
 

 

 

 

 

 

 

Creativity Support for Computational Literature 

By 

 

Daniel C. Howe 

 

A dissertation submitted in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy 

Department of Computer Science 

New York University 

September 2009 

    

  

 

 

                                                       

                   __________________                                     

                   Dr. Ken Perlin, Advisor 



 

 



 

 

 

 

 

 

 

 

 

 

 

 

“If I have said anything to the contrary I was mistaken. If I say anything to the 

contrary again I shall be mistaken again. Unless I am mistaken now. Into the 

dossier with it in any case, in support of whatever thesis you fancy.” 

- Samuel Beckett 
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ABSTRACT 

The creativity support community has a long history of providing valuable tools to 

artists and designers.  Similarly, creative digital media practice has proven a valuable 

pedagogical strategy for teaching core computational ideas. Neither strain of research has 

focused on the domain of literary art however, instead targeting visual, and aural media 

almost exclusively. 

To address this situation, this thesis presents a software toolkit created specifically to 

support creativity in computational literature. Two primary hypotheses direct the bulk of the 

research presented: first, that it is possible to implement effective creativity support tools for 

literary art given current resource constraints; and second, that such tools, in addition to 

facilitating new forms of literary creativity, provide unique opportunities for computer 

science education. 

Designed both for practicing artists and for pedagogy, the research presented directly 

addresses impediments to participation in the field for a diverse range of users and provides 

an end-to-end solution for courses attempting to engage the creative faculties of computer 

science students, and to introduce a wider demographic—from writers, to digital artists, to 

media and literary theorists—to procedural literacy and computational thinking. 

The tools and strategies presented have been implemented, deployed, and iteratively 

refined in real-world contexts over the past three years. In addition to their use in large-scale 

projects by contemporary artists, they have provided effective support for multiple iterations 

of ‘Programming for Digital Art & Literature’, a successful inter-disciplinary computer 

science course taught by the author.  
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Taken together, this thesis provides a novel set of tools for a new domain, and 

demonstrates their real-world efficacy in providing both creativity and pedagogical support 

for a diverse and emerging population of users. 
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CHAPTER 1: INTRODUCTION 

Literary artists who want to make use of programmable media... should not 

have to build their own tools. Until recently this has been the debilitating 

norm. – John Cayley [2009] 

1.1 Supporting Literary Creativity 

Computer science research in artistic creativity support has made significant progress 

in recent years, creating powerful new tools for photography, film and video, animation, 

drawing and music, that have transformed standard practices and inspired newly expressive 

forms. Similarly, creative arts practice in digital media has proven to be a valuable 

pedagogical strategy for teaching core computer science ideas, both within and beyond the 

boundaries of the department. Somewhat surprisingly however, given the historical 

association between the two fields1, such research has rarely focused on the domain of 

literary art, instead almost exclusively targeting visual, and aural media2. In fact, the selection 

of computational tools available to contemporary literary artists remains largely unchanged 

over the past several decades. As one frustrated practitioner commented, “Basically, we are 

asking [the digital writer] to create sculptures using a hand cranked ice cream machine” 

[Larson 2005].  

Metaphors aside, it would seem clear that literary artists have experienced relatively 

few benefits from the affordances of computational methods. Not only is this a missed 

                                                        
1 Some examples of computer science research leveraging literature include Christopher 

Strachey and Alan Turing, Andre Markov and Claude Shannon, and, more recently, Selmer 

Bringsjord. 
2 Another important area of interest involves computer gaming, which often integrates several 

of these media types, e.g., audio, video, sound, and interaction. 
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opportunity for the creativity support community, but computer science educators have also 

been unable to leverage the synergies between these two areas as a means of advancing 

pedagogical goals. The synthesis of computer science, creativity support, and literary art, as 

argued below, holds unique potential, not only to facilitate new forms of literary creativity, 

but also to introduce a diverse population—from writers, to digital artists, to media and 

literary theorists, to creatively-motivated computer science students—to procedural literacy 

and computational thinking3. This dual-focus on creativity, both as and end-in-itself, and as a 

educational strategy, represents a potentially important means of broadening the appeal of 

computer science for a new generation of researchers, artists, and educators.  

1.2 Current Creativity Support Tools 

Over the past several decades, creativity support research has helped to generate an 

impressive range of computational tools for artists. The majority of these tools, however, 

have focused on visual and aural media, specifically film, animation, photography, music, 

etc.), as well as, to a lesser degree, architecture, industrial design, sculpture, and performance. 

Tools for language-based art, however, remain surprisingly rare. In fact, the selection of 

computational tools available to contemporary literary artists, especially those offering some 

degree of programmatic control, remains largely unchanged over the past 20 years; a situation 

that has generated significant frustration among practitioners in the literary community. As 

one renowned scholar and practitioner says , “I've often speculated, bitterly, as to why there is 

                                                        
3 The terms ‘procedural literacy’ and ‘computational thinking’ are used somewhat 

interchangeably below though they have somewhat different connotations. The central ideas 

which both share are: a) an understanding of process (in contrast to a focus on programming 

or technical facility); and b) the application of core computational ideas (abstraction, 

decomposition, automation, recursion, etc.) to other areas of research and/or practice.  



 

3 

no word processor with the kind of filters and effects that are standard features in any of 

hundreds of graphic or audio manipulation programs” [Cayley 2009]. So why is it that, 

beyond the ubiquitous word processor, tools for language-based art-practice are so rare? Is it 

that they are more complex to realize? Or that they require inordinate processing and storage 

resources? Or is it simply the case, as Brion Gysin [1973] famously quipped, that “writing is 

still 50 years behind painting”? While no single answer appears to adequately answer this 

question—it is likely a combination of these and other factors—there are reasons to believe 

this situation is ripe for change. 

Two early examples of authoring environments exploring the possibility for such 

change are the Dramatica (http://www.dramatica.com/) and StorySpace 

(http://www.eastgate.com/Storyspace.html) systems, both created in the early 1990s. While 

neither of these tools provide programmatic support—users do not have direct access to the 

code for their work—they do represent important early attempts to provide literary artists 

with creativity-enhancing tools. Unfortunately however, the fact that both were designed for 

quite narrow contexts—screen-writing and hypertext fiction respectively—has resulted in 

their adoption only in small niche markets. Further, the fact that both are proprietary, 

expensive, and closed-source has likely dissuaded a significant number of potential users, 

specifically artists and educators. Further, at least in the case of StorySpace, the fact that it 

does not produce web-executable content has resulted in its near obsolescence, as the CD-

ROMs for which it was designed have fallen out of common usage. And while Dramatica 

retains a somewhat sizeable user-base among screen-writers, it generates only traditional 

(print-on-page) outputs and provides no support for alternative digital forms, e.g., interactive, 

generative, or multi-modal texts, the focus of the work presented here.  
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In light of this situation it has become almost common practice for literary artists 

interested in using computational methods to either create their own tools or to modify 

existing tools designed for their, often very different, purposes. In fact, artists have become 

somewhat proficient at creatively re-purposing ‘traditional’ software for their own agendas. 

Some examples (discussed further in chapter 4) include Jackson Mac Low’s use of Microsoft 

Word, John Cayley’s use of Apple’s QuickTime components, and David Bryne’s repurposing 

of PowerPoint4. to mention just a few well-known examples. Other artists, David Rokeby 

(author of OpenVNS), Charles Hartman (author of MacProse), Alex Galloway (author of 

Carnivore), and Casey Reas and Ben Fry (authors of Processing), have chosen to build their 

own software, rather than working with existing platforms. While these examples 

demonstrate that both high-quality software and artistic artifacts can be generated by 

practitioners in do-it-yourself fashion, this approach is only practical for a very small 

proportion of those who might benefit from such tools. For the majority of writers (and 

artists) interested in exploring computational literature, the situation is, to borrow Cayley’s 

language, “debilitating” at best. This is not only an unfortunate situation for literary artists, 

but also for students and educators in both computer science and digital arts for whom 

creativity writing in digital media could prove to be a productive educational environment.  

1.3 Computer Science and Creative Writing 

While writing skills have received some attention in recent years from computer 

scientists [Pesante 1991; Van Wyk 1995; Ladd 2003; Hoffman 2006], the similarities (and 

differences) between creative writing and programming have been discussed primarily in 

other disciplines. One such example is the digital writing community, as perhaps best 

                                                        
4 For more information on this work see http://www.davidbyrne.com/art/eeei/. 
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demonstrated by the 2008 NSF-sponsored Codework conference which brought together a 

number of researchers and practitioners in the field to discuss this very topic. Of the nineteen 

papers presented at the conference, however, only one was authored by a computer scientist5, 

who happened also to be a practicing literary artist. Similarly, the 2009 ACM CHI Workshop 

on Computational Creativity Support featured sixteen papers on computationally-augmented 

creative practice, just one of which, by this author, addressed the context of writing and/or 

literature. 

But recognizing the potential synergies between computer science and literature is 

only a first step. Because of the inherent complexity of natural languages, research in the 

literary context—perhaps more so than any of the other arts—requires tool support with a 

degree of sophistication that has thus far been unavailable. In fact, tool support for language-

oriented computer science education has presented significant hurdles [Bird and Loper 2002]. 

Students often enter courses with vastly different backgrounds and skill sets, and their 

creative projects tend to integrate a variety of programming tasks. One approach to this 

problem has been to employ multiple programming environments, with each providing 

support for some specific task of interest. For example, an introductory computational (or 

'digital') literature course might use “Perl” for text parsing and web-crawling, Apple's built-in 

“talk” facility for text-to-speech, “Flash” for text-display and animation, “Max/MSP” for 

audio support, and one of several research-oriented natural language packages for statistical 

analysis. By relying on the built-in features of these languages and platforms, instructors can 

avoid developing a software infrastructure on their own. 

                                                        
5 See position papers from the Codework conference at 

http://www.clc.wvu.edu/projects/codework_workshop/codework_position_papers. 
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One of several unfortunate consequences of this strategy is that significant time must 

be devoted to teaching the specifics of each new environment. This increases the delay before 

students are able to engage substantive topics, whether in software engineering, natural 

language processing, or the creative practice of computational literature itself. Moreover, 

students cannot build on previously learned material in subsequent assignments. This lack of 

scaffolding is especially problematic when student projects tend to span a variety of 'core' 

tasks and thus require multiple environments to be bridged in a final project; an often 

formidable task. For example, a somewhat typical student project that involves extracting text 

from the web, altering it in some way, and visually displaying the results, accompanied by 

text-to-speech, might use most or even all of the environments mentioned above.  

1.4 Motivations 

Although the complexities of the literary context should not be underestimated, the 

benefits could be substantial were the considerations above to be effectively addressed. In 

addition to its importance in contemporary art, computational literature presents a unique 

context for conveying core computational ideas to students in an intuitive and organic 

fashion. As an example, consider the range of key computer science concepts that arise in 

conjunction with even the most introductory topics in a course on computational literature. In 

the two mini-projects6 presented in chapter 3 for example, students are naturally exposed to a 

significant number of core ideas typically covered in an introductory computer science 

sequence; from finite-state automata to context-free grammars and the language hierarchy; 

from data structures to parse trees; from regular expressions to recursion. Rather than 

                                                        
6 Discussed in the context of “Programming for Digital Art & Literature”, a course taught by 

the author at Brown University. 
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appearing to students as arbitrary additions to the “real” topic at hand, the relevance of these 

core computational ideas, when presented with effective tool support, becomes readily 

apparent. 

With the aim of addressing these concerns, this thesis introduces RiTa, a software 

toolkit designed and implemented specifically to support creativity in computational 

literature7. Two primary hypotheses have directed the research presented: first, that it is 

possible to implement effective creativity support tools for literary art given current resource 

constraints; and second, that such tools, in addition to facilitating new forms of literary 

creativity, provide unique opportunities for computer science education. Designed both for 

practicing artists and for pedagogy, RiTa directly addresses impediments to participation in 

the field for a diverse range of users and provides an end-to-end solution for courses 

attempting to engage the creative faculties of computer science students, and to introduce a 

wider demographic—from writers, to digital artists, to media and literary theorists—to 

procedural literacy and computational thinking. 

RiTa covers a range of computational language tasks including text analysis, 

generation, display and animation, text-to-speech, text-mining, and access to external 

resources such as WordNet8. In addition to their use in large-scale projects by contemporary 

artists, they have provided effective support for multiple iterations of ‘Programming for 

Digital Art & Literature’, a successful inter-disciplinary computer science course taught by 

the author. Students from a wide range of backgrounds (creative writers, digital artists, media 

                                                        
7 Other names for this sub-field of computational art focusing on language and/or literature 

include “Electronic Writing” or “E-Writing”, “Digital Writing”, and “Writing in 

Programmable Media”. 
8 See http://wordnet.princeton.edu/ and [Fellbaum 1998]. 
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theorists, linguists and programmers, etc.) have been able to rapidly achieve facility with the 

RiTa components, to gain an understanding of core language processing tasks, and to quickly 

progress on to their own creative projects in computational literature. 

The RiTa toolkit, freely available via an open-source Creative Commons9 license, is 

implemented in Java, optionally integrates with the Processing10 language environment, and 

is compatible with all common operating systems and web browsers. 

1.5 Contributions 

This thesis will present RiTa from a number of perspectives: as tools and affordances 

for practicing writers; as a pedagogical strategy, both for teaching procedural literacy to 

humanities students, and for engaging computer science students with creative practice; and 

as a real-world testing ground for creativity support principles, providing a unique context for 

assessing the efficacy of design and evaluation strategies. As such, the contributions of this 

research fall into two related sub-fields: creativity support tools (CST) and computer science 

education11.  

In the context of creativity support research, RiTa represents the first end-to-end 

programmatic toolkit designed expressly for computational literature. In addition to those 

artists self-identifying as “digital” or “computational” writers, RiTa targets two distinct 

groups who might benefit from the synthesis of computational techniques and language-based 

                                                        
9 See http://creativecommons.org/. 
10 See http://www.processing.org/ and Reas and Fry [2007]. 
11 As mentioned above, we include in this category the notion of  “computational thinking” as 

advanced by Wing [2006] and Guzdial [2008], and “procedural literacy”, as advanced by a 

number of researchers since the early 1960s [Greenberger 1962; Sheil 1980; Bogost 2005; 

Mateas 2005].  
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practice. These are a) analog writers who have lacked simple tools with which to experiment 

computationally, and b) computational artists with a sound, image, or physical orientation, 

who are interested in extending their practice to include experiments in language.  

As a pedagogical tool, RiTa represents the first toolkit intended specifically as an 

end-to-end teaching tool for courses in computational literature. It has been designed, from 

the start, to enable students with little or no programming experience to quickly experiment 

with generative computational methods. As such, it includes carefully written and updated 

documentation, numerous examples, and a wide range of publically available projects. 

Additionally, it includes a range of supporting applications that enable integration with 

popular teaching tools (e.g., Processing), and easy publication of sketches and source code 

from within popular development environments (e.g., Eclipse).  

RiTa represents a unique approach to teaching computational thinking and procedural 

literacy for a diverse range of students beyond the borders of the computer science 

department. At the same time, the toolkit includes enough advanced functionality to engage 

creatively-oriented computer science students with a range of more advanced techniques in 

natural language processing and generation. Because it supports this broad range of 

experience, RiTa also provides a natural means with which to enable cross-disciplinary 

collaboration between students coming from diverse backgrounds. Lastly, because it is an 

end-to-end solution, including non-linguistic facilities for animation, text rendering, image, 

audio, etc., it frees the instructor from designing and implementing custom tools, and/or 

teaching multiple environments.  

Finally, the design strategies employed in building a creativity-supporting toolkit 

have the potential to shed light on new strategies for software design, not only in the arts 

context, but in a wide range of creativity support research targeting both educational and 
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professional agendas. A clear benefit of tools that satisfy this joint goal is their ability to 

facilitate smooth transitions for students as they move between educational and professional 

environments12. In this way our approach, integrating value-sensitive design [Friedman et al. 

2006; Flanagan et al. 2008], constructivist/constructionist educational philosophies, and 

design principles from creativity support research, is unique. Whether it is applicable to user-

groups beyond the arts domain is a question that will require significant further research 

Toward this end we provide some unique experimental approaches for evaluating these tools, 

examining a range of metrics; from usability, to user attitudes, to programmatic skills, to 

more subjective measures of divergence; all implemented within the real-world framework of 

a typical semester-long university course. 

1.6 Overview 

Following this introduction chapter, chapter 2 presents a full description of the RiTa 

toolkit, from high-level goals, to design criteria, to a component-level description of 

functionality. Chapter 3 describes how RiTa has proven to be a useful teaching tool, enabling 

humanities students to easily engage with central concepts in computer science, and allowing 

computer science students to develop their creative faculties by engaging with 'real' problems 

in which they have a personal stake. Chapter 4 describes the range of prior work, both within 

and beyond computer science, that influenced the design, implementation, and development 

of the toolkit. In addition to supporting creativity for practicing artists, chapter 5 describes 

evaluation measures on a number of dimensions, from usability, to procedural literacy, to 

creativity support. Chapter 6 attempts to abstract a set of general principles for creativity 
                                                        
12 This is especially true of artists who work with new technologies,. In such cases, it is not 

unusual for an single individual to alternate between teacher, student, and practitioner within 

a short span of time. 
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support and software design for the arts, and concludes with directions for future research. 

The appendix presents links to a range of related resources for RiTa, including examples, 

documentation, and a student project gallery. 
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CHAPTER 2: TECHNICAL DETAILS 

"Nothing is more complex than the artifacts of the literary imagination, and 

any software that works to empower the literary as it traverses the landscape 

of computational technology will be equally complex... and enormously 

useful." - J. Carpenter 

2.1 Introduction 

The RiTa13 toolkit is a suite of open-source components, plugins, tutorials, and 

examples that provide creativity support for a range of tasks related to the practice of 

writing in programmable media. Designed both as a toolkit for practicing writers and as an 

end-to-end solution for computational writing courses, RiTa includes components for text 

analysis and generation, animation, display, text-to-speech, web-based text-mining, and 

interfaces to external resources (e.g., WordNet). As RiTa optionally integrates with the 

Processing environment for arts-oriented programming, artists and students have 

immediate access to a large community of practicing digital artists, and can easily augment 

RiTa's functionality via the vast collection of libraries available. 

 The bulk of the RiTa toolkit is implemented as a Java library consisting of ten 

independent packages. The core object collection contains approximately 20 classes within 

the rita.* package, all of which follow similar naming and usage conventions. Additional 

packages provide support for these core objects, but are not directly accessed in typical usage. 

The philosophy behind the API is to be as simple and intuitive as possible, while still 

providing adequate flexibility for more advanced users. In addition to the core classes, RiTa 

provides statistical models for tagging, chunking, and parsing, and a plugin for the popular 

Eclipse development environment to facilitate publishing and sharing of projects (and source 
                                                        
13 The name RiTa derives from Old Norse, meaning to scribble, scratch, or inscribe. 
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code). The following list provides a high-level view of the functionality provided by the RiTa 

tools, with each item discussed in detail below: 

• Literary text-generation via Markov chains and context-free/mildly 

sensitive grammars. 

• A customized user-modifiable Lexicon with letter-to-sound rules for 

unknown words. 

• Feature extraction of Sentences, Words, Syllables, Phonemes, Stress, and 

Part-of-Speech. 

• Support for analysis and generation of literary effects such as rhyme, 

alliteration, and meter. 

• Efficient verb conjugation, noun pluralization, stemming and part-of-

speech tagging. 

• Support for statistical (maximum entropy) tagging, chunking, and 

(recursive) parsing. 

• Web-accessible, cross-platform Text-To-Speech support (Windows, Mac, 

Linux.) 

• Simple, browser-accessible integration with the WordNet lexical ontology. 

• Concordances and Key-Word-In-Context (KWIC) model implementations. 

• Support for transparent server mode for both local and remote data 

persistence. 

• Real-time unigram, bigram and weighted-bigram measures via search-

engines. 

• Web/text-mining capabilities via both regular expressions and the 

Document-Object-Model. 
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• A customized behavior model for events and animation with a built-in 

behavior library with over a dozen varieties of 'easing' for custom 

typographical effects in 2D and 3D. 

• Simple API for augmenting text with image and audio (aiff, wav, mp3) 

resources. 

2.2 Design And Implementation 

 The following sections presents a range of design considerations that influenced the 

development and iteration of the RiTa tools. Beginning with the choice of coding 

environment, we present the design criteria (and anti-criteria) that emerged in and through 

the iterative process of teaching and creating with RiTa over the past three years. We present 

several concrete examples of so-called design tensions [Flanagan et al. 2008] in which 

specific usage scenarios cast two or more of these criteria into conflict, and discuss our 

resolutions to these. Following detailed functional descriptions of the core RiTa objects, a 

range of usage scenarios and high-level patterns are presented to demonstrate the 

interrelations between components. 

2.2.1 Programming Environment 

In addition to the specific functionality to be implemented in the toolkit, an important 

early decision concerned the choice of programming environment.14 A number of unique 

                                                        
14 “Environment” in this context refers to the combination of programming language and 

associated libraries, development environment (e.g., IDE), and associated tools for writing, 

compiling, debugging, running and publishing programs. 
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considerations influence this choice for artists and students working in computational 

literature. 

First, it is important that the environment have a relatively shallow learning curve, so 

that novice programmers receive immediate rewards for their efforts. Second, it should 

support rapid prototyping and short develop-and-test cycles. Third, it should be widely used 

so that questions, examples, and projects can be easily located on the web. Fourth, it should 

facilitate both structured and unstructured programming (specifically, the language should 

provide both procedurally-oriented functions for rapid prototyping and full object-oriented 

support for larger, more complex programs.) Fifth, it should provide end-to-end support for 

tasks that, though not central to the practice of generative language, are often necessary for 

fully realizing a work (these include simple, yet robust access to sound, network, and 

graphics libraries). Sixth, all library functions should run in (perceptual) real-time (there 

should be no need for offline processing). Seventh, student programs should be easily 

publishable and include source code to facilitate knowledge-sharing. Finally, all programs 

should be executable in a web-browser environment to eliminate any dependencies on 

hardware, operating system, and configuration, which can waste valuable time in workshop-

style settings. The following section on design requirements presents a more detailed 

discussion of these criteria. 

In surveying the available environments, only two options presented themselves that 

appeared to satisfy a majority of these criteria, both of which used somewhat extensively in 

digital arts and introductory programming courses; specifically Adobe's Flash and associated 

ActionScript language, and Processing by Casey Reas and Ben Fry, an API and simplified 

programming environment using Java. The various tradeoffs between these two web 

publishing environments have been the subject of much debate, but for our purposes, the fact 
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that Flash programs could only be authored in the proprietary, relatively expensive, and 

somewhat opaque Flash environment simplified the decision.15 Further we found Java to be a 

good fit as a general purpose language for teaching programming, not least of which due to 

the fact that it is free, open-source, and in wide use across a range of contexts. Further, it 

supports powerful (if less than perfect) object-oriented capabilities and has a relatively 

transparent syntax, especially for those familiar with other C-based languages. Lastly, in 

addition to a large and active user community, there exist a vast number of libraries and 

frameworks (both internal and external) available to extend the core language in many 

imaginable directions. Equally importantly, the Processing environment, even more so than 

Flash, provided students with immediate access to a large community of practicing digital 

artists, a majority of which were already committed to open-source practices and shared their 

code freely online. 

This is not to say that this choice, and Java itself, does not present potentially 

significant drawbacks. A specific example of such a drawback is the separate compilation 

step required before one can run a Java program, a language “feature” in direct conflict with a 

number of the design criteria presented above. This problem, however, had already been 

addressed in two ways: first by the Processing environment itself, which combined “compile” 

and “run” into one action (with a simple “play” button widget), and second, by the Eclipse 

IDE which performs continual compilation, highlighting syntax and other errors as the 

programmer types. By the second iteration of the course, students were encouraged to use 

                                                        
15  This situation has changed somewhat recently with Adobe’s announcement in 2008 that 

the Flex 3 SDK would be made available under the open-source Mozilla Public License. 

Flash Player, the runtime on which Flex applications are viewed, and Flex Builder, the IDE 

used to build Flex applications, however, remain proprietary. 
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either or both of these tools, depending on their experience and comfort level with each. For 

those wishing to migrate from Processing to Eclipse, an online tutorial was created and an 

optional help-session, led by the teaching-assistant was scheduled.  

A second drawback to using Java in the classroom was its lack of a rapid prototyping 

framework, as even the simplest Java programs require class definitions, typed functions, a 

main routine or html-page, and at least some understanding of “static” scoping for variables 

and methods, not to mention a host of potentially troublesome setup options including file 

and directory/package structures and classpath specification. Again however, most of these 

issues had already been addressed by the makers of Processing, who explicitly designed the 

environment to eliminate such considerations from the learning process. Running a simple 

Processing program—e.g., drawing a line to the screen—can be accomplished by writing a 

single line of code and pressing the “play” button (see Figure 1). Further, though Processing 

supports object-orientation (all of the Java language is in fact supported), its basic mode of 

operation is procedural, with simple function calls made via the Processing API. As new 

techniques were learned—e.g., user-defined functions, objects, classes, interfaces, 

polymorphism—students could integrate these into more complex programs while still using 

the Processing functions where desired (either within Processing or in a more advanced 

environment like Eclipse.) As one student commented16 in an end-of semester reflection,  

[R]apid prototyping is definitely the most important truth I will take away 
from this course and this semester in general. Due to the freedom of our 
digital medium it takes no time to come up with a random idea and layer it 
with level upon level of abstraction, but to know it’s a good idea you pretty 
much have to prototype it and the faster the prototyping the faster you can 

                                                        
16 To protect student anonymity, names and dates have been omitted for student quotations. 

Unless otherwise noted, all student quotations are from the ‘Programming for Digital Art & 

Literature’ course. 



 

18 

drop that bad ideas. I just hope I can practice what I preach now that I have a 
bit more wisdom. 

 

Figure 1: A one-line Processing sketch. 

Of course there are still other aspects of Java, at least “out-of-the-box”, that are less 

than ideal for arts-based software practice, e.g., the lack of dynamic typing, first-class 

functions, an interpreted execution mode, and “live-coding” support (topics discussed 

elsewhere,) all of which are present in languages like Ruby and Python. Yet for the 

requirements we had decided upon, most specifically web-based graphical execution, it was 

clearly the best selection from the existing choices. 
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2.2.2 Design Criteria 

The constraints of technique, resources, and economics underdetermine 

design outcomes. To account fully for a technical design one must examine 

the technical culture, social values, aesthetic ethos, and political agendas of 

the designers. [Pfaffenberger 1992] 

Once a base environment in which to implement the toolkit had been selected, we 

identified several criteria which we felt would be important in design and implementation, 

generally following the methodologies laid out in earlier work on design methods [Friedman 

et al. 2002]. These criteria are listed below in their initial order of importance, though their 

relative priority changed throughout the design process. Likewise, we also attempted to 

decide what goals the toolkit would not attempt to accomplish and thus created a list of 

explicit anti-criteria, which the toolkit was not expected to satisfy [Bird and Loper 2002]. As 

discussed elsewhere17, we were cognizant of the possibility that specific implementation 

decisions could (and likely would) bring design criteria into conflict with one another, 

specific cases of which are discussed below. 

2.2.2.1 Requirements 

• Ease-of-Use. The primary purpose of the toolkit was to allow students to effectively 

implement their own creative language works. The more time students spent learning 

the toolkit, the less useful it would be.  

• Consistency. The toolkit should use consistent naming, syntax, functions, and design 

patterns. Therefore if one object was created via the traditional call to “new()”, 

another should not be created via a static or factory creation pattern. 

                                                        
17 See the discussion of “design conflicts” in Howe and Nissenbaum [2008]. 
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• Extensibility. The toolkit should easily accommodate new component 

implementations, whether for replication of existing functionality (in exercises or 

assignments), or for the addition of new (for the needs of specific projects.) 

• Documentation. The toolkit, its components, and its implementation should be 

carefully and thoroughly documented and updated. All naming conventions should be 

carefully chosen and consistently used. 

• Design-By-Interface. Even if not exposed in basic usage, all core objects should be 

implementations of interfaces and typed internally as such, thus allowing students to 

build and easily test their own implementations in exercises or assignments. In the 

case of RiTa, this practice facilitated the development of multiple implementations of 

an object for different use-cases; e.g., a transformation-based tagger when speed and 

memory footprint were of primary concern, and a slower but more accurate 

maximum-entropy version for general use.  

• Small/Light. To enable download and execution in web browsers, the library should 

be as efficient as possible with resources, most importantly browser memory. The 

most recent core version of RiTa (not including the WordNet database or the TTS 

voices] was ~2.5 MB. 

• Modularity. The interaction between different components of the toolkit should be 

minimal, using simple, well-defined interfaces. In particular, it should be possible to 

complete individual projects using small parts of the toolkit without concern for how 

they interact with the rest. This allows students to learn the library incrementally over 

one or more semesters. 

• Share-ability. Students programs should be easily exportable as web applets 

including generation of HTML pages and web-browsable source code. To facilitate 
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this, the toolkit should be efficient enough, in terms of memory, to ensure that student 

programs can run in common web browsers.  

• Performance. Library functions should be fast enough that students can use the 

toolkit for interactive projects with functions returning in 'perceptual' real-time. 

• Transparency. The library and its underlying support APIs (Java Processing, etc) 

should all be freely available with easily browsable and well-documented source 

code. 

• Platform Agnosticism. The library should contain no operating system-specific code 

or behavior, allowing it be used in all major browsers and on all common platforms.  

2.2.2.2 Anti-Requirements  

• Comprehensiveness. The toolkit is not intended to provide a comprehensive set of 

tools for natural language processing or digital art. Instead, it should facilitate the 

addition of new functionality to either extend the toolkit itself or to integrate it with 

other libraries and tools. 

• High-Performance. The toolkit need not be highly optimized for maximum runtime 

performance as long as the constraints mentioned above on memory and “perceptual” 

real-time are met. 

• Cleverness. Clear well-documented designs and implementations are generally 

preferable to ingenious yet opaque ones, as advanced students (and practicing artists) 

should feel comfortable examining the source-code of the library itself. 

• Object-Orientation. Consistency and conformity to intuitive use-patterns (both within 

the library and with the Processing environment) should come before best-practice 

rules and patterns for object-oriented design. 
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2.2.3 Design Tensions 

At various times in the development and deployment of RiTa we identified tensions 

between two or more of our design criteria. When such tensions were recognized, following 

our prior work on activist gaming strategies [Flanagan et al. 2005], they were added to an 

evolving list, each of which was assessed in subsequent design iterations, much in the way 

that regression testing was employed to validate continuous technical progress.  

2.2.3.1 Strings and Features 

An example of a specific design tension that arose during implementation concerned 

RiTa's internal representation of character data. As discussed above, a flat String-based 

approach was eventually adopted, with each character string (potentially) linking to a map of 

key-value pairs (referred to as “features”). The potential augmentation of the Java String with 

such a map (the basic RiString object) allowed for data to be continually accumulated as an 

object was processed by different core components.  

The notion of “features” originated in the Festival speech synthesis system18, in 

which a similar mechanism was used to avoid the disadvantages of both “string-rewriting” 

and “multi-level data structures”, common mechanisms in systems at the time [Taylor 1998]. 

Unlike Festival, RiTa does not maintain separate data-structures of “relations” between 

linguistic items, e.g., the words that constitute a phrase, or the phonemes that constitute a 

word. Rather, all such information is embedded in the feature data itself.  

For example, one might begin with a RiString object containing the string “the white 

rabbit”. This RiString might then be passed to a RiAnalyzer object where word-boundaries 

would be determined and each word tagged with part-of-speech, stress, syllables, and 

                                                        
18 See http://www.cstr.ed.ac.uk/projects/festival/. 
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phoneme features, then to a RiChunker object which would add a “chunk-type” feature, 

tagging the phrase as a “noun-phrase”. We might then tag the phrase with “custom” features 

specific to our application. As trivial examples we can use the URL (with key “source-

URL”), where the phrase was found, perhaps during a text-mining operation, and the number 

of letters in each word (with key “letters-per-word”). Thus our feature data would appear as 

in Table 1, with custom feature displayed in italics. 

keys values 

id 6 

text ‘the white rabbit’ 

tokens the  white  rabbit 

pos dt  jj  nn 

stresses 0  1  1 / 0 

phonemes dh-ax  w-ay-t  r-ae-b-ax-t 

syllables dh-ax  w-ay-t  r-ae-b / ax-t 

chunk-type noun-phrase 

source-url http://alice.com/text 

letters-per-word 3  5  6 

Table 1: Feature data for an example RiString phrase19. 

Once we have a RiString for a phrase containing multiple words, as above, we can 

use RiString.split(), to split the phrase into three new RiString objects20, one for each word. 

Thus, assuming the RiString above was named “phrase1”, the following lines of code: 

                                                        
19 Note that the word and syllable boundaries are, in this case, the tab and forward-slash 

characters respectively, though these can be programmatically specified by the user. 
20 Note that each RiString is assigned a unique identifier on creation to enable easy cross-

referencing via the feature-map. For example, a RiString containing a single word might have 
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 RiString[] words = phrase1.split(); 

 RiString lastWord = words[2]; 

would result in a reference to a new RiString representing the last word of the phrase, i.e., 

“rabbit”, the features of which are shown in Table 2. 

 

keys values 

id 9 

text ‘rabbit’ 

tokens rabbit 

pos nn 

stresses 1 / 0 

phonemes r-ae-b-ax-t 

syllables r-ae-b / ax-t 

num-letters 6 

Table 2: Feature data for an example RiString word. 

Notice that the “split” operation maintains the default features that are still relevant (e.g., 

part-of-speech, stress, phonemes, syllables, etc.) to the whole, and deletes those that are not 

(e.g., “chunk-type”, as the individual word is no longer part of a “noun-phrase”). Such 

“smart” decomposition works similarly for custom features (e.g., the trivial “letters-per-

word” feature used in the example), assuming that the feature in question contains the same 

number of items, when split on the current word-delimiter, as the number of total words in 

the phrase. Once we have a reference to a RiString with a single word (which can be queried 

via the method RiString.getWordCount()), we can add a range of additional features via 

                                                        

a feature called “sentence-id”, identifying it as being part of a sentence represented by 

another RiString. 
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various other RiTa objects. For example, we might use RiWordNet to add synonyms, 

meronyms, or hypernyms , or perhaps the RiLexicon object to add rhymes, “soundex” 

matches, and alliterations.  

This approach provided several advantages: it was simple and easy to learn; it was 

easy to customize and extend; and it facilitated data sharing both between RiTa objects, and 

with external libraries, programs and web-services. Further, as Java strings were one of the 

few basic variable types (along with the primitives) that were used in the Processing API, it 

was intuitive to new users and required little additional documentation or explanation. The 

lack of support in Java for operator overloading prevented the use of this augmented String 

from being truly transparent; that is, instead of typing (in typical Java syntax) String s = 

“hello”, RiTa users had to type RiString s = new RiString(“hello”). The argument could be 

made, however, that this is more consistent with Java's distinction between primitives and 

Objects, however inconsistent it may be; all other Java objects (except for String) require the 

use of the “new” keyword, while all the Java primitives do not; a fact that often causes some 

confusion for new users.  

As might be expected, the usual Java String methods (in fact the entire CharSequence 

interface) could be invoked on a RiString object just as one would on a String. As mentioned 

above, RiString.split(), for example, would split the instance described above into three new 

RiString objects, one for each word. This allowed RiString objects to be passed along a 

pipeline (similar to Unix command-line tools), and for lookups to be performed in “lazy” 

fashion, if and as needed. For example, if a core component (say the RiGrammar object) 

needed to know the part-of-speech for a RiString with which it was generating a phrase, it 

might ask whether the “pos” feature was present via the following line: 
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if (theRiString.hasFeature("pos")) { 

 ... 

} 

If not, it might invoke the RiPosTagger object to first add the part-of-speech feature before 

proceeding with generation. Objects in different states of analysis could thus be exchanged 

with features added only as needed, enabling through a sort of ad-hoc introspection 

mechanism, a weak version of polymorphism (the lack of which being one critique of such a 

non-hierarchical approach). In fact, it was this feature that later enabled the use of RiTa 

objects in a real-time drag-and-drop environment for language processing (See chapter 6: 

Future Work). 

As mentioned above, extending RiString objects with custom feature types was 

trivial, as one needed only to add a new key-value pair that could later be checked for and 

accessed (rather than creating a new subclass which required the understanding of 

inheritance, overloading, or overriding). Many students used this facility to add features that 

were specific to their projects, such as a feature denoting a “semantic-link” between word 

pairs, or a “source” tag during web-parsing to later identify the page on which a word or 

phrase was found. This structure also eliminated the need for many external data structures 

that would otherwise have been necessary. A potential downside was the aggregate expense 

for programs with many RiString objects. In some programs, for example, a large number of 

feature maps might be allocated (perhaps even one per word in a large text), each containing 

as few as one feature. Obviously in such cases a single map (or hashtable) with words as keys 

and desired feature as values would be more efficient. As one might expect, such 

optimizations were not encouraged for students in the early stages of their projects, but were 

easily implemented if and as necessary in later stages. 
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2.2.3.2 Statistical Crossover 

A second design tension involved the constraint of (perceptual) real-time with the 

desires of students to work with very large amounts of text. For example, when working with 

n-gram models, students often wanted to encourage frequent “crossover” (defined below), 

among a large number of texts by using a relatively low n-value. While all methods on RiTa's 

n-gram object, RiMarkov, returned very quickly no matter the size of the model, there were 

two related problems. First, large models require large memory and this directly conflicted 

with our constraint of having programs run as applets in standard web browsers. Second, 

large models can take significant time to load, which a) may result in unacceptable delays for 

users, and b), more importantly, make development and debugging a tedious process as each 

run of the program might require up to 30 seconds to load, a situation that directly conflicted 

with the design constraint of facilitating rapid (or micro) iteration, as described below. 

Thus we see that a single unexpected use-case threatened three related but distinct 

design constraints (perceptual real-time, micro-iteration, and web-based execution). We 

should note that this particular set of issues, the memory requirements of large textual models 

and corpora, is one reason why creativity support tools for this context have been so difficult 

to realize in the past [Howe and Soderman 2009]. Perhaps for the first time however, the 

computational power of consumer-level computers is near the point where this difficulty can 

be successfully mitigated.  

