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We propose a novel homogeneous neural network ensemble approach called Generalized Regression

Neural Network (GEFTS–GRNN) Ensemble for Forecasting Time Series, which is a concatenation of

existing machine learning algorithms. GEFTS uses a dynamic nonlinear weighting system wherein the

outputs from several base-level GRNNs are combined using a combiner GRNN to produce the final

algorithm appears to be more powerful than existing ones. Unlike conventional algorithms, GEFTS is

effective in forecasting time series with seasonal patterns.

& 2011 Elsevier B.V. All rights reserved.
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1. Introduction

Time-series forecasting is about projecting data into the future.
Univariate time-series datasets contain values for a single variable
across multiple time periods. Time series violate at least two
fundamental assumptions of spatial statistics: independence and
identity of distribution (i.i.d.). These limitations pose significant
challenges for computational modelling of data. Severe multicolli-
nearity is a direct consequence of the departure from the indepen-
dence assumption. In time series analysis, the input variables are
the values of the given variable at selected lags and the output
variables are the forecasts for different horizons. Lag variables are
autocorrelated, and hence it is difficult to estimate individual
response coefficients accurately. One way to reduce the impact of
collinearity is to increase sample size. Since time series data follow
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one variable’s changes over time, lack of training data is a burning
issue in time series applications. Shortage of degrees of freedom
and severe multicollinearity in time-series data often frustrate
data miners. To make matters worse, real world time series often
violate the assumption of identity (stationarity) so that the prob-
ability laws (i.e. the multivariate joint distribution) governing the
process change with time or space—that is, the process is not in
statistical equilibrium. This makes time series data inherently high
dimensional and not reducible to two or three dimensions.
A variety of modelling techniques are available for this problem
including Autoregressive Integrated Moving Average (ARIMA)
and Generalized Autoregressive Conditional Heteroskedasticity
(GARCH) [1], Artificial Neural Networks (ANNs) [2] and Support
Vector Machines (SVMs) [3]. These conventional algorithms often
have many drawbacks, such as local optima, overfitting, dimension
disasters, etc., which make the algorithms inefficient.

We present a novel algorithm for forecasting univariate time
series and future volatility. Our algorithm is a concatenation of
well respected algorithms. The remainder of this paper is orga-
nized as follows: the proposed algorithm in Section 2, research
methodology in Section 3, results and discussion in Section 4,
followed by summary and conclusions in Section 5.
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2. Proposed algorithm (GEFTS)

We propose a new efficient time series forecasting algorithm,
Generalized Regression Neural Network (GEFTS–GRNN [4])
Ensemble for Forecasting Time Series, which combines several
well respected algorithms. GEFTS consists of two layers. In the
99
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first layer, it has a set of individual GRNN learners (called base
learners) and in the second has a single GRNN (called the
combiner). The overall architecture of GEFTS is presented in
Fig. 1. Each base learner is trained on a different subset of
features. No feature can be present in two different subsets. The
outputs of selected networks are then used to train a new GRNN
to combine the predictions of individual networks. GEFTS applies
SAGA [5] to optimize feature subsets and the ensemble of multi-
ple base learners.

The advantages of GEFTS are summarized in Section 2.1. In
Section 2.2, we discuss the implementation process of GEFTS.
Section 2.2.3 provides the justifications behind the decisions
taken during the selection of underlying algorithms and their
associated parameters in GEFTS.

2.1. Advantages of proposed algorithm (GEFTS) over conventional

forecasting techniques
85
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The primary advantage of GEFTS is that it is robust against the
curse of dimensionality. This is because GEFTS is a mixture of
GRNNs where each GRNN is trained on a small subset of the
whole feature space—this ensemble architecture enables
GEFTS to maintain an adequate ratio of training cases per
variable to reduce the impact of high dimensional datasets.
Detrending and deseasonalization are critical for conventional
time series forecasting algorithms. If there is a long-term
trend in the data, the joint probability laws will be different at
every time step. Under such circumstances, no machine
learning algorithm can learn. In contrast, the characteristics
of joint distributions change cyclically across the seasonal
time series. Theoretically, seasonal patterns should be pre-
dictable. The model of both detrended and deseasonalized
data only includes non-seasonal lags, whereas the models of
time series with seasonal patterns must include both seasonal
and non-seasonal lags that give rise to an increase of the
effective dimensionality (here, ‘‘effective dimensionality’’
refers to the smallest number of predictor variables that are
necessary to model the time series adequately). In time series,
the available sample size shrinks dramatically when the
model needs to include long seasonal lags. This leads to a
very inefficient model and the forecasting becomes less
Fig. 1. Architecture of

ease cite this article as: I.A. Gheyas, L.S. Smith, A novel neural n
urocomputing (2011), doi:10.1016/j.neucom.2011.08.005
reliable. Therefore, applying both detrending and deseasona-
lization simultaneously is an effective data pre-processing
approach in modelling and forecasting time series with
conventional forecasting techniques. However, there are no
hard and fast rules for the identification of the seasonal
patterns in the data. Hence, it can be very difficult to identify
periodicities from random patterns (noise), which often leads
to underdifferencing or overdifferencing. Eggleton showed
that subjects were unable to distinguish between alternating
sequences and random sequences in contrived time series
data [5]. The underdifferenced series exhibits seasonal variations
which results in poor forecasting performance due to the curse of
dimensionality. The effects of overdifferencing are even worse.
Overdifferencing may lead to an efficiency loss, and a possible
deterioration of forecasting, since overdifferencing can introduce
patterns into the original observations which were not actually in
the data before the differencing.GEFTS is able to model season-
ality directly so that prior deseasonalization is not necessary.
Because GEFTS is robust against the curse of dimensionality, it
can take a large number of lagged variables into account without
overfitting. Hence, GEFTS can deal with seasonal time series
problems.
(II)
 GEFTS uses a dynamic nonlinear weighted voting scheme to
combine the base classifiers into a single, composite classifier.
Each base GRNN learner independently forecasts the output.
A combiner GRNN is then trained to predict the final output
from the outputs of base learners. In essence, the pattern of
base learners’ outputs provides the combiner learner indirect
feedback about the correctness of its base learners for a given
input. Consequently, GEFTS can capture interactions among
base learners.
2.2. Design and implementation strategy of GEFTS

GEFTS forecasts both future values of a time series and expected
future volatility. For this, GEFTS constructs two ensemble
models—model-P and model-Q. Model-P forecasts expected future
values, whereas model-Q forecasts expected future volatilities.
Model-P is fitted to the time series data and model-Q is fitted to
the square of residuals obtained from the model-P on the training
dataset. Model-P is developed before model-Q.
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Once the models are constructed, they forecast future events
independently based on historical information. The pseudo code
of GEFTS is presented in Section 2.2.1. GEFTS employs SAGA [6] to
optimize the ensemble makeup. Section 2.2.2 explains how SAGA
evaluates alternative feature subsets for base learners and the
combiner learner.

