

Structures inn lchoitecture

Excerpts

G G Schierle, PhD, FAIA
Professor of Architecture
University of Southern California

ISBN 0181965097
Copyright © G G Schierle 1990-2006. All rights reserved

This book includes material from the following sources:
International Building Code 2003:
"Portions of this document reproduce sections from the 2003 International Building Code, International Code Council, Falls Church, Virginia. All rights reserved."
American Institute of Steel Construction:
"Copyright © American Institute of Steel Construction, Inc.
Reprinted with permission. All rights reserved."
United States Geological Survey, courtesy USGS

University of Southern California Custom Publishing
C/O Chancey Jemes
Los Angeles, CA 90089-2540
e-mail: jemes@usc.edu
Tel. 213-740-8946
Fax 213-740-7686

About the book

Structures not only support gravity and other loads, but are essential to define form and space. To design structures in synergy with form and space requires creativity and an informed intuition of structural principles. The objective of this book is to introduce the principles as foundation of creative design and demonstrate successful application on many case studies from around the world. Richly illustrated, the book clarifies complex concepts without calculus yet also provides a more profound understanding for readers with an advanced background in mathematics. The book also includes structural details in wood, steel, masonry, concrete, and fabric to facilitate design of structures that are effective and elegant. Many graphs streamline complex tasks like column buckling or design for wind and seismic forces. The graphs also visualize critical issues and correlate US with metric SI units of measurement. These features make the book useful as reference book for professional architects and civil engineers as well as a text book for architectural and engineering education. The book has 612 pages in 24 chapters.

Acknowledgements

I would like to thank the following students and professionals for contributions. Students: Bronne Dytog, June Yip, Othman AI Shamrani, Lauramae Bryan, Sabina Cheng, Xiaojun Cheng. Claudia Chiu, Samy Chong, Kristin Donour, Miriam Figueroa, Ping Han, Lucia Ho, Maki Kawaguchi, Nick Ketpura, Ping Kuo, Jennifer Lin, Jason Mazin, Sassu Mitra, Rick Patratara, Timothy Petrash, Musette Profant, Katie Rahill, Shina and Srinivas Rau, Neha Sivaprasad, Madhu Thangavelu, Sharmilla Thanka, Reed Suzuki, Bogdan Tomalevski, Carole Wong, Nasim Yalpani, Matt Warren; professionals: James Ambrose, Julie Mark Cohen, Jeff Guh, Robert Harris, Theo Heizmann, Will Shepphird, Robert Timme, Helge Wang, Walter Winkle; drawings by architects and engineers: Kurt Ackerman, Ove Arup, Tigran Ayrapetian, Fred Basetti, Brabodh Banvalkar, Mario Botta, Andrea Cohen Gehring, Jacques de Brer, Norman Foster, Arie Krijgsman, Von Gerkan Marg, David Gray, Jürgen Hennicke, Heinz Isler, Arata Isozaki, Paul Kaufmann, Pierre Koenig, Panos Koulermos, Robert Marquis, Edward Niles, Frei Otto, John Portman, Jörg Schlaich, Peter von Seidlein, James Tyler, and Dimitry Vergun.

Units

SI * units (metric)			Conversion factor **	US units		
		Remark				Remark
Length						
Millimeter	mm		25.4	Inch	in	
Centimeter	cm	10 mm	30.48	Foot	ft	12 in
Meter	m	1000 mm	0.9144	Yard	yd	3 ft
Kilometer	km	1000 m	1.609	Mile	mi	5280 ft
Area						
Square millimeter	mm^{2}		645.16	Square in	i^{2}	
Sq. centimeter	cm^{2}	$100 \mathrm{~mm}^{2}$	929	Square foot	ft^{2}	$144 \mathrm{in}^{2}$
Square meter	m^{2}	1 Mil	0.835	Sq. yard	yd^{2}	$9 \mathrm{ft}^{2}$
Hectar	ha	$10000 \mathrm{~m}^{2}$	2.472	Acre	Acre $=$	$840 \mathrm{yd}^{2}$
Volume						
Cubic millimeter	mm^{3}		16387	Cubic inch	in^{3}	
Cubic centimeter	cm^{3}	$1 \mathrm{k} \mathrm{mm}^{3}$	28317	Cubic foot	ft^{3}	
Cubic meter	m^{3}	$1 \mathrm{Mil} \mathrm{cm}^{3}$	0.7646	Cubic yard	yd^{3}	
Liter	1	$0.001 \mathrm{~m}^{3}$	0.264	Gallon	US gal =	. 785 liter
Mass						
Gram	g		28.35	Ounce	OZ	
Kilogram	kg	1000 g	0.4536	Pound	Lb, \#	16 oz
Tonn	t	1000 kg	0.4536	Kip	k	1000 \#
Force / load						
Newton	N		4.448	Pound	Lb, \#	
Kilo Newton	kN	1000 N	4.448	Kip	k	1000 \#
Newton/ meter	N / m		14.59	Pound/ ft	plf	
Kilo Newton/m	kN/m		14.59	Kip/ ft	klf	1000 plf
Stress						
Pascal $=\mathrm{N} / \mathrm{m}^{2}$	Pa		6895	Pound/ in ${ }^{2}$	psi	
Kilo Pascal	kPa	1000 Pa	6895	Kip / in ${ }^{2}$	ksi	1000
Fabric stress						
Newton / m	N/m		175	Pound/ in	Lb/in	Fabric
Load / soil pressure						
Pascal	Pa	1000 Pa	47.88	Pound/ ft^{2}	psf	
Moment						
Newton-meter	$\mathrm{N}-\mathrm{m}$		1.356	Pound-foot	Lb-ft, \#'	
Kilo Newton-m	kN-m	1000 N-	1.356	Kip-foot	k-ft, k'	1000\#'
Temperature						
Celcius	${ }^{\circ} \mathrm{C}$.55(F-32)	Fahrenheit	${ }^{\circ} \mathrm{F}$	
Water freezing		$0^{\circ} \mathrm{C}$	=	$32^{\circ} \mathrm{F}$		
Water boiling		$100^{\circ} \mathrm{C}$	=	$212^{\circ} \mathrm{F}$		

* $\quad \mathrm{SI}=$ System International (French - designation for metric system)
** Multiplying US units with conversion factor $=$ SI units
Dividing SI units by conversion factor $=$ US units

Prefixes

Prefix	Factor
Micro-	0.000001
Mlli-, m	0.00001
Centi-	0.01
Deci-	0.1
Semi-, hemi-, demi-	0.5
Uni-	1
Bi-, di-	2
Tri-, ter-	3
Tetra-, tetr-, quadr-	4
Pent-, penta-, quintu-	5
Sex-, sexi-, hexi-, hexa-,	6
Hep-, septi-,	7
Oct-, oct-, octa-, octo-	8
Non-, nona-	9
Dec-, deca-, deci, deka-	10
Hect-, hector-	100
Kilo-, k	1,000
Mega-, M	$1,000,000$
Giga-, G	$1,000,000,000$
Tera-	$1,000,000,000,000$

Strength Stiffness Stability

Force types
Force vs. stress
Allowable stress
Axial stress
Shear stress
Torsion
Principal stress
Strain
Hook's law
Elastic Modulus
Thermal strain
5-14 Thermal stress
5-17 Stability

Bending

Bending and shear
Equilibrium method
Area nethod
6-13 Indserrninata beams

Filexure iomula

Sjection modulus
Moment of inertia
Shear stress
6-22 Deflection
Buckling
Euler formula
Slenderness ratio
Combined stress
Kern
Arch and vault
Wood buckling
Steel buckling
PART III: DESIGN METHODS

ASD, LRFD, Masonry and Concrete Design
ASD (Allowable Stress Design)
LRFD (Load Resistance Factor Design)
Masonry design (ASD)
Concrete strength design (LRFD)

2

Understanding loads on buildings is essential for structural design and a major factor to define structural requirements. Load may be static, like furniture, dynamic like earthquakes, or impact load like a car hitting a building. Load may also be man-made, like equipment, or natural like snow or wind load. Although actual load is unpredictable, design loads are usually based on statistical probability. Tributary load is the load imposed on a structural element, like a beam or column, used to design the element. All of these aspects are described in this chapter.

Load

Introduction

Structures resist various loads (gravity, seismic, wind, etc.) that may change over time. For example, furniture may be moved and wind may change rapidly and repeatedly.. Loads are defined as dead load (DL) and live load (LL); point load and distributed load; static, impact, and dynamic load, as shown at left.
1 Dead load: structure and permanently attached items (table 21.)
2 Live load: unattached items, like people, furniture, snow, etc (table 2.2)
3 Distributed load (random - snow drift, etc.)
4 Uniform load (uniform distribution)
5 Point load (concentrated load)
6 Uniform load on part of a beam is more critical than full load
$7 \quad$ Negative bending over support under full load reduces positive bending
8 Static load (load at rest)
9 Impact load (moving object hitting a structure)
10 Dynamic load (cyclic loads, like earthquakes. wind gusits, etc.)
Classification as DL and LL is due to the roiloving consideracions:

- Seismic load is primaril. clefined by dead load
- Dead load can tee used to resist Cvertiming under lateral load
- Lang ierm CL cañ cause rnateriai fatigue
- Dt-defiecticn niay de compensated by a camper (reversed deflection)

For some elements, such as beams that span more than two supports partial load may be more critical than full load; thus DL is assumed on the full beam but LL only on part of it

Lateral load (load that acts horizontally) includes:

- Seismic load (earthquake load)
- Wind load
- Soil pressure on retaining walls

Other load issues introduced::

- Tributary load (load acting on a given member)
- Load path (the path load travels from origin to foundation)

Dead Load

Dead load is the weight of the structure itself and any item permanently attached to it, Dead load defines the mass of buildings for seismic design. Table 2.1 give the weight of materials to define building mass. Approximate dead loads are:

- Wood platform framing: 14 psf
- Wood platform framing with lightweight concrete: 28 psf
- Steel framing with concrete deck: 94 to 124 psf

Weight by area	psf	Pa
Gypsum board, 5/8" (16 mm)	2.5	120
Stucco, 7/8" (22 mm)	8	383
Acoustic tile, $1 / 2^{\prime \prime}$	0.8	38
Ceramic tile, 1/4" (6.3 mm)	2.5	120
Glass		
Sheet glass, 1/8" (3 mm)	1.5	72
Sheet glass, $1 / 4 \times 1$ (6 mm)	3	144
Glass block, 4" (102 mm)	20	$\bigcirc 958$
Roof material	(Ω)	-
Built-up roof	Cos	335
Clay / concretetiles	13-20	622-959
Vietal \square	1-3	48-144
Shingles	3	144
Sirigle ply roof / fabric roof	1-2	48-06
Industrial fabric (PVC , fiber glass)	1-2	48-96
Steel floor constructions		
Steel deck / concrete slab, 6" (15 mm)	40-60	1915-2873
Suspended ceiling	2	96
Floor finish	2	96
Steel framing (varies with height)	10-40	479-1915
Partitions (required by code)	20	958
Total	94-124	3543-5458
Wood platform framing		
Wood platform framing + floor / ceiling	14	670
Light-weight concrete option	14	670
Total (with and without concrete)	14-28	1341

IBC table 1607.1 excerpts. Minimum uniform live load			
Use or Occupancy		Pounds / ft²	kPa
Category	Description	psf	kPa
Access floors	Office use	50	2.39
	Computer use	100	4.79
Auditoria and Assembly areas	Fixed seating	50	2.39
	Movable seating	100	4.79
	Stage	125	5.99
Garages	Storage and repair	100	4.79
	Private	50	2.39
Hospitals	Wards and rooms	40	1.92
Libraries	Reading room	60	2.87
	Stack room	125	5.99
Manufacturing	Light	75	3.59
	Heavy	125	5.99
Offices		50	239
Printing plants	Press room	150	7.18
	Composing, eic]]	- 100	4.79
Residential	Basic tloor area	40	1.92
	Exterioftalconies	60	2.87
Review wing staids, ets..		100	4.79
Schools	Classrooms	40	1.92
Sidewalks and driveways	Public access	250	11.97
Storage	Light	125	5.99
	Heavy	250	11.97
Stores		100	4.79
Pedestrian bridges		100	4.79

Live Load

IBC table 1607.1 defines live loads for various occupancies. Except for live load $>100 \mathrm{psf}$ $(4.79 \mathrm{kPa})$ these loads may be reduced for large tributary areas as follows:
$R=r(A-150)$
$R=r(A-14)$
[for SI units]
Reductions R shall not exceed

- 40% for horizontal members
- 60% for vertical members
- $\quad R=23.1$ ($1+\mathrm{D} / \mathrm{L}$)
where
$\mathrm{R}=$ reduction in percent
$r=0.08$ for floors
$A=$ tributary area in square foot $\left(\mathrm{m}^{2}\right)$
D = dead load
L = Unreduced live load per square íoot ($\mathrm{m}^{2}-$)

Roof Load

Roof loads are ciefined by IBC

- Wirid load per IBC 1609

Srion load per IBC 1608
Minimum roof loads:

Roof type	psf	Pa
Awnings and canopies	5	240
Green houses	10	479
Landscaped roofs (soil + landscaping as DL)	20	958
General flat, pitched, and curved roofs	Lr_{r}	Lr

General flat, pitched, and curved roofs
$L_{r}=20 R_{1} / R_{2}$
where
$12<\mathrm{L}_{\mathrm{r}}<20$
$0.58<L_{r}<0.96 \quad$ for SI units
$\mathrm{R}_{1}=1$ for $\mathrm{A} \leq 200 \mathrm{sq}$. ft.
for $\mathrm{A} \leq 19 \mathrm{~m}^{2}$
$\mathrm{R}_{1}=0.6$
for $A \geq 600$ sq. ft.
$\mathrm{R}_{2}=1$
for slopes $\leq 1: 3$
for $A \geq 56 \mathrm{~m}^{2}$
$\leq 18^{\circ}$
$\mathrm{R}_{2}=0.6$
for slopes $\geq 1: 1$
$\geq 45^{\circ}$

Seismic load

Earthquakes cause horizontal and vertical ground shaking. The horizontal (lateral) shaking is usually most critical on buildings. Earthquakes are caused by slippage of seismic fault lines or volcanic eruption. Fault slippage occurs when the stress caused by differential movement exceeds the soil shear capacity. Differential movement occurs primarily at the intersection of tectonic plates, such as the San Andreas fault which separates the pacific plate from the US continental plate. Earthquake intensity is greatest after a long accumulation of fault stress. Seismic waves propagate generally in radial patterns, much like a stone thrown in water causes radial waves. The radial patterns imply shaking primarily vertical above the source and primarily horizontal with distance. The horizontal shaking usually dominates and is most critical on buildings. Although earthquakes are dynamic phenomena, their effect mat be treated as equivalent static force acting at the base of buildings. This lateral force, called base shear, is basically governed by Newton's law:
$\mathrm{f}=\mathrm{ma} \quad$ (force $=$ mass \times acceleration)
Base shear is dampened by ductility a structure's capacty to absorb energy through elastic deformation. Ductile structures deform much, like flowers in the wind, yet brittle (non-ductile) structures sustain greatarinertia forces. Steel moment resisting frames are ductile, thoug'r some shear wails are brittle. In earthquake prone areas seismic base shear as percentage of mass is approximately:

- 4% for tall ductile moment frames
- $\quad 10 \%$ for low-rise ductile moment frames
- $\quad 15 \%$ for plywood shear walls
- $\quad \sim 20$ to 30% for stiff shear walls

Seismic design objectives:

- Minimize mass
- Maximize ductility

1. Fault rupture / wave propagation
(predominant vertical above rupture, lateral at distance)
Lateral slip fault
Thrust fault
Building overturning
Base shear
Bending deformation (first mode)
Bending deformation (higher mode)
Epicenter (earthquake source above ground)
Hyper center (actual earthquake source under ground)

Wind load (see also Lateral Force Design)
Wind load generates lateral forces, much like earthquakes. But, though seismic forces are dynamic, wind load is usually static, except gusty wind and wind on flexible structures. In addition to pressure on the side facing the wind (called wind side), wind also generates suction on the opposite side (called lee side) as well as uplifting on roofs. Wind pressure on buildings increases with increasing velocity, height and exposure. IBC Figure 16-1 gives wind velocity (speed). Velocity wind pressure (pressure at 33 feet, 10 m above the ground) is defined by the formula

$\mathrm{q}=0.00256 \mathrm{~V}^{2}(\mathrm{H} / 33)^{27}$	
Where	
$\mathrm{q}=$ velocity pressure in psf	$[1 \mathrm{psf}=47.9 \mathrm{~Pa}]$
$\mathrm{V}=$ velocity in mph	$[1 \mathrm{mph}=1.609 \mathrm{~km} / \mathrm{h}]$
$\mathrm{H}=$ height in feet	$[1 \mathrm{ft}=0.305 \mathrm{ml}$

The actual wind pressure P is the velocity pressure q maltiplied by adjustment factors based on empirical data from wind funrei iests, tabulated in code lables. The factors account for type of exposure, ovientetion, and peak pressure aiong edges, roof ridge, and method of analysis. (19G, defines three eyposures and two methods:

- exposures $\frac{1}{\text { rs }}$

Exposulie C (open sites outside cities)

- Exposure D (sites near an ocean or large lake)
- Method 1: Normal force method
- Method 2: Projected area method

Depending on location, height, and exposure, method 2 pressures range from 10-110 psf (0.5 to 5 kPa). This is further described in Lateral Force Design

Design objectives for wind load:

- Maximize mass to resist uplift

- Maximize stiffness to reduce drift

Wind load on gabled building (left pressure, right suction) Wind load on dome or vault (left pressure, right suction) Buildings within cities are protected by other buildings
Tall building exposed to full wind pressure
Wind on wide façade is more critical than on narrow facade
6 Building forms increase wind speed

Tributary load and load path

Tributary load is the load acting on any element, like a beam, column, slab, wall, foundation, etc. Tributary load is needed to design / analyze any element.

Load path is the path any load travels from where it originates on a structure to where it is ultimately resisted (usually the foundation). It is essential to define the tributary load.

The following examples illustrate tributary load and load path
1 Simple beam / 2 columns
Assume
Uniform beam load w = 200 plf
Beam span L = 30'
Find
Load path: beam / colump
Trihutary load: Peactions at columns A and B
$R_{2}=R_{0}=R=W \cup 12$
$\mathrm{P}=200 \div 30 / 2=3000 \#$
Convert pounds to kip
R = 3000\#/1000
2 Two beams / three columns
Assume
Uniform beam load $w=2 \mathrm{klf}$
Beam spans L1 = 10', L2 = 20
Find
Load path: beam / column
Tributary load: Reactions at columns A, B, C

$R_{a}=2 \times 10 / 2$	$R_{a}=10 k$
$R_{b}=2(10+20) / 2$	$R_{b}=30 \mathrm{k}$
$R_{c}=2 \times 20 / 2$	$R_{c}=20 \mathrm{k}$

1

1 One-story concrete structure

Assume	
Roofing	3 psf
Ceiling	2 psf

$10^{\prime \prime}$ con. slab 125 psf ($150 \mathrm{pcf} \times 10^{\prime \prime} / 12^{\prime \prime}$)

DL	$\begin{array}{r}130 \mathrm{psf} \\ 20 \mathrm{psf}\end{array}$
LL	150 psf

$L x=30^{\prime}, L x c=34^{\prime}, L y=25^{\prime}$
Columns, $12^{\prime \prime} \times 12^{\prime \prime}\left(t=12^{\prime \prime}, t / 2=6^{\prime \prime}=0.5^{\prime}\right)$
Column reactions A, B, C, D

$\mathrm{R}_{\mathrm{a}}=150 \mathrm{psf}(30+34) / 2(25)$	$\mathrm{R}_{\mathrm{a}}=120,000$ \#
$\mathrm{R}_{\mathrm{b}}=150(30+34) / 2(25 / 2+0.5)$	$\mathrm{R}_{\mathrm{b}}=62,400$ \#
$\mathrm{R}_{\mathrm{c}}=150(30 / 2+0.5)(25)$	$\mathrm{R}_{6}=58,125 \#$
$\mathrm{R}_{\mathrm{d}}=150(30 / 2+0.5)(25 / 2+0.5)$	$R_{d}=30225 \#$

2 Three-story concrete structure

Lx $=30^{\prime}, L x c=34^{\prime}, L y=25^{\prime}$
Columns, $2^{\prime} x 2^{\prime}\left(t=2^{\prime}, t / 2=1^{\prime}\right)$
Column reactions at level 2

$R_{a}=150 \mathrm{psf}(30+34) / 2(25)=$	150×800	$R_{a}=120,000 \#$
$R_{b}=150(30+34) / 2(25 / 2+1)=$	150×432	$R_{b}=64,800 \#$
$R_{c}=150(30 / 2+1)(25)=$	150×400	$R_{c}=60,000 \#$
$R_{d}=150(30 / 2+1)(25 / 2+1)=$	150×216	$R_{d}=32,400 \#$
Column reactions at level 1,	$w=150+200$	$w=350 \mathrm{psf}$
$R_{a}=350(800)$		$R_{a}=280,000 \#$
$R_{b}=350(432)$	$R_{b}=151,200 \#$	
$R_{c}=350(400)$	$R_{c}=140,000 \#$	
$R_{d}=350(216)$	$R_{d}=75,600 \#$	
Column reactions at level 0,	$w=150+200+200$	$w=550 \mathrm{psf}$
$R_{a}=550(800)$		$R_{a}=440,000 \#$
$R_{b}=550(432)$	$R_{b}=237,600 \#$	
$R_{c}=550(400)$	$R_{c}=220,000 \#$	
$R_{d}=550(216)$		$R_{d}=118,800 \#$

Deck / joist / beam / column	
Assume	$\mathrm{w}=80 \mathrm{psf}$
Uniform load	$\mathrm{e}=2^{\prime}$
Joist spacing	$\mathrm{L}_{1}=12^{\prime}$
Joist span	$L_{2}=10^{\prime}$
Beam spans	$L_{3}=20^{\prime}$

Find load path and tributary load
Load path: plywood deck / joist / beam / columns
Tributary loads:
Uniform joist load
$w_{j}=w e=80$ psf x 2'
Beam load (assume uniform load due to narrov joisi spacing)
$\mathrm{w}_{\mathrm{b}}=480 \mathrm{plf}$
Column reaction
Column reaction
$\mathrm{R}_{\mathrm{a}}=2,400$ \#
,
$R_{2}=w_{b} I_{2} / 2=480$ pifx $10 / 2$
$\mathrm{R}_{\mathrm{b}}=7,200$ \#
$R:=N_{L}[2] 2=480 \times 20 / 2$
$R_{c}=4,800$ \#

Concrete slab / wall / footing / soil
Allowable soil pressure 2000 psf (for stiff soil)
Concrete slab, 8 " thick
Slab length $L=20$
Wall height $h=10$
DL $=100 \mathrm{psf} \quad\left(150 \mathrm{pcf} \times 8\right.$ " $\left./ 12^{\prime \prime}\right)$
LL $=40 \mathrm{psf} \quad$ (apartment LL)
$\Sigma=140 \mathrm{psf}$
$8^{\prime \prime} \mathrm{CMU}$ wall, 10^{\prime} high at 80 psf
(CMU = Concrete Masonry Urits)
($8^{\prime \prime}$ nominal $=75 / 8^{\prime \prime}=7.625^{\prime}$ actual)
Concrete footing ?' x 1 'at 150 pci
naiyze a 1 ft vide strip (11 meter in SI units)
Siab load
$\mathrm{w}=140 \mathrm{psf} \times 20 / 2$
CMU wall load
$\mathrm{w}=80 \mathrm{psf} \times 10$
w = 1400 \#

Footing load
$w=150$ pcf x $2^{\prime} \times 1^{\prime}$
$w=800$ \#

Total load on soil
$P=1400+800+300$
w = 300 \#

Soil pressure
$\mathrm{f}=\mathrm{P} / \mathrm{A}=2500 \# /\left(1^{\prime} \times 2^{\prime}\right)$
P $=2500$ \#
$\mathrm{f}=1250 \mathrm{psf}$ 1250 < 2000, ok

1 Concrete slab/wall
Concrete slab $t=8^{\prime \prime}$, span $L=20$
LL $=\quad 50 \mathrm{psf}$
$\begin{array}{ll}\mathrm{DL}= & 120 \mathrm{psf} \\ \Sigma=170 \mathrm{psf}\end{array}$
Slab load on wall
$\mathrm{w}=170 \mathrm{psf} \times 20^{\prime} / 2$
2 Joist roof / wall
Plywood roof deck, 2×12 wood joists at $24^{\prime \prime}$, span L $=18^{\prime}$
$\mathrm{LL}=\quad 30 \mathrm{psf}$
$\frac{\mathrm{DL}=}{\Sigma} \quad 20 \mathrm{psf}$
Roof load on wall (per linear foot of wall length)
$\mathrm{w}=50 \mathrm{psf} \times 18^{\prime} / 2$
3 Concrete slab / beam / wall
Concrete slab $t=5^{\prime \prime}$, span $L=10^{\prime}$, beam soan $L=30^{\circ}$
LL = 20 psf
$\mathrm{DL}=\quad 70 \mathrm{psf}$ (assurne bean DLLimped with slab DL)
$\Sigma=100$ gt
$\begin{array}{ll}\text { Beam load } \mathrm{v}^{\prime}=90 \text { osf } \times 10-1000 & \text { w }=0.9 \mathrm{klf} \\ \text { N'alleaction }=0.9 \mathrm{klf} \times 30 \text { / } & R=13.5 \mathrm{k}\end{array}$
4. Conicrete slab on metal deck/ joist/ beam

Spans: deck $L=8^{\prime}$, joist $L=20^{\prime}$, beam $L=40^{\circ}$
LL = 40 psf
$\mathrm{DL}=60 \mathrm{psf}$ (assume joist and beam DL lumped with slab DL)
$\Sigma=100 \mathrm{psf}$
Joist load w = 100 psf x 8' / 1000
Beam point loads $\mathrm{P}=0.8 \mathrm{klf} \times 20$

$$
\begin{array}{r}
w=0.8 \mathrm{klf} \\
P=16 \mathrm{k} \\
\mathrm{R}=32 \mathrm{k}
\end{array}
$$

Note: wall requires pilaster to support beams
5 Concrete slab on metal deck / joist/ beam / girder
Spans: deck $L=5^{\prime}$, joist $L=20^{\prime}$, beam $L=40^{\prime}$, girder $L=60^{\prime}$
LL = 50 psf
$\underline{D L}=50 \mathrm{psf}$ (assume joist/beam/girder DL lumped with slab DL)
$\Sigma=100 \mathrm{psf}$

Uniform joist load $w=100 \mathrm{psf} \times 5^{\prime} / 1000$	$\mathrm{~W}=0.5 \mathrm{klf}$
Beam point loads $P=0.5 \mathrm{klf} \times 20^{\prime}$	$\mathrm{P}=10 \mathrm{k}$
Girder point loads $P=7 \times 10 \mathrm{k} / 2$	$\mathrm{P}=35 \mathrm{k}$

Column reaction $R=(100 \mathrm{psf} / 1000) \times 40^{\prime} \times 60^{\prime} / 4$
$\mathrm{R}=60 \mathrm{k}$

Wind load resisted by shear wall

1 Three-story building
2 Exploded visualization
3 Dimensions
A Wind Wall
B Diaphragms
C Shear walls

Assume:

Building dimensions as shown in diagram
Wind pressure $\mathrm{P}=20 \mathrm{psf}$
Find load path and tributary load
Load path
Wind wall > diaphragms $>$ shear walls $>$ footings
Note:
Floor and roof diaphragms act like beams torarisfer load from wind wall to shear wall
Tributary leads
Roof diaphragm
$13=20$ pist $\times 100 \times 5^{\prime} / 1000$

$$
\begin{aligned}
& V 3=10 k \\
& V 2=20 k \\
& V 1=20 k \\
& V 2=5 k \\
& V 1=15 k \\
& V 0=25 k
\end{aligned}
$$

Levé' 2 diaphragm
$\mathrm{V} 2=20 \mathrm{psf} \times 100^{\prime} \times 10^{\prime} / 1000$
Level 1 diaphragm
V1 = $20 \mathrm{psf} \times 100^{\prime} \times 10^{\prime} / 1000$
Shear walls
Level 2 shear walls
V2 = $10 \mathrm{k} / 2$
Level 1 shear wall
$V=(10 k+20) k / 2$
Level 0 shear walls
$\mathrm{V} 0=(10 \mathrm{k}+20 \mathrm{k}+20) \mathrm{k} / 2$
Note:

- Floor and roof diaphragms resist half the load from above and below
- Floor and roof diaphragms transfer load from wind wall to shear walls
- The 2 shear walls resist each half of the diaphragm load from above

3

Basic Concepts

This chapter on basic concept introduces:

- Structural design for:
- Strength
- Stiffness
- Stability
- Synergy
- Rupture length (material properties, i.e., structural efficiency)
- Basic structure systems
- Horizontal structures
- Vertical / lateral structures for: o Gravity load
o Lateral load

Strength, Stiffess, Stability, Synergy

Structures must be designed to satisfy three Ss and should satisfy all four Ss of structural design - as demonstrated on the following examples, illustrated at left.
1 Strength to prevent breaking
2 Stiffness to prevent excessive deformation
3 Stability to prevent collapse
4 Synergy to reinforce architectural design, described on two examples: Pragmatic example: Beam composed of wooden boards Philosophical example: Auditorium design

Comparing beams of wooden boards, $b=12$ " wide and $d=1$ "deep, each Stiffiness is defined by the Moment of Inertia, l=b d3/ 12
1 board, $I=12 \times 1^{3 / 12}$
10 boards $I=10(12 \times 13 / 12)$
10 boards gl. 1 ed
$=12 \times 103 / 12$

Strengtifis deined by the Section modulus, $\mathrm{S}=\mathrm{II}(\mathrm{d} / 2)$
1 board, $S=1 / 0$.
10 boards, $S=10 / 0.5 \quad S=20$
10 boards, glued, $S=1000 / 5 \quad S=200$
Note:
The same amount of material is 100 times stiffer and 10 times stronger when glued together to transfer shear and thereby engage top and bottom fibers in compression and tension (a system, greater than the sum of its parts). On a philosophical level, structures can strengthen architectural design as shown on the example of an auditorium:

- Architecturally, columns define the circulation
- Structurally, column location reduces bending in roof beams over 500\%!

Rupture length

Rupture length is the maximum length a bar of constant cross section area can be suspended without rupture under its weight in tension (compression for concrete \& masonry).