Our attempt to resolve this design tension resulted in two (parallel) strategies, one 

involving the creation of a new mechanism (and package) in the toolset, presented to library 

users via the RiTaServer object described above, and one involving a change to the RiMarkov 

class itself. As computational writers often have very different goals than typical natural 

language researchers, it should come as no surprise that their perspective on a specific 
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process may be vastly different than a researcher interested in say, machine translation, even 

when they are using they very same algorithmic method. The use of n-grams (or Markov 

models) presented just such a case as, over the course of the semester, it became clear that the 

methods typically found in an n-gram package were not sufficient for students’ needs. One 

example became evident through conversations with several students attempting to use large 

text models for n-gram based generation who, unlike in the translation case, were most 

interested in a property we came to call “crossover”.  

As an example, we can take two texts, A and B, with the number of sentences in each 

being sA and sB respectively. From the difference of the sets of sentences in these texts, there 

will be some number of unique sentences in each, uA and uB , and some number d = (sA - uA) 

= (sB - uB) of sentences present in both. Depending on the uniqueness of the texts at the 

sentence level, as represented by  

€ = 1 / (( 2d+1 / (sA + sB))),  

some percentage of all n-grams in the joint model will contain words unique to each text. It 

was just these “crossover” sentences, present in neither text or A nor B that were of primary 

interest for the subset of users attempting to add more and/or longer texts. While the typical 

application of n-grams would be to find sentences that were most likely to occur, the goal of 

these users, rather interestingly, was the opposite, specifically to find novel sentences, those 

that could logically occur, according to the constraints of the model, but were less (or even 

least) likely to do so. This inverted use pattern, related to the artistic strategy of misuse, 

proved to be a recurring theme when algorithmic techniques were borrowed from existing 

areas of research for use in creative practice, a topic discussed further in the chapter 3. 

 For this group of users, however, a simple constraint on the generation process 

achieved the same goal (specifically, increased “crossover”), giving higher probabilities to 
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those sentences not existing in any of the input texts from which the model was built. Since 

texts were processed sequentially, when this option was specified (via a simple method call), 

it was easy to build a compact lookup table for these sentences (again assuming the number 

of input texts is not too vast) and then use the table to generate higher percentages of 

sentences not already existing in the model.21 Sentences generated by the component could 

also be added to the lookup table, thus ensuring that no duplicate generations occurred. 

2.2.3.3 RiGrammarView 

A third design tension involved the RiGrammar object and a number of our design 

constraints, specifically transparency, open exchange, and rapid (or micro) iteration. To 

support the first three of these constraints, we designed the RiGrammar object to read 

grammar files from plain-text files stored in the user’s resource (or data) folder, along with 

any required fonts, images, sound files, etc. When exported via the RiTa plugin, these files 

were linked, along with the project’s source files, and displayed in the HTML tags for the 

page. Thus viewers of the piece interested in its inner workings could access at last two 

additional layers below its surface representation. In addition to facilitating transparency 

regarding the workings of piece, it also enabled open exchange in that students could 

download and experiment with each others grammar files. Further, as it provided a relatively 

clean separation of concerns, between process (the source) and data (the grammar), it 

satisfied the generic design principle of modularity.  

                                                        
21 Note that this simple constraint does not guarantee “true” crossover, only generation of 

phrases or sentences not previously seen in any of the input texts. 
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Figure 2: Screenshot of the RiGrammarView tool. 

Unfortunately this setup significantly limited students ability to rapidly iterate during 

the potentially long phase of grammar development. With the original setup (depending 

slightly on the environment used), each time one wanted to modify the grammar, it required 

closing the program, modifying and re-saving the grammar file, recompiling the source, then 

re-launching the program. Over hundreds and thousand of small grammar changes, this time 

accumulated and caused significant frustration. Much like in the case of the RiTaServer 

above, our resolution to this tension involved the implementation of an auxiliary tool, namely 

the RiGrammarView component (as show in Figure 2). By adding a single line to their 

program (see Figure 3), users could invoke a custom editor that loaded (by default) the 

contents of the current grammar file. Then, by pushing a ‘refresh’ button the 

RiGrammarView would dynamically swap out the grammar rules in the associated 

RiGrammar object, replacing them with those found in the editor text.  
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Figure 3: Code invoking the RiGrammarView editor. 

With this setup users needed only to make changes and hit refresh to immediately see 

the results in their running program. If the changes were satisfactory the grammar file could 

be saved to disk. If one desired to test a program with multiple grammars, each could be 

loaded from separate files at runtime, and the results compared without restarting the 

program. When satisfied with the grammar as written, one could simply comment out the 

single line of code invoking the editor and publish their sketch as usual. In this way we were 

able to maintain a clean separation of concerns between code and grammar files, facilitate 

open exchange and transparency, and still enable rapid micro-iterations, here within a single 

execution cycle. 
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2.3 Component Descriptions 

Researchers also need to distinguish between software features that are 

merely novel and those that are demonstrably effective in enabling users to 

produce creative outcomes.  [Schneiderman et al. 2006]  

Since its creation, the RiTa toolkit has developed on a number of parallel tracks. New 

objects have been defined and new methods added to accommodate functionalities that arose 

during real-world use. Similarly, new mechanisms were implemented to better address 

elements of the project in which design tensions were identified. At the same time, the RiTa 

tools were continually re-factored to increase consistency, clarity, efficiency, and usability. 

This section describes the functionality provided by the objects in the “core” RiTa library. A 

brief description of each object follows, highlighting common usage patterns, and specific 

literary augmentations. Where applicable, explanations of design concerns leading to specific 

implementation decisions are presented. 

The RiTa toolkit is implemented in Java, optionally integrates with the Processing 

language environment, and runs on all the major platforms including Windows, Mac OS X, 

and Linux/Unix. It is freely available under an open source Creative Commons license at 

http://www.rednoise.org/rita/. For further detail, see the complete API available at 

http://rednoise.org/rita/documentation/docs.html. 

RiText 

The basic object for displaying strings of text on screen in 2D and 3D. RiText 

contains a variety of utility methods for manipulating typography, fonts, and images, 

controlling animations, and handling audio and simple text-to-speech playback. In early 

versions of RiTa, each RiText needed to be explicitly drawn to the screen by the user. In a 
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simulation-based environment like Processing however, where the draw() loop is called 

automatically every frame, the cognitive load for new users is decreased and code reads more 

clearly when objects “draw themselves”. Thus, in later versions all RiText objects that were 

explicitly hidden (via calls to riText.setVisible(false)) are automatically rendered on screen at 

each frame. This default behavior is not only consistent with the Processing paradigm, it also 

appears to be generally intuitive for users with backgrounds in Flash, Max/MSP, or 

Silverlight. Although some experienced Java users (and one QuickTime-user) expressed 

initial confusion over this behavior, such confusion didn't appear to persist beyond one 

explanation. For more complex situations, where complex layering or a specific ordering of 

affine transformations were required, users could disable this behavior by calling 

RiText.disableAutoDraw() and then drawing each object manually in the order required.  

RiSpeech 

This object provides basic cross-platform text-to-speech facilities with control over a 

range of parameters including voice-selection, pitch, speed, rate, etc. RiSpeech is based on 

FreeTTS's22 implementation of the Java Speech API or JSAPI23 specification. Due to a range 

of extensions to the FreeTTS components, RiSpeech works online in an applet/browser 

context without requiring Java Web Start24 technology or even signed applets. Further, 

RiSpeech is tightly integrated with the RiTa lexicon for phonemic and syllabification data, 

generating this data in real-time (via procedural rules) when is not available via the lexicon. 

When needed, multiple RiSpeech objects can be created, each with their own parameters, for 

                                                        
22 See http://freetts.sourceforge.net/. 
23 See http://java.sun.com/products/java-media/speech/. 
24 See http://java.sun.com/javase/technologies/desktop/javawebstart/. 
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concurrent speech. The RiSpeech object is also compatible with the MBROLA25 voice set 

with installation of a platform-specific binary. These (optional) voices provide higher quality 

but sacrifice cross-platform compatibility due to their use of native libraries. Additionally, on 

the Mac platform RiSpeech provides programmatic access to Apple's built-in high-quality 

speech synthesis library with over 20 voices. 

RiLexicon 

A user-customizable lexicon equipped with implementations of a variety of matching 

algorithms—min-edit-distance, soundex, anagrams, alliteration, rhymes, looks-like, etc.—

based on combinations of letters, syllables, stresses, and phonemes. For each word entry, 

RiLexicon provides syllabification, stress, and pronunciation information (for TTS) following 

the conventions of the CMU Pronunciation Dictionary. Additionally, a set of Part-Of-Speech 

tags are provided for use in the (default) transformation-based POS-tagger. 

 Users can also modify or customize the lexicon (e.g., add words, or change 

pronunciations) by editing the plain-text “rita_addenda.txt” file, an example of which comes 

as part of the core RiTa download. An example is presented in . 

 

# an example rita-addenda file 

seven s-eh1-v ax-n | jj nn 

eight ey1-t | jj nn 

nine f-ay1-n | jj nn 

ten t-ay1-n | jj nn 

jumps jh-ah-m-p-s | vbz nns 

Figure 4: An example rita-addenda file. 

                                                        
25 See http://tcts.fpms.ac.be/synthesis/mbrola.html. 
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RiTokenizer 

A simple tokenizer for word and sentence boundaries with regular expression support 

for custom-tokenizing. As with all RiTa tools, RiTokenizer used the Penn corpus conventions 

and rules as default behavior. 

RiTextBehavior 

An extensible set of text-behaviors including a variety of interpolation algorithms for 

moves, fades, color-changes, scaling, rotating, and morphing text. By implementing the 

RiTextBehavior interface, students can add their own simple text behaviors whose lifecycles 

(creation, frame-by-frame updates, clean-up) are managed transparently by the library. 

RiStemmer 

  A simple stemmer for extracting base roots from words by removing prefixes and 

suffixes. For example, the words “run”, “runs”, “ran”, and “running” all have “run” as the 

root. Based on Martin Porter's stemming algorithm [van Rijsbergen et al. 1980]. 

RiPluralizer 

A simple rule-based pluralizer for nouns. When passed a stemmed noun (see 

RiStemmer,) it will return the plural form. Uses a combination of letter-based pluralization 

rules and a lookup table of exceptions for irregular nouns, e.g., appendix → appendices. 

RiSearcher 

A utility object for obtaining real-time unigram, bigram, and weighted-bigram counts 

for words and phrases via online search engines, e.g., Google (described in further detail 

below). 
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RiWordNet 

Installed as a separate component or used in conjunction with the rest of the toolkit, 

RiWordNet provides straightforward access to the WordNet ontology, supporting all the 

common WordNet relation types, including synonyms, antonyms, hypernyms, & hyponyms, 

holonyms, meronyms, coordinates, similars, nominalizations, verb-groups, derived-terms, 

glosses, “see-alsos”, examples, and descriptions, as well as distance metrics between terms in 

the ontology. RiWordNet supports WordNet version 2.x-3.0x across all platforms and, at the 

time of this writing, is the only public library that provides direct access to WordNet via 

browser-based web applets, with no need for special downloads, memory-configuration, 

“Java Web Start”, or applet-signing. 

Additionally RiWordNet provides each term in the ontology with a unique ID for the 

combination of sense and part-of-speech, facilitating direct reference to the sense in question. 

All methods take simple String or ints and return String arrays, greatly simplifying the 

complex pointer hierarchy found in the original implementation. In most cases, three methods 

are provided for each relation type (e.g., for hyponyms, getHyponyms(int uniqueId), 

getHyponyms(String word, String pos) and getAllHyponyms(String word, String pos) where 

the first returns hyponyms for a specific sense (as specified by its unique id), the second 

returns the most common sense for the specified part-of-speech, and the third returns all 

senses for the word/part-of-speech pair. 

Additionally several literary-specific extensions are provided. These include part-of-

speech and random iterators,26 which allow users to query for random words, glosses, and 

descriptions that match a specific part-of-speech, facilitating simple substitutions on existing 

phrases. Similarly, each call to getX()—where X is one of the relations listed above—returns 

                                                        
26 See non-deterministic iteration in Chapter 3: Pedagogy. 
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an array of Strings in random order (this default can be disabled for unit-testing,) thus 

enabling users to continually explore the parameter space of a generative piece during the 

development cycle. Lastly, RiWordNet adds a range of specific literary relations to the 

standard set including “soundex”, “letterex”, anagrams, and others.  

RiTextField 

A simple text field widget to handle user keyboard input. When user input is 

completed, a RiTaEvent callback is triggered as described in the ‘Events and Dynamic 

Callbacks’ section below. 

RiSample 

Provides intuitive library-agnostic audio support, handling playback of wav, aiff, and 

mp3 samples and server-based streaming of compressed mp3s.  

RiPosTagger 

Provides a standard interface for implementations of part-of-speech taggers. The 

current version of RiTa includes two such implementations, both using the Penn conventions 

(see Table 3 below), a faster and lighter-weight transformation-based tagger based on an 

optimized version of the Brill algorithm [Brill 1992] and the generally more accurate 

maximum-entropy tagger based on the OpenNLP27 package. The transformation-based tagger 

is closely tied to the lexicon provided with RiTa that the set of part-of-speech tags for each 

word entry. This allows lookups to run in constant time, after which a set of context-specific 

rules are applied to select the appropriate set element for the specific context in which the 

word appears. Words not found in the lexicon default to the most likely part-of-speech, a 

singular noun, and are then run through a similar set of transformational rules which, based 
                                                        
27 See http://opennlp.sourceforge.net/. 
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on spelling, phonemic data, and context (the surrounding words), create a “best-guess” for the 

part of speech, again in constant-time, once the lexicon has been loaded. Table 3 contains the 

full set of tags (following the Penn conventions) returned by the RiPosTagger (regardless of 

implementation):  

 
Tag 

 
Description 
 

 
CC 
CD 
DT 
EX 
FW 
IN 
JJ 
JJR 
JJS 
LS 
MD 
NN 
NNS 
NNP 
NNPS 
PDT 
POS 
PRP 
PRP$ 
RB 
RBR 
RBS 
RP 
SYM 
TO 
UH 
VB 
VBD 
VBG 
VBN 
VBP 
VBZ 
WDT 
WP 
WP$ 
WRB 

 
Coordinating conjunction 
Cardinal number 
Determiner 
Existential there 
Foreign word 
Preposition or subordinating conjunction 
Adjective 
Adjective, comparative 
Adjective, superlative 
List item marker 
Modal 
Noun, singular or mass 
Noun, plural 
Proper noun, singular 
Proper noun, plural 
Predeterminer 
Possessive ending 
Personal pronoun 
Possessive pronoun 
Adverb 
Adverb, comparative 
Adverb, superlative 
Particle 
Symbol 
to 
Interjection 
Verb, base form 
Verb, past tense 
Verb, gerund or present participle 
Verb, past participle 
Verb, non-3rd person singular present 
Verb, 3rd person singular present 
Wh-determiner 
Wh-pronoun 
Possessive wh-pronoun 
Wh-adverb 

Table 3: Alphabetical list of part-of-speech tags used in the Penn Treebank project. 
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RiHtmlParser 

Provides various utility functions for fetching and parsing text data from web pages 

using either the Document-Object-Model (DOM) or regular expressions. Also provides a 

base implementation so that subclasses can override the handleText(), handleSimpleTag(), 

handleStartTag(), and handleEndTag() methods to define custom behavior (as in RiSearcher). 

Examples of basic functionality include the fetching of HTML pages as plain text, with or 

without the HTML tags stripped, and the ability to define custom parsing behavior, as in the 

fetchLinks() and fetchLinkText() methods which respectively fetch all the anchor links on a 

page and all the linked text (contained within an anchor) on a page.  

RiTravesty 

Represents a Markov chain (or n-gram) model that treats each character as a separate 

token (as in Kenner and O'Rourke's original Travesty program28). Provides a range of 

methods to query the model for probabilities and/or phrase completions. As RiTravesty's 

functionality was, to a large extent, overlapped in the RiMarkov object (also n-grams but at 

the word level), this component was used largely as a teaching tool. One of the students' 

assignments was to implement the Travesty interface on their own, to demonstrate their 

conceptual grasp of n-grams without needing to deal with the complexities and edge-cases 

found in word-based models. 

RiAnalyzer 

The RiAnalyzer object allows users to easily access micro-level features, e.g., 

syllables, part-of-speech, phonemes, and stress features for arbitrary strings of text. Analysis 

                                                        
28 Originally published in Kenner, H. and O'Rourke, J. 1984. BYTE Magazine. Volume 9, 

Issue 12 (November, 1984): New chips. 
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involves a combination of lookup and algorithmic rules. First, RiAnalyzer performs a lookup 

in RiTa's custom lexicon (~35,000 words) for this data. If not found, this data at runtime is 

created via procedural rules, after which it is cached. Part-of-speech data is also provided (see 

RiPosTagger). Once a text has been analyzed, it is “annotated” with features for each of the 

elements mentioned (see RiString below for a full description), which can then be used in the 

generation of larger features. This range of micro-level features provides users with the 

necessary infrastructure with which to address a range of specifically literary technique from 

rhyme, to alliteration, line-break and enjambment, puns and visible plays-on-words, rhythm 

and musicality.  

RiString 

The RiString object augments the basic Java String with support for “features”, key-

value pairs that contain annotations about the String in question. Features, implemented via 

String-to-String (lazy-instantiated Hashtables), allow an arbitrary number of annotations to be 

attached to a given String, with a default set provided by the system itself. Support for new 

user-defined “features” is enabled (and encouraged) by the design.  

RiString additionally provides implementations for all the usual Java String methods 

(in fact the entire CharSequence interface), allowing methods to be invoked on a RiString 

object just as they would be on a String. RiString.split(), for example, splits a RiString object 

above into some number of new RiStrings (just as String.split() does), one for each word, 

maintaining the features that remain relevant (e.g., part-of-speech, stress, phonemes, 

syllables, etc.) to the whole, and deleting those that are not (e.g., “chunk-type”, as the 

individual words were no longer part of a “noun-phrase”).  

 This allows RiString objects to be passed along a pipeline (similar to Unix command-

line tools) and lookups to be performed in lazy fashion, if and as needed. For example, if a 
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core object (RiGrammar for example) needs to know the part-of-speech for a RiString from 

which it is generating a phrase, it might ask whether the "pos" feature is present via a call to 

RiString.hasFeature("pos"). If not, it might invoke the RiPosTagger object to first add the 

part-of-speech feature before proceeding with generation. Objects in different states of 

analysis can thus be exchanged with features added only when needed, thus enabling, through 

a sort of ad-hoc introspection mechanism, a weak version of polymorphism (the lack of 

which being one critique of such a non-hierarchical approach). In fact it was this feature that 

later enabled the use of RiTa processing objects in a real-time drag/drop environment for 

language processing (see the RiTa visual interface in the Future Work section of chapter 6). 

RiKWICker 

RiKWICker provides an efficient implementation of a KWIC-model generator. 

KWIC is an acronym for “Key-Words-in-Context”, a common format for sentence-based 

concordances.29 A KWIC model may also be referred to as a permuted index, referring to the 

fact that the model contains all cyclic permutations of each sentence in a text. The 

RiKWICker implements this model by sorting and aligning all the words within a text so that 

each word provides a hash key for a list of all sentences that contain that word. Thus, one can 

retrieve the sentences containing a word in constant time, O(1). The time to create the model 

is O(n) where n represents the number of words in the text. Since each word must be viewed 

at least once when creating the model, this performance is (asymptotically) optimal. 

Additionally, RiKWICker provides options to ignore stop-words and letter-case, each 

potentially decreasing the memory requirements of the model for longer texts.  

                                                        
29 The term “Key Words In Context” (KWIC) was first coined by Hans Peter Luhn as 

described in Manning [1999]. 
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RiMarkov 

RiMarkov provides an implementation of a Markov chain (or n-gram) based 

generator with specific extensions for literary output. A language model is a statistical model 

used to analyze or generate elements of a text or texts via probability. N-gram models (or 

Markov chains) are statistical models in which the next item in a sequence is predicted based 

upon the frequency of that sequence in a set of input texts. The “n” in n-grams refers to the 

number of words in each sequence that is considered in our estimate. If n = 1 we have a 

unigram model in which the probabilities of a single letter, for example, are estimated based 

only on the frequency of that letter in the input. In a bigram model, where n = 2, we would 

estimate the likelihood of a two-letter sequence, “Qu” for example, based on its frequency in 

the input compared to all other two letter sequences in the input.30 RiMarkov provides this 

functionality (by default) for words, though alternative tokenization strategies are supported 

via regular expressions.  

 Additionally RiMarkov provides a range of extensions specific to natural language 

and literature, including the recognition of abbreviations, elisions, and sentence boundaries to 

better facilitate sentence generation. Other such features included the weighting of inputs 

(e.g., for combining texts of different lengths), constraints on repetition, custom tokenization, 

feature compression (letter-case, synonyms, etc.), and the following methods: 

getCompletions(), getProbabilities(), and getProbabilityMap(), each of which allow for some 

degree of interactive control (or steering) of the model during generation. Additionally 

RiMarkov supports dual-mode operation in which each word is augmented by part-of-speech 

                                                        
30 N-gram models were formalized by Claude Shannon in "A Mathematical Theory of 

Communication" [Shannon, 1949] and are a specific instance of the more general class of 

Markov chains. 
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information that can later be used to constrain the output to grammatical patterns based on 

Part-of-speech.  

 As noted by Wardrip-Fruin [2006], n-grams are a remarkably effective technique, 

given both the simplicity of the technique and its lack of specificity to the domain of 

language. One could imagine models substantially more specific to language, and in fact 

there has been a growing call for researchers to “put language back into language modeling” 

[Rosenfeld 2000]. This would require more complex models, like RiMarkov’s dual-mode 

operation mentioned above, that work with features other than small groupings of 

undifferentiated word tokens. Researchers have experimented with approaches such as 

decision trees and link-grammars, but the majority of such attention has focused on 

“maximum-entropy” modeling [Berger et al. 1996]. Maximum-entropy is another statistical 

technique, like Markov chains, that has seen use in a range of contexts, but its flexibility 

allows for the selection of a wide range of features, including those specific to language and 

literature. The RiChunker and RiParser, described below, make use of maximum-entropy 

modeling techniques.31 

RiChunker 

Based closely on the OpenNLP implementation, this object provides a simple 

implementation of a maximum-entropy chunker for finding non-recursive syntactic “chunks” 

such as noun-phrases, using the Penn conventions. Table 4 present a list of phrase-tags used 

according to the Penn Treebank conventions. 

                                                        
31 For more information, see “A Maximum Entropy Approach to Natural Language 

Processing”, [Berger and Della Pietra 1996] which provides a good introduction to maximum 

entropy techniques. 
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Name Description 

adjp  adjective phrase  

advp  adverb phrase   

conjp  conjunction phrase  

intj  interjection   

lst  list marker    

np   noun phrase 

pp   prepositional phrase 

prt  particle 

sbar  clause introduced by a subordinating conjunction 

ucp  unlike coordinated phrase 

vp  verb phrase 

o   independent phrase 

Table 4: Alphabetical list of phrase-tags used in the Penn Treebank Project. 

RiParser 

Based closely on the OpenNLP implementation, this object provides an 

implementation of a maximum-entropy parser for finding recursive (or nested) syntactic 

“chunks” such as noun-phrases, using the Penn conventions as listed in Table 4. 

RiGrammar 

RiGrammar provides an implementation of a context-free grammar with specific 

extensions for generating literary texts. The implementation allows users to specify the rules 

and productions for a grammar in a local or remote plain-text file. A simple example 

grammar, following the RiTa conventions, is presented below. 
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# An Example CFG 

 

###################################### 

# s -> np vp 

# np -> det n 

# vp -> v | v np 

# det -> 'a' | 'the' 

# n -> 'woman' | 'man' 

# v -> 'shoots' 

###################################### 

 
{ 
 <start> 
 <np> <vp>  
} 
 
{ 
 <np> 
 <det> <n> 
} 
 
{ 
 <vp> 
 <v> | <v> <np>  
} 
 
{ 
 <det> 
 a | the  
} 
 
{ 
 <n> 
 woman | man  
} 
 
{ 
 <v> 
 shoots 
} 

Figure 5: A simple RiTa grammar file. 

While grammars are often used in natural language analysis, RiGrammar, like most 

RiTa objects, is implemented (and optimized) specifically for generation, and contains a 

range of features specific to the literary context. For one, all rules are dynamic; that is, they 



 

46 

can be interrogated and modified at runtime. This is particularly important when one wants to 

change elements of the generation process based on what has been generated thus far. 

Similarly, RiGrammar supports probabilistic rules in which probabilities can be modified 

dynamically at runtime. 

In addition, specific extensions for generation have been implemented at the method 

level. A simple example of such a method is expandFrom. While the expand() method simply 

performs generation (or expansion) from the “<start>” symbol, expandFrom(String from) 

begins with the symbol contained in the “from” argument (which can consist of either 

terminals, non-terminals or both), and performs an expansion starting from there, so that 

partial expansions can be triggered without adjusting the grammar itself. Another example, 

perhaps the most specific to literature, is expandWith which takes two String arguments. 

During generation the first argument, a terminal, is guaranteed to be substituted for the 

second, a non-terminal. Once this substitution is made, the algorithm then works backwards 

(up the tree representing the grammar from the leaf) ensuring that the first argument, the 

terminal, will appear in the output string. For example, with the grammar fragment above, 

one might call:  

grammar.expandWith("woman", "<n>"); 

assuring not only that the <n> rule will be used at least once in the expansion process, but 

that when it is, it will be replaced by the terminal "woman". Further, expandWith can be used 

with terminals that are not present in the grammar. So the following would also work: 

grammar.expandWith("child", "<n>"); 

though the String "child" is not present in the grammar. This algorithm enables generation 

that can adjust to the current state of the applications. For example, if we want to generate a 

new sentence linking to one previously generated, we might pass one or more keywords from 

that sentence to expandWith, guaranteeing that the pair of generations will be linked, at least 
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minimally, by that keyword. Similarly, when accepting input from a user, a program can 

generate phrases based on that input. This is particularly useful in conversational applications 

or for those with interactive characters. 

 To further support these dynamic generation modes, callbacks, from the grammar 

into user code, are supported. To generate such a callback, users include method calls within 

their grammar, surrounded (by default) with back-ticks. Three examples of this type of 

callback are presented in the rule below. 

<rule2> 

{ 

The cat ran after the `lookupNoun();`  | 

The cat ran after the `getRhyme("cat");` | 

  The cat ran after the pack of `getPlural(<noun>);`  

} 

 

The first line provides a simple way of embedding external data sources within a grammar, 

while the second and third lines provide functionality that is dynamically applicable to the 

generation context (all three represent functionality not available in strictly context-free 

grammars). Any number of arguments may be passed in a callback, but for each call, there 

must be a corresponding method (with the same number and type of arguments) in the user's 

program, e.g., 

String getPlural (String noun) {  

          return myRiPluralizer.pluralize(noun); 

} 

An additional tool provided with RiTa, and facilitated by RiGrammar's dynamic 

grammar rules (as described above), is an interactive application, which allows users to 

experiment with one or more grammars in real-time. One panel of the RiGrammarView 
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application provides the current grammar file definitions in an editable window. The other 

panel allows user to generate from that grammar and store the results. Thus the typical 

process of experimentation is greatly simplified. Rather than stop the program, open the 

grammar file in a text-editor, make changes, save, then re-open the program, all of this 

happens within the live environment provided by the tool. 

2.4 Documentation 

RiTa is accompanied by extensive documentation that explains the toolkit and 

describes how to use and extend it. This documentation is divided into four primary 

categories: 

• Examples are provided for each of the core RiTa objects, clearly illustrating basic 

uses. Examples are posted as both downloadable and web-executable programs on 

the RiTa web-site and accompanied by links to carefully commented source code that 

explains the purpose of each line. Example assignments are also provided to assist 

teachers with course planning. 

• Reference Documentation provides precise definitions for each interface, class, 

method, function, and variable in the toolkit. It is automatically generated in two 

formats for each version via custom comments embedded in the source code: a 

simplified single-page “procedurally-oriented” HTML reference32 and a standard 

Java-style object reference33. 

• Tutorials teach students to use the toolkit incrementally by focusing on a single task, 

e.g., tagging, generation, or classification. The tutorials include a high-level 

                                                        
32 See http://www.rednoise.org/rita/documentation/docs.htm. 
33 See http://www.rednoise.org/rita/javadocs/. 
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discussion that explains and motivates the domain, followed by a code-level 

walkthrough showing how RiTa would be used to perform the task in question. 

• The Project Gallery provides students with a wide range of existing projects 

(implemented in RiTa) by other students and artists, all with linked source code. 

Students can access this archive either for inspiration on projects or for assistance in 

addressing particular issues. Most of the projects also include direct contact links for 

the authors that can be used if more specific questions are required. These projects 

also demonstrate proper documentation strategies, a particularly important element 

for those working with rapidly evolving technologies. Finally, students may, with 

instructor approval, add their own projects to the gallery, a goal that inspired some 

students and helped others to feel part of a community of practicing artists. 

2.5 Using Rita 

As consistency was one of our primary design criteria, all RiTa objects follow the 

same basic pattern for object instantiation, as follows: 

RiObject objectName = new RiObject();  

This syntax employs the conventional, if less than perfect, “new” operator34 and represents 

the most generic mode of object creation in Java . Although restricting object creation to 

“new” significantly complicates the coding of some objects (see the section on the 

RiTaServer below), it was judged to be more intuitive for new users and does not require an 

                                                        
34 See Jonathan Amsterdam’s article on the topic at  

http://www.ddj.com/java/184405016;jsessionid=5GYK2EDVKVLMUQSNDLPSKHSCJUN

N2JVN?_requestid=205339. 
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understanding of the class/object distinctions, nor of static methods (e.g., main() or 

createX()). 

When used in Processing, object creation was performed like this: 

RiObject objName = new RiObject(this); 

To clarify this syntax, Processing “sketches” are, by default, Java applets that subclass the 

processing.core.PApplet class (which in turn subclasses java.applet.Applet) so that the “this” 

keyword passed to the constructor represents an instance of PApplet and provides the RiTa 

object with a reference back to the core Processing methods implemented within. This is the 

recommended syntax for Processing libraries and has been somewhat universally adopted by 

library developers. This back-reference to the PApplet is necessary in only a few cases within 

RiTa, the RiText object being a primary example, for which Processing is required, at least 

for now, to perform the supported 2D and 3D drawing functions. As all other core classes can 

be used with or without Processing, either of the syntaxes above is acceptable.  
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Figure 6: A simple RiTa sketch in Processing. 

Typically however, the RiText object is generally the first object encountered by 

students as they often wish to immediately display some piece of text on which they are 

working. In fact, only one additional line of code is required to add visible text to an existing 

sketch. To illustrate, a very basic RiTa sketch is shown in Figure 6. 

Figure 6 also illustrates the simplicity of the basic Processing environment. Creating 

this “sketch”—to use Processing terminology—required the user to a) select RiTa from the 

“tools” menu to generate the import line at top, and b) to type or paste in the single line 

shown that creates a single RiText object. To run the program, the yellow “play” button is 

pressed. For new or inexperienced students, this provides a significant usability gain over the 

complexity of a similar first program in raw Java (see Figure 7). 
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import java.awt.Graphics; 

import java.applet.Applet; 

 

public class Hello extends Applet { 

 

  public void init() { 

 resize(200, 200); 

  } 

 

  public void paint(Graphics g) { 

 g.drawString("Hello", 80, 80); 

  } 

} 

Figure 7: A minimal Java applet. 

Notice the number of concepts present in this program, from classes, to functions with and 

without parameters, to inheritance via the “extends” keyword. Each of these concepts must 

either be learned by a new user, or ignored (as is unfortunately more often the case). Further, 

this program still requires several steps before any output can be seen, beginning with the 

separate compilation step that is required in Java (which generally requires knowledge of 

where the “javac” compiler is located, as well as the correct path for the Java runtime classes 

to be set in the CLASSPATH variable). Running the program is also not trivial, as Sun's 

“AppletViewer” tool requires an additional HTML document to be created and saved before 

one can even test the code. An example version of such a file is shown in Figure 8. 

<HTML> 

<HEAD> 

<TITLE> A first program </TITLE> 
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</HEAD> 

<BODY> 

<APPLET CODE="Hello.class" WIDTH=200 HEIGHT=200> 

</APPLET> 

</BODY> 

</HTML> 

Figure 8: A minimal HTML page as required for Java's AppletViewer. 

The URL for this file must then be passed to the AppletViewer (via the command-line) before 

the program can be launched. While this process has been somewhat simplified in some 

integrated development environments (or IDEs), e.g., Eclipse or NetBeans, installing and 

configuring these IDEs has been notoriously difficult for new users who are easily 

overwhelmed by the sheer number of menus, windows, and options present in the interface. 

As one student experienced with Java commented, 

RiTa is a great and really broad library that I used throughout the semester; 
coming from experience with Swing and the Java Applet library, I was 
happily impressed with the simplicity of RiTa, and of Processing libraries in 
general. To be able to spend time on the algorithmic, structural, and creative 
parts of projects rather than tedious GUI creation is a satisfying and 
liberating thing.   [PDAL Student, 2009] 

2.5.1 Animation and ‘text behaviors’ 

Animation support in RiTa is provided by a combination of simple method calls (in 

the RiText object), and by the more flexible, but more complex, TextBehavior framework. 

The basic methods in RiText, with a variety of convenient overloads, include the following: 

riText.moveTo(x, y, startOffset, duration); 

riText.moveBy(xOff, yOff, startOffset, duration); 

riText.fadeOut(startOffset, duration); 
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riText.fadeIn(startOffset, duration); 

riText.fadeColor(newColor, startOffset, duration); 

riText.fadeToText(newText, startOffset, duration); 

riText.scaleTo(newTextScale, startOffset, duration); 

These methods, all of which were implemented using the TextBehavior architecture, were 

included to allow users easy access to the basic functionality required for simple display and 

manipulation of text. Further, users who were familiar with working via timelines (e.g., in 

Director or Flash) could use the optional “startOffset” parameter to “script” an entire text 

sequence, starting and stopping various behaviors for each RiText object at specific times 

offset from the start of the program. For finer-grained and/or more interactive control, RiTa 

employs a callback mechanism (see Events/Dynamic Callbacks below) through which 

programmers can be notified at various stages of a TextBehavior's execution. To provide the 

types of motion and interpolation required for “natural-looking” motion, 13 types of 

interpolation (or easing) were implemented: LINEAR, EASE_IN, EASE_OUT, 

EASE_IN_OUT, EASE_IN_OUT_CUBIC, EASE_IN_CUBIC, EASE_OUT_CUBIC, 

EASE_IN_OUT_QUARTIC, EASE_IN_QUARTIC, EASE_OUT_QUARTIC, 

EASE_IN_OUT_SINE, EASE_IN_SINE, EASE_OUT_SINE, any of which can be enabled 

at the object-level by a call to riText.setMotionType(type). 

Lastly, new behaviors could be created via the TextBehavior mechanism and then 

applied to instances of RiText. An example of this was the scaleTo() method, which was 

originally implemented in a student project as a TextBehavior (to gradually grow or shrink at 

text—via affine transforms—to a specific size), and was later refactored and included as part 

of the core library. 
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2.5.2 Events and Dynamic Callbacks 

When creating an interactive program, it is often useful to know when certain events 

have started or finished. For example, one might want to move a RiText object to a particular 

location on screen, then, upon its arrival in the desired location, have its text contents spoken 

via a text-to-speech (or TTS) voice. To address this need, RiTa provided a “dynamic 

callback” mechanism that allowed users to handle such events in an intuitive fashion. The 

mechanism is “dynamic” because the programmer does not need to register interest in events, 

nor implement any interfaces (this is disallowed in the typical Processing sketch). Instead, 

because of the PApplet reference passed to the constructor of each RiObject, objects can 

attempt to dynamically invoke such methods back to their PApplet “parent”. If the method is 

not found on the first attempt to locate it (via Java's reflection API) in the parent, then it is not 

called again. If however, it does exist, then all subsequent events are passed in calls to that 

method. In early versions, each event type had its own callback signature, so that animation 

would trigger a method like onBehaviorCompleted(), while a speech events might trigger 

onSpeechCompleted(), and user text input (see the RiTextField method) would trigger 

onTextInput().  

In the current implementation, this mechanism has been made more generic. Each of 

these events are of now of the same type, represented by the RiTaEvent class, and trigger the 

same method, onRiTaEvent(), inside which the type of the event can be queried. From 

anecdotal feedback, this solution has been preferable, as a single conditional or switch 

statement can be used rather than implementing new callback methods whenever new 

functionality is added. A typical implementation of the generic callback (for several 

object/event types) might look like this: 
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void onRiTaEvent(RiTaEvent re) { 

 switch (re.getType)  

{ 

  case RiTa.SPEECH_COMPLETED: 

   …  

  case RiTa.MOVE_COMPLETED: 

   …  

  case RiTa.TEXT_ENTERED: 

   // print the entered text  

   println(re.getData()); 

   … 

 }   

} 

In most cases, however, as users are interested in one, or at most two such callbacks, such 

awkwardly long conditional blocks are not necessary.  

2.5.3 Parameter and Return Types  

“Text needs to be a first-class object in these systems, and its representation 

is the most crucial part of the design.” – Pablo Gervas35  

Early iterations of the RiTa toolkit implemented a hierarchical approach to text that 

restricted the types that could be passed to and returned by RiTa functions. Though such a 

hierarchical design, with Phrase objects containing Word objects, containing Syllable objects, 

containing Phoneme objects, had been used in several natural language libraries (Jet, 

FreeTTS, etc,), we eventually concluded that a simple string-based approach would offer a 

                                                        
35 In conversation with Pablo Gervas at ‘The Electronic Literature Organization 2008’ 

conference held 29 May-1 June 2008, in Vancouver, Washington, USA 
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range of advantages for this context. In fact, all of RiTa's functionality was eventually made 

accessible via primitives, strings, and string-arrays, a feature that greatly reduced the learning 

curve for new users. In addition to presenting a clean and consistent interface, the choice of 

arrays, rather than Vectors or Lists (to use Java terminology), shielded users from potentially 

confusing elements of the Java collections package, e.g., repeated castings, differing behavior 

of primitives and objects, the (belated) support for generics, and the rather convoluted 

mechanisms for converting back and forth between collections and arrays. Additionally 

knowledge of data structures (beyond the simple array) was not necessary.  