Appendix A presents a brief overview of GRNN and Appendix B
provides a short overview of SAGA.
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2.2.1. Pseudo code of GEFTS

GEFTS constructs an ensemble model for 1-step-ahead fore-
casts. GEFTS performs multi-step-ahead forecasting by iteratively
making repeated one-step-ahead predictions up to the desired
horizons feeding predictions back in as inputs in order to forecast
further into the future.

Step 1: Construction of the model (P) for forecasting future
values in the time series:

Step 1.1: Detrend the time series. Section 3.2 describes how
we detrend the time series.

Step 1.2: Select time lags with no less than 10 observations as
candidate input variables. The outputs are one-step-ahead time
series values.

Step 1.3: The purpose of this step is to partition the feature
space into a finite set of optimal mutually exclusive and exhaus-
tive subspaces. GEFTS does this in the following way:
95
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Apply SAGA to the chosen feature space to select the best
feature subset.
97

(II)
 Remove features included in the selected feature subset from

the original feature space before selecting the next best
feature subset solution.
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Repeat steps I to II until there are no features left in the
feature space.

Step 1.4: Train a GRNN with each feature subset selected in step
1.3. Each GRNN is trained to forecast the 1-step-ahead value. During
training, we set the default value for each centre’s width s to 0.5 times
the average distance to 20 nearest neighbours (see Section 2.2.3.2).

Step 1.5: Present the training patterns one after the other to
each of the trained GRNNs for the prediction of output values.

Step 1.6: Generate a training dataset where the input vectors
consist of the forecasts of the GRNN learners. That is, the
generated dataset consists of a number of different features
where each feature denotes the forecasts by one trained GRNN
for the original training patterns. Hence, the number of input
variables in the new dataset is equal to the number of trained
GRNNs. The output variable is actual values of one-step-ahead.

Step 1.7: Run SAGA on the new dataset to select an optimal
subset of features for forecasting the k-step-ahead value.

Step 1.8: Select the GRNNs, from which the selected features
for the combiner GRNN were derived, as base classifiers.

Step 1.9: Finally, train a combiner GRNN on the new dataset (i.e.
predictions of base level GRNNs) using the selected feature subsets.

Step 2: Construction of GRNN ensemble model ‘Q’ for the
forecasting volatility of time-series:

Step 2.1: Present training patterns to the model ‘P’ for predic-
tion purposes. Then find the squared residual series at by
subtracting the predicted value Ẑt from the actual value Zt and
by taking the square of the residual:

at ¼ ðZt�
_
ZtÞ

2: ð1Þ

Step 2.2: We fit a GRNN ensemble model to this squared
residual series as we did for the original time series data in step 1.
ease cite this article as: I.A. Gheyas, L.S. Smith, A novel neura
urocomputing (2011), doi:10.1016/j.neucom.2011.08.005
We name this model as ‘Q’. Model ‘Q’ forecasts future volatility
(the conditional mean of the squared residuals) based on the
lagged squared residuals. It is very important to note that during
the out-of-sample forecasting, the process variance increases
linearly with time due to the accumulation of random noise.
Hence GEFTS calculates conditional variance at t-steps-ahead
(where h¼1, 2, 3,y) out-of-sample forecasting, using Eq. (2).

Variance at time horizon t:

Varð
_
ZtÞ ¼ ðPredicted squared residual at time step tÞ � t ð2Þ

We compute a 95% confidence interval (C.I.) for the forecast of
the future value of time series ðẐtÞ as in Eq. (3)

95% C:I:¼ Ẑt 71:96Varð
_
ZtÞ ð3Þ

Step 3: The forecasts of models P and Q must finally be
numerically inverted back to the original time domain.

2.2.2. How SAGA assigns fitness scores to candidate solutions

The use of the validation set for feature subset selection would
reduce the amount of data available for training significantly.
Hence, we evaluate alternative feature subsets on the full set of
training data using Bayesian Information Criterion (BIC).

The fitness value is assigned to each feature subset solution
according to the BIC value. The BIC value was used to evaluate the
feature subset solution. The lower the BIC values, the higher the
fitness scores.

BIC ¼ n ln
RSS

n

� �� �
þðlnðnÞÞk ð4Þ

where RSS¼residual sum-of-squares on the training data from
the estimated model, n¼number of data points in training set and
k¼number of features in a feature subset.

SAGA assigns rank 1,y,m to the solutions according to their BIC
values, where rank ‘1’ is the worst-fitness solution. For each solution,
we divide its rank value by the rank sum (i.e. the sum of the ranks of
the solutions evaluated so far) to obtain the fitness score. The fitness
scores of all the solutions were updated following the evaluation of
each new solution.

2.2.3. Justification of design choices and parameter settings chosen

for SAGA

2.2.3.1. Reasons behind using GRNN as a machine learning

algorithm. GRNN has many advantages including its non-parametric
nature, local approximation property and only one adjustable
parameter. Moreover, it is a computationally very efficient
approach since it is a one-pass algorithm.

2.2.3.2. Reasons for setting the smoothing parameter of GRNN to

0.5 times of the average distance to 20 nearest neighbours. GRNN
has only one adjustable parameter (the smoothing parameter s).
However, we have discovered the best default value for s. We set
the default value for each centre’s width s to 0.5 times of the
average distance to 20 nearest neighbours. The default parameter
setting was adopted on 200 synthetic datasets with various data
characteristics (Appendix C).

With this parameter setting, the width of each prototype
pattern (i.e. centre) within a GRNN is different since each prototype
pattern has a unique set of 20 different neighbours. As a result, the
proposed default value of s can keep the local approximation
ability of GRNNs intact. Appendix C shows performance impact of
different s values.

2.2.3.3. Reasons behind using SAGA as a search algorithm. None of the
popular optimization algorithms are perfect in the sense that no
l network ensemble architecture for time series forecasting,
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single technique fully satisfies all the requirements of an optimal
search algorithm. Simulated Annealing (SA) suffers from slow
convergence. Genetic Algorithm (GA) suffers from premature
convergence. Hill-climbing (HC) always gets stuck into the
nearest local minimum to the start position. However, the hybrid
of these three algorithms can overcome the weaknesses of each.
SAGA is a hybrid scheme that sequentially applies: (i) a SA, (ii) a GA
and (iii) a HC. SAGA may not always find the best solution but is
guaranteed to find a good solution at any given time: guaranteeing
the best solution is only possible using brute force search. For the
comparative assessment of the search algorithms in terms of
accuracy, convergence time and parsimony of the solution,
interested readers are referred to [6].
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3. Comparative performance analysis