Rapture length defines material efficiency as strength / weight ratio:

$\mathrm{R}=\mathrm{F} / \lambda$

$R=$ rupture length
$\mathrm{F}=$ breaking strength
$\lambda=$ specific gravity (self weight)
Rupture length, is of particular importance for long-span structures. The depth of horizontal span members increases with span. Consequently the weightelso incieases with span. Therefore the capacity or materiai to spandeperids on both its strength and weight. This is why lightweigh material, such as glass fiber fabrics are good for longspan structures. For some material a thirime extends the rupture length to account for different material gracies.

The graph data is partly based on a study of the Light weight Structures Institute, University Stuttgart, Germany

Horizontal structures

Horizontal systems come in two types: one way and two way. Two way systems are only efficient for spaces with about equal span in both directions; as described below. The diagrams here show one way systems at left and two way systems at right

Plywood deck on wood joists

Concrete slab on metal deck and steel joists
One way concrete slab
One way beams
One way rib slab
Two way concrete plate
Two way concrete slab on drop panels
Two way concrete slab on edge beams
Two way beams
Two way waffle slab
Deflection Δ for span length L1
Deflection $\Delta=16$ due to double spa $\mathrm{L} 2=2 \mathrm{~L}$
Note:
Deflection increases with the tourth power of span. Hence for double span deflection increase 16 t'mes. Therefore two way systems over rectangular plan are ineffective because gilernents that span the short way control deflection and consequently have to resist most load and elements that span the long way are very ineffective.

11

Trusses

Trusses support load much like beams, but for longer spans. As the depth and thus dead weight of beams increases with span they become increasingly inefficient, requiring most capacity to support their own weight rather than imposed live load. Trusses replace bulk by triangulation to reduce dead weight.
1 Unstable square panel deforms under load.
Only triangles are intrinsically stable polygons
2 Truss of triangular panels with inward sloping diagonal bars that elongate in tension under load (preferred configuration)
3 Outward sloping diagonal bars compress (disadvantage)
4 Top chords shorten in compression
Bottom chords elongate in tension under gravity load
5 Gable truss with top compression and bottom tension

Warren trusses

Pompidou Center, Paris by Piano and Rogers

Prismatic trusses
 YBIत Sport Center by Michael Hopkins

(Prismatict tusses of triangular cross section provide rotational resistance)

Space trusses

Square and triangular plan
Note:
Two way space trusses are most effective if the spans in the principle directions are about equal, as described for two-way slabs above. The base modules of trusses should be compatible with plan configuration (square, triangular, etc.)

Funicular structures

The funicular concept can be best described and visualized with cables or chains, suspended from two points, that adjust their form for any load in tension. But funicular structures may also be compressed like arches. Yet, although funicular tension structures adjust their form for pure tension under any load, funicular compression structures may be subject to bending in addition to compression since their form is rigid and not adaptable. The funicular line for tension and compression are inversely identical; the form of a cable becomes the form of an arch upside-down. Thus funicular forms may be found on tensile elements.

Funicular tension triangle under single load Funicular compression triangle under single load Funicular tension trapezoid under twin loads Funicular compression trapezoid under twin loads Funicular tension polygon under point loads Funicular compression polygon underpoin Toad Funicular tension parabgia under uniform load Funicular compressioriparabola unde urniformioad

Vault

IBM traveling exhibit by Renzo Piano
A series of trussed arches in linear extrusion form a vault space. The trussed arches consist of wood bars with metal connectors for quick assembly and disassembly as required for the traveling exhibit. Plastic panels form the enclosing skin. The trussed arches provide depth and rigidity to accommodate various load conditions

Suspension roof

Exhibit hall Hanover by Thomas Herzog

Vertical structures

Vertical elements

Vertical elements transfer load from roof to foundation, carrying gravity and/or lateral load. Although elements may resist only gravity or only lateral load, most are designed to resist both. Shear walls designed for both gravity and lateral load may use gravity dead load to resist overturning which is most important for short walls. Four basic elements are used individually or in combination to resist gravity and lateral loads

1 Wall under gravity load
2 Wall under lateral load (shear wall)
Cantilever under gravity load Cantilever under lateral load Moment frame under gravity load Moment frame under lateral load Braced frame under gravity load Braced frame under lateral loed

Vertical systems

Vertical systems transfer the load of horizontal systems from roof to foundation, carrying gravity and/or lateral load. Although they may resist gravity or lateral load only, most resist both, gravity load in compression, lateral load in shear. Walls are usually designed to define spaces and provide support, an appropriate solution for apartment and hotel buildings. The four systems are:

1 Shear walls (apartments / hotels)
2 Cantilever (Johnson Wax tower by F L Wright)
3 Moment frame
4 Braced frame
A Concrete moment resistant joint
Column re-bars penetrate beam and beam re-bars penetrate column)
B Steel moment resistant joint
(stiffener plates between column flanges resist beam fitang Stress,

Vertical / laterai Elemen selection crieria		
Element	Advantages	Challenges
Shear wali Architectural crieria Structural criteria	Giod fior apartments/hotels Very stiff, good for wind resistance	Inflexible for future changes Stiffness increases seismic forces
Cantilever Architectural criteria Structural criteria	Flexible planning Around cantilever Ductile, much like a tree trunk	Must remain in future changes Too flexible for tall structures
Moment frame Architectural criteria Structural criteria	Most flexible, good for office buildings Ductile, absorbs seismic force	Expensive, drift may cause problems Tall structures need additional stiffening
Braced frame Architectural criteria Structural criteria	More flexible then Shear walls Very stiff, good for Wind resistance	Less flexible than moment frame Stiffness increases seismic forces

Shear walls

As the name implies, shear walls resist lateral load in shear. Shear walls may be of wood, concrete or masonry. In the US the most common material for low-rise apartments is light-weight wood framing with plywood or particle board sheathing. Framing studs, spaced 16 or 24 inches, support gravity load and sheathing resists lateral shear. In seismic areas concrete and masonry shear walls must be reinforced with steel bars to resist lateral shear.

Wood shear wall with plywood sheathing
Light gauge steel shear wall with plywood sheathing
Concrete shear wall with steel reinforcing
CMU shear wall with steel reinforcing
Un-reinforced brick masonry (not allowed in seismic areas)
Two-wythe brick shear wall with steel reinforcing

Cantilevers

Cantilevers resist lateral load primarily in bending. They may consist of single towers or multiple towers. Single towers act much like trees and require large footings like tree roots to resist overturning. Bending in cantilevers increases from top down, justifying tapered form in response.

1 Single tower cantilever
2 Single tower cantilever under lateral load
3 Twin tower cantilever
4 Twin tower cantilever under lateral load
5 Suspended tower with single cantilever
6 Suspended tower under lateral load

Moment frames

Moment frames resist gravity and lateral load in bending and compression. They are derived from post-and beam portals with moment resisting beam to column connections (for convenience referred to as moment frames and moment joints). The effect of moment joints is that load applied to the beam will rotate its ends and in turn rotate the attached columns. Equally, load applied to columns will rotate their ends and in turn rotate the beam. This mutual interaction makes moment frames effective to resist lateral load with ductility. Ductility is the capacity to deform without breaking, a good property to resist earthquakes, resulting in smaller seismic forces than in shear walls and braced frames. However, in areas with prevailing wind load, the greater stiffness of shear walls and braced frames is an advantage. The effect of moment joints to resist loads is visualized through amplified deformation as follows:

1 Portal with pin joints collapses under lateral load
2 Portal with moment joints at base under lateral load
3 Portal with moment beam/column joinis under gravity Ioad
4 Portal with moment bearn/co umin joints ur cer lateral load
5 Portal with all moment joints under gravity load
Portal with all roment joints under lateral load
Aigh-rise mom ent írame under gravity load
Moment frame building under lateral load
Inflection points (zero bending between negative and positive bending
Note:
Deformations reverse under reversed load

Braced frames

Braced frames resist gravity load in bending and axial compression, and lateral load in axial compression and tension by triangulation, much like trusses. The triangulation results in greater stiffness, an advantage to resist wind load, but increases seismic forces, a disadvantage to resist earthquakes. Triangulation may take several configurations, single diagonals, A-bracing, V-bracing, X-bracing, etc., considering both architectural and structural criteria. For example, location of doors may be effected by bracing and impossible with X-bracing. Structurally, a single diagonal brace is the longest, which increases buckling tendency under compression. Also the number of costly joints varies: two for single diagonals, three for A- and V-braces, and five joints for X-braces. The effect of bracing to resist load is visualized through amplified deformation as follows:

Single diagonal portal under gravity and lateral loads
A-braced portal under gravity and lateral load
V-braced portal under gravity and lateral load
X-braced portal under gravity arid lateral load
Braced frame building with out ard withlateral soad
Note:
Deiornatigins and forces reverse under reversed load

Part II

Mechanics

Mechanics, as defined for the study of structures, is the behavior of physical systems under the action of forces; this includes both statics and dynamics.

Dynamics is the branch of mechanics that deals with the motion of a system of material particles under the influence of forces. Dynamic equilibrium, also known as kinetic equilibrium, is the condition of a mechanical system when the kinetic reaction of all forces acting on it is in dynamic equilibrium.

Statics is the branch of mechanics that deals with forces and force systems that act on bodies in equilibrium as described in the following.

Statics

Statics is the branch of mechanics that deals with forces and force systems that act on bodies in equilibrium. Since buildings are typically designed to be ait rest (in equilibrium), the subject of this book is primarily focused on statcs. Even though loads like earthquakes are dynamic they are usually reated as equivalent siatic torces.

2

Force and Moment

Force is an action on a body that tends to:

- change the shape of an object or
- move an object or
- change the motion of an object

US units: \# (pound), k (kip)
SI units: $\quad \mathrm{N}$ (Newton), kN (kilo Newton)
Moment is a force acting about a point at a distance called lever arm
$M=P L$ (Force x lever arm)
The lever arm is measured normal (perpendicular) to the force.
Moments tend to:

- rotate an object or
- bend an object (bending moment)

US units: \#' (pound-feet), k^{\prime} (kip-feet), \#" (pound-inch), $\mathrm{k}^{\prime \prime}$ (kip-inch)
SI units: $\quad \mathrm{N}-\mathrm{m}$ (Newton-meter), kN-m (kilo-Newton-meter)
1 Gravity force (compresses the priamid)
2 Pulling force (moves the boulder)
$3 \square$ Moment = forcetimes lever arm $(N=P L$)
A Point about which the force rotates Lever arm
Ni Moment
P Force

Static Equilibrium

For any body to be in static equilibrium, all forces and moments acting on it must be in equilibrium, i.e. their sum must equal zero. This powerful concept is used for static analysis and defined by the following three equations of statics:

$$
\begin{array}{ll}
\Sigma H=0 & \text { (all horizontal forces must equal zero) } \\
\Sigma V=0 & \text { (all vertical forces must equal zero) } \\
\Sigma \mathrm{M}=0 & \text { (all moments must equal zero) }
\end{array}
$$

The equilibrium equations are illustrated as follows:
1 Horizontal equilibrium: pulling left and right with equal forces, mathematically defined as
$\Sigma \mathrm{H}=0=+100-100=0$
2 Vertical equilibrium: pushing up with a force equal to a weight, mathematically defined as:
$\Sigma V=0=-2 \times 100+200=0$
3 Moment equilibrium: balancirig both siches of a baiarice board' mathematically defined as:
$\left.\Sigma \mathrm{M}=0=-50+\left(8^{\prime}\right)+200 \#(2)^{\prime}\right)=-400+400=0$
Much oithis wook is based on the three equilibrium equations.

2

Supports

For convenience, support types are described for beams, but apply to other horizontal elements, like trusses, as well. The type of support affects analysis and design, as well as performance. Given the three equations of statics defined above, $\Sigma \mathrm{H}=0, \Sigma \mathrm{~V}=0$, and $\Sigma \mathrm{M}=0$, beams with three unknown reactions are considered determinate (as described below) and can be analyzed by the three static equations. Beams with more than three unknown reactions are considered indeterminate and cannot be analyzed by the three static equations alone. A beam with two pin supports (1 has four unknown reactions, one horizontal and one vertical reaction at each support. Under load, in addition to bending, this beam would deform like a suspended cable in tension, making the analysis more complex and not possible with static equations.

By contrast, a beam with one pin and one roller support (2) has only three unknown reactions, one horizontal and two vertical. In bridge structures such sippo thare quite common. To simplify analysis, in building structures this t/pe of suppor may be assumed, since supporting walls or columns usullily are fiexible enough ti) similate the same behavior as one pin and oneroller support. The diagrams at left show for each support on top the physical conditiors and be ow the symbolic abstraction.
$1 \square$ Beam with ixedsupports at boithends subject to bending and tension Simple beam with one pin and one roller support subject to bending only Beaj vith tlexible supports, behaves like a simple beam
Simple beams, supported by one pin and one roller, are very common and easy to analyze. Designations of roller- and pin supports are used to describe the structural behavior assumed for analysis, but do not always reflect the actual physical support. For example, a pin support is not an actual pin but a support that resists horizontal and vertical movement but allows rotation. Roller supports may consist of Teflon or similar material of low friction that allows horizontal movement like a roller.

Support symbols

The diagrams show common types of support at left and related symbols at right. In addition to the pin and roller support described above, they also include fixed-end support (as used in steel and concrete moment frames, for example).

Support types				
	Degrees of freedom			
	Support type	Horizontal movement	Vertical movement	Rotation
1	Roller	Free	Fixed	Free
2	Pin	Fixed	Fixed	Free
3	Rigid	Fixed	Fixed	Fixed

Beam reactions

To find reactions for asymmetrical beams:

- Draw an abstract beam diagram to illustrate computations
- Use $\Sigma M=0$ at one support to find reaction at other support
- Verify results for vertical equilibrium

1 Floor framing
2 Abstract beam diagram
Assume:
DL $=10 \mathrm{psf}$
LL = 20 psf
$\Sigma=30 \mathrm{psf}$
Uniform beam load:
$\mathrm{w}=30 \mathrm{psf} \times 2$ '

$$
\mathrm{w}=60 \mathrm{plf}
$$

For convenience, substitute total beam load \mathbb{W} forminiform ioad w at its cent cid
Total beam load
$W=w L=60(12+4)$
Süppor reactions.
$\Sigma M_{p}=00^{2}+$
$12 \mathrm{Ra}-1 v=0$
$\mathrm{R}_{\mathrm{a}}=4 \times 960 / 12$
$\Sigma \mathrm{M}_{\mathrm{a}}=0 \mathrm{t}^{\mathrm{Z}}+$
$8 \mathrm{~W}-12 \mathrm{R}_{b}=0$
$12 R_{b}=8 \times 960$
$R_{b}=8 \times 960 / 12$
Check $\Sigma \mathrm{V}=0 \uparrow+$
$R_{a}+R_{b}-W=320+640-960=0$

Alternate method (use uniform load directly)
Support reactions:
$\Sigma \mathrm{M}_{\mathrm{b}}=0 \mathrm{e}^{\boldsymbol{z}+}$
$12 R_{a}-4 \times 60$ plf $\times 16^{\prime}=0$
$\mathrm{R}_{\mathrm{a}}=4 \times 60 \times 16 / 12$
$\Sigma M_{a}=0 \tau^{2+}$
$8 \times 60 \times 16-12 R_{b}=0$
$12 R_{b}=8 \times 60 \times 16$
$R_{b}=8 \times 60 \times 16 / 12$
Check $\Sigma \mathrm{V}=0 \uparrow+$
$R_{a}+R_{b}-W=320+640-960=0$

1

2

2 Beam with overhang and point loads
Assume: $\mathrm{P}=2 \mathrm{k}$
$\Sigma M_{b}=0 \uparrow \downarrow+$
$12 R_{a}-2 \times 16-2 \times 12-2 \times 8-2 \times 4=0$
$R_{\mathrm{a}}=(32+24+16+8) / 12 \quad R_{a}=6.67 k$
$\Sigma i V_{1}=0 t^{-2}+$
$-12 \tilde{R}_{b}-2 \times 4+2 \times 4+2 \times 8+2 \times 12=0$
$R_{b}=(2 \times 8+2 \times 12) / 12$
Check $\Sigma \mathrm{V}=0 \uparrow+$
$6.67+3.33-5 \times 2$

3 Beam with uniform load and point load (wall)

Assume: w = 100 plf, $\mathrm{P}=800$ \#

$\Sigma M_{c}=0 \tau^{2}+$
$16 R_{a}-100 \times 16 \times 8-800 \times 12=0$
$\mathrm{Ra}=(100 \times 16 \times 8+800 \times 12) / 16$

$$
\mathrm{R}_{\mathrm{a}}=1,400 \text { \# }
$$

$\Sigma M_{a}=0 \uparrow+$
$-16 R_{c}+100 \times 16 \times 8+800 \times 4+800 \times 16=0$
$R_{c}=(100 \times 16 \times 8+800 \times 4+800 \times 16) / 16$
$R_{c}=1800 \#$
Check $\Sigma \mathrm{V}=0 \uparrow+$
$1400+1800-100 \times 16-800-800$
$\Sigma \mathrm{V}=0$

1 Beam with overhang
Assume: w = 300 plf, $C=3^{\prime}, L=15^{\prime}$
$X 1=6, X 2=9$ '
$\Sigma M_{c}=0 \uparrow+$
$\Sigma M_{b}=0 \uparrow+$
Check $\Sigma \mathrm{V}=0 \uparrow+$
$\Sigma \mathrm{V}=0$

2 Beam with two overhangs
Assume: $w=200$ plf. $\mathrm{C} 1=5, \mathrm{C} 2=3, \mathrm{~L}=12$
X1 = 5', X2 = 7
$\Sigma M_{c}=0 \uparrow+$
$12 R_{b}-200 \times 20 \times 7=0$
$\mathrm{R}_{\mathrm{b}}=200 \times 20 \times 7 / 12$
$\Sigma M_{b}=0 \uparrow+$
$200 \times 20 \times 5-12 R_{c}-0$
$R_{c}=200 \times 20 \times 5 / 12$
Check $\Sigma \mathrm{V}=0 \uparrow+$
$2333+1667-200 \times 20$

$R_{c}=1667 \#$
$\Sigma \mathrm{V}=0$
Trivin beams (tieat as 2 beams, due to separation pin joint at b)
Simple left beam: w1 = 100 plf, L1 = 10'
$R_{a}=R_{b}=100 \times 10 / 2$
Right beam: w2 = 150 plf, $\mathrm{C} 1=8^{\prime}, \mathrm{L} 2=20^{\prime}$
X1 = 6', X2 = 14', $P_{b}=R_{b}=500 \#$
$\sum M_{d}=0 \uparrow \downarrow+$
$20 R_{c}-150 \times 28 \times 14-500 \times 28=0$
$R_{c}=(150 \times 28 \times 14+500 \times 28) / 20$
$R_{c}=3640 \#$
$\Sigma M_{c}=0 \uparrow+$
$150 \times 28 \times 6-500 \times 8-20 R_{d}=0$
$R_{d}=(150 \times 28 \times 6-500 \times 8) / 20$
$R_{d}=1060 \#$
Check $\Sigma \mathrm{V}=0 \uparrow+$
$3640+1060-150 \times 28-500$
$\Sigma \mathrm{V}=0$

Truss determinacy

A Unstable trusses
B Determinate trusses
C Indeterminate trusses

1 External determinacy (support reactions)
2 Internal determinacy (bar forces)
External determinacy is defined as for beams described above. For internal difterminacy the moment equation, $\Sigma \mathrm{M}=0$, cannot be used since trusses, Tiave pin jorits to be statically determinate. Internal determinacy is defined as follows.
Each bar represents one unknown reactiori and each joint has two eduations for analysis, $\Sigma \mathrm{H}=0, \Sigma \mathrm{~V}=0$. The moment equation $\Sigma \mathrm{M}=\mathrm{c}$, cannot be used since determinate trusses have pin joints. Thus internal ceterminacy is defineú as:

- $\cdot \square$
- Disianle: Deteiminate:

$$
\begin{aligned}
& B+R<2 J \\
& B+R=2 J \\
& B+R>2 J
\end{aligned}
$$

B = number bars
$J=$ number of joints
$R=$ number external reactions
Note:
The degree of indeterminacy is computed as:
$B+R-2 J=$ degree of indeterminacy

Frame determinacy

Static determinacy for frames is more complex than for beams or trusses and there is no simple formula to define it. However an intuitive process may be used, starting with external determinacy as follows:

1 A frame supported by pin and roller is externally determinate like a beam but internally unstable if internal joints are pins
5 Making the internal joints moment resistant makes the frame determinate
9 Removing a degree of freedom makes a determinate frame indeterminate
A similar process may be applied to multi-story frames as follows:

- One rigid joint at every second story stabilizes adjacent joints and makes the frame determinate
- Additional rigid joints makes a determinate frame indeterminate

A Unstable frames
B Determinate frames
C Indeterminate frames
D Roller sappor: Aiternate roller support
Pin support
Fixed support (moment resistant)
H Pin joint
I Rigid joint (moment resistant)

Vector Analysis

First used by Leonardo da Vinci, graphic vector analysis is a powerful method to analyze and visualize the flow of forces through a structure. However, the use of this method is restricted to statically determinate systems. In addition to forces, vectors may represent displacement, velocity, etc. Though only two-dimensional forces are described here, vectors may represent forces in three-dimensional space as well. Vectors are defined by magnitude, line of action, and direction, represented by a straight line with an arrow and defined as follows:

Magnitude is the vector length in a force scale, like $1 "=10 \mathrm{k}$ or $1 \mathrm{~cm}=50 \mathrm{kN}$
Line of Action is the vector slope and location in space
Direction is defined by an arrow pointing in the direction of action
1 Two force vectors P1 and P2 acting on a body pull in a certain direction The resultant R is a force with the same results as P 1 and P 2 cornbined, pulling in the same general direction. The resultanitis found by draving a iorce parallelogram [A] or a force triangle $[B]$. Lires in the ector riargle must ne parallel to corresponding lines in the vector plan $[A$. The line of action of the resultant is at the intersection of $\mathrm{P} 1+\mathrm{P} 2$ in the yector plan [A? Since most structures must be at rest it is more useful to find the equilibriant E that puts a set of forces in equilibrium [C]. The equililoriant is equal in magnitude but opposite in direction to the resultant. The equilibriant closes a force triangle with all vectors connected head-to-tail. The line of action of the equilibriant is also at the intersection of P1/P2 in the vector plan [A]. found, combining interim resultant R1-2 of forces P1 and P2 with P3 [E]. This process may be repeated for any number of forces. The interim resultants help to clarify the process but are not required $[\mathrm{F}]$. The line of action of the equilibriant is located at the intersection of all forces in the vector plan [D]. Finding the equilibriant for any number of forces may be stated as follows:
The equilibriant closes a force polygon with all forces connected head-to-tail, and puts them in equilibrium in the force plan.
3 The equilibriant of forces without a common cross-point [G] is found in stages: First the interim resultant R1-2 of P1 and P2 is found $[\mathrm{H}]$ and located at the intersection of P1/P2 in the vector plan [G]. P3 is then combined with R1-2 to find the equilibriant for all three forces, located at the intersection of R1-2 with P3 in the vector plan. The process is repeated for any number of forces.

Vector components

Vector components have the same effect on a body as the initial vector. Thus components relate to a vector as two vectors relate to a resultant or equilibriant.

1 The component forces C 1 and C 2 in two cables supporting a load P are found by drawing a force triangle $[B]$ with corresponding lines parallel to the those in the vector plan $[A]$.

2 Forces in more than two cables supporting a load P are indeterminate [C$]$ and cannot be found by graphic vector method since there is infinite number of solutions [D]. A problem with more than two unknown force components requires consideration of relative cable stiffness (cross-section area, length, and stiffness). Hence we can state:

Only two components can be found by graphic veater method

3 This example demonstrates graphic vector analysis: Forces are arawn on a vector plan with line of action and direction [E]. The niagnitude may be written on each vector or the vector miay be diawin at a oice scale. A force polygon $[F]$ is drawn next at a force scale, such as $\uparrow \overline{i n}=1 \mathrm{k}$. For good accuracy, the force scale should Oeas large as space pernits. The line of action of the equilibriant (or resultant) is hen transposed into the vector plan at the intersection of all force vectors [E].

Truss Analysis

Graphic truss analysis (Bow's Notation) is a method to find bar forces using graphic vectors as in the following steps:

A Draw a truss scaled as large as possible (1) and compute the reactions as for beams (by moment method for asymmetrical trusses).

B Letter the spaces between loads, reactions, and truss bars. Name bars by adjacent letters: bar BH between B and H, etc.

C Draw a force polygon for external loads and reactions in a force scale, such as 1 "=10 pounds (2). Use a large scale for accuracy. A closed polygon with head-totail arrows implies equilibrium. Offset the reactions to the right for clarity.

D Draw polygons for each joint to find forces in connected bais. Ciosec polygons with head-to-tail arrows are in equilibrium Start mitin lefi joint AEHC. Draw a vector parallel to bar BH through B in the Dolygon. H/is along BH. Diaw a vector parallel to bar HG througin G to ifid Het intersection Eith-riG.
E Measure the bar forces as vector length in the polygon.
Find bar tensiontard compression. Start with direction of load AB and follow polygon $A B G G A$ with head-to-tail arrows. Transpose arrows to respective bars in the truss next to the joint. Arrows pushing toward the joint are in compression; arrows pulling away are in tension. Since the arrows reverse for adjacent joints, draw them only on the truss but not on the polygon.
G Draw equilibrium arrows on opposite bar ends; then proceed to the next joint with two unknown bar forces or less (3). Draw polygons for all joints (4), starting with known loads or bars (for symmetrical trusses half analysis is needed).

Truss diagram

2 Force polygon for loads, reactions, and the first joint polygon
3 Truss with completed tension and compression arrows
4 Completed force polygon for left half of truss
5 Tabulated bar forces (- implies compression)

Truss Example

Some trusses have bars with zero force under certain loads. The example here has zero force in bars HG, LM, and PG under the given load. Under asymmetrical loads these bars would not be zero and, therefore, cannot be eliminated. Bars with zero force have vectors of zero length in the equilibrium polygon and, therefore, have both letters at the same location.
Tension and compression in truss bars can be visually verified by deformed shape (4), exaggerated for clarity. Bars in tension will elongate; bars in compression will shorten. In the truss illustrated the top chord is in compression; the bottom chord is in tension; inward sloping diagonal bars in tension; outward sloping diagonal bars in compression.
Since diagonal bars are the longest and, therefore, more likely subject to buckling, they are best oriented as tension bars.

Truss diagram

Force polygon
3 Tabulated bar forces (+rmplies tension, compression)
4 Deformed truss to visualize tensior and compression bars
Bar elongation causes tension
Bar shortening causes compression

Funicular

Graphic vector are powerful means to design funicular structures, like arches and suspension roofs; providing both form and forces under uniform and random loads.

Arch

Assume:
Arch span $L=150$, arch spacing e $=20^{\prime}$
DL $=14 \mathrm{psf}$
$\mathrm{LL}=16 \mathrm{psf}$
$\Sigma=30 \mathrm{psf}$
Uniform load
w = 30 psf x 20' / 1000
Vertical reactions
R $=\mathrm{w} \mathrm{L} / 2=0.6 \times 150 / 2$
Draw vector polygon, starting with vertical Reacton R
Horizontal reaction
Maximum arch forc
Maximum arch force (diagoriai vectorparaite to arch angent)

$$
N=0.6 \mathrm{klf}
$$

Aich structure \square
Parabolic aich by graphic method
Process:
Draw $A B$ and $A C$ (tangents of arch at supports)
Divide tangents $A B$ and $A C$ into equal segments
Lines connecting $A B$ to $A C$ define parabolic arch envelope
3 Arch profile
Process:
Define desired arch rise D (usually $D=L / 5$)
Define point A at 2D above supports
$A B$ and $A C$ are tangents of parabolic arch at supports
Compute vertical reactions $\mathrm{R}=\mathrm{w} \mathrm{L} / 2$
4 Equilibrium vector polygon at supports (force scale: $1^{\prime \prime}=50 \mathrm{k}$)
Process:
Draw vertical vector (reaction R)
Complete vector polygon (diagonal vector parallel to tangent)
Measure vectors ($\mathrm{H}=$ horizontal reaction, $\mathrm{F}=\max$. arch force)
Note:
The arch force varies from minimum at crown (equal to horizontal reaction), gradually increasing with arch slope, to maximum at the supports.

Suspension roof

Assume:
Span $L=300$, cable spacing e $=10^{\prime}$, sag $f=30^{\prime}$, height difference $h=50$
DL = 14 psf
LL $=16 \mathrm{psf}$
$\Sigma=30 \mathrm{psf}$

Uniform load
$\mathrm{w}=30 \mathrm{psfx} 10^{\prime}$ / $1000 \quad \mathrm{w}=0.3 \mathrm{klf}$
Total load
W = wL = 0.3×300
$R=90 k$
Draw vector polygon, starting with total load W
Horizontal reaction
$H=113 k$
$R I=26 k$
$R r=64 k$
$T I=115 k$
$T r=129 k$
Vertical reactions
Left reactions
Right reaction
Cable tension
At left support
At right support (maximum)
Cable cof structure
Farablyolic cable by graphic method
Process:
Draw $A B$ and $A C$ (tangents of cable at supports)
Divide tangents $A B$ and $A C$ into equal segments
Lines connecting $A B$ to $A C$ define parabolic cable envelop
3 Cable profile
Process:
Define desired cable sag f (usually $f=L / 10$)
Define point A at $2 f$ below midpoint of line $B C$
$A B$ and $A C$ are tangents of parabolic cable at supports
Compute total load W = w L
4 Equilibrium vector polygon at supports (force scale: $1^{\prime \prime}=50 \mathrm{k}$)
Process:
Draw vertical vector (total load W)
Draw equilibrium polygon $\mathrm{W}-\mathrm{TI}-\mathrm{Tr}$
Draw equilibrium polygons at left support TI-H-R
Draw equilibrium polygons at right support Tr-Rr-H
Measure vectors $\mathrm{H}, \mathrm{RI}, \mathrm{Rr}$ at force scale
Note:
This powerful method finds five unknowns: H, RI, Rr. TI. Tr
The maximum cable force is at the highest support

Random load funiculars

To find funicular form and forces under random load is similar to finding reactions as described above, with one major difference, it requires a two step approach. In step one a polygon is drawn using an arbitrary pole. In step two the polygon is redrawn after finding the correct pole location as intersection of two defining vectors. This method may be used do find form and forces for suspension cables and arches under various load conditions.