This did create, however, some additional design complexity in those cases where the 

processing of hierarchically-oriented data was necessary. RiWordNet, for example, which 

provides access to the Princeton's WordNet lexical ontology is a case in point. The WordNet 

dictionary36 is comprised of a deeply nested tree-like structure of “pointers”. Typically, 

libraries for WordNet have returned these pointers directly, allowing users to manually 

navigate the range of objects – from senses and lemmas, to synsets and glosses, to examples 

and descriptions. RiWordNet was able to avoid such a hierarchical approach by augmenting 

the WordNet database with unique identifiers (generated at runtime) for each accessed 

lemma, or lexical entry. In raw form, WordNet only supplies pointers to sets of synonyms, or 

synsets, so navigating to a specific word (a combination of its sense and part-of-speech) was 

not possible without repeated navigation of pointer hierarchies. With RiTa's id mechanism 

however, users could access a word of interest multiple times, by repeatable passing of its 

unique identifier to whatever methods were needed. Thus each method call could return a 

smaller set of data and users were not required to manipulate or understand object types 

beyond simple Strings and String arrays. 

                                                        
36 See http://wordnet.princeton.edu/. 
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2.5.4 Lazy Instantiation and Caching 

To meet the design constraints on memory, browser-based execution, and 

performance, all object and data-loading in RiTa is performed (by default) in lazy fashion, if 

and as needed. Thus, the lexicon is not loaded (unless specified to the contrary) until a query 

is performed on it. Similarly, stemming, pluralization, conjugation, and letter-to-sound rules 

are only loaded when required for a specific method to complete. This allows RiTa to support 

a relatively large range of functionality with only those users who needed specific resources 

having to pay the cost for loading and using them. Similarly, most RiTa objects instantiate the 

RiCacheable interface and can optionally cache the results for a range of functional calls 

(often referred to as memoization).  

An example of this functionality is the RiSearcher object, which computes a range of 

statistical metrics via calls to the Google search engine. Not only are such calls time-

intensive, but they can accumulate and repeat, especially when one is testing new code. One 

such call allows users to obtain the “weighted bigram coherence” for a given sentence. As an 

example, we can consider a sentence S with n words {W1,W2...Wn}. Bigram coherence 

refers to the frequency that a pair of words (Wk,Wj) will occur sequentially in a given set of 

input texts (in this case, the entire web as indexed by the Google search engine), and is 

defined in RiTa as the number of occurrences (or frequency) for the quoted query "Wk Wj" 

weighted against the sum of the queries for each individual word: 

bigram-coherence(Wk, Wj) = count(Wk ,Wj) / ((count(Wk) + count(Wj)) 
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To obtain the bigram coherence for all n-1 pairs of consecutive words, (W1 + W2, W2 + 

W3... Wn-1 + Wn), we measure each pair individually, then weight the average of these 

against the length of the sentence, represented by n: 

avg-bigram-coherence(W1...Wn) = 

(Sum(k), for k = 1...n-1: bigram-coherence(Wk, Wk+1)) / n 

Obtaining the average bigram coherence for the entire sentence thus requires two 

“single” calls to the search engine, for (count(Wk) and count(Wk+1), and one paired call (the 

“and” of the two words), but—and here the problem shows itself—half of these single calls 

will be duplicates of previous calls. In such cases, using a cache significantly increases the 

efficiency of the algorithm (especially as Google has recently taken to blocking repeated calls 

from the same IP address when not made not through the proprietary Google API). To make 

matters worse, it is common during development to make repeated calls for the same sentence 

or paragraph, thereby increasing the number of duplicate calls. Here, allowing the cache to 

persist across multiple runs of the program (as when using the RiTaServer described in the 

following section) provides yet further gains in efficiency. 

2.5.6 Mixed-Mode Operation 

The RiTaServer mechanism provides an alternative client/server-based mode for 

RiTa objects that may have expensive initialization routines (e.g. building a large n-gram 

model from text files) or that may benefit from persistent caching (e.g., the RiSearcher object 

described above). Rather than incurring these costs each time the program is run (in 

development, for example, this may happen hundreds or even thousands of times), the server 

enables data stores to remain in memory while the program is stopped and started any number 

of times. This mechanism was added relatively late in the development of the toolkit, only 
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after it became clear (see the section on Design Tensions) that certain use cases would 

continue to warrant the added complexity. There was also significant experimentation and 

iteration done to minimize the impact for users switching between these operation modes. In 

the current implementation, once the RiTaServer has been started, the user is required only to 

add one additional line of code to their program to switch processing to the remote server's 

virtual machine. All the same methods are supported remotely as are locally, and all local and 

remote object creation, marshaling of parameters and return types, and network 

communications, are handled transparently. The example below shows how a program using 

the RiMarkov object can switch the execution environment to the remote server by adding 

this one line of code: 

 RiTa.useServer();  // one additional line 

 RiMarkov rm = new RiMarkov(this, 3); 

 rm.loadFile("war_peace.txt");  

 String[] sents = generateSentences(10); 

 for (int i = 0; i < sents.length; i++)  

  display(sents[i]); 

 

Beneath the surface, this additional line tells the RiMarkov object, which contains a 

reference to a MarkovModelIF interface, what concrete implementation (or delegate) to 

create and pass method calls to. In the remote case, instead of creating a concrete 

rita.support.MarkovModel object locally and delegating calls to it, a remote proxy object is 

created. On creation, the remote proxy sends a message to the RiTaServer to create the 

concrete MarkovModel in the remote virtual machine. An additional message may be sent 

containing mappings to the location of any external resources (e.g., “war_peace.txt” in the 

example above) that are required for the remote object's operation. Subsequently, all method 
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calls to the RiMarkov object are transparently routed to the remote proxy, converted into 

remote messages, with parameters marshalled appropriately, and executed in the server. The 

server then handles un-marshalling of parameters and dispatch of the method call to the local 

object. Similarly, when the method call on the server object asynchronously completes, the 

returned results are marshalled and sent back over the network to the local RiMarkov's 

remote proxy object, which then returns them to the user code.  

Here we see another design tension, specifically between the remote proxy design 

pattern [Gamma et al. 1995], and the manner in which objects are created in RiTa (see object-

creation above). In the typical implementation of this design pattern, the RiMarkov object 

would be an instance of an interface (or abstract class) and its concrete implementation would 

be created via a factory method as follows: 

RiMarkovIF rmi = RiMarkovFactory.create 

(this, serverEnabled); // as an interface 

    or 

RiMarkov rmi = RiMarkov.create 

(this, serverEnabled); // as an abstract class 

 

Thus, the factory-style's static “create” method could then instantiate the appropriate delegate 

based on the “serverEnabled” flag. In the RiTa context however, the cognitive overhead of 

this pattern was judged, for a number of reasons, to be too high to justify. First, creation of 

RiTa objects via this pattern would break the consistency of the “new” paradigm for object 

creation, which prevails throughout Processing and its libraries. Secondly, users would need 

to understand (or ignore) the distinction between static and object methods, as well as why (in 

the interface case) multiple objects types would be required to create a single new object. The 
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abstract class case is perhaps more intuitive, but then rules out traditional inheritance for the 

core set of RiTa objects, each of which already extends RiObject. More importantly, creating 

RiTa objects would look significantly different than creating basic Java and/or Processing 

objects, adding an undesirable degree of complexity for new users. Thus the somewhat 

complex internal mechanism described above was implemented, breaking with typical design 

patterns, in order to preserve a simple and consistent interface for object creation while still 

facilitating the simplest mechanism for switching between “normal” and “client/server” 

modes. 

 While the RitaServer mechanism supports servers on remote computers (e.g. for 

access by “live” applets), this has not proven to be the typical use case. Perhaps unique to the 

context of computational art,37 and in accord with our design constraint of rapid (or micro) 

iteration, more common is the use of this mechanism on a single local machine; e.g., both 

client and server running on a user's laptop. It is essential in development, at least in the arts 

context, to be able to rapidly iterate, trying and quickly abandoning new ideas, moving 

simultaneously in a number of development directions.  

Let us imagine that it took thirty seconds to load and construct a very large n-gram 

model from a set of texts. This wait, occurring with each run of the program, would 

dramatically reduce the productivity of the artist-programmer in terms of iterations, and more 

significantly would diminish her ability to quickly develop new ideas. By running the 

RiTaServer locally however, this load time is paid for only once (unless new texts are 

swapped in) while the additional overhead for method calls, due to marshalling and local 

network latency, is generally minimal enough to be unnoticeable. Because the concrete server 

object (rita.support.MarkovModel in our example) implements the same interface as the local 

                                                        
37 See the chapter 6 on creativity support engineering principles for the arts. 
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object, there is no need, and thus no performance penalty to paid, for method calls via 

reflection. 

Of course, in our example, there is still the question of whether an end-user (someone 

viewing the applet as an online art piece) would be willing to wait the thirty seconds for the 

texts to load. Because this is a one-time wait and there is a perceived reward (the motivation 

to actually view the piece), the answer here is generally yes. In cases where such a wait is 

judged to be unacceptable, or in the scenario where the memory requirements for the model 

exceed those of the web browser itself, the RiTaServer can be run on the physically remote 

web server machine. In this scenario, model loading and memory constraints disappear for 

the user and are paid only once for the life of the application. Of course this scenario can 

require more permissions on the web server than are available to some RiTa users (especially 

inexperienced students), and is thus only recommended when fully necessary. 

2.5.7 The EclipseP5Exporter 

One of the most powerful features of the Processing environment, for experienced 

and inexperienced programmers alike, is its one-click “export” feature. After completing and 

testing a sketch within the Processing environment, a single button push will export the 

sketch either as a basic web-applet, a signed web-applet with native libraries (such as those 

necessary for OpenGL38) and/or a separate stand-alone application for each of the major 

platforms (Windows, Mac, and Linux). All required resources, including HTML pages, links 

to source code, libraries, and jars are generated and archived quickly and transparently. To 

publish a sketch as a publicly accessible applet, one need only copy the exported applet 

directory to a server via an FTP program (nearly all students nowadays have web server space 

                                                        
38 See http://www.opengl.org/. 
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provided as part of their school accounts). As ease-of-use, share-ability, and transparency 

(e.g., visible source code) were among our primary design constraints, this was an essential 

feature.  

 

Figure 9: Screenshot of the RiTa-Eclipse plugin interface. 

Yet the Processing environment, while ideal for beginners, was quickly outgrown by 

students as they advanced. In fact, by mid-semester there was often a vocal group of students 

asking for assistance in switching to the Eclipse IDE, a step-by-step tutorial for which was 

added to the course wiki. The problem, however, is that Eclipse provides no similar 

mechanism for export, not even for simple applications on one's own platform. This led to 

our development of a new RiTa-Eclipse plugin called the EclipseP5Exporter, which 

eventually became an important tool for the Processing community, whether or not it was 

used in conjunction with the other RiTa tools. The EclipseP5Exporter was designed and 
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implemented as a native Eclipse plugin that provides the same 'export' functionality as found 

in Processing. Built via the SWT toolkit, it integrates directly into the Eclipse IDE widget set 

and provides all the functionality listed above. Figure 9 (above) shows a screenshot of the 

exporter, visible in the Eclipse interface as both a toolbar button and as a menu item.  

Figure 10: Screenshot of the RiTa-Eclipse plugin configuration widget. 

Figure 10 shows a secondary screen in which users can choose the project and type of export 

to generate. When the export completes, a new directory is created containing the exported 

resources, which can then be launched via a simple double-click. 

2.6 Conclusion 

"What is really needed is social change: new play systems, new interaction 

models, expressive programming, and new role models in the field." [Perlin 

et al. 2003] 
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In this chapter we have discussed the range of design considerations involved in 

making RiTa a functional and productive toolkit for practicing writers, and particularly as 

an end-to-end solution for computational writing courses. As a creativity support tool, 

RiTa includes a number of functions relating specifically to natural-language processing, 

carefully constructed to give students and artists at all levels a high degree of flexibility 

without sacrificing learnability or performance. Our goals dictated that the RiTa 

framework, wherever possible, be simple enough to be understood by entry-level students, 

and powerful enough to be adapted by those with more developed computer science skills. 

Though the RiTa toolkit is still in development, our initial experiences in the classroom 

indicate that, for the most part, these core goals have been met. In the next chapter, we will 

discuss the accompanying pedagogical framework with which we brought RiTa to the 

classroom, and then, in the final chapter, a range of evaluation metrics by which we have 

judged our success. 
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CHAPTER 3: PEDAGOGY 

3.1 Introduction 

[A]dmission and retention rates to computer science university courses are 

falling, enrollment is male dominated and although there is a thriving 

community of end-user programmers, there are serious concerns about the 

dependability of the software which they produce. Thus there is a need both 

to foster the development of computational thinking in young learners and to 

motivate them to study computing subjects by improving the perception of 

computing, especially for girls. [Romero et al. 2007] 

This chapter discusses educational applications of the RiTa tools. The bulk of the 

observations presented in this sections are based on our experiences in a series of courses 

taught over 4 semesters at Brown University39. In addition to providing a test environment for 

the tools in question, the goal of these courses was to enable students to create personally 

meaningful works of art and literature via computational methods while simultaneously 

developing the fundamentals of programming and computer science. To accomplish this dual 

goal we attempted to create a learning environment in which students’ creative efforts to 

construct publicly viewable works in digital media doubled as programming exercises 

teaching basic procedural literacy. In close conjunction with the RiTa toolkit, a pedagogical 

approach was developed which we hoped would better leverage the affordancesi of these new 

tools to accomplish our objectives. 

In the sections that follow, we discuss a range of related issues; from previous work 

in the area, to guiding educational theories, to specific pedagogical decisions, to the 

                                                        
39 See the "Programming for Digital Art and Literature" course website: 

http://www.rednoise.org/pdal/ [Howe 2009]. 
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relationship between tools and teaching strategies. From these various perspectives we 

attempt to make the larger case that arts-focused tools provide a viable platform not only for 

teaching computationally-augmented art and writing practice, but also for teaching basic 

computer science concepts and advancing the goals of procedural literacy. In addition to the 

mechanics of the courses40, we present some of the difficulties we experienced, as well as 

some recurring themes that arose as students engaged with these tools to implement their own 

creative works. By reflecting critically on the experience of teaching with RiTa it is hoped 

that we can further develop strategies for teaching core computer science skills, computer 

science education, and specifically, for computationally-augmented art and literary practice.  

This chapter is divided into the following sections: Procedural Literacy and 

Computational Thinking; Constructivism, Constructionism and generative pedagogy; 

Educational software environments and related initiatives; Comparison of the PDAL course 

with other classroom tools/environments; and context-specific design considerations. 

3.2 Procedural Literacy and Computational Thinking  

Computer literacy for all citizens will be imperative for the United States to 

maintain a diverse, internationally competitive, and globally engaged 

workforce of scientists, engineers, and well-prepared citizens. This literacy 

must include computer programming and computer science fundamentals 

and involve both reading (using existing computer applications) and writing 

(making one's own applications).  [Plass et al. 2007]. 

                                                        
40 The course, taught between 2007-09, was originally entitled “Electronic Writing” before 

being renamed, for the subsequent three iterations, as “Programming for Digital Art and 

Literature”. 
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Computer science researchers and educators have continually recognized the need to 

motivate a larger section of the population to understand and engage with core computational 

ideas. This research direction, pursued under various names, from Procedural Literacy41, to 

Computational Thinking [Wing 2006], stresses the utility in procedural understanding for 

individuals in a range of professional, cultural, political, and educational contexts in digitally-

mediated society. Similarly, a number of researchers [Greenberger 1962; Sheil 1980; Mateas 

2005; Bogost 2005; Plass et al. 2007] have argued that engagement with programmatic 

concepts betters the lives of individuals in these contexts and furthers larger societal goals in 

a number of ways: 

• By teaching general problem-solving techniques, applicable to a wide range of 

pursuits and disciplines; 

• By enabling people to better communicate with others and express themselves in a 

digitally-mediated culture; 

• By facilitating a better understanding of the ways in which technological choices 

made by a society influence its social, political, and cultural values; 

• By including a larger, and more diverse segment of the population as ‘decision-

makers’ on technologically-inflected issues. 

 

 

 

                                                        
41 According to Guzdial [Guzdial and Soloway 2003], as reported in Mateas [2005], the 

earliest argument for universal procedural literacy is one given by A.J. Perlis in a symposium 

held in 1961 to celebrate the 100th anniversary of M.I.T., and published in the collection 

Management and the Computer of the Future by Greenberger  [1962]. 
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Forte and Guzdial [2004] characterize the problem as follows:  

As the skills that constitute literacy evolve to accommodate digital media, 
computer science education finds itself in a sorry state. While students are 
more in need of computational skills than ever, computer science suffers 
dramatically low retention rates and a declining percentage of women and 
minorities. Studies of the problem point to the overemphasis in computer 
science classes on abstraction over application, technical details instead of 
usability, and the stereotypical view of programmers as loners lacking 
creativity.  

A number of reasons have been cited for the lack of progress in this respect: 

inappropriate tools and learning environments, lack of motivation for new learners (no 

support for the creativity-motivated), unsound pedagogy, lack of role models and poor 

evaluation of existing methods. While there seems to have been a recent upsurge in interest in 

the notion of widespread procedural literacy, it is by no means a new idea, but rather builds 

on a long tradition in the field. While this long lineage has been explored in detail elsewhere 

[Mateas et al. 2003], it is worth briefly noting what was likely its first mention within CS, 

from A.J. Perlis.  

In his talk at a symposium held in 1961 to celebrate the 100th anniversary of M.I.T., 

and published in the collection Management and the Computer of the Future [Greenberger 

1962], Perlis recognized and expressed a number of issues and concerns that are still central 

today. In his talk, entitled “The Computer in the University”, he noted that most university 

computer use is characterized by “extensions of previously used methods to computers; and 

they are accomplished by people already well trained in their field who have received most of 

their training without computer contact.” As Mateas points out, “this approach is similar to 

the way computing is currently taught in media arts programs, primarily as a black box tool 

(substitute Photoshop, Director and Flash for Algol 60) rather than as a process-based 

medium with its own unique conceptual possibilities” [Mateas 2005].  



 

71 

Perlis goes on to assert that the purpose of a university education, regardless of the 

particular field of study, is to help students develop an intuition for which problems and ideas 

are important or relevant ( “sensitivity… a feeling for the meaning and relevance of facts”), 

to teach students how to think about and communicate models, structures and ideas 

(“…fluency in the definition, manipulation, and communication of convenient structures, 

experience and ability in choosing representations for the study of models, and self-assurance 

in the ability to work with large systems…”) and to teach students how to educate themselves 

by tapping the huge cultural reserves of knowledge (“…gaining access to a catalog of facts 

and problems that give meaning and physical reference to each man’s [sic] concept of, and 

role in, society” [Mateas 2005]. He argues that the computer plays a critical role in at least the 

last two areas, and, during the discussion period, agrees that computers play a critical role in 

the development of intuition and sensitivity as well.  

As, for Perlis, procedural literacy lies at the heart of the fundamental aims of a 

university education, he consequently argues that all students should make contact with 

computers at the earliest time possible: the student’s freshman year. For 1961, as Mateas 

acknowledges, this is a radical proposal: all students, engineering and liberal arts students 

alike, should have a two-semester computer science sequence in their freshman year, this at a 

time when computers were still rare and esoteric. Even today, with the relative ubiquity of 

computers, most universities do not have such a requirement in place. This may well be due 

to the fact that historically, it has been challenging to introduce students to the benefits of 

computer science, programming, and procedural tools [Mateas 2005]. As artist-programmer 

Golan Levin [2009] states, 

just as true literacy in English means being able to write as well as read, true 
literacy in software demands not only knowing how to use commercial 
software tools, but how to create new software for oneself and for others. 
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Today, everyday people are still woefully limited in their ability to create 
their own software. Many would like to create their own programs and 
interactive artworks, but fear that programming is “too hard.” The problem, it 
turns out, may not be programming itself so much as the ways in which it is 
conventionally taught. 

3.2.1 The Difficulty of Teaching Programming 

What hasn’t changed is that programming is still a hard activity and a 

difficult skill to learn. Few students will understand programming well 

enough after completing their first programming courses to be able to write 

simple programs, let alone use programming as leverage for understanding 

other domains. - Guzdial [1994] 

Despite more than fifty years of attention from computer science educators, basic 

programming fundamentals remain a remarkably difficult subject for many students. As 

Jenkins [2002] argues, this situation is less than ideal: 

Few computing educators of any experience would argue that students find 
learning to program easy. Most teachers will be accustomed to the struggles 
of their first year students as they battle in vain to come to grips with this 
most basic of skills and many will have seen students in later years carefully 
choosing options so as to minimise the risk of being asked to undertake any 
programming. This is a sad and depressing state of affairs.  

While there is a range of possible explanations for this fact, the most critical 

difficulties seem to stem from some or all of the following issues [Guzdial 1994]:  

• Assembling programs is hard. Programming languages have only a few components, 

which are combined in many different ways, and learning to understand the semantic 

results of different combinations is complex [Schneiderman 1977]. Understanding 

how to combine programs to achieve particular goals is a challenge [Spohrer 1985, 

Spohrer 1989]. 
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• Syntax is complex. When students try to combine elements, syntax gets confused, 

which leads to students battling syntax problems as they struggle to understand 

semantic ones [Perkins 1986, Johnson 1985]. When the syntax problems are 

alleviated, students can focus on the semantic ones [Hohmann 1992; Soloway 1993; 

Anderson 1989; Garlan 1984]. 

• Students lack an understanding of computational process. Many students do not 

understand how interpretation of traditional computer languages works, e.g., where 

does control flow and how do variables get updated [DuBoulay 1989]. If students are 

presented with a simplified or clearer description of the process, they can understand 

their programs more easily and perform more successfully [diSessa 1985; diSessa 

1991]. 

There is no question that many students find the study of computer science and 

programming extremely difficult, especially at elementary levels. In fact, it would seem that 

often even the most basic concepts (e.g. variables) appear to be most difficult for students 

[Sleeman et al. 1988; Samurçay 1989; Paz 1996]. But deep misconceptions are not limited to 

elementary programming. Holland, Griffiths, and Woodman [1997] show the extent of the 

misconceptions held by more advanced students studying object-oriented programming. They 

report on a range of misunderstandings, e.g., the conflation of the concept of an object with 

other concepts like variable, class, and textual representation. 

3.2 Constructivism, Constructionism and Generative Pedagogy 

Constructivism is a theory of learning, which claims that students construct 

knowledge rather than merely receive and store knowledge transmitted by 

the teacher. Constructivism has been extremely influential in science and 

mathematics education...  – Ben-Ari Mordechai [2001] 
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To address the inherent difficulty of programming, educators have experimented with 

a range of pedagogical philosophies. Constructivism, based originally on Jean Piaget’s 

cognitive theories on knowledge acquisition by children, is the theory that rather than 

passively receiving knowledge from teachers and textbooks, students learn best when they 

actively construct it, building recursively on their previous knowledge and experience of the 

world. After many years of debate with so-called “behaviorist” educational theories, 

constructivism has, arguably, emerged in recent years as a dominant philosophy [Mordechai 

2001], and has been applied across disciplines, from the humanities to the sciences to the arts. 

Unfortunately, computer science education, where emphasis has traditionally been placed on 

abstraction, rather than application, has been slower than many other fields in this respect. As 

Mordechai [2001] states: 

Constructivism has been intensively studied by researchers of science 
education (Glynn, Yeany and Britton 1991) and mathematics education 
(Davis, Maher, and Noddings 1990; Ernest, 1994), to the extent that “radical 
constructivism represents the state of the art in epistemological theories for 
mathematics and science education” (Ernest, 1995, p. 475). However, there 
has been much less work on constructivism in computer science education 
(CSE)... While many computer science educators have been influenced by 
constructivism, only recently has this been explicitly discussed in published 
work… 

The basic tenet of cognitive constructivism is the student’s creation of meaning. 

While Piaget tended to emphasize learning through play, the basic theory supports a range of 

educational activities, as long as the student’s construction of meaning is a primary concern. 

Constructivist educators emphasize having students take control of their own learning, and 

de-emphasize lectures and other transmissive forms of instruction [Guzdial 1997].  
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3.2.2 Constructionism 

The most clearly articulated example of constructivist theory applied to computer 

science education (CSE) is the constructionist approach, developed by Papert in his 1980 

book Mindstorms: Children, Computers, and Powerful Ideas, which has gained significant 

traction in some corners of the discipline. Constructionism focuses not on Piagetian stages of 

development and the constructivist nature of the mind, but rather on knowledge construction 

that occurs specifically during designing, building and making activities. As Papert says, 

“The constructionist approach to learning asserts that people learn particularly well when 

they are engaged in constructing a public artifact that is personally meaningful.” [Guzdial et 

al. 1990]  

What is critical in Papert’s theory of constructionism is that students need to be engaged in 

the construction of artifacts in which they have some stake; “public” artifacts42 as he calls 

them. When this condition can be met, powerful discussions about playing and making can 

occur as students are released from the abstracted busywork of traditional classroom 

activities. Instead they focus on learning by doing, learning not only about programming, but 

through programming; learning “to think, to tinker, to putter, to make mistakes and to learn 

from them” [1980]. To make clear the distinctions between these various terms (cognitive 

constructivism, philosophical constructivism, and constructionism), Guzdial [1997] says: 

Piaget was talking about how mental constructions get formed, philosophical 
constructivists talk about how these constructions are unique (noun 
construction), and Papert is simply saying that constructing is a good way to 
get mental constructions built. Levels here are shifting from the physical 

                                                        
42 Note the emphasis here on the “public” nature of the artifact, often a problematic element 

for student work in computational media, as the current infrastructure (as well as academic 

norms) often frustrate or prohibit public sharing in this way. Enabling this at both the 

technical level (via the generation of browser-executable content) and the pedagogical level 

(via art-syle critiques) was  key element of the RiTa/PDAL strategy. 
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(constructionism) to the mental (constructivism), from theory to philosophy 
to method, from science to approach to practice. 

The project-based workshop approach for the PDAL courses (and its integration with 

the RiTa tools) was directly influenced by the constructionist philosophy described above, 

both in its commitment to project-based, publicly viewable work, and in the notion of 

reflexivity. Papert describes how programming is reflexive with other domains, meaning that 

learning the combination of programming and another domain (art-making in this case) can 

be easier than learning each separately.43 In such cases, synergies are created when concepts 

in another domain are mapped, or “reflected” back into the programming medium.  

3.2.3 Generative Pedagogy  

We want to improve learning by contextualizing concepts and problem 

solving inside structures which will give a base for making abstract problems 

"real." [Perlin et al. 2003] 

In the case of PDAL, learning to program means learning to construct representations 

for concepts. This in turn supports further learning of the concepts and the degree to which 

they can be procedurally manipulated in a creative fashion, thus providing a natural 

motivation for learning to program. This reflexivity is especially suited to the context of 

natural language, as we find direct mappings between the abstract nature of sign and signifier 

in both natural and computer languages. As one student commented, 

My work in this class has solidified my understanding of art and 
programming being very closely related. I have taken a number of courses... 
related to New Media art where programming and software art was often 
discussed though I never had the opportunity to create any myself. What this 
course really did was help me find a formal process for working within the 
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intersection of my interests-- computer science and art. I intend to continue 
using the models we have used in this course to work on projects in the 
future. [PDAL 2008] 

 When students engage in manipulating mental models and creating symbolic 

representations, they find direct parallels between the domains of literature and computer 

languages. In literature, words, with parts-of-speech, map arbitrarily (and dynamically, based 

on the context) to concepts. In computer languages, variables (or objects), with types, map 

arbitrarily and dynamically to values in a running program, meaning there is no necessary or 

permanent semantic link between a variable and what it points to. In this way, the building 

blocks of language are similar to those of programming. Thus, in contrast with the recent 

trend toward visual media in such contexts (examples follow below), with language and 

literature we find direct corollaries between concepts in the application domain and in the 

programming domain, thus supporting constructionist reflexivity to a greater degree.  

3.3 Related Pedagogical Initiatives  

"What would happen if everyone in the US learned how to program 

computers at the same time they learned to read and write English?" [Perlin 

et al. 2003] 

While embedding computer science education in a socially meaningful context has 

generally not been a priority for mainstream computer science educators, there have been 

notable exceptions in recent years, specifically in the areas of gaming, storytelling, and 

creative expression in digital media.  
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3.3.1 Programmatic Game Environments 

An increasing number of researchers have attempted to leverage gaming (especially 

multiplayer and/or collaborative games) to teach both STEM concepts44 and core computer 

science ideas. As Plass et al. [2007] state: 

Increasingly, video games are being investigated for their instructional 
applications. Dickey (2005), Gee (2003), Shaffer, Squire, Halverson, and 
Gee (2005) and Shaffer (2006), among others, have all suggested that video 
games are environments that allow for “thickly authentic” (Shaffer & 
Resnick, 1999) learning, or learning that enables students to acquire 
knowledge that is personally meaningful, has real-world application, and that 
is associated with practice, rather than rote memorization... Games may 
mend what Brown, Collins, and Duguid (1989) refer to as the “breach 
between learning and use” and, through practice and reflection, enable 
learners to make the connection “knowing what” and “knowing how”. 

A subset of these projects focus on game creation which (implicitly or explicitly) 

leverages constructionist theories, e.g., Hands, ToonTalk, Klik’N Play, StarLogo TNG, and 

Scratch. Similarly, a number of gaming environments have included programming as a 

central element of the play experience. The Alice45 project at CMU, for one, has shown 

notable results with this approach, especially regarding underrepresented populations, e.g., 

the poor, females, artistic and musically-oriented children, etc. [Kelleher and Pausch 2005] 

CMU’s Alice is a 3D programming environment that facilitates the creation of 

animations for storytelling, interactive games, and web videos. Alice is a freely available 

teaching tool intended as a student’s first exposure to object-oriented programming. It 

attempts to allow students to learn fundamental programming concepts in the context of 
                                                        
44 STEM refers to “Science, Technology, Engineering, and Mathematics”. The STEM 

Education Coalition works to support STEM programs for teachers and students at the U. S. 

Department of Education, the National Science Foundation, and other agencies that offer 

STEM related programs. See http://www.stemedcoalition.org/.  
45 See http://www.alice.org/. 
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creating animated movies and simple video games. In Alice, 3-D objects (e.g., people, 

animals, and vehicles) populate a virtual world and students create a program to animate the 

objects. In Alice’s interactive interface, students drag and drop graphic tiles to create a 

program, with instructions corresponding to standard statements in a production-oriented 

programming language like Java, C++, or C#.  

Figure 11: The Alice programming interface 

Alice allows students to visualize how their animated programs run, enabling them to more 

easily understand the relationship between programming statements and the behavior of 

objects in their animation. By manipulating the objects in their virtual world, it is hoped that 

students gain experience with the programming constructs typically taught in an introductory 

programming course. 
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A related project is Kelleher’s “Storytelling Alice”,46 which attempts specifically to 

attract girls to programming and computer science. Kelleher et al. [2007] describes 

Storytelling Alice as:  

[a] programming environment that gives middle school girls a positive first 
experience with computer programming. Rather than presenting 
programming as an end in itself, Storytelling Alice presents programming as 
a means to the end of storytelling, a motivating activity for a broad spectrum 
of middle school girls. The development of Storytelling Alice was informed 
by formative user testing with more than 250 middle school aged girls. To 
determine girls’ storytelling needs Storytelling Alice includes high-level 
animations that enable social interaction between characters, a gallery of 3D 
objects designed to spark story ideas, and a story-based tutorial presented 
using Stencils, a new tutorial interaction technique.  

 

The RAPUNSEL47 project takes a somewhat similar approach, attempting to teach 

programming concepts to underprivileged populations via a social gaming environment. The 

project is described as: 

a large multi-disciplinary collaboration aimed at designing and implementing 
an experimental game prototype to promote interest and competence in 
computer programming among middle-school aged girls, including girls from 
disadvantaged home environments. This three-year project includes a variety 
of interlinked components: engineering, pedagogy, interface, graphics, 
networking and more… In the current iteration of the game, each player logs 
onto and is assigned a home environment which houses a central character. 
Players are supposed to ‘teach’ these characters to move, dance, and behave 
in a variety of ways by programming them in a simplified variant of the Java 
language. In one scenario, for example, tying mastery of Java with game 
performance, players must program characters to perform increasingly 
complex dance behaviors which, according to the game’s narrative, increases 
the characters’ degree of satisfaction across a range of metrics, such as being 
allowed by a fearsome bouncer into a club, or excelling in a dance 
competition. The motivation for this narrative is its potential to serve as an 
attractive pedagogical medium for the target audience. [Flanagan et al. 2005] 

                                                        
46 http://www.alice.org/kelleher/storytelling/ 
47 See http://www.RAPUNSEL.org/; also Perlin et al. [2003] and Plass et al. [2007]. 
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Figure 12: The RAPUNSEL environment. 

An important component of both of the projects is the implementation of real-time 

(always-running) custom coding environments designed to minimize errors that are common 

among student programmers. While Alice uses a visual programming language in which 

“instructions correspond to standard statements in a production oriented programming 

language, such as Java, C++, and C#”,48 the RAPUNSEL project attempts to teach a 

“dialogue” of Java, thus maximizing students’ ease-of-transition to this commonly-used 

language. 

                                                        
48 See http://www.alice.org/index.php?page=what_is_alice/what_is_alice/. 
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There are two other game environments worth briefly mentioning: Squeak Etoys and 

Scratch. Squeak Etoys49 was inspired by LOGO, PARC-Smalltalk, Hypercard, and 

starLOGO. It is a media-rich authoring environment with a simple, powerful scripted object 

model for many kinds of objects created by end-users that runs on many platforms. It 

provides a unified user-interface and scripting environment for working with digital media. It 

includes 2D and 3D graphics, images, text, particles, presentations, web pages, videos, sound 

and MIDI, etc. It includes the ability to share desktops with other users in real-time, so many 

forms of immersive mentoring and play can be done over the Internet. It is multilingual, runs 

on more than 20 platforms bit-identically, and has been successfully used in the USA, 

Europe, South America (Brazil, Colombia, Argentina), Asia (Japan, Korea, India, Nepal), and 

elsewhere. It is free and open source, and can be downloaded for a number of platforms [Kay 

2005].  

Figure 13: The Squeak-Etoys environment. 

                                                        
49 See http://www.squeakland.org/. 

 



 

83 

Scratch50 is a graphical-programming environment intended to enable young people 

(ages 8 and up) to create their own interactive stories, games, and animations, and to share 

their creations on the web. Scratch is designed to make programming more tinkerable, more 

meaningful, and more social. Since Scratch was launched in May 2007, more than 300,000 

projects have been shared on the Scratch website, which has been called “the YouTube of 

interactive media.” As young people create and share Scratch projects, they learn to think 

creatively, reason systematically, and work collaboratively. Scratch is a project of the 

Lifelong Kindergarten group at the MIT Media Lab, directed by Mitchel Resnick. 

Figure 14: The Scratch environment. 

3.3.2 Digital Media Manipulation and Max/MSP 

Media and computation are complementary—digital media are 

computationally created and manipulated... students who are interested in 

working with digital media can look “under the hood” to see how their art, 

music and websites come to be. At the same time, a creative context for 

                                                        
50 See http://scratch.mit.edu/. 
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programming provides students with an interesting introductory computer 

science experience [Guzdial 2003]. 

Much like gaming, digital media manipulation has been proposed as a useful context 

for programming and computer science education [Guzdial 2003] as it is directly relevant to 

students’ lives. According to a 2005 study conducted by the Pew Internet and American Life 

project, more than one-half of all American teens, and 57 percent of teens who use the 

Internet, could be considered media creators [Jenkins 06]. Mark Guzdial, for one, has been a 

consistent proponent of this approach, which he refers to as ‘Media Computation’: 

The use of domain-specific contexts for computer science learning is being 
explored by researchers with the aim of improving students’ experiences in 
IT courses, we propose using this approach for introductory computer 
science. Because media computation focuses on data that is important to 
students—their own photographs, recordings, and creations—and allows 
them to use computation in a personally expressive way, we expect to better 
engage non-computer science majors than traditional introductory courses 
and, as a result, improve retention rates [Guzdial 2003]. 

He describes the goal of “Introduction to Media Computation”, a class he started at Georgia 

Institute of Technology in 2003, as: 

learning about the fundamentals of digital media with basic programming 
skills and computer science concepts. Media and computation are 
complementary—digital media are computationally created and manipulated. 
In the media computation course, students who are interested in working 
with digital media can look “under the hood” to see how their art, music and 
websites come to be. At the same time, a creative context for programming 
provides students with an interesting introductory computer science 
experience [Guzdial 2003]. 

While this course (in contrast to PDAL) is not open to CS majors, its goals are very 

similar, that is, to teach programming and computation within the context of digital media. 

Thus far, the course seems to have been quite successful:  
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The results have been dramatic. 120 students enrolled, 2/3 female, and only 
three students withdrew. By the end of the semester, the combined 
withdrawal, failure and D-grade rate had reached 11.5%--compared to 42.9% 
in the traditional introductory computer science course. 60% of the students 
who took media computation reported that they would be interested in taking 
an advanced version of the course; only 6% reported that they would 
otherwise be interested in taking more computer science. Results of the trial 
indicate that media computation motivates and engages an audience that is 
poorly served by traditional computer science courses [Guzdial 2003]. 

Success like that seen in Guzdial’s class has bolstered claims by those who have 

argued that the difficulty students have with learning computer science is in part due to its 

presentation. These critics51 have often concluded that a visually-oriented approach is 

superior, for a number of reasons: 

• It provides a concrete (visual) metaphor for computational processes. 

• It reflects the dominance of the visual in contemporary culture itself. 

• It provides immediate “all-at-once” feedback, in contrast to more temporally-oriented 

media like language or sound, thus providing more “bang-for-buck” from 

programming techniques (compare an image blur to a sentence blur). 

• The image is easily decomposed into atomic units (the pixel), which can then be 

modified and re-combined. In language it is difficult to make such distinctions. In 

various cases the atomic unit might be considered as the word, the letter, the 

phoneme, or syllable. 

• “Non-figurative” or abstract images are generally easier to process than non-

figurative language. Grammaticality and sense are less constrained in images. [Smith 

1975] 

                                                        
51 For an early instance of this argument, and an innovative system to address it, see the 

Pygmalion system [Smith 1975]. 
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Often such critiques have led to new programming and/or teaching paradigms based 

on visual metaphors52. However, this trend has not proven to be a panacea. While there is 

evidence that visual environments can make programming easier, it is less clear that students 

who use them learn an equivalent amount about core CS concepts. A good example of this 

discrepancy is the Max/MSP environment originally designed by Miller Puckette in the mid-

1980s.  