We compare GEFTS with popular time series forecasting algo-
rithms: (i) ARIMA–GARCH [1], (ii) Generalized Regression Neural
Networks (GRNN) [7], (iii) feedforward Multilayer Perceptrons
(MLP) [8], (iv) Elman’s Recurrent Neural Networks (ERNN) [9], (v)
a hybrid algorithm of regression-based methods and ERNN (HA)
[10], (vi) Radial Basis Function Neural Networks (RBFNNs) [11], (vi) a
homogeneous ensemble of GRNNs with simple averaging approach
(HOS) [12], (vii) a homogeneous ensemble of GRNNs with static
weighted voting approach (HOW) [13], (viii) a heterogeneous
ensemble of a MLP, a ERNN, a GRNN, a RBFNN and a SVM) with
simple averaging approach (HES) [14], (ix) a heterogeneous ensem-
ble with static weighted voting approach (HEW) [15], (x) Jacob’s
dynamic ensemble approach (JE—in JE, we used GRNNs as base
learners and the gating network) [16] and (XI) Support Vector
Machines (SVMs) [3]. We implement these algorithms using the
toolboxes MATLAB and Peltarion Synapse Neural Network Software.
Interested readers should refer to the references mentioned above
for the details about these algorithms. We tested forecasting
algorithms on 30 real world datasets (described in Section 3.1).

In this study, we adopted the following strategies to assess the
performance of proposed and existing algorithms:
105
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P
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Detrending and deseasonalization were used as a pre-proces-
sing step to prepare time series for analysis (exactly how we
do this is discussed in Section 3.2).
109
�
111

113
For the simplicity, all forecasting algorithms (except for
ARIMA–GARCH) include only autoregressive terms (lagged
values of the response variable) in their models. ARIMA–
GARCH uses both autoregressive terms and moving average
terms (lagged errors) for prediction.

�

115

All forecasting algorithms use SAGA for optimal feature (auto-
regressive and moving average terms) subset selection.

�

119

GEFTS, Jacob’ Ensemble (JE), HOS and HOW employ SAGA to
select an optimal set of base learners.
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123
Conventional forecasting algorithms used PSO (Particle Swarm
Optimization) to optimize model parameters (e.g. the values of
cost parameters in SVM, the number of hidden units in NN, the
vote weights of base classifiers in HOW, HEW, etc.).
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In ARIMA–GARCH, the fitted ARIMA model forecasts future
values of a time series and the GARCH model forecasts future
volatilities. Neural Networks (all ensemble and neural network
classifiers) learn two models, one for the future values of the
time series and one for future volatilities. First, a model is fitted
to the actual time series data to forecast the future value, and
the in-sample squared residuals of the model are obtained.
Next, a second model is fitted to the squared residuals to
forecast future volatilities on time series data.
133
�
 We split the time series into training and test sets. Eleven
consecutive observations after every 22 consecutive steps were
lease cite this article as: I.A. Gheyas, L.S. Smith, A novel neural
eurocomputing (2011), doi:10.1016/j.neucom.2011.08.005
used as test cases. The remaining observations were used as
training samples.

�
 All time series forecasting algorithms use the BIC to choose

among tentative models with different parameter values.

�
 The one-step-ahead process is iterated to obtain multi-step-

ahead forecasts.

�
 All algorithms were run on a 3.40 GHz Intel Pentiums D CPU

with 2 GB RAM.

�
 We compare the performance of the forecasting algorithms in

terms of the accuracy of point and interval forecasts on the test
case domain.

�
 An interval forecast is considered to be correct if the actual

value falls inside the predicted 95% confidence interval. Point
estimation accuracy was measured using the Mean Absolute
Percentage Error (MAPE) of forecasts:

Point estimation accuracy¼ 100�
100

N

XN

i ¼ 1

ðYi�
bYi Þ

��� ���
Yi

ð5Þ

where N¼number of observation in the test set, Yi¼actual
output and bYi¼ forecasted output.

�
 The performance of each forecasting algorithm was evaluated on

the detrended time series before and after deseasonalizing data.

�
 We compute the accuracy of algorithms on 1, 5 and 10-step-

ahead forecasts

�
 In time series forecasting, the magnitude of the forecasting error

increases over time, since the uncertainty increases with the
horizon of the forecast. When forecasting time series, interval
estimates are more informative than simple point estimates.
Hence, for each dataset, the algorithms were ranked in terms of
their accuracy in the interval estimation. If two algorithms have
the same interval-estimation accuracy on a dataset, the algo-
rithms were ranked based on the point estimation accuracy. The
Friedman test was used to test the null hypothesis that the
performance is the same for all algorithms. After applying the
Friedman test and noting it is significant ‘‘Comparison of Groups
or Conditions with a Control’’ tests (details are available in [17],
p. 181) were performed in order to test the (null) hypothesis
that there is no significant difference between any pair of
algorithms.

3.1. Description of datasets used for comparison of forecasting

algorithms

We compare the proposed and conventional forecasting
approaches on 30 real-world datasets, which are all from [18].
These datasets contain no missing values. In our study, we used
following datasets: (1) The Bank Loan rate (daily): contains the
daily observations for the period August 4, 1954–February 14,
2010. (2) Discount Window Primary Credit (daily): contains the
daily observations for the period January 9, 2002–February 14,
2010. (3) Federal Funds: contains the daily observations for the
period July 1, 1953–February 14, 2010. (4) 3-month Treasury
Bills-Secondary Market (daily): contains the daily observations
for the period January 4, 1953–February 14, 2010. (5) 3-month
Bankers Acceptances (top rated) (daily): contains the daily
observations for the period April 2, 1964–June 30, 2010. (6) 5-
year inflation (indexed): TIPS (daily): contains the daily observa-
tions for the period November 2, 2002–December 31, 2010. (7)
Yield on US Treasury bonds with maturity over 10 years:
contains the daily observations for the period July 1, 1981–June
30, 2000. (8) 1-year Interest Rate Swap: contains the daily
observations for the period May 3, 2000–December 31, 2010. (9)
Moody’s Seasoned Aaa (daily): contains the daily observations for
the period January 3, 1982–December 31, 2010. (10) Moody’s
Seasoned Baa (daily): contains the daily observations for the
network ensemble architecture for time series forecasting,
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period January 3, 1982–December 31, 2010. (11) A Rating-Utility
Bonds: contains monthly values from January, 1970, through
September, 1998. (12) Real Gross National Product: contains
monthly values from January, 1969, through April, 2009. (13) Real
Imports: contains monthly values from January, 1969, through
April, 2009. (14) Real Exports: contains monthly values from
January, 1969, through April, 2009. (15) Manufacturers’ New
Orders Durable Goods: contains monthly values from January,
1992, through February, 2010. (16) Housing Starts: contains
monthly values from January, 1969, through February, 2010.
(17) Real Fixed Residential Investment: contains monthly values
from January, 1969, through April, 2009. (18) Real Fixed non-
residential Investment: contains monthly values from January,
1969, through April, 2009. (19) Civilian Labour Force: contains
monthly values from January, 1969, through March, 2010. (20)
Unemployment Rate: contains monthly values from January,
1969, through March, 2010. (21) Manufacturers’ New Orders:
contains monthly values from January, 1992, through February,
2010. (22) U.S. Employed: Household Survey: contains monthly
values from January, 1969, through March, 2010. (23) Capacity
Utilization—Manufacturing: contains monthly values from Jan-
uary, 1969, through February, 2010. (24) Consumer Price Index:
contains monthly values from January, 1969, through February,
2010. (25) US Employment Cost Index: Private Industry: contains
monthly values from April, 1979, through April, 2009. (26) U.S.
Nominal Retail Sales: contains monthly values from January,
1992, through February, 2010. (27) U.S. Payroll Employment—

