
Reducing Estimation Uncertainty with Continuous
Assessment: Tracking the “Cone of Uncertainty”

Pongtip Aroonvatanaporn, Chatchai Sinthop, Barry Boehm
Center for Systems and Software Engineering

University of Southern California
Los Angeles, CA 90089

{aroonvat, sinthop, boehm}@usc.edu

ABSTRACT

Accurate software cost and schedule estimations are essential
especially for large software projects. However, once the required
efforts have been estimated, little is done to recalibrate and reduce
the uncertainty of the initial estimates. To address this problem,
we have developed and used a framework to continuously
monitor the software project progress and readjust the estimated
effort utilizing the Constructive Cost Model II (COCOMO II) and
the Unified CodeCount Tool developed by the University of
Southern California (USC). As a software project progresses, we
gain more information about the project itself, which can then be
used to assess and re-estimate the effort required to complete the
project. With more accurate estimations and less uncertainties, the
quality and goal of project outcome can be assured within the
available resources. The paper thus also provides and analyzes
empirical data on how projects evolve within the familiar
software “cone of uncertainty.”

Categories and Subject Descriptors
D.2.9 [Management]: Cost estimation, Life cycle, Time
estimation

General Terms
Management, Measurement, Economics

Keywords
Cost Estimation, Uncertainty

1. INTRODUCTION
Having accurate estimations of the effort and resources required
to develop a software project is essential in determining the
quality and timely delivery of the final product. For highly
precedented project and experienced teams, one can often use
“yesterday’s weather” estimates of comparable size and
productivity to produce fairly accurate estimates of project effort.
More generally, though, the range of uncertainty in effort
estimation decreases with accumulated problem and solution
knowledge within a “cone of uncertainty” defined in [1] and

calibrated to completed projects in [2]. To date, however, there
have been no tools or data that monitor the evolution of a
project’s progression within the cone of uncertainty.

Our goal is to develop a routine, semi-automated assessment
framework that helps reduce uncertainties of the software project
estimation as the project progresses through its life cycle. The
assessment framework integrates the Unified Code Count tool
(UCC) developed by USC with the COCOMO II estimation
model to quickly generate information to analyze the team’s
performance and estimations. This is similar to the concepts of
[10], which shows that frequent assessment of the project status
help improve the team as well as the final product of the project.
We apply this concept to assess the efforts spent on the project
and compare with the current progress to predict the effort
required to complete the project. This information is then used to
evaluate the current project estimations and adjust the estimation
parameters as necessary. This will eventually enable the actual
and estimated effort to converge. The assessment framework
allows the team to validate the direction of the project, while
increasing the project understanding as well.

The key benefits of achieving a convergence between actual and
estimated efforts are as follows:
• It allows the development team to improve planning and

management of project resources and goals.
• It enables the product’s quality to be controlled closely.
• It helps the stakeholders to better understand the actual

project’s progress and status.

2. Problem and Motivation

Figure 1: The Cone of Uncertainty [2]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ASE’10, September 20–24, 2010, Antwerp, Belgium.
Copyright 2010 ACM 978-1-4503-0116-9/10/09...$10.00.

337

The main motivation behind the development of the assessment
framework is derived from the well-know software “cone of
uncertainty” problem.
Figure 1 shows the accuracy of software sizing and estimation by
phases. The level of estimation uncertainties is high during the
initial estimations due to lack of data and experience. As long as
the projects are not re-assessed or the estimations not re-visited,
the cones of uncertainty are not effectively reduced [1].

2.1 Imprecise Project Scoping
When the projects begin with the initial overestimations, teams
are required to re-negotiate with the clients to either reduce the
size of the projects or adjust the timeframe. On the other hand,
when a project underestimates the resources, it tends to overshoot
the goals that the project can achieve. Thus, the project’s quality
suffers significantly or the project itself becomes undeliverable
due to insufficient resources.

