ‖ f (a · ) ∗ g‖1 ≤ ‖ f (a · )‖1‖g‖1 = 1

|a| ‖ f ‖1‖g‖1
If ‖ f ‖1 � 0 then

‖ f ‖1 < 1

|a| ‖ f ‖1|a| = ‖ f ‖1,
a contradiction. Thus f = 0 is the only solution.

Lemma 1 If f and g are in L1(R), and f ≥ 0 and g ≥ 0 then ‖ f ∗ g‖1 = ‖ f ‖1‖g‖1.
Proof. ‖ f ∗ g‖1 =

∫
R

∣∣∣∣∣
∫
R

f (x − z)g(z)dz
∣∣∣∣∣dx =

∫
R

∫
R

f (x − z)g(z)dzdx =
∫
R

∫
R

f (w)g(z)dzdw = ‖ f ‖1‖g‖1.
Proposition 3 Suppose that g ≥ 0 and that equation (1) admits a non trivial non negative solution f . Then
‖g‖1 = |a|.
Proof. Using Lemma 1 we can write

0 � ‖ f ‖1 = ‖ f (a · ) ∗ g‖1 = ‖ f (a · )‖1‖g‖1 = 1

|a| ‖ f ‖1‖g‖1

from which
1

|a| ‖g‖1 = 1.

Proposition 4 If f is a solution of equation (1) then its Fourier transform obeys the functional equation

f̂ (ω) = f̂
(
ω

a

) ĝ(ω)

|a| . (4)

Proof. Taking the Fourier transform of (1) and using the convolution theorem and the scaling property of the

Fourier transform, we have

f̂ (ω) = f̂ (a · )(ω)ĝ(ω) =
1

|a| f̂
(
ω

a

)
ĝ(ω).

Proposition 5 If f is a solution of equation (1) with |a| > 1 such that f̂ (0) � 0 then its Fourier transform is given
by

f̂ (ω) = f̂ (0)

∞∏
n=0

(
ĝ
(
ω

an

) /
|a|
)
=

∫
R

f (x)dx
∞∏

n=0

(
ĝ
(
ω

an

) /
|a|
)
. (5)

Proof. Iteration of relation (4) yields

∀m ∈ N f̂ (ω) = f̂
(
ω

am+1

) m∏
n=0

(
ĝ
(
ω

an

) /
|a|
)
. (6)

Since f ∈ L1(R), its Fourier transform is continuous. See (Pinsky, 2009). Thus, for |a| > 1, we have for all ω ∈ R,

lim
m→∞ f̂

(
ω

am+1

)
= f̂
(

lim
m→∞

ω

am+1

)
= f̂ (0) � 0.
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Thus, for all ω there is an m0 such that for all m > m0 we have f̂
(
ω

am+1

)
� 0 so that

m∏
n=0

(
ĝ
(
ω

an

) /
|a|
)
=

f̂ (ω)

f̂
(
ω

am+1

) (7)

and, taking limits, we have

lim
m→∞

m∏
n=0

(
ĝ
(
ω

an

) /
|a|
)
= lim

m→∞
f̂ (ω)

f̂
(
ω

am+1

) = f̂ (ω)

f̂ (0)
(8)

which guarantees the existence of the infinite product
∏∞

n=0

(
ĝ
(
ω
an

) /
|a|
)
. Thus,

f̂ (ω) = lim
m→∞

⎛⎜⎜⎜⎜⎜⎝ f̂
(
ω

am+1

) m∏
n=0

(
ĝ
(
ω

an

) /
|a|
)⎞⎟⎟⎟⎟⎟⎠ = f̂ (0)

∞∏
n=0

(
ĝ
(
ω

an

) /
|a|
)
. (9)

Finally,

f̂ (0) =

∫
R

f (x)ei0xdx =
∫
R

f (x)dx.

This completes the proof.

Proposition 6 If equation (1) with |a| > 1 admits a solution f such that
∫
R

f (x)dx � 0 then
∫
R

g(x)dx = |a|.
Proof. Under these conditions, equation (8) guarantees the existence of the limit

lim
m→∞

m∏
n=0

(
ĝ
(
ω

an

) /
|a|
)
.

Taking ω = 0 in equation (8), we have
∏∞

n=0

(
ĝ (0)
/
|a|
)
= 1 which directly implies ĝ(0) = |a|. Now, from (3),

ĝ(0) =
∫
R

g(x)e0dx. This completes this proof.

Let us denote by V0 the vector subspace of L1(R) defined by V0 =
{
f ∈ L1(R) :

∫
R

f (x)dx = 0
}
. Observe that we

have V0 = { f ∈ L1(R) : f̂ (0) = 0}. From here on we will also write W =
{
f ∈ RR : f (0) = 0

}
, and Y = L1(R) \V0.

Proposition 7 If equation (1) with |a| > 1 admits a solution in Y and g ≥ 0 then ‖g‖1 = |a|.
Proof. Immediate.