Mining: contains monthly values from January, 1969, through
September, 2009. (28) U.S. Payroll Employment—Total Non-
Agricultural: contains monthly values from January, 1969,
through March, 2010. (29) 11th District dry land Value: contains
monthly values from March, 1976, through March, 2010. (30) 11th
District crop land Value: contains monthly values from March,
1976, through April, 2010.

Characteristics of two interesting time series are discussed in
Appendix D, which may be found at http://www.cs.stir.ac.uk/~lss/
research/GheyasSmith2011/GheyasSmithAppendixD_June2011.
pdf.

3.2. Description of data pre-processing

In this section, we explain how we detrend and deseasonalize
the data.

3.2.1. Description of detrending methods
113

(i)
115

119

121

123

Pl
Ne
Eliminate non-stationarity in variance: Ascertain if there is any
evidence of non-stationarity in variance by examining time
series plots and by the F-test of variances of the first and
second halves of the time series with a significance level (a) of
0.05. If the variance is not stable through the time, transform
the original series into logarithms or square roots to stabilize
its variance. If the logarithmic transformation does not
stabilize the series variance, then try transforming the origi-
nal series into its square roots.
125
(ii)
127

129

131
Eliminate non-stationarity in mean: Examine the series for
stability of its mean by observing time series plots. This can
be confirmed by a t-test of the means of the first half of the
period and the last half with a significance level (a) of 0.05. If
the mean is not stable (i.e. the series indicates a trend),
resolve this through first or second order non-seasonal
differencing of the series.
133
Non-seasonal Differencing is a popular and effective way of
removing trend from a time series. The strategy is to apply
ease cite this article as: I.A. Gheyas, L.S. Smith, A novel neura
urocomputing (2011), doi:10.1016/j.neucom.2011.08.005
successive differencing until the differenced series become sta-
tionary. If the series has positive autocorrelations out to a high
number of lags (Appendix Fig. E3), then it probably needs a higher
order of differencing. The correlation of a variable with itself over
successive time intervals is called autocorrelation (ACF) or serial
correlation. First order differencing is usually sufficient to obtain
trend stationarity. However, higher-order differencing was applied
when necessary. The new series fX1,X2,. . .,XN�1g is formed from
the original series fZ1,Z2,. . .,ZNg by first-order differencing:

Zt ¼ Ztþ1�Zt ¼rXtþ1

Occasionally second-order differencing is required using the
operator r2, where

r
2Xtþ2 ¼rXtþ2�rXtþ1 ¼ Xtþ2�2Xtþ1þXt

Differencing tends to introduce negative correlation. If the
series initially shows strong positive autocorrelation, then a non-
seasonal difference will reduce the autocorrelation. A detrended
time series looks flat.

3.2.2. Description of deseasonalization methods

If there are recurring patterns in the trend stationary time
series, some form of seasonal differencing was considered to
make the data stationary. The autocorrelation of a periodic
function is itself, periodic with the very same period. We plot
the detrended data (flat time series) and examine the autocorrela-
tion function of the data to see if there exist significant auto-
correlations at the seasonal lags s, where s41 (for example, s¼12,
24, 36 and 48).

If there appear fairly significant autocorrelations at the seaso-
nal lags, we need to assume that seasonality is playing a sig-
nificant role in determining the variation in this data. In general,
when we have ‘‘flat’’ time series data we can simply plot the
sample ACF of the data and see if there are ‘‘spikes’’ in it and
possibly around the seasonal lags of s, 2s, 3s,. . ., 4s, etc. If there
are, then more likely the data has seasonality in it and some form
of seasonal differencing was considered to make the data sta-
tionary. We perform the first order seasonal span differencing
operation as follows: rsXt¼Xt�Xt�s.

If the lag�1 autocorrelation is zero or even negative, or the
autocorrelations are all small and pattern-less, then the series
does not need further differencing. The common wisdom is that
‘‘over-differencing’’ should be avoided since over-differencing can
introduce patterns into the original observations which were not
actually in the data before the differencing. If the lag�1 auto-
correlation is more negative than �0.5 (and theoretically nega-
tive lag�1 autocorrelation should never be greater than 0.5 in
magnitude) this may mean the series has been over-differenced.

Another symptom of possible over-differencing is an increase
in the standard deviation, rather than a reduction, when the order
of differencing is increased. The optimal order of differencing is
often the order of differencing at which the standard deviation is
lowest. The time series plot of an over-differenced series may look
quite random at first glance, but if we look closer we will see a
pattern of excessive changes in sign.
4. Results and discussion

We compare the performance of our proposed algorithm
(GEFTS) with several well-known forecasting algorithms using
30 time-series datasets, both before and after seasonal adjust-
ments are made (here,‘d’ represents the deseasonalized data and
‘nd’ the non-deseasonalized data). The one, five and ten-step-
ahead predictions are studied. We evaluated algorithms in terms
of accuracy of both point and interval predictions, and RMSE.
l network ensemble architecture for time series forecasting,

http://www.cs.stir.ac.uk/&sim;lss/research/GheyasSmith2011/GheyasSmithAppendixD_June2011.pdf
http://www.cs.stir.ac.uk/&sim;lss/research/GheyasSmith2011/GheyasSmithAppendixD_June2011.pdf
http://www.cs.stir.ac.uk/&sim;lss/research/GheyasSmith2011/GheyasSmithAppendixD_June2011.pdf
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Figs. 2 and 3 compare accuracies of interval and point forecasts
produced by top five forecasting algorithms.

The overall point forecast results (based on both accuracy and
RMSE) of all algorithms are reported in detail in Appendix Table E1. In
addition, the point forecast accuracy and RMSE of GEFTS both before
and after deseasonalizing for each of the 30 datasets are provided in

Friedman Test reveals significant differences (po0.05) in the
performance of time series forecasting algorithms at all three
time horizons (1, 5 and 10-step-ahead). The results of pairwise
comparison tests (po0.05) among time series forecasting algo-
rithms are reported in Table 1.

The mean number of features used by the forecasting algo-
rithms is presented in Fig. 4.