Suspension cable with random load

Vector plan of loads
Trial polygon of arbitrary pole F'
Vector plan based on arbitrary pole polygon
Arbitrary trial polygon with real pole at intersection of a and b
Corrected vector plan
6 Corrected vector polygon
Process:
Draw vectors $A B, B C$, sc. fo all loads in trial oclygon
Select an ärbitrany pole F in potiggon
\square Draw polar veciors AF', BE , etc. for all loads in polygon
Draw paraliel potar vectors at intersection of respective load in plan Trarispose trial closing line a' from [plan to polygon to find q1
Transpose trial closing line b' from plan to polygon to find q2
Define desired locations of right support in plan
Define desired locations of cable sag at intersection of any load in plan Transpose closing line a between supports from plan to q1 in polygon Transpose closing line b of sag from plan to $q 2$ in polygon Intersection of closing lines a and b in polygon define correct pole F Draw correct polar vectors AF, Bf, etc. for all loads in polygon Draw parallel polar vectors at intersection of respective load in plan The corrected vectors will intersect with closing lines a and b in plan Complete support equilibrium in polygon:

Left support: AF-R1-R1h
Right support: DF-R2h-R2
Measure vector lengths in force scale to complete the process
Note:
The process is based on equilibrium at both supports and intersections of all loads with the cable.

Arch with random load

The process for arches is similar to cables described above, but with forces reversed from tension to compression and the polygon pole on the opposite side

Top: vector plan
Bottom: vector polygon
Process:
Draw vectors $A B, B C$, etc. for all loads in trial polygon
Select an arbitrary pole G^{\prime} in the polygon
Draw polar vectors AG^{\prime}, BG^{\prime}, etc. for all loads in polygon
Draw parallel polar vectors at intersection of respective loads in plan
Transpose trial closing line a' from [plan to polygon to find q1
Transpose trial closing line b' from plan to polygon to find q2
Define desired locations of right support
Define desired locations of arch rise at intersection of any loed
Transpose closing line a between supports frorn plan to a1 in polygoin
Transpose closing line 5 of arch rise irom plan to q2 ir polygon
Intersection of ciosing lines a and b in polygon define correct pole G
Draw correct pourar vectors AG, DG, etc. for all loads in polygon
Dran paraliel poiar vectors at intersection of respective load in plan
The corrected vectors will intersect with closing lines a and b in plan
Complete support equilibrium in polygon:
Left support: AG- R1-R1h
Right support: EG- R2h-R2
Measure vector lengths in force scale to complete the process
Note:
The process is based on equilibrium at both supports and at all intersections of loads with the arch.

Vector reactions

Reactions put loads in equilibrium and therefore can be found by graphic vector analysis by similar method used to find equilibriant. The process is illustrated on three examples. For convenience vectors are defined in a vector plan as for truss analysis. For example, the vector between A and B in the plan extends from A to B in the polygon.

1 Vector plan of loads and equilibriant
2 Equilibrium polygon of loads and equilibriant
Process:
Draw vectors A-B, B-C, etc. for all loads in polygon
Select an arbitrary pole O in polygon
Draw polar vectors A-O, B-O, etc. for all loads in polygon
Draw parallel polar vectors at intersection of respective loadin plan
Draw and measure equilibriant E to close polygon
Draw equilibriant E at intersection of $\mathrm{A}-\mathrm{O}$ and $\mathrm{D}-\mathrm{O}$ in plan
Note:
The equilibriant Epusvectors in equilibrium

Vector pian for two reactions

Vector polygon for two reactions
Process:
Draw vectors A-B, B-C, etc. for all loads in polygon
Select an arbitrary pole O in polygon
Draw polar vectors A-O, B-O, etc. for all loads in polygon
Draw parallel polar vectors at intersection of respective load in plan
Draw closing vector E from R1 to R2 in plan
Closing vector E in polygon defines reactions R1 and R2
Measure Reactions R1 an R2
5 Random load vector plan
6 Random load vector polygon
Process:
Draw vectors A-B, B-C, etc. for all loads in polygon
Select an arbitrary pole O in polygon
Draw polar vectors A-O, B-O, etc. for all loads in polygon
Draw parallel polar vectors at intersection of respective loads in plan
Draw closing vector F from $R 1$ to $R 2$ in plan
Draw parallel vector F in polygon to define length of R1 and R2
Draw and measure reaction R1, R1, H to close the polygon

5

Strength Stiffness Stability

This chapter introduces the theory and examples of strength, stiffness, and stability described n the following sections: Force types; force vs. stress; allowable stress; axial stress; shear stress; principle stress and Mohr's circle; torsion; strain; Hooke's law; Poisson's ratio; creep, elastic modulus; thermal strain; thermal stress; and stability.

1

3

2

4

1 Axial force (tension and compression
2
3 Bencirg
rorsion
5. Force actions

6 Symbols and notations
A Tension
B Compression
C Shear
D Bending
E Torsion

Force vs. stress

Force and stress refer to the same phenomena, but with different meanings. Force is an external action, measured in absolute units: \# (pound), k (kip); or SI units: N (Newton), kN (kilo Newton). Stress is an internal reaction in relative units (force/area), measured in psi (pound per square inch), ksi (kip per square inch); or SI units: Pa (Pascal), kPa (kilo Pascal). Axial stress is computed as:

```
\(f=P \mid A\)
where
\(\mathrm{f}=\) stress
\(P=\) force
\(A=\) cross section area
```

Note: stress can be compared to allowable stress of a given material.

- Force is the load or action on a member
- Stress can be compared to allowable stress for any raie-ial, expressed as: $\mathrm{F} \geq \mathrm{f} \quad$ (Allowable stress must be equa or greater than actual stress) where $\mathrm{F}=$ allowable stress
$\mathrm{f}=$ actual stress
Thab typeot stress is usually defined by subscript:
F_{a}, f_{a} (axial stress, capital F = allowable stress)
$\mathrm{F}_{\mathrm{b}}, \mathrm{f}_{\mathrm{b}} \quad$ (bending stress, capital $\mathrm{F}=$ allowable stress)
$\mathrm{F}_{\mathrm{v},} \mathrm{f}_{\mathrm{v}}$
(shear stress, capital F = allowable stress)
The following examples of axial stress demonstrate force and stress relations:
1 Wood column (compression)
Assume: Force $\mathrm{P}=2000 \#$, allowable stress $\mathrm{F}=1000 \mathrm{psi}$
$A=2 \times 2=4$ in 2 (cross section area)
Stress $f=P / A=2000 \# / 4$
$\mathrm{f}=500 \mathrm{psi}$ $1000>500$, ok
2 Steel rod (tension)
Assume: $\mathrm{P}=6 \mathrm{k}, 1 / 2 \mathrm{l}$ " rod, $\mathrm{Fa}=30 \mathrm{ksi}$

Cross section area $A=\pi r^{2}=(0.5 / 2)^{2} \pi$	$A=0.2 \mathrm{in}^{2}$
Stress $f=P / A=5 \mathrm{k} / 0.2$	$f=25 \mathrm{ksi}$
	$25<30, \mathrm{k}$

3 Spiked heel on wood stair (compression)
Assume: $\mathrm{P}=200 \#$ (impact load), $\mathrm{A}=0.04 \mathrm{in}^{2}, \mathrm{~F}_{\mathrm{a}}=400 \mathrm{psi}$
Stress $f=P / A=200 / 0.04$
$\mathrm{f}=5000 \mathrm{psi}$
$5000 \gg 400$. NOT ok
Note: The heel would sink into the wood, yield it and mark an indentation

Allowable stress

Allowable stress is defined by a material's ultimate strength or yield strength and a factor of safety. Building codes and trade associations provide allowable stress for various materials and grades of materials, which may also depend on duration of load. Allowable wood stress also depends on temperature, moisture content, size, and if a member is single or repetitive, like closely spaced joists. Relevant factors regarding allowable stress are briefly introduced here and further described later in this chapter.

Ultimate strength is the stress at which a test specimen breaks under load. Ultimate strength varies by material, such as wood, steel, masonry, or concrete, as well as grades of each material.

Yield strength is the point where a material under load changes from elastic to plastic deformation. Elastic deformation allows the material to return to its unstressed length after the load is removed; by contrast plastic deformation is permanent.

Factor of safety accounts for uncertainty regarding consistency of material quality, type of stress (tension, compression, shear, bending) and actual load conditions. The factor of safety is defined differently for different materials. For example, for steel the factor of safety is based on yield strength, for concrete on the specified compressive strength (breaking strength). The tables at left give some typical allowable stresses.

Wood

Base values for Douglas Fir-Larch 2"-4" (5-10 cm) thick, 2" (5cm) or wider for allowable stress: bending $\left(F_{b}\right)$, tension $\left(F_{t}\right)$, compression $\left(F_{c}\right)$, compression normal to grain $\left(F_{C_{\perp}}\right)$, horizontal shear (F_{v}), and elastic modulus (E).

Grade	F_{b}	F_{t}	F_{c}	$F_{c} \quad$	F_{v}	E	units
Select	1,450	1000	1,700	625	95	$1,900,000$	psi
Structural:	9,998	6,895	11,722	4,309	655	$13,100,500$	kPa
No. 1:	1,000	675	1,450	625	95	$1,700,000$	psi
	6,895	4,654	9,998	4,309	655	$11,721,500$	kPa
No. 2:	875	575	1300	625	95	$1,600,000$	psi
	6,033	3,965	8,964	4,309	655	$11,032,000$	kPa

Steel
Table of yield stress $\left(F_{y}\right)$; ultimate strength $\left(F_{u}\right)$; allowable stress for bending (F_{b}), compression (F_{c}), tension (F_{t}), shear (F_{v}); and elastic modulus (E)

Masonry
Aliowable compressive stress F_{a}, for masonry with special inspection is 25% of specified strength f 'm by the working stress method; reduced for slenderness. Specified Conipressive strength $f^{\prime} m$ is based on compressive strength of masonry units and mortars type M, S, N.

Type	Concrete masonry (ksi)				Clay brick masonry				(ksi)	
Unit strength	1.9	2.8	3.75	4.8	,	6	8	10	12	14
$f^{\prime} \mathrm{m}$ (M or S $)$	1.5	2	2.5	3	2	2.7	3.35	4	4.7	5.3
$f^{\prime} \mathrm{m}(\mathrm{N})$	1.35	1.85	2.35	2.8	1.6	2.2	2.7	3.3	3.8	4.4
Type	Concrete masonry (MPa) Clay brick masonry								(MPa)	
Unit strength	13	19	26	33	28	41	55	69	83	97
$f^{\prime} m(\mathrm{M}$ or S $)$	10	14	17	21	14	19	23	28	32	37
$f^{\prime} \mathrm{m}$ (N)	9	13	16	19	11	15	19	23	26	30

Concrete
By working stress method, allowable stresses are based on compressive strength f^{\prime}. Typical compressive strengths range from 2 to 6 ksi (14 to 41 MPa)

Allowable compressive stress		$0.40 f^{\prime}{ }_{c}$
Allowable compressive bending stress		$0.45 f^{\prime}{ }_{c}$
Allowable shear stress without reinforcing:	beam	$1.1 f^{*}{ }^{1 / 2}$
	joist	$1.2 f_{c}^{4}{ }^{1 / 2}$
	footing \& slab on grade	$2.0 f^{4}{ }^{1 / 2}$

Note: For concrete strength design method see chapter 8.

Axial stress
Axial stress acts in the axis of members, such as columns. Axial tension is common in rods and cables; wile axial compression is common in walls and columns. The following examples illustrate axial design and analysis. Analysis determines if an element is ok; design defines the required size. The equation, $f_{a}=P / A$, is used for analysis. The equation $A=P / F_{a}$, is used for design. Allowable stress, F_{a}, includes a factor of safety.
1 Crane cable design
Assume: $P=12 \mathrm{k}, \mathrm{Fa}=70 \mathrm{ksi}$
Find required cable size
Metallic cross section A_{m} (cables are about 60% metallic)
$A_{m}=P / F_{a}=12 \mathrm{k} / 70 \mathrm{ksi}$

$$
\mathrm{A}_{\mathrm{m}}=0.17 \mathrm{in}^{2}
$$

Gross cable area
$\mathrm{A}_{\mathrm{g}}=\mathrm{A}_{\mathrm{m}} / 0.6=0.17 / 0.6$ $f_{5}=0.28 \mathrm{in}^{2}$
Cable size
$\phi=2(\mathrm{~A} / \pi)^{1 / 2}=2(0.28 / \pi)^{1 / 2}=0.6$ "
2 Suspension hanger analysis (Hong kong-Sharighai bank)
Assume: load per floor $F=227 \mathrm{k}, \mathrm{Fa}_{\mathrm{a}}=30 \mathrm{ksi}$ level $\mathrm{A} A=12 \mathrm{~m}^{2}$. ievel $6 \mathrm{~A}=75 \mathrm{in}^{2}$
Hanger stress
Level 1. $f_{a}=F \cap=227 / 1$? $\quad f_{a}=19 \mathrm{ksi}<30$
-eve 6: $\mathrm{fa}_{\mathrm{a}}=6 \mathrm{FVA}=6 \times 227 / 75$
$\mathrm{f}_{\mathrm{a}}=18 \mathrm{ksi}<30$
Postijonting analysis
Assume: $P=12,000 \#, 3^{\prime} \times 3^{\prime} \times 2^{\prime}$ footing at $150 \mathrm{pcf}, 4 \times 4$ post ($3.5^{\prime \prime} \times 3.5^{\prime \prime}$ actual)
Allowable post stress $\mathrm{F}_{\mathrm{a}}=1000$ psi, allowable soil pressure $\mathrm{F}_{\mathrm{s}}=2000 \mathrm{psf}$
Post stress
P/A $=12,000 \# /\left(3.5 " x 3.5^{\prime \prime}\right) \quad f_{a}=980 \mathrm{psi}<1000$
Soil pressure
$\mathrm{f}_{\mathrm{s}}=$ P/A $=\left(12,000 \#+3^{\prime} \times 3^{\prime} \times 2^{\prime} \times 150 \mathrm{pcf}\right) /\left(3^{\prime} \times 3^{\prime}\right)$

$$
\mathrm{f}_{\mathrm{s}}=1633 \mathrm{psf}<2000
$$

4 Slab/wall/footing, analyze a 1' wide strip
Assume: allowable wall stress $\mathrm{F}_{\mathrm{a}}=360$ psi; allowable soil pressure $\mathrm{F}_{\mathrm{s}}=1500 \mathrm{psf}$
Concrete slab, $t=8^{\prime \prime}$ thick, $L=20^{\prime}$ span
CMU wall, $\mathrm{h}=10^{\prime}$, $\mathrm{DL}=80 \mathrm{psf}, \mathrm{t}=8^{\prime \prime}$ nominal ($75 / 8^{\prime \prime}=7.625^{\prime \prime}$ actual)

Slab load

$\begin{array}{lr}100 \mathrm{psf} \mathrm{DL}+40 \mathrm{psf} \mathrm{LL} & \mathrm{DL+LL}=140 \mathrm{psf} \\ \text { Load at wall base } & \\ \mathrm{P}=140 \mathrm{psf}\left(20^{\prime} / 2\right)+80 \mathrm{psf}\left(10^{\prime}\right) & P=2,200 \#\end{array}$
Wall stress
$\mathrm{f}_{\mathrm{a}}=\mathrm{P} / \mathrm{A}=2200 \# /\left(12 " x 7.625^{\prime \prime}\right)$

$$
\mathrm{f}_{\mathrm{a}}=24 \mathrm{psi}<360
$$

Load on soil
$P=2,500 \#$
Soil pressure
$\mathrm{f}_{\mathrm{s}}=2,500 \#$ / (1^{\prime} ' 2^{\prime}) $\quad \mathrm{f}_{\mathrm{s}}=1250 \mathrm{psf}<1500$

Shear stress

Shear stress occurs in many situations, including the following examples, but also in conjunction with bending, described in the next chapter on bending. Shear stress develops as a resistance to sliding of adjacent parts or fibers, as shown on the following examples. Depending on the number of shear planes (the joining surface $[A]$ of connected elements) shear is defined as single shear or double shear.
A Shear plane
B Shear crack

1 Single shear
Assume: $P=3 k=3000 \#, 2 " x 4^{\prime \prime}$ wood bars with $1 / 2^{\prime \prime}$ bolt of $F v=20 \mathrm{ksi}$
Shear area (bolt cross section)
$A=\pi r^{2}=\pi(0.5 / 2)^{2}$
Shar stress fv $=P / A=3 / 0.2$
Shear stress fv $=P / A=3 / 0.2$
2 Check end block (A)
Assume: Block length 6 ", wood $F \mathrm{~F}:=95$ psi, all other as abiove
End block shear area $A=2 \times 2{ }^{\prime \prime} 6^{\prime \prime}$
$A=24 \mathrm{in}^{2}$
Shear stress $V=P / A=3000 \# 12$ $\mathrm{fv}=125 \mathrm{psi}>95$ NOT ok
use e = 8
3 Double shear
Assume: $\mathrm{P}=22 \mathrm{k}, 25 / 8^{\prime \prime}$ bolts of $\mathrm{Fv}=20 \mathrm{ksi}$
Shear area $A=4 \pi r^{2}=4 \pi(0.625 / 2)^{2}$
Shear stress fv $=P / A=22 / 1.2$

4 Double shear, glued
Assume: P = 6000 \#, Wood bars, Fv $=95 \mathrm{psi}$
Shear area A $=2 \times 4$ " $\times 8$ " $\quad A=64$ in 2
Shear stress Fv = P / A = $6000 / 64 \quad f v=94 \mathrm{psi}<95$
5 Twin beam double shear
Assume: $P=R=12 \mathrm{k}, 21 / 2{ }^{\prime \prime}$ bolts, $\mathrm{Fv}=20 \mathrm{ksi}$
Shear area $A=4 \pi r^{2}=4 \pi(0.5 / 2)^{2} \quad A=0.79$ in 2
Shear stress fv $=P / A=12 / 0.79$ $\mathrm{fv}=15 \mathrm{ksi}<20$

6 Shear wall
Assume: $\mathrm{P}=20 \mathrm{k}, 8^{\prime \prime} \mathrm{CMU}$ wall, $\mathrm{t}=7.625^{\prime \prime}, \mathrm{L}=8^{\prime}, \mathrm{Fv}=30 \mathrm{psi}$
Shear area A $=7.625$ " x 12" x 8
$\mathrm{A}=732 \mathrm{in}^{2}$
Shear stress fv $=P / A=20,000 \# / 732$ $\mathrm{fv}=27 \mathrm{psi}<30$

Torsion

Torsion is very common in machines but less common in building structures. The examples here include a small detail and an entire garage.

1 Door handle
Assume: $\mathrm{P}=10 \#, \mathrm{e}=3$ "

Torsion moment M
$M=P e=10 \times 3$
$M=30 \# '$

$$
1 v=30 \#
$$

2 Tuck-under parking
Assume: Shear e $=10$ ', base shear $V=12 \mathrm{k}$
Torsion moment M
$\mathrm{M}=\mathrm{Ve}=12 \mathrm{kx} 10$

Note:
The torsion moment is the product of base shear v and lever arm e, the distance from center of mass to center of resistance (rear shear wall).
In the past, torsion of tuck-under parking was assumed to be resisted by cross shear walls. However, since the Northridge Earthquake of 1994 where several buildings with tuck-under parking collapsed, such buildings are designed with moment resistant beam/column joints at the open rear side.

1

3

5

Principle stress

Shear stress in one direction, at 45 degrees acts as tensile and compressive stress, defined as principle stress. Shear stress is zero in the direction of principle stress, where the normal stress is maximum. At any direction between maximum principle stress and maximum shear stress, there is a combination of shear stress and normal stress. The magnitude of shear and principle stress is sometimes required for design of details. Professor Otto Mohr of Dresden University develop 1895 a graphic method to define the relationships between shear stress and principle stress, named Mohr's Circle. Mohr's circle is derived in books on mechanics (Popov, 1968).

Isostatic lines

Isostatic lines define the directions of principal stress to visualize the stress trajectories in beams and other elements. Isostatic lines can be defined by experimentally ioy photoelastic model simulation or graphically by Mohr's circle.

Simple beam with a square marked for investigation
2 Free-body of square marked on bearn with shear stress aniows
3 Free-bod square with shear arrows diviced'into pairs of equal effect
$4 \square \quad$ Free-booy sq arre with principar stress arrows (resultant shear stress vectors) Free body scuare rotated 45 degrees in direction of principal stress Beam vith isostatic lines (thick compression lines and thin tension lines)

Note:
Under gravity load beam shear increases from zero at mid-span to maximum at supports. Beam compression and tension, caused by bending stress, increase from zero at both supports to maximum at mid-span. The isostatic lines reflect this stress pattern; vertical orientation dominated by shear at both supports and horizontal orientation dominated by normal stress at mid-span. Isostaic lines appear as approximate tension "cables" and compression "arches".

Strain

Strain is a deformation caused by stress, or change in temperature, described later. Strain may elongate or shorten a solid, depending on the type of stress.

Hooke's law

Material expands and contracts under tension and compression, respectively. The stress/strain relationship, called Hooke's law after the English scientist Robert Hooke, who discovered it in the $17^{\text {th }}$ century, has since been confirmed by many empirical tests. The Hooke's law assumes isotropic material (equal properties in any direction). The stress/strain relation is visualized here by a spring, as substitute for rods as used in testing machines, to amplify the deformation.
1 Elongation due to tension
2 Shortening due to compression
3 Stress / strain graph
L Unstressed length
$\Delta \mathrm{L}$ Strain (elongation or shortenirigunder cadd
P Applied load
$\varepsilon \quad$ Unit strair Epsion $(\varepsilon=\Delta L$ L $)$
Elastic modulus E = f/ $\varepsilon \mathrm{f}$
$\square \backsim \backsim \backsim \backsim$

Cross section area of assumed rod

Stress/strain relations

Although stress/strain tests may be done for any materials, for convenience the following test description assumes a steel rod. After measuring the unstressed length, load is applied and the strain recorded. The load is then incrementally increased and all related elongations recorded on a Cartesian graph, strain on the horizontal axis, and stress on the vertical axis. The recorded measure points are connected by a line. A straight line implies linear stress/strain relations; a curved line implies non-linear relations. Most structural materials are linear up to the proportional limit, and non-linear beyond that point. If the rod returns to its original length after the load is removed, the material is considered elastic; if it remains deformed it is considered plastic. The remaining deformation is the permanent set. Rubber is an elastic material; clay a plastic material. Some materials, such as steel, are elastic-plastic, i.e., up to the elastic limit steel is elastic; beyond the elastic limit it is plastic. The transition from elastic to plastic strain is also called yield point. Materials which deform much and absorb energy-Defore ireaking are considered ductile; materials which break abruptly are consicieree britte. Mila' steel is considered a ductile material; concrete is usually jrittle.
1 Test loads 1 to 5 kip
2 Stress-strain graph (hơrizontal axis = stiain, verical axis $=$ stress)
3 Linear materialtiinear stress/strain reiation
4 Non-linear materiai (non-linear stress/strain relation)
Elastic material (returns to original size if unloaded, like rubber)
Plastic material (remains permanently deformed like clay)
Brittle material (breaks abruptly)
8 Ductile material (deforms and absorbs energy before breaking)

Elastic modulus

E $\quad E=f / \varepsilon=$ Elastic Modulus (defines material stiffness)
f Stress
$\varepsilon \quad$ Unit strain $(\varepsilon=\Delta L / L)$
S Permanent set (remaining strain after stress is removed)
Derivation of working equation to compute strain:

$$
\begin{array}{ll}
\frac{\Delta L}{L}=\varepsilon=\frac{f}{E}=\frac{P}{A E} & \text { solving for } \Delta L \\
\Delta L=P L / A E
\end{array}
$$

The equation is used to compute strain due to load. It shows that strain:

- Increases with increasing P and L
- Increases inversely with A and E

Poisson's ratio

Poisson's ratio is named after French scientist Poisson who defined it 1807 as ratio of lateral strain / axial strain. All materials shrink laterally when elongated and expand when compressed. Poisson's ratio is defined as:

$v=$ lateral strain / axial strain

Based on empirical tests, Poisson's ratio for most materials is in the range of 0.25 to 0.35 ; only rubber reaches 0.5 , the maximum for isotropic material.

Creep

Creep is a time dependent strain, most critical in concrete where it is caused by moisture squeezed from pores under stress. Creep tends to diminish with time. Concrete creep may exceed elastic strain several times, as demonstrated by Case Study 9 of Northridge Earthquake failures (Schierle, 2002). Yet much research is needed to provige design data and guidelines regarding creep.

Elastic modulus

The elastic modulus E , also Callea modulus of elasticity or Young's modulus Y , after English scientist Young, who defired it 1807 The term elastic modulus is actually a misnomer sincie it defines stiffesss, tre opposite of elasticity.

Note: (\quad

Since $R= \pm / \varepsilon$ and ε is a ratio without units, the elastic modulus has the same units as stress

[^0]| Allowable stress vs. elastic modulus (typically about 1:1000 ratio) | | |
| :--- | ---: | ---: |
| Material | Allowable stress (psi) | Elastic modulus (psi) |
| Wood | 1,400 | $1,400,000$ |
| Steel | 30,000 | $30,000,000$ |
| Masonry | 1,500 | $1,500,000$ |
| Concrete | 3,000 | $3,000,000$ |

1

2

4

Strain examples

Elevator cables
Assume
4 cables $\phi 1 / 2$ " each, 60% metallic areaBreaking strength Fy $=210 \mathrm{ksi}$

Allowable stress $(210 \mathrm{ksi} / 3)$	Fa $=70 \mathrm{ksi}$
Elastic Modulus	$E=16,000 \mathrm{ksi}$

Elastic Modulus E = 16,000ksi
$L=800$ ' each
$\mathrm{P}=8 \mathrm{k}$
Metallic area
$\mathrm{Am}=4 \pi \mathrm{r}^{2}=4 \times .6 \pi(0.5 / 2)^{2} \quad \mathrm{Am}=0.47 \mathrm{in}^{2}$
Stress
$f=P / A=8 / 0.47 \quad f=17 \mathrm{ksi}$
Elongation under load
$\Delta L=P L / A E$
$\Delta L=8 k \times 800 " \times 12^{\prime \prime} /(0.47 \times 16000)$
2 Suspended building
3 Differential stroin
Assume

10 -siories (0) $14^{\prime}=10 \times 14^{\prime} \times 12^{\prime \prime}$	L = 1680"
Average column stress	$\mathrm{f}=18 \mathrm{ksi}$
Average strand stress	$\mathrm{f}=60 \mathrm{ksi}$
Elastic modulus (steel)	$\mathrm{E}=29,000 \mathrm{ksi}$
Elastic modulus (strand)	$\mathrm{E}=22,000 \mathrm{ksi}$
$\Delta L=P L / A E$, since $f=P / A \rightarrow \Delta L=f L / E$ Column strain	
$\Delta L=18 \mathrm{ksi} \mathrm{x} 1680$ " / 29000	$\Delta \mathrm{L}=1{ }^{\prime \prime}$
Strand strain	
$\Delta L=60 \mathrm{ksi} \times 1680$ " / 22000	$\Delta L=4.6{ }^{\prime \prime}$
Differential settlement	5.6"

4 Shorten hangers under DL to reduce differential strain, or prestress strands to reduce $\Delta \mathrm{L}$ by half

Note: Differential strain is additive since both strains are downwards
To limit differential strain, suspended buildings have <= 10 stories / stack

1

Thermal strain

Unrestrained objects expand and contract if subjected to temperature increase and decrease, respectively. Thermal strain is defined by a coefficient α for each material. Thermal strain varies linearly with temperature variation.
1 Bar of initial length L
2 Thermal strain $\Delta \mathrm{L}$ due to temperature increase, computed as:

$\Delta L=\alpha \Delta t L$

where
$\alpha=$ thermal coefficient (in/in/OF) [/OC (SI units)]
$\Delta t=$ temperature increase $(+) /$ decrease (-)
$\mathrm{L}=$ initial length

Thermal stress

Thermal stress is caused when thermal strain is prevented by restrains.
3 Bar of initial length L
4 Elongation $\Delta \mathrm{L}$ due to heat
5 Heated bar reduced to initial length bvoload?
$6 \square$ Restrairied ber moder stress
Thermal stress derivation:
Since $\Delta L=P L / A E$ and $f=P / A$
$\Delta L=f L / E \rightarrow f=E \Delta L / L$
$\Delta L=\alpha \Delta t L \rightarrow f=E \alpha \Delta t L / L$
$f=\alpha \Delta t E$
where
$\mathrm{f}=$ thermal stress
$E=$ elastic modulus

Coefficient of thermal expansion α and elastic modulus E				
Material	US α $(10-6 / 0 F)$	US E α $(106 \mathrm{psi})$	$\mathrm{SI} \alpha$ $(10-6 / 0 \mathrm{C})$	$\mathrm{SI} \mathrm{E} \alpha$ $(106 \mathrm{gPa})$
Aluminum	13	10	24	69
Steel	6.5	29	11.7	200
Concrete	6	$3-4$	11	$20-28$
Masonry	4	$1-3$	7	$7-21$
Wood	$1.7-2.5$	$1.2-2.2$	$3.5-4.5$	$8-15$
Glass	44	9.6	80	66
Plastics	$68-80$	$0.3-0.4$	$122-144$	$2-2.8$
Aluminum	13	10	24	70

R

2

Thermal effects

Thermal variations cause stress and/or strain in structures. Temperature increase and decrease cause material to expand and contract, in unrestrained objects and stress in restrained objects, respectively, as illustrated in the examples at left.