 

Figure 15: The Max/MSP environment. 

 

                                                        
52 Examples include Pygmalion, Alice, MAX/MSP, Scratch; even the now ubiquitous WIMP 

(windows, icons, menus, pointing-device) interface. 
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Max is a graphical, real-time, drag/drop programming system initially designed for music 

processing. Rather than writing scripts or procedures, students connect objects in a visual 

space according to a “patchbay” metaphor, where the output of one “box” is connected to the 

inputs of other boxes.  

While Max has proven to be a highly successful tool for practicing digital artists, it 

has had less success as a teaching tool. While students seem generally able to realize their 

ideas in the Max environment, prior exposure to Max seems to have little affect on a student’s 

capabilities with more traditional textual languages like C, Java, or Python, especially as 

relates to program structure. As one student commented, 

My previous experience with programming in art was through the lens of 
Max/MSP, a program that is both very closely linked with sonic art as well as 
very unlike other programming languages (if it can even truly be called a 
programming language). The biggest adjustment I had to make while 
creating works in Processing was changing the way I thought about time... 

Interestingly, “key” concepts found within most introductory computer science 

classes (for instance, variables and iteration) appear to be absent within Max (though they are 

actually just hidden). In fact, it is our experience that students with only a Max background 

seem to have more difficulty conceptualizing ideas like variables, iteration and operation 

order53, as they try to map them onto their prior experience, than students with no prior 

programming experience whatsoever. Thus the question arises of just how important concepts 

like variables and iteration actually are if practicing digital sound artists can implement the 

procedural processes that they need to while these concepts remain hidden. 

This question may be of particular importance to computer science educators as it 

suggests a potential reconsideration of what we consider “core” in the discipline. It would 
                                                        
53 Some operations in Max/MSP are ordered according to their position in the interface. 
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appear that, in the light of new environments like Max, we would either have to delay topics 

like variables and iteration (usually among the first taught), or we would have to abandon 

Max-like environments as teaching tools (to the degree that they obscure these concepts), at 

least as first-languages for students. On the other hand, first learning a “procedurally-oriented 

language” does not appear to cause an analogous slowdown for students learning Max. In fact 

it seems, perhaps surprisingly, to have little affect whatsoever, at least in our experience with 

students in the PDAL class. While there may be minor frustrations for students with 

traditional backgrounds (having learned a language like C or Java) who try to learn Max, 

when trying to set or get a simple variable, for example, these appear to pass quickly in most 

cases.  

3.4 Programming for Digital Art and Literature: the Teaching Environment. 

If I were going to take one pedagogical myth to task in this thread, it would 

be the “adding pictures makes it easier for non-techies” myth – this isn’t Fun 

with Dick and Jane we’re trying to learn and teach. In fact, there are a 

number of expressive things with text that can be done with Scheme that 

don’t involve higher math and still teach recursion, environments, scope, 

assignment, meta-circular evaluation and the like. -William Huber [in 

Mateas 2004] 

As a forum for engaging students with core programming concepts, Programming for 

Digital Art and Literature (PDAL) differs from the above approaches in several important 

respects. First is its use of the traditional text-based programming environment. In this respect 

it builds on the primary manner in which a vast majority of programming is currently done, 

both in academia and in industry. Although students using RiTa generally begin with 

“supportive” text editors, e.g., Processing or Eclipse, no such tools are required. RiTa, with or 

without Processing, can be written and compiled using a very basic text-editor and the 
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“javac” compiler. Further, as the primary representation of code is a plain text file, it is easy 

to share and adapt code to and from other textual languages, especially with other C-based 

languages, e.g., C/C++/C#/JavaScript, ActionScript, Ruby, and Perl. This fact goes a great 

distance toward both facilitating the adaptation of existing code and, more importantly, in 

maintaining transparency for the student. While there are always lower levels of code that 

may be temporarily obscured, the student can be confident that their tools are not performing 

some kind of magic to which they will never have access. Further, RiTa code looks like most 

of the other code students are likely to come across, which reinforces the idea that they are 

doing real programming. Finally, there is generally little difficulty for students as they 

migrate to other text-based languages in subsequent CS courses. 

To further illustrate this point, we can place the environments discussed thus far on a 

continuum; from Guzdial’s Media Computation class at Georgia Tech, which uses the Python 

language at one end, to the various classes at CMU and elsewhere that use the Alice 

environment, at the other. Python, as used in the Media Computation class, represents a 

general-purpose language with little specific support either for the arts in general, or for the 

specific exercises in the class. CMU’s Alice environment, on the other hand, is highly 

tailored to the course content, but less generalizable to programming in general. 

Although students using the Alice environment appear to explicitly learn core 

concepts (as opposed, for example, to those starting with Max/MSP), Alice does not provide 

a smooth transition path to “mainstream” languages, e.g., those used in business and research, 

or even in the arts. While it may be argued that this signals a problem with mainstream 

languages rather than a problem with visual drop interfaces like Alice or Max, the situation 

does not appear likely to change in the near future, and thus presents an added difficulty for 

students as they progress. Of course, the characterizations above are mostly anecdotal and 
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representative only of our experience with these environments in a classroom context. Further 

research is clearly needed to assess the affects of these different tools on the learning process, 

both within and beyond a student’s first few exposures. Some initial steps in this direction has 

been taken by Tew et al. [2005] in their comparison of three courses at Georgia Tech, and 

also in the evaluation of the RiTa tools presented in Chapter 5. One potentially useful 

experiment would be to teach the same material with a range of different toolsets (e.g., a 

general-purpose language, a RiTa-like approach, and a custom environment, e.g., Max or 

Alice) and compare student confidence, efficacy and comprehension of core concepts.  

3.4.1 Programming Languages in an Educational Context 

To continue our comparison, we might also consider the level at which a teaching 

language operates on a similar continuum. On the one side of such a continuum we would 

place highly specific environments, well-suited for a particular purpose. An example might 

be Adobe’s Photoshop, an image manipulation program with minimal programmatic 

capabilities (macros, actions, filters, etc.). It is highly optimized for its purpose and relatively 

intuitive for users, at least those familiar with the context. On the other hand, it is extremely 

difficult (if not impossible) to use in other contexts like sound or video manipulation, and as 

such, teaches little to users that can be generalized to other domains. Perhaps of more 

concern, at least in an arts context, is the way it narrows the range of possible outputs, so that 

artifacts produced tend to appear similar, and bear the “stamp” of the tool, as is often noted 

with various Photoshop filters54.  

                                                        
54 For an interesting take on this, see Adrian Ward’s Auto-Illustrator project (at 
http://www.mediaartnet.org/works/autoillustrator/), described in detail in Weiss [2009]. 
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On the other end of the spectrum we find general-purpose languages, like C, Python, 

or Java. When applied to a specific context, these languages tend to require a significant 

amount of scaffolding code before new users are able to accomplish even basic tasks (see the 

Java applet example in Technical chapter). While nearly all concepts are applicable across 

such general-purpose languages (learning one such language will generally decrease the time 

and difficulty to learn a second), these often prove frustrating for new students who wish to 

quickly translate their ideas into working programs. At the extreme end of this paradigm we 

might imagine Assembly language, or even a Turing machine. These formalizations are 

capable of computing just about anything one might imagine, but are so low-level as to be 

impractical for almost everything. As Mateas [2005] states:  

Any tools that reduces the friction for a certain class of programs, will 
dramatically increase the friction for other classes of programs. Thus, 
programming tools for artists, such as Flash, make a certain style of 
interactive animation easy to produce, while making other classes of 
programs difficult to impossible to produce. Every tool carries with it a 
specific worldview, opening one space of possibilities while closing off 
others. 

Guy Steele demonstrates this situation quite palpably in his paper, “On Growing a 

Language” [Steele 1998], in which he allows himself only to use words which are either 

“primitives” or those he has defined previously in the talk, mirroring the difficulty of using a 

language without adequate library support. He says: 

[w]e have to do this a lot when we write real computer programs: a thought 
that seems like a primitive in our minds turns out not to be a primitive in a 
programming language, and in each new program we must define it once 
more… This is the sort of thing that makes a computer look like a person 
who is but four years old. Next to English, all computer programming 
languages are small; as we write code, we must stop now and then to define 
some new term that we will need to use in more than one place. Some 
persons find that their programs have a few large chunks of code that do the 
“real work” plus a large pile of small bits of code that define new words, so 
to speak, to be used as if they were primitives… I hope that this talk brings 



 

92 

home to you… what it is like to have to program in that way... Each time I 
have tried this sort of thing, I have found that I can not say much at all 
till[sic] I take the time to define at least a few new terms. In other words, if 
you want to get far at all with a small language, you must first add to the 
small language to make a language that is more large [Steele 1998]. 

Steele, like others, advocates libraries as a solution to this problem, although he 

specifies that the libraries should be created by the community of users, rather than included 

as part of the original language [Steele 1998]. A language’s ability to facilitate growth and 

development in this way thus becomes a primary criterion for its adoption. This maps closely 

to the RiTa approach, in which library features are added in an ad-hoc manner as suggested 

by students and practicing artists using the tools on a day-to-day basis. Thus the library is 

extended in an organic fashion, not by imagining potential uses, but instead by reacting to the 

actual needs of users. In this way, the functionality of the system does not grow to become 

overwhelming (due to sheer size and variety of uses) to new users. This approach is based 

directly on the model used in the Processing community (in contrast to Java itself, which 

includes hundreds of supplementary libraries as part of its distribution), which has proven to 

be highly successful in generating an active community of users and developers, contributing, 

and extending libraries in this incremental, as-needed fashion. 

Another important way in which PDAL/RiTa differs from the other media-centric 

approaches discussed is its focus on language and literature. The use of natural language as a 

central element in digital media is potentially advantageous for a number of reasons.55 First 

we can consider the ways in which language, and specifically literature, has been of unique 

historical importance in computer science. As described further in Chapter 4 (Prior Work), 

natural synergies between the two fields have led to a range of important results in both. 

Secondly, the reflexively informing relationship between natural and programmatic 
                                                        
55 Though more research is required before this can be stated unequivocally. 
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languages can be quite productive. A focus on the former naturally and inevitably brings 

awareness of the unique (and sometimes arbitrary) properties of the latter, and vice versa 

[Howe and Soderman 2009]. As Stone [2002] describes, “[students] simultaneously get 

experience with central computer science ideas—data structures, unification, recursion and 

abstraction—and develop an effective starting point for their own subsequent projects.” 

For example, when first discussing ways of generating sentences with students, one 

of the first points that naturally arises is the distinction between context-free (programmatic) 

and context-sensitive (natural) languages. This key insight, which becomes quite tangible for 

students when presented with simple examples, opens immediately onto a host of important 

and central topics in computer science; from Turing machines, to Chomsky’s language 

hierarchy, to state machines and regular expressions, to parsers and compilers and so on. No 

matter how immediate the response to a compelling visual image created programmatically56, 

there is no such equivalence on a conceptual level when dealing with visual media. While one 

can imagine other ways of finessing this lack of conceptual relationship, what often happens 

is that media-based assignments and computer science concepts are addressed separately, and 

the motivation for learning the latter grows less clear.   

3.5 Pedagogically-inspired Design Considerations  

The above discussion of pedagogy in computer science (generally), and the 

pedagogical implications of using certain classroom tools and environments (specifically), 

highlights the importance of context in educational environments attempting to teach 

programming and computer science. This focus on context is an essential element of 

                                                        
56 Via a convolution filter, for example, as assigned in Guzdial’s “Media Computation” 

course. 
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constructivist-inspired pedagogy. Alison Tew [2008] describes context as “an application 

area for the content being learned that is familiar to and valued by the students in the course. 

A contextualized course applies its domain not only to projects, but to lectures, descriptions, 

examples, and assignments.” She notes further that a range of studies have shown the value of 

such motivating contexts for teaching introductory computing courses, citing researchers who 

have observed that teaching within a context provides a means to attract and retain students—

particularly those from underrepresented populations [Forte and Guzdial 2005]—and as a 

motivator for students to do work beyond that which is required [Forte and Guzdial 2004, 

[Kelleher 2006; Yarosh and Guzdial 2007], Furthermore, she describes how these effects 

appear to persist for both majors and non-majors, as well as for students at a range of 

institutions [Tew et al. 2005].  

While we have thus far highlighted both tools and context, it should be noted that 

their relationship is as important as are either of their properties in isolation. In the case of 

PDAL/RiTa, the degree to which tools and learning are tightly coupled has proven to be 

beneficial and allowed both to develop in a mutually informing fashion. Such a coupling 

implies a degree of communication, if not close collaboration, between those creating the 

tools and those developing the accompanying intellectual program. In this regard we were in 

the fortunate (and perhaps rare) position of having a great deal of control over the ongoing 

development of both the tools in question and the accompanying pedagogical material 

(readings, assignments, discussions, critiques, etc.). In several cases, specific materials were 

chosen to reflect important aspects of the technology being used. Perhaps more unusually— 

and more interestingly—were the cases when the converse occurred; that is, where software 

tools were modified and/or extended in response to intellectual concerns raised specifically in 
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relation to the context.57 Though the practicality of this situation may be questionable at 

larger scales, this should not prevent us from taking note of its benefits.58  

Rather than simply providing the functionalities necessary for successful navigation 

of a course (as in the case of the NLTK59), we were forced to carefully consider the ways in 

which the design of RiTa might foster or frustrate practices important to artistic practice. The 

result of this iterative process was a set of arts-specific design considerations that we 

attempted to embed within each of the modules created. A subset of these considerations are 

presented in the Technical: Design Considerations subsection, with a focus on those that 

differ from “traditional” software engineering practices.  

3.5.1 Supporting Serendipity  

Creativity is allowing yourself to make mistakes. Art is knowing which ones 

to keep. (Scott Adams) 

 

A painting is a series of corrected mistakes. (Robert Bissett) 

 

It was when I found out I could make mistakes that I knew I was on to 

something. (Ornette Coleman) 

 

Do not be afraid of errors. There are no errors. (Miles Davis) 

 
                                                        
57 For an extended discussion of the notion of authorship within digital literary art, see [Howe 

and Soderman 2009]. 
58 Custom tool integration in a specific pedagogical context also presents its own set of 

difficulties. The task of creating an instructional tool that specifically addresses any context 

(art-making in our case) complicates the design process by introducing a set of unique 

constraints which must be iteratively refined and tested.  
59 See [Bird and Loper 2002]. 
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Most of my advances were by mistake. You uncover what is when you get rid 

of what isn’t. (Buckminster Fuller) 

Often, as suggested by quotations above, an important element of the artistic process 

is unexpected or serendipitous outcomes that can take the programmer/artist in newly 

productive directions. Facilitating such outcomes is thus an important (and often overlooked) 

element of designing for the artistic context, whether in an academic or professional 

environments. Computer scientists tend to conceptualize the coding process as the (often 

difficult) process of correctly implementing a pre-existing idea in a concrete/formal language. 

For the traditional computer scientist, the targeted behavior of a program is generally known 

before coding begins. Thus, we see the emergence of methodologies like “test-driven-

development”, in which the tests of a program’s correctness are written before the program 

itself. While such an approach is useful and often appropriate in many contexts, it is, at least 

in some cases, the opposite of what is required for the arts. Artists often learn what it is they 

are making as they make it. As one student commented, 

I need to first articulate what I want to say, through my program, plan it out 
and answer the entire how, what, when and where questions of my project. 
At this stage nothing can be left to chance. Then comes the execution and 
implementation. And at this point even though we are ‘talking’ to a computer 
that only does what we tell it to do, we find that in the gap between what we 
want it to do and what we actually tell it to do (also what the computer does), 
there lies the act of the unexpected outcome so valued in the intuitive process 
of art making.  

Mistakes and accidents occur in artistic practice, as in more structured programming, 

but here they can often be highly productive, and thus warrant special attention from tool 

designers. In order to facilitate serendipity in its various manifestations (surprises, mistakes, 

chance), several specific features were included in the RiTa design: default non-determinism, 

soft-failure, and runtime exceptions, each discussed below. 
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In general practice, one wants a program to produce the same output each time it is 

run. While some algorithms may specifically use randomness (e.g., quicksort), this generally 

does not affect the output of the program. A correctly implemented randomized quicksort, for 

example, will return the same ordering each time it is run. Its randomness is intended only to 

optimize its performance. In fact, a whole class of algorithms, generally referred to as “Monte 

Carlo” methods60, after the casino in Monaco, exploit random operations to achieve 

deterministic outcomes61.  

To the contrary, non-deterministic outcomes are often an important part of programs 

written by artists. This is especially true in interactive and/or generative work, in which it is 

the very fact that each piece starts off at a different “place” that is often part of the appeal. 

More important however is the fact that non-determinism allows the programmer herself to 

traverse the “probability space” of a program during development, which can provide key 

indicators as to whether the piece will prove interesting to an audience. To support this 

possibility, iterators in RiTa are non-deterministic by default. If one asks for the set of 

synonyms for a word, for example, unless specified to the contrary, they will be returned each 

time in a different order. Further, since a range of RiTa methods allow the programmer to 

specify an optimal number of results (after which the method returns), these methods actually 

                                                        
60 Monte Carlo methods are a class of computational algorithms that rely on repeated random 

sampling to compute their results. Monte Carlo methods are often used when simulating 

physical and mathematical systems. Because of their reliance on repeated computation and 

random or pseudo-random numbers, Monte Carlo methods are most suited to calculation by a 

computer. Monte Carlo methods tend to be used when it is unfeasible or impossible to 

compute an exact result with a deterministic algorithm [Metropolis and Ulam, 1949].  
61 The name "Monte Carlo" was popularized by physics researchers Stanislaw Ulam, Enrico 

Fermi, John von Neumann, and Nicholas Metropolis, among others; the name is a reference 

to the Monte Carlo Casino in Monaco where Ulam's uncle would borrow money to gamble. 
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return different results each time. For example, if one is querying for rhymes in the lexicon, it 

is often useful to specify the minimum and/or maximum number of results desired; both to 

reduce processing time (when a great number of rhymes exist) and/or to allow the rhyme 

algorithm to relax its constraints (when too few are found)62.  

Additionally, to support discovery via unexpected results from programming errors, 

the RiTa toolkit has evolved toward what we call a “soft-failure” model This means that the 

library, wherever possible, attempts to present some result to the user, even in the case of 

“predictable” programming errors, such as when a resource does not exist at a specified 

location, or the pre/post constraints for a method are not met. Instead of quickly exiting, the 

library will attempt to generate some default behavior in such cases, while simultaneously 

printing an error report to the console to explain what is often unexpected behavior. Further, 

the library generates only “runtime” exceptions, which means that none of the user’s code 

needs to be wrapped in try/catch methods. This aligned nicely with both the Processing and 

Eclipse environments, which eliminate the distinction between the compile and execution 

steps. Processing presents only a “play” button, which first compiles, then runs the current 

program, while Eclipse performs continuous compilation, highlighting errors as they are 

typed. 

As one computer science student commented,  

For me, as a fairly experienced programmer... the coding I have previously 
done has had very strict rules about what I had to achieve, and the process 
was simply working on the code until it reached the constraints that had been 
set for me by someone else. The process of coding by happy accident, then, 
was something that I had never before experienced. The first or second week 

                                                        
62 It is also essential of course that such functionality can be easily disabled during debugging 

so that problematic behavior can be reproduced as necessary until it can be repaired.  
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of class, the piece we read about allowing yourself to make "good" mistakes 
really proved true in my experience. I found that trying something, and 
seeing what sort of effect it produces when I ran it, had a very strong 
influence on the ideas behind my projects. Each experiment communicated a 
different idea, and while I didn't always end up communicating what I had 
originally intended, I always found something interesting to say through the 
process of writing the code 

3.5.2 Supporting Artistic ‘Misuse’  

Throughout the late twentieth century and into the twenty- first, it became 

almost common to see performances that used some element of the 

manipulation, breaking, or destruction of sound mediation technologies… 

[Kelly 2009] 

Somewhat related to the support of serendipity via coding errors is the consideration 

of intentional “misuse” of tools for artistic affect. Instances of this tendency emerged as early 

as the first semester of teaching with RiTa. Later we recognized these instances as part of a 

larger pattern, hinting at an artistic strategy that we might want to facilitate (though at the 

time it was less than clear how to do so). One student, in a warm-up exercise in the first 

weeks of the semester, discovered a bug in the text-rendering module which caused text 

objects (RiTexts) to leave traces on the screen when their contents were swapped at high 

rates. Rather than report the bug and ask for a fix, as students generally did, this student built 

a unique project around the behavior. By beginning with a high rate of text change, then 

placing control of this parameter in the hands of the user (via mouse movement), the user 

could build up “traces” of previous renderings. If performed “correctly” by the user, a 

“hidden” message was revealed in the textual sediment. Another student, exploiting a 

threading issue that occurred when large numbers of RiSpeech objects were created in the 

same applet, was able to create a unique aural experience as diphones from a single word or 

phrase were pronounced in sequence by different voices with different timbres. In both cases, 
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interesting interactive works were built around specific unintended behaviors in the toolkit, 

behaviors that generally occurred with very low frequency.  

In his recent book on contemporary audio art, “Cracked Media”, Caleb Kelly [2009] 

discusses this phenomenon in some depth:  

the inquisitive artist, on finding a technology that is new to him or her—be it 
a newly developed tool just released into the market or an outmoded 
technology found in a dusty corner of the studio—sets out to see how it 
works and discover the boundaries and limitations of the device. What can 
this tool do, and how can I use it in a way that may not have been originally 
intended? This might be achieved by simple manipulation or modification 
(taking the technology apart and trying to put it back together), or it might be 
through overloading it or otherwise stretching its operating parameters, until 
it starts to fall apart or break down... There is nothing new in this idea: the 
painter who uses the brush handle on the canvas and the guitarist who plucks 
the strings around the head of the electric guitar are both engaged in a similar 
area of practice. Experimentation with readily available tools and resources is 
central to contemporary artistic practice… 

Of course such techniques are not limited to the realm of audio. Dating back to the mid-

twentieth century and beyond, digital artists of all genres have manipulated, cracked, and 

broken media technologies to produce novel artistic experiences.  

The question of how to support this artistic technique in the context of software, 

however, does not have a simple answer. One very basic (but rarely employed) technique is 

to provide continual public access to all versions of a software tool63, even those with 

already-identified issues. This ensures that projects leveraging such “cracks,” to use Kelly’s 

terminology [2009], can be further developed, even after the relevant defect has been fixed 

(as was the case in the RiTa examples mentioned above). Another, perhaps more productive 

                                                        
63 This has become a somewhat common practice in open-source projects, e.g., those hosted 

on Sourceforge. See http://sourceforge.net/. 
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strategy, is to attempt to code the software tool in such a way that it continues to function, 

even if in an unexpected way, in unexpected use-cases. If we model the possible execution 

paths of a program as a finite state machine, this entails special attention, and programming 

resources, to so-called fail-states. Rather than simply exiting with an error message, one must 

notify the user of the unexpected state, while still enabling the program to continue execution, 

often with some best guess as to reasonable default behavior. In the text-to-speech case 

above, it might appear acceptable to code the program in such a way that it simply exits (with 

a descriptive message) after some maximum number of speech objects are created. 

Unfortunately, this reasonable strategy would both have prevented the interesting outcome 

described above and prevented the discovery of the bug, which more than likely had other 

ramifications.  

Similarly, considerations of misuse compelled us to permit a very wide range of 

parameter values for all functions in RiTa, enabling users to experiment with an object by 

“overloading it or otherwise stretching its operating parameters” [Kelly 2009]. This means 

that for most applications, the edges of the range (say for text-to-speech voice parameters), 

are not accessed in typical use-cases. But for those interested in putting the system to 

unexpected uses, the fact that the larger parameter range is accessible can be quite productive. 

John Ippolito [2001], one of the earliest theorists to have acknowledged this type of artistic 

strategy, says: 

One of those myths is that creativity lies in applying the right tool for the 
right task—i.e., managing technology. Magazine editors, advertising execs, 
and Web site producers regularly employ “creatives” to spice up their 
products. The assumption behind this ludicrous adjective-turned-noun is that 
a creative person is simply a painter of pictures or a teller of stories—
especially one adept at Photoshop or AfterEffects. While managing 
technology is certainly a valuable skill—for artists and others—it’s not the 
same as creativity. When you manage technology well, you are simply 
carrying out the agenda of the designers of that technology. A composer who 
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uses a car to drive to the concert hall is managing technology. But when 
Laurie Anderson composed a drive-in concert of motorists beeping car horns, 
she was being creative. To misuse technology is not just to manage 
technology, but neither is it to mismanage technology. There’s nothing 
creative about broken links or glacial downloads. Misuse is deliberate. When 
[Nam Jun] Paik made a work for violin, he did not merely play it badly. In 
‘One for Violin Solo’ (1961), he raised the instrument slowly over his head 
and then brought it crashing down on a table, smashing it to smithereens. 
Mismanagement can sometimes be overlooked; misuse is unmistakable. 

As Ippolito recognizes, it is often the misuse of technology that allows for the discovery of 

affordances either invisible to the designer or in direct contradiction to their aims. Such 

unexpected affordances often become the special ingredient that turns a programmatic work 

into an “art” piece, rather than just a re-inscription of the technology designer’s intentions.  

3.5.3 Supporting ‘Inverted’ Use 

In the discussion of Design Tensions presented above (see section 2.2), we discussed 

the notion of crossover as manifested in students’ n-gram projects. In addition to presenting a 

technical challenge, this design tension helped to illuminate another case in which the arts 

context suggested practices that contradict those of generally employed in research. While the 

typical application of n-grams would be to find sentences that are most likely to occur, 

individuals engaged in literary art practice often desired the opposite, specifically the 

generation of relatively novel sentences, those that could logically occur, according to the 

constraints of the model, but were less likely to do so. In fact, as the size of the statistical 

models grew, ideal sentences were assigned an increasingly small probability for generation. 

Although this result was unexpected it makes a good deal of sense when we consider, for 

example, Ezra Pound’s exhortation for writers to always “make it new”. Further, as novelty is 

a central element in nearly all definitions of creativity [Sternberg 1999, Hewett et al. 2005], 

then what literary artists looks for is often what could, but has not yet, been written. This 

“inverted” use pattern proved to be a recurring theme when algorithms were borrowed from 
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existing areas of research for use in creative practice, a topic discussed again in the chapter 6. 

The question of how to support such use patterns is one that perhaps can only be addressed 

adequately by evaluating tools in areal-world contexts in which such uses can be manifest, 

and by trying to minimize, to whatever extent possible, assumptions about the “normal” uses 

for processes borrowed from other contexts. 

3.5.4 Supporting Micro-Iteration  

Almost as soon as we start to play with (and talk about) one prototype, we  
start to think about building the next. This process requires both the right 

tools (to support rapid development of new prototypes) and the right mindset 

(to be willing to throw out a prototype soon after creating it). [Resnick et al. 

2005]  

While rapid iteration is stressed in a range of software methodologies64, it is essential 

in an arts context, as functional requirements are not defined, but created anew in each 

iteration. Further, project cycles are generally shorter, especially in an educational context, 

(from a few days to a few hours) due to the relatively small size of teams (often a single 

programmer). University programs add still further time constraints, as many students are 

taking five or more classes simultaneously and a typical 14-week semester provides little time 

for a leisurely pace, especially as the first and last weeks are absorbed with introductory 

materials and final projects respectively. With these factors in mind, enabling what we called 

micro-iteration (rapid iteration on the order of seconds as opposed to minutes or hours) 

became an important design-constraint for the RiTa tools, without which the project-based 

format of the course would likely have been impossible.  

                                                        
64  “Extreme” and “Agile” methods (the latter uses the term “timebox”) generally target 

iteration cycles as short as 1-3 weeks. 
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As one insightful student commented, “this is how the creative process works. 

Sometimes you have an idea that's not all that great, but you still spend a lot of time having to 

discover that. The experience makes me want to perfect my creative process in general 

towards getting ideas realized (or at least conceptually tested for technical plausibility and 

personal investment) sooner rather than later.” 

To facilitate this goal, several additions were made to RiTa, most notably the addition 

of server-mode processing via the RiTaServer object65. The RiTaServer component allows 

students to debug, modify, and run their programs any number of times, without noticeable 

delay, no matter how many text files, databases, or models are required. Resource-loading 

and model-creation, in server-mode, are handled by the RiTaServer process, which runs in its 

own virtual machine (either locally or remotely). By adding a single line of code to an 

existing RiTa program, methods can be dispatched to the server process, via a custom remote 

invocation subsystem, and results returned with no perceptible overhead. 

Lazy instantiation of nearly all RiTa objects also serves to facilitate micro-iteration, 

as resources are only loaded when used. For example, while the core RiTa library contains a 

full English lexicon, it is only loaded (by default) when actually used during the run of a 

program. The same is true for the default RiTa fonts, Text-to-Speech samples, WordNet data 

files, statistical models, etc. Thus, each program only “pays”, in memory and processing-

time, for what it uses, while the library still supports a range of diverse use-cases, each of 

which is highly resource-efficient. 

                                                        
65 See Chapter 2 for a detailed description of this component.  
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3.5.5 Scaffolding and Transparency  

Constructivist approaches to education advocate situating learning in real-

world problems- but these problems are complex. Providing scaffolding 

allows learners to deal with a problem’s complexity and successfully solve 

and learn from these kinds of problems.  [Hmelo and Guzdial, 1996] 

Abstraction (generally via encapsulation) is an important part of tool design—in fact, 

it is often the primary reason for programmatic support tools in the first place—the 

abstracting away of implementation details that are either too difficult, too time-consuming, 

or not relevant to a particular problem. Similar techniques are often applied in pedagogical 

contexts, where they are generally referred to as scaffolding. Guzdial [1995] describes 

scaffolding as educational support structures designed “to enable students to achieve a 

process or goal which would not be possible without the support and... to facilitate learning to 

achieve without the support. Yet there are many ways of implementing scaffolding, each with 

specific benefits and costs that relate directly to the learning environment at hand.” He 

continues, “in an educational context it is important that we don’t confuse the ability to 

ignore certain concerns with the inability to access them at all.” Hmelo and Guzdial [1996] 

refer to this as the distinction between “black-box” and “glass-box” approaches to 

scaffolding: 

Black-box scaffolding is scaffolding that facilitates student performance. 
Black-box scaffolding performs a task in place of the student performing that 
performance goal, usually because learning to perform that goal is 
determined to be unimportant for the learning goals of the activity. Glass-box 
scaffolding is scaffolding that facilitates performance and learning. It is 
important for the student to understand what glass-box scaffolding is 
providing because we want the student to be able to take on the functions that 
the glass-box scaffolding is providing. 



 

106 

While facilitating “performance” (most often understood as “productivity”) is an 

important goal in an educational environment where the difficulty of very basic tasks can 

otherwise lead to mounting frustration, its costs can outweigh its benefits. When the 

scaffolding that enables such performance is invisible or opaque, it can confuse students as 

they encounter new concepts and cause them to perceive the often inaccessible lower levels 

as “magical”. Further, opaque tools and subsystems can serve to disempower, leaving 

students to perceive themselves only as increasingly advanced media-consumers, rather than 

creators. Yet at the same time, the mass of details that go into programming even a very 

simple sketch can be overwhelming to learners, especially so in some high-level languages, 

e.g., Java. Researchers like Hmelo and Guzdial [1996] have suggested various shades of 

“glass-box” scaffolding that provide support, but in a transparent fashion. With such an 

approach, students would to be able to ignore extraneous details whenever it is advantageous 

to do so, but still have relatively simple access to all of the layers below, should they progress 

to the point that they are curious as to the mechanisms at work in those layers.  

The RiTa tools attempt to provide such a glass-box environment in several ways. 

First, through the initial use of the Processing environment, a range of difficulties inherent to 

Java are immediately avoided: from path and classpath configuration; to separate compile and 

run steps; to the complexities of the ‘main()’ method; to the scoping details for classes, 

methods, and variables; to the distinction between static and non-static elements; all of which 

can be baffling to new users. In contrast, to run a simple Processing program (the ubiquitous 

“hello world”, for example) one simply types in ‘print(“hello world”);’, and pushes the ‘play’ 

button. Like Processing,66 RiTa is open-source, but in contrast, to further facilitate 

                                                        
66 At the time of this writing the Processing source code is available only via the Subversion 

(SVN) concurrent versioning system. 
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transparency, the source for RiTa is included with every download of the library. 

Additionally, multiple types of documentation are made available, including tutorials, a 

user’s guide, a simplified index of the most-used methods in the library, and a full javadoc-

style reference for more advanced users. Early on, as students are switching to the Eclipse 

environment, a tutorial is presented on linking to library source files, so that a single key 

press on a method name immediately takes one to its definition, down from RiTa, to 

Processing, to the core Java libraries themselves.  

3.6 Supporting Creativity: ‘Productivity’ and Beyond 

In its 2003 report, entitled ‘Beyond Productivity: Information Technology, 

Innovation and Creativity’, the National Academy of Sciences [Mitchell et al. 2003] states 

that: “software tools must not only be available, but they must be objects of critical 

reflection… Artists and designers can do more with IT if they become deeply conversant with 

its capabilities and limitations.” While it may be useful in the short run to provide students 

and artists with tools that accelerate their productivity, it will be far more transformative to 

teach them how to “think procedurally” in their practice. This is what inextricably links 

creativity support with both computational thinking and procedural literacy. Rather than 

simply accelerating the rate at which practitioners accomplish their traditional day-to-day 

tasks, CST researchers are beginning to provide artists with direct access to the power of 

procedural methods and computational practices.  

The analogy of the hungry man and the fishing instructor is apt in the case of classes 

designed both to teach core computer science concepts and engage the creativity of artists. 

Rather than giving away fish, we might instead teach people how to fish, or better yet, 

especially in the case of artists who have historically created a majority of their own tools, 
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help them learn how to build fishing rods of their own. In this way, they gain not only insight 

into the nature of fishing, but into the nature of mechanics, gravity, tension, fluid and aero-

dynamics, and physics itself. Facilitating this iterative model of understanding requires two 

rather simple steps: a) we need tools that can be critically examined by their users; and b) we 

need users with enough basic understanding of computational processes that such access will 

be rewarding. For the first, we need to create and disseminate tools that not only are open-

source, but that are transparent at multiple levels; with high-level descriptions and examples, 

careful documentation, and open access to all the layers of authoring that comprise the tool. 

For the second, we need to teach artists basic procedural literacy, without which no amount of 

transparency can be leveraged. RiTa attempts to be a tool that simultaneously addresses both 

of these objectives. 

3.6.1 RiTa in the Classroom  

Having designed and implemented the initial version of RiTa according to the above 

pedagogical constraints (supporting serendipity, inverted-use and misuse; scaffolding and 

transparency), our next task was to create a workshop-style context for a diverse group of 

students that supported our goals (to provide a test environment for RiTa, and to enable 

students to create art via computational methods while developing basic programming and 

computer science skills). Throughout this process, we attempted to maintain close links (see 

Tew [2005] above) between different elements of the course context: from overarching 

philosophy, to toolkit functionalities, to student assignments and projects, to supplementary 

reading materials, to reflective writing and thinking exercises. As concrete examples, we will 

look at two of the “mini-projects” assigned during the middle section of the course (these 

varied somewhat from section-to-section), following a range of introductory materials and 

preceding students’ larger final projects.  
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3.6.1.1 Assignment I: Context-free Grammars 

As mentioned briefly above, one of the first assignments each semester involved the 

use of context-free grammars, also called “recursive transition networks” in the literature on 

generation. To begin this mini-section, students were presented with a simple RiTa program 

that produced, in response to user input, a variety of haikus from a grammar. After some 

minimal explanation of the program code and basic grammar syntax, students were asked to 

modify the sketch in class to produce a work that was in some way personal and expressive. 

In addition to the textual material, students were asked to consider all material aspects of their 

piece (font, text-size, color, motion, etc.) as means for advancing the communicative potential 

of their work. The intent here was to facilitate students’ experimentation prior to their having 

a full understanding of the mechanisms at work in the grammar framework. 

As was the case throughout the workshop, this programmatic experiment was 

followed by four distinct but mutually-informing elements: readings, writings, discussion and 

critique. Readings for this assignment began with a brief introduction to the form of the haiku 

and several specific examples (both traditional and computer-generated). Additional readings 

were assigned (from Charles Hartman [1996], Selmer and Bringsjord [2000], and Funkhouser 

[2006], to the Dada Engine, by Andrew C. Bulhak [2009]) that discussed various grammar-

based text-generation strategies. Works utilizing these techniques67 were subsequently 

demonstrated and discussed in class. Additionally a number of related concepts were 

presented: Chomsky’s [1965] theory of universal grammars (and some counter-arguments68), 

center-embedding (to demonstrate the infinite nature of English sentences), and the idea of 

                                                        
67 Castigilia, Utterback and Wardrip Fruin’s “Talking Cure” [2002] 

(http://www.hyperfiction.org/talkingcure/index.html) is one such example. 
68 See [Everett 2005]. 
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recursive grammar rules. In a subsequent class, students were asked to present their programs 

as they would in a traditional art or writing workshop, picking and choosing versions of their 

output to present, and reflecting on the efficacy of the technique in their practice. As was the 

case throughout, each iteration of each project, with source code, was posted on the PDAL 

wiki for future review.  

As critiques progressed, certain technical frustrations emerged, often involving 

perceived technical limitations—e.g., “how can I make sure no lines repeat?”—which were 

then discussed during class time. More complex strategies for using context-free grammars 

(CFGs) were presented (employing the probabilistic rules in RiGrammar), as well as specific 

effects that could not be produced with CFGs, but instead required additional expressivity (as 

provided by the callback mechanism in the RiGrammar library). This led into a discussion of 

Chomsky’s language hierarchy and how (context-sensitive) human languages differed from 

(context-free) computer languages. 

Some more complex example grammars were discussed (nested parentheses as one 

example), and presentations on students’ completed mini-projects were scheduled for the 

following week. The example haiku sketch using RiGrammar was re-presented with both 

recursive and probabilistic rules to encourage experimentation and once again, students were 

advised to consider all aspects of their piece as means for achieving desired effects. 

Somewhat interestingly, a number of students seemed “hung-up” on the overloaded term 

“grammar”, thinking that the so-called “production rules” in their grammar should map 

directly to English grammar rules. To break this misconception, a short (~20 line) grammar-

based sketch was presented that recursively draws a tree-like structure (see screenshot in 

Figure 16), in a similar fashion to a Lindemayer System (or L-System.)  
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Figure 16: A simple L-System implemented via a (recursive) context-free grammar. 