Proposition 8 Consider equation (1) with |a| > 1. If the infinite product
∏∞

n=0

(
ĝ
(
ω
an

) /
|a|
)

converges to a limit

function whose value at ω = 0 is different from zero and which is Fourier invertible, i.e., if

∞∏
n=0

(
ĝ
(
ω

an

) /
|a|
)
∈ F
[
L1(R)

]
\W,

then equation (1) admits non trivial solutions. All the solutions to (1) are given by

f = kF −1

⎛⎜⎜⎜⎜⎜⎝
∞∏

n=0

(
ĝ
(
ω

an

) /
|a|
)⎞⎟⎟⎟⎟⎟⎠ . (10)

for all k ∈ R.
Proof. It suffices to show that equation (10) generates a solution for k = 1, because, in this case, equation (1)

will have a non trivial solution with f̂ (0) � 0 which, by proposition (5), implies that all solutions to (1) such that

f̂ (0) � 0 are written in the form of equation (5) or equivalently of equation (10) with k = f̂ (0). Moreover, if

f̂ (0) = 0 then, letting m→ ∞ in equation (6) we have

f̂ (ω) = f̂ (0)

∞∏
n=0

(
ĝ
(
ω

an

) /
|a|
)
= 0,

3



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 4, No. 3; 2012

the trivial solution that corresponds to the choice k = 0 in (10).

Taking k = 1, we have

F ( f (a · )) = 1

|a| (F ( f ))

(
1

a
·
)
=

1

|a|

⎛⎜⎜⎜⎜⎜⎝
∞∏

n=0

(
ĝ
( ω

a

an

) /
|a|
)⎞⎟⎟⎟⎟⎟⎠ = 1

|a|

⎛⎜⎜⎜⎜⎜⎝
∞∏

n=1

(
ĝ
(
ω

an

) /
|a|
)⎞⎟⎟⎟⎟⎟⎠

and

f = F −1

⎛⎜⎜⎜⎜⎜⎝
∞∏

n=0

(
ĝ
(
ω

an

) /
|a|
)⎞⎟⎟⎟⎟⎟⎠ = F −1

⎛⎜⎜⎜⎜⎜⎝ 1

|a| ĝ (ω)

∞∏
n=1

(
ĝ
(
ω

an

) /
|a|
)⎞⎟⎟⎟⎟⎟⎠ = F −1 (ĝ (ω))∗F −1

⎛⎜⎜⎜⎜⎜⎝ 1

|a|
∞∏

n=1

(
ĝ
(
ω

an

) /
|a|
)⎞⎟⎟⎟⎟⎟⎠ = g∗ f (a · ),

that is, f is a solution of (1). This completes the proof.

Proposition 9 If 0 < |a| < 1 then the unique solution to the dilation integral equation (1) is the trivial one, f = 0.

Proof. From (6) we have

∀ω ∈ R f̂ (ω) = lim
m→∞ f̂

(
ω

am+1

) m∏
n=0

(
ĝ
(
ω

an

) /
|a|
)
. (11)

Now, since 0 < |a| < 1, for all ω � 0, we have

lim
m→∞

∣∣∣∣∣ ωam+1

∣∣∣∣∣ = lim
m→∞

∣∣∣∣∣ ωam

∣∣∣∣∣ = ∞.

Thus, by the Riemann Lebesgue Lemma we have limm→∞ f̂
(
ω

am+1

)
= 0 as well as limm→∞

(
ĝ
(
ω
am

) /
|a|
)
= 0. Conse-

quently,

∀ω � 0 f̂ (ω) = 0

and, since f̂ is continuous, we also have f̂ (0) = 0. This completes the proof.

Proposition 10 If a = 0 then equation (1) (with point-wise equality) has non trivial solutions if and only if∫
R

g(x)dx = 1 and, in this case, S is the set of constant functions. However, these solutions are not in L1(R).

Proof. Taking a = 0 in (1), we have

f (x) =

∫
R

f (0)g(z)dz = f (0)

∫
R

g(z)dz = k f (0) (12)

Now, f (0) = k f (0) and f (0) = 0 or k =
∫
R

g(z)dz = 1.

Remark 1 If in Proposition 10 we use equality a.e. with respect to the Lebesgue measure instead of point-wise

equality then equation (1) has non trivial solutions if and only if
∫
R

g(x)dx � 0 and S is the set of a.e. constant

functions. We observe again that these are not L1− solutions.

Proof. Equation (12) is still valid and we have f (x) = k f (0) a.e.

Proposition 11 If a = 1 and ĝ � 1 a.e. then equation (1) has no solutions but the trivial one.

Proof. From equation (4), we have f̂ (ω) = f̂ (ω)ĝ(ω). Thus

∀ω ∈ R f̂ (ω) = 0 ∨ ĝ(ω) = 1.

Under the assumption ĝ � 1 a.e., we have f̂ (ω) = 0 a.e., and, from the continuity of f̂ , we conclude that f̂ = 0.
Thus f = 0 a.e.

Proposition 12 If a = 1 then there exists g ∈ L1(R) such that equation (1) admits infinitely many linearly indepen-
dent solutions.