The overall computational costs of the proposed and conven-
tional forecasting techniques are summarized and compared in
Fig. 5 and detailed in appendix table F6.
Fig. 2. A comparative study of in

Fig. 3. A comparative study of

Please cite this article as: I.A. Gheyas, L.S. Smith, A novel neura
Neurocomputing (2011), doi:10.1016/j.neucom.2011.08.005
Key Findings:
�

ter

poi

l

GEFTS significantly outperformed conventional algorithms
both at short horizons (one-step ahead), and at longer horizons
(5 and 10-step-ahead; Figs. 2–3, and Table 1). Jacob’s Ensemble
(JE), Homogeneous Ensemble of learners with static weighted
voting approach (HOW), ARIMA–GARCH (A–G) and GRNN are
the other top rated forecasting algorithms.

�
 It appears that GEFTS performs better in situations where

the time series are not deseasonalized (Table 1). Not just
GEFTS, but we also observe the similar trend among most
of the other homogeneous ensemble approaches—HOW and
HOS (Homogeneous Ensemble with unweighted voting). A
plausible explanation for this puzzle would be we likely
introduced errors while deseasonalizing the data. On the other
hand, for Jacob’s homogeneous ensemble, apparently the
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Table 1
Pairwise comparisons between time series forecasting algorithms.

Rank Algorithms Significantly outperformed algorithms

1-step-ahead forecast
1 GEFTS(nd) (1)GEFTS (d), (2)A–G(d), (3)JE (nd), (4)JE(d), (4)GRNN(d), (5)HOW(nd), (6)SVM (d), (7)HOW (d), (8)HOS (nd),

(9)HEW(d), (10)HOS (d), (11)HES (d), (12)MLP (d), (13) HES (nd), (14)ERNN(d), (15)RBFN (d), (16) HA(d), (17)

HEW(nd), (18)SVM (nd), (19)GRNN(nd), (20)RBFN(nd), (21)MLP (nd), (22)ERNN(nd), (23) HA (nd), (24) A–G

(nd)

2 GEFTS(d) (1)A–G(d), (2)JE (nd), (3)JE(d), (4)GRNN(d), (5)HOW(nd), (6)SVM (d), (7)HOW (d), (8)HOS (nd), (9)HEW(d),

(10)HOS (d), (11)HES (d), (12)MLP (d), (13) HES (nd), (14)ERNN(d), (15)RBFN (d), (16) HA(d), (17) HEW(nd),

(18)SVM (nd), (19)GRNN(nd), (20)RBFN(nd), (21)MLP (nd), (22)ERNN(nd), (23) HA (nd), (24) A–G (nd)

3 A–G (d), JE (d), JE (nd), GRNN(d) (1)HOW(nd), (2)SVM (d), (3)HOW (d), (4)HOS (nd), (5)HEW(d), (6)HOS (d), (7)HES (d), (8)MLP (d), (9) HES (nd),

(10)ERNN(d), (15)RBFN (d), (11) HA(d), (12) HEW(nd), (13)SVM (nd), (14)GRNN(nd), (15)RBFN(nd), (16)MLP

(nd), (17)ERNN(nd), (18) HA (nd), (19) A–G (nd)

4 HOW (nd), SVM (d) (1)HOW (d), (2)HOS (nd), (3)HEW(d), (4)HOS (d), (5)HES (d), (8)MLP (d), (6) HES (nd), (7)ERNN(d), (8)RBFN (d),

(9) HA(d), (10) HEW(nd), (11)SVM (nd), (12)GRNN(nd), (13)RBFN(nd), (14)MLP (nd), (15)ERNN(nd), (16) HA

(nd), (17) A–G (nd)

5 HOW (d), HOS (nd) (1)HEW(d), (2)HOS (d), (3)HES (d), (4)MLP (d), (5) HES (nd), (6)ERNN(d), (7)RBFN (d), (8) HA(d), (9) HEW(nd),

(10)SVM (nd), (11)GRNN(nd), (12)RBFN(nd), (13)MLP (nd), (14)ERNN(nd), (15) HA (nd), (16) A–G (nd)

6 HEW(d), HOS(d) (1)HES (d), (2)MLP (d), (3) HES (nd), (4)ERNN(d), (5)RBFN (d), (6) HA(d), (7) HEW(nd), (8)SVM (nd),

(9)GRNN(nd), (10)RBFN(nd), (11)MLP (nd), (12)ERNN(nd), (13) HA (nd), (14) A–G (nd)

7 HES(d), MLP(d), HES(nd), ERNN(d),

RBFN(d), HA(d)

(1) HEW(nd), (2)SVM (nd), (3)GRNN(nd), (4)RBFN(nd), (5)MLP (nd), (6)ERNN(nd), (7) HA (nd), (8) A–G (nd)

8 HEW(nd), SVM(nd), GRNN(nd),

RBFN(nd)

(1)MLP (nd), (2)ERNN(nd), (3) HA (nd), (4) A–G (nd)

9 MLP(nd), ERNN (nd), HA(nd),

A–G(nd)

5-step-ahead forecast
1 GEFTS(nd) (1)GEFTS(d), (2)A–G(d), (3)GRNN(d), (4)HOW(d), (5)ERNN (d), (6)JE(d), (7)JE(nd), (8)HOW(nd), (9)HOS(nd),

(10)SVM(d), (11)HEW(d), (12)HOS(d), (13) MLP(d), (14) RBFN(d), (15) HA (d), (16)HEW (nd), (17)HES(nd),

(18)HES(d), (19)GRNN (nd), (20)RBFN(nd), (21) MLP(nd), (22)ERNN (nd), (23)HA(nd), (24)SVM(nd), (25)A–

G(nd)

2 GEFTS(d) (1)A–G(d), (2)GRNN(d), (3)HOW(d), (4)ERNN (d), (5)JE(d), (6)JE(nd), (7)HOW(nd), (8)HOS(nd), (9)SVM(d),

(10)HEW(d), (11)HOS(d), (12) MLP(d), (13) RBFN(d), (14) HA (d), (15)HEW (nd), (16)HES(nd), (17)HES(d),

(18)GRNN (nd), (19)RBFN(nd), (20) MLP(nd), (21)ERNN (nd), (22)HA(nd), (23)SVM(nd), (24)A–G(nd)

3 A–G(d), GRNN(d) (1)HOW(d), (2)ERNN (d), (3)JE(d), (4)JE(nd), (5)HOW(nd), (6)HOS(nd), (7)SVM (d), (8)HEW(d), (9)HOS(d), (10)

MLP(d), (11) RBFN(d), (12) HA (d), (13)HEW (nd), (14)HES(nd), (15)HES(d), (16)GRNN (nd), (17)RBFN(nd), (18)

MLP(nd), (19)ERNN (nd), (20)HA(nd), (21)SVM(nd), (22)A–G(nd)