1 Wall subject to bending stress due to temperature variation
1 Expanding south column causes bending stress in beams
2 Expanding south column causes tensile stress in bracing
Expanding fix-end arch subject to reversed bending stress
Expanding pin-joined arch subject to bending stress
Three-hinge arch, free to expand, without bending stress

Thermal examples

1 Curtain wall

Assume:
Aluminum curtain wall, find required expansion joint
$\Delta t=1000 \mathrm{~F}$ (summer vs. winter temperature)
2 story mullion, $\mathrm{L}=30^{\prime} \times 12^{\prime \prime}=360^{\prime \prime}$
$\alpha=13 \times 10^{-6} \mathrm{in} / \mathrm{in} / 0 \mathrm{~F}$
$\mathrm{E}=10 \times 10^{6} \mathrm{psi}$
Thermal strain
$\Delta \mathrm{L}=\alpha \Delta \mathrm{t} \mathrm{L}=13 \times 10-6 \times 1000 \times 360^{\prime \prime} \quad \Delta \mathrm{L}=0.47^{\prime \prime}$
Use $1 / 2$ " expansion joints
Assume ignorant designer forgets expansion joint
Thermal stress:
$\mathrm{f}=\alpha \Delta \mathrm{t} \mathrm{E}=13 \times 10^{-6} \times 100 \times 10 \times 10^{-6} \mathrm{psi}$
Note: 10^{6} and $10-6$ cancel out and can be iannored
$13,000 \mathrm{psi}$ is too much stress for alurininum
2 High-rise building, differertial Expansioi
Assume
Steel cociurnins exposed to sutside temperature
$\Delta^{\circ}=500 \mathrm{~F}$ (soutit vs. north temperature)
$\mathrm{L}=840^{\prime}$ (60 stories at 14')
$\alpha=6.5 \times 10-6 \mathrm{in} / \mathrm{in} / 0 \mathrm{~F}$
Differential expansion
$\Delta \mathrm{L}=\alpha \Delta \mathrm{t} \mathrm{L}=6.5 \times 10^{-6} \times 500 \times 840^{\prime} \times 12^{\prime \prime}$
Note: the differential expansion would cause bending stress
3 Masonry expansion joints
(masonry expansion joints should be at maximum $L=100^{\prime}$)
Assume
Temperature variation $\Delta t=700 \mathrm{~F}$
Joint spacing L=100' x $12^{\prime \prime}$
Thermal coefficient

E-modulus

 $\mathrm{E}=1.5 \times 106 \mathrm{psi}$Required joint width
$\Delta \mathrm{L}=\alpha \Delta \mathrm{t} \mathrm{L}=\left(4 \times 10^{-6}\right) 700$ (1200")
Use $3 / 8$ " expansion joint
Check thermal stress without expansion joint
$f=\alpha \Delta t E$
$\mathrm{f}=4 \times 10^{-6} \times 700 \times 1.5 \times 10^{6}$

Stability

Stability is more complex and in some manifestations more difficult to measure than strength and stiffness but can be broadly defined as capacity to resist:

- Displacement
- Overturning
- Collapse
- Buckling

Diagrams 1-3 give a theoretical definition; all the other diagrams illustrate stability of conceptual structures.

1	Unstable
2	Neutral
3	Stable

Stable

Weak stability: high center of gravits, narrow base
Strong stability: low center of gravily, hroad base
$6 \square$ Unstablepos and beam portai
stable moment frame
Unstable T-ifame with pin joint at base
Stable twin T-frames

4

Overturn stability

To resist overturning under lateral load requires a stabilizing moment greater than the overturning moment (usually with a safety factor of 1.5). Stabilizing moments are dead weight times lever arm (distance from center of mass to edge of resisting element, assuming a rigid body) as demonstrated on the following examples (assuming uniform wind load for simplicity).

1 Building of vertical extrusion
Assume: 20 stories, $90^{\prime} \times 90^{\prime}, \mathrm{B}=90^{\prime}, \mathrm{h}=300$
Wind force $\mathrm{F}=70 \mathrm{psf} \times 90 \times 300 / 1000$
F = 1,890 k

Overturning moment $\mathrm{Mo}=\mathrm{Fh} / 2=1890 \times 300 / 2$
Dead load P = 50 psf x $90^{2} \times 20 / 1000$
Stabilizing moment Ms $=P B / 2=8100 \times 90 / 2$
$\mathrm{Mo}=283,500 \mathrm{k}$
$\mathrm{P}=8.100 \mathrm{k}$
iv's $=3 \hat{n} 4,500 \mathrm{k}$
Check stability (MS > Mo ?) $364,500>283,500$

1 Building with cantilever core
Assume: 20 stories, $90^{\prime} \times 90^{\prime}, B=300,4=300$
Wind force F $=72 \mathrm{psf} \times 90 \times 300 / 1000$
\square Overturing moment $\mathrm{Mo}=\mathrm{F} / \overline{2}=1890 \times 300 / 2$
Dead load $P=50$ psf $\times 90^{2} \times 20 / 1000$
Stabsilizing moment Ms $=P B / 2=8100 \times 30 / 2$
Check stability (MS > Mo ?)
Core is unstable without tension piles or large footing
3 Pyramid
Assume: 9 stories, $\mathrm{h}=108^{\prime}, \mathrm{B}=204^{\prime} \quad \mathrm{F}=750 \mathrm{k}$
Dead load

$$
P=4800 k
$$

27,000 k'
$\mathrm{Ms}=489,600 \mathrm{k}^{\prime}$ 489,600 >> 27,000

4 Inverted Pyramid
Assume: 9 stories, $\mathrm{h}=108^{\prime}, \mathrm{B}=12^{\prime} \quad \mathrm{F}=750 \mathrm{k}$
Dead load
$\mathrm{P}=4800 \mathrm{k}$
Overturn moment $\mathrm{Mo}=\mathrm{F} 2 / 3 \mathrm{~h}=750 \times 2 / 3 \times 108$
Stabilizing moment Ms $=$ P B / $2=4800 \times 12 / 2$
54,000 k'
Check stability (MS > Mo)
Ms $=28,800 \mathrm{k}^{\prime}$
Inverted pyramid is unstable without tension piles or large footing

Buckling stability

Buckling stability is more complex to measure than strength and stiffness and largely based on empirical test data. This introduction of buckling stability is intended to give only a qualitative intuitive understanding.

Column buckling is defined as function of slenderness and beam buckling as function of compactness. A formula for column buckling was first defined in the $18^{\text {th }}$ century by Swiss mathematician Leonhard Euler. Today column buckling is largely based on empirical tests which confirmed Euler's theory for slender columns; though short and stubby columns may crush due to lack of compressive strength.

Beam buckling is based on empirical test defined by compactness, a quality similar to column slenderness.

Slender column buckles in direction of least dimension Square column resist buckling equally in both directions
Blocking resists buckling labcut least dimension
Long and slender wood joist supject to bul.cking
blacking resiststurkling of wood joist
Web buckling oisteel beam
Stiffener plates resist web buckling
A Blocking of wood stud
B Blocking of wood joist
C Stiffener plate welded to web
P Load

Bending

Bending elements are very common in structures, most notably as beams. Therefore, the theory of bending is also referred to as beam theory, not only because beams are the most common bending elements but their form is most convenient to derive and describe the theory. For convenience, similar elements, such as joists and girders, are also considered beams. Although they are different in the order or hierarchy of structures, their bending behavior is similar to that of beams, so is that of other bending elements, such as slabs, etc., shown on the next page. Thus, although the following description applies to the other bending elements, the beam analogy is used for convenience.
Beams are subject to load that acts usually perpendicular to the long axis but is carried in bending along the long axis to vertical supports. Under gravity load beams are subject to bending moments that shorten the top in compression and elongate the bettom in tension. Most beams are also subject to shear, a sliding force, that act soth rovizontally and vertically. Because beams and other bending elements are very comrnor, the beam theory is important in structural design and analysis.
As for other structural elements, bearn investigation may inivolve analysis or design; analysis, if a given beam is defined ioy archiecturial or other factors; design, if beam dimensions muint be setermined to support applied loads within allowable stress and deflection. Both, enaivsis and design require finding the tributary load, reactions, shear, and beriding moment. In addition, analysis requires to find deflections, shear- and bendiing stress, and verify if they meet allowable limits; by contrast design requires sizing the beam, usually starting with an estimated size.

The following notations are commonly used for bending and shear stress:	
$f_{b}=$ actual bending stress	$F_{b}=$ allowable bending stress
$f_{v}=$ actual shear stress	$F_{v}=$ allowable shear stress

Allowable stresses are given in building codes for various materials.
Allowable stresses assumed in this chapter are:
Wood
$\mathrm{F}_{\mathrm{b}}=1450 \mathrm{psi}(9998 \mathrm{kPa})$
$\mathrm{F}_{\mathrm{v}}=95 \mathrm{psi}(655 \mathrm{kPa})$
Steel
$\mathrm{F}_{\mathrm{b}}=22 \mathrm{ksi}(152 \mathrm{MPa}) \quad \mathrm{F}_{\mathrm{v}}=14 \mathrm{ksi}(97 \mathrm{MPa})$
The more complex design and analysis of concrete and masonry will be introduces-later.

Bending elements

As mentioned above, beams are the most common bending elements and their structural behavior described in this chapter applies in general to other bending elements as well. Other bending elements, explored later, include joists, girders, slabs and plates (analyzed as strip of unit width) as well as folded plates, cylindrical shells, moment frames, and Vierendeel girders (named after the Belgian inventor of the 19th century). Thus, the theory of bending and shear has broad implications and is very important for structural analysis and design.

1 Beams, one shown deformed under uniform gravity load
Slab or deck with a strip of unit width marked for analysis as "beam"
3 Folded plate acts as narrow, inclined beams leaning against one-another
4 Cylindrical shell, acts as beams of semi-circular cross-section
5 Moment frame resists gravity and lateral load in bending
6 Vierendeel girder (named after the Belgian inventor of ii)

2

3

5

6

Beam types

The location, number, and type of supports determine the type of beam.

```
Simple beam
Cantilever beam
Beam with one overhang
Beam with two overhangs
Restrained beam
Continuous beam
```

The simple beam is most common in practice. It has two supports, one pin and one roller, and, with three unknown reactions, it is statically determinate. Given their pin and roller supports, overhang beams are also determinate; by contrast restraint and continuous beams are statically indeterminate, since they have more than ihree unknown reactions.
The simple beam has single concave curvature that results in compression on top and tension at the bottom of the bean!. The cantilever beam has singie convex curvature, with tension on-top and compression at tine boitoin of the beam. All the other beams change from concaveto convex curvatures. Because the cantilever beam has only one support,it must have fixed (moment resistant) support to be stable.
Given ecuial ioads and spans, the cantilever beam has the largest bending moment, foiiowed by the simple beam with half that of the cantilever. Beams with overhang have negative overhang moments that reduces positive field moments. Their reduced bending moment is less than the moment of a simple beam of equal span. Two overhangs yield smaller field moments than a single overhang. Designing a beam with one or two overhangs is a good strategy to greatly reduce bending for better efficiency without extra cost. Given the double curvature of restrained and continuous beams, they, too, have reduced bending moments. In restrained beams this advantage may be in part offset by the fact that the negative end moments must be resisted by supports. The interaction of beam and column provides lateral resistance for moment frames.

Bending and Shear

Although derivation and numeric examples are required to analyze and design beams, intuitive understanding is an important prerequisite to gain deeper insight into the behavior of beams. The following is an intuitive introduction to beam bending and shear. A simple beam with uniform load is used for convenience.

Bending moment

Gravity load on a simple beam shortens the top and elongates the bottom, causing compressive and tensile stresses at top and bottom, respectively; with zero stress at the neutral axis (N. A.). In beams of symmetrical cross-section, the neutral axis is at the center. The compressive and tensile stress blocks generate an internal force couple that resists the external bending moment caused by load.

Simple beam with pin and roller supports
2 Deformed beam under uniform gravitu load
3 Free-body diagram with bending stress block that generates an internal force couple to resist the exiernal bending momentcaused by load

Shear force

With few exceptions, described later, shear coexists with bending. When shear is present it acts both horizontally and vertically at equal magnitude. In wood beams horizontal shear is more critical because wood's shear capacity is much smaller parallel than perpendicular to the grain.
1 Beam under uniform load with shear cracks as they occur in some concrete beams near the supports where shear is maximum
2 Tendency of beam parts to slide vertically generates vertical shear stress that is zero at mid-span and increases to maximum at the supports where the vertical shear deformation is greatest
3 Tendency of beam layers to slide horizontally generates horizontal shear that is zero at mid-span and increases toward the supports. This is visualized, assuming a beam composed of several boards
4 Shear diagram reflects shear distribution over beam length 1
5 Unloaded beam marked with squares to visualize shear
6 Loaded bean with squares deformed into r nomiovids due to shear
7 Horizontahand vertical shear cotipes on a square beam part are equal to balance Toeftional tendericies $(\Sigma \mathrm{M}=0)$. Therefore, horizontal and vertical shear stresses are equala: any point on the beam.
8 Snear vectors generate compression and tension diagonal to the shear. This tends to generate diagonal tension cracks in concrete beams

Bending and shear distribution

Shear and bending diagrams illustrate their respective distribution over the beam's length (simple beam in this case). Similarly, internal shear and bending stresses, caused by shear force and bending moment, respectively, may be drawn to illustrate their distribution over the beam's cross-section.

Beam diagram

Shear diagram shows shear force distribution over beam length
Bending diagram shows bending moment distribution over beam length
Shear stress diagram shows distribution over beam depth
Bending stress diagram shows distribution over beam depth
A Possible location of a pipe hole at beam center and mid-span where both shear and bending stresses are zero

The shear force varies linearly from maximum positive sinear at the leat surport to maximum negative shear at the right support The left reaction pushing upward and the beam load downward cause a maximum positive (clocknise), shear couple at the left support. Shear reduces to cero at nit-span where it is balanced by gravity load. At the right support shear reaches a negative maximum.
The benoing rnornent varies in parabolic form over the beam's length. It is zero at both supporis arid maximum at mid-span. Over the depth of the beam, bending stress varies from maximum compression on the top to maximum tension at the bottom.

The variation of bending over the beam length creates differential bending stress that is unbalanced. Thus, the compressive and tensile bending stresses push in opposite directions which causes horizontal shear stress. Shear stress varies from zero on top and bottom to maximum at the neutral axis. The rare case of uniform bending over the beam length, i.e., no differential bending stress, causes zero shear stress. This is called pure bending.

Bending and shear stress

Bending and shear stresses in beams relate to bending moment and shear force similar to the way axial stress relates to axial force ($f=P / A$). Bending and shear stresses are derived here for a rectangular beam of homogeneous material (beam of constant property). A general derivation follows later with the Flexure Formula.
1 Simple wood beam with hatched area and square marked for inquiry
2 Shear diagram with hatched area marked for inquiry
3 Bending moment diagram with hatched area marked for inquiry
4 Partial beam of length x, with stress blocks for bending f_{b} and shear f_{v}, where x is assumed a differential (very small) length
Reactions, found by equilibrium $\Sigma \mathrm{M}=0$ (clockwise +)

$$
\begin{aligned}
& \text { at } \mathrm{c}:+12 R_{a}-3(8)=0 ; R_{a}=3(8) / 12 \\
& \text { at a: }-12 R_{c}+3(4)=0 ; R_{c}=3(4) / 12
\end{aligned}
$$

Shear V , found by vertical equilibrium, $\Sigma \mathrm{V}=0$ (upward +). right of a and left of b $V=0+2$
\square

Bending moment M, found by equiliorium $\sum M=0$ (ciockwise +)
\square at a:

$$
\begin{aligned}
\lambda M & =+2(0) \\
M & =+2(4)
\end{aligned}
$$

$$
\mathrm{M}=0 \mathrm{k}^{\prime}
$$

$$
\text { at c. } \triangle \triangle M=+2(12)-3(8)
$$

$$
M=8 k^{\prime}
$$

Eenaing stress f_{b} is derived, referring to 4 . Bending is resisted by the force couple C-T, with lever arm $2 / 3 d=$ distance between centroids of triangular stress blocks. $C=T=f_{b}$ $\mathrm{bd} / 4, \mathrm{M}=\mathrm{C}(2 \mathrm{~d} / 3)=\left(\mathrm{f}_{\mathrm{b}} \mathrm{bd} / 4\right)(2 \mathrm{~d} / 3)=\mathrm{f}_{\mathrm{b}} \mathrm{bd} 2 / 6$, or
$\mathrm{f}_{\mathrm{b}}=\mathrm{M} /\left(b d^{2} / 6\right)$; where $b d^{2} / 6=\mathrm{S}=$ Section Modulus for rectangular beam; thus

$f_{b}=M / S$

For our beam: $\quad S=b^{2} / 6=4(12)^{2} / 6=\quad S=96$ in 3

$$
\mathrm{S}=\mathrm{bd}^{2} / 6=4(12)^{2} / 6=
$$

$$
b=1000 \mathrm{psi}
$$

* multiplying by 1000 converts kips to pounds, by 12 converts feet to inches.

Shear stress f_{v} is derived, referring to 4. Bending stress blocks pushing and pulling in opposite directions create horizontal shear stress. The maximum shear stress is $f_{v}=C / b x$, where $b=$ width and $x=$ length of resisting shear plane. Shear at left support is $V=R$. Let $M=$ bending moment at x, and $f_{b}=$ bending stress at x, then $M=R X=V X$, and $f_{b}=M / S=V x / S$. Substituting $V x / S$ for f_{b} in $C=f_{b} b d / 4$, the compressive top force, yields $\mathrm{C}=(\mathrm{Vx} / \mathrm{S})(\mathrm{bd} / 4)$. Thus $\mathrm{f}_{\mathrm{v}}=\mathrm{C} /(\mathrm{bx})$ yields $\mathrm{f}_{\mathrm{v}}=(\mathrm{Vx} / \mathrm{S})(\mathrm{bd} / 4) /(\mathrm{bx})$. Substituting $\mathrm{bd} 2 / 6$ for S yields

$$
\begin{gathered}
f_{v}=\frac{V x}{b d^{2} / 6} \frac{b d / 4}{b x}=\frac{V b d / 4}{b^{2} d^{2} / 6}=\frac{6 \mathrm{~V}}{4 b d} \text {, or } \\
f_{\mathrm{V}}=1.5 \mathrm{~V} / \mathrm{bd}
\end{gathered}
$$

For the sample beam

$$
\mathrm{f}_{\mathrm{v}}=1.5(2) 1000 /(4 \times 12)
$$

Equilibrium Method

Cantilever beam with point load

Assume a beam of length $L=10 \mathrm{ft}$, supporting a load $P=2 \mathrm{k}$. The beam bending moment and shear force may be computed, like the external reactions, by equations of equilibrium $\Sigma \mathrm{H}=0, \Sigma \mathrm{~V}=0$, and $\Sigma \mathrm{M}=0$. Bending moment and shear force cause bendingand shear stress, similar to axial load yielding axial stress $f=$ P/A. Formulas for bendingand shear stress are given on the next page and derived later in this chapter.

1 Cantilever beam with concentrated load
V Shear diagram (shear force at any point along beam)
M Bending moment diagram (bending moment at any point a ong beam)
$\Delta \quad$ Deflection diagram (exaggerated for clarity
Reactions, found by equilibrium, $\Sigma, V=0$ (ur t) and $\Sigma M=0$ (cockwise +)
at $\mathrm{b} \Sigma \mathrm{V}=0=$
$\sqrt{M-2(10)=0} \begin{aligned} & 2,-z=0 \\ & M\end{aligned}$

$$
\begin{array}{r}
R=2 k \\
M=20 k^{\prime}
\end{array}
$$

Shear V, found by'vertical equilibrium, $\Sigma \mathrm{V}=0$ (up +)
right of $a=$ left of b

$$
V=0-2
$$

$$
V=-2 k
$$

Left of a and right of b, shear is zero because there is no beam to resist it (reaction at b reduces shear to zero). Shear may be checked, considering it starts and stops with zero. Concentrated loads or reactions change shear from left to right of them. Without load between a and b (beam DL assumed negligible) shear is constant.

Bending moment M , found by moment equilibrium, $\Sigma \mathrm{M}=0$ (clockwise +)
at a $M=-2(0)$
$=0 \mathrm{k}^{\prime}$
at mid-span $M=-2(5)$
$=-10 \mathrm{k}^{\prime}$
at $b \quad M=-2(10)$
$=-20 \mathrm{k}^{\prime}$

The mid-span moment being half the moment at b implies linear distribution. The support reaction moment is equal and opposite to the beam moment.
Deflection Δ is described later. Diagrams visualize positive and negative bending by concave and convex curvature, respectively. They are drawn, visualizing a highly flexible beam, and may be used to verify bending.

Simple beam with uniform load

1 Beam of $\mathrm{L}=20 \mathrm{ft} \mathrm{span}$, with uniformly distributed load $\mathrm{w}=100 \mathrm{plf}$
2 Free-body diagram of partial beam x units long
3 Shear diagram
4 Bending moment diagram
To find the distribution of shear and bending along the beam, we investigate the beam at intervals of 5 ', from left to right. This is not normally required.
Reactions \mathbf{R} are half the load on each support due to symmetry
$R=w L / 2=100(20) / 2$
Shear force V_{x} at any distance x from left is found using $\sum \mathrm{V}=0$
$\sum \mathrm{V}=0 ; \quad \mathrm{R}-\mathrm{wx}-\mathrm{V}_{\mathrm{x}}=0$;
solving for V_{x}
$\mathrm{V}_{\mathrm{x}}=\mathrm{R}-\mathrm{w} \mathrm{X}$
at $\mathrm{x}=0 \quad \mathrm{~V}=0+\mathrm{R}_{\mathrm{a}}=0+1000$
at $x=5, \quad V=+1000-100(5)$
at $x=10^{\prime} \quad V=+1000-100(10)$
at $x=15, \quad V=+1000-100(15)$

$V=-1000 \mathrm{lbs}$ $\mathrm{V}=+500 \mathrm{lbs}$
$\mathrm{V}=0 \mathrm{lbs}$
at $x=20^{\prime} \quad \quad \square V=+1000-100(20)$
$\mathrm{V}=-500 \mathrm{lbs}$ $V=-1000 \mathrm{lbs}$
Bendiag moment 14, at any distance x from left is found by $\sum M=0$.
$\sum 1 \Lambda=\left(\% R x-\omega x^{\prime} \times 12\right)-M_{x}=0 ; \quad$ solving for M_{x}
$M_{\mathrm{x}}=\mathrm{RX}-\mathrm{wx}^{2} / 2$

at $x=0$	$M=1000(0)-100(0)^{2} / 2$	$M=0 \mathrm{lb}-\mathrm{ft}$
at $x=5$	$M=1000(5)-100(5)^{2} / 2$	$M=3750 \mathrm{lb}-\mathrm{ft}$
at $x=10^{\prime}$	$M=1000(10)-100(10)^{2} / 2$	$M=5000 \mathrm{lb}-\mathrm{ft}$
at $x=15^{\prime}$	$M=1000(15)-100(15)^{2} / 2$	$M=3750 \mathrm{lb}-\mathrm{ft}$
at $x=20^{\prime}$	$M=1000(20)-100(20)^{2} / 2$	$M=0 \mathrm{lb}-\mathrm{ft}$

Bending is zero at both supports since pins and rollers have no moment resistance
Since the bending formula $M_{x}=R x-w x^{2} / 2$ is quadratic, bending increase is quadratic (parabolic curve) toward maximum at center, and decreases to zero at the right support. For simple beams with uniform load the maximum shear force is at the supports and the maximum bending moment at mid-span ($\mathrm{x}=\mathrm{L} / 2$) are:
$\mathbf{V}_{\text {max }}=\mathbf{R}=\mathbf{w} \mathbf{L} / \mathbf{2}$
$M_{\text {max }}=(w L / 2) L / 2-(w L / 2) L / 4=2 w L^{2} / 8-w L^{2} / 8$, or
$M_{\text {max }}=W L^{2} / 8$
This formula is only for simple beams with uniform load. Verifying example:
$M_{\text {max }}=w L^{2} / 8=100(20)^{2} / 8$
$M_{\text {max }}=+5000 \mathrm{lbs}-\mathrm{ft}$
(same as above)

Area Method

The area method for beam design simplifies computation of shear forces and bending moments and is derived, referring to the following diagrams:
1 Load diagram on beam
2 Beam diagram
3 Shear diagram
4 Bending diagram
The area method may be stated:

- The shear at any point n is equal to the shear at point m plus the area of the load diagram between m and n.
- The bending moment at any point n is equal to the moment at point m plus the area of the shear diagram between m and n.
The shear force is derived using vertical equilibrium:
$\sum \mathrm{V}=0 ; \mathrm{V}_{\mathrm{m}}-\mathrm{wx}-\mathrm{V}_{\mathrm{n}}=0$;
sutiving for
$V_{n}=V_{m}-w x$
where wix is the cad area between m and n (downward load $w=$ negative).
The bending moment is derived using moment equilibrium:
$\Sigma M=0$
solving for M_{n}
$M_{n}=M_{m}+V_{m} X-w x^{2} / 2$
where $V_{m} x-w x^{2} / 2$ is the shear area between m and n, namely, the rectangle $V_{m} x$ less the triangle $w x^{2} / 2$. This relationship may also be stated as
$M_{n}=M_{m}+V x$, where V is the average shear between m and n.
By the area method moments are usually equal to the area of one or more rectangles and/or triangles. It is best to first compute and draw the shear diagram and then compute the moments as the area of the shear diagram.

From the diagrams and derivation we may conclude:

- Positive shear implies increasing bending moment.
- Zero shear (change from + to -) implies peak bending moment (useful to locate maximum bending moment).
- Negative shear implies decreasing bending moment.

Even though the forgoing is for uniform load, it applies to concentrated load and nonuniform load as well. The derivation for such loads is similar.

Examples

The following wood beams demonstrate the area method for design and analysis. For design, a beam is sized for given loads; for analysis, stresses are checked against allowable limits, or how much load a beam can carry.

Beam design

V Shear diagram.
M Bending diagram.
Δ Deflection diagram.
I Inflection point (change from + to - bending).
Reactions

$$
R=400 \mathrm{plf}(24) / 2 \quad R=4800 \mathrm{lbs}
$$

Shear
$V_{a}=0$
$V_{b l}=0-400(5)$
$V_{b r}=-2000+4800$
$V_{C I}=+2800-400(14)$
$V_{\text {cr }}=-2800+4800$
$V_{d}=+2000-400(5)$

inoment
$M_{3}=0.0$
$\mathrm{N}_{\mathrm{io}}=0-2000(5) / 2$
$\mathrm{M}_{\mathrm{b}-\mathrm{c}}=-5000+2800(7) / 2$
$M_{c}=+4800-2800(7) / 2$
$M_{d}=-5000+2000(5) / 2$
Try 4×10 beam
$S=(3.5) 9.25^{2} / 6$

$$
\mathrm{S}=50 \mathrm{in}^{3}
$$

Bending stress
$\mathrm{f}_{\mathrm{b}}=\mathrm{M}_{\max } / \mathrm{S}=5000(12) / 50$
$\mathrm{f}_{\mathrm{b}}=1200 \mathrm{psi}$ 1200 < 1450, ok

Shear stress
$\mathrm{f}_{\mathrm{v}}=1.5 \mathrm{~V} / \mathrm{bd}=1.5(2800) /[3.5(9.25)]$
$\mathrm{f}_{\mathrm{v}}=130 \mathrm{psi}$
$130>95$, not ok
Try 6×10 beam
$\mathrm{f}_{\mathrm{v}}=1.5 \mathrm{~V} / \mathrm{bd}=1.5(2800) /[5.5(9.25)]$

$$
\mathrm{f}_{\mathrm{v}}=83 \mathrm{psi}
$$

$$
83<95, \text { ok }
$$

Note: increased beam width is most effective to reduce shear stress; but increased depth is most effective to reduce bending stress.

Beam analysis

Reactions

$\Sigma \mathrm{M}_{\mathrm{c}}=0=+16 \mathrm{R}_{\mathrm{b}}-1000(20)-300(4) 18-200(16) 8$
$16 R_{b}=1000(20)+300$ (4) $18+200$ (16) 8
$R_{b}=(20000+21600+25600) / 16$
$R_{b}=+4200 \mathrm{lbs}$
$\Sigma M_{b}=0=-16 R_{c}-1000(4)-300(4) 2+200(16) 8$
$16 R_{\mathrm{c}}=-1000(4)-300(4) 2+200(16) 8$
$R_{c}=(-4000-2400+25600) / 16=\quad R_{c}=+1200 \mathrm{lbs}$
Shear
$\mathrm{V}_{\mathrm{ar}}=0-1000$
$\mathrm{V}_{\mathrm{ar}}=-1000 \mathrm{lbs}$
$V_{b l}=-1000-300(4)$
$V_{b l}=-2200 \mathrm{lbs}$
$V_{b r}=-2200+4200 \quad V_{b i}=+2000 \mathrm{lbs}$
$V_{\text {cl }}=+2000-200(16)=-R_{c}$
$V_{c r}=-1200+1200$
Find x, where shear $=0$ and bending = maxirnum: :

$\square V_{2} x=0 ; x=1$ b/ $v_{2}=20001200$
$x=10 \mathrm{ft}$

$M_{a}=0 \square$
$M_{S}=0+4(-1000-2200) / 2$
$M_{b}=-6400 \mathrm{lb}-\mathrm{ft}$
$M_{x}=-6400+10(2000) / 2$
$\mathrm{M}_{\mathrm{x}}=+3600 \mathrm{lb}-\mathrm{ft}$
$M_{c}=+3600+(16-10)(-1200) / 2$
$M_{c}=0$
Section modulus
$\mathrm{S}=\mathrm{bd}^{2} / 6=(3.5) 11.25^{2} / 6 \quad \mathrm{~S}=74 \mathrm{in}^{3}$
Bending stress
$f_{b}=M / S=6400(12) / 74 \quad \begin{aligned} f_{b} & =1038 \mathrm{psi} \\ 1038 & <1450, \text { ok }\end{aligned}$
Shear stress
$\mathrm{f}_{\mathrm{v}}=1.5 \mathrm{~V} /(\mathrm{bd})=1.5(2200) /[3.5(11.25)] \quad \begin{array}{r}\mathrm{f}_{\mathrm{v}}=84 \mathrm{psi} \\ 84<95=0 \mathrm{k}\end{array}$
Note: stress is figured, using absolute maximum bending and shear, regardless if positive
or negative. Lumber sizes are nominal, yet actual sizes are used for computation.
Actual sizes are $1 / 2$ in. less for lumber up to 6 in. nominal and $3 / 4$ in. less for larger sizes:
4×8 nominal is $31 / 2 \times 71 / 4$ in. actual.
Note: in the above two beams shear stress is more critical (closer to the allowable stress) than bending stress, because negative cantilever moments partly reduces positive moments.