Proof. Let ϕ be a C∞-function such that for all x ∈ [−1, 1], we have ϕ(x) = 1 and that, for all x ∈ R \ [−2, 2],
we have ϕ(x) = 0. Then, ϕ ∈ S(R), the set of rapidly decreasing C∞-functions on R. Thus, we can define g by

taking ĝ = ϕ, and we will have g = F −1ϕ ∈ S(R) ⊂ L1(R). (See Rudin, 1980). We will take ϕ an even function

in order to guarantee that g is a real valued function. Now, for every even C∞-function, ψ, with support contained

in [−1, 1], we can take f̂ = ψ ∈ S(R) and obtain the real valued function f = F −1ψ ∈ S(R) ⊂ L1(R), a solution
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of (1). Observe that we have f̂ (ω) = f̂ (ω)ĝ(ω) for all ω ∈ R, and, consequently, the fulfillment of (1). Clearly, the

set of the even C∞-functions with support contained in [−1, 1] is an infinite dimensional vector subspace of L1(R).
Since linear independence is preserved by F −1, the proof is complete.

Proposition 13 If a = −1 and ĝ.ĝ(−1 · ) � 1 a.e. then equation (1) has no solutions but the trivial one.

Proof. From equation (4), we have f̂ (ω) = f̂ (−ω)ĝ(ω). Calculating f̂ (−ω) we have f̂ (−ω) = f̂ (ω)ĝ(−ω) and

substituting in the previous formula we get f̂ (ω) = f̂ (ω)ĝ(−ω)ĝ(ω). Thus

∀ω ∈ R f̂ (ω) = 0 ∨ ĝ(ω)ĝ(−ω) = 1,

and, if ĝ.ĝ(−1 · ) � 1 a.e., then f̂ = 0 a.e. and the continuity of f̂ implies f̂ = 0. Thus, f = 0 a.e. and the proof is

complete.

Proposition 14 If a = −1 then there exists g ∈ L1(R) such that equation (1) admits infinitely many linearly
independent solutions.

Proof. Analogous to the proof of Proposition 12. The same choices of ĝ and ψ are made. Since f̂ = ψ is an even

function, we have f̂ (ω) = f̂ (ω)ĝ(ω) = f̂ (−ω)ĝ(ω).

Now we state our main result, which organizes and joins the results of the propositions. Remember that Y =

L1(R) \
{
f ∈ L1(R) :

∫
R

f (x)dx = 0
}

and that W =
{
f ∈ RR : f (0) = 0

}
.

Theorem 1 Let g ∈ L1(R) and a ∈ R. Consider the linear dilation integral equation

f (x) =

∫
R

f (a (x − z)) g(z)dz.

Then, concerning the solutions of this equation that belong to L1(R), the vector subspace S ∩ L1(R) of its L1(R)-
solutions, and the values of the dilation parameter a, we have the following

-If |a| < 1 then the unique solution is the trivial one, f = 0, a.e., and dim
(
S ∩ L1(R)

)
= 0,

-If |a| > 1 then there exist solutions in Y if and only if the infinite product
∏∞

n=0

(
ĝ
(
ω
an

) /
|a|
)

converges and is in

F
[
L1(R)

]
\W. In this case we have f =

(∫
R

f (x)dx
)
F −1
(∏∞

n=0

(
ĝ
(
ω
an

) /
|a|
))

and dim
(((

S ∩ L1(R)
)
\W
)
∪ {0}

)
=

1. On the other hand, if f̂ (0) = 0 and
∏∞

n=0

(
ĝ
(
ω
an

) /
|a|
)
∈ F
[
L1(R)

]
\W then the unique solution is the trivial one

and dim
(
S ∩ L1(R)

)
= 0,

-If a = 1 (a = −1) then if ĝ � 1 a.e. (ĝ.ĝ(−1 · ) � 1 a.e.) then the unique solution is the trivial one and
dim
(
S ∩ L1(R)

)
= 0. However, there exist functions g such that, both for a = 1 or a = −1, S ∩ L1(R) is an infinite

dimensional subspace of L1(R).

Proof. Propositions 1, 5, 8, 9, 11, 12, 13 and 14. For the only if part in the second statement, note that from

proposition 5, taking ω = 0 we have
∏∞

n=0

(
ĝ
(
ω
an

) /
|a|
) ∣∣∣∣∣
ω=0
= f̂ (0)/ f̂ (0) = 1 � 0 which implies

∏∞
n=0

(
ĝ
(
ω
an

) /
|a|
)
�

W.

3. Final Remarks

Although the choice of dilation, or scale, parameter a = 1 does not lead to a dilation integral equation, we remark

that this choice leads to a singular Fredholm integral equation of the second type. A particular case of these

equations, that corresponds to the choice g(x) = λe−|x|, λ ∈ R, in equation (1), is the Lalesco-Picard equation,

which is known to have solutions outside L2(R) but only the trivial solution in L2(R). See (Krasnov, Kiseliov and

Makarenko, 1977). Since, in this case ĝ(ω) = 2λ
1+ω2 , by proposition (11), the Lalesco-Picard equation also has

no other solution then the trivial one in L1(R). As we have shown, for convenient choices of g, these singular

Fredholm integral equations present an infinitude of linearly independent solutions in L1(R), which is a very

interesting feature. These equations have interest on their own and are the subject of another work.
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