By the following week, all students were able to produce working prototypes that not 

only demonstrated a basic understanding of the concepts, but also expressed, in some way, a 

personal style or voice. Each student presented their work for critique and was asked, as per 

standard practice in traditional creative writing workshops, not to explain their intentions 

until all other comments had been heard. Finally, students wrote in class about their 

experiences with grammars, after which followed a lively discussion in which several key 

concepts were quickly raised, most notably layering and authorial intent.69 Regarding the 

former, it seemed evident, following the presentations, that multiple layers of “text” existed 

in all of the presented works.  

                                                        
69 A full discussion of these topics is beyond the scope of this work. For more information see 

[Howe and Soderman, 2009] . 
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One technical feature that enabled this realization was the fact that the source code 

and grammar files were published (by default) along with the finished piece. As such, 

students were able to easily read at two additional levels below the “surface” (the program’s 

runtime output) during critiques. In fact it seemed that students naturally perceived the 

authored text to be some amalgam of the three layers they had written (surface, grammar, and 

code) rather than simply the “output” to the screen which varied from run to run of the 

programs. Further, when questioned, students seemed to feel that all the software tools 

employed in the process: RiTa, Processing, Java, the browser, and even the operating system, 

could be conceived as potential texts for analysis and artistic critique. According to student 

assessments of the experience, each tool contributed to the final output in varying degrees, 

generally contingent on the tool’s distance from the surface, or conversely, their distance 

from the binary machine code: 

Theoretically the grammar exists independently as a piece of writing which, 
like most language on a page, does nothing, but I know when I look at a 
grammar file [I know[ that it has a programmatic counterpart. It goes 
somewhere; it does something; it will change based on a set of rules it 
defines. Which is to say, I don’t know how I feel when I look at a grammar. I 
consider it to be part of the text of a piece, but I also can’t separate it from its 
use value, which is not to say it’s an inferior piece of writing, just that I’m 
not sure how to categorize it or interpret it as itself. For me it opens a door 
into thinking about what poems I may write as a combination both of 
variables I can control and those I can’t; that if they’re planned-out in certain 
ways, and trusting to some larger structure I didn’t contribute to in others, 
they may do work I never anticipated. 

The other important issue that emerged in the context of this assignment was the 

tension between so-called “randomness” and authorial intent. Here the question of delegating 

the author’s “choice” to the computer seemed of specific concern to writers, while those self-

identifying as artists in the class seemed to accept this as a matter of course (perhaps due to 
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the fact that process-based work has been a central idea in visual and aural media for some 

time. 

Interestingly however, writers cited a freeing aspect to this “loss” of control, 

specifically some version of plausible deniability that enabled them to take more risks in their 

writing than they might have otherwise: 

The poetics of randomness fascinate me. I felt that I really wanted to 
give away the power I have as an author to the computer. [PDAL 
student, 2008] 

and 

I felt free when I was writing my grammar, freer than I’ve felt in 
writing anything for a while, because I knew it wasn’t going to 
appear in the order I wrote it. [PDAL student, 2007] 

The general argument here appears to be that because the computer has, in some 

sense, made the choices (e.g., the grammar probabilistically chooses between the various 

right-hand rules for a production,) the writer is somehow less responsible when a 

uninteresting word combination was generated, and the writer is thus able to blame the 

computer’s “choice” rather than some inherent failing in themselves. 

Further, students made the interesting point that they tended to write words or 

phrases rule-by-rule, rather than imagining and writing for a complete output sequence. So, 

because of their natural tendency to make associations with the surrounding text when 

writing, there was a specific writerly level present in the grammars, but often absent from the 

text itself. In this light, close readings of the grammars themselves proved interesting, as if 

the set of possible lexical choices for each rule constituted a self-contained poem. Below 

follows an excerpt from one student’s grammar file (the ‘|’ symbols signify OR,) so that for 

any run of the piece, only one of the lines below would appear, yet relationships between the 
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lines are clear, and at times, quite interesting, a fact often remarked upon by those students 

with a background in art, literary or media theory. 

and how he came to know the truth | 

is a dubious gesture, and one not to be trusted | 

as the boys’ voices reached down through the floorboards | 

douglas fir we think, though we can’t be sure | 

in concentric circles | with a passion typified by adolescent lust | 

and if it rang, did we pick it up? | they knew each other almost certainly | 

if the door had opened, it would have showed something completely... 

As one student commented,  

The enjoyment and generativity is to be found in the unexpected matches 
between words and phrases, between things I would have never thought to 
put together, but which manage to make a kind of sense beyond themselves. I 
like the idea of a piece of writing creating its own meaning; it means I don’t 
have to try to do it. I can write in a field as opposed to writing with a 
perceived trajectory. 

3.6.1.2 Assignment II: Language Models 

As an introduction to the statistical approaches that have become so popular in recent 

natural language research, PDAL students were asked to do a mini-project that employed 

some type of probabilistic language model. To provide some brief background, a language 

model can be described as a statistical model used to analyze or generate elements of a text 

via previously learned probabilities. The term originated from the probabilistic models of 

language generation developed for automatic speech recognition systems in the early 1980’s 

[Jelinek 1997]. The history of language models, however, goes back to beginning of the 

twentieth century, when Andrei Markov used language models to model letter sequences in 

works of Russian literature (see Chapter 4, Prior Work). Another famous application of this 

technique, also discussed in the prior work chapter, was Claude Shannon’s models of letter 
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sequences and word sequences, which he employed to create the theoretical foundations of 

information theory [Shannon 1949]. In the 1990’s, language models were applied as a general 

tool for a range of natural language processing applications, including part-of-speech tagging, 

machine translation, and optical character recognition (OCR) and have since become 

increasingly popular in a range of information retrieval research [Hiemstra 2009]. 

N-grams (also referred to as Markov chains, after Andrei Markov mentioned above) 

are an example of a specific type of statistical model in which the next item in a sequence is 

predicted based upon the frequency of that sequence in a set of inputs (see Prior Work for 

examples). For example, we might estimate the probability of a given sequence of letters, 

words, or phrases given the probabilities of that sequence appearing in a specific input set, 

e.g., the New York Times articles for the year, or the poetry of Emily Dickinson. The ‘n’ in 

n-grams refers to the number of words in each sequence that is considered as part of our 

estimate. If n=1 we have a unigram model in which the probabilities of a single letter, for 

example, are estimated based solely on the frequency of that letter in the input. In a bigram 

model, where n=2, we would estimate the likelihood of a specific two-letter sequence, “Qu” 

for example, based on its frequency in the input as compared to all other two-letter sequences 

in the input. In contrast to the grammars mentioned in the previous section, statistical 

approaches like n-grams tend to require less knowledge of the specific languages and texts 

involved. In the grammars mentioned above, all rules (for syntax, morphology, semantics, 

etc.) must be created by the author, but in statistical approaches, these rules are represented 

“implicitly” in the model.  

This presents an interesting tradeoff between the two paradigms. With statistical 

models, relatively little prior knowledge of the genre is required in the creation of a model, 

while a “deep” understanding of the structure of the texts in question is generally needed to 
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construct a convincing grammar for it. Statistical models tend to work best with large 

amounts of textual input, as the statistical properties grow stronger (to a point) with a larger 

input set. Grammars, on the other hand can be represented compactly and require no external 

input set for operation, a fact that recommends them for web-based projects, at least prior to 

the addition of the RiTaServer module. Further, the two approaches differ in the fact that after 

creating a “successful” grammar, according to whatever definition one might use, one is often 

then in a position to generalize about the genre that is being examined. If the generated 

outputs are representative of the genre, then the grammar has generally captured some, if not 

all, of the relevant rules on which that genre operates. On the other hand, the success of a 

statistical model tends to tell us more about the particular statistical approach (and possibly 

the chosen input texts) than anything about the genre in question.  

From a pedagogical perspective this is an important distinction. While grammars may 

require more knowledge and more effort to create, they tend to result in more post-process 

knowledge about the type of language under examination. Statistical models, on the other 

hand, require less overhead, tend to generate more “surprising” results, and teach students 

more about the “process” (statistical analysis) than the “product” text, which may or may not 

represent some existing genre. In the context of PDAL and RiTa, both approaches are 

important, and further, they shed light upon one another, especially when presented back-to-

back, as was generally the case in the class. Lastly, they served as a conceptual link into a 

deeper understanding of the history of artificial intelligence, illustrating the historical 

distinction between “neat” and “scruffy” approaches [Wardrip-Fruin 2006] that has long been 

a subject of debate in the field. Of course the ideal approach is often, depending on the 

project, a mix of the neat and the scruffy. This avenue is made easily available through the 
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RiTa tools as when, for example, grammars make calls to statistical models to generate some 

text item that obeys both the grammatical specification and the statistical distributions.  

While PDAL students were required to create a project employing some type of 

probabilistic language model, it was left to each student to decide what type of model to use. 

The RiTa toolkit provides a range of objects that leverage probabilistic techniques, including 

n-gram-based generators (RiMarkov), Keyword-In-Context models (RiKWICker), and 

“maximum entropy” parsers and taggers (RiPosTagger, RiChunker and RiParser.) However, 

as n-grams featured prominently in one of the course texts, Charles Hartman’s Virtual Muse, 

they (with support via the RiMarkov object) were chosen by a majority of students for their 

projects. As was customary, the topic was presented with a range of reading, coding, writing 

and critiquing exercises. The primary readings for this section were Hartman’s Virtual Muse 

and Eric Elshtain’s writings on the Gnoetry engine [Elshtain 2006]. One of the unique 

contributions of the former text is its rigorous discussion of n -gram-based generation in a 

literary context, which Hartman used extensively in his work Monologues of Soul and Body. 

Elshtain’s text presents an interesting set of extensions to the basic n-gram technique. 

In addition to this reading, several artworks employing n-grams were presented and 

critiqued, including ‘Talking Cure’ [Castigilia et al. 2002], and several of the poetic texts 

generated using Elshtain’s Gnoetry70 engine. The introduction began with a very simple 

sketch (see Appendix: Examples) that generated new texts from a combined set of 

Wittgenstein and Kafka pieces, allowing users to interactively experiment with different n 

values and immediately see the affect on the output. In response to questions concerning the 

working of the program, a very basic introduction/review of probability was presented and 

                                                        
70 For more information, visit the Gnoetry Engine at 

http://www.beardofbees.com/gnoetry.html. 



 

118 

students directed to create a similar “mash-up” of their own to be performed in the 

subsequent class. In the following class, students presented their programs to the class for 

critique. A discussion ensued about limitations of the approach and additional features of the 

RiTa tools were presented for those who had not discovered them on their own, either via the 

examples or documentation. These included weighting of inputs, constraints on repetition, 

custom tokenization, feature compression (case, synonyms, etc.), and the literary extension 

methods discussed in the technical section, (e.g., getCompletions(), getProbabilities(), and 

getProbabilityMap()), which allow for some degree of interactive control of the model during 

generation. In addition, several hybrid approaches were presented, including the use of 

RiMarkov on other features (provided by the RiAnalyzer) such as Part-of-Speech. Another 

approach was the combined use of a grammar for higher-level structures (e.g., section, 

paragraph or even sentence) with the use of the statistical models for lower-level tasks, such 

as word-selection, and semantic consistency. Several interesting (and publishable) projects 

resulted from this set of work, including a full-scale dramatic play generator complete with 

lighting and stage directions, etc. (see Appendix: Student Project Gallery). 

Concurrently, students were given a coding assignment to build a letter-level 

concordance for an input text (presented alternatively as a unigram model, or a n-gram model 

with n=1). This assignment led naturally into a first lesson on data structures, as students 

quickly realized that to store the information required, some type of dictionary-like structure 

would be required. In this dictionary, given some “key” (often a single letter), one could 

obtain the number of times it appeared in the input, without scanning the input each time. The 

pros and cons of various approaches were discussed, from Lists, to Hashtables, to Arrays 

indexed on character code, in terms of both efficiency and storage space. By the end of the 

session, most students seemed comfortable with the assignment itself, and, more importantly, 



 

119 

with evaluating (at least at a very basic level) the different data representation alternatives, a 

central topic in many introductory computer science courses. Further, this discussion was 

motivated directly by the materials and problems of the given context (creative text 

generation) rather that by an abstract problem designed to match the topic to be taught. 

Lastly, a maximum entropy approach, as represented in the tagging, chunking, and 

parsing components of RiTa was presented. Although not all students possessed the required 

mathematical experience for full comprehension, it was a clear “next step” after the previous 

assignment, especially in the case of those students intending to continue on to further 

computer science courses. As was generally the case with RiTa tools, there were (at least) 

two levels of understanding which enabled use of the tools: a base level concerning what the 

various methods could do, and a deeper understanding of the inner workings of the 

components (always available for inspection). While the latter allowed users to take full 

advantage of the functionalities and extensions in the RiTa objects, it was not required for 

those wishing to make only simple use of the tools. One of the part-of-speech taggers 

included with RiTa used a maximum entropy approach71 and was presented as an example for 

this section. Not only was part-of-speech tagging an easily understood example, it led (as 

soon as substitutions were attempted) directly into chunking, where students wished to 

replace noun-phrases rather than simple nouns. This led into a discussion of parse-trees and 

strategies for parsing (bottom-up, top-down, chart-strategies, etc.) and additionally made 

clear the presence of recursive syntactic structures, e.g. noun-phrases containing other noun-

phrases, and the need for (in some cases) a full-fledged parser (RiParser) rather than a simple 

chunker (RiChunker). The presence of such structures initiated a discussion of recursion 

                                                        
71 The other was a faster, but less accurate, transformation-based tagger following Brill 

[1992].  
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itself, and a few simple recursive algorithms were presented in combination with a more 

general presentation of the kind of problem for which a recursive solution is recommended, 

e.g., one containing sub-problems with a similar structure to the initial problem. Rather than 

the typical Fibonacci or Factorization examples, recursively structured English sentences 

were presented as examples. 

3.6.1.3 Integrating Computational Thinking 

In the assignments above we can see how, in addition to the “artistic” elements 

required to make a compelling work of digital art, an impressive range of core computational 

ideas arise naturally as a result of the material at hand. Through just the two relatively simple 

examples presented above, grammars and n-grams, the student will have been introduced to 

an impressive number of key computer science concepts, many of which likely to be taught in 

an introductory CS sequence; from finite-state automata to context-free grammars and the 

language hierarchy; from elementary data structures to hashtables, to the construction of 

parse trees; from regular expressions to recursion. Rather than appearing to students as 

arbitrary additions to the “real” topic at hand, the relevance of these ideas is immediately 

apparent in a course that focuses on creative language-driven programming projects. 

3.6.2 Final Student Projects in PDAL 

Typically, final projects involved both novel combinations of existing RiTa 

components and the creation of custom code to extend or augment existing functionality. In 

several cases, such extensions have been added to the core RiTa library, with authors 

receiving credit on the RiTa website. Because RiTa provides a core subset of the potentially 

daunting infrastructure generally required for language-based artworks, students are 

comparatively free to explore a variety of topics through both individual and collaborative 
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projects and encouraged to focus on those aspects of their work they find most engaging.72 

Further, the open and community-oriented nature of the programming environment provided 

students with a sense that their projects were meaningful contributions, both to other RiTa 

users and to the larger digital art community, as opposed to just “exercises”. Several students 

in the courses expressed interest in incorporating elements of their projects back into the 

library, while others exhibited and published their projects in well-respected galleries and 

journals for digital literature. Still others expressed interest in creating their own libraries to 

support creativity for specific domains. RiTa itself (the code for which was often discussed in 

class) provided a helpful example in these cases of what such a library might look like, with 

well thought-out interfaces, clean code structure, and thorough documentation. 

In addition to source code and functioning programs, careful documentation of all 

aspects of students’ process was stressed, both as a method to evaluate their development in a 

critical/reflective manner, and to provide examples and resources for others in the 

RiTa/Processing community. Finally, in the last meeting of each semester, students presented 

their work in a live setting to a larger audience of practicing artists, researchers and educators. 

Both the breadth and depth of these projects has been astonishing and is discussed further in 

Chapter 5 (Evaluation) as one measure of the tools ability to support a wide range of creative 

work. For those interested, several dozen of these projects are available in the project gallery 

located on the RiTa website at http://www.rednoise.org/rita/rita_gallery.htm. 

 

 

                                                        
72 See the Chapter 5: Evaluation, for a further discussion of this claim. 
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CHAPTER 4: PRIOR WORK 

4.1 Introduction 

This chapter presents a summary of prior work that has influenced the theorization, 

design, implementation, and deployment of the RiTa toolkit. While the range of this work is 

broad, this is due to the fact that little, if any, existing research has targeted our specific goals 

With this in mind, we focus here on related research and practice whose goals overlap with at 

least one of the explicit goals of this project, as laid out in the introduction. While the brief 

discussion of prior work in the opening chapter present the current state of creativity support 

for the literary arts, this work in this section represents more direct influences on our 

research, and falls into the following primary categories: 

• Programmatic Educational Environments  

o for Natural-Language Processing (NLTK, SimpleNLG, etc.) 

o for Procedural Literacy and Interactive Art (Processing, Max/MSP, etc.) 

• Computer Science and Literary Art (Strachey, Shannon, Weizenbaum, Bringsjord) 

• Computationally-augmented Literary Experiments: Tools and Practice 

For reasons of economy, several areas of active research relating only tangentially to RiTa, 

specifically tools for interactive fiction (e.g. Inform or Curveship), games with narrative 

and/or conversational elements (e.g. Facade), non-programmatic support tools (e.g. script-

writing aids like Dramatica, argumentative-writing aids like Euclid, and collaborative writing 

tools like EtherPad), are not addressed here, though pointers to resources on these topics have 

been included where applicable. 
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4.2 Programmatic Educational Environments  

Computer Science (CS) researchers have created a wide range of programmatic 

libraries that attempt to aggregate the range of tasks required to perform high-level natural 

language research. Recent years have also seen some interest in adapting this approach to the 

classroom, by providing tools that specifically address pedagogical issues that arise as new 

computer science students attempt to work with natural language. Similarly there has been 

impressive growth in both the number and quality of libraries and environments designed 

specifically for computational artists. As the RiTa toolkit bridges these two research areas, 

this section presents a review of important works in each that have informed our approach. 

4.2.1 For Natural Language Processing 

As one might expect, there is significant overlap in the functionality required for 

computational literature and those designed for Natural Language Processing (NLP) and/or 

Natural Language Generation (NLG). Over the years, a number of general-purpose NLP 

toolkits have been created for research purposes including the CMU-Cambridge Statistical 

Language Modeling Toolkit [Clarkson and Rosenfeld 1997], the EMU Speech Database 

System [Harrington and Cassidy 1999], the General Architecture for Text Engineering 

(GATE) [Bontcheva et al., 2002], the Maxent Package for Maximum Entropy Models 

(Baldridge et al., 2002b), the Annotation Graph Toolkit (AGT) [Maeda et al. 2001], and 

MontyLingua [Liu 2004]. Although some of these resources have educational applications 

and have been used in teaching, their development has not been motivated primarily by 

pedagogical needs or requirements. On the other hand, there have been several toolkits, 

designed with less experienced users and/or students in mind, that directly address 

educational concerns. While not directed at either an art or literary context, or (with the 

exception of SimpleNLG) even generation specifically, these tools have at least indirectly 
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informed the development of RiTa, and as such warrant at least brief coverage here. 

Specifically we will look at two below: the Natural Language Tool Kit (or NLTK) by Loper 

and Bird, and the SimpleNLG package by Ehud Reiter. 

4.2.1.1 NLTK 

The Natural Language ToolKit (or NTLK) was designed by Edward Loper and 

Steven Bird as an end-to-end solution for new students in the field of Natural Language 

Processing. The first paper on the NTLK was published in 2002 and provides the following 

description: 

NLTK, the Natural Language Toolkit, is a suite of open source program 
modules, tutorials and problem sets, providing ready-to-use computational 
linguistics courseware. NLTK covers symbolic and statistical natural 
language processing, and is interfaced to annotated corpora. Students 
augment and replace existing components, learn structured programming by 
example, and manipulate sophisticated models from the outset. [Bird and 
Loper, 2002] 

In its first iteration, the NLTK, implemented as a command line tool written in 

Python, provided modules for the following tasks: Parsing, Chunking, Tagging, Finite State 

Automata, Type Checking, Visualization, and Text Classification. While the functionality of 

the NLTK overlaps only slightly with that of RiTa, its emphasis on pedagogical concerns, 

specifically the difficulties inherent in teaching language processing to new students in a 

classroom context is directly relevant. See Figure 17 below for a detailed comparison of the 

various components and functionalities. 

In fact, several of the design considerations listed in chapter two were first discovered 

and/or confirmed in the NLTK research. Although none of these can be claimed to have 

originated with the authors of the NLTK (or RiTa), the two do share the following explicit 

design requirements: Ease of Use, Consistency, Extensibility, Documentation, Simplicity, 
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Modularity, Comprehensiveness, and Efficiency. Additionally, the NLTK authors’ concern 

with in-class demonstration, open-source deployment, exhaustive documentation, and online 

tutorials all provided inspiration for the development of RiTa.  

4.2.1.2 SimpleNLG 

The SimpleNLG package, written by Ehud Reiter, was developed contemporaneously 

with RiTa and focused on providing a simple interface for a range of Natural Language 

Generation (NLG) tasks. The website73 provides the following information: “SimpleNLG is a 

simple Java class library which does basic NLG lexicalisation and realisation; it is primarily 

designed for data-to-text applications.”  

Reiter [2009] describes the system as:  

“[A] realisation engine which grew out of recent experiences in building 
large-scale data-to-text NL G systems, whose goal is to summarise large 
volumes of numeric and symbolic data (Reiter, 2007). Sublanguage 
requirements and efficiency are important considerations in such systems. 
Although meeting these requirements was the initial motivation behind 
SimpleNLG, it has since been developed into an engine with significant 
coverage of English syntax and morphology, while at the same time 
providing a simple AP I that offers users direct programmatic control over 
the realisation process” [Reiter, 09] 

Here, as with the NLTK, there are a few areas of overlap between the realization 

process employed in SimpleNLG and the core RiTa functionality, specifically stemming, 

noun-pluralization, and verb conjugation. In fact, verb-conjugation and noun-pluralization in 

both packages use the often cited morphological rules specified in Minnen [2001]. Like RiTa, 

SimpleNLG places all functions in users' direct programmatic control, and appears to place 

high-importance on documentation and tutorials, as does the NLTK. Reiter says that 

                                                        
73 http://www.csd.abdn.ac.uk/~ereiter/simplenlg/ 
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the simplicity of use of SimpleNLG is reflected in its community of users. 
The currently available public distribution, has been used by several groups 
for three main purposes: (a) as a front-end to NLG systems in projects where 
realisation is not the primary research focus; (b) as a simple natural language 
component in user interfaces for other kinds of systems, by researchers who 
do not work in NLG proper; (c) as a teaching tool in advanced undergraduate 
and postgraduate courses on Natural Language Processing. [Reiter, 09] 

Further, as perhaps expected from its name, the syntax is both simple and consistent, 

with most method calls exposed as setters, e.g., setSubject() or setInterrogative() as below: 

Phrase s1 = new SPhraseSpec(‘leave’); 

s1.setTense(PAST); 

s1.setObject(new NPPhraseSpec(‘the’, ‘house’)); 

 

Phrase s2 = new StringPhraseSpec(‘the boys’); 

s1.setSubject(s2); 

s1.setInterrogative(true); 

 

// OUTPUTS -> ‘Did the boys leave home?’ 

 

s1.setInterrogative(WHERE, OBJECT); 

 

// OUTPUTS -> ‘Where did the boys leave?’ 

 

While SimpleNLG represents a useful solution to the specific tasks for which it was 

designed, there are limitations one notices when it is applied to a literary context. First, 

employing a so-called “pipeline” architecture, it requires all parts of a sentence to be known 

before realization, as opposed to the varieties of ‘incremental’ generation allowed by other 

systems [Manurung 2003]. The standard pipeline architecture (as presented in Reiter and 

Dale) presents other problems for the realm of literature. Its limitations become apparent in 
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applications that include specific goals for the resulting surface text, from the inclusion of 

specific literary features, to the inclusion of idiomatic constructions, even to aiming toward a 

particular phrase, paragraph, or document length. Manurung [2003], summarizes the issue by 

describing how the elements of text generation are, in the case of poetry, not independent at 

all:  

Making choices in one aspect can preclude the possibility of choices in other 
aspects. When these decisions are made by the separate modules in the 
pipeline architecture ... the resulting texts may be suboptimal, and in the 
worst case, the system may fail to generate a text at all. This problem has 
been identified in Meteer (1991) as the 'generation gap', in Kantrowitz and 
Bates (1992) as 'talking oneself into a corner', and also in Eddy (2002), who 
notes that it is not easy to determine what effect a decision taken at an early 
stage in the pipeline will have at the surface, and decisions taken at one stage 
may preclude at a later stage a choice which results in a more desirable 
surface form. 

Additionally, SimpleNLG provides no support for custom features or constraints— 

literary or otherwise—at the level of the phrase or sentence. Thus, the realization of a 

sentence in which formal and semantic elements are intended to receive equal weight in 

choosing a final surface realization can be problematic. In fairness however, we should note 

again that this is not a use for which SimpleNLG was intended. 

4.2.2 For Computational Art 

In recent years there has been impressive growth in both the number and quality of 

libraries and environments designed specifically for computational artists. While once artists 

and art students were forced to work either in medium-specific tools (e.g. Photoshop or 

ProTools) which are only very minimally programmatic, or so-called “general-purpose” 

languages (e.g., C/C++ or Basic), which provide little specific support for art practice, they 

are now faced with a wide range of languages, libraries, and environments designed 

specifically for the art context. While none of those listed below target the domain of 
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literature or even language processing—nearly all target visual media, and if not visual, then 

aural media—their approach to providing programmatic supports for the arts has directly 

influenced the development of the RiTa tools to varying degrees. Tools that have been 

peripherally important to RiTa have been included in the comparison table below for the 

purpose of presenting an overview of the domain. The most direct influence, however, has 

been from the Processing environment, with which RiTa optionally integrates, and which is 

discussed in detail below.  

4.2.2.1 The Processing Environment 

Processing is an open-source programming library, development environment, and 

online community that has promoted software literacy within the visual arts since 2001. 

Initially created to serve as a software sketchbook and to teach fundamentals of computer 

programming within a visual context, Processing quickly developed into a tool for creating 

finished professional work as well. It is used by students, artists, designers, researchers, and 

hobbyists for learning, prototyping, and production. It was created to teach fundamentals of 

computer programming within a visual context and to serve as a software sketchbook and 

professional production tool for programming images, animation, and interactions. 

Processing is a free alternative to proprietary software tools with expensive licenses, 

making it accessible to schools and individual students. Its open-source status encourages the 

community participation and collaboration that is vital to its growth. Contributors share 

programs, contribute code, answer questions in the discussion forum, and build libraries to 

extend the possibilities of the software. The Processing community has written over seventy 

libraries to facilitate computer vision, data visualization, music, networking, and electronics. 

Processing was founded by Ben Fry and Casey Reas in 2001 while both were John Maeda's 
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students at the MIT Media Lab and was developed as a direct descendant of Maeda's “Design 

By Numbers” language [Maeda 2001]. 

Like Processing itself, which can be used directly as a Java library, RiTa is only 

loosely coupled with the Processing environment. It can be used with or without the 

Processing IDE and libraries.74 Both the Processing libraries and development environment 

have been integral elements in the practical implementation of the PDAL class, and in the 

development of the RiTa tools. Having offered a discussion in this section of current tools 

available to students and programmers, the next section will present a chronological survey of 

procedural writing methods, experiments, and tools in the contexts of both computer science 

and Literary Arts. 

                                                        
74 The one exception is the text display capabilities of RiTa which (as of v80) require 

Processing’s core.jar archive. 
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Figure 17: Comparison of educational programming environments 

4.3 Literary-focused Computer Science  

This section presents a series of literary experiments in mainstream computer and 

information science that have led to important research results. Our goal here is to introduce 

the reader to early efforts that provide the underpinnings for subsequent work in the field, 

including, but not limited to, the RiTa project. In Christopher Strachey’s “Love Letter 

Generator”, we find a very early experiment with computer programs designed to produce 

creative literary outputs, “composed” without intervention by a human author. Claude 

Shannon later focuses on how literary language can be represented via probabilistic models. 

Joseph Weizenbaum uses simple transformational rules on natural language to create the first 

conversational agent, and Selmer Bringsjord argues convincingly for a new “Turing Test” 

based on literary creativity, and implements a state-of-the art story generation system 

designed to pass it. What all the researchers in this section have in common is that they use 

what have become core computer science methods to engage with the literary, a methodology 

that has significantly influenced the construction of the RiTa tools. 
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4.3.1 Christopher Strachey 

The first known literary experiment with a modern computer was Christopher 

Strachey’s “Love Letter Generator”, written for the Manchester Mark I and completed in 

1952. Much of the important research on Strachey, and his work with the seminal computer 

scientist Alan Turing, was done only recently by Noah Wardrip-Fruin in his 2006 dissertation 

at Brown University, in which he has argued rather convincingly that Strachey's piece is 

actually the first work of digital art of any kind, a not insignificant fact when considering the 

importance of literary experiments to the burgeoning fields of both digital art and computer 

science. In this light, Strachey is a figure of some importance, not least of which due to the 

insight his story provides into Turing’s early career. And of course, without Turing, Strachey 

would have not had access to the computer on which the “Love Letter Generator” was 

programmed. Their association story begins in 1951 when Strachey, still only a teacher at the 

Harrow School, asked Turing for a copy of the manual for the Mark I computer he had 

recently written. Turing's somewhat surprising acceptance of the request facilitated 

Strachey’s sudden appearance in the world of modern computing [Wardrip-Fruin 2006]. 

Strachey visited Manchester for the first time in July of 1951 and discussed his ideas 

for a checkers-playing program with Turing. These ideas impressed Turing, who suggested 

that the problem of making the machine simulate itself using interpretive trace routines would 

also be interesting Strachey, taken with this suggestion, wrote such a program. As Strachey's 

biographer Martin Campbell-Kelly writes:  

The final trace program was some 1000 instructions long, by far the longest 
program that had yet been written for the machine, although Strachey was 
unaware of this. Some weeks later he visited Manchester for a second time to 
try out the program. He arrived in the evening, and after a “typical high-
speed high-pitched” introduction from Turing, he was left to it. By the 
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morning, the program was mostly working, and it finished with a 
characteristic flourish by playing the national anthem on the “hooter”.75 

This was a considerable achievement for an unknown amateur. He had written, 

within a single session, the longest program for the Mark I thus far. As Martin Campbell-

Kelly asserts, his reputation was virtually established overnight. By June 1952 Strachey had 

completed his responsibilities at the school and officially began full-time computing work as 

an employee of the NRDC. That summer he developed, probably with some input from 

others including Turing, the Mark I program that y, it is unlikely that Strachey had digital art 

of the sort we see today in mind. For one thing, there would have been little thought of an 

audience. As with his checkers-playing program, the love letter generator could be reported to 

a wider public, but only experienced directly by a small audience of his fellow computing 

researchers. At the same time, it certainly was not an official assignment from the NRDC, but 

rather, like many creative computing projects, undertaken for enjoyment and to see what 

could be learned. Not everyone in Strachey's small audience enjoyed it equally [Wardrip-

Fruin 2006]. 

Turing biographer Andrew Hodges [2000] reports that “Those doing real men’s jobs 

on the computer, concerned with optics or aerodynamics, thought this silly, but ... it greatly 

amused Alan and Christopher”. Looking at the program’s output today, we can understand 

why Turing and Strachey’s colleagues thought the project silly. In 1954, Strachey published 

the following article in the art journal Encounter (immediately following texts by William 

Faulkner and P. G. Wodehouse):  

 

                                                        
75 For further information, see http://grandtextauto.org/2005/08/01/christopher-strachey-first-

digital-artist/. 
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Darling Sweetheart  
 
You are my avid fellow feeling. My affection curiously clings to your  
 
passionate wish. My liking yearns for your heart. You are my wistful  
 
sympathy: my tender liking.  
 
Yours beautifully  
 
M. U. C. 

Clearly there are a number of shortcomings apparent in the “letter” above, but, like many 

creative computing experiments, such outputs are not the most interesting part of the project, 

but rather the vast combinatory potential that such programs afford. It is likely that this 

unpredictability and procedural “expansion” is part of what amused Strachey and Turing, 

though, as has often been the case, the process itself is now lost to us and only sample outputs 

remain. As Wardrip-Fruin argues [2006], this is a problem for work in digital literature and 

art generally. We tend to focus on surface output, and as a result our understandings do not 

include the “hidden” procedural elements that work to create such outputs. He goes on to say:  

[Process and data] are integral parts of computational works, and to fail to 
consider them means we only see digital literature from the audience's quite 
partial perspective. The fundamental fact about digital works is that they 
operate, that they are in process, and only once our interpretations begin to 
grapple with the specifics of these operations will we be practicing a method 
commensurate with our objects of study.  

This is a problem that RiTa, with its focus on interpretation at multiple levels (from outputs, 

to source code, to intermediate ‘texts’ like templates and grammar files) addresses directly.  

Here is another example from Strachey's Encounter article:  

Honey Dear  
 
My sympathetic affection beautifully attracts your affectionate enthusiasm.  
 
You are my loving adoration: my breathless adoration. My fellow  
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feeling breathlessly hopes for your dear eagerness. My lovesick adoration  
 
cherishes your avid ardour.  
 
Yours wistfully  
 
M. U. C.  

“M. U. C.” is of course a reference to the Manchester University Computer, or Mark I, who 

“plays” the part of a love letter author by carrying out the process outlined in the article:  

 Apart from the beginning and the ending of the letters, there are only two 
basic types of sentence. The first is “My, (adj.), (noun), (adv.), (verb) your, 
(adj.), (noun).” There are lists of appropriate adjectives, nouns, adverbs, and 
verbs from which the blanks are filled in at random. There is also a further 
random choice as to whether or not the adjectives and adverb are included at 
all. The second type is simply “You are my, (adj.), (noun),” and in this case 
the adjective is always present. There is a random choice of which type of 
sentence is to be used, but if there are two consecutive sentences of the 
second type, the first ends with a colon (unfortunately the teleprinter of the 
computer had no comma) and the initial “You are” of the second is omitted. 
The letter starts with two words chosen from the special lists; there are then 
five sentences of one of the two basic types, and the letter ends “Yours, 
(adv.) M. U. C.” 
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Words in parenthesis are randomly substituted according to the 

following word-lists: 

 

Adjectives: 

anxious, wistful, curious, craving, covetous, ... 

 
Nouns: 

desire, wish, fancy, liking, love, fondness, ... 

 
Adverbs: 

anxiously, wistfully, curiously, covetously, ... 

 
Verbs: 

desires, wishes, longs for, hopes for, likes, ... 

 
Letter-Start: 

dear, darling, honey, jewel, love, duck, moppet, sweetheart  

Table 5: Examples from the Love Letter Generator’s Input Data. 

As we can see in the data presented above, Strachey’s generator involves a high degree of 

combinatorial choice, with a choice among many options provided for nearly every word. It 

is at once a literary work and a work of computer science exploiting non-determinism over a 

clearly-defined search space to achieve a specific (creative) effect. These days, process-

oriented works of digital literature tend to use algorithms of a complexity that dwarfs that of 

those described in Strachey's generator, but the importance of the context—computers that 

can emulate human creative processes—has in no way diminished.  
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4.3.2 Claude Shannon  

Claude Shannon was a seminal thinker in both computer science and information 

theory—he arguably invented the latter76—whose work laid the foundations for the statistical 

methods we find in such widespread use today. Though the experiment described below does 

not target literary outputs as directly as Strachey’s “Love Letter Generator”, it presents 

another example of fruitful synthesis between the literary context and computer science 

research. Working from already-constructed literary texts Shannon created probabilistic 

models that could approximate various properties of the text being examined. Like the other 

researchers presented in this section, the context for Shannon’s experiments was based not 

only in natural language, but specifically in literature. To quote Golumb [2002], “it is no 

exaggeration to refer to Claude Shannon as the ‘father of the information age’, and his 

intellectual achievement as one of the greatest of the twentieth century”.  

One of Shannon’s important early contributions was his work with n-grams, based on 

the notion of Markov models as invented by Andre Markov in 1906. Like Shannon, Markov 

himself used literary language, specifically the novels of Pushkin, as a means of analyzing the 

general statistical properties of natural language. The basic question the two researchers 

considered was, given any sequence of English letters or words, what is the likelihood of the 

occurrence of the next letter or word? Shannon published the answer to his question in a 

paper entitled “A Mathematical Theory of Communication” [Shannon 1949] where he 

formalized, among other things, the notion of n-grams. To illustrate the concept, he provided 

six sample “messages” from the English alphabet. In the first message, each of the alphabet’s 

26 letters and the space appear with equal probability:  

XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGHYD...  
                                                        
76 See [Golomb 2002]. 
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In the second, the symbols appear with frequencies weighted by how commonly they appear 

in English text (i.e., “E” is more likely than “W”):   

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA ... 

Shannon’s remaining four sample messages were produced with a somewhat different 

process. In the third, symbols appear based on the frequencies with which sets of two of the 

symbols appear in English. That is to say, after one letter is recorded, the next is chosen in a 

manner weighted by how commonly different letters follow the just-recorded letter. So, for 

example, in generating the previous message it is only that “E” is a more common letter than 

“U”. However, in creating the third message, it is also important that if a pair of letters begins 

with “Q” it is more likely that the complete pair will be “QU” than “QE”. Taking the 

frequencies of pairs into account in this manner means paying attention to the frequencies of 

“bigrams” [Wardrip-Fruin 2006]. The sample message created in this way begins:  

ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D... 

In the fourth, symbols appear based on the frequencies with which sets of three of the 

symbols appear in English. This is called a “trigram”, with the choice of the next letter 

weighted by the frequencies with which various letters follow the set of two just recorded. 

Shannon’s sample message begins:  

IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME...  

In the fifth, the unit is moved from letters to words. In this message, words appear in a 

manner weighted by their frequency in English:  

REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME... 

Finally, in the sixth sample message, words are chosen based on the frequency with which 

pairs of words appear in English. This, again, like the technique of choosing based on pairs of 
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letters, is called a “bigram” technique, but here applied to words. The complete final message 

Shannon used was:   

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER  
 
THAT THE CHARACTER OF THIS POINT IS THEREFORE ANOTHER  
 
METHOD FOR THE LETTERS THAT THE TIME OF WHO  
 
EVER TOLD THE PROBLEM FOR AN UNEXPECTED.  