Indeterminate beams

Indeterminate beams include beams with fixed-end (moment resistant) supports and beams of more than two supports, referred to as continuous beams. The design of statically indeterminate beams cannot be done by static equations alone. However, bending coefficients, derived by mechanics, may be used for analysis of typical beams. The bending moment is computed, multiplying the bending coefficients by the total load W and span L between supports. For continuous beams, the method is limited to beams of equal spans for all bays. The coefficients here assume all bays are loaded. Coefficients for alternating live load on some bays and combined dead load plus live load on others, which may result in greater bending moments, are in Appendix A. Appendix A also has coefficients for other load conditions, such as various point loads. The equation for bending moments by bending coefficients is:

$M=C L W$
 $M=$ bending moment
 C = bending coefficient
 $L=$ span between supports
 W = w L (total lead per bay)
 $\mathrm{w}_{\text {- }}$ - uniform logad in pificounds / inearicot

1 Simivie bearín

Fixed-end beam
(combined positive plus negative moments equal the simple-beam moment)
3 Two-span beam
4 Three-span beam

Flexure Formula

The flexure formula gives the internal bending stress caused by an external moment on a beam or other bending member of homogeneous material. It is derived here for a rectangular beam but is valid for any shape.
1 Unloaded beam with hatched square
2 Beam subject to bending with hatched square deformed
3 Stress diagram of deformed beam subject to bending
Referring to the diagram, a beam subject to positive bending assumes a concave curvature (circular under pure bending). As illustrated by the hatched square, the top shortens and the bottom elongates, causing compressive stress on the top and tensile stress on the bottom. Assuming stress varies linearly with strain, stress distribution over the beam depth is proportional to strain deformation. Thus stress varies lineariover the depth of the beam and is zero at the neutral axis (NA). The bendiricestress ivy at any distance y from the neutral axis is found, considering similari triangles, namely fy relates to y as f relates to c ; f is the maximum bending siress at top or botiorn and cthe distance from the Neutral Axis, namely fy $/ \mathrm{y}=\mathrm{T} / \mathrm{c}$. Solving for fy yields
$f_{y}=y f / c$
Tc satisfy equitibrium, the bean requires an internal resisting moment that is equal and ooposite to the externai bending moment. The internal resisting moment is the sum of all partial inces F rotating around the neutral axis with a lever arm of length y to balance the external moment. Each partial force F is the product of stress $f y$ and the partial area a on which it acts, $F=a f y$. Substituting $f y=y / c$, defined above, yields $F=a y f / c$. Since the internal resisting moment M is the sum of all forces F times their lever arm y to the neutral axis, $\mathrm{M}=\mathrm{F}$ y $=(\mathrm{f} / \mathrm{c}) \Sigma$ y y $\mathrm{a}=(\mathrm{f} / \mathrm{c}) \Sigma \mathrm{y}^{2} \mathrm{a}$, or $\mathrm{M}=\mathrm{If} / \mathrm{c}$, where the term $\Sigma \mathrm{y}^{2} \mathrm{a}$ is defined as moment of inertia ($1=\Sigma y^{2} a$) for convenience. In formal calculus the summation of area a is replaced by integration of the differential area da, an infinitely small area:

$I=\int y^{2} d a$
 I = moment of inertia.

The internal resisting moment equation $M=I f / c$ solved for stress f yields

$\mathbf{f}=\mathrm{Mc} / \boldsymbol{I} \quad$ the flexure formula,

which gives the bending stress f at any distance c from the neutral axis. A simpler form is used to compute the maximum fiber stress as derived before. Assuming c as maximum fiber distance from the neutral axis yields:

$\mathrm{f}=\mathrm{M} / \mathrm{S}$

$S=I / c=$ section modulus

Both the moment of inertia I and section modulus S define the strength of a cross-section regarding its geometric form.

Section modulus

Rectangular beams of homogeneous material, such as wood, are common in practice. The section modulus for such beams is derived here.

1 Stress block in rectangular beam under positive bending.
2 Large stress block and lever-arm of a joist in typical upright position.
3 Small, inefficient, stress block and lever-arm of a joist laid flat.
Referring to 1, the section modulus for a rectangular beam of homogeneous material may be derived as follows. The force couple C and T rotates about the neutral axis to provide the internal resisting moment. C and T act at the center of mass of their respective triangular stress block at $\mathrm{d} / 3$ from the neutral axis. The magnitude of C and T is the volume of the upper and lower stress block, respectively.
$C=T=(f / 2)(b d / 2)=\mathrm{fb} d / 4$.
The internal resisting moment is the sum of C and T times theill respective lever arm, $d / 3$, to the neutral axis. Hence

$$
\begin{aligned}
& M=C d / 3+T d / 3 . \text { Substituting } C=\mathrm{C}=\mathrm{f} \text { bd/4 , yields } \\
& M=2(\mathrm{fbd} / 4) / / / 3=\mathrm{fbd} \mathrm{f}^{2} / 6, \text { or } \mathrm{M}=\mathrm{fS} .
\end{aligned}
$$

Where $S=b d^{2} / 6$, detined as the section modulus for rectangular beams of homogeneous inateria

$S=b^{2} / 6$

Solving $M=f S$ for f yields the maximum bending stress as defined before:

$\mathrm{f}=\mathrm{M} / \mathrm{S}$

This formula is valid for homogeneous beams of any shape; but the formula $S=b d^{2} / 6$ is valid for rectangular beams only. For other shapes S can be computed as $S=I / c$ as defined before for the flexure formula. The moment of inertia I for various common shapes is given in Appendix A.

Comparing a joist of 2 "x12" in upright and flat position as illustrated in 2 and 3 yields an interesting observation:
$\begin{array}{ll}S=2 \times 12^{2 / 6}=48 \text { in }^{3} & \text { for the upright joist } \\ S=12 \times 2^{2} / 6=8 \text { in }^{3} & \text { for the flat joist. }\end{array}$
The upright joist is six times stronger than the flat joist of equal cross-section. This demonstrates the importance of correct orientation of bending members, such as beams or moment frames.

Moment of inertia

The formula for the moment of inertia $I=\int y^{2} d a$ reveals that the resistance of any differential area da increases with its distance y from the neutral axis squared, forming a parabolic distribution. For a beam of rectangular cross-section, the resistance of top and bottom fibers with distance $y=d / 2$ from the neutral axis is $(d / 2)^{2}$. Thus, the moment of inertia, as geometric resistance, is the volume of all fibers under a parabolic surface, which is $1 / 3$ the volume of a cube of equal dimensions, or $\mathrm{l}=\mathrm{bd}(\mathrm{d} / 2)^{2} / 3$, or

$I=\mathrm{bd}^{3} / 12 \quad$ (for rectangular beams only)

the moment of inertia of a rectangular beam of homogeneous material. A formal calculus derivation of this formula is given in Appendix A. The section modulus gives only the maximum bending stress, but the moment of inertia gives the stress at any vistance c from the neutral axis as $\mathrm{f}=\mathrm{Mc} / \mathrm{l}$. This is useful, for example, for bending elements of asymmetrical cross-section, such as T - and L-shapes.

Bending stress distributign o'er bearn cross-section
Moment of inertia visuatized as volume under parabolic surface
T-bar with as rimetrical stress: max. stress at c_{2} from the neutral axis
Angle bar with as'mmetrical stress distribution about x, y, and z -axes: maximum Esistance about x-axis and minimum resistance about z-axis

Moment of inertia and shapes

The moment of inertia, a measure of geometric strength and stiffness, is greatly effected by a beam's shape. The formula $I=\int y^{2} d a ~ r e v e a l s ~ t h a t ~ t h e ~ r e s i s t i n g ~ c a p a c i t y ~ o f ~ f i b e r s ~$ increase is quadratic with vertical distance from the neutral axis. Material far from the neutral axis increases the resistance capacity; by contrast, material located near the neutral axis is relatively ineffective. This is visualized here by the capacity of various beam shapes to resist bending deformation. The moment of inertia is shown here, along with relative deformations under gravity load. This qualitative, intuitive comparison is quantified in Beam deflection of this chapter.

Given the same cross-section area, the upright jois has a 36 times greater moment of inertia to resist deformation then the flat one. This represents the square of the joist's width-to-depth ratio \hat{n} similar contrast car be observed between wide-flange and crossshaped beams.

Shear stress

The distribution of shear stress over the cross-section of beams is derived, referring to a beam part of length x marked on diagrams. Even though horizontal and vertical shear are equal at any part of a beam, horizontal shear stress is derived here because it is much more critical in wood due to horizontal fiber direction.

1 Beam, shear and bending diagrams with marked part of length x
2 Beam part with bending stress pushing and pulling to cause shear
3 Beam part with bending stress above an arbitrary shear plane
Let M be the differential bending moment between m and n. M is equal to the shear area between m and n (area method), thus $M=V x$. Substituting $V x$ for M in the flexure formula $f=M c / l$ yields bending stress $f=V x c / /$ in terms of shear. The differential bending stress between m and n pushes top and bottom fibers in opposite directions, causing shear stress. At any shear plane y_{1} from the neutral axis of the bean the sum of shear stress above this plane yields a force F that equais average stress iy tirnes the cross section area A above the shear plane, $F=A t y$. The average stress f_{v} is iound from similar triangles; f_{y} relates to y as f celates to c, i.e., $f y / j=f / c ;$, thus $f_{y}=f y / c$. Since $f=V x$
 $F=A \vee x y / l$. The horzontal shear siress vequals the force F divided by the area of the shear piane,

$$
V=F /(x b)=A \vee x y /((x b)=V A y /(I b)
$$

The term $A y$ is defined as Q, the first static moment of the area above the shear plane times the lever arm from its centroid to the neutral axis of the entire cross-section. Substituting Q for A y yields the working formula

$$
\mathrm{v}=\mathrm{V} \mathrm{Q} /(\mathrm{l} \text { b) }
$$

(shear stress)
$\mathrm{v}=$ horizontal shear stress.
$Q=$ static moment (area above shear plane times distance from centroid of that area to
the neutral axis of the entire cross-section
I = moment of Inertia of entire cross section
$b=$ width of shear plane
The formula for shear stress can also be stated as shear flow q, measured in force per unit length (pound per linear inch, kip per linear inch, or similar metric units); hence
$q=\mathrm{V}$ Q / I
(shear flow)
$q=$ force per unit length

Shear stress in wood and steel beams

Based on the forgoing general derivation of shear stress, the formulas for shear stress in rectangular wood beams and flanged steel beams is derived here. The maximum stress in those beams is customarily defined as f_{v} instead of v in the general shear formula.
1 Shear at neutral axis of rectangular beam (maximum stress),
$Q=A y=(b d / 2) d / 4$, or
$\mathrm{Q}=\mathrm{bd}^{2} / 8 \quad$ (Note: d^{2} implies parabolic distribution)
$\mathrm{l}=\mathrm{bd} 3 / 12$, hence
$\mathrm{v}=\mathrm{V} \mathrm{Q} / \mathrm{l} \mathrm{b}=\mathrm{V}(\mathrm{bd} 2 / 8) /[(\mathrm{bd} / 32) \mathrm{b}]=\mathrm{f} \mathrm{v}$, or
$\mathrm{f}_{\mathrm{v}}=1.5 \mathrm{~V} /(\mathrm{bd})$
Note: this is the same formula derived for maximum shear stress heiore
2 Shear stress at the bottom of rectangular beam. Note that $\mathrm{y}=\mathrm{O}$ since the centroid of the area above the shear piane (botion) ccincides with the reutrai axis of the entire section. Thus $Q=A /=(\omega d / 2) Q=0$ nence
$v=V 0 /(\mid b)=0=f_{v}$, thus
$\square f_{0}=0$
Note thisconfirnis an intuitive interpretation that suggests zero stress since no fibers below the beam could resist shear

3 Shear stress at top of rectangular beam. Note $A=0 b=0$ since the depth of the shear area above the top of the beam is zero. Thus $Q=A y=0 d / 2=0$, hence $v=V 0 /(I b)=0=f v$, thus $\mathrm{f}_{\mathrm{v}}=0$

Note: this, too, confirms an intuitive interpretation that suggests zero stress since no fibers above the beam top could resist shear.
4 Shear stress distribution over a rectangular section is parabolic as implied by the formula $Q=b d^{2} / 8$ derived above.

5 Shear stress in a steel beam is minimal in the flanges and parabolic over the web. The formula $v=\mathrm{VQ} /(\mathrm{Ib})$ results in a small stress in the flanges since the width b of flanges is much greater than the web thickness. However, for convenience, shear stress in steel beams is computed as "average" by the simplified formula:

$f_{v}=V / A_{v}$

$f_{v}=$ shear stress in steel beam
$V=$ shear force at section investigated
$A_{v}=$ shear area, defined as web thickness times beam depth

$$
491<1450, \text { ok }
$$

1

Shear stress in wood I-beam

Since this is not a rectangular beam, shear stress must be computed by the general shear formula. The maximum shear stress at the neutral axis as well as shear stress at the intersection between flange and web (shear plane A_{s}) will be computed. The latter gives the shear stress in the glued connection. To compare shear- and bending stress the latter is also computed.
1 Beam of $L=10 \mathrm{ft}$ length, with uniform load $\mathrm{w}=280 \mathrm{plf}$ ($\mathrm{W}=2800 \mathrm{lbs}$)
2 Cross-section of wood I-beam
Shear force $\mathrm{V}=\mathrm{W} / 2=2800 / 2$

$$
\mathrm{V}=1400 \mathrm{lbs}
$$

Bending moment $M=W L / 8=2800(10) / 8$
$\mathrm{M}=3500 \mathrm{lb}{ }^{\prime}$
For the formula $\mathrm{v}=\mathrm{VQ} /(\mathrm{lb})$ we must find the moment of inertia of the entire cross-section. We could use the parallel axis theorem of Appendix A. However, due to simmetry, a simplified formula is possible, finding the moment of inertia for theoverall dimensions as rectangular beam minus that for two rectangles sinboth sides of the web.

$$
\mathrm{I}=\left(\mathrm{BD}^{3}-\mathrm{bd} \mathrm{~d}^{3}\right) / 12=\left[6(10)^{3}-2(2) 6^{3} \cdot 11 / 12\right] \quad \mathrm{I}=428 \mathrm{in}^{4}
$$

Bending stress $\mathrm{Fb}=\mathrm{M}: 4=3500(12) 51 / 128$

$$
f_{b}=491 \text { psi }
$$

Noie $c=-19 / 2=5$ (half tine beam depth due to symmetry)
Static moment Q of flange about the neutral axis:
$Q=A y=6(2) 4$
$Q=48$ in 3
Shear stress at flange/web intersection:
$v=V Q /(1 b)=1400(48) /[428(2)]$

$$
\text { v = } 79 \text { psi }
$$

Static moment Q of flange plus upper half of web about the neutral axis
$\mathrm{Q}=\Sigma \mathrm{A} y=6(2) 4+2(3) 1.5$
Maximum shear stress at neutral axis:
$\mathrm{v}=\mathrm{VQ} /(\mathrm{lb})=1400(57) /[428(2)] \quad \mathrm{V}=93 \mathrm{psi}<95$, ok
Note: Maximum shear stress reaches almost the allowable stress limit, but bending stress is well below allowable bending stress because the beam is very short. We can try at what span the beam approaches allowable stress, assuming L= 30 ft , using the same total load $\mathrm{W}=2800 \mathrm{lbs}$ to keep shear stress constant:

$M=W L / 8=2800(30) / 8$	$M=10500 \mathrm{lb}-\mathrm{ft}$
$\mathrm{f}_{\mathrm{b}}=\mathrm{Mc} / \mathrm{l}=10500(12) 5 / 428$	$\mathrm{f}_{\mathrm{b}}=1472 \mathrm{psi}$

$1472>1450$, not ok
At 30 ft span bending stress is just over the allowable stress of 1450 psi . This shows that in short beams shear governs, but in long beams bending or deflection governs.

Shear stress in steel beam

This beam, supporting a column point load of 96 k over a door, is a composite beam consisting of a wide-flange base beam with $8 x^{1} / 2$ in plates welded to top and bottom flanges. The beam is analyzed with and without plates. As shown before, for steel beams shear stress is assumed to be resisted by the web only, computed as $f_{v}=V / A_{v}$. The base beam is a W10x49 [10 in (254 mm) nominal depth, $49 \mathrm{lbs} / \mathrm{ft}(6.77 \mathrm{~kg} / \mathrm{m}) \mathrm{DL}$] with a moment of inertia $\mathrm{I}_{\mathrm{xx}}=272$ in $^{4}\left(11322 \mathrm{~cm}^{4}\right)$ (see Appendix). Shear in the welds connecting the plates to the beam is found using the shear flow formula $q=V Q /(I)$.
1 Beam of $L=6 \mathrm{ft}(1.83 \mathrm{~m})$ span with $\mathrm{P}=96 \mathrm{k}$ point load
2 Composite wide-flange beam W10x49 with $8 x^{1} / 2$ inch stiffener plates
Shear force $V=P / 2=96 / 2$

$$
\mathrm{V}=48 \mathrm{k}
$$

Bending moment $M=48(3)$

Wide-flange beam

Shear area of web $A_{v}=$ web thickness x beam depth
$\mathrm{A}_{\mathrm{v}}=0.34(10)$
Shear stress $f_{v}=V / A_{v}=48 / 3.4$
Bending stress $t_{0}=\sqrt{0}!=144(12) 5.51272$ $14<14.5$, ok
$\mathrm{f}_{\mathrm{b}}=35 \mathrm{ksi}$

Since the beam would fail in bending, a composite beam is used.

Composite beam

Moment of inertia $\mathrm{I}=\Sigma\left(\mathrm{l}_{00}+A y^{2}\right)$ (see parallel axis theorem in Appendix A)

$I=272+2(8) 0.5^{3} / 12+2(8) 0.5(5.25)^{2}$	$I=493 \mathrm{in}^{4}$
Bending stress $f_{b}=M c / l=144(12) 5 / 493$	$f_{b}=19 \mathrm{ksi}$
	$19<22,0 \mathrm{k}$

Since the shear force remains unchanged, the web shear stress is still ok.
Shear flow q in welded plate connection
$\mathrm{Q}=\mathrm{Ay}=8(.5) 5.25=21 \mathrm{in}^{3}$
$q_{\text {tot }}=V Q / I=48(21) / 493$ $q_{\text {tot }}=2 \mathrm{k} /$ in
Since there are two welds, each resists half the total shear flow
$q=q$ tot $/ 2$
$q=1 \mathrm{k} / \mathrm{in}$
Assume $1 / 4$ in weld of $3.2 \mathrm{k} / \mathrm{in}^{*}$ strength
$1<3.2$, ok

* see AISC weld strength table

Note: in this steel beam, bending is stress is more critical than shear stress; this is typical for steel beams, except very short ones.

Deflection

To satisfy stiffness, beam deflection must be limited by code or other factors. For example, to prevent cracks in plaster, codes require deflection to be not more than L/360 for LL or L/240 for combined LL+DL. Excessive deflection may also be unsightly or cause damage to non-load-bearing partitions. Therefore, beams may be oversized for strength to limit deflection.
Beam deflection is caused by both bending and shear, yet, except for very short beams, shear deflection is typically very small and may be ignored.
1 Simple beam under uniform load
2 Bending deflection of simple beam under uniform load
3 Shear deflection of simple beam under uniform load
Bending deflection of cantilever beam under point load
5 Shear deflection of cantilever beam under point load
Referring to 4, elastic bending deflection of a cantilever beam uncel point load is derived on the following pages as:
$\Delta=\mathrm{PL}^{3} /$ (3EI)
$E_{5}=$ modulus of elasticit, $I=$ mornento inertia
Referring to 5 , shear deflection is defined by the formula:
$\Delta=6 P L /(5 A G)$
$\mathrm{A}=$ cross-section area, $\mathrm{G}=$ shear modulus
Shear deflection is not derived, since it is negligible and ignored for most beams. The above formulas show bending deflection increases with the third power of L, but shear deflection increases linearly with L. Shear deflection is equal to shear stress (V/A = P/A) divided by the shear modulus G, modified by $6 / 5$ since shear stress is non-linear over the beam depth.

Referring to 4 and 5 , the following highlights the correlation of beam length with shearand bending deflection. Assuming a 4×6 in $(102 \times 152 \mathrm{~mm})$ cantilever steel beam with $P=8 \mathrm{k}(36 \mathrm{kN}), \mathrm{E}=30,000 \mathrm{ksi}(206,850 \mathrm{MPa}), \mathrm{G}=12,000 \mathrm{ksi}(82,740 \mathrm{MPa}), \mathrm{I}=4 \times 63 / 12=72$ $\mathrm{in}^{4}\left(29969 \times 10^{-3} \mathrm{~mm}^{4}\right), \mathrm{A}=24 \mathrm{in}^{2}\left(16 \mathrm{~cm}^{2}\right)$
If the beam length is $L=60$ in (152 cm), bending deflection is $\Delta=(8) 60^{3} /[3(30000) 72]=.27 \mathrm{in}$ $(7 \mathrm{~mm})$, but shear deflection is only $\Delta=6(8) 60 /[5(12000) 24]=.002$ in $(.05 \mathrm{~mm})$. Thus shear deflection is less than one percent of bending deflection. However, if the beam length equals the beam depth, $L=6$ in (152 mm), then the bending deflection is reduced to $\Delta=.00027$ in $(.007 \mathrm{~mm})$ and shear deflection to $\Delta=.0002$ in (.005 mm); which is about equal to the bending deflection. This confirms, shear deflection is insignificant and may be ignored for beams of typical length, but approaches bending deflection when the beam length is reduced to the beam depth.

Moment-area method

The moment-area method for deflection was developed in 1873 by Charles Green of the USA independent of a similar method developed in 1868 by Otto Mohr of Germany. The derivation of the moment-area theorem is based on fig. 1 and 2 , showing part of a deformed beam and its elastic curve AB, respectively; assuming small deformations and constant elastic modulus E and moment of inertia I . Referring to fig. 1, let GB be parallel to $F O$, then $F G=A B$, the unstressed length, and $G H / A B=\varepsilon$, the unit strain. Since the elastic modulus is $\mathrm{E}=\mathrm{f} / \varepsilon$, $\mathrm{f}=\mathrm{E} \varepsilon$, or $\mathrm{f}=\mathrm{E} \mathrm{GH} / \mathrm{AB}$; but $\mathrm{GH} / \mathrm{AB}=\mathrm{c} / \mathrm{r}$, due to similar triangles. Substituting c / r for $G H / A B$ yields $f=E c / r$ and, since $f=M c / /$ (where $M=$ bending moment see flexure formula), $\mathrm{Ec} / \mathrm{r}=\mathrm{Mc} / \mathrm{I}$, hence $\mathrm{E} / \mathrm{r}=\mathrm{M} / \mathrm{I}$, or $1 / \mathrm{r}=\mathrm{M}(\mathrm{EI})$.
Referring to fig. 2, with angles $\mathrm{d} \phi$ and θ measured in radians, $\mathrm{d} \phi$ is the angle of the radii at m and n and between the tangents to those radii. The length $d x=r d \phi$ and $d \phi / d x=1 / r=$ $\mathrm{M}(\mathrm{El})$ (as derived above), or $\mathrm{d} \phi=\mathrm{M} \mathrm{dx} /(\mathrm{El})$. The sum of d ϕ between $A T 0 B$ is $\theta=\sum \mathrm{d} \phi=\sum \mathrm{Mdx} /(\mathrm{El})$, or
$\theta=\mathrm{A}_{\mathrm{m}}$ (EI)
$\mathrm{A}_{\mathrm{m}}=\sum \mathrm{Mdx}$, the area of the bendirig noment diagram between A and B . Hence, the theorem for the beam-stope mas be stated as follows:

The angle θ between the tangents of points A and B on the elastic curve of a beam is the moment diagram area between A and B, divided by EI .

This theorem can be used to find the elastic slope at any point of a beam. The theorem for deflection (usually of greater interest) is derived next.
The angle between the tangents at m and n on the elastic curve is $d \phi$ and the vertical displacement between these tangents at A is $\mathrm{xd} \phi$. Therefore, the displacement between A and the tangent at B is $\Delta=\sum x d \phi=\sum x M d x /(E I)$, or

$\Delta=x A_{m} /(E I)$

where $A_{m}=\sum M d x$, area of the bending moment diagram between A and B and times the lever arm from A to the centroid of the bending moment diagram between A and B. Hence, the deflection theorem may be stated as follows:

The vertical displacement Δ of the tangent at B on the elastic curve equals the moment of the area of the bending diagram between A and B times the lever-arm x from its centroid to A, divided by EI.
This theorem can be applied to compute beam deflection as shown on the following pages. The above derivation considers only bending deformation, and ignores shear deformation, which is insignificant as shown before, and can be ignored for most beams.

1

3

2

4

Deflection formulas

Based on the moment-area method, the following formulas for slope and deflection are derived for beams of common load and support conditions. Additional formulas are provided in Appendix A. Although downward deflection would theoretically be negative, it is customary to ignore the sign convention and define up- or downward deflection by inspection. The angle θ is the slope of the tangent to the elastic curve at the free end for cantilever beams and at supports for simple beams; Δ is the maximum deflection for all cases. As derived before, θ is the area of the bending moment diagram divided by El, the elastic modulus and moment of inertia, respectively; Δ equals θ times the lever-arm from the centroid of the bending moment diagram between zero and maximum deflection to the point where θ is maximum.
1 Cantilever beam with point load;
$\theta=1 / 2 \mathrm{PL} 2 /(\mathrm{EI})$
$\Delta=1 / 3 \mathrm{PL}^{3}($ (EI)

$$
9=1 / 6 \sim \operatorname{AL}
$$

$$
\Delta=-118 \text { Ul} \mathrm{U}^{3}(\mathrm{EI})
$$

Simple beam with point load;
$\theta=1 / 16 \mathrm{PL}^{2} /(\mathrm{EI})$
$\Delta=1 / 48 \mathrm{PL}^{3} /(\mathrm{EI})$
4 Simple beam with uniform load; $\quad \theta=(\mathrm{WL} / 8)(2 / 3 \mathrm{~L} / 2) /(\mathrm{EI}), \quad \Delta=\theta 5 / 16 \mathrm{~L}$ $\theta=1 / 24 \mathrm{WL} 2 /(\mathrm{EI})$
$\Delta=5 / 384 \mathrm{WL}^{3}($ EI)

M

Δ

Steel beam with point loads
This steel beam supports joists that span 32 feet between beams and carry a roof load of $50 \mathrm{psf}(30 \mathrm{psf} \mathrm{DL}$ and 20 psf LL$)$. The joist reactions generate point loads of $\mathrm{P}=50$ $\mathrm{psf}(10 \mathrm{ft}) 16 \mathrm{ft} / 1000), \mathrm{P}=8 \mathrm{k}$ beam load. The beam is designed for stress, then verified for deflection and redesigned if necessary.
1 Beam diagram.
2 Load diagram abstraction
Note:
Load at the beam supports is ignored since it is directly supported by columns and hence has no effect on shear, bending moment, or deflection
V Shear diagram.
M Bending moment diagram.
Δ Deflection diagram.

Shear:

$V_{a}=V_{b l}=R=2(8) / 2$
$V_{b r}=V_{c l}=8-8$
$V_{b r}=V_{c}=R=0.8$

$\mathrm{V}_{\mathrm{a}}=\mathrm{V}_{\mathrm{bl}}=8 \mathrm{k}$
$\mathrm{V}_{\mathrm{br}}=\mathrm{V}_{\mathrm{cl}}=0 \mathrm{k}$
Bendirgmoment:
$M_{\text {max }}=8(10)$
$M_{\text {max }}=80 \mathrm{k}$
Section modulus S and moment of inertia I (from Appendix D):

$S=M / F_{b}=80 \mathrm{k}\left(12^{\prime \prime}\right) / 22 \mathrm{ksi}$	$\mathrm{S}=44 \mathrm{in}^{3}$
Try $W 10 \times 45, \mathrm{~S}=49.1 \mathrm{in}^{3}$	$49.1>44,0 \mathrm{k}$
	$\mathrm{I}=248 \mathrm{in}^{4}$

Deflection (see Appendix A for formula):
$\mathrm{L}=30^{\prime}\left(12^{\prime \prime}\right)=360$ in
$\Delta_{\text {max }}=(23 / 684) \mathrm{PL} 3 /(\mathrm{El})=\left[(23 / 684) 8(360)^{3}\right] /[(30000) 248]$
$\Delta_{\mathrm{al}}=360 / 240=1.5$ in

$$
\Delta_{\max }=1.7 \mathrm{in}
$$

Try W18x35, S= 57.6 in 3

Deflection:
$\Delta_{\text {max }}=(23 / 684) 8(360)^{3} /[(30000) 510]$
$\Delta_{\text {max }}=0.8$ in
$\Delta_{\mathrm{all}}=2$ in
$1.5>0.8$, ok

Note: the W10x45 deflects too much, and, with a span/depth ratio of $36: 1$, is too shallow; but $\mathrm{W} 18 \times 35$ has the recommended 20:1 ratio, is lighter and, hence, more economical.

Steel beam with mixed load

This steel beam, too, supports joists that span 32 feet between beams and carry a roof load of 50 psf (30 psf DL and 20 psf LL). The joist reactions generate point loads of $\mathrm{P}=50 \mathrm{psf}(10 \mathrm{ft}) 16 \mathrm{ft} / 1000), \mathrm{P}=8 \mathrm{k}$ beam load. In addition, the beam carries a uniform dead load of 0.4 klf (the beam's own weight plus fire proofing and cladding). The beam is designed for stress, then verified for deflection and redesigned if necessary.