4 HOW(d), ERNN (d), JE (d), JE(nd) (1)HOW(nd), (2)HOS(nd), (3)SVM (d), (4)HEW(d), (5)HOS(d), (6) MLP(d), (7) RBFN(d), (8) HA (d), (9)HEW (nd),

(10)HES(nd), (11)HES(d), (12)GRNN (nd), (13)RBFN(nd), (14) MLP(nd), (15)ERNN (nd), (16)HA(nd),

(17)SVM(nd), (18)A–G(nd)

5 HOW(nd), HOS(nd), SVM(d) 1)HEW(d), (2)HOS(d), (3) MLP(d), (4) RBFN(d), (5) HA (d), (6)HEW (nd), (7)HES(nd), (8)HES(d), (9)GRNN (nd),

(10)RBFN(nd), (11) MLP(nd), (12)ERNN (nd), (13)HA(nd), (14)SVM(nd), (15)A–G(nd)

6 HEW(d), HOS(d), MLP(d), RBFN(d),

HA(d)

1)HEW (nd), (2)HES(nd), (3)HES(d), (4)GRNN (nd), (5)RBFN(nd), (6) MLP(nd), (7)ERNN (nd), (8)HA(nd),

(9)SVM(nd), (10)A–G(nd)

7 HEW(nd), HES(nd), HES(d),

GRNN(nd), RBFN(nd), MLP(nd),

ERNN(nd), HA(nd), SVM(nd), A–G(nd)

10-step-ahead forecast
1 GEFTS (nd) (1)GEFTS(d), (2)HOW(nd), (3)JE(nd), (4)JE(d), (5)HOS(nd), (6) HOS(d), (7)GRNN(d) (8) HEW(d), (9)HES(d),

(10)HOW(d), (11)HEW(nd), (12)HES(nd), (13)MLP(d), (14) A–G(d), (15)ERNN(d), (16)RBFN(d), (17) SVM(d),

(18)HA(d), (19)GRNN(nd), (20)MLP(nd), (21)ERNN(nd), (22)RBFN(nd), (23)SVM(nd), (24)A–G(nd), (25)HA(nd)

2 GEFTS (d) 1)HOW(nd), (2)JE(nd), (3)JE(d), (4)HOS(nd), (5) HOS(d), (6)GRNN (d), (7) HEW(d), (8)HES(d), (9)HOW(d),

(10)HEW(nd), (11)HES(nd), (12)MLP(d), (13) A–G(d), (14)ERNN(d), (15)RBFN(d), (16) SVM(d), (17)HA(d),

(18)GRNN(nd), (19)MLP(nd), (20)ERNN(nd), (21)RBFN(nd), (22)SVM(nd), (23)A–G(nd), (24)HA(nd)

3 HOW(nd), JE(d), JE(nd) (1)HOS(nd), (2) HOS(d), (3)GRNN (d), (4) HEW(d), (5)HES(d), (6)HOW(d), (7)HEW(nd), (8)HES(nd), (9)MLP(d),

(10) A–G(d), (11)ERNN(d), (12)RBFN(d), (13) SVM(d), (14)HA(d), (15)GRNN(nd), (16)MLP(nd), (17)ERNN(nd),

(18)RBFN(nd), (19)SVM(nd), (20)A–G(nd), (21)HA(nd)

4 HOS(nd), HOS(d), GRNN(d), HEW(d),

HES(d)

(1)HOW(d), (2)HEW(nd), (3)HES(nd), (4)MLP(d), (5) A–G(d), (6)ERNN(d), (7)RBFN(d), (8) SVM(d), (9)HA(d),

(10)GRNN(nd), (11)MLP(nd), (12)ERNN(nd), (13)RBFN(nd), (14)SVM(nd), (15)A–G(nd), (16)HA(nd)

5 HOW(d), HEW(nd), HES(nd) (1)MLP(d), (2) A–G(d), (3)ERNN(d), (4)RBFN(d), (5) SVM(d), (6)HA(d), (7)GRNN(nd), (8)MLP(nd), (11)ERNN(nd),

(12)RBFN(nd), (13)SVM(nd), (14)A–G(nd), (15)HA(nd)

6 MLP(d), A–G(d), ERNN(d), RBFN(d),

SVM(d)

(1)HA(d), (2)GRNN(nd), (3)MLP(nd), (4)ERNN(nd), (5)RBFN(nd), (6)SVM(nd), (7)A–G(nd), (8)HA(nd)

7 HA(d), GRNN(nd), MLP(nd),

ERNN(nd), RBFN(nd), SVM(nd)

(1) A–G(nd), (2) HA(nd)

8 A–G(nd), HA(nd)

I.A. Gheyas, L.S. Smith / Neurocomputing ] (]]]]) ]]]–]]] 7

P
N

deseasonalization offers no significant performance improve-
ment (no statistically significant differences were found before
and after the deseasonalization). All the single neural net-
works (GRNN, ERNN, MLP and RBFN), ARIMA–GARCH, SVM
and HA achieve improved performance when applied to
deasonalized data.
lease cite this article as: I.A. Gheyas, L.S. Smith, A novel neura
eurocomputing (2011), doi:10.1016/j.neucom.2011.08.005
�

l

It was notable that for non-deseasonalized time series the overall
best forecasting performances came from those algorithms that
usually use a fairly large number of features (lagged variables)
and these algorithms all are homogeneous ensembles (Fig. 4). In
this context, it is important to note that the performance of each
forecasting algorithms was assessed on unseen data.
network ensemble architecture for time series forecasting,
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Fig. 4. A comparative study of the average number of features included in the analysis.
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All forecasting algorithms are computationally expensive
(Fig. 5). This is because in all forecasting algorithms in our
comparison, we used SAGA and PSO to optimize parameters. In
model building, there is always a trade off between the
accuracy and computational cost.

5. Summary and conclusions

We present an effective algorithm (GEFTS) for univariate time
series forecasting. Our proposed algorithm is a hybrid of well-
established algorithms. Our study suggests that sophisticated algo-
rithms together can provide additional competitive advantage,
which cannot be achieved by applying single time series forecasting
algorithm only. GEFTS is an ensemble algorithm wherein both the
base learners and the combiner are GRNN learners. We compare our
proposed algorithm with the best known algorithms on 30 real
datasets. The one-step process is iterated to obtain multi-step-ahead
forecasts. The results obtained from experiments show that
although GEFTS is an amalgamation of existing algorithms, it is
superior to conventional algorithms, both for short-term and long-
term out-of-sample forecasting. The only downside we can see
about GEFTS is its rather high computational cost. However,
accuracy is more important; speed without accuracy is no good.
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Appendix A: Generalized regression neural Networks (GRNN)

GRNN is a simple, yet very powerful learning algorithm. GRNN is
an instance-based algorithm. In GRNN each observation in the
training set forms its own cluster. When a new input pattern
x¼ ðx1,. . .,xnÞ is presented to the GRNN for the prediction of the
output value, each training pattern (prototype pattern) yi ¼ ðyi1,. . .,
yinÞ assigns a membership value hi to x based on the Euclidean
distance d, where

d¼ dðx,yiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
j ¼ 1

ðxj�yijÞ
2

vuut ðA1Þ
Please cite this article as: I.A. Gheyas, L.S. Smith, A novel neura
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and

hi ¼ exp �
d2

2s2

� �
ðA2Þ

n is the total number of features in the study. xj is the value of the
jth feature of the presented pattern (features can be multivalued
or not). yij is the value of the jth feature of the ith prototype
pattern and s is the smoothing function parameter. We found that
the performance of GRNN is not very sensitive to the exact setting
of the parameter (s). We arbitrarily set each centre’s width to
0.5 times of the average distance to 20 nearest neighbours.