2.2 Project Estimations Not Revisited
During the initial estimation for the software project to be
developed, the teams often do not have sufficient data to carefully
analyze and perform the necessary predictions. This missing
information includes aspects that are specified in the COCOMO II
cost drivers [2]. In most cases, the project estimation turns into a
constant value once the project enters the development phase
regardless of how well the project progresses or how capable the
programmers actually are. There is a significant number of
uncertainties at the beginning of the project as there are instability
in requirements and there are many directions that the project can
proceed on.

2.3 Manual Assessments are Tedious
The tasks of manually assessing the project progress are tedious
and discouraging to the team due to their complexities and the
amount of effort required. In order to collect enough information
to have a useful assessment data, the teams often need to perform
various surveys and reviews to determine how well the team
performed in previous iterations [10].

2.4 Limitations in Software Cost Estimation
Regardless of what software cost estimation technique is used,
there is little that the technique can compensate for the lack of
information and understanding of the software to be developed.
As clearly shown in [1], until the software is delivered, there
exists a wide range of software products and costs that can turn
into the final outcome of the software project. In addition to the
fact that the initial estimations lack the necessary information to
achieve accurate estimates as mentioned in section 2.2, the
software design and specifications are prone to changes
throughout the project life cycle as well, especially in an agile
software engineering environment.

3. Related Work
The most thorough and balanced coverage of software
estimation methods is “Estimating Software-Intensive Systems”
[14]. More recent updates, including discussions of expert-
judgment vs. parametric-model estimation strengths and
weaknesses, are [8] and [9]. A good treatment of agile estimation
is [4].

Early treatments of software estimation uncertainty include the
the PERT sizing method in [12] and the wideband Delphi estimate
distributions in [2] and the accuracy-vs.-phase chart in [1],
calibrated in [2], and termed the “cone of uncertainty” in [11].
Most commercial estimation models now include capabilities to
enter input uncertainties, run a number of random-sample Monte
Carlo estimates, and produce a cumulative probability distribution
estimate of the probability that the actual cost will exceed a given
budget [7].

In the aspect of software project tracking methods, a good early
treatment is “Controlling Software Projects” [5]. Tracking
progress vs. estimated budget and schedules via Earned Value
Management (EVM) systems is covered well in [6].

4. Model
The framework that we developed introduces a semi-automated
method to help rapidly assess the project status and progress
based on the effort spent and the number of SLOC. Figure 2
provides an overview of the assessment framework.

Figure 2: Assessment Framework Model

4.1 Effort Estimation
The assessment framework utilizes the COCOMO II estimation
model to estimate the resources required to complete a software
development project. It takes the adjusted SLOC of each module
along with the necessary effort multiplier parameters and applies
them to the COCOMO II estimation model to generate actual
efforts in PM, which can then be converted to number of hours.

∏
=

××=
n

i
i

E
NS EMSizeAPM

1

E = 0.91+ 0.01× SFj
j=1

5

∑

where:
- A = 2.94 (a constant derived from historical project data)
- Size is in KSLOC
- EM is the effort multiplier for the ith cost driver. The

geometric product results in an overall effort adjustment
factor to the nominal effort.

- SF is the scale factor used to compensate for the
economies or diseconomies of scale.

- NS stands for “nominal schedule”

4.2 Size Counting
The sizes of the projects are obtained using the Unified Code
Count tool (UCC) of which the counting standards are based on

338

[12]. The UCC tool provides a fully automated process to obtain
the number of SLOC. The tool takes a list of source code files as
input and generates the number of physical and logical SLOC as
outputs, which are then fed to the COCOMO II formula. We only
take the number of logical SLOC as these are the lines of code
that require real effort to develop.