1 Beam diagram
2 Load diagram abstraction
Note: load at the beam supports is ignored since it has no effect on shear, bending moment, or deflection
V Shear diagram
M Bending moment diagram
Δ Deflection diagram
Shear:
$V_{a}=R=[2(8)+0.4(30)] / 2$
$V_{b l}=14-0.4(10)$
$V_{\text {br }}=10-8$
V_{0} (1) $2-0.4(0) 1$
$V_{c}=10-0.4(10)$

$$
\begin{gathered}
V_{V_{a}}=14 \mathrm{k} \\
V_{b b}=10 \mathrm{k} \\
V_{\mathrm{brb}}=2 \mathrm{k} \\
V_{\mathrm{cr}}=-2 \mathrm{k} \\
V_{\mathrm{cr}}=-10 \mathrm{k} \\
V_{\mathrm{dr}}=-14 \mathrm{k}
\end{gathered}
$$

Bending moment:
$\mathrm{M}_{\text {max }}=10(14+10) / 2+5(2) / 2$
$M_{\text {max }}=125 \mathrm{k}^{\prime}$
Section modulus S and moment of inertia 1 (from Appendix D):
$\mathrm{S}=\mathrm{M} / \mathrm{F}_{\mathrm{b}}=125 \mathrm{k}^{\prime}\left(12^{\prime \prime}\right) / 22 \mathrm{ksi}$
$\mathrm{S}=68 \mathrm{in}^{3}$
Try W18x40, S= 68.4 in 3

$$
I=612 \mathrm{in}^{4}
$$

Deflection (see Appendix A for formula):
$\mathrm{L}=30^{\prime}\left(12^{\prime \prime}\right)=360$ in
$W=w L=0.4(30)=12 \mathrm{k}$
$\Delta_{\text {max }}=(23 / 684) \mathrm{PL} 3 /(\mathrm{El})+(5 / 384) \mathrm{WL} 3 /(\mathrm{El})$ *
$\Delta_{\text {max }}=\left[(23 / 684) 8(360)^{3}+(5 / 384) 12(360)^{3}\right] /[(30000) 612]$
$\Delta_{\text {max }}=1.1$ in
$\Delta_{\mathrm{all}}=360 / 240=1.5 \mathrm{in}$ $1.5>1.1$, ok

* Superimposition of equations for point load and uniformly distributed load

Typical beam diagrams

Deflection, shear, and bending diagrams are shown here for typical beams. The beam with deflection and load diagrams are drawn on top with shear and bending diagrams shown below. With experience, these diagrams may be drawn by visual inspection prior to computing. This is useful to verify computations and develop an intuitive sense and visualization regarding shear and bending on beams. The deflection diagram is drawn, visualizing the deflection of a thin board, flexible ruler, or similar device. It is drawn grossly exaggerated to be visible. The shear diagram is drawn at a convenient force scale left to right, starting with zero shear to the left of the beam. Downward uniform load yields downward sloping shear. Downward point loads are drawn as downward offset, and upward reactions yield upward offset. Bending diagrams are drawn, considering the area method; namely, bending at any point is equal to the area of the shear diagram up to that point. Both, shear and bending must be zero to the right of the rinth beam end. To satisfy this, requires a certain amount of forward thinking and, in complex cases even working backward from right to left as well as left io right.

> Cantilever beam with point load
> Cantilever beam with biniform load
> Cantilever bean with mixed load
> Simple beam with point loads
> Simple beain with uniform load
> Simple beam with mixed load
> Beam with one overhang and point load Beam with one overhang and uniform load Beam with one overhang and mixed load Beam with two overhangs and point loads Beam with two overhangs and uniform load Beam with two overhangs and mixed load

ASD, LRFD, Masonry, and Concrete Design

ASD (Allowable Stress Design) and LRFD (Load and Resistance Factor Design) are two design and analysis methods currently used for structural design. ASD is the classic method used since the inception of structural design and sometimes referred to as working stress design. LRFD is a new method, increasingly promoted by codes. The difference of the two methods is essentially in the way they consider the issue of safety: ASD uses actual loads to design members for allowable stress that is reduced from ultimate strength or yield stress by a safety factor. By contrast LRFD assigns safety to the load, increasing actual service load by a load factor to design members for stress that is close to the ultimate strength. The load factors provide a more rational safety because dead load is more predictable than live load and therefore has a smaller load factor

LRFD is similar to the Strength Method or Ultimate Strength Method that has been used for concrete design since about 1960. The two methods are briefly introduced ideiow and demonstrated for masonry design (ASD) and concrete design (L-RFD). At present, for masonry design ASD is still more common.

ASD (Allowable Stress Design)

Allowable stress design, also known as working stress design, was the traditional method in general use before the advent of the LRFD method. The ASD method is based on service loads as defined by codes. Structural members are designed to resist such loads without exceeding allowable stresses, allowable deflections, and lateral drift. Allowable stresses are based on ultimate strength or yield stress, reduced by safety factors. The safety factors depend on the consistency of a given material and the type of stress. For example, allowable axial tensile stress for steel is 60 \% of the yield stress (Fa= 0.6Fy). Allowable deflections for horizontal span members shall not exceed $\Delta=\mathrm{L} / 240$ for combined dead and live load and
$\Delta=\mathrm{L} / 360$ for live load only
$\Delta=$ maximum deflection
L = span
The lateral drift of vertical structures shall not exceed a fraction of the height (Maximum drift is typically 0.5% of height).

ASD Load combinations

Based on the 1997 UBC structures and all portions thereof shall resist the most critical effects resulting from the following combinations of loads:

D
$D+L+($ Lr or $S)$
D + (W or E/1.4)
$0.9 \mathrm{D} \pm \mathrm{E} / 1.4$

$\mathrm{D}+0.75[\mathrm{I}+(\mathrm{Lr}$ or S$)+(\mathrm{Ni}$ or E 1.4$)$

D = Dead load
$E=$ Eathquake load
L = Live load
Lr = Roof live load
$S=$ Snow load
W = Wind load

Most of this book is based on ASD

Allowable stress is defined by a material's ultimate strength or yield strength and a factor of safety. Building codes and trade associations provide allowable stress for various materials and grades of materials, which may also depend on duration of load. Allowable wood stress also depends on temperature, moisture content, size, and if a member is single or repetitive, like closely spaced joists. Relevant factors regarding allowable stress are briefly introduced here and further described later in this chapter.

Wood
Base values for Douglas Fir-Larch 2"x5" ($5 \times 13 \mathrm{~cm}$) or greater for allowable stress: bending $\left(F_{b}\right)$, tension $\left(F_{t}\right)$, compression (F_{c}), compression normal to grain ($F_{C_{\perp}}$), horizontal shear $\left(F_{v}\right)$, and elastic modulus (E).

Grade	F_{b}	F_{t}	F_{c}	$F_{c \perp}$	F_{V}	E	units
Select	1,500	1,000	1,100	625	85	$1,600,000$	psi
structural:	10.3	6.9	7.6	4.3	0.6	1,1032	MPa
No. 1:	1,200	625	1,000	625	85	$1,600,000$	psi
	8.2	4.3	6.9	4.3	0.6	1,1032	MPa
No. 2:	700	475	1300	625	85	$1,300,000$	psi
	4.8	3.3	9.0	4.3	0.6	8,964	MPa

Steel
The table gives yield stress $\left(F_{y}\right)$, ultimate strength $\left(F_{u}\right)$, allowable stress for bending $\left(F_{b}\right)$, compression (F_{c}), tension (F_{t}), and shear (F_{v}), elastic modulus (E_{f})

Steel grade	F	F_{4}	F	$\mathrm{F}_{\mathrm{c}} \mathrm{F}_{\mathrm{t}}$	F	E	ksi
ASTM A36	36	58-80	2	22	14.5	29,000	ksi
	248	400-550	150	150	100	200,000	MPa
ASTM A572	50	95	30	30	20	29,000	ksi
	37.5	4150	210	210	140	200,000	MPa

Másono

Allowable compressive stress F_{a}, for masonry with special inspection is 25% of specitied strength f_{m}^{\prime} by the ASD method; reduced for slenderness. Specified Compressive strength f_{m}^{\prime} is based on compressive strength of masonry units and mortars type M, S, N.

Type	Concrete masonry (ksi)				Clay brick masonry				(ksi)	
Unit strength	1.9	2.8	3.75	4.8	4	6	8	10	12	14
$f^{\prime} \mathrm{m}$ (M or S)	1.5	2	2.5	3	2	2.7	3.35	4	4.7	5.3
$f^{\prime} \mathrm{m}(\mathrm{N})$	1.35	1.85	2.35	2.8	1.6	2.2	2.7	3.3	3.8	4.4
Type	Concrete masonry (MPa) Clay brick masonry								(MPa)	
Unit strength	13	19	26	33	28	41	55	69	83	97
$f^{\prime} \mathrm{m}$ (M or S)	10	14	17	21	14	19	23	28	32	37
$f^{\prime} m(\mathrm{~N})$	9	13	16	19	11	15	19	23	26	30

Concrete

By working stress method, allowable stresses are based on compressive strength f^{\prime}. Typical compressive strengths range from 2 to 6 ksi (14 to 41 MPa)

Allowable compressive stress		$0.40 f^{\prime}{ }_{c}$
Allowable compressive bending stress		$0.45 f^{\prime}{ }_{c}$
Allowable shear stress without reinforcing:	beam	$1.1 f^{4} c^{1 / 2}$
	joist	$1.2 f^{4}{ }^{1 / 2}$
	footing \& slab on grade	$2.0 f_{c}^{4}{ }^{1 / 2}$

LRFD (Load and Resistance Factor Design)

LRFD is a new method increasingly promoted by building codes. It is similar to the strength method used for concrete design since the $1960^{\text {th }}$. LRFD is based on factored loads (amplified service loads) and nominal resistance (reduced ultimate strength). Safety factors are assumed by factored load, rather than allowable stress as in ASD. Typical factored loads are 1.2 dead load and 1.6 live load. The LRFD design method is essentially defined by the equation:

ϕ Design Strength \geq Required Resistance

$\phi \quad=$ Resistance factor ($\phi<1$)

The resistance factor depends on the material and type of stress, based on reliability and consistency of tests (low reliability = low ϕ)

Resistance factors ϕ					
	Material				Steel
Stress types	Concrete *	Masonry *	Wood	Limit states	ϕ
Bending	0.9	0.8	0.85	Yielding	0.9
Shear	0.85	0.6	0.75		
Tension				Rupture	0.75
Compression	0.75 spiral 0.70 tied	0.65	0.9	Compression and buckling	0.85
Stability			0.85		

* Strength design (similar to LRFD)

LRFD load combinations

Based on the 1997 UBC structures and all potitions therecf shall resist the most critical effects resulting from the following combinatiors of factored!oads:

[^1]Since factored loads are based on statistical probability and extensive tests, the LRFD method usually results in smaller members than the ASD method, but the LRFD method is more complex and requires stiffness (deflection and drift) to be computed by actual service loads rather than factored loads. Also, since the LRFD method considers strength rather than stress, the results cannot be verified for allowable stress as in ASD. To verify results requires a second analysis by ASD. This represents a challenge for future refinement of the LRFD method.

Example: roof rafters

Roof steel rafters, sloping 2:12, spaced 10 ', are subject to the following loads
$\begin{aligned} \text { Dead load D } & =40 \mathrm{psf} \\ \text { Snow load S } & =30 \mathrm{psf}\end{aligned}$
Wind load W $=15 \mathrm{psf}$ (downward)
Find the maximum load effect per liner foot
$D=40 \mathrm{psf}\left(10^{\prime}\right)$
$\mathrm{L}=30 \mathrm{psf}\left(10^{\prime}\right)$
$\mathrm{w}=15 \mathrm{psf}\left(10^{\prime}\right)$
\square
$1.4[$

$1.4(400 \mathrm{pIF})$	560 plf
$1.2 \mathrm{~L}+1.6 \mathrm{~L}+0.5(\mathrm{Lr}$ or S $)$	
$1.2(400 \mathrm{plf})+0.5(300 \mathrm{plf})$	630 plf
$1.2 \mathrm{D}+1.6(\mathrm{Lr}$ or S $)+(\mathrm{ff} \mathrm{L}$ or 0.8 W$)$	
$1.2(400)+1.6(300 \mathrm{plf})+0.8(150 \mathrm{plf})$	1080 plf
$1.2 \mathrm{D}+1.3 \mathrm{~W}+\mathrm{f1} \mathrm{~L}+0.5(\mathrm{Lr}$ or S $)$	
1.2(4000 plf) $+1.3(150 \mathrm{plf})+\mathbf{0 . 5}(300 \mathrm{plf})$	1905 plf
$1.2 \mathrm{D}+1.0 \mathrm{E}+(\mathrm{f} 1 \mathrm{~L}+\mathrm{f} 2 \mathrm{~S})$	
1.2 (400 plf) + (0.7(300 plf)	690 plf
$0.9 \mathrm{D} \pm$ (1.0E or 1.3 W$)$	
0.9(400 plf) $+1.3(150 \mathrm{plf})$	555 plf

Governing load effect $W_{u}=1905$ plf

Masonry Design (ASD)

Allowable masonry stresses require special inspection as defined by bulding codes. Allowable stresses are one half without special inspection
1 Beam of homogeneous material resistes gravity bending with maximum top
compression, maximum bottom tension and zero stress at the neutral axis
2 Masonry beam resists only compression and steel rebars resist tension. The stiffness difference of masonry and steel are adjusted by the elastic ratio $n=E_{s} / E_{m}$
$\mathrm{E}_{\mathrm{s}}=$ Elastic modulus, steel
$\mathrm{E}_{\mathrm{s}}=29,000 \mathrm{ksi}$
$\mathrm{E}_{\mathrm{m} .}=$ Elastic modulus. masonry $\mathrm{E}_{\mathrm{m} .}=750 \mathrm{f}$ m $\mathrm{n}=\mathrm{E}_{\mathrm{s}} / \mathrm{E}_{\mathrm{m}}$
$\mathrm{f}_{\mathrm{m}}=1.5$ to 5 ksi
$n=$ Elastic ratio (steel / masonry)
$=f^{\prime} / 3, \max .2 \mathrm{ksi}$ *
$F_{b}=$ Allowable masonry bending stress
$F_{s}=$ Allowable rebar stress:
$F_{s}=$ Allowable stirrup stress: $\mathrm{F}_{\mathrm{s}}=0.5 \mathrm{~F}_{\mathrm{y}}$, max. 24 ksi *
$F_{v}=\quad F_{s}=0.4 F_{v}$, mex. $24 \mathrm{ksi}{ }^{*}$
$F_{v}=$ All shear stress if masonry resist all shear

* Allowable shear stress if steel resistall shea

* Allowable stresses are one half without special inspection
(Sample tests at startof construction iand ter every $5000 \mathrm{ft}^{2}$ of masonry)
$\mathrm{b}=$ Beam width
d Effect ve depin tiop of beam to centroid of reinforcing steel)
- Veam depth (iup face to bottom face)
$\mathrm{ka}=$ Depth of triangular compression stress block
$\mathrm{jd}=$ Moment arm, d -kd/3 (distance from tension to compression centroids)
$f_{b}=$ Maximum compressive bending stress
$\mathrm{f}_{\mathrm{s}}=$ Tensile stress in reinforcing steel
$A_{s}=$ Cross section area of reinforcing steel
$p=$ Ratio of steel area / beam cross section, $p=A s / b d(0.02 \%$ to $2.88 \%)$
Referring to diagram 2 the following equations are derived:
For Balanced beams (with enough reinforcing so that steel and masonry reach their respective limits simultaneously), kd is defined by similar triangles:

$$
\begin{aligned}
& \mathrm{kd} / \mathrm{d}=\mathrm{f}_{\mathrm{b}} /\left(\mathrm{f}_{\mathrm{b}}+\mathrm{f}_{\mathrm{s}} / \mathrm{n}\right) \\
& \mathrm{k}=1 /\left[1+\mathrm{f}_{\mathrm{s}} /\left(\mathrm{n} \mathrm{f}_{\mathrm{b}}\right)\right]
\end{aligned}
$$

Based on the k-factor other factors are deirved:

Resiting lever arm	$j d=d-k d / 3$
j-factor	$j=1-k / 3$
Resisting moment	$M=1 / 2 f_{b} b k d j d=1 / 2 f_{b} k j b d^{2}$
	$M=R b d^{2}$
Resistance factor	$R=1 / 2 f_{b} k j$
Max. masonry stress	$f_{b}=2 M /\left(k j b d^{2}\right)$
Required steel area	$A_{s}=M /\left(F_{s} j d\right)$
Steel stress	$f_{s}=M /\left(A_{s} j d\right)$

Example: masonry beam design

Design a simply supported brick masonry beam
Assume:
$L=16^{\prime}, b=10^{\prime \prime}$, specified compressive strenght $f_{m}^{\prime}=1500 \mathrm{psi}$, with special inspection, $F_{b}=1500 / 3=500$ psi, grade 60 steel, $F_{s}=24 \mathrm{ksi}$

Dead load estimate	DL $=300 \mathrm{plf}$
Live koad estimate	$\underline{L L}=500 \mathrm{plf}$
	$\mathrm{w}=800 \mathrm{plf}$
Bending moment $\mathrm{M}=\mathrm{w} \mathrm{L}^{2} / 8=800(16)^{2} / 8$	$\mathrm{M}=25,600$ \#'
Elastic modulus	
$\mathrm{E}_{\mathrm{m}}=750 \mathrm{f}_{\mathrm{m}}=750(1500) / 1000$	$\mathrm{E}_{\mathrm{m}}=1,125 \mathrm{ksi}$
Elastic ratio	
$\mathrm{n}=\mathrm{E}_{s} / \mathrm{E}_{\mathrm{m}}=29,000 \mathrm{ksi} / 1875 \mathrm{ksi}$	$n=25.8$
$\mathrm{k}=1 /\left[1+\mathrm{f}_{\mathrm{s}} /\left(\mathrm{n} \mathrm{f}_{\mathrm{b}}\right)\right]=1 /[1+24,000 /(25.8 \times 500])$	
Resistance factor	
$\mathrm{R}=1 / 2 \mathrm{fb} \mathrm{kj}=1 / 2500 \times 0.35 \times 0.88$	$\mathrm{R}=77$
Effective depth required, $M=R \mathrm{hd}^{2} \mathrm{C}$	
$d \equiv \sqrt{M / L R}=\sqrt{25,600 \times 12 / /(10 \times 77)}$	$d=20 "$
Bearr depth $n=a+4$ " $=20+4$ (4" for rebar + cover (adjist for modules)	$h=24 "$
$\mathrm{R}_{\mathrm{E}} \mathrm{q}$ dired steel area	
$\mathrm{A}_{\mathrm{s}}=\mathrm{M} /\left(\mathrm{F}_{\mathrm{s}} \mathrm{jd}\right)=25,600\left(12^{\prime \prime}\right) /(24,000 \times 0.88 \times 20)$	$\mathrm{A}_{\mathrm{s}}=0.72 \mathrm{in}^{2}$
Use 1 \# 8 bar, $A_{s}=\pi(0.5)^{2}$	$\mathrm{A}_{\mathrm{s}}=0.79 \mathrm{in}^{2}$,

Example: masonry beam analysis

Assume:
Simple beam, $L=10^{\prime}, b=8^{\prime \prime}, d=32^{\prime \prime}$, specified compressive strenght $f_{m}^{\prime}=1500 \mathrm{psi}$, without special inspection, $F_{b}=1 / 2 \times 1500 / 3=250$ psi, grade 40 steel, $F_{s}=20 \mathrm{ksi} .1$ \# 6 rebar.

Rebar diameters Size in		in	mm	Cross-section areas in 2	
\#3	$3 / 8$	0.375	9.5	0.11	$\mathrm{~mm}^{2}$

Dead load estimate	DL $=600 \mathrm{plf}$
Live koad estimate	$\mathrm{LL}=900 \mathrm{plf}$
	$\mathrm{w}=1500 \mathrm{plf}$
Bending moment $\mathrm{M}=\mathrm{w} \mathrm{L}^{2} / 8=1500(10)^{2 / 8}$	$\mathrm{M}=18,750$ \#'
k-factor	
$\mathrm{k}=1 /\left[1+\mathrm{f}_{\mathrm{s}} /\left(\mathrm{ff}_{\mathrm{b}}\right)\right]=1 /[1+20,000 /(25.8 \times 250])$	$\mathrm{k}=0.24$
$j=1-k / 3=1-0.24 / 3$	$j=0.92$
Max. masonry stress	
$\mathrm{fb}_{\mathrm{b}}=2 \mathrm{M} /\left(\mathrm{kj} \mathrm{bd}{ }^{2}\right)=2 \times 187503 \times 12^{\prime \prime} /\left(0.24 \times 0.92 \times 8 \times 32^{2}\right)$	$\mathrm{fb}_{\mathrm{b}}=248 \mathrm{psi}<250, \mathrm{OK}$
Steel cross section ares	
Steel stress	
$\mathrm{f}_{\mathrm{s}}=\mathrm{M} /\left(\mathrm{A}_{\mathrm{s}} \mathrm{jd}\right)=18750 \times 12^{\prime \prime} /(0.44 \times 0.92 \times 32)$	7,370 psi < 20,000, OK

Shear reinforcing

Bending members are subject to shear that requires reinforcing to prevent diagainal cracks caused by the tensile components of shear at 45 degrees. Vertical sterrups provide shear reinforcing. Maximum stirrup spacing of $\mathrm{d} / 2$ prevents shear cracks. Thus:
$\mathbf{V}=\mathrm{V}_{\mathrm{m}}+\mathrm{A}_{\mathrm{v}} \mathrm{F}_{\mathrm{s}} \mathrm{d} / \mathrm{s}$
$V=$ maximum shear
$\mathrm{V}_{\mathrm{m}}=$ shear resisted by masonry
$A_{v}=$ Cross section area of shear reinforcing
$F_{s}=$ Allowable steel stress
d $=$ effective beam depth
$\mathrm{s}=$ stirrup sacing
Empirical UBC formuals
UBC assumes 2 conditions: 1) all shear reisted by masonry; 2) all shear resisted by steel Allowable shear stress if masonry resists all shear
Allowable shear stress if steel resists all shear

* Allowable stresses are one hali without special inspection

Shear resisted by stirrups (V.rignoied)

$V=A_{v} F_{s} d / s$
$V=F_{V} b j d$
$f_{v}=V / b j d$
$s=A_{v} F_{s} / b f_{v}, \quad \max . s=d / 2$
$\square \mathrm{F}_{\mathrm{v}}=$ Allowable rnasonry shear stress
Computed shear siress (estimate j $=0.9$)
Stiriup spacirig
$s=A_{v} F_{s} / b f_{v}, \max . s=d / 2$
viasonry beam with uniform load
2 Shear diagram
3 Beam cross section
A Linear bars resist ensile bending stress
b Beam width
C Stirrups (resist shear stress)
d Effective depth (top of beam to steel centroid
E Zone requiring shear reinforcing
h depth of beam

Example: masonry beam

Assume: simple beam, $L=10^{\prime}, b=8 ", d=32^{\prime \prime}$, specified strenght $f^{\prime}=1500 \mathrm{psi}$, without special inspection, $F_{v}=1 / 2(1500)^{1 / 2}=19 \mathrm{psi}$, grade 40 steel, $F_{s}=16 \mathrm{ksi}$
DL+LL
Max shear $V=w L / 2=1500 \times 10 / 2 \quad V=7500 \#$
Shear stress $f_{v}=V / b j d=7500 / 8 \times 0.9 x 32 \quad f_{v}=33 \mathrm{psi}$
Stirrup spacing s = Av $\mathrm{F}_{\mathrm{s}} / b f_{v}=0.2 \times 16 / 8 \times 33 \quad s=12^{\prime \prime}$
Note: for CMU, s would need to be ajusted a multiple of 8 " modules
Shear resisted by masonry $\mathrm{Vm}_{\mathrm{m}}=\mathrm{F}_{\mathrm{v}}$ bjd $=19 \times 8 \times 0.9 \times 32 \quad \mathrm{~V}_{\mathrm{m}}=4378 \#$
Shear resisted by steel $\mathrm{V}_{\mathrm{s}}=\mathrm{V}-\mathrm{V}_{\mathrm{m}}=7500-4378$
$\mathrm{V}_{\mathrm{s}}=3122 \#$
Zone requiring shear reinforcing $E=(L / 2) V_{s} / V=5 \prime \times 3122 / 7500$
E = 2.1'

1

Shear walls

Shear wall reinforcement to resist lateral load is required in seismic zones 2 to 4 . The reinforcement bars must be provided in both in both vertical and horizontal directions. Horizontal bars must be continuous or spliced at intersections and wall corners. Minimum reinforcement is required as follows.

Seismic areas require horizontal and vertical rebars of at least 0.2% of the wall cross section area. Bars in either direction may be 0.1% but shall be at least 0.07% with the remaining 0.13% in perpendicular direction. The greater percentage of bars should run in direction of primary span, normally vertical from floor to floor or roof. Bars shall be arranged as shown in 1: vertical and horizontal bars spaced maximum $4 \mathrm{ft}(1.2 \mathrm{~m}$); bars around all openings, the top bar extending at least 24 in $(60 \mathrm{~cm})$ or 40 bar diameters beyond openings; on top and bottom of walls; and at structurally connected floors and roofs. Graph 2 gives bar spacing for 0.1% reinforcing of various wall sizes.

Moderate seismic areas requires rebars with sross-section of rin. $0.2 \mathrm{nn}^{2}\left(12 \mathrm{l} \mathrm{minm}^{2}\right)$, \# 4 bars, arranged as follows: verticat bars at 4 it 112 mi, horizoniai bars spaced $10 \mathrm{ft}(3$ m); bars around all openings extending at leasi 24 ir (60 cm) or 40 bar diameters beyond openings; bars on top and bottorn oíwêlls; and at structurally connected floors and roofs.
1 Wailele ation with reinforcirig bar layout for seismic zones 2 to 4
2 Ber size and spaciing for 0.1% reinforcing of wall cross-section area
A Vertical bars, spaced maximum 4 ft or 6 times the wall thickness
B Horizontal bars spaced max. 4 ft in high seismic areas; 10 ft in moderate areas
C Bars at openings, extending min. 2' or 40 bar diameters beyond opening
D Horizontal bars at top and base of wall
E Bars at structurally connected floors and roof
s Spacing of reinforcing bars, sizes \#3 to \#7 (max. 6 times bar diameter)
t Wall thickness

Rebar diameters Size in		in	mm	Cross-section areas in^{2}	$\mathrm{~mm}^{2}$

8-7 DESIGN METHODS ASD, LRFD, Masonry, and Concrete Design

Allowable shear stress for reinforced masonry walls is defined two ways masonry to resist all shear or steel to resist all shear. Height-towidth ratio (h/d) also effects shear strength. Narrow walls have less strength than long walls. Allowable shear stress depends on the ratio M / Vd which may be expressed as h / d ratio ($\mathrm{M} / \mathrm{Vd}=\mathrm{Vh} / \mathrm{Vd}=\mathrm{h} / \mathrm{d}$)
1 Allowable shear stress F_{v} (assuming masonry resists all shear):
For h/d < 1
$F_{v}=1 / 3(4-h / d)\left(f^{\prime} m\right)^{1 / 2}$
$F_{v(\text { max })}=80-45 \mathrm{~h} / \mathrm{dpsi}$ *
For h/d => 1
$F_{v}=1.0\left(f^{\prime} m\right)^{1 / 2}$

$$
\mathrm{Fv}_{\mathrm{v}(\max)}=35 \mathrm{psi} \text { * }
$$

2 Allowable shear stress F_{v} (assuming reinforcing resists all shear):
For $\mathrm{h} / \mathrm{d}<1$
$F_{v}=1 / 2(4-h / d)\left(f^{\prime} m\right)^{1 / 2}$
$F_{v(\max)}=120-45 \mathrm{~h} / \mathrm{d} \mathrm{psi}$ *

For h/d $=>1$
$F_{v}=1.5\left(f^{\prime}\right)^{1 / 2}$
$F_{y}(\max)=75 \mathrm{psi}$ *

* Allowable stresses are one half without special inspection

3 Cantilever wall, free to bend in singie curvature
4 Wall with fixed support bends with intlection point at mid-height
d Width of wall or wall element
$h \square$ Height of wall cormall element
f'm Specified masonry compressive strength (ksi)
F. Aliowable shear stress (psi and MPa)
M. Bending moment $\mathrm{M}=\mathrm{Vh}$ or $\mathrm{M}=\mathrm{Vh} / 2$

V Shear force
Bar spacing $\quad s=A_{v} F_{s} / b F_{v}$
$\mathrm{A}_{v}=\mathrm{bar}$ area, $\mathrm{F}_{\mathrm{s}}=$ allowable bar stress, $\mathrm{b}=$ wall width, $\mathrm{F}_{v}=$ allowable masonry shear stress Example: CMU shear wall design
Assume: $\mathrm{h}=8$ ', 8 " (nominal), $f^{\prime} \mathrm{m}=2 \mathrm{ksi}, \# 4$ bars, $\mathrm{F}_{\mathrm{s}}=24 \mathrm{ksi}$, no inspection, design masonry to resist all shear of $V=6,000$ \#. Try wall length $d=4 \prime, h / d=2$
Allowable shear stress from graph $1 \quad F_{v}=17 \mathrm{psi}$
Bar spacing $s=A_{v} F_{s} / b F_{v}=0.2 \times 24,000 /(7.625 \times 17)=37^{\prime \prime} \quad$ use $s=32^{\prime \prime}$
Note: bar spacing rounded down to 8" CMU module
Wall shear capacity $\mathrm{V}=\mathrm{F}_{\mathrm{v}}$ (wall area) $=17 \times 7.625 \times 48$ " $\quad \mathrm{V}=6,222$ \#
Example: CMU shear wall analysis
Assume: same wall as above, but inspected and with reinforcing to resist all shear
Allowable shear stress from graph 2
$\mathrm{F}_{\mathrm{v}}=58 \mathrm{psi}$
Bar spacing $s=A_{v} F_{s} / b F_{v}=0.2 \times 24,000 /(7.625 \times 58)=10.8^{\prime \prime} \quad$ use $s=8 "$
Wall shear capacity $V=F_{v}$ (wall area) $=58 \times 7.625 \times 48$ " $\quad V=21,228 \#$
Note: rebars at 8 " vs. $32^{\prime \prime}$ and inspection increase capacity from 6 k to 21 k

Specified Compressive strength $f^{\prime}{ }_{m}$ for masonry is defined by the strength of masonry units and mortars type M, S, N, with values from $f^{\prime}=1,500$ to $4,000 \mathrm{psi}$.
Allowable compressive stress F_{a} for masonry with special inspection with or without grouting is 25% of the specified strength $f^{\prime} m$ by the working stress method; reduced for slenderness (shown in graph 1) as followings:
$\mathrm{F}_{\mathrm{a}}=0.25 \mathrm{f}_{\mathrm{m}}^{\prime}\left[1-\left(\mathrm{h}^{\prime} / 140 \mathrm{r}\right)^{2}\right]^{*} \quad$ for $\mathrm{h}^{\prime} / \mathrm{r} \leq 99\left(\mathrm{~h}^{\prime} / t \leq 29\right)$
$\left.F_{a}=0.25 \mathrm{f}^{\prime} \mathrm{m}\left(70 \mathrm{r} / \mathrm{h}^{\prime}\right)^{2}\right]^{*}$ for $h^{\prime} / r>99\left(h^{\prime} / t>29\right)$
For reinforced masonry columns the allowable compressive force Pa_{a} is:
$\mathrm{P}_{\mathrm{a}}=\left(0.25 f^{\prime} \mathrm{m} \mathrm{A}_{\mathrm{e}}+0.65 \mathrm{~A}_{\mathrm{s}} \mathrm{F}_{\text {sc }}\right)\left[1-\left(\mathrm{h}^{\prime} / 140 \mathrm{r}\right)^{2}\right]^{*} \quad$ for $\mathrm{h}^{\prime} / \mathrm{r} \leq 99\left(\mathrm{~h}^{\prime} / \mathrm{t} \leq 29\right)^{* *}$
$P_{a}=\left(0.25 f^{\prime} m A_{e}+0.65 A_{s} F_{s c}\right)\left(70 \mathrm{r} / \mathrm{h}^{\prime}\right)^{2^{*}} \quad$ for $\mathrm{h}^{\prime} / \mathrm{r}>99\left(\mathrm{~h}^{\prime} / \mathrm{t}>29\right)^{* *}$
$A_{e}=$ Area of masonry (net area for un-grouted masonry)
$A_{s}=$ Area of steel reinforcement
$\mathrm{F}_{\mathrm{sc}}=$ Allowable compressive stress of steel reinforcement
$h^{\prime}=$ effective height of wall
$r=$ radius of gyration; for convenience, graph 1 substitites radius of gyration ; by thickness t, where $r=(I / A)^{1 / 2}=0.289 t$

* Allowable stresses and loanis are orre haif without speciai inspection
** For non-square co!umns the smater dimension governs slenderness
1 Slenderness rediciction for allowable compressive stress
2 Masonry wall or collumn with pin support at both ends
3 Masonry wall or column with one fixed support

4. Vasoniry wall or column with two fixed supports

5 Masonry wall or column freestanding
A Reduction factor for slenderness h'/t
B Slenderness vs. stress reduction curve
h Height of wall or column
h' Effective height, adjusted for support type
t Wall thickness

Example: CMU wall

Assume: $\mathrm{h}=15^{\prime}$, both ends fixed, $\mathrm{h}^{\prime}=0.6 \times 15=9$ ', $8^{\prime \prime} \mathrm{CMU}, \mathrm{t}=7.625^{\prime \prime}, \mathrm{f}^{\prime} \mathrm{m}=2000 \mathrm{psi}$
Find allowable stress F_{2}
Slenderness h'/t = $9^{\prime} \times 12^{\prime \prime} / 7.625=9.4$
Slenderness reduction (from graph 1) $\quad A=0.94$
$\mathrm{F}_{\mathrm{a}}=0.25 \mathrm{f} \mathrm{m} \mathrm{A}=0.25 \times 2000 \times 0.94 \quad \mathrm{~F}_{\mathrm{a}}=470 \mathrm{psi}$

Example: brick column

Assume: brick column, 20 "x 24 ", $\mathrm{h}=30^{\prime}$, pin supports, $\mathrm{f}^{\prime} \mathrm{m}=2,5 \mathrm{ksi}$, with 6 \#8 steel bars, grade $60, F_{a}=60 \times 0.4=24 \mathrm{ksi}$. Find allowable load P
Slenderness h'/t = 30'x12"/20" = 18, slenderness reduction (from graph 1), $A=0.81$
$\mathrm{P}=\left(0.25 f^{\prime} \mathrm{m} \mathrm{A}_{\mathrm{e}}+0.65 \mathrm{~A}_{\mathrm{s}} \mathrm{F}_{\mathrm{sc}}\right)(0.81)$
$P=(0.25 \times 2.5 \times 20 \times 24+0.65 \times 6 \times 0.44 \times 24)(0.81) \quad P=276 \mathrm{k}$

Concrete Strength Design (LRFD)

Concrete strenth design is based on ultimatre concrete strenght, reduced by the reduction factor ϕ, similar to LRFD. At ultimte stress, concrete yields, forming a parabolic stress block. But srenght design for rectangular beams assumes a rectangular stress block wich gives similar results demonstrated by tests. Like masonry, concrete is strong in compression but very weak in tension. Hence steel reinforcing is used to resist tenion.