Finally, GRNN calculates the output valuez of the pattern x as
in Eq. (B2). The predicted output of the GRNN for the pattern x is
the weighted average of the outputs of all prototype patterns.
GRNN can handle continuous output variables and categorical
output variables with two categories: event of interest (coded as
‘1’) or not (coded as ‘0’):

z¼

P
iðhi � output of yiÞP

ihi
ðA3Þ

If the output variable is binary, then GRNN calculates the
probability of event of interest. If the output variable is contin-
uous, then it estimates the value of the variable.
Appendix B: Overview of SAGA

The proposed algorithm GEFTS uses an improved algorithm
SAGA [6] for selecting an optimal subset of features, both for base
GRNNs and the combiner GRNN. SAGA uses GRNN for assessing
the fitness of feature subsets. SAGA works in three stages. During
stage 1, SAGA applies the Simulated Annealing algorithm (SA) on
100 randomly selected possible solutions. SA leads to global
exploration of search space without getting trapped into a local
minimum. If the best solution does not improve 100 consecutive
generations, the first stage is terminated. During stage 2, SAGA
applies the Genetic Algorithm (GA) on the 100 best-to-date
solutions found by the SA. A total of 50 pairs are picked from
the chromosome pool using linear ranking selection. Selection is
done ‘‘with replacement’’ meaning that the same chromosome
can be selected more than once to become a parent. Each pair
creates two offspring using the half uniform crossover
scheme (HUX) and then the parents die. In HUX, exactly half of
the non-matching parent’s genes are swapped. Due to selection of
the fittest chromosomes, the crossover and a very low mutation
l network ensemble architecture for time series forecasting,
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Table C1
The performance of different smoothing factor parameter values.

Rank (based on

statistical

significance)

Each centre’s width Classification

accuracy (%)

4 Euclidean distance to the nearest

member

79 (12)

3 (Euclidean distance to the nearest

member)n0.1

85 (8)

3 (Euclidean distance to the nearest

member)n0.2

87 (7)

3 (Euclidean distance to the nearest

member)n0.3

88 (7)

3 (Euclidean distance to the nearest

member)n0.4

84 (8)

4 (Euclidean distance to the nearest

member)n0.5

81 (12)

1 (Average Euclidean distance to

5 nearest members)n0.5

95 (4)

1 (Average Euclidean distance to 10

nearest members)n0.5

96 (4)

1 (Average Euclidean distance to 20

nearest members)n0.5

97 (3)

1 (Average Euclidean distance to 30

nearest members)n0.5

96 (5)

1 (Average Euclidean distance to 40

nearest members)n0.5

95 (5)

2 (Average Euclidean distance to 50

nearest members)n0.5

92 (7)

3 (Average Euclidean distance to 60

nearest members)n0.5

88 (10)

4 (Average Euclidean distance to 70

nearest members)n0.5

84 (11)

5 (Average Euclidean distance to 20

nearest members)n1.5

75 (12)

5 (Average Euclidean distance to 90

nearest members)n2

72 (14)

5 (Average Euclidean distance to 100

nearest members)n2.5

72 (17)
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rate (0.0001), GA converges quickly to a near optimal solution.
The second stage ends if the best solution does not improve in
100 consecutive generations. In the final stage, SAGA refines the
search by hill-climbing on the best-to-date solution. The pseudo
codes of SA, GA and HC are given below.

We encode possible feature subset solutions in ordered, fixed-
length binary strings where ‘1’ indicates the presence of the
feature and ‘0’ its absence.

//Pseudo code of SA
Step 1 Initialize parameters:
� Set the initial temperature (Ti): Ti¼Maximum number of

iterations for SA.
� Set the current temperature (Tc): Tc¼Ti

� Randomly select 100 feature subset solution I(¼ I(1:100))
from the pool of possible solutions for initial population.

Step 2 Evaluate the fitness of each solution: Measure the
fitness Eo(¼Eo(1:100)) of solutions in the population using GRNN
and store the information (feature subset solutions with fitness
scores) where, 0rEor1. For the method of fitness (Eo) assess-
ment, see Section 2.2.2.

Step 3 Update the effective temperature (Tc):

Tc ¼ Tc�Tspent ðB1Þ

where Tspent¼total time spent so far.
Step 4: For all current feature subset vectors I(¼ I(1:100))

change the bits of vectors with probability pmu(¼pmu(1:100)).
Step 5: Evaluate the fitness En(¼En(1:100)) of the new candi-

date solutions if not already evaluated.
Step 6 Determine if this new solution is kept or rejected and

update the database:
If EnZEo, the new solution is accepted. The new solution

replaces the old solution and Eo is set to En:Eo¼En. Else we accept
the new solution with a certain probability

pacð ¼ pacð1 : 100ÞÞ : pac ¼ exp �
ðEo�EnÞ

Tc

� �
: ðB2Þ

Step 7: Update the effective temperature Tc. If the effective
temperature is greater than zero, return to step 4. Otherwise, the
run is finished.

//The pseudo code of GA
Step 1: Construct a chromosome pool of size 100 with the 100

fittest chromosomes from the list of feature subset solutions
evaluated so far by the SA.

Step 2: Select 50 pairs of chromosomes with replacement
using rank-based selection strategy.

Step 3: Perform crossover between the chromosomes using
the half uniform crossover scheme (HUX). In HUX, half of the non-
matching parents’ genes are swapped.

Step 4: Kill the parent solutions.
Step 5: Mutate offspring with probability 0.0001.
Step 6: Evaluate the fitness of the offspring provided if it has

not already been evaluated and if sufficient time is available.
Update the database and estimate the time left.

Step 7: Go back to step 2 if the time is not up.
//Pseudo code of Hill-climbing algorithm
Step 1: Select the best-to-date solution.
Step 2: Create 10,000 new candidate solutions from the

selected solution by changing only one bit (feature) at a time.
Step 3: Evaluate the new solutions if they are not evaluated

before and update the database. Replace the previous solution by
the new solution(s) if they are better than the previous solution.