Shannon describes the progression as follows: 

The resemblance to ordinary English text increases quite noticeably at each 
of the above steps. Note that these samples have reasonably good structure 
out to about twice the range that is taken into account in their construction. 
Thus in (3) the statistical process insures reasonable text for two-letter 
sequences, but four-letter sequences from the sample can usually be fitted 
[sic] into good sentences. In (6) sequences of four or more words can easily 
be placed in sentences without unusual or strained constructions. The 
particular sequence of ten words “attack on an English writer that the 
character of this” is not at all unreasonable. It appears then that a sufficiently 
complex stochastic process will give a satisfactory representation of a 
discrete source. [Shannon 1949]  

To create the last four messages, Shannon [1949] using ordinary books, which he explains:  

To construct (3) for example, one opens a book at random and selects a letter 
at random on the page. This letter is recorded. The book is then opened to 
another page and one reads until this letter is encountered. The succeeding 
letter is then recorded. Turning to another page this second letter is searched 
for and the succeeding letter recorded, etc. A similar process was used for 
(4), (5) and (6). It would be interesting if further approximations could be 
constructed, but the labor involved becomes enormous at the next stage.  

That is to say that the last sample message (which begins with a sequence that sounds 

surprisingly coherent) was generated by opening a book to a random page, writing down a 

random word, opening the book again, reading until the just-recorded word was found, 

writing down the following word, opening the book again, reading until that second word is 

found, writing down the following word, and so on.  
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So why does the 6th message sound so coherent, if all Shannon did was repeatedly 

open a book at random? As Wardrip-Fruin points out [2006], the answer is that Shannon is 

operating on the assumption that ordinary books reflect (more or less) the frequencies of 

letters and words in English. And this, in turn, is why we find a passage of unexpected 

coherence in the last sample message. Because choosing an ordinary book is actually 

choosing a piece of highly-shaped textual data (shaped, for example, by the frequencies of 

words and sequences of words in the book’s language, the topic of the book, the author’s 

particular style.77 When these “statistical” measures are aggregated for one or more input 

texts, we have what is called a language model.78 Further, any new text that we choose to 

generate from this model will produce results that reflect the data we used to create it.  

Shannon was not working in a literary or artistic context, but his ideas were applied 

by practitioners for years to come, even though it is only in relatively recent time that 

                                                        
77 This type of analysis is often referred to as “computational stylistics”. 

78 The term language models originates from probabilistic models of language generation 

developed for automatic speech recognition systems in the early 1980’s [9]. Speech 

recognition systems use a language model to complement the results of the acoustic model 

which models the relation between words (or parts of words called phonemes) and the 

acoustic signal. The history of language models, however, goes back to beginning of the 20th 

century when Andrei Markov used language models (Markov models) to model letter 

sequences in works of Russian literature [19133]. Another famous application of language 

models are Claude Shannon’s models of letter sequences and word sequences, which he used 

to illustrate the implications of coding and information theory [17]. In the 1990’s language 

models were applied as a general tool for several natural language processing applications, 

such as part-of-speech tagging, machine translation, and optical character recognition. 

Language models were applied to information retrieval by a number of research groups in the 

late 1990’s [4, 7, 14, 15]. They since became quite popular in information retrieval research. 
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common computers could handle word-level n-gram models for non-trivial inputs. Here we 

see how an implementation’s efficiency (e.g., with memory, with disk access, with processing 

power) and the need, or lack thereof, for certain kinds of correctness (e.g., in statistical 

distribution) can be determining factors in whether a technique is applicable to an artistic 

context. In fact, the modern availability of computing power has made practical, and shown 

the power of, a whole area of research, specifically that of “statistical” natural language, that 

previously was out of reach. Shannon’s initial experiments manually generating sentences 

that approximated those found in literature were the first step in this trajectory. 

Parenthetically, it is interesting to note that the first application of Markov models was also 

linguistic and literary, modeling letter sequences in Pushkin's poem “Eugene Onegin”, though 

this was presented from a mathematical, rather than communication-oriented, perspective 

[Markov 1913]. 

For almost three decades after the publication of Shannon’s paper, the techniques that 

he outlined for text generation were barely explored. While their application to analysis was 

somewhat further investigated, there seems to have been little interest in generating text with 

it, and as Wardrip-Fruin states [2006], it appears to have had no actual literary use until much 

later. In part this may have been due to the effort involved in building texts by hand, as 

Shannon did, combined with the fact that even for severely restricted versions of the method, 

computers that could handle the amount of data generated in accurate statistical models (at 

least when employing the most obvious approaches to the problem) were unavailable until the 
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1970s. How n-grams were later employed in actual literary practice79 is explored in below in 

our discussion of Charles O. Hartman’s “Monologues of Body and Soul”.  

4.3.3 Joseph Weizenbaum  

Using Markov models in the language experiments above gave researchers access to 

new tools for the analysis and generation of natural language and laid the groundwork for the 

range of more sophisticated probabilistic methods to come. Joseph Weizenbaum approached 

natural language processing from a more elementary perspective, but with no less interesting 

results. Weizenbaum was a professor of computer science at MIT when, in 1966, he 

published a comparatively simple program called ELIZA, which used pattern-matching and 

transformation to simulate human conversation (programs like this are now generally called 

“chatterbots”, or “chatbots”).  

Driven by a script named DOCTOR, it engaged a human user in a conversation with 

a simulated psychologist. Weizenbaum modeled the program’s conversational style after 

Rogerian therapy, which uses open-ended questions to encourage patients to communicate 

more effectively with their therapists. The results were surprisingly engaging, as Eliza/Doctor 

used simple rules to turn the audience member’s typewritten statements back to the user in 

the form of open-ended questions and prompts to talk further. Weizenbaum was shocked that 

his program was taken seriously by many users, who would open their hearts to it. In his 

article, “From Computer Power and Human Reason”, Weizenbaum [1976] describes how 

quickly and deeply people became emotionally involved with the computer program, e.g., 

taking offence when he asked to view the transcripts, saying it was an invasion of their 
                                                        
79 In addition to widespread literary use, n-Grams have also been used extensively in musical 

composition. One example is the contemporary Austrian composer Karlheinz Essl, who 

reassembled a Bach violin sonata via n-grams, calling it “Bach sausage.” 
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privacy, even asking him to leave the room while they were working with the program, a 

phenomenon Weizenbaum found quite disconcerting.80  

An example of Weizenbaum's man-machine conversation included a chat between a 

simulated therapist and a patient. A segment follows: 

“Men are all alike,” the patient states. 
 
“In what way,” asks the computer-therapist? 
 
“They’re always bugging us about something.” 
 
“Can you think of a specific example?” 
 
“Well, my boyfriend made me come here.” 
 
“Your boyfriend made you come here?” 
 
“He says I’m depressed much of the time.” 
 
“I’m sorry to hear you are depressed.” 
 
“It’s true.” 

At this point in the conversation when he tested it in his office, Weizenbaum’s secretary 

asked him to leave, because the conversation was getting too personal [Wallace 2009]. 

Eliza/DOCTOR was considered by many to be a forerunner of the “thinking 

machines” trumpeted by the press and members of the AI community, computers able to 

simulate human cognitive processes. Interestingly it was Weizenbaum himself who most 

strongly argued, in his book Computer Power and Human Reason [1976], against this 

interpretation, explaining the limits of computers, and arguing that any anthropomorphic view 

of computers represents a reduction of the human being. David Gardner refers to 

                                                        
80  When Weizenbaum informed his secretary that he, of course, had access to the logs of all 

the conversations, she reacted with outrage at this invasion of her privacy" [Wallace 2009].  
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Weizenbaum as “the brilliant MIT researcher who threw water on some of the wildest 

predictions about computers as ‘thinking machines’”.81  

The system had a tremendous impact on a number of subfields in computer science: 

from natural language processing to artificial intelligence; from interactive narratives to 

conversational agents, the relationship of computing and psychotherapy, the ethical uses of 

computers, and computer gaming, to name just a few. Janet Murray identifies Eliza/Doctor as 

the “moment in the history of the computer that demonstrated its representational and 

narrative power with the same startling immediacy as the Lumieres’ train did for the motion 

picture camera.” She calls Weizenbaum “the earliest, and still perhaps the premier, literary 

artist in the computer medium” [Murray 1997]. While not all writers would be prepared to 

recognize Eliza/Doctor as literature, most can accept (as Wardrip-Fruin [2006] argues) the 

idea that presenting a character through conversation with the audience guided by previously-

authored texts and rules, rather than through recitation of unvarying text, has the potential to 

be literary. 

4.3.4 Selmer Bringsjord 

Perhaps less well know than the previous researchers, Selmer Bringsjord (1958-) is 

the current director of the Rensselaer Artificial Intelligence and Reasoning (RAIR) 

Laboratory and a professor of computer science, as well as a Professor of Philosophy, Logic, 

and Cognitive Science. Bringsjord is perhaps best-known for his meta-level proofs of 

contentious issues in computer science, e.g., his modal argument using analog computation to 

show that P=NP [Bringsjord and Taylor 2005]. Of particular interest here is his refutation of 

                                                        
81 See: http://www.informationweek.com/news/global-

cio/showArticle.jhtml?articleID=206903443. Accessed 7/01/09.  
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the Church-Turing thesis via what he refers to as “literary creativity”. While the specifics of 

the proof, and the arguments of his many critics, detailed in his book, Artificial Intelligence 

and Literary Creativity (AILI), with David Ferrucci [2000] are beyond the scope of this 

research, his reasoning for selecting this specific domain is relevant. He argues, citing 

research by a range of scholars that “literary creativity” may represent the best measure of 

intelligence at our disposal. In fact, he argues for a literary alternative to the Turing test. He 

writes: 

Though the Turing test is currently out of reach of the smartest of our 
machines, there may be a simpler way of deciding between the strong and 
weak forms of AI – one that highlights creativity…. The test I propose is 
simple: Can a machine tell a story? 

He goes on to describe his test in more detail. 

But what would the story game look like? In the story game, we would give 
both the computer and a master human storytellers relatively simple human 
sentence, say “Gregor woke to find his abdomen was as hard as a shell, and 
that where his right arm had been, there now wiggled a tentacle.” Both 
players must then fashion a story designed to be truly interesting, the more 
literary in nature – in terms of rich characterization, lack of predictability, 
and interesting language, the better. We could then have a human judge the 
stories so that, as in the Turing Test, when such a judge cannot tell which 
response is coming from the mechanical muse and which is from the human, 
we say that the machine has won the game. [2000] 

As he suggests that the creation of a novel is so far beyond the capabilities of today’s 

AI techniques that its existence “simply can’t be conceived”, he restricts the test described 

above to 500 words. Then, in an attempt to answer the question, he sets out, with the help of 

Ferrucci and senior scientists at IBM’s Watson Research Center, to build a system, called 

“Brutus”, that generates short fiction within that constraint. Their efforts make up the 

majority of the chapters of AILI, by the end of which they have created Brutus.1, an 

instantiation of the more generic Brutus architecture specializing in the literary theme of 
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‘Betrayal’, for which he provides a definition in formal logic, and operating over a narrow 

range of character types; an ontology that includes Professor, Students, Dissertations, Classes, 

etc. After 7 years of the 10-year project, he writes, “though I expect to make headway… first-

rate story-telling will always be the sole province of human masters” [1998]. Whether or not 

he has successfully refuted the Church-Turing thesis in the process, or even provided a more 

accurate version of the Turing Test via his ‘story-telling game’, his choice of the literary 

context for his experiments again demonstrates its unique characteristics and continued utility 

in computer science research.  

4.4 Procedural Writing: Tools And Practice 

Having presented (in section 4.2) an overview of educational tools for computer 

science students and writers wishing to explore computational methods, and (in section 4.3) a 

survey of research by computer scientists addressing literary language, we presents here, in 

rough chronological order, a range of procedural writing experiments undertaken by 

practicing artists. Unlike Strachey and Shannon, for instance, who did not use creative 

writing as their starting point, the work that follows is integrally tied to literary production. 

Theo Lutz, for example, used stochastic methods to generate poetry, while Brion Gysin 

leveraged combinatory techniques to create new works, and Nanni Balestrini constructed 

poems by procedurally ‘mashing-up’ a number of different texts. In addition to these 

examples of procedural techniques, we also mention a number of individual works (e.g. 

House of Dust), exhibitions (e.g. Cybernetic Serendipity), and programs (e.g. Auto-Beatnik) 

which further explore computational writing in the context of artistic practice. The section 

concludes with an investigation of the Dada and Oulipo movements who, though not always 
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utilizing computational tools, were committed to procedural methods that link them closely to 

the other work discussed82. 

Since long before the invention of computers, artists and creative writers have 

experimented with the use of procedural techniques in their art practice. As Florian Cramer 

[2005] puts it:  

Executable code existed centuries before the invention of the computer, in 
magic, Kabbalah, musical composition and experimental poetry. These 
practices are often neglected as a historical pretext of contemporary software 
culture and electronic arts. Above all, they link computations to a vast 
speculative imagination that encompasses art, language, technology, 
philosophy and religion.  

As Cramer notes, it is unlikely a coincidence that the Gospel of John was one of the first texts 

manipulated in the early computational poetry experiments of Brion Gysin and William S. 

Burroughs [1978], discussed below [Funkhouser, 2007]. 

IN THE BEGINNING WAS THE WORD 

IN THE BEGINNING WAS WORD THE 

IN THE BEGINNING WORD THE WAS 

IN THE BEGINNING WORD WAS THE 

IN THE THE BEGINNING WAS WORD 

IN THE THE BEGINNING WORD WAS 

                                                        
82 Due to vast scope of this work, however, we are only able to touch on a handful of 

examples in the categories below. For a more detailed history of the topic, we recommend the 

full-length monographs, “Prehistoric Digital Poetry: An Archaeology of Forms” by C. 

Funkhouser [2007], and “Words Made Flesh: Code, Culture, Imagination” by F. Cramer 

[2005], both of which present a wealth of in-depth information on the topic 
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IN THE THE WAS BEGINNING WORD 

IN THE THE WAS WORD BEGINNING 

IN THE THE WORD BEGINNING WAS 

IN THE THE WORD WAS BEGINNING 

IN THE WAS BEGINNING THE WORD 

IN THE WAS BEGINNING WORD THE 

[. . . ]    [Burroughs [1978] 

As one might expect, as soon as computer technologies became accessible to artists 

working with procedural methods, they were put to immediate use, sometimes in quite 

surprising and productive ways. This section presents a brief history of artistic experiments 

by those working in, or at the borders of, the “literary”, with particular focus on those whose 

work led, directly or indirectly, to techniques employed in the RiTa toolkit.  

4.4.1 Theo Lutz 

An important early contributor to procedural literature was the programmer Theo 

Lutz, a student of Max Bense83, who created a series of “stochastic poems” on a Zuse Z22 

computer in 1959. Examples of this work, which applied the tools of mathematics and 

                                                        
83  Max Bense (1910-90) was a professor of the philosophy of technology, scientific theory, 

and mathematical logic at the Technical University of Stuttgart and an important figure in 

early concrete and computer-aided poetry. In his research, he was devoted to creating an 

information theoretical foundation for aesthetics and to text produced with machines. The 

philosophy of visual poetry was to a considerable extent indebted to Bense. For more 

information, see http://www.medienkunstnetz.de/artist/bense/biography/. 



 

149 

calculation (i.e., logical structures) to produce language, were first published, with 

descriptions of the processes employed, in Bense’s journal AugenBlick in an article entitled 

“Stochastic Texts” [Funkhouser 2007].   

Working from Kafka’s famous text, The Castle, Lutz created a database of sixteen 

subjects and sixteen titles. He then used the computer’s random number generator to create 

random sequences from this database. Logical constants (gender, conjunction, etc.) were used 

to connect the lines in a readable syntax: 

Not every look is near. No village is late. 
 
A Castle is free. and every farmer is distant. 
 
Every stranger is distant. A day is late. 
 
Every house is dark. An eye is deep. 
 
Not every castle is old. Every day is old. 
 
Not every guest is furious. A church is narrow. 
 
No house is open and not every church is quiet. 
 
Not every eye is furious. No look is new.  

Similar to Strachey’s work, which we can consider to be recombinant, this piece combines 

fragments from a database to create a vast number of “original” compositions.  

4.4.2 Brion Gysin 

As noted above, Brion Gysin pursued combinatory techniques with the aid of 

computers as early as 1960 in a series of permutational pieces created in collaboration with 

the mathematician Ian Somerville. In the piece above, from The Gospel of John, the poem 

shuffles its words according to a formal algorithm that traverses a total of 720 permutations 

on an early Honeywell computer [Cramer 2005]. The critical anthology Brion Gysin: Tuning 
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in to the Multimedia Age presents several other examples of computer-generated permutation 

poems, programmed to appear in block formation. One of these poems, also from an easily 

recognizable source, is presented in Funkhouser [2007]:  

I AM THAT I AM 

I THAT AM I AM 

I AM I THAT AM 

I I AM THAT AM 

I THAT I AM AM 

I I THAT AM AM 

I AM THAT AM I 

I THAT AM AM I 

I AM AM THAT I 

I AM AM THAT I 

I THAT AM AM I 

I AM THAT AM I 

I AM I AM THAT 

I I AM AM THAT.84 

                                                        
84 Although the programming details are not available; alternate versions of the poem, in 

which the  words appear with a different sort of arrangement, are included in Williams’s An 

Anthology of Concrete Poetry (1967) and in Kostelanetz’s Text-Sound Texts (1980). As 

Funkhouser writes, “Gysin’s permutation poetry imposes a pre-established pattern on the 
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4.4.3 Nanni Balestrini 

Continuing chronologically, we come to Nanni Balestrini’s computer-generated 

“Tape Mark” poems of 1961. In these works, he begins with a database containing texts by 

Lao Tzu’s (Tao Te Ching), Paul Goldwin (The Mystery of the Elevator), and Michihito 

Hachiya (Hiroshima Diary) [Funkhouser 2007]. The program85 then combines and constructs 

chains of words from these passages, ultimately portraying a scenario of nuclear disaster as 

present in Hachiya’s text.  

A range of these works were later presented at the ‘Cybernetic Serendipity’ 

Reinhardt, 1968] exhibition in 1968 (discussed below). The exhibition catalog includes this 

passage, which demonstrates a similar flavor of permutation as in Gysin: 

Hair between lips, they all return 
 
to their roots, in the blinding fireball 
 
I envision their return, until he moves his fingers 

                                                        

words in a phrase, so they appear in different orders until all possibilities have been 

exhausted. Thus, a poem made with a three-word phrase will be six lines long (3x2x1); a 

poem that begins with a five-line phrase, such as “I am that I am” will be one hundred twenty 

lines long (5x4x3x2x1). The availability of computer technology automated the process of 

randomizing these permutations.”  In “Cut-Ups Self-Explained,” Gysin  [Burroughs 1972] 

declares, “The permuted poems set the words spinning off on their own; echoing out as the 

words of a potent phrase are permuted into an expanding ripple of meanings which they did 

not seems to be capable of when they were struck and then stuck into that phrase” (Brion 

Gysin,154). [Funkhouser 2007].  
85  No specific information on the  program used is available; it may have been Autocoder, 

which was the program used most commonly on the IBM 7070, or Fortran or RPG (Report 

Program Generator), which also ran on that machine [Funkhouser 2007]. 
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slowly, and although things flourish 
 
takes on the well known mushroom shape endeavoring 
 
to grasp while the multitude of things comes into being. 
 
In the blinding fireball I envisage 
 
their return when it reaches the stratosphere while the multitude 
 
of things comes into being, head pressed 
 
on shoulder, thirty times brighter than the sun 
 
they all return to their roots, hair 
 
between lips takes on the well known mushroom shape.  

Funkhouser [2007] writes:  

Though the shapes of each stanza are similar, Balestrini’s programming 
method can generate a variety of poems (within finite parameters) from 
words composed for other purposes; the program, like Lutz’s, devours 
multiple texts in order to produce combinatoric, permutation poems. The 
brief phrases in Balestrini’s dictionary collect and intricately reconfigure 
excerpts from previously-written texts to generate hybridized, contemplative, 
and haunting expression.  

4.4.4 Auto-Beatnik 

In 1962, we find computerized literature reaching a much wider audience, as pieces 

generated by Auto-Beatnik were published by Time Magazine. Auto-Beatnik was created 

when R.M. Worthy and the engineers at Librascope,86 concerned with the problem of 

                                                        
86 The article notes the Librascope Division of General Precision Inc. in Glendale, California 

as the site of the computer. Hartman lists R.M. Worthy as author of the program, and reports 

that examples of Auto-Beatnik poems were published in a magazine called Horizons in 1962 

(2). Only one “Auto-Beatnik” poem can be found on the WWW at present, “Poem No. 41: 

Insects;” see  http://hem.fyristorg.com/stettin/hemsida/poem.html.  Accessed 8/05/2004).  
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effective communication with machines in simple English, first “fed” an LGP 30 computer 

with thirty-two grammatical patterns and an 850-word vocabulary, allowing it to select at 

random from the words and patterns to form sentences. The results included “Roses” (shown 

below). Later Worthy shifted to the project to a more advanced RPC 4000, fed with a store of 

about 3,500 words and 128 sentence structures.   

As Funkhouser describes: “the November issue of Time Magazine] featured a brief 

notice in the books section titled ‘The Pocketa, Pocketa School,’ introducing ‘Auto-Beatnik’ 

as a computer programmed to create poetry.” This unattributed exposé prints and informally 

discusses two examples of “Auto-Beatnik” poems, and offers an interpretation of one of 

them. The syntax and thematic material in the poems published are a result of the narrow 

vocabulary (3,500 words and 128 simple sentence patterns) included in the program. An 

example:  

 Roses 
 
 
 Few fingers go like narrow laughs. 
 
 An ear won’t keep few fishes, 
 
 Who is that rose in that blind house? 
 
 And all slim, gracious, blind planes are coming, 
 
 They cry badly along a rose, 
 
 To leap is stuffy, to crawl was tender. 

While one notices several unconventional connections and phrases, none seem beyond the 

boundaries of poetic license. Traditional poetic properties such as action, description, 
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question, projection, and judgment are all present [Funkhouser 2007]. A second excerpt is 

similar to the first only in that it uses the simile “like” in the first line and that it contains 

unusual inflections: 

All girls sob like slow snows. 
 
Near a conch, that girl won’t weep.  
 
Stumble, moan, go, this girl might sail 
on the desk. 
 
This girl is dumb and soft.  

The program can emulate free verse as well, and aesthetically resembles, according to 

Funkhouser [2007], strains of so-called “Beatnik” poetry. 

4.4.5 A House of Dust  

In 1967, Alison Knowles and James Tenney created the famous House of Dust, a 

computer-aided poem/sculpture, which consisted of randomly generated quatrains in the 

following form: “a house of (list material), (list location) (list light source) (list inhabitants), 

leading once again to a vast set of possible compositions” [Funkhouser 2007]. The piece grew 

out of an informal “course” in FORTRAN that Tenney gave to several of his friends, 

including Philip Corner, Dick Higgins, Alison Knowles, Jackson Mac Low, Max Neuhaus, 

Nam June Paik, and Steve Reich. The poem was published by Verlag Gebruder Konig in 

Cologne in 1968 and later appeared at the Cybernetic Serendipity exhibition discussed below.  

As Funkhouser [2007] describes, House of Dust is among the first poems featuring 

collocation via a programmed slot-system, and appears in several publications (each time 
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with a different title).87 The poet-programmers in each instance establish four categories 

(materials, situations, lighting, and inhabitants) that determine the content of each line within 

a stanza. “Random meetings” of one element from each of the four categories generate a 

serial poem. Hundreds of “houses” can be created if all of the possibilities of this program are 

exhausted. The cumulative effect of the disparities in each of the poems, with their lightly 

absurdist expressions, begins to create a mental architecture for readers, though the output 

syntax is fixed and this work is repetitive. An example from House of Dust follows: 

A HOUSE OF STEEL  
 
IN A COLD, WINDY CLIMATE 
 
USING ELECTRICITY 
 
INHABITED BY NEGROES WEARING ALL COLORS 
 
A HOUSE OF SAND 
 
IN SOUTHERN FRANCE 
 
USING ELECTRICITY 
 
INHABITED BY VEGETARIANS 
 

                                                        
87 The poem first appeared Cybernetic Serendipity as “The House,” then in Dick Higgins’s 

Computers for the Arts (1970) under the title “Proposition No. 2 for Emmett Williams,” and 

later in FANTASTIC ARCHITECTURE as “A house of dust, computer poem.” Computers 

for the Arts is a short and technical memoir in which Higgins introduces two works (“Hank 

and Mary” and “Proposition No. 2”) to discus the “artificial language” Fortran as a vehicle 

for poetry. FANTASTIC ARCHITECTURE (an anthology edited by Higgins and Wolf 

Vostell, 1971) stems from Fluxus; the book mainly focuses on visual arts or architecture and 

contains commentary on art and society by Joseph Beuys, Raoul Hausmann, Franz Mon, 

Carolee Schneeman, and others.  
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A HOUSE OF PLASTIC 
 
IN A PLACE WITH BOTH HEAVY RAIN AND BRIGHT SUN 
 
USING CANDLES 
 
INHABITED BY COLLECTORS OF ALL TYPES.  

4.4.6 Cybernetic Serendipity 

The now-famous Cybernetic Serendipity show, held at the ICA London in 1968, 

included several instances of computer-generated work. Curated by Jasia Reichardt, it was 

the first exhibition to attempt to demonstrate all aspects of computer-aided creative activity: 

art, music, poetry, dance, sculpture, and animation. The exhibition included robots, poetry, 

music and painting machines [Reichardt 1968]. 

In addition to new versions of Balestrini’s Tape Mark poems [Balestrini 1996] and 

Knowles and Tenney’s House of Dust, the exhibition featured “Computerized Japanese 

Haiku”[1968], by Margaret Masterman88 and Robin McKinnon Wood. These pieces were 

written in the TRAC language, and featured nine slots, each of which could be filled with 

words from nine different databases. The show featured several poems created by this 

program, the following two of which are found in Funkhouser [2007]: 

 

 

                                                        
88 Masterman was a member of the Cambridge Language Research Unit. She was not a poet, 

but rather a scholar who wrote profoundly on the growth of scientific knowledge (including a 

widely cited the essay “The Nature of a Paradigm”), and who became extremely interested in 

machine translation.] 

 



 

157 

1. Poem 

eons deep in the ice 

I paint all time in a whorl 

bang the sludge has cracked 

... 

3. Poem 

all green in the leaves  

I smell dark pools in the trees 

crash the moon has fled. 

The program clearly outputs syntactically and mathematically correct poems that follow the 

haiku format. While the structure is fixed, the words selected by the database are variable, 

similar in style, notes Hartman, to the popular ‘Mad Libs’ game. Because of its length, strict 

formal constraints, and abstract nature, haikus have been a favorite testing-ground for 

computer-aided literary experiments since the creation of “Computerized Japanese Haiku”. A 

Haiku generator using context-free grammars is included in the RiTa example programs 

included in each download.  

4.4.7 John Cage  

John Cage is another artist who experimented extensively with procedural methods 

(and later computer programming), and whose musical work was featured in the Cybernetic 

Serendipity exhibition. From the time of his 1953 Music of Changes, Cage employed the 

concept of “nonintentionality” in art, in which the artist no longer makes all decisions in her 

or his compositions, but instead lets chance control certain elements of the creative process. 
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Initially, Cage used the I Ching, “…the ancient Chinese oracle that uses chance operations to 

obtain the answer to a question,” to accomplish tasks for him [Rettalack 1996]. Our 

discussion on Cage will be followed directly by an investigation of the work of Jackson Mac 

Low, an early and important procedural poet who also made use of nonintentionality in his 

work.  

Cage experimented extensively with the aleatoric I Ching process, a “discipline” that 

involved formulating a question and then using coins to divine numbers that provided the 

answers. As Perloff [1991] writes in Radical Artifice, the process allowed Cage to “break 

with ego, with habit, with self-indulgence”. He employed these methods as a writer as well, 

using the I Ching to structure poetic lectures and compose poems as early as in the late 1960s. 

Computers provided a natural vehicle for Cage’s non-intentional work and he would become 

known a few years later for a unique form of poetry (often computerized) known as 

“mesostics” [Funkhouser 2007]. Cage describes the Mesostic form in I-VI: “Like acrostics89, 

mesostics are written in the conventional way horizontally, but at the same time they follow a 

vertical rule, down the middle not down the edge as in an acrostic, a string which spells a 

word or name, not necessarily connected with what is being written, though it may be” [Cage 

1973]. Beginning in 1984, Cage made use of the program Mesolist, written by Jim Rosenberg 

(who later emerged as a pioneering digital poet in his own right). Mesolist mechanically 

performed Cage’s methodical “mesostic” treatment of texts. Until then, the tedious task of 

reading through a book, identifying words to be used, transcribing them, and restructuring 

them for the page had to be done manually. Cage also used a program called IC, which 

                                                        
89 Acrostic poetry is a form in which the first letter of each line contributes to a word or 

phrase spelled vertically down the left-hand margin of the page. 
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emulates the calculations of the I Ching. His first computer-assisted works were presented as 

a series of 1988-89 lectures he made at Harvard University that are collected in the volume I-

VI.  

Funkhouser writes [2007] that “in I-VI, Cage employs elaborate processes and 

contributes significant input in generating his non-intentional work. He composes or 

identifies a source text that he uses as an ‘oracle’, and asks it what words to use for each letter 

of the (vertical) poem, a process that, he writes, “frees me from memory, taste, likes and 

dislikes” [Cage 1990]. Mesolist lists all words in the source that satisfy the mesostic rule, 

then IC selects words from the lists. The forty-five characters to the right and left of the 

chosen words in the original text (“wing words”) are included, and Cage removes those he 

does not like [Cage 1990]. To prepare these lectures, Cage writes, “four hundred and eighty-

seven disparate quotations have been put into fifteen files corresponding to the fifteen parts of 

[his text] Composition in Retrospect: method, structure, intention, discipline, notation, 

indeterminacy, interpenetration, imitation, devotion, circumstances, variable structure, non-

understanding, contingency, inconsistency, and performance” [Cage 1990]. The source texts 

for the lectures included Composition in Retrospect, and a range of other sources, including 

writings by Henry David Thoreau, Ralph Waldo Emerson, L.C. Beckett, Fred Hoyle, 

Marshall McLuhan, Buckminster Fuller, Gene Youngblood, and from articles that had 

appeared in daily newspapers. After using other formulas to determine the number of 

mesostic strings per file and then to reduce the volume of source material, Cage produced 

lectures of roughly twenty-five hundred lines each. After giving the initial lectures, he 

realized the need to establish a simple notational system that would instruct him to take a 

breath when reading the work aloud (i.e., “ ’” [space apostrophe]), and where to stress 
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syllables that, “would not normally be stressed but should be” (i.e., bold typeface).” [Cage 

1990] As a short example of one of Cage’s mesostics, this passage from Finnegan’s Wake: 

Just a whisk brisk sly spry spink spank sprint of a thing theresomere, 
saultering, Saltarella come to her own. I pity your oldself I was used to. Now 
a younger’s there. Try not to be part! Be happy, dear ones! May I be wrong! 
For she’ll be sweet for you as I was sweet when I came down out of me 
mother. My great blue bedroom, the air so quiet, scarce a cloud. In peace in 
silence. 
 
 
 
 

becomes the following mesostic: 

 Just a whisk 
 Of  
    pitY 
     a Cloud 
   in pEace and silence 

As Cage writes in the preface to an essay titled “Anarchy”, these works “… do not 

make ordinary sense. They make nonsense…. If nonsense is found intolerable, think of my 

work as music, which is…a question of repetition and variation, variation itself being a form 

of repetition in which some things are changed and others are not” [Funkhouser 2007]. A 

similar sense of the language as musical is found in works by Mac Low and some by 

Hartman (with and without Kenner). Kenner himself describes the look of Cage’s Sentences 

on the page as “Chant, therefore Voice” [Kenner 1995].  

In her discussion of this work in Radical Artifice, Perloff observes that Cage prefers 

“to let us participate in the process whereby unfinished news items and bits of 

information…can be absorbed into the rhythms of individual consciousness; they remain 

discrete entities that we restructure according to our own predilections” [1994] . This focus 

on process is a trait that procedural and computer literature often manifests. The procedural 
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(or machinic) process is naturally highlighted (as discussed in the lessons section) and is cast 

against both our ‘traditional’ processes of writing and inevitably, as noted by Perloff in the 

fragment above, our thought processes, and even, the processes of consciousness itself. 

Cage’s manipulation of chance elements mirrors the work of Jackson Mac Low (discussed 

below).  

4.4.8 Jackson Mac Low 

Mac Low, already an established print poet when he began experimenting with 

computer processes, was one of the first American poets to use chance methods in his pre-

computer work90. These methods were not, however, the only means that Mac Low deployed 

in his larger attempt to solve the problem of producing so-called "egoless" poetry and music, 

a project particularly suited to the use of computational processes. Like Cage, Mac Low made 

use of the concept of nonintentionality, in which the artist no longer makes all decisions in 

her compositions, but instead lets chance control certain elements.  

Mac Low created his first computer poems at the Los Angeles County Museum in the 

summer of 1969, using a PFR-3 programmable film reader designed for graphics applications 

connected to a DEC PDP-9 computer. Mac Low’s program, he explains in Representative 

Works: 1938-1985, selected and combined words from a list of short messages he had 

composed. The program’s database (the “message lists”) and selection process allowed Mac 

Low to create “an indeterminate poem, of which each run of the printout is one of an 

                                                        
90 In the late 1950s Mac Low started experimenting with chance methods using a copy of One 

Million Random Digits, and 100,000 Normal Deviates, created by the RAND Corporation for 

use in Monte Carlo algorithms.. He continued using this book in his work throughout the 

sixties and beyond [Mac Low(b) 1997]. 
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indeterminable number of possible realizations” [Funkhouser 2007]. The following excerpt 

demonstrates the program’s style: 

... 

THE BUSHES GROW. 

 

THE INSECTS GATHER FOOD. 

THE BIRDS GATHER FOOD. 

 

THE PLANETS SHINE. 

THE MOON SHINES. 

THE SUN SHINES. 

 

THE TREES DRINK. THE FUNGUSES DRINK. 

 

THE MOSSES TURN TOWARD THE LIGHT. 

THE FLOWERS TURN TOWARD THE LIGHT. 
 
THE TREES TURN TOWARD THE LIGHT. (p214-15) 

Mac Low also used deterministic methods to generate poetry whose form and content 

were not known in advance, but could be reproduced given identical initial conditions [Mac 

Low(b) 1997]. His approach to writing poetry was literally “experimental”. The primary 

question he would ask was, “how can I achieve a certain effect?” as opposed to “what will 

happen if I implement this particular algorithm?” As his son, Mordecai-Mark notes [Mac 

Low(b) 1997], his approach was similar in many respects to that of an applied mathematician 

or computer scientist who studies both the general properties of algorithms and their 

adaptation to specific applications. He was not, of course, attempting to prove theorems or 

support particular theories with his experiments, but rather to empirically invent techniques of 

artistic production meeting certain criteria. 
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Mac Low began working with computers sooner even than many scientists. While he 

was an instructor at New York University in the late sixties, he took advantage of a free 

course in FORTRAN (one result was a short poem exploring output of a flawed program that 

showed gravity increasing as the height of the simulated fall increased). This was during the 

period when programs were written by hand on coding forms, which were then run through a 

computer in batch mode. In 1969 he was offered a fellowship by the Los Angeles County 

Museum of Art, to make so-called 'verbal' artworks at an IBM facility in Los Angeles, and he 

subsequently ended up working with Information International, Inc., "Triple-I", a company 

that went on to become one of the dominant computer graphics and printing companies. 

There he worked with John Hanson, the VP of programming, and his assistant Dean 

Anschultz, to write assembler language code for displaying poetry on a Tektronix vector 

graphics screen, and eventually for printing it out as well, using a programmable film reader 

driven by an early minicomputer [Mac Low(b) 1997]. 

 Throughout the seventies, before the widespread availability of microcomputers, his 

work made more use of audio electronics than computers. He finally got his own machine in 

1987 which “let loose the usual flood of manuals over his workspace” [Mac Low(b) 1997], 

but gradually gave him additional tools as well. He made at least one further attempt to learn 

to program (this time in the C language), but eventually came to rely on already written 

software.91 In fact, much of Mac Low's computer-based work was realized in collaboration 

with Charles O. Hartman (see following section), author of Virtual Muse: Experiments in 

Computer Poetry. In the 1980s, Hartman automated many of Mac Low’s procedures for 

                                                        
91 His use of software often involved creative ‘misuse’, as discussed in Chapter 3: Pedagogy, 

as when he completely filled the available space in his word processor's glossary with phrases 

drawn from work of and about Kurt Schwitters [Mac Low(b) 1997]. 
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computer, including Mac Low's ‘diastic’ procedure, originally developed in 196392 and 

automated by Hartman in the late 1980's as part of the DIASTEXT program, which Mac Low 

began using in earnest in 1989.93 These programs were used extensively in his 42 

Merzgedichte In Memoriam Kurt Schwitters (1994), a series of poems constructed by a 

variety of procedural methods, all employing found texts relating to the artist Kurt Schwitters. 

Mordecai-Mark describes the project: 

The first poem in 42 Merzgedichte in Memoriam Kurt Schwitter] [Mac Low, 
1994], was written by impulse-chance-selection from sources about and by 
Schwitters, the 2nd through the 30th by computer-aided chance operations, 
and the 31st through the 42nd by computer-automated diastic methods, 
which in some of the last Merzgedichte were supplemented by use of Hugh 
Kenner and Joseph O'Rourke's program TRAVESTY, which produces what 
Kenner calls "pseudo-texts," determined by letter-group frequencies in 
English [Mac Low 1998]. 

As Mac Low himself notes, the writing of several sections in this piece involved 

Kenner and O’Rourke’s TRAVESTY program94, based on Shannon’s n-gram procedure. 

                                                        
92 "Diastic" is a word coined by Jackson from the Greek words "dia" (through) and 

"stichos"(a line of writing, a verse) and is contrasted to "acrostic." (from "akros" (an extreme, 

such as the letter at the beginning or end of a verse line). "Acrostic" reading-through 

procedures draw words and other linguistic units from source texts by "spelling out" their 

titles with linguistic units that have the letters of the words in the titles as their initial letters. 