Balanced beam

A convenient reference is the balanced beam whith steel reinforcing that reaches yield strength simultaneously with concrete. However, actual reinforcimg should be less to assure ductile bahavior (steel yields before brittle concrete failure). Considring similar triangles, balanced reinforcing ρ_{b} is derived, assuming $E_{s}=29,000 \mathrm{ksi}$:
$\mathrm{c}_{\mathrm{b}} / 0.003=\mathrm{d} /\left(0.003+\mathrm{f}_{\mathrm{y}} / \mathrm{E}_{\mathrm{s}}\right)$
$c_{b}=\frac{0.003}{0.003+f_{7} / 29,000}(d)$
For equilibrium $(\Sigma \mathrm{H}=0, \mathrm{C}=\mathrm{T})$
Thus
Since $A_{s}=b d \rho b$
Solving for balanced ρ_{b}

For equilibrium $(\Sigma \mathrm{H}=0, \mathrm{C}=\mathrm{T})$
Thus $\quad a=A_{s} f / /\left(B 85 f^{\prime} c b\right)$

$$
Z=d-a / 2
$$

For moment pcuilib $⿴ 囗=\quad M=(C$ or $T)(d-a / 2)=A_{s} f_{y}(d-a / 2)$ $\mathrm{C}=0.85 \mathrm{f}_{\mathrm{c}} \mathrm{ab}$ $C=A_{s}+$ $0=A \cdot / b d$

Su'sittuting a and $A_{\text {. }}$ Ebbd and $(0.59=(1 / 0.85) / 2)$ and rearranging yields

Provides the nominal moment
Where R = Resistance factor

The nominal design moment is adjusted by a reduction factor $\phi=0.9$
$\phi M_{n}=M$
Reduction factors

Bending	$\phi=0.90$
Shear and torsion	$\phi=0.85$
Compression (spiral reinforcing)	$\phi=0.75$
Compression (tied reinforcing) and bearing	$\phi=0.70$

Compression (tied reinforcing) and bearing
$\phi=0.70$

Reinforcing ratio limits ρ

Minimum $\quad \rho=0.2 \mathrm{ksi} / \mathrm{fy}_{\mathrm{y}}$
Recommended $\quad \rho=0.18 \mathrm{f}_{\mathrm{c}} / \mathrm{fy}$
Maximum (75\% of balanced reinforcing) $\quad \rho=0.75 \rho$ b
Minimum Resistance factor (at min. $\rho=0.2 \mathrm{ksi} / \mathrm{fy}$) $\quad \mathbf{R}=0.192$
Note: Balancd reinforcing implies steel and concrete provide equal (balanced) strenght Less steel provides ductile steel behavior, rathter than brittle concrete failure.

Design graph

The design graph shows ρ-factors on the X -axis and R -factors on the Y -axis. The graph lines extend from minimum to maximum ρ-factors with recommended values marked with an ${ }^{\wedge}$. The following examples demonstrate use of the graph:

Example: beam design

Assume: simply supported beam; L= 16'; f'c = $3 \mathrm{ksi} ; F y=60 \mathrm{ksi}$
Factored Dead load $=1.4 \times 943 \mathrm{plf} / 1000 \quad \mathrm{D}=1.32 \mathrm{klf}$
Factored Live load $=1.7 \times 400$ plf $/ 1000 \quad \underline{L=0.68 \mathrm{klf}}$

$$
\text { w = } 2.00 \text { klf }
$$

Bending moment $\mathrm{M}=\mathrm{wL} 2 / 8=2 \mathrm{klf}(16)^{2} / 8$
$\mathrm{M}=64 \mathrm{k}^{\prime}$
$M_{n}=M / \phi=64 k^{\prime} \times 12^{\prime \prime} / 0.9$
$M_{R}=853 \mathrm{k"}$
Recommended depth (from table below) $\mathrm{h}=16^{\prime}\left(12^{\prime \prime}\right) / 16$
h = 12"
Effective depth ($\mathrm{d}=\mathrm{h}-3^{\prime \prime}$ for bar+cover) $\mathrm{d}=12-3$
Recommended R-factor (from graph)
Beam width $b=M_{n} /\left(R^{2}\right)=853 /\left(0.483 \times 99^{2}\right) \quad b=22^{\prime \prime}$
Recommended reinforcementratio (from gra, $\rho=0.009$
Bar cross sectior
$A_{s}=\rho b d=(0.009)(2210)=1.78 \mathrm{in}^{2}$
Use $6 \# 5$ bars, $A_{s}=6 \times 0.31=1.86$ in 2
Example: allernate beam design
Assume: "the same beam to fit an 8 " CMU wall, $R=0.483, \rho=0.009$
Effective depth
$d=\left[M_{n} /(R \text { b) }]^{1 / 2}=\left[853 /\left(0.483 \times 88^{\prime \prime}\right)\right]^{1 / 2} \quad d=15^{\prime \prime}\right.$
Rebar cross section
$\mathrm{A}_{\mathrm{s}}=\rho b d=(0.009)(8 \times 15)=1.08 \mathrm{in}^{2} \quad$ Try $3 \# 6$ bars, $\mathrm{A}_{s}=3 \times 0.44=1.32 \mathrm{in}^{2}$
Check width: 3 bars +2 spaces+stirrups+cover $=3 \times 6 / 8+2+1+3=8.25>8 \quad$ not OK
Use $2 \# 7$ bars, $A_{s}=2 \times 0.6 \quad A_{s}=1.2 \mathrm{in}^{2}$

Check width $=2 x 7 / 8+1+1+3=6.75 \quad 6.75<8$, OK
Minimum depths h of beams and slabs unless deflections are computed ($L=$ span)

Support type			Beams \& ribs		One-way slabs	
1 Sim	uppor			L/16		L/20
2 On	contin			L/18		L/24
3 Both	s con			L/21		L/28
4 Can				L/8		L/10
Bar	ters				Cross-s	section areas
Size	in	in	mm		in 2	mm^{2}
\# 5	5/8	0.625	15.9		0.31	200
\# 6	6/8	0.750	19.1		0.44	284
\# 7	$7 / 8$	0.875	22.2		0.60	387

8-11 DESIGN METHODS ASD, LRFD, Masonry, and Concrete Design

Shear reinforcement

Shear reinforcement in bending members is required if the factured shear Vu exceeds the shear capacity of concrete $V c$,except for:

- Slabs and footings
- Concrete joists
- Beams of <10" depth
- Beams with $\mathrm{Vu}<\phi \mathrm{V}_{\mathrm{c}} 2$

Concrete shear capacity
Subject to maximum shear stress

$$
V_{c}=\sqrt{f_{c}^{\prime} b d}
$$

Shear reinforcing is usually provided by vertical stirrups Spacing
$A_{v}=$ total cross section area of stirrups (usually 2 bars per stirrup)
$F_{y}=$ yield stress of stirrups
$d=$ effective depth (top of beam to steel rebars)
$\mathrm{V}_{\mathrm{s}}=$ shear resisted by stirrups

Maximum spacing

$s=d / 2$
Shear resisted byy stee!
$V_{s}=V_{u} / \phi-V_{c}$
Thie maximum shear may be taken a distance d from supports
Reinforeng is required where
$\mathrm{V}>\mathrm{V}_{\mathrm{c}} / 2$
A Tensile reinforcement
b Beam width
C Shear reinforcing
d Effective beam depth
E Distance from support requiring stirrups (at $\mathrm{V}_{\mathrm{c}} / 2$)
s Stirrup spacing

Example

Design a simply supported beam, assume: $f^{\prime}=3 \mathrm{ksi}, F_{y}=60 \mathrm{ksi}, \mathrm{L}=20^{\prime}, \mathrm{b}=10^{\prime \prime}, \mathrm{d}=12^{\prime \prime}$
Factored DL+LL
w = 4 klf
Concrete shear capacity $V_{c}=\phi \sqrt{f_{c}^{\prime} b d}=0.85 \sqrt{4 \times 10 \times 12}$
$V_{c}=18 \mathrm{k}$
Maximum factored shear $V_{u}=4 \mathrm{klf} \times 20^{\prime} / 2$
$V_{u}=40 \mathrm{k}$
Shear at d from support $V_{u}=40-(4 \times 12 / 12)$
$V_{u}=36 \mathrm{k}$
Shear resisted by steel $\mathrm{V}_{\mathrm{s}}=\mathrm{V}_{\mathrm{U}} / \phi-\mathrm{VC}=36 / 0.85-22$
$V_{s}=20 \mathrm{k}$
Try \# 4 srirrups (As $=2 \times 0,2$
$\mathrm{A}_{\mathrm{s}}=0.4 \mathrm{in}^{2}$
Spacing $s=A_{v} f_{v} d / V_{s}=0.4 \times 60 \times 12 / 20$
$s=14^{\prime \prime}$
Check $\max s=d / 2=12 / 2=6 "$
Use $\mathrm{s}=6^{\prime \prime}$
Distance stirrups needed $\mathrm{E}=\left(\mathrm{L} / 2 / \mathrm{V}_{\mathrm{u}}\right)\left(\mathrm{V}_{\mathrm{u}}-\mathrm{V}_{\mathrm{C}} / 2\right)=(10 / 40)(40-9)$

Continuous and fixed-end beams

Concrete beams may continue over more than two supports, have moment resistant (fixed-end) supports, or both; all of which cause negative support moments that reduce positive mid-span moments and, therefore, require less depth than simply supported beams. Fixed-end supports are usually in beams of moment resisting frames.

Reinforcement of continuous and fixed end beams follows shear and bending diagrams. Shear is similar to simply supported beams. Moment distribution varies from positive at mid-span to negative at supports and fixed-ends; causing convex deflections at supports and concave at mid-span with change at inflection points. Reinforcing correlates with the bending diagram: bottom bars at positive bending and top bars at negative bending; both extending somewhat beyond the inflection points to account for variable live loads.

Note:
The reader is referred to books on reinforced concrete design (Spiegel, 1992) for issues beyond the scope of this book, such as design of T-beams, beams with compression reinforcement, bond length of bars, combined axial and compressive stress, etc.

WVidtit of compression flange, limited by ACl code to the lesser of:

- 1/4 beam span
- 16 times slab thickness plus web width
- beam spacing e from center to center
d Effective depth (distance from reinforcement to compression zone edge)
Z Lever arm of internal resisting moment
(Distance from reinforcement to compression zone center)
NA Neutral Axis
t Slab thickness

T-Beam

Floor slabs are usually poured together with beams. This provides to combine slab and beam as T-beam, with part of the slab acting as compressive flange and the beam acting as stem or web. Reinforcement at the beam bottom resists tensile stress for positive bending. For negative bending of continuous beams the tensile reinforcement must be on top and the beam resists compression, without benefit of the wider slab. T-beams are, therefore, most efficient as simply supported beams with positive bending only. Shear resistance is limited to the cross section of the web or the area defined by the width of the web and the effective depth of the beam. The flange width provided by the slab is limited to $1 / 4$ of the span, 16 times the slab thickness plus width of the beam, or beam spacing, whichever is less. Depending on the ratio of reinforcement to compressive area, the neutral axis of T-beams may be below or within the slab thickness. For schematic design the resisting lever-arm may be estimated as the distarce wetween center of the slab and center of the reinforcement.

T-beam with compression zone depttra> slan thickness. t
2 T-beam with compression zone deptha $=$ slab thicknesst
3 T-beam wïh compression zorie diepth a < siab thickness t
$4 \square$ T-heam with compression veb diue to negative bending

Depth of compression zone

One-way slabs

With reinforcing in only one direction, one-way slabs need reinforcing for temperature variation and shrinkage perpendicular to the main reinforcing. As percentage of slab cross section area, temperature reinforcing must be at least:
$A_{s}=0.20 \%$ for grade 40 and 50 steel
$A_{s}=0.18 \%$ for grade 60 steel
Minimum depths h of beams and slabs unless deflections are computed ($L=s p a n$)

Example: One-ivay Siel design
Assume: simply suoporied slab, $L=16^{\prime} ; f_{c}^{\prime}=3 \mathrm{ksi} ; F_{y}=40 \mathrm{ks}$, Design a 1' wide strip
Sian depth $h=L / 20=16^{\prime} \times 12^{\prime \prime} / 20 \quad h=9.6^{\prime \prime}$
Dcaú load = 150pcf $\times 9.6^{\prime \prime} / 12^{\prime \prime}=120 \mathrm{psf}+20 \mathrm{psf}$ partitions +14 psf misc. $\quad D L=154 \mathrm{psf}$
Factored loads: (1.4×154 psf DL+1.7x50 psf LL)/1000

$$
\mathrm{w}=0.3 \mathrm{klf}
$$

Moment M $=\mathrm{wL} 2 / 8=0.3 \times 162 / 8$

$$
\mathrm{M}=9.6 \mathrm{k}^{\prime}
$$

Required resisting moment (k")

$M_{n}=12 \mathrm{M} / \mathrm{/}$ / = 12"x9.6k'/0.9	$\mathrm{M}_{\mathrm{n}}=128 \mathrm{k}{ }^{\prime \prime}$
Effective depth d=h-bar/2-cover	
$\mathrm{d}=9.6-0,75 / 2-0.75$	$d=8.5$
Resistance factor $\mathrm{R}=\mathrm{M}_{\mathrm{n}} / \mathrm{bd}{ }^{2}=128 /\left(12 \times 8.5^{2}\right)$	$\mathrm{R}=0.148<0.192$
For min. $\mathrm{R}=0.192 \mathrm{~min}$. steel ratio $\rho=0.2 \mathrm{ksi} / \mathrm{fy}$	$\rho=0.005$
Bar area $\mathrm{A}_{s}=\rho b d=0.005 \times 12 \times 8.5$	$\mathrm{A}_{\mathrm{s}}=0.51 \mathrm{in}^{2}$
Use \# 6 bars, $\mathrm{A}_{s}=0.44 \mathrm{in}^{2}$ per bar	
Bar spacing $s=12 " x 0.44 / 0.51$	$s=10.3{ }^{\prime \prime}$
Temperature reinforcing	
$\mathrm{A}_{\text {s }}=0.002 \mathrm{bd}=0.002 \times 12 \times 8.5$	$\mathrm{A}_{\mathrm{s}}=0.204 \mathrm{in}^{2}$
Try \#6 bars	
Bar spacing: s = 12"x 0.44 / 0.204	$s=25.9$ "
Check s vs. ACl spacing limits: $4^{\prime \prime}<$ s < 18" $<5 h$	25.9 > 18, not OK
Use \# 4bars	
Bar spacing: s = 12"x0.20 / 0.204	$s=11.8{ }^{\prime \prime}$

Two-way slabs and plates

Two-way systems should have about equal spans both ways. Double spans increase deflection 16 times ($4^{\text {th }}$ power of span). They may be thick plates or thin slabs with drop panels at posts to resist shear. They can be designed by Direct Design Method, assuming : 1) at least 3 spans; 2) span ratios $\leq 2: 1 ; 3$) adjacent spans differ $<1: 1.3 ; 4$) post offsets < 1.1L; 5) uniform load $L \leq 2 D$. Bending $M=M_{0} \times$ coefficient (at left), where:
$M_{0}=w L 2 / 8 \quad L=$ span; w = 1.4D+1.7L
1 Column strips and middle strips of typical slab
2 Moment coefficients for slab and plate with simply supported end span
3 Moment coefficients for slab and plate supported directly on columns
Moment coefficients for slab and plate with edge beam
5 Moment coefficients for slab and plate with end span integral with wall
A Column strip (slab/column moment distribution is not considered)
B Middle strip
C End support (negative moment)
D End span (positive moment)
E First interior support (negative moment)
F Interior spán (positive moment),
G■ Interionsuppor fonegative moment)
it Column strio momisent coefficients
Middlle strip moment coefficients
Minimum depths h of two-way slabs unless deflections are computed ($L=$ span)

Reinforcing is similar to one-way slabs, but two ways, without temperature reinforcing.

8-16 DESIGN METHODS ASD, LRFD, Masonry, and Concrete Design

5

4

3

7

Column

Concrete columns may have square, rectangular, round, or of other cross section with tied or spiral rebars. Compression bars shall be min. No. $5(16 \mathrm{~mm})$ or greater. The ACl code limits reinforcement to $1 \% \mathrm{~min}$. and 8% max. as percentage of column cross section area; but 4% is recommended to prevent rebar crowding. Bars and ties require 1.5 in $(38 \mathrm{~mm})$ concrete cover for fire and corrosion protection. Columns of width / height ratios of less than 13 are designed short columns without considering buckling.
Tied columns must need at least four compression bars held in place by ties: No. 3 ties for compression bars up to No. 10 and No. 4 ties for larger ones. Ties shall secure all corner bars and at least every second bar between corners. Unsecured bars shall be not more than 6 in $(15 \mathrm{~cm})$ from a secured bar. Tie hooks shall be 135°. Tied columns are more common, provide somewhat less strength, are less expensive than spiral columns, and adapt easier to cross-, T-, U-, and L-shaped columns. Maximum tie spacing shall be 16 bar diameters, 48 tie diameters, or the least column dimensiori, whiche ver is isess. For seismic design maximum tie spacing shall be $1 / 2$ the least column dimension near beam intersections.

Spiral columns must have at least ive or more yertical compression bars in circular configuration held in piace by a continiup s circular spiral of about $1 / 4$ in diameter. Spiral coliumn are sually-celindrical buit spiral reinforcing may also be used for square columns Soiral columens are about 14% stronger than tied columns of equal cross seccion area because spirals confine the concrete and rebars better under high stress. Spiral spacing ranges from min. 1 in $(25 \mathrm{~mm})$ to max. 3 in (76 mm).
1 Square column with tied reinforcement of minimum 4 bars
2 Round column with spiral reinforcement of minimum 5 bars
3 Square column with spiral reinforcement
4 Rectangular column with tied reinforcement
5 Square column with tied reinforcement of 8 bars
6 Round column with 2 -ring spiral reinforcement
7 Square column with tied reinforcement of 16 bars
8 Cross-shaped column with tied reinforcement
9 L-shaped column with tied reinforcement

Column design

The strength of concrete columns is defined by concrete strength, grade, amount, and type of steel reinforcing. The theoretical strength without eccentricity is:

$P_{0}=0.85 f^{\prime}{ }_{c}\left(A_{g}-A_{s}\right)+f_{y} A_{s}$

$\mathrm{A}_{g}=$ column cross section area
$A_{s}=$ area of steel reinforcing
$f_{c}=$ specified concrete compressive strength
$f_{y}=$ yield strength of steel reinforcing
However, concrete columns may be subject to eccentric load or bending moments from beams. Therefore, ACl assumes an implied eccentricity by reduction factors of 0,85 for spiral columns and 0.80 for tied columns. In addition, strength is reduced by $\Phi=0.75$ for spiral columns and $\Phi=0.70$ for tied columns. Thus, ACl defines column strength as:
Spiral columns $\quad \Phi P=0.85 \Phi\left[0.85 f^{\prime}{ }_{c}\left(A_{g}-A_{s}\right)+f_{y} A_{s}\right]$
Tied columns $\quad \Phi P=0.80 \Phi\left[0.85 f^{\prime}{ }^{\prime}\left(A_{g}-\hat{A}_{s}\right)+f_{y} A_{s}\right]$

For convenient schematic design formulas for stress used in the graphs are:
For spiral columns $F=0.75 \times 0.35\left[0.8 .5 f ;(1-\rho)+f_{y} \rho\right]$
For tied columns

Design graphs

$$
E-0.70 \times 0.80\left[0.85 f_{c}(1-\rho)+f_{y} \rho\right]
$$

The design graphs for tied columns at ieit and spiral columns on the next page are based orthe abovelequatois. Their use is described by examples.

examo!e: Tied colunitis, 3 -story

Assume: Latteral load resisted by shear walls, design for gravity load only
Tributary area 30 'x30', DL = 175 psf , LL 50 psf, $\mathrm{f}_{\mathrm{y}}=60 \mathrm{ks}$

Factored load $w=1.4 \times 175+1.7 \times 50$	$w=330 \mathrm{psf}$
Ground floor (use $f^{\prime} c=5 \mathrm{ksi}, 4 \%$ steel) $F=3.6 \mathrm{ksi}$	$\mathrm{P}=891 \mathrm{k}$
$P=3 \times 30^{\prime} \times 300^{\prime} \times 330 / 1000$	$A=248 \mathrm{in}^{2}$

Column size, $\mathrm{A}^{1 / 2}=248^{1 / 2}=15.7^{\prime \prime} \quad$ Use $16 " \times 16^{\prime \prime}$
Steel area $A_{s}=0.04 \times 16^{2}=10.2 \mathrm{in}^{2}$
Use $18 \# 7$ bars, $\mathrm{A}_{\mathrm{s}}=10.8 \mathrm{in}^{2}$
First floor (use the same column with f'c $=3 \mathrm{ksi}$)
$\mathrm{P}=2 \times 30$ 'x 30 'x330/2000
$\mathrm{P}=594 \mathrm{k}$
$\mathrm{F}=\mathrm{P} / \mathrm{A}=594 / 16^{2}=2.32 \mathrm{ks}$
Steel area $A_{s}=0.028 \times 16^{2}=7.2 \mathrm{in}^{2}$
Use 2.8% steel
Second floor (use same column with $f_{y}=40 \mathrm{ksi}$)
$\mathrm{P}=1 \times 30 \times 30 \times 330 / 1000$
P $=297 \mathrm{k}$
$\mathrm{F}=\mathrm{P} / \mathrm{A}=297 / 16^{2}=1.16 \mathrm{ksi} \quad$ Use 1% steel
Steel area $\mathrm{A}_{\mathrm{s}}=0.01 \times 16^{2}=2.56 \mathrm{in}^{2} \quad$ Use $6 \# 7$ bars, $\mathrm{A}_{\mathrm{s}}=3.6 \mathrm{in}^{2}$

Rebar diameters Size in		in	Cross-section areas		
in 2	$\mathrm{~mm}^{2}$				
$\# 7$	$7 / 8$	0.875	22.2	0.60	387
$\# 8$	$8 / 8$	1.000	25.4	0.79	510

Example: Spiral columns, 3-story

Assume: The same project as above but with spiral columns
Tributary area 30 'x30', fy = 60 ksi , DL = 175 psf, LL 50 psf.
Factored load w $=1.4 \times 175+1.7 \times 5$
$\mathrm{w}=330 \mathrm{psf}$
Ground floor (use f"c $=5 \mathrm{ksi}, 5 \%$ steel) $\mathrm{F}=4.5 \mathrm{ksi}$
$P=3 \times 30$ ' $\times 30$ ' $\times 330 / 1000$
$P=891 k$
$A=P / F=891 / 4.5$
$A=198 \mathrm{in}^{2}$
Column size, $2(\mathrm{~A} / \pi)^{1 / 2}=2(198 / \pi)^{1 / 2}=15.8^{\prime \prime}$
Use $\phi 16$ "
Column cross section area $A=\pi r^{2}=\pi(16 / 2)^{2}$
$A=201 \mathrm{in}^{2}$
Steel area $A_{s}=0.05 \times 201=10.1 \mathrm{in}$
Use 14 \# 8 bars, $A_{s}=11.1 \mathrm{in}^{2}$
First floor (use the same column with f'c $=3 \mathrm{ksi}$)
P = 2x30'x30'x330/2000
$P=594 k$
$F=P / A=594 / 198=2.98 \mathrm{ks}$
Use 3.8\% steel
Steel area $A_{s}=0.038 \times 198=7.52 \mathrm{in}^{2}$
10 \# 8 tars $A_{s}=7.9 \mathrm{in}^{2}$
Second floor (use the same column with $\mathrm{f}_{\mathrm{y}}=40 \mathrm{ksi}$)
$\mathrm{P}=1 \times 30 \times 30 \times 330 / 1000$
$F=P / A=297 / 198=1.5 \mathrm{ksi}$
Steel area $A_{s}=0.01 \times 198=1.98$ in?

Lateral Force Design

Lateral loads, acting primarily horizontally, include:

- Wind load
- Seismic load
- Earth pressure on retaining walls (not included in this book)

Wind and earthquakes are the most devastating forces of nature:
Hurricane Andrew 1992, with gusts of 170 mph , devastated 300 square miles, left 300,000 homeless, caused about $\$ 25$ billion damage, and damaged 100,000 homes

The 1976 Tangshan Earthquake (magnitude 7.8), obliterating the city in northeast China and killing over 240,000 people, was the most devastating earthquake of the $20^{\text {th }}$ century.