Step 4: Go back to step 2 and perform the hill climbing on each
of the accepted new solutions. Repeatedly apply the process from
steps 2 to 3 on selected solutions as long as the process is
successful in finding improved solutions in every repetition and
as long as the time is available.
Please cite this article as: I.A. Gheyas, L.S. Smith, A novel neura
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Appendix C

See Table C1
References

[1] S. Pellegrini, E. Ruiz, A. Espasa, Prediction intervals in conditionally hetero-
scedastic time series with stochastic components, International Institute of
Forecasters 27 (2011) 308–319.

[2] A.K. Dhamija, V.K. Bhalla, Financial time series forecasting: comparison of
neural networks and ARCH models, International Research Journal of Finance
and Economics 49 (2010) 185–202.

[3] Z. Zhang, C. Shi, S. Zhang, Z. Shi, Stock time series forecasting using support
vector machines employing analyst recommendations, Lecture Notes in
Computer Science 3973 (2006) 452–457.

[4] D.F. Specht, A general regression neural network, IEEE Transactions on Neural
Networks 20 (1991) 568–576.

[5] I. Eggleton, Intuitive time series extrapolation, Journal of Accounting
Research (Supplement) (1976) 68–131.

[6] I.A. Gheyas, L.S. Smith, Feature subset selection in large dimentionality
domains, Pattern Recognition 43 (2010) 5–13.

[7] H.K. Cigizoglu, M. Alp, Generalized regression neural network in modelling
river sediment yield, Advances in Engineering Software 37 (2006) 63–68.

[8] M. Shiblee, P.K. Kalra, B. Chandra, Time series prediction with multilayer
perceptron (MLP): a new generalized error based approach, Lecture Notes in
Computer Science 5507 (2009) 37–44.

[9] D.N. Kumar, K.S. Raju, T. Sathish, River flow forecasting using recurrent neural
networks, Water Resources Management 8 (2004) 143–161.

[10] X. Yu, J. Zhang, A comparison of Hybrid ARMA-Elman models with single
models for forecasting interest rates, in: Proceedings of the Second Interna-
tional Symposium on Intelligent Information Technology Application 2(2008)
985–989.

[11] V. Barrile, M. Cacciola, S. D’Amico, A. Greco, F.C. Morabito, F. Parrillo, Radial
basis function neural networks to foresee aftershocks in seismic sequences
related to large earthquakes, Lecture Notes in Computer Science 4233 (2006)
909–916.
l network ensemble architecture for time series forecasting,

dx.doi.org/10.1016/j.neucom.2011.08.005
Original Text:
(

Original Text:
)

Original Text:
(

Original Text:
):

Original Text:
10000

Original Text:
H.K. Cigizoglu, M. Alp, Generalized regression neural network in modelling river sediment yield, Advances in Engineering Software 37(2006) 63&ndash;68.&midast;

Original Text:
A

Original Text:
X.YuJ.ZhangA comparison of Hybrid ARMA-Elman models with single models for forecasting interest ratesSecond International Symposium on Intelligent Information Technology Application22008985989



Q7

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

I.A. Gheyas, L.S. Smith / Neurocomputing ] (]]]]) ]]]–]]]10
[12] J.P. Pabico, E.R.E. Mojica, J.R.L. Micor, Design of homogenous ensemble for
splice-site indentification in human sequences, in: Proceedings of the Tenth
International Conference on Molecular System Biology, University of the
Philippines Diliman, 25–28 February 2008, pp. 60–62.

[13] Z. Shen, F. Kong, Optimizing weights by genetic algorithm for neural network
ensemble, Lecture Notes in Computer Science 3173 (2004) 323–331.

[14] C. Tsai, Y. Lin, D.C. Yen, Y. Chen, Predicting stock returns by classifier
ensembles, Applied Soft Computing 11 (2011) 2452–2459.

[15] G. Tsomakas, L. Angelis, I. VIahavas, Selective fusion of heterogeneous
classifiers, Intelligent Data Analysis 9 (2005) 1571–4148.

[16] R.A. Jacobs, M.I. Jordan, S.J. Nowlan, G.E. Hinton, Adaptive mixtures of
experts, Neural Computation 3 (1991) 79–87.

[17] S. Siegel, N.J. Castellan Jr, Nonparametric Statistics: For the Behavioural
Sciences, Second ed., McGraw-Hill, New York, 1988.

[18] Economagic.com: Economic Time Series Page. [Online]. Available at: /http://
www.economagic.com/fedbog.htmS.
41

43

45

47

49

51
Iffat A. Gheyas received a Ph.D. from the University of
Stirling in the area of Machine Learning in 2010.
Between 2010 and 2011, she worked as a KTP Associ-
ate on a joint research project between Time for
Medicine Limited and the University of Glamorgan to
develop optimum neural network models for medical
applications. She is currently appointed as a research
fellow in the University of Aberdeen Business School.
Please cite this article as: I.A. Gheyas, L.S. Smith, A novel neura
Neurocomputing (2011), doi:10.1016/j.neucom.2011.08.005
Leslie S. Smith received the B.Sc degree in 1973, and
the Ph.D. in 1981, both from Glasgow University. From
1980 to 1983, he was a lecturer at Glasgow University.
Since 1984 he has worked at the Stirling University,
where he is now a Professor of Computing Science and
Head of the Department of Computing Science and
Mathematics. His research interests are in signal pro-
cessing for neural systems, engineering approxima-
tions to early auditory processing, neural/electronic
interfacing and neuromorphic systems. He is a Senior
Member of the IEEE and member of the Acoustical
Society of America and the Society for Neuroscience.
53
l network ensemble architecture for time series forecasting,

http://www.economagic.com/fedbog.htm
http://www.economagic.com/fedbog.htm
dx.doi.org/10.1016/j.neucom.2011.08.005
Original Text:
10th

Original Text:
Genetic Algorithm

Original Text:
Neural Network Ensemble

Original Text:
2249

Original Text:
2452

Original Text:
statistics: for

Original Text:
behavioural sciences


	A novel neural network ensemble architecture for time series forecasting
	Introduction
	Proposed algorithm (GEFTS)
	Advantages of proposed algorithm (GEFTS) over conventional forecasting techniques
	Design and implementation strategy of GEFTS
	Pseudo code of GEFTS
	How SAGA assigns fitness scores to candidate solutions
	Justification of design choices and parameter settings chosen for SAGA
	Reasons behind using GRNN as a machine learning algorithm
	Reasons for setting the smoothing parameter of GRNN to 0.5 times of the average distance to 20 nearest neighbours
	Reasons behind using SAGA as a search algorithm



	Comparative performance analysis
	Description of datasets used for comparison of forecasting algorithms
	Description of data pre-processing
	Description of detrending methods
	Description of deseasonalization methods


	Results and discussion
	Summary and conclusions
	Acknowledgements
	Appendix A: Generalized regression neural Networks (GRNN)
	Appendix B: Overview of SAGA
	Appendix C
	References