One reads through a source text and finds successively linguistic units spelling out the title as 

follows: the units spelling out individual words comprise single lines (often long ones) and 

the series of lines spelling out the whole title comprises a stanza. (The "asymmetries" are 

nonstanzaic but still partially acrostic.) 
93 He also experimented extensively with DIASTEX4, an improved version of the program 

which allows the user to choose and employ a separate index instead of using the whole 

source text as the index. 
94 TRAVESTY was written by literary critic and James Joyce expert Hugh Kenner wrote, in 

collaboration with the programmer Joseph O’Rourke, and its , a text recombination program 
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Kenner, a well-known literary theorist, was co-author (with Hartman), of Sentences, a volume 

of poems generated also with the help of TRAVESTY (For a full-description of TRAVESTY 

and its many incarnations, see Noah Wardrip-Fruin’s dissertation ”Expressive Processing” 

[2006]). Just as John Cage used the computer to facilitate work that he had previously 

performed manually, Hartman’s program mechanically accomplished—with some variation 

and advancement—the procedural work that Mac Low had practiced for many years. 

According to Funkhouser [2007],  

once his attention became focused on Schwitters, Mac Low devised a 
computer program that would randomly select linguistic units that his initial 
poem for Schwitters ("Pieces O' Six: XXXII") stored in a “glossary” in 
Microsoft Word and process these fragments into what Mac Low describes 
as, “entirely new constellations”. Over the course of two years, Mac Low 
implemented modifications to the program, its glossary, and made other 
adjustments to create a substantial body of poems.  

With 31st Merzgedichte in Memoriam Kurt Schwitters he began to incorporate DIASTEXT 

and TRAVESTY into his process; his uses of the programs were quite precise: 

I utilized these programs in different ways, employing earlier Merzgedichte 
as source texts: (1) For the 31st Merzgedichte, I ran the 25th Merzgedichte 
through DIASTEXT alone. (2) For the 32nd, I ran the 4th through 
DIASTEXT alone. (3) For the 33rd, I ran the 2nd through DIASTEX4 alone. 
(4) For the 34th, I ran the 8th through DIASTEX4 alone. (5) For the 35th, I 
ran the 9th through DIASTEX4 alone. (6) And for the 36th through the 42nd, 
I ran the 29th first through TRAVESTY, asking for “low-order” output--i.e., 
scanning for sequences of very few characters, to insure the outputting 
predominantly of letter strings that aren’t real words (pseudo-words), along 

                                                        

based on the Markov model. Dubbed Travesty, its source code was published in a 1984 issue 

of the popular computer magazine BYTE [Kenner & O’Rourke 1984]. For the algorithm, 

Kenner credited the “long-ago idea from the Father of Information Theory, Claude Shannon.” 

The code was adapted in 1990 by Larry Wall, creator of the Perl programming language, and 

published as a programming example in the 1st edition of the book Programming Perl. The 

second edition of the same book featured examples of “Perl poetry”[Wall and Schwartz 

1988]”. 25 (see p. 94)  . 
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with a few real words, most of them embedded in pseudo-words--and then 
through DIASTEX4.  

An excerpt from 29th Merzgedichte in Memoriam Kurt Schwitters: 

 
Tyll Eulenspiegel 
 
 
BucTurAPsor 
 
LIs lovewood revonTTed. 
 
 
Ander, 
 
IcTes. 
 
 
Ang Iners con 
 
LysAff brine 
 

Alsend brub HAgmes mencess kInces AumeIng 

As has been noted repeatedly, Mac Low and Cage share at least some goals as artists, 

and their work is often discussed in similar ways, though Mac Low himself suggests that too 

strong a parallel has been drawn between the two:  

The thing is that there is too much pairing of John’s and my work, despite 
our strong mutual regard. We're both concerned with intentionality and 
nonintentionality and started doing this sort of work from understandings of 
Buddhism, especially Zen & Kegon as taught by Daisetz Suzuki at Columbia 
University in the 40s and 50s. But I seldom used “pure” chance operations 
after 1960. My algorithmic work is often mistakenly thought to be chance-
generated, as they say, and I too used to think it was “chance-generated” 
work, but I realized sometime in the 80s that the only chance involved is in 
the making of mistakes (and after a certain point--especially book 
publication--the mistakes must be accepted as integral to the works). 
Otherwise, whatever gets into the poetry is determined by the generative 
method & lies there waiting in the source texts. [Mac Low 1998] 
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4.4.9 Charles O. Hartman 

Like many others of his generation, poet and digital literary theorist Charles O. 

Hartman was very much influenced by the work of Cage and Mac Low. Writing in Virtual 

Muse: Experiments in Computer Poetry [1996], he devotes almost an entire chapter to the 

relationship of chance, randomness and digital literature. He begins the third chapter by 

reminding us that “one of the Greek oracles, the sibyl at Cumae, used to write the separate 

words of her prophecies on leaves and then fling them out of the mouth of her cave. It was up 

to the supplicants to gather the leaves and make what order they could.” He compares this 

with his early poetic experiment for the Sinclair ZX81, a BASIC program called RanLines 

that stored 20 lines in an internal array and then retrieved one randomly each time the user 

pressed a key [Hartman 1996]. 

 One of the unique contributions of Virtual Muse, a required text in ‘Programming for 

Digital Art and Literature’ is the in-depth discussion of n-gram-based generation, which 

Hartman used extensively in his work Monologues of Soul and Body. The project was 

conceived during Hartman’s experiments with the code for Travesty, the n-gram based 

generator originally published by Kenner and O’Rourke in Byte magazine [1984]. He says, 

“Here is language creating itself out of nothing, out of mere statistical noise. As we raise n, 

we can watch sense evolve and meaning stagger up onto its own miraculous feet.” [Hartman 

1996] 

Interestingly, at the time of Hartman’s experiments with Travesty, he was also 

working on a poem that took Alan Turing as a subject, specifically the famous ‘Turing test’ 

for machine intelligence. Hartman took the poem he had written and ran it through his 

version of TRAVESTY at eight different chain lengths: n=2 through n=9. The results proved 

to be evocative of his themes, as the computerized n-gram process appeared to build a sort of 



 

168 

sense that wove through his input texts which addressed human and computerized sense-

making. But rather than simply use the n-gram outputs, he created a dialogue between his 

traditionally authored text and the TRAVESTY-generated text, the soul and the body of the 

title. As Hartman puts it, “In the computer output I saw the body constructing itself out of the 

material of soul, working step by step back to articulation and coherence. It's a very Idealist 

poem, and at the same time very Cartesian, and perhaps monstrous.” [Hartman 1996] Or, as 

Funkhouser [2007] puts it, “As the poem progresses, and the ‘body’ text is less abstract, the 

author succeeds in creating parallel monologues in which one (‘body’) borrows from the 

other.” 

Again we find a multi-layered text emerging from the writers’ engagement with 

machine processes in Hartman’s monologues. There is Markov’s original formulation of the 

n-gram process; Shannon’s use (three decades later) of this abstract process for text 

generation; Bennett, Hayes, Kenner, and O'Rourke demonstrating (later still) that Shannon’s 

linguistic operations could create intriguing results with literary texts; Hartman's decision use 

this literary operation in his own work; and the innovations in implementation of Bennett, 

Hayes, Kenner and O'Rourke, and Hartman himself. Further, we have Hartman’s decisions 

concerning the input texts, not to mention the lines he wrote himself, and the compositional 

attention paid to how these were combined into the final piece. More recently, we see a range 

of practicing artists (John Cayley, for instance, who uses word-level bi-grams that he calls 

“collocations”) exerting influence on a new generation the series of student and artist projects 

using the word and sentence level n-gram facilities built into the RiTa toolkit (see the RiTa 

gallery for a number of examples of such work).  

4.4.10 Dada  

The definition of a famous Dada poetry generation process follows:  
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To make a dadaist poem  

Take a newspaper.  

Take a pair of scissors.  

Choose an article as long as you are planning to make your poem.  

Cut out the article.  

Then cut out each of the words that make up this article and put them  

in a bag.  

Shake it gently.  

Then take out the scraps one after the other in the order in which they  

left the bag.  

Copy conscientiously.  

The poem will be like you.  

And here are you a writer, infinitely original and endowed with a sensibility  

that is charming though beyond the understanding of the vulgar.  

This quotation, from Tristan Tzara’s 1920 “Manifesto on feeble love and bitter love” 

[Motherwell 1981] is one of the most commonly reprinted texts from the Dada movement. 

While often associated with nihilism and portrayed as an ‘anti-art’ movement, Dada’s most 

significant area of artistic innovation may have been in the creation of procedures like the one 

above [Wardrip-Fruin 2006]. In fact, as is the case with many examples of generative art, 

rather than to read individual works, an understanding of Dada involves, as Wardrip-Fruin 

argues, a reading of the processes employed, perhaps even independently of any examples of 

work at all.   

An example of contemporary algorithmic implementations of Dada processes is 

Florian Cramer’s 1998 reimplementation of Tzara’s newspaper poem process as a web-based 

CGI script. The resulting web page performs a computationally-implemented version of 

Tzara's process (without a sack, a hand, or paper scraps of differing sizes) and allows the 

page's visitor to choose to use the text of a newspaper (from a pull down menu), the text of a 
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particular web page (there is a form element for entering page addresses), or any body of text 

the visitor may write or paste in (there is a form element for entering text) [Wardrip-Fruin 

2006]. 

4.4.11 The Oulipo 

Aphorismes by Marcel Bénabou [1996], appeared in ”Syntexts” in 1977. This 

generator, written in the APL language by Kenneth Iverson [1983], produces twenty-five 

aphorisms at a time in French, intended to reflect some version of profound insight. The 

program features a number of different slotted configurations such as, “X is in Y, not Z,” “A 

delivers B but C will deliver us from D,” “Q is the continuation of R by other means,” etc. A 

sample activation of the program in Funkhouser generates the following outputs: 

Beauty is the continuation of patience by other means. 
 
Hatred of ignorance is no other than the love of the rhythm. 
 
Science delivers evil, but what will deliver us from the present?  
 
Happiness is in horror, not in hatred.  

He writes:  

The programming reflects tendencies that have existed since the outset of 
text-generation, though the output, due to the aptitude and choices of the 
programmer, also reflects a more complex effort in programming than found 
in many works. Beyond formulating the equations, the author must select 
appropriate materials to fill the slots. In a case such as “9” above, the closely 
connected variables call for setting up a range of language that will juxtapose 
effectively; the same principle is true, but less direct, in equations with more 
variables. The phrases are clear, grammatical aphorisms made with poetic 
language… Bénabou’s construction uses a finite amount of programming 
code to write endless aphorisms Funkhouser 2007] . 

Bebabou was an original member of the important Oulipo group, and his precise 

formulation of the permutations to be performed are characteristic of their work. The Oulipo 
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group (Ouvroir de Litterature Potentielle, or Workshop for Potential Literature) represents 

perhaps the most direct precursor to the work presented here. Although much of the group’s 

work did not directly involve computers, (this was later taken up exclusively by a splinter 

group called the Alamo), their focus on procedures, constraints, and transformation in the 

service of experimental literature directly informed much of the computational work to come. 

Founded in 1960 by Raymond Queneau and Francois Le Lionnais, the group came eventually 

to include an international roster of well-known writers and mathematicians, including Jean 

Lescure, Marcel Benabou, Harry Matthews, and Italo Calvino, each of which are introduced 

briefly below. For a full treatment of the group and their continuing work, there are a number 

of full-length books devoted to the subject [Lescure 1986; Mott 1986; Mathews and Brotchi 

1998]. 

Unlike traditional writers (note the word potentielle or ‘potential’ in the group’s title), 

Oulipans have been as concerned with abstract forms (often taking the shape of constraints on 

a text) as with instantiated instances of those forms. The Oulipan position is that all writing is 

constrained writing, but most writers work within constraints that are either a) traditional 

(e.g., the sonnet), or b) so ingrained as to be almost invisible (e.g., the 'realist' novel), or c) 

and perhaps worst, unknown to the writer (e.g., automatic writing of the type performed by 

the Surrealists) [Wardrip-Fruin 2006]. A primary aim of the Oulipo is to supplement or 

replace these potentially ‘hidden’ constraints with two types of new constraints: on one hand, 

the traditional constraints (e.g., poetic forms), once largely forgotten, which they hope to help 

revive; and on the other, constraints new to literature, many adopted from mathematics (and 

mathematical games) [Wardrip-Fruin 2006]. Georges Perec was an Oulipan who excelled at 

the use of both sorts of constraints; for example, writing a novel without the letter “e” (the 

“lipogram” is a constraint with a long tradition) or one structured by innovative application of 



 

172 

”the Graeco-Latin bi-square, the Knight's Tour, and a permuting schedule of obligations” 

[Mathews and Brotchie 1998].  

Further, the ‘potentielle’ of the Oulipo highlights its relation to computational 

literature in general and more specifically to the work presented here. The group has insisted, 

since its beginning, on the distinction between 'created creations' (creations crees) and 

'creations that create' (creations creantes), focusing their attention on the latter, as does RiTa. 

Oulipan artists have been concerned not with literary works themselves, but with the 

procedures and structures capable of producing them. As Wardrip-Fruin writes:  

The Oulipo clearly has [procedures and structures] at the heart of it efforts. 
But this has not always been understood. After all, literary groups, of which 
the Oulipo is certainly one, generally produce texts, rather than structures and 
processes for others to use in creating texts. And certainly members of the 
Oulipo have produced remarkable texts using Oulipan procedures, as the 
novels of Perec, Calvino, and Matthews attest. But these procedures have 
also been used for literary works by non-Oulipans. Just as Perec made 
masterful use of the lipogram, so Gilbert Sorrentino, Christopher Middleton, 
and others have made remarkable use of 'N + 7.' But we must not, when 
impressed by these examples of procedures in use, allow this to cloud our 
vision of Oulipan potential. As Oulipo scholar Mark Wolff puts it, 'Writing is 
a derivative activity: the Oulipo pursue what we might call speculative or 
theoretical literature and leave the application of the constraints to 
practitioners who may (or may not) find their procedures useful' [2005]. 

In addition to their work on constraints for writing, there are also two other types of 

Oulipan proposals that Wardrip-Fruin notes. One type are formal procedures for the 

transformation of text via substitution, reduction, and permutation (either of one's own text or 

of found text95. The most famous Oulipan procedure of this sort, 'N + 7,' involves substituting 

all the nouns in text with the noun found seven dictionary entries later. Another is called the 

                                                        
95 This technique is employed in a number of RiTa components, including the RiLiPo object 

which provides implementations of a range of  Oulipian procedures like N+7, which uses the 

RiTa Lexicon as a “dictionary”. 
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“chimera”96, wherein one produces a new text from four source texts. From the first text the 

nouns, verbs, and adjectives are removed. These are then replaced with the nouns taken in 

order from the second text, the verbs from the third text, and the adjectives from the fourth 

text. Similarly, “definitional literature” replaces a text’s verbs, nouns, adjectives, and adverbs 

with their dictionary definitions, and can be applied recursively (replacing those words with 

their definitions, and so on). Interestingly, unlike Dada, Surrealism, or most other art 

movements of the 20th century, the Oulipo is one of the few that continues to practice to this 

day, nearly 50 years after its founding.  

Raymond Queneau, one of the two Oulipan founders, contributed a number of 

important works to the Oulipan canon. He is also known for his characterization of the 

Oulipo as a group of “rats who build the labyrinth from which they plan to escape.” 

[Mathews and Brotchie 1998]. One of his earliest works, a quintessential recombinant text, is 

his Cent mille milliards de poems (CMMP), or One Hundred Thousand Billion Poems (1961), 

which consists of ten 14-line sonnets. Due to the unique construction of the text—each poem 

is set on a page cut into fourteen strips that can be turned individually—the reader can 

construct alternate poems by reading the first line of any of the original sonnets, followed by 

the second line of any other sonnet, followed by the third line of any another, and so on. The 

work is constructed so that any reading of this sort produces a sonnet that functions 

syntactically, semantically, metrically, and in its rhyme scheme. The process of creating 

unique poems according to this procedure exposes a vast number of possibilities to the reader. 

When choosing which of the first line to read, there are ten possibilities. Next, one has ten 

choices for the second lines, giving one hundred (10 * 10) possibilities for each of the first 

                                                        
96 The 'chimera' and several other related constraints are presented and described further in 

“the Oulipo Compendium” [Mathews and Brotchie, 1998]. 
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two lines. After reading a second line, one chooses from the ten third lines, giving a thousand 

(100 * 10) total possibilities for the first three lines, and so on.  

This type of work has been called “combinatorial literature” and Oulipo member 

Harry Mathews writes [Mathews and Brotchie 1998] of combinatorics whose: [object is] the 

domain of configurations, a configuration being the preset arrangement of a finite number of 

objects, whether it concerns “finite geometries, the placement of packages of various sizes in 

a drawer of limited space, or the order of predetermined words or sentences.” Arrangement, 

placement, order: because these are the materials of Oulipan combinatorial research. What 

results can generally be called rearrangement, replacement, or reordering, all subsumed by 

the generic term permutation  

Italo Calvino, perhaps the most internationally renowned Oulipan, was invited in 

1973 by IBM to write a story using one of their computers. In response to this challenge, 

Calvino had the protagonist of the story, entitled "The Burning of the Abominable House," 

use punchcards to feed data into a computer. But according to Calvino's wife, the limited 

computer access in Paris, where they were living at the time, meant that Calvino worked by 

“carrying out all the operations the computer was supposed to do himself”[Booth 1965]. 

Paper seems to have been the mechanism, not just the eventual interface, of Calvino's initial 

foray into computing [Montfort, 2004]  

From the beginning however, Calvino was interested in science, and particularly so in 

its “cybernetic” developments. In “The Literary Machine”, for instance, he demonstrates a 

clear appreciation of the possibilities offered by the affordances of computer applications. But 

perhaps his most well-known work is If on a Winter’s Night a Traveller, a novel written in 

the second person. In this work, “you” are the main character, a bookseller journeying from 

bookstore to bookstore, attempting to locate a complete and correct version of the same book 
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you are reading, which is never found. Though the work does not follow such mechanistic 

procedures as “The Burning of the Abominable House”, it nonetheless represents and enacts 

a constant investigation of the author’s positionality in the constructed literary work.  

Like Calvino, the Oulipo as a group maintained an evolving relationship toward the 

computer. Mark Wolff [2005] describes early Oulipan experiments with Computers this way:  

When the Oulipo formed in 1960, one of the first things they discussed was 
using computers to read and write literature. They communicated regularly 
with Dmitri Starynkevitch, a computer programmer who helped develop the 
IBM SEA CAB 500 computer. The relatively small size and low cost of the 
SEA CAB 500 along with its high-level programming language PAF 
(Programmation Automatique des Formules) provided the Oulipo with a 
precursor to the personal computer. Starynkevitch presented the Oulipo with 
an 'imaginary' telephone directory composed of realistic names and numbers 
generated by his computer. He also programmed the machine to compose 
sonnets from Queneau's Cent mille milliards de po`emes.  

Yet few other works by the Oulipo directly employed computers, though it was discussed 

quite regularly at meetings. In fact, quite soon after the publications of Queneau's book 

CCMP, specialists had created computer versions of it. This led Paul Braffort and Jacques 

Roubaud in July 1981 to propose the creation of a new group named ALAMO (Atelier de 

Littèrature AssistÈe par la Mathèmatique et les Ordinateurs). For an in-depth discussion of 

the ideas associated with the ALAMO movement, see “Reading Potential: The Oulipo and 

the Meaning of Algorithms” [Wolff 2005]. 
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CHAPTER 5: EVALUATION 

“The strength of [contextual] methodologies lies in the fact that they place 

the study of creativity in a personal, social, societal, cultural and even an 

evolutionary context. The projects studied are defined by the practitioner and 

the research studies creativity using research based in actual practice.” 

[Mayer 1999] 

5.1 Introduction 

In this chapter we present a pilot evaluation designed to evaluate the efficacy of the 

RiTa tools in conjunction with the Programming for Digital Art & Literature (PDAL) course. 

From a combination of student feedback, assignments, and projects, in conjunction with our 

own perception of students’ experiences with the tools, it was our hypothesis that RiTa and 

PDAL achieved several pedagogical goals: affecting student attitudes toward programming, 

enhancing their programming ability, and supporting their creativity both within the 

classroom and in the larger context of digital art. To assess this we administered a survey and 

programming quiz before and after one iteration of the semester-long course, and performed a 

descriptive analysis of students’ final projects in the course. We also looked at a range of 

solicited and unsolicited feedback to further support the trends we have observed. 

Before describing the specific methods employed, it is important to note that this 

research employs a qualitative methodology based upon constructivist97 learning theories. As 

such, it includes the cultural and personal conditions of the researchers as well as that of the 

research population The process is that of a participating observer, who is not only an 

investigator in the field of research, but also one who is a part of that field According to this 

approach, the researcher is conscious of the field, conscious of herself, and not only affects 
                                                        
97 See pedagogy section for further discussion of this term. 
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reality, but also helps to create it. The researcher does not come to the research tabula rasa, 

but possesses a range of previous attitudes regarding the field and domain of study. The 

experience of the researcher affects her views, attitudes, and actions, and her voice is present 

throughout the research work [Hammersley, Hazan, 2001; 1995; Phillips, 1990; Ragonis & 

Ben-Ari, 2005; Sabar Ben-Yehoshua 2001].  

5.2 Goals 

The first objective is to enhance the personal experience of the person who 

wants to be creative. The second is to look for ways to improve the outcomes 

and artifacts. The third objective is to support the improvement of process by 

providing tools that are designed with certain functional requirements in 

mind. [Hewett et al. 2005] 

Our goals in this pilot evaluation were three-fold. First, we wanted to measure 

changes in students’ attitudes about programming before and after a semester-long exposure 

to the RiTa tools in the context of the Programming for Digital Art & Literature (PDAL) 

class. Second, we hoped to measure changes in their programming ability and assess whether 

these shifts correlated with any perceived attitudinal changes. Third, we hoped take an initial 

measure of the degree to which these tools served to support students’ creativity in digital 

media. Our initial expectations were: 

• that a semester-long exposure to the RiTa tools and PDAL would lead to a positive 

change in students’ attitudes about programming; 

• that a semester-long exposure to the RiTa tools and PDAL would lead to a positive 

change in both students’ assessment of their programming ability and in their 

measureable programming ability; 
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• and that the RiTa tools would help students to be more creative programmers in the 

context of digital arts. 

5.3 Methods 

Given the exploratory nature of this pilot study, we collected data using a 

combination of pre-post surveys, a programming quiz, coding/evaluation of student projects, 

informal student feedback, and qualitative observations. Each of these methods attempted to 

compare the learning, behavior, and attitudes of students before and after using the RiTa tools 

as part of the semester-long Programming for Digital Art and Literature (PDAL) class.  

5.4 Participants 

A total of 15 students from Brown University and the Rhode Island School of Design 

(RISD) participated in the pilot evaluation. Students were a mix of undergraduates (from 

RISD and Brown) and graduates (RISD) from a variety of departments including Computer 

Science, Literary Arts, Visual Arts, and Modern Cultures & Media at Brown, and 

Digital+Media, Graphic Design, and Glass at RISD. From this group of students, 10 (0.67) 

were male and 5 (.33) female. 6 (or 0.40) were from RISD 's Digital+Media graduate 

program, 4 (0.27) were computer science majors, 2 (0.13) were from Literary Arts, while the 

remaining were either undecided or from one of the other departments above (<= 1 per 

department). In addition to the computer science (CS) students, who had each at least 1 prior 

CS course, 3 (0.27) of the non-CS students had taken a previous CS course. The average 

number of years programming for the class was 21.75/15=2.13 years. For CS students, this 

average was slightly higher at 3 years, while for non-CS students it was slightly lower at 1.79 
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years (19.75/11 or 10.75/9 without most/least=1.01)98. The course included several auditors 

who were not included in the survey results. 

5.5 Observation Set 1: Surveys 

5.5.1 Pre-Survey 

Participants were given 20-25 minutes to complete a 32-question pre-survey 

(including basic demographic info and the pre-programming quiz discussed below). Pre-

survey participation was optional and participants were instructed that their answers would in 

no affect their evaluation in the course. Students provided a unique identifier (generally, but 

not always, their student ID) to correlate pre and post results. Surveys were administered by a 

third party that was unaffiliated with the course and participants were instructed not to 

discuss the questions or to consult any references (e.g., laptops) during the allotted time.  

5.5.2 Post-Survey  

Participants were again given 20-25 minutes to complete a 28-question post-survey 

(including basic demographic info and the pre-programming quiz discussed below). Post-

survey participation was optional and participants were instructed that their answers would in 

no affect their evaluation in the course. Students again provided the unique identifier that they 

used in the pre-tests to correlate their data. Surveys were administered by a third party that 

was unaffiliated with the course and participants were instructed not to discuss the questions 

or to consult any references (e.g., books, laptops, etc.) during the allotted time.  

                                                        
98 This average is somewhat misleading due to a single student who entered a very high 

number. Omitting this student from the calculation, the average was 1.01 years of 

programming experience. 
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5.5.3 Attitudes Toward Programming 

In order to measure participants’ general attitudes toward programming we developed 

four questions, each of which were asked in both the pre and post surveys. In each of the 

three questions, a paired-samples t-test indicated differences in attitude toward programming 

between the pre and post surveys. 

The first question addressed students’ general sense of confidence in their 

programming and showed significant increases between pre- and post-test scores according to 

a paired-samples t-test, t(11) = 3.677, p < .001, d = 1.109. The second addressed students’ 

assessment of their programming ability and also showed significant increases, t(14) = 2.687, 

p < .01, d = 0.718. The third question addressed the frequency with which students could 

“express their creative ideas” via programming and also showed a significant increase, t(12) 

= 2.560, p < .001, d =.739. The fourth question addressed students’ feelings about 

programming and while not statistically significant did show a small increase between pre- 

and post-test scores While it would be premature to assert any causal relationship based on 

these findings, they do suggest a positive impact on students’ attitudes toward programming, 

results which were similarly significant across gender, department, school, and previous 

technical background.  

5.5.4 Knowledge and Self-efficacy 

To measure students’ confidence, knowledge and self-efficacy in a more granular 

fashion, eight additional questions were asked regarding knowledge and confidence on 

specific programming constructs and tools. On all of these dimensions, a paired-samples t-

test indicated significant differences between the pre and post surveys (see Table XX below). 

While it is unclear that such differences would not have resulted under other circumstances, it 

does suggest that confidence and knowledge were significantly increased through the 
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semester long exposure to the tools and techniques. To compare students’ self-assessments 

with their actual skills, programming ability is tested below (via Parsons’ problems) for 

analogous gains. 

Table 6: Pre/post change in students’ knowledge and self-efficacy with programming concepts. 

5.6 Observation Set 2: Code Reading and Writing  

Parsons problems are easier and more reliable to mark than code writing, 

provide an opportunity to test student misconceptions more specifically than 

code writing, yet they appear to require the same set of skills... This makes 

them an excellent alternative to traditional code writing questions. [Denny 

2008] 

5.6.1 Parsons Problems 

The work reported here stems from a desire to better understand the degree to which 

PDAL students were actually learning to write and (equally importantly) read programming 

code. To this end, pre- and post-programming tests were administered to the students in 

         t-Score 
(n=14) 

Mean 
difference 
(post-pre) 

Standard 
Deviation Cohen’s D Significance 

Variables 2.9245 0.7143 0.9139 0.7816 p< .01 

Conditionals 3.5393 0.8214 0.8684 0.9459 p<.001 

Iteration/Loops 4.2041 0.7857 0.6993 1.1236 p<.001 

Object-Orientation 2.3786 0.5357 0.8427 0.6357 p< .01 

Data-Structures 2.2234 0.3214 0.5409 0.5942 p< .05 

The Java Language 3.1225 0.4286 0.5136 0.8345 p<.001 

Natural Language 
Processing 6.8165 1.3571 0.7449 1.8218 p<.001 

Probability/Statistics 3.2289 0.6429 0.7449 0.8630 p<.001 
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PDAL before and after exposure to the tools and course. The pre-test was given during the 

first class meeting, before any material had been presented and the post-test was given during 

the last meeting, just before final project presentations. Again, surveys were administered by 

a third party unaffiliated with the course and participants were instructed not to discuss the 

questions or to consult any references (e.g., books, laptops, etc.) during the allotted time.  

Figure 18: A Parsons problem example (pre-test). 

To measure students’ understanding of programming we presented each with a 

question designed to measure both code writing and reading skills. The style of the problem, 

generally referred to as a 'Parsons problem'99 presents students with a paired superset of the 

                                                        
99 The term "Parsons’ programming puzzle" was first introduced by Parsons and Haden 

[2006]. 
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lines of code required to solve a programming problem. The student's task is to select the 

correct line of code from each pair, and then place the selected lines in the correct order to 

define a (Java) method that accomplishes the specified task. The Parsons problem from the 

pre-test for example, shown in Figure 18, asked students to define a method that would 

remove all 'x' characters from a String. 

Our choice of Parsons problems was motivated primarily by two factors: available 

time and student diversity. Due to the limited time available for this component of our 

evaluation, separate code reading and writing problems, the latter being a potentially time-

consuming activity, would have reduced the number of additional measures we could test. 

Rather than asking students to write code from scratch in one problem then to trace provided 

code in another, Parsons problems embed both skills into a single problem in which no code 

need be written from scratch. Further, the task presented is immediately comprehensible to 

students, even those who have no idea as to an answer. As regards the diversity of students 

taking the quiz, allowing students with little or no programming experience to simply guess at 

answers to the Parsons problems reduced, in our opinion, the chance that they would become 

intimidated by the material in the pre-test, possibly even to the extent that they might drop the 

class.  

While both code reading and writing are embedded in a single Parsons problem, they 

can be coded and evaluated separately100. Further, as discussed in Denny [2008], this type of 

question simplifies distinguishing syntax errors from logic errors. For example, if a student 

                                                        
100 We should note that, in contrast to code-writing tests, for which scores on Parsons 

problems show a high degree of correlation, scores on code-tracing problems seem to vary 

substantially from those on Parsons problems, suggesting that this somewhat novel approach 

needs further refinement in order to more adequately capture both skills [Denny 2008]. 
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were to select the incorrect line from the second, fourth, or sixth pairs, this would prevent the 

code from compiling and hence be classified as a syntax error. Selecting the incorrect line 

from the first, third, or fifth pairs would generate incorrect programs, and would therefore 

classify as logic errors. While various strategies have been employed for evaluating such 

questions, in this study we chose to use a negative marking scheme, following Denny [2008], 

by defining the types of errors for which marks would be deducted. 

Each Parsons problem consisted of six pairs of statements and was evaluated for both 

syntax and ordering on a scale of 0-9. For syntax, as in Denny [2008], we deducted one mark 

for each incorrectly chosen line from the pairs. For ordering, however, we used a minimum-

edit, or Levenshtein distance101 measurement to evaluate student variation from the correct 

result. This has several advantageous properties including: a) it can be reliably (and 

automatically) calculated by treating student answers as simple strings, so that inter-coder 

reliability is not an issue; and b) misplacing a single line of code does not destroy a student's 

score as could happen when using a simple binary (correct/incorrect) rubric for ordering. 

Consider the two example answers in the following table: 

 Response Binary Score MED Score 

Correct Order A B C D E F 0 0 

Student A A B C D F E -2 -2 

Student B F A B C D E -6 -2 

                                                        
101 Levenshtein distance is a measure of the similarity between two strings, generally referred 

to as the source string and target strings. The Levenshtein,  (or ‘min-edit’) distance, is the 

minimal number of ‘edits’ needed to transform the source string into the target string, where 

an ‘edit’ consists of the deletion, insertion, or substitution of one character. [Levenshtein 

1966; Marzal and Vidal 1993] 
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Table 7: Comparison of ordering metrics (incorrect lines are bolded). 

In both of these cases, the ordering is correct with the exception of two lines that have been 

swapped. According to a naive binary metric, Student A would be marked as having four 

lines in the correct locations and two misplaced, while Student B would be marked as having 

all six lines incorrectly placed. According to the Min-Edit metric however, both students 

would be assessed an edit-distance of two points. Since both represent optimal non-correct 

answers as regards ordering (it is impossible in this format to have only one line out of place), 

these were assessed a one-point penalty by halving the Min-Edit-Distance. While Denny 

deducts a maximum of two out of nine total points for ordering, our metric, in the worst case, 

deducts three points (with an MED of six). Thus, by comparison, the ratio of syntax to 

ordering in our evaluation was 2-1, while in Denny [2008], still more weight was given to 

syntax (~78%) in relation to ordering (~22%). 

5.6.2 Results 

The multimedia terrain, with its strata of meanings, its combination of media, 

its compilation of data, and its branching, tangential connections would 

seem the ideal tool for this ‘postmodern’ age. But its chameleon character – 

a tool for writing, reading, talking and listening, a tool for drawing and 

looking, a tool for animating and viewing and a tool for gaming, interacting 

and consuming – makes it less easy to gauge in evaluative terms. [Sinker 

2000] 

The Parsons question, measuring students’ code reading and writing skills, showed a 

significant improvement between students’ pre- and post-test scores: t(7) = 7.5863, p<.00001, 

d= 2.1702. The mean improvement was 3.3571 with a standard deviation of 1.5468, strongly 
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suggesting that students’ programming skills had increased through exposure to RiTa and 

PDAL.  

Statement pairs 

Proportion of students 

selecting the correct 

statement in Pre-Test 

Proportion of students 

selecting the correct 

statement in Post-Test 

Return 0.43 1.00 

Header 0.71 0.86 

Initialization 0.71 1.00 

Conditional 0.43 0.86 

Accumulation 0.29 1.00 

Loop 0.43 1.00 

Table 8. Breakdown of the Parsons problem results (syntax). 

Table 8 shows the breakdown of results obtained for the Parsons problem. The 

proportion of students that selected the correct statement from each pair is listed. In addition, 

we looked at the correctness of the ordering of the statements according to the MED 

algorithm described above. The results for the ordering of the statements in the Parsons 

problem are shown in Table 9. 
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Marks (0-3 deductions) 
Proportion of students 

 in Pre-Test 

Proportion of students 

 in Post-Test 

Mostly Incorrect (-1.5 > x ≥ -3) 0.29 0 

Partially Correct ( 0 > x ≥ -1.5) 0.57 0.57 

Fully Correct  ( x = 0 )  0.14 0.43 

Table 9. Breakdown of the Parsons problem results (ordering). 

Since Parsons problems consist of lines of code arranged in pairs, and students are 

asked to select the correct line of each pair to use in the solution, it was our hope to more 

easily measure the kinds of errors that students make. Since the correct option is always 

visible to students, when they choose the incorrect option we know that it is not a typo, but 

rather that a deliberate choice of the wrong option, potentially providing insight into the kinds 

of mistakes and misconceptions students have and allowing us to identify elements of the 

course that students are struggling with. The use of Parsons problems thus allows us to test 

knowledge needed for code writing and reading in a manner in which we can isolate specific 

misconceptions. 

For example, Table 8 shows that only 29% of students chose the correct line for 

accumulating values on the pre-test. Thus, when presented with both alternatives, 81% chose 

the simple assignment statement rather than the correct statement. In a different context this 

might lead one to consider spending more time discussing the different roles that a variable 

can play in a program, and explicitly distinguishing between assignment operation and 

accumulation of a value in a variable. Although neither survey was scored until after the end 
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of the class, we see that in the post-survey 100% of students correctly selected the right 

accumulation statement. 

Score (scale=0 - 9) 
Proportion of students 

 in Pre-Test 

Proportion of student 

in Post-Test 

Mostly Incorrect (0 ≤ x < 5) 0.71 0 

Partially Correct ( 5 ≤ x < 9) 0.29 0.57 

Fully Correct  ( x = 9 )  0 0.43 

Table 10. Breakdown of the Parsons problem results (total score). 

Table 10 presents students’ total scores on the programming quiz in both pre- and post-tests. 

Clearly, according to this metric, significant gains were made in code reading and writing 

skills over the course of the semester. 

5.7 Observation Set 3: Creativity Support  

One important implication of this inescapable trade-off between control and 

generalizability is that laboratory definitions of “creativity” are often so 

tightly constrained that they do not capture more than a piece of a person, 

product or process. [Hewett et al. 2005] 

As one of the project’s hypotheses was that the RiTa tools provided a significant 

degree of creativity support for students and artists working in digital media, we attempted to 

further address this (beyond the survey data) by evaluating several aspects of students’ final 

projects. Final project topics were proposed by students and developed over the last month of 

the course and while each proposal required the instructor’s approval, the only requirements 

were that the project utilized computational methods and be of appropriate scope. Students 
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were not required to use any of the RiTa modules, the Eclipse Plugin, the Processing 

environment, or even Java itself, nor to focus specifically on language-based art. For those 

interested further, a number of these projects have been included in the RiTa gallery102. 

5.7.1. Evaluating Creativity 

Basically, creativity can be considered to be the development of a novel 

product that has some value to the individual and to a social group. 

However, it seems that the research conducted by psychologists on creativity 

does not allow us to clarify or simplify this definition any further. Different 

authors may provide a slightly different emphasis in their definition but most 

(if not all) include such notions as novelty and value. [Hewett et al. 2005] 

To evaluate the degree of creativity support provided by tools like RiTa, it would be 

ideal to first decide unequivocally on a definition of creativity to employ. At the same time, 

such a definition has been highly contested in the literature [Turner, 2007] and is beyond the 

scope of this research. In the various definitions proposed in recent research however, there 

appear to be at least two components common to a majority [Sternberg 1999], specifically 

novelty, and value103. With this fact in mind we have chosen adopt the rather generic 

definition used in the 2005 Creativity Support Tools conference [Hewett et al, 2005], which 

is in turn based on Sternberg [1999] and focuses on the notion of creative outputs. Creative 
                                                        
102 See http://www.rednoise.org/rita/rita_gallery.htm. 
103 For example, Gardner (1989) emphasizes that creativity is a human capacity but includes 

novelty and social value in his definition. Thus, our decision to adopt Sternberg’s [1999] 

definition is not arbitrary as it represents somewhat of a consensus in the field. As Hewett et 

al. note [2005], the authors in Sternberg’s collection provide a high level view of the state-of-

the-art… “the work in this Handbook is highly consistent with the work of several other 

authors who have also surveyed major aspects of the research findings, e.g., Csikszentmihalyi 

[1997] and Gardner [1989].” 
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outputs can be conceptualized as artifacts generated in a specific context that score highly on 

both of these metrics, not only differing significantly from those artifacts already in existence 

(novelty), but doing so in a way that demonstrates value to the individual and/or social group 

(value) [Sternberg 1999]. To evaluate the creative outputs of our participant group we 

analyzed and coded students’ final projects on a number of dimensions, believing this to be 

the most representative of the semester’s outputs. 