4.3 Model Calculations
The framework’s inputs can be categorized into two types: static
and dynamic inputs. The static inputs are not frequently changed
until the project meets the major milestones. These include the
SLOC sizes of each module, the COCOMO II parameters, and the
requirements evolution and volatility (REVL) for each module.
The dynamic input needs to be updated for each assessment,
which is the estimated percent completed of each module.
When the raw SLOCs are obtained from the UCC tool, the
SLOCs are readjusted with REVL to reflect the cost from
requirements evolution. The estimated total size and effort for
each software module are calculated using these formulas:

100*
%CompleteEstimated

SLOCAdjustedSLOCEstimated =

100*
%

)(
)(

CompleteEstimated
PMEffortConverted

PMEffortTotalEstimated =

Hours = PM *152Hours /PM

5. Analysis
We performed simulations of our assessment framework on two
software projects from USC’s software engineering course with
24-week development timeframe. The versions of the source code
files submitted to the Subversion server at the end of each week
were used as inputs to the UCC tool to provide us with the data.
The two projects were chosen for their similarities in project
types, sizes, and complexities, which are e-service projects to
develop web-based database management systems using JSP
technology. Both teams were closely involved in this process for
the simulation to reflect the reality as much as possible.

5.1 Overview of Results
The results of the assessment simulation on both projects show
that the estimated and actual efforts converge as the projects
progress through their lifecycles.

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

H
ou

rs

Weeks

Initial Actual Estimated

Figure 3: Simulation Result of Team A

Figure 3 and Figure 4 illustrate the comparison between the
overall estimated and actual efforts spent by both teams
throughout the 24 weeks of project development. As the project
progresses, the actual efforts grow as a result of the increase in
SLOC size (shown in solid line). The estimated total efforts of the

project (shown in the coarse-dotted line), on the other hand,
converges to the required effort as the estimations are revisited
and adjusted during each assessment. Finally, the fine-dotted line
represents the effort estimation performed by the team at the
beginning of the project.

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

H
ou

rs

Weeks

Initial Actual Estimated

Figure 4: Simulation Result of Team B

It is interesting to observe the difference in the behavior of the
“cone of uncertainty” between the two teams. Team A
overestimated the effort required to complete the project by over
50%. Based on our discussion with the team members, the main
reason for their estimation error was due to the fact that they were
pessimistic about the developers’ capabilities and assumed the
project to be more complicated than it actually was. On the other
hand, Team B underestimated their required effort by over 18%
due to the lack of experience in identifying the actual effort that
would be required to develop certain modules. Moreover, the
developers were not experienced with the development language,
JSP, so they were not aware of the complexities that could
potentially occur during the project.
Based on the simulation, both teams demonstrated the same
phenomenon where the gaps in the “cone of uncertainty” in effort
estimation decreases throughout the project lifecycle and
converges at the end of the project.

5.2 Percentage of Estimation Errors
Figure 5 shows the rates of estimation errors for both teams
throughout the 24 weeks of development. Although we had hoped
that the error rate would be smoother and more linear, the end
result clearly shows the improvement week by week.
The reason that the error rates in estimation error fluctuate as such
is due to the fact that there are still discrepancies and lack of
experience in identifying the percent completeness of each
module and of the project as a whole. However, the reductions in
error rates are significant compared to the initial estimates done
by the developers, thus, showing a much more accurate estimation
when utilizing our assessment framework.

Figure 5: Estimation Error Percentage

339

5.3 Estimated Overall Project Progress
Currently, a project’s overall progress is generally reported based on
the initial estimates of the project. Since the initial estimates are
often inaccurate with either an overestimation or underestimation,
the actual project progress cannot be determined accurately.

Figure 6: Project Progress Percentage

Figure 6 shows the estimated overall project progress for both teams
throughout the 24 weeks of development. The assessment
framework’s output can be represented as the overall project
progress which is useful to all critical stakeholders in order to adjust
project plan. The project progress is calculated by using the effort
converted from SLOC developed and comparing it against the
adjusted estimated effort. As the assessment allows the estimations
to become more and more accurate as the project moves forward,
the project progress becomes more realistic as well. This allows all
the success critical stakeholders to observe the actual progress of the
project and monitor to see whether the project can be delivered on
time or not.