5.7.1.1 Evaluating “Value” 

The National Advisory Committee on Creative and Cultural Education draws 

upon a range of conceptualisations of creativity and presents a definition 

which is a useful framework for educators - ‘imaginative activity fashioned 

so as to produce outcomes that are both original and of value’. [Loveless 

2002] 

As discussed above, the tools and techniques employed in the context of the PDAL 

course appear to have facilitated significant increases in students’ programming efficacy and 

ability. Students’ self-assessed ability to creatively express themselves through 

programming,, as noted above, showed a significant improvement over the course of the 

semester t(12) = 2.560, p<.001, d = .739. This, in combination with the fact that a broad range 

of students with highly variable prior experience104 were able to complete works of 

significant depth and breadth in digital media, suggests that some non-trivial degree of 

creative utility (or value) was achieved. But what kinds of creative outputs were these?  

As noted in our previous discussion of support software (see Chapter 3: Pedagogy), 

various tools will support diversity of output to varying degrees (often in inverse proportion 

                                                        
104 See demographic data on majors and prior computing experience above. 



 

191 

to the specificity of the context for which they were designed,) and this is a key property to 

consider when assessing their efficacy. A common critique of ‘user-level’ tools like 

Photoshop or PowerPoint is that they tend to generate outputs that converge toward a distinct 

‘style’ or ‘signature’. General-purpose languages like C++ or Python, on the other hand, tend 

to support a wide variety of outputs, but exhibit steeper learning curves and often require 

significant scaffolding, especially for those users with diverse, or non-typical, backgrounds 

[Kelleher 2007].  

In contrast to these approaches, we have positioned RiTa in a productive middle-

ground position, attempting to satisfying all three of Resnick’s primary design criteria for 

creativity support software: “low steps, wide walls, and high ceilings”. In his discussion of 

these design principles, he uses low steps to refer to the incline of the learning curve, which 

should be as shallow as possible, while wide walls refers to the degree to which different 

learning paths can be followed and diverse outcomes achieved; and high-ceilings refers to the 

degree to which the tools grow with users through various levels of mastery – tools with low 

ceilings are easily mastered and thus do not continue to challenge and inspire learning 

[Resnick 2005].  

The RiTa tools were designed with these principles in mind, targeting the joint goal 

of providing a) adequate scaffolding for new users, b) adequate flexibility and expressive 

power for advancing users, and c) support for a diverse range of creative outputs reflecting 

the diversity of users themselves. As all of the participants in the study were able to complete 

multiple computational literary projects, at least one of which was a mid to large-scale 

artwork, it would appear this goal was, at least partially, achieved. While it is beyond our 

scope to argue for the societal utility of such artwork in the abstract, we can however note the 

perceived utility to students in the class, who felt their work (and that of their peers,) to 
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represent an important means of expression. The following comments, from four different 

PDAL students, demonstrate the point: 

Prior to reading virtual muse, playing with different digital art projects of my 
own, and observing the different art galleries and products of digital artists, I 
had not thought much of using programming to express the artistic creative 
side of me. I had built up a mental barrier between these two worlds that this 
class has broken down. I think that this class is just a first step in my personal 
exploration of art and technology as a tool of expression.  
 
I just want to feel that what I’m working on, and the field I’m working in, are 
vibrant, changing, full of possibilities. That to sit down and write can mean 
and result in a lot of different things. That feeling is one I’ve had in this class 
(from the Markov models, from Hartman’s pragmatism, from the grammars) 
and that experience is one I’m grateful for.  
 
If i [sic] have learned one thing, it is that code, like any other medium, can be 
coaxed, teased, and reworked into all kinds of forms, creating all kinds of 
subtle and expressive changes in a work. 
 
the fact that this class focused on language-based projects more than visual 
art was also a somewhat surprising but ultimately really fascinating turn. For 
one, I am personally profoundly enraptured by the kinds of texts that 
generative grammars in particular make; but the way n-grams and other 
statistic- and probability- based algorithms play with language I found 
unexpectedly interesting. I would love to do some work with these kinds of 
algorithms that would combine creative production and textual analysis; in 
even our mini-projects I was enchanted by the idea that recombining poetic 
texts might not only produces a new creative work but also allow for the 
gleaning of new meaning and making new connections...  

Additionally, the reception of this work by the larger digital art community suggests a 

degree of utility in these outputs which appears to have been facilitated, at least in part, by the 

tools employed. As renowned digital media theorist and practitioner John Cayley [2009] 

writes about the student project gallery, 

Here's a gallery of proof that if you give expressive programming artists the 
right tools - Rita's programmable writing tools - then language will also drive 
their art, and make a literal art. As for literary artists, Rita gives them an 
articulate introduction to software art, and does so in a way that respects the 
language-making at the root of writerly practices. So many new things with 
novel aesthetics...  
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 To further support the claim of value, we can note that projects generated in the class 

achieved significant success in external venues, including publication in prestigious digital 

literary journals, presentations at conferences, international awards, and grants for further 

work105. However, if we accept the general definition of creativity as outlined above, we must 

evaluate whether so-called “novel” outputs are generated by users of these tools as well. As a 

first step toward answering this question, we analyzed students’ final projects from the 

semester, looking specifically at the diversity of their output as an experimental indicator of 

novelty.  

5.7.1.2 Evaluating “Novelty” 

“When evaluating the use of creativity support tools, we consider diversity of 

outcomes as an indicator of success. If the creations are all similar to one 

another, we feel that something has gone wrong.” [Resnick et al. 2005] 

In attempting to analyze the novelty of final project results, we looked at the diversity 

of student project outcomes, first considering the categories of media that the projects 

engaged. Our intuition here, supported by a number of researchers [Resnick 2000; Resnick et 

al. 2005] was that a outcomes created via support tools that do not adequately support novelty 

would group together into one or a few categories of output. The following categories were 

proposed for the analysis: Audio, Video, Text, Image, Animation, Text, Text-To-Speech, 

Performance, Installation, Interactive, Locative or Psycho-Geographic, Physical 

                                                        
105 Details of these are withheld in order to preserve student privacy in accordance with 

UCAIS (human subjects) guidelines. 
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Computation, Networked, and Web-Art106, from which multiple codings were allowed. As 

shown in Table 11, projects spanned all of the aforementioned categories, with only three—

Text (60%), Interactive (73%), and Web-Art (67%)—containing a majority of students. The 

popularity of these three categories was somewhat expected as nearly all examples and 

assignments during the semester fit into all of these categories. Audio (60%) was also a 

highly populated category, though an explanation of this result is less apparent. The topic of 

audio was not a central part of the course and only a few of the RiTa examples featured 

audio. Hypotheses for this finding include a) the fact that audio can generally be added to an 

existing project without much additional difficulty, b) several students had prior backgrounds 

in audio processing, and c) several examples works discussed in class contained audio 

components. Further study would be required to determine if this result is either significant or 

indicative of students’ affinity for aural media. 

Media Type 
% of Students 

(n=15) 

Audio 60% 

Video 13% 

Text 67% 

Text-To-Speech 13% 

Image 40% 

                                                        
106 While a ‘Web-Art’ coding refers only to the project’s being accessible (and executable) on 

the web, projects coded as ‘Networked’ employ custom client-server networking as an 

integral component of the work. 
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Performance 20% 

Physical Computation 13% 

Animation 40% 

Networked 20% 

Web-Art 73% 

Interactive 67% 

Installation 13% 

Locative 13% 

Table 11: Final project attributes. 

A second element of our analysis of diversity projects looked at the RiTa modules 

employed in each final project. Our intuition here was that a outcomes created via a support 

tool that was too narrowly focused (i.e., lacking “wide walls”) to adequately support novelty 

would leverage just one or a few modes of use. Here we coded each project with the specific 

RiTa modules that it employed (again multiple codings were allowed as many projects 

employed multiple parts of the toolkit.) Rather than proceeding by hand, codings here were 

produced automatically via source code examination (parsing both import statements and 

variable declarations) to minimize concerns of inter-coder reliability. Such analysis was 

enabled by the fact that students’ source-code was required among the final project 

deliverables. Several students (20%) did not use RiTa at all, and were thus coded in the single 

category ‘Did not use RiTa’.  

In Table 11 we see that with the exception of Text-Display (53%), each of the 

modules were used by (at most) one-third of students. Several modules were either 
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(unexpectedly) unused or used by less than 10% of students. These include the Web-Mining 

(0%), RiTa-Server (0%) , WordNet (0%) and Audio (7%) components. Our hypothesis here 

is that each of these modules, with the possible exception of WordNet, are designed primarily 

to facilitate rapid development, a central design constraint for the toolkit (Design Constraints 

in Chapter 2). As such, they can often be substituted out in a final project by embedding their 

functionality elsewhere. The RiTa Server (also presented in Chapter 2) presents a case in 

point, as the module was designed primarily to enable micro-iteration in cases where loading 

times for large data models could be prohibitive, rather than to be used in ‘finished’ pieces. 

Similarly, the RiSearcher object provides real-time n-grams (for small n) via the Google 

Search engine and can often be replaced by a more-efficient embedded n-gram model (that 

does not require network access) in cases where the lexicon can be pre-determined.  
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RiTa Module 
% of Students 

(n=15) 

Grammars 33% 

N-Grams 20% 

Text Display 53% 

Text Animation 13% 

Text-To-Speech 20% 

Feature Extraction 

(Tokenizers, 

Stemmers,  

Taggers, etc.) 

20% 

Audio Support 7% 

Did not use RiTa 20% 

Table 12. RiTa modules used in final projects. 

The findings in Table 12 suggest that significant variation was in fact present in 

student projects. And while a number of factors may have contributed to this finding, it seems 

likely that the affordances of the RiTa tools played some not insignificant part. Further 

evidence in support of this finding was the fact that the two mini-projects previously assigned 

focused heavily on the grammar and n-gram modules. Thus one might reasonably expect 

these modules would be used more far more frequently in student projects, but this was not 

the case (average of all modules=23%, n-grams=20%, grammars=33%). This finding also 
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suggests that, as students gain facility with the tools and, concurrently, with digital arts and 

literary practice, they make progress toward the more general goal of procedural literacy. As 

literacy improves, their reliance on a single module, library, or even programming language, 

diminishes so that by the end of the semester students are capable of navigating APIs, 

documentation, and source-code, using tools that were not specifically discussed in class, and 

ignoring elements of tools designed to provide scaffolding for specific tasks which are no 

longer perceived as problematic. As discussed in Chapter 3 (Pedagogy), well-designed 

scaffolding provides support only for as long as the skill for which it is designed remains 

difficult. When this is no longer the case, the scaffolding should become not only 

unnecessary, but more importantly, transparent—incrementally illuminating the conceptual 

details it once allowed the learner to avoid in lieu of more pressing concerns. 

5.8 Limitations 

The further one moves away from the controlled laboratory situation the 

more difficult it becomes to establish a clear [and] unambiguous set of 

relationships that support valid conclusions. Research based in actual 

practice often supports many alternative explanations of what happens and 

how it happens. [Hewett et al. 2005] 

There are number of limitations to the pilot evaluation presented, specifically the lack 

of a control group, the nature of our participant pool, and the presence of a highly motivated 

experimenter. Further, as discussed in Denny [2008], Parsons’ problems exhibit a number of 

limitations unrelated to this study.  
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5.8.1 Lack of Controls 

As this pilot study is contextual, it exhibits both the strengths and drawbacks of this 

methodology. One such drawback in this case is the lack of any formal control group; that is, 

one or more sections of the course in which some other toolset and pedagogical approach was 

used. Unfortunately this type of experiment has thus far been infeasible in the context of 

PDAL. As such, two important questions remain unanswered as regards the efficacy of our 

tools and teaching strategies. First it is unclear whether one factor or multiple factors in 

combination are responsible for the results presented above. As noted in Hewett et al [2005], 

a weakness of conceptual methodologies is the fact that, 

the further one moves away from the controlled laboratory situation the more 
difficult it becomes to establish a clear unambiguous set of relationships that 
support valid conclusions.  

Thus, in our study, students’ gains in self-efficacy and performance may well be due to a 

number of factors: the selected tools, the pedagogical philosophy, the assignments and 

exercises, the public critiques—all of which are rather unique in computer science 

education—or some complex combination of one or more of these. Additionally, it is unclear 

to what degree students’ measured progress was due to our approach or to other (external) 

factors; e.g., outside exposure to programming, or learning accomplished in other classes. As 

Turner [2007] states: 

It is difficult to precisely tell the effect of the presence of a technology 
and methodology, since there is no way to observe a creative process 
then ‘rewind’ it, insert the new technology and methodology, press ‘play’ 
and compare the results. The difference must be subjective, at least at 
small and medium scales of deployment. By using the term ‘prefer’, I 
have chosen one factor that could be said to represent an improvement 
in the creative process—that the creative worker prefers it. Other questions 
I could have chosen are, for example, whether the tools or methodologies 
made the process ‘quicker’, ‘cheaper’, ‘more prize-winning’, 
and so on, but these are difficult to evaluate in the context of interactive 
art at small or medium scales. 
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5.8.2 Participants 

A further potential source of bias in the study was the fact that participants were from 

a narrow and non-representative demographic (specifically university and graduate students 

at two top-tier universities). Thus, it is unclear whether the effects noted would generalize to 

other demographic groups, still less so for under-represented groups [Plass et al. 2007]. 

Further, all participants in the study self-selected by enrolling in the course and consenting to 

participate in the study. As the course was not required, it is likely that participants had at 

least some prior motivation for learning the material in question, casting further doubt on the 

generalizability of our results. 

5.8.2 Experimenter 

As is often the case in contextual studies of this kind, the course instructor and 

software creator was also the author of the study and clearly influenced participants’ 

experience of both the tools and teaching. As mentioned previously (See Chapter 3: 

Generative Pedagogy), this helped to facilitate the adaptive character of the course, as pace 

and direction were adjusted based on feedback about both the tools and the materials. It is 

unclear whether a course taught by a different instructor, specifically one less familiar with 

these tools, would yield similar results. 

5.8.2 Software 

 Similarly, as is often the case in contextual studies of this kind, the software being 

evaluated was modified throughout the course of the study. Several bug fixes, and even a 

number of features requests were accommodated over the course of the semester, thus 

introducing another potentially confounding factor to the study. 
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5.8.2 Parsons problems 

While Parsons problems present a number of advantages over traditional code 

reading and writing test, there are also weaknesses to this approach. First, it is quite possible 

to solve a Parsons problem (even correctly) and still not understand at a deep level how the 

code works. Similarly, for weak students, the Parsons problem format provides an 

opportunity to guess an answer that is not available in code-writing questions, though it is 

less likely, as compared to multiple-choice style questions, that many of these guesses will be 

correct. Further, Parsons problem do not adequately address process, as they present only a 

single method, while nearly all real programs skip from method to method. Finally, in 

contrast to code-writing tests which show a high degree of correlation to Parsons scores, 

scores on code-tracing problems seem largely independent [Denny 2008]. 

5.9 Summary 

We have no delusions that evaluating tools is an easy task, but we also 

believe that the potential impact of improved tools would be enormous in 

amplifying and inspiring creativity. [Resnick et al. 2005] 

As noted above, there are significant issues with the largely descriptive evaluation 

presented here, perhaps most notably the lack of any true control, which is often cited as a 

weakness of contextual methods. Yet as an initial investigation into the real-world effects of 

these tools (and others like them) it is encouraging on a number of different dimensions. 

Students’ attitudes, self-efficacy and ability all showed significant positive change measured 

between the pre- and post-semester surveys and programming quiz results. Additionally, 

though difficult to measure in a classroom environment, we see some evidence that the tools 

support student creativity. Students noted in increase in the frequency of their creative 

expression via computational media over the course of the semester and perceived their 
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outputs to be of importance beyond the class. Further, their work was well-received by the 

larger digital arts community, with projects later receiving publication in journals of digital 

literature, arts grants, and international awards. Further, students’ projects exhibited 

surprising diversity both in terms of the types of media represented, and in the elements of the 

toolkit utilized. Of course, to verify any of the trends discussed here, additional research is 

needed, a topic discussed further in the concluding chapter. 
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CHAPTER 6: CONCLUSIONS  

6.1 Contributions 

This thesis has presented RiTa from a number of perspectives: as tools and 

affordances for practicing writers; as a pedagogical strategy, both for teaching procedural 

literacy to humanities students, and for engaging Computer Science students with creative 

practice; and as a real-world testing ground for creativity support principles, providing a 

unique context for assessing the efficacy of design and evaluation strategies. As such, the 

contributions of this research fall primarily into two related sub-fields: Creativity Support 

Tools (CST) research and Computer Science (CS) education, according to which they have 

been grouped below. In addition to contributions and future work in these areas we present 

several possible directions for additional evaluation of tools like those presented. Finally we 

conclude with a set of more speculative arguments based on our experience with artists and 

students as they engaged with these tools over the last several years. 

6.1.1 Contributions: Creativity Support 

In the context of creativity support tools research, RiTa represents the first 

production-quality toolkit designed specifically for practicing computational literary artists, 

complete with thorough documentation, examples, and an extensive catalog of sample 

projects, each with source code, screenshots, and descriptive text. In addition to the 

implementation details of the toolkit, we have presented a series of extensions to traditional 

natural language algorithms developed specifically for the needs of computational writers. 

Additionally we have created a number of auxiliary tools (e.g., the RiTaServer, the RiTa-

Eclipse plugin, and the RiGrammarView application) to augment the library’s functionalities 

in several widely-used environments. Further, we have detailed the set of design criteria (and 
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anti-criteria) that guided our implementation decisions and have enumerated the set of design 

tensions that arose in the course of our iterative development process. In detailing our 

resolutions to these conflicts, we have abstracted a set of principles which appear unique to 

creativity support in an arts context; specifically the need to support serendipity, inverted use, 

artistic misuse, and micro-iteration. Additionally, we have detailed the specific technical 

implementations with which we were able to realize the above principles, without sacrificing 

usability or performance goals. Most importantly we have distributed (and evaluated) these 

tools in real-world creative contexts, over the past three years, with a diverse population of 

users including students, practicing artists, and educators. 

6.1.2 Contributions: Education 

In the context of digital arts and computer science education, RiTa represents the first 

end-to-end toolkit designed specifically to support courses in computational literature. 

Additionally, the RiTa tools appear to accomplish several related but distinct pedagogical 

objectives:  

• to effectively engage computer science students with creative practice and introduce 

new ways of thinking about the discipline; 

• to broaden interest in computer science for a diverse range of students, furthering 

procedural literacy and computational thinking beyond the boundaries of the 

computer science department; 

• to positively affect students attitudes and beliefs about programming, as well as their 

quantitatively-measured programming skills. 

Finally, the RiTa tools, in combination with the pedagogical approach presented, and 

the Programming for Digital Arts and Literature (PDAL) course represent one of the first 
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successful integrations of tools and pedagogy in a digital media context, for both undergrads 

and graduate students, focusing on language and literature. As such it represents a new, and 

potentially important context for educators and researchers with which to explore the viability 

of procedural literacy, expressive programming, and computational thinking for a broader 

demographic. 

6.1.3 Artistic Strategies 

 My most notable breakthrough, really, was when I realized my standard 

practice for CS classes doesn't work here. [PDAL student, 2009] 

It is evident from our experience, as described in the chapters above, that while there 

may be significant overlap between the strategies taught in a typical software engineering 

context, and thus designed into creativity support tools, some of these may be unproductive in 

an artistic and/or educational context. An obvious example is black-box style encapsulation, 

which, while generally a useful technique for API and/or library design, can often frustrate 

students’ efforts to understand the larger picture of how their software operates, and 

contradicts pedagogical theories that advocate transparency and/or self-directed, exploratory 

learning.  

Perhaps more interesting still, there appear to exist artistic programming strategies 

which extend beyond, and may even contradict, those generally taught in introductory 

computer science courses. Examples presented in chapter three include strategies that 

leverage micro-iteration, artistic misuse, inverted use, and serendipity. The reverse also 

appears to be the case as techniques generally considered to be standard practice in many 

software development contexts can be perceived as counter-productive in an arts context. One 
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such example is test-driven development which, at least during the early stages of a project, 

can significantly restrict the exploratory process so important to successful artistic outcomes. 

These observations highlight two important conclusion for creativity support, both 

within and beyond the education environments we have been discussing. First, that context 

must be taken seriously at all levels of design; from workflow, to interface, to the design 

principles guiding even the most minute implementation details. This perspective corresponds 

to some recent research which demonstrates how social, political, and cultural assumptions 

and values can become embedded in technical artifacts at even the very lowest levels 

[Friedman et al. 1996, 2006; Flanagan et al. 2005b, 2007, 2008]. While the added effort 

required to analyze just what is at stake in such decisions may seem large at first, it pales in 

comparison to the time spent on software projects which fail, either partially or totally, due to 

their lack of attention to details such as these107.  

Second, these observations highlight the need for educators to pay careful attention to 

the mindset of students and its relation to the context at hand. It has not been the case, at least 

in our experience, that skills learned in say... an introductory programming class, can be 

easily applied in another pedagogical context, or at least this should not be assumed to be the 

case by educators. As one student faced with this difficulty put it, “I feel like I need to ... 

really fit myself into the mindset of an artist right now. Given that this is the only computer 

science course I'm taking at the moment, one would assume that would be easy, but that's not 

true at all. I'm having a lot of difficulty shifting my mindset into a more appropriate one.” Or, 

in the words of another student, “My most notable breakthrough, really, was when I realized 

my standard practice for CS classes doesn't work here. I approached this class as a CS 

                                                        
107 For an overview of Value-Sensitive Design and its applications in a number of different 

research and industry projects, see http://depts.washington.edu/vsdesign/projects.shtml. 
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programming class, which meant staying up late at the last minute and doing my work then. 

This tactic doesn't lend itself to art in any shape or form, and though I am an artist, I haven't 

thought of computers in the same fashion.” Here again we see how, beyond principles and 

implementation strategies, careful attention to the specificities of the context in which 

computation occurs appears to be an important factor in the relative success of tools like 

these; a factor that appears still more relevant when the context is an educational one. 

6.2 Future Research 

The research presented here on the RiTa toolkit and its use as a pedagogical tool 

suggests a number of different directions for further research in both the creativity support 

and educational communities. This section describes several additional projects in these 

disciplines that could be achieved with adequate institutional support and the right team of 

collaborators. They range in size from small, semester-long projects that could be 

accomplished by a single researcher (or even graduate student), to larger multi-year projects 

that might well require inter-departmental collaboration. The projects are organized according 

to the aspect of the research they would extend, whether the core toolkit itself, auxiliary 

support tools, one or more pedagogical applications, and evaluation measures, although 

several are applicable to more than one such area.  

6.2.1 The RiTa Toolkit 

There are a number of potentially interesting ways in which the core RiTa toolkit 

could be enhanced via further research and development. Some ideas along these lines 

include more sophisticated generation strategies, speech recognition capabilities, support for 

additional graphics contexts, and support for mobile platforms.  
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Over the past few month we have performed some initial experiments toward the goal 

of adding more sophisticated generation support, specifically for the lexicalized Tree 

Adjoining Grammar (TAG) formalism [Joshi et al. 1975]. While the mildly-context sensitive 

properties of TAG grammars would provide a degree of expressive power beyond that of the 

basic context-free grammars implemented in RiTa, this functionality would need to be 

balanced with an API that minimizes the complexity associated with such techniques, perhaps 

along the lines of Stone’s [2002] Taglet system. This would provide a further level to explore 

with students in discussions of regular expressions, state-machines and the language 

hierarchy. On the other hand, the callback functionality currently provided in the RiGrammar 

object surpasses the functional capabilities of a basic TAG grammar (that is, a TAG object 

could be simulated by the current RiGrammar implementation, but not vice versa.) With this 

in mind, any gains in pedagogical clarity, most relevant perhaps to those students interested 

in natural language research, would have to be weighed against the additional complexity and 

potential confusion that might result from the inclusion of multiple grammar objects. 

Additional implementations of RiTa’s graphics capabilities are also a worthwhile 

direction to explore. At present, RiTa uses the rendering capabilities found in Processing108, 

but it would be reasonably straightforward to implement multiple subclasses of the RiText 

object, each of which handles drawing in a different environment. An initially obvious choice 

for new graphics implementation would be a ‘straight’ Java version of RiText, which would 

bypass all Processing methods calls and instead utilize Java’s drawing primitives. Another 

option, though more difficult to implement, would be to use the browsers built-in JavaScript 

                                                        
108 A tutorial on the RiTa website details for students how these functions can be accessed 

outside of the Processing environment, e.g., in Eclipse. 



 

209 

rendering capabilities, similar to the way in which the Processing.js (http://processingjs.org/) 

library functions.  

The inclusion of speech recognition capabilities in the toolkit is a feature requested 

by several students in the context of their PDAL projects. Toward this end, we have 

experimented with wrappers for the CMU Sphinx recognition framework which could enable 

users to define (and modify), in a plain text file similar to a RiTa grammar or addenda file, a 

context for speech recognition. Unfortunately, the data models required, at least in the Sphinx 

framework, are prohibitively large and would preclude execution in a web browser context. 

This is not to say that such functionality is not worth exploring further, only that it would 

likely need to be added as an optional or supplementary module, rather than as part of the 

core RiTa tools.  

Lastly, an implementation of RiTa for one or more mobile platforms could be of 

significant utility as the importance of these devices for personal and/or artistic expression 

continues to grows. Further, the resource constraints of today’s mobile platforms are 

analogous to those of web browsers, both placing strict limits on memory allocation, CPU 

utilization, and resource file sizes. Thus much of the work accomplished in optimizing RiTa 

for the web could be easily repurposed for mobile contexts. The open-source Android 

environment represents an initially promising candidate for such an effort, as it already 

contains a nearly complete J2SE stack and built-in speech-recognition capabilities. Such a 

port would again require a new graphics implementation as described above, though the fact 

that Android supports the OpenGL ES standard could significantly simplify this endeavor. 

While potentially a longer term project, mobile platforms represent, in our opinion, a 

particularly promising realm of exploration for the further development of artistic support 

tools. 
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6.2.2 Auxiliary Tools 

I've often speculated, bitterly, as to why there is no word processor with the 

kind of filters and effects that are standard features in any of hundreds of 

graphic or audio manipulation programs; why page layout programs don't 

just 'know' how to typeset poetry with either traditional or post-Mallarmé 

sensitivities.  [Cayley 2009] 

In addition to augmentations of the toolkit as discussed above, there are a number of 

ways in which the development of related tools might be pursued. One such direction might 

involve integration with one or more open-source word processing package to provide access 

(at the interface level) to a variety of literary filters and extensions, similar to the spell-check 

or thesaurus options found in current packages. Such an integration has been requested in the 

past by less technical users, outside of the educational context, who have expressed 

trepidation concerning RiTa’s programmatic interface. While supporting these users is clearly 

important, the fact that a majority of existing creativity support research has targeted 

graphical user interfaces has caused us, at least thus far, to hesitate before embarking down 

this path. 

Another augmentation, or alternative, to RiTa’s text-based programmatic interface 

would be a visual programming interface similar to the Max/MSP environment discussed in 

chapter 3. An initial prototype of this functionality has been implemented and is currently 

being tested (see Figure 19 below).  
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Figure 19: The RiTa live-coding environment (prototype). 

6.2.3 Evaluation  

It is no longer sufficient to evaluate whether people can use a given design to 

achieve a task easily and efficiently. We also need—sometimes primarily—to 

understand how the design resonates aesthetically, emotionally, socially and 

culturally, both with particular users and with a larger audience. And this 

implies that we need new sources of assessment on the one hand, and that 

assessments need to be multi-layered on the other. [Gaver 2007] 
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6.2.3.1 Further Study 

 
Further study is clearly needed to assess the effects of different tools on the degree of 

creativity exhibited in project outcomes, both for students and artists. Unfortunately such 

evaluation has generally proven to be both difficult and resource intensive. For an in-depth 

discussion of the issues involved and a variety of proposed approaches, we recommend 

‘Creativity Support Tool Evaluation Methods and Metrics’ [Hewitt 2005], a report produced 

as part of the 2005 NSF-sponsored Creativity Support Tools conference. Similarly, further 

evaluation of the learning that occurs in courses like ‘Programming for Digital Art and 

Literature’ (or Mark Guzdial’s ‘Media Computation’) would be extremely beneficial, 

especially were it to include a longitudinal component (following students beyond a single 

semester or year). One potentially useful experiment would be to teach similar material in 

parallel courses using a range of different toolsets (e.g., a general-purpose language like 

Python or Java, a RiTa-like approach, and a environment customized for education, e.g., 

Scratch or Alice) and compare students’ relative confidence, self-efficacy and comprehension 

of core concepts after each. Of course the practical difficulties of designing and implementing 

such an experiment are significant; any proposal along these lines would likely require 

significant investment from one or more institutions. For those interested, Tew et al.’s [2005] 

“Impact of Alternative Introductory Courses on Programming Concept Understanding” 

describes some initial experiments along these lines at Georgia Tech.  

6.2.3.2 Metrics for programmatic support 

As mentioned in previous sections, evaluation metrics for creativity support tools to 

this point have primarily focused on usability as manifest through graphical user interfaces 
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[Nickerson and Landauer, 1997]. We can see this bias toward the visual and the surface even 

in the introductory paragraph of the NSF-sponsored Creativity Support Tools conference 

report which reads (in its entirety):  

Paradigm shifting breakthroughs make for great stories, but normal science is 
equally important in the evolutionary development of science, engineering, 
and medicine. Large and small breakthroughs are often made by scientists, 
engineers, designers, and other professionals who have access to advanced 
tools. The telescopes and microscopes of previous generations are giving 
way to advanced user interfaces on computer tools that enable exploratory 
search, visualization, collaboration, and composition. [Hewitt 2005, italics 
ours] 

Here we can appreciate what has been referred to “the tyranny of the visual” [Arlen 1979]. 

Instead of focusing on the power of computational methods to help generate new creative 

techniques and outcomes, the focus is on the power of the user interface, and on tools for 

augmenting vision and visualization. While such approaches are clearly worth pursuing, they 

are not the only avenue for new research. In fact, this overwhelming focus on the visual 

interface suggests that new researchers in the field might perhaps do well to focus their 

attention elsewhere; on the aural, the haptic, the linguistic, or the conceptual.  

In addition to this overwhelming focus on the visual, usability has generally been 

evaluated in the context of productivity in traditional tasks, even when performed by creative 

professionals. As Hewett [2005] comments, “researchers often focus on serving professionals 

such as business decision makers, biologists exploring genomic databases, designers 

developing novel consumer products...” In contrast, we argue, further attention to exploratory 

creativity is also warranted, focusing on contexts (e.g., the arts) in which creative goals are 

less-well-defined, and users work at a range of proximities to computational mechanisms. As 

Jennings notes, “new media arts practitioners and researchers should be regarded as valuable 

contributors not only as users needing better creativity support tools (CST) to enhance their 
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own creative process, but also as the designers of experimental and innovative creativity 

support tools” [Jennings et al 2005].  

Here is where the notion of a programmatic usability might prove useful, shifting our 

focus away from the interface and toward the authoring of creative processes. Such a focus 

might not only increase the utility and novelty of creativity outputs, but would facilitate a 

transition away from surface effects and instead toward a deeper understandings and 

engagement with process, such as has been argued for by proponents of procedural literacy. 

As a trivial example, instead of realizing a new way to use a provided Photoshop filter, a 

procedurally literate user might design and implement their own filter, which not only better 

expresses their creative vision, but could then be shared with other filter users and designers. 

As Noah Wardfrip-Fruin says in his introduction to Expressive Processing [2009], “It is 

common to think of the work of authoring, the work of creating media, as the work of writing 

text, composing images, arranging sound, and so on. But now one must think of authoring 

new processes as an important element of media creation.” 

6.2.3.3 Longitudinal Studies 

It is still an open question how to measure the extent to which a tool fosters 

creative thinking. While the rigor of controlled studies makes them the 

traditional method of scientific research, longitudinal studies with active 

users for weeks or months seem a valid method to gain deep insights about 

what is helpful (and why) to creative individuals.  [Seo 2006] 

Lastly, creativity support tools research such as presented above could benefit greatly 

from the application of longitudinal studies, with students and, especially, practicing artists. 

While short term evaluations have clear advantages, their efficacy is often limited as the 

success of creativity support software is determined over years, not weeks or months. Studies 
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that examine the all the various phases in a tools adoption, from initial uses, to increasing 

familiarity, to eventual mastery, to use in teaching and/or mentoring, will be particularly 

useful in eliciting a more complete set of properties that either facilitate or discourage 

creativity in these different scenarios.  

6.3 Final Thoughts 

In conclusion there are several points from above that we wish to reiterate. First, that 

perhaps for the first time, in part due to increases in the computing resources available to the 

average user, tool support for computational literature appears to be feasible, even when 

considering constrained-execution domains such as the web browser. Second, given such 

support, computational literature appears to be a productive new context for a wide range of 

users, not only for practicing computational artists and others with extensive programming 

knowledge, but also for students with variable backgrounds and skill levels. Third, this fact is 

particular encouraging as the context of computational literature also appears to quickly and 

naturally raises core ideas in both art and computer science, facilitating students’ creative 

expression while simultaneously advancing procedural literary, and exposing students to the 

core concepts that constitute ‘computational thinking’. Although not practical in all cases, it 

is also worth noting that the benefits of this approach appear to multiply when tools and 

accompanying pedagogy can be mutually informing, as was the case with the RiTa tools in 

context of the ‘Programming for Digital Arts & Literature’ course. 

Additionally we wish to raise a few more speculative ideas for future researchers 

which, although not adequately tested, appear evident from our experience. First, that 

creativity support is not something easily simulated in a laboratory environment, and thus the 

field desperately needs more real-world applications, with careful and well-planned 
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evaluation. Second, whenever possible, creativity support researchers should leverage 

synergies with other research programs stressing creativity, specifically procedural literacy, 

expressive programming, and the computational arts. Much of the creativity support research 

performed thus far has been limited by the lack of such cooperation, and by an over-emphasis 

on the visual elements of creative artifacts, whether the visual properties of creative outputs, 

or the interface elements implemented in new creativity support tools. It is important for 

researchers to appreciate the fact that artists have a long history of building and refining their 

own tools to better match their needs, and low-level control over the medium has generally 

been an important property of such tools. Further, such tools, even when designed and 

developed by a single artist for a specific project, have often proven to be of significant 

general utility for others working in related areas.  

Lastly, we conclude by making explicit what the reader has likely sensed beneath the 

surface of this work; specifically that our interest in these topics is not motivated only by an 

impassive scientific curiosity, but instead by a deep and abiding interest in the topics at hand. 

It is not by chance that this research focuses on the intersection of creative writing and 

exploratory computational practice, but rather because these have been central concerns in 

our lives, in our own artistic practice and in the work of the authors and artists that have 

moved us. As such, we can only hope that this writing inspires in the reader some small 

fraction of the aesthetic and intellectual excitement we have experienced in its creation. 
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APPENDIX A: RESOURCES  

 

Links to further resources for RiTa / PDAL 

The RiTa library http://www.rednoise.org/rita/ 

RiTa for WordNet http://www.rednoise.org/rita/wordnet 

The RiTaServer http://www.rednoise.org/rita/documentation/ 
ritaserver_class_ritaserver.htm 

The RiTa-Eclipse plugin http://www.rednoise.org/ep5/ 

RiTa example programs http://www.rednoise.org/rita/examples/ 

The RiTa Project Gallery http://www.rednoise.org/rita/rita_gallery.htm 

Programming for Digital 
Art & Literature course web 

http://www.rednoise.org/pdal/ 

RiTa documentation  
(reference) 

http://www.rednoise.org/rita/ 
documentation/docs.htm 

RiTa documentation 
(javadocs) 

 

http://rednoise.org/rita/javadocs/index.html? 
rita/package-summary.html 
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ENDNOTES 

i The concept of an affordance was coined by the perceptual psychologist James J. 

Gibson in his seminal book The Ecological Approach to Visual Perception. The concept was 

introduced to the HCI community by Donald Norman in his book The Psychology of 

Everyday Things from 1988. According to Norman (1988) an affordance is the design aspect 

of an object which suggest how the object should be used; a visual clue to its function and 

use. Norman writes: 

“...the term affordance refers to the perceived and actual properties of the thing, 

primarily those fundamental properties that determine just how the thing could possibly be 

used. [...] Affordances provide strong clues to the operations of things. Plates are for pushing. 

Knobs are for turning. Slots are for inserting things into. Balls are for throwing or bouncing. 

When affordances are taken advantage of, the user knows what to do just by looking: no 

picture, label, or instruction needed.” (Norman 1988, p.9) 

Norman thus defines an affordance as something of both actual and perceived 

properties. The affordance of a ball is both its round shape, physical material, bouncability, 

etc. (its actual properties) as well as the perceived suggestion as to how the ball should be 

used (its perceived properties). When actual and perceived properties are combined, an 

affordance emerges as a relationship that holds between the object and the individual that is 

acting on the object (Norman 1999). As Norman makes clear in an endnote in Norman 

(1988), this view is in conflict with Gibson’s idea of an affordance (explained next). 

As opposed to Norman’s use of his term, Gibson intended an affordance to mean “an 

action possibility available in the environment to an individual, independent of the 

individual’s ability to perceive this possibility” (McGrenere and Ho, 2000). Unlike Norman’s 
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inclusion of an object’s perceived properties, or rather, the information that specifies how the 

object can be used, a Gibsonian affordance is independent of the actor’s ability to perceive it. 

 

Gibson’s Affordances 

 

 

Norman’s Affordances 

 

       

        * Action possibilities in the environment in 

relation to the action capabilities of an actor 

        * Independent of the actor’s experience, 

knowledge, cultre, or ability to perceieve 

        * Existence is binary - an affordance exists or it 

does not exist. 

 

   

        * Perceived properties that may not actually exist 

        * Suggestions or clues as to how to use the 

properties 

        * Can be dependent on the experience, knowledge, 

or culture of the actor 

        * Can make an action difficult or easy 

 

Table E1: Affordances as defined by Gibson and Norman [McGrenere and Ho, 2000]. 
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