6. Conclusions and Future Work
We have presented a novel framework for performing continuous
assessments on the project progress in order to produce better
estimates. The assessment framework utilizes an automated code
count tool, UCC, to generate inputs to our framework which can be
converted into effort using the COCOMO II model. As the
assessments are performed, the COCOMO II parameters are
evaluated and updated in order to yield better predictions based on
the current situation.
We performed a simulation of our assessment framework on data
from two software development projects taken from USC’s software
engineering course. As shown in our analysis, the results of the
simulation have shown significant improvements in estimating
project resources with significant reduction in estimation errors as
the project progresses through its life cycle. It can thus be concluded
that the continuous assessment can help predict the efforts which are
required to achieve similar projects with fixed schedules. Again, this
conclusion is only suggestive vs. definitive for other classes of
applications.
It is interesting to note that, relative to skeptical statements that only
the optimistic lower part of the Cone of Uncertainty is ever visited,
in this case, one of the projects underestimated and had to increase
effort, while the other project found ways to satisfy the client using
less effort. This is a not a large sample size, but shows that the upper
part of the Cone of Uncertainty does exist.
Our primary target for future work is to develop a tool to fully
support the framework by integrating both the UCC tool and the
COCOMO II calculation model. We will then observe the effects on

project performance as well as determine the frequencies of the
assessment that will yield the most effective results, or the sweet
spot of our assessment framework. Furthermore, we will experiment
our assessment framework on projects of large scale and of different
types in order to observe the economies of scale and the prediction
accuracy of the framework as the nature of the projects changes.
Finally, we will apply the concepts of value-based software
engineering practice into our assessment model by taking the
priority of the requirements. As each software module has different
levels of importance and criticality, they should not be treated as
equal. Weights should be applied to each module with respect to the
priority of the software requirements. This will affect the estimation
and percent completion as software modules with higher priority
and criticality should yield higher percentage of completion than
those with lower priorities.

7. References
[1] Boehm, B. “Software Engineering Economics”. Prentice-Hall,

1981.
[2] Boehm, B., Abts, C., Brown, A. W., Chulani, S., Clark, B. K.,

Horowitz, E., Madachy, R., Reifer, D. J., and Steece, B.
Software Cost Estimation with COCOMO II, Prentice-Hall,
2000.

[3] Boehm, B., Egyed, A., Port, D., Shah, A., Kwan, J., and
Madachy, R. "Using the WinWin Spiral Model: A Case
Study," IEEE Computer, Volume 31, Number 7, July 1998, pp.
33-44 (usc-csse-98-512)

[4] Cohn, M. Agile Estimating and Planning, Prentice-Hall, 2005
[5] DeMarco, T. Controlling Software Projects: Management,

Measurement, and Estimation, Yourdon Press, 1982
[6] Fleming, Q. W. and Koppelman, J. M. Earned Value Project

Management, 2nd edition, Project Management Institute, 2000
[7] Galorath, D. and Evans, M. Software Sizing, Estimation, and

Risk Management, Auer-bach, 2006
[8] Jorgensen, M. and Boehm, B. “Software Development Effort

Estimation: Formal Models or Expert Judgment?” IEEE
Software, March-April 2009, pp. 14-19

[9] Jorgensen, M. and Shepperd, M. “A Systematic Review of
Software Development Cost Estimation Studies,” IEEE Trans.
Software Eng., vol. 33, no. 1, 2007, pp. 33-53

[10] Krebs, W., Kroll, P., and Richard, E. Un-assessments –
reflections by the team, for the team. Agile 2008 Conference

[11] McConnell, S. Software Project Survival Guide, Microsoft
Press, 1998

[12] Nguyen, V., Deeds-Rubin, S., Tan, T., and Boehm, B. "A
SLOC Counting Standard," COCOMO II Forum 2007

[13] Putnam L. and Fitzsimmons, A. “Estimating Software Costs,
Parts 1,2 and 3,” Datamation, September through December
1979

[14] Stutzke, R. D. Estimating Software-Intensive Systems, Pearson
Education, Inc, 2005.

340