Swiss Re reported 2003 world wide losses:

- 60,000 people killed
- Over two thirds earthquake victims
- $\$ 70$ billion economic losses

IBC taibe 1604.5. In pritance Classitication excerpt

Wind load

1 Wind load on gabled building

2 Wind load on dome or vault
3 Protected buildings inside a city
4 Exposed tall building inside a city
5 Wind flow around and above exposed building
$6 \quad$ Wind speed amplified by building configuration
Wind channeled between buildings causes a Venturi effect of increased wind speed. Air movement through buildings causes internal pressure that affects curtain walls and cladding design. Internal pressure has a balloon-like effect, acting outward if the wind enters primarily on the windward side. Openings on leeward or side walls cause inward pressure. In tall buildings with fixed curtain wall the difference between outside wind pressure and interior pressure causes air movement from high pressure to low pressure. This causes air infiltration on the windward side and oufflow on the teevard side. In highrise buildings, warm air moving from lower to upper levels causes pressures at toplevels on the leeward face and negative suction on iower levels. Wirid pressure is based on the equation developed by Danier Bernouli (171)c-1782.) For sieady air flow of velocity V , the velocity pressure, q on a rigid boory is
$\mathrm{q}=\mathrm{pV} \mathrm{Z}^{1}$?
$p=$ air cens.ity
(air weight divided by the acceleration of gravity $\mathrm{g}=32.2 \mathrm{ft} / \mathrm{sec}^{2}$)
Air of $15^{\circ} \mathrm{C}$ at sea level weighs $0.0765 \mathrm{lb} / \mathrm{ft}^{3}$, which yields:
$q=0.00256 \mathrm{~V}^{2} \quad$ (q in psf)
The American National Standards Institute (ANSI) Minimum design loads for buildings and other structures (ANSI A58.1-1982), converted dynamic pressure to velocity pressure q_{z} (psf) at height z as
$q_{z}=0.00256 \mathrm{~K}_{\mathrm{z}}(\mathrm{IV})^{2}$
$\mathrm{K}_{\mathrm{z}}=2.58\left(\mathrm{z} / \mathrm{Zg}_{\mathrm{g}}\right)^{2 / a} \quad$ (for buildings of 15 ft or higher)
a = Power coefficient (see exposures A - D below)
$Z=$ Height above ground
$Z_{g}=$ Height at which ground friction no longer effects the wind speed (see exposures A - D below)
I = Importance factor (see IBC table 1604.5)
ANSI A58.1 defined exposures A, B, C, D (IBC uses B, C, D only):
Exposure A Large city centers
$a=3.0, Z_{g}=1500 \mathrm{ft}$
Exposure B Urban and suburban areas, wooded areas
Exposure C Flat, open country with minimal obstructions

$$
a=4.5, Z_{g}=1200 \mathrm{ft}
$$

$$
\mathrm{a}=7.0, \mathrm{Z}_{\mathrm{g}}=900 \mathrm{ft}
$$

Exposure D Flat, unobstructed coastal areas

$\epsilon_{0}^{40.0}$					-	-				+
${ }^{35.0}$			-		-	+				
$0^{30.0}$					-		-			
\% 25.0				.	-	-		*	*	*
$\boldsymbol{e}_{\substack{20.0 \\ \boldsymbol{D}_{20.0}}}$	-	-	*	*	*					
$\square^{20.0}$	*									
			-	\%	$?$	\because	\cdots	-	?	-
	,									
	10	20	30	40	50	60	70	80	90	100
--85	9.1	9.6	10.5	11.1	11.7	12.1	12.5	12.9	13.3	13.5
- -90	10.2	10.8	11.7	12.5	13.1	13.5	14.0	14.5	14.9	15.1
- 100	12.6	13.3	14.5	15.4	16.1	16.7	17.3	17.9	18.3	18.6
- -110	15.2	16.1	17.5	18.6	19.5	20.2	20.9	21.7	22.2	22.6
*-120	18.1	19.2	20.9	22.2	23.2	24.1	24.9	25.8	26.4	26.8
$\xrightarrow{-}-130$	21.3	22.5	24.5	26.0	27.3	28.3	29.3	30.3	31.0	31.5
\pm	24.7	26.1	28.4	30.2	31.6	32.8	33.9	35.1	36.0	36.5
- 150	28.3	30.0	32.6	34.6	36.3	37.6	39.0	40.3	41.3	41.9
Windward pressure (psf)										

$\rightarrow-85$	5.7	6.0	6.5	6.9	7.3	7.6	7.8	8.1	8.3	8.4
- 90	6.4	6.7	7.3	7.8	8.2	8.5	8.8	9.1	9.3	9.4
+100	7.9	8.3	9.1	9.6	10.1	10.5	10.8	11.2	11.5	11.7
+110	9.5	10.1	11.0	11.6	12.2	12.6	13.1	13.5	13.9	14.1
- 120	11.3	12.0	13.1	13.8	14.5	15.0	15.6	16.1	16.5	16.8
- 130	13.3	14.1	15.3	16.3	17.0	17.7	18.3	189	$]^{19.4}$	19.1
+ 140	15.4	16.3	17.8	18.9	19.8	P0 5	21.2	21.3	22.5	22.8
- 150	17.7	18.7	20.4	21.6	22.1	$\underline{23.5}$	24.3	25.2	25.8	26.2

Leeward pressure (psf)

$\rightarrow 85 \times 2.502$				2.9	31	3.2	3.3	3.4	3.5	3.6
--90	2.7	2.9	3.1	${ }^{3.3}$	3.5	3.6	3.7	3.8	3.9	4.0
$\begin{array}{r}+\quad 100 \\ \hline+\quad 10\end{array}$	3.3	35	3.8	4.1	4.3	4.4	4.6	4.7	4.9	4.9
+ 110	4.5)	4.3	4.6	4.9	5.2	5.4	5.5	5.7	5.9	6.0
- 120	4.8	5.1	5.5	5.9	6.1	6.4	6.6	6.8	7.0	7.1
- 130	5.6	6.0	6.5	6.9	7.2	7.5	7.7	8.0	8.2	8.3
+140	6.5	6.9	7.5	8.0	8.4	8.7	9.0	9.3	9.5	9.7
- 150	7.5	7.9	8.6	9.2	9.6	10.0	10.3	10.7	10.9	11.1

Interior pressure (psf)

Example: Wood shear walls

Assume: $66^{\prime} \times 120^{\prime} \times 27^{\prime}$ high, 3 shear walls, $L=3 \times 30^{\prime}=90^{\prime}$, wind speed 90 mph , exposure C , Importance factor I = 1, gust factor $\mathrm{G}=0.85$ (ASCE 7, 6.5 .8 for rigid structures $>1 \mathrm{~Hz}$)
For each level in width direction find: wind pressure P, force F, shear V, shear wall type

Interior pressure (from graph for $\mathrm{h}=30^{\prime}$)
$\mathrm{p}=3.1 \mathrm{psf}$
Leeward suction (from graph for $h=30^{\prime}$

$$
\mathrm{P}=7.3 \mathrm{psf}
$$

Level 3 ($\mathrm{h}=29$ - use 30 ' pressure)
Wind pressure (windward + leeward + interior)
$\begin{array}{lr}p=11.7+7.3+3.1 & p=22.1 \mathrm{psf} \\ \text { Force } F=22.1 \times 120 \times 10^{\prime} / 2 & F=13,260 \#\end{array}$
Shear V $=F$ $\mathrm{V}=13,260$ \#
Required wall strength $=13,260 / 90^{\prime}=147$ plf; use $5 / 16 "$ " 6 d at $6^{\prime \prime}$
Level 2 ($\mathrm{h}=19^{\prime}$ - use 20' pressure)
$p=10.8+7.3+3.1$
Force $F=21.2 \times 120 \times 10^{\prime}$

Shear $V=13,250+25,440$
Required wailstenghit $=38,700 / 90=430$ plf; use $15 / 32^{\prime \prime}, 8 \mathrm{~d}$ at $4^{\prime \prime}$

$$
200>147
$$

Level 1 而 $=9$ - use 10 pressure')
$P=10.2+7.3+3.1$
$\mathrm{p}=20.6 \mathrm{psf}$
Force $F=23.7 \times 120 \times 10$
F $=24,720$ \#
Shear V $=38,700+24,720$
$\mathrm{V}=63.420$ \#
Required strength $=63,420 / 90^{\prime}=705$ plf; use $15 / 32^{\prime \prime}, 8$ d at $2^{\prime \prime}$
Note:
The results are very similar to 9.1 with less computation
See Appendix C for exposure B and D graphs

IBC table 2306.4.1 excerpts

Allowable shear for wood panels with Douglas-Fir-Large or Southern Pine

Panel grade	Panel thickness	Nail penetration	Nail size	Nail spacing at panel edge (inches)			
				6	4	3	2
				Allowable shear (lbs / foot)			
	$5 / 16$ in	$11 / 4$ in	6d	200	300	390	510
	$3 / 8$ in	$13 / 8$ in	8d	230	360	460	610
	$7 / 16$ in	$13 / 8$ in	8d	255	395	505	670
	15/32 in	$13 / 8$ in	8d	280	430	550	730
		$11 / 2$ in	10d	340	510	665	870

* Requires 3 x framing and staggered nailing

Exposure D wind pressure for 10 ' to 100 ' height and 85 to 150 mph wind speed

$\begin{aligned} & 50.0 \\ & 45.0 \end{aligned}$										
										-
45.0					-					$+$
		,	-		+	+				
35.0			+			-	-			
$\begin{aligned} & 30.0 \\ & 25.0 \end{aligned}$			-			*	$*$			
20.0	*									
$\begin{aligned} & 15.0 \\ & 10.0 \end{aligned}$					-	!	\%	\%		-
	:	:	-	.						
$\begin{array}{r} 10.0 \\ 5.0 \\ 0.0 \end{array}$										
	10	20	30	40	50	60	70	80	90	100
$\rightarrow 85$	11.0	11.5	12.4	13.0	13.6	14.0	14.3	14.8	15.0	15.3
- 90	12.3	12.9	13.9	14.6	15.2	15.7	16.1	16.5	16.8	17.1
-100	15.2	16.0	17.2	18.1	18.8	19.4	19.8	20.4	20.7	21.2
+	18.4	19.3	20.8	21.8	22.7	23.5	24.0	24.7	25.1	25.6
- 120	21.9	23.0	24.7	26.0	27.1	27.9	28.6	29.4	29.8	30.5
$\xrightarrow{-130}$	25.8	27.0	29.0	30.5	31.8	32.8	33.5	34.5	35.0	35.8
± 140	29.9	31.3	33.6	35.4	36.8	38.0	38.9	40.0	40.6	41.5
-150	34.3	36.0	38.6	40.6	42.3	43.6	44.6	45.9	46.6	47.6
					ward					

$\rightarrow 85$	6.9	7.2	7.8	8.2	8.5	8.8	9.0	9.2	9.4	9.6
-90	7.7	8.1	8.7	9.1	9.5	9.8	10.0	10.3	10.5	10.7
- 100	9.5	10.0	10.7	11.3	11.7	12.1	12.4	12.8	12.9	13.2
- 110	11.5	12.1	13.0	13.7	14.2	14.7	15.0	15.4	15.7	116.0
- 120	13.7	14.4	15.4	16.2	16.9	17.4	17.8	18.4	- 18.6	180
$\rightarrow 130$	16.1	16.9	18.1	19.1	19.8	20.5	20.9)	21.	21.9	22.3
+140	18.7	19.6	21.0	22.1	23.0	2937	24.3	25.0	7. 2.5	25.0
- 150	21.4	22.5	24.1	25.4	26.1	17.3	27.95	28.7	$\sim_{\Delta} 23.1$	29.8

Leeward pressule (psf)

$\rightarrow 85$	2.9	314	33	3.5	-3.6	3.7	3.8	3.9	4.0	4.0
- -90	33	- 3.	3,7	3.9	4.0	4.2	4.3	4.4	4.4	4.5
-100	4.0	-2	4.5	4.8	5.0	5.1	5.2	5.4	5.5	5.6
- 110	49	$\bigcirc 1$	5.5	5.8	6.0	6.2	6.4	6.5	6.6	6.8
- 120	5.8	6.1	6.5	6.9	7.2	7.4	7.6	7.8	7.9	8.1
\cdots	6.8	7.1	7.7	8.1	8.4	8.7	8.9	9.1	9.3	9.5
+140	7.9	8.3	8.9	9.4	9.7	10.1	10.3	10.6	10.7	11.0
-150	9.1	. 5	10.2	10.8	11.2	11.5	11.8	12.2	12.3	12.6

Interior pressure (psf)

Example: CMU shear walls

Assume: Regular flat site
Office building: 6 -story, $90^{\prime} \times 90^{\prime} \times 60^{\prime}, 30^{\prime} \times 30^{\prime}$ core
30^{\prime} CMU walls, 8 " nominal ($7.625^{\prime \prime}$)
Shear wall length $L=2 \times\left(30^{\prime}-6^{\prime}\right.$ doors $)=48^{\prime}$
Shear walls resist all lateral load
Roof fabric canopy, $50^{\prime} \times 50^{\prime} \times 10^{\prime}$, gust factor $G=1.8$
Wind speed V $=100 \mathrm{mph}$
Exposure D
Importance factor I = 1
Interior pressure (assume conservative opening height $\mathrm{h}=60^{\prime}$)
Leeward pressure (for $\mathrm{h}=60^{\prime}$)
$\mathrm{P}=12.1 \mathrm{psf}+5.1 \mathrm{psf}$
Average windward pressure ($\mathrm{h}=10$ to 60^{\prime})
$P=(15.2+16.0+17.2+18.1+18.8+19.1)$
Average combined wind pressừe
$P=17.5+17.2+51$
Roof canopy piessure canopy $=(12$. Trit. 8$)$
Base shear:
$Y=A P=90^{\prime} \times\left(60^{\prime}-5^{\prime}\right) \times 39.8+\left(50^{\prime} \times 10^{\prime} / 2\right) \times 21.8$

Core shear stress
$\mathrm{v}=\mathrm{V} / \mathrm{A}=202,460 /\left(48^{\prime} \times 12^{\prime \prime} \times 7.625^{\prime \prime}\right)$
$v=46 \mathrm{psi}$
Note:
Wind on lower half of first floor, resisted by footing, has no effect on shear walls

Seismic Design

Earthquakes are caused primarily by release of shear stress in seismic faults, such as the San Andreas Fault, that separates the Pacific plate from the North American plate, two of the plates that make up the earth's crust according to the plate tectonics theory. Plates move with respect to each other at rates of about 2-5 cm per year, building up stress in the process. When stress exceeds the soil's shear capacity, the plates slip and cause earthquakes. The point of slippage is called the hypocenter or focus, the point on the surface above is called the epicenter. Ground waves propagate in radial pattern from the focus. The radial waves cause shaking somewhat more vertical above the focus and more horizontal far away; yet irregular rock formations may deflect the ground waves in random patterns. The Northridge earthquake of January 17, 1994 caused unusually strong vertical acceleration because it occurred under the city.
Occasionally earthquakes may occur within plates rather thain at the edges This was the case with a series of strong earthquakes in New. Madrid, alrong the IMississippi Biver in Missouri in 1811-1812. Earthquakes are aiso caused hy yolcanic eruptions, underground explosions, or similar man-made evenis
Buildings are shakemb ground waves, but their inertia tends to resists the movement which causes laieral torges. Thie building mass (dead weight) and acceleration affects these forces. In response, structure height and stiffness, as well as soil type affect the response of buildings to the acceleration. For example, seismic forces for concrete shear walls (which are very stiff) are considered twice that of more flexible moment frames. As an analogy, the resilience of grass blades will prevent them from breaking in an earthquake; but when frozen in winter they would break because of increased stiffness.
The cyclical nature of earthquakes causes dynamic forces that are best determined by dynamic analysis. However, given the complexity of dynamic analysis, many buildings of regular shape and height limits, as defined by codes, may be analyzed by a static force method, adapted from Newton's law F= ma (Force = mass x acceleration).

1 Seismic wave propagation and fault rupture
2 Lateral slip fault
3 Thrust fault
4 Building overturn
5 Building shear
6 Bending of building (first mode)
7 Bending of building (higher mode)
E Epicenter
H Hypocenter

Spectral acceleration

Accelerätion spectra co four soili types (by Seed)

ıธし Lesign Kesponse Opecırurn

Basic concepts

Earthquake ground shaking generates forces on structures. Though these forces act in all direction, the horizontal (lateral) forces are usually most critical. Seismic forces are
$\mathbf{f}=\mathbf{m} \mathbf{a} \quad$ (Force $=$ mass \times acceleration $)$
$\mathrm{m}=$ mass (building dead load)
$a=$ acceleration (Spectral Acceleration)
Note:
Spectral Acceleration approximates the acceleration of a building, as modeled by a particle on a mass-less vertical rod of the same period of vibration as the building PGA (Peak Ground Acceleration) is experienced by a particle on the ground

Acceleration Spectra (left)

Based on the 1971 San Fernando and other Earthquakes Seed (1976) developed Acceleration Spectra to correlaie tire period (X-axis) with acceieration for four soil types. Other studies by Hall, Hayastri, Kuribayastii, and in ohraz demonstrated similar results. Equivalent Lateral Foree Analy sis is Dased on Acceleration Spectra, abstracted as Desig response Specirum

Design Response Spectrum (left)

The IBC Design Response Spectrum correlate time period T and Spectral Acceleration, defining three zones. Two critical zones are:
$T<T_{s}$ governs low-rise structures of short periods
$\mathrm{T}>\mathrm{T} \quad$ governs tall structures of long periods
where
$\mathrm{T}=$ time period of structure ($\mathrm{T} \sim 0.1 \mathrm{sec}$. per story - or per ASCE 7 table 1615.1.1)
$T_{S}=S_{D S} / S_{D 1} \quad$ (See the following graphs for $S_{D S}$ and $S_{D 1}$)

Analysis steps

Define site class by geologist, or assume default site class D (IBC table 1615.1.1) Define Mapped Spectral Accelerations S_{s} and S_{1}
For overview see USGS maps at left: 0.2 sec low-rise (top) 1 sec high-rise (bottom)
Enter Site coordinates at USGS web site:
http://eqdesign.cr.usgs.gov/html/lookup-2002-interp-D6.html

| Enter Latitude: 37.7795 | Enter Longitude: -122.4195 |
| :--- | :--- | :--- |
| Enter Latitude: \square | Enter Longitude: \square |

Enter latitude in the left box in decimal degrees (range: 24.6 to 50.0)
Enter negative longitude in the right box (range: -125.0 to -65.0)
Web output:
LOCATION 37.7795 Lat. -122.4195 Long.
Interpolated Probabilistic Ground Motion(Spectral Acceleration SFFin \% \% , at thersite are:
10% PE in 50 yr . $2 \% \mathrm{PE}$ in 50 yr .
0.2 sec SA 115.35
1.0 sec SA 53.08

Low-rise: $\mathrm{T}<\mathrm{Ts}$
Hiagh-rise: $T=T / s$

Ts $=$ Sids! S_{n}

Defirie bass shear V (lateral force at base of structure)
$V=e_{s} W$
W = Dead load (+ 25\% storage live load + 20\% flat roof snow load > 30 psf)
$\mathrm{C}_{s}=$ seismic coefficient - see sample graph at left (S_{s} at top line)
For other structures:
$C_{S}=I S_{D S} / R$
(for $\mathrm{T}<\mathrm{Ts}$)
Need not exceed
$C_{S}=\mid S_{D 1} /(T R)$
I = Importance factor
$\mathrm{R}=\mathrm{R}$-factor
(for T > Ts)
(IBC table 1604.5)
$S_{\text {Ds }}$ and $\mathrm{S}_{\mathrm{D} 1}$
(IBC table 1617.6.2)
(See graphs on the following pages)
C_{s} varies with spectral acceleration $S_{s} \& S_{1}$ and type of structure
(defined on the following pages)
For example, in seismic areas:
Cs ~ 3% for tall steel frame structures
Cs $\sim 15 \%$ for low-rise wood structures
Cs $\sim 30 \%$ for some low-rise masonry structures
W = w A ($\mathrm{w}=$ dead load, DL in psf, $\mathrm{A}=$ total gross floor area of building)
w varies with type of construction - for example:
w ~ 15 to 25 psf for wood structures
w ~ 70 to 100 psf for steel structures
w ~ 150 to 200 psf for concrete structures

IBC table 1615.1.1 Site class definitions excerpts		
Site class	Soil profile name	Average shear velocity in top $100 \mathrm{ft}(30 \mathrm{~m})$
A	Hard rock	Vs $>5000 \mathrm{ft} / \mathrm{s}(1500 \mathrm{~m} / \mathrm{s})$
B	Rock	Vs $=2500$ to $5000 \mathrm{ft} / \mathrm{s}(760$ to $1500 \mathrm{~m} / \mathrm{s})$
C	Very dense soil \& soft rock	Vs $=1200$ to $2500 \mathrm{ft} / \mathrm{s}(370$ to $760 \mathrm{~m} / \mathrm{s})$
D	Stiff soil	Vs $=600$ to $1200 \mathrm{ft} / \mathrm{s}(180$ to $370 \mathrm{~m} / \mathrm{s})$
E	Soft soil	Vs $<600 \mathrm{ft} / \mathrm{s}(180 \mathrm{~m} / \mathrm{s})$
F	Soil vulnerable to failure, very organic clay, high plasticity clay, etc.	

IBC table 1617.6.2 excerpt	R-factor	Height limits (ft), categories A-F				
Bearing wall systems		$\mathrm{A} B$	C	D	E	F
Light framed walls with wood panels	6	NL	NL	65	65	65
Light framed walls with other panels	2	NL	NL	35	NP	NP
Ordinary reinforced concrete walls	4	NL	NL	NP	NP	NP
Special reinforced concrete walls	5	NL	NL	160	160	100
Ordinary reinforced masonry walls	2	NL	160	NP	NP	NP
Special reinforced masonry walls	5	NL	NL	160	160	100
Building frame systems						
Ordinary steel concentric braced frames	5	NL	NL	35	35	NP
Special steel concentric braced frames	6	NL	NL	160	160	100
Ordinary steel moment frames	3.5	NL	NL	NP	NP	NP
Special steel moment frames	8	NL	NL	NL	NL	NL

Example: One-story residence, San Francisco

Assume: Light framing with plywood panels
$36^{\prime} \times 40^{\prime} \times 10^{\prime}$ high, $\mathrm{DL}=25 \mathrm{psf}$, site class undefined, use default $\mathrm{D}, \mathrm{I}=1$
Enter site coordinates at USGS web site
http://eqdesign.cr.usgs.gov/html/lookup-2002-interp-D6.html
Web site output
0.2 sec Spectral Acceleratio
$S_{s}=1.85$
Design Spectral Accelerations (see graph)
At $\mathrm{S}_{\mathrm{s}}=2.0 \quad \mathrm{C}_{\mathrm{s}}=0.16$
Interpolate C_{s} at $\mathrm{S}_{\mathrm{s}}=1.85$
(Cs/1.85 = $0.16 / 2.0$)
$C s=0.15$
$C_{s}=1.85 \times 0.16 / 2.0$
Building dead weight
W = $25 \mathrm{psf} \times 36^{\prime} \times 40^{\prime}$
$W=36,000 \#$
Base Shear
$V=C_{s} W=0.15 \times 36,000$
$V=5400$ \#
Example: Same residence in San Francisco on site class A
Cs factor (see graph)
Interpolate C_{s} at $\mathrm{S}_{\mathrm{s}}=1.85\left(\mathrm{C}_{s} / 1.85=0.1312 .9\right)$
$C E=0.13 \times 185 / 2.0$
Base shea: $V=C_{s} V=0.12 \times 36,000$
V $=4,320$ \#
Example: Same residence in Tucson
Site class D, Ss = 0.329
Cs factor (see graph)
Interpolate for $\mathrm{S}_{\mathrm{s}}=0.329(\mathrm{Cs} / 0.329=0.06 / 05)$
$C_{s}=0.329 \times 0.06 / 0.5$
$C_{s}=0.04$
Base shear V $=$ Cs $W=0.04 \times 36,000$
V $=1,440$ \#
Example: Same residence in Tucson on site class A
Cs factor (see graph)
Interpolate for $\mathrm{S}_{\mathrm{s}}=0.329\left(\right.$ at $\left.\mathrm{S}_{\mathrm{s}}=0.5 \mathrm{Cs}=0.03\right)$
$\mathrm{C}_{\mathrm{s}}=0.329 \times 0.03 / 0.5$
$C_{s}=0.02$
Base shear $\mathrm{V}=\mathrm{Cs} \mathrm{W}=0.02 \times 36,000 \quad \mathrm{~V}=720$ \#
Compare seismic factors
Los Angeles site class D
$C_{s}=0.15$
Los Angeles site class A
$C_{s}=0.12$
Tucson site class D
$\mathrm{C}_{\mathrm{s}}=0.04$
Tucson site class A
$\mathrm{C}_{\mathrm{s}}=0.02$

9-16 DESIGN METHODS Lateral Force Design

Vertical distribution

Seismic forces increase with building height since $\mathrm{f}=\mathrm{ma}$ (force $=$ mass x acceleration), i.e., increased drift increases acceleration. Thus story forces F_{x} are story mass times height above ground. For buildings with periods of 0.5 seconds or less the force increase is considered liner. For tall buildings the story-force varies non-linear. Since all story forces are resisted at the ground, each story must resist its own force plus all forces from above. Thus shear per level increases from top to bottom. The overturn moment per level is the sum of all forces above times their distance to the level considered.
1 Linear force increase for $\mathrm{T} \leq 0.5$ seconds
2 Non-linear force increase for $\mathrm{T}>0.5$
3 Distribution per level of force
Fx = force per level x
$\mathrm{V} x=$ Shear per level $\mathrm{x}=$ sum all forces above
$V_{2}=3 \mathrm{k}$
$V_{1}=3 k+2 k$
$V_{0}=5 k+1 k$

$M x=$ overturn moment per-evel = sum of all forces atove tines level arm
Assuming $1 \Omega^{\prime}$ story heigit.
$\mathrm{M}_{2}=3 \mathrm{kx} \times 0^{\prime} \quad \mathrm{M}_{2}=30 \mathrm{k}$
$M_{=3}=3 \times 20+2 k \times 10 \quad M_{1}=80 k$
$10_{0}=3 k \times 30^{\prime}+2 k \times 20^{\prime}+1 k \times 10^{\prime} \quad M_{0}=140 k$
4 Overturn moment visualized
5 Force per level
$\mathrm{F}_{\mathrm{x}}=\mathrm{C}_{\mathrm{vx}} \mathrm{V}$
$C_{v x}=w_{x} h_{x} / \sum_{i=1}^{n} w_{i} h_{i}^{k} \quad$ (vertical distribution factor)
$\mathrm{W}=$ total dead weight of level x
$h=$ height of level x above ground
$\mathrm{n}=$ total number of stories
$\mathrm{k}=$ exponent related to structure period
$k=1$ for $T \leq 0.5$ seconds
$k=2$ for $T>2.5$ seconds
$\mathrm{k}=$ interpolated between $\mathrm{T}=0.5$ and 2.5
6 k Interpolation graph
7 Shear per level

$$
V_{x}=\sum_{i=x}^{n} F_{i}
$$

8 Overturn moment per level

$$
M_{x}=\sum_{i=x}^{n} F_{i}\left(h_{n}-h_{i}\right)
$$

Horizontal diaphragms

Horizontal floor and roof diaphragms transfer lateral load to walls and other supporting elements. The amount each wall assumes depends if diaphragms are flexible or rigid.

1 Flexible diaphragm

Floors and roofs with plywood sheathing are usually flexible; they transfer load, similar to simple beams, in proportion to the tributary area of each wall
Wall reactions R are computed based on tributary area of each wall
Required shear flow q (wall capacity)
$q=R / L \quad(L=$ length of shear wall)

$R=w$ (tributary width)	$q=R / L$ ($L=$ shear wall length	
$R 1=(150) 16 / 2=1200 \mathrm{lbs}$	$q=1200 / 8^{\prime}$	$q=150 \mathrm{plf}$
$R 2=(150)(16+14) / 2=2250 \mathrm{lbs}$	$q=2250 / 12^{\prime}$	$q=188 \mathrm{plf}$
$R 3=(150) 14 / 2=1050 \mathrm{lbs}$	$q=1050 / 8^{\prime}$	$q=131$ rit

$R 3=(150) 14 / 2=1050 \mathrm{lbs} \quad q=1050 / 8^{\prime} \quad q=131 \mathrm{cIf}$

2 Rigid diaphragm

Concrete slabs and some steel decks, are rgid they transfer cad in proportion to the relative stiffness of each well Since rigid diáphiragms experience only minor deflections under load they impose, equail difi cri walls of equal length and stiffness.
For unequal vails ieactions are pioportionial to a resistance factor r .
1

2

$r=E / / h^{3} / \Sigma\left(E \cdot 1 / r^{3}\right)$
$h=$ waili height
$1=b L^{3} / 12$
(moment of inertia of wall)
b = wall thickness
L = wall length
For walls of equal height, thickness and material, the resistance factors are: $r=L^{3} / \Sigma L^{3}$
$\mathrm{L}^{3}=\mathrm{L} 3^{3}=8^{3}=512$
$\mathrm{L} 2^{3}=12^{3}=1728$

$\sum L^{3}=512+1728+512$	$\Sigma L^{3}=2752$
$r_{1}=512 / 2752$	$r_{1}=0.186$
$r_{2}=1728 / 2752$	$r_{2}=0.628$
$r_{3}=512 / 2752$	$r_{3}=0.186$
Check $\sum r$	$\Sigma r=1.000$
Total force F	
$F=1000$ plf $\times\left(16^{\prime}+14^{\prime}\right) / 1000$	$\mathrm{~F}=30 \mathrm{k}$
Wall reactions	
$R 1=r_{1} F=0.186 \times 30 \mathrm{k}$	$\mathrm{R} 1=5.58 \mathrm{k}$
$R 2=r_{2} F=0.628 \times 30 \mathrm{k}$	$\mathrm{R} 2=18.84 \mathrm{k}$
$R 3=r_{3} F=0.186 \times 30 \mathrm{k}$	$\mathrm{R} 3=5.58 \mathrm{k}$
Check $\sum \mathrm{R}$	$\Sigma \mathrm{R}=30,00 \mathrm{k}$

IBC table 2306.4.1 excerpts
Allowable shear for wood panels with Douglas-Fir-Large or Southern Pine

Panel grade	Panel thickness	Nail penetration	Nail size	Nail spacing at panel edge (inches)			
				6	4	3	2*
				Allowable shear (lbs / foot)			
	5/16 in	$11 / 4$ in	6d	200	300	390	510
	$3 / 8$ in	$13 / 8$ in	8d	230	360	460	610
	7/16 in	$13 / 8$ in	8d	255	395	505	670
	15/32	$13 / 8$ in	8d	280	430	550	730
	15	$11 / 2$ in	10d	340	510	665	870

* Requires $3 x$ framing and staggered nailing

Example: Flexible diaphragm

Assume: plywood diaphragm, plywood shear walls on light wood framing Dead load

$$
\begin{array}{r}
\mathrm{DL}=23 \mathrm{psf} \\
\mathrm{C}_{\mathrm{s}}=0.15
\end{array}
$$

Seismic factor (adjusted for ASD)
Dead load per leve
$W=23$ psf $\times 68^{\prime} \times 150^{\prime} / 1000 \quad W=235 k$
Total DL (3 levels)
$\sum \mathrm{W}=3 \times 245 \mathrm{k}$
$\sum W=705 k$
Base shear
$V=W C_{s}=705 \times 0.15 \quad V=106 \mathrm{k}$
Force distribution

Level 0 shear walls			
Wall $\mathrm{A}=10.4 \mathrm{psf}\left(15^{\prime}\right) 30^{\prime} / 12^{\prime}=$	390 plf	use 5/16, 6d @ 3" =	390 plf
Wall $\mathrm{B}=10.4 \mathrm{psf}\left(19^{\prime}\right) 30^{\prime} / 24^{\prime}=$	247 plf	use 7/16, 8d @ 6" =	255 plf
Wall C = $10.4 \mathrm{psf}\left(34^{\prime}\right) 15^{\prime} / 30^{\prime}=$	177 plf	use 5/16, 6d @ 6" =	200 plf
Wall $\mathrm{D}=10.4 \mathrm{psf}\left(34^{\prime}\right) 30^{\prime} / 30^{\prime}=$	354 plf	use 3/8, 8d @ 4" =	360 plf
Level 1 shear walls			
Wall $\mathrm{A}=8.6 \mathrm{psf}\left(15^{\prime}\right) 30^{\prime} / 12^{\prime}=$	323 plf	use 15/32, 10d @ 6" =	340 plf
Wall B $=8.6 \mathrm{psf}\left(19^{\prime}\right) 30^{\prime} / 24^{\prime}=$	204 plf	use $3 / 8, \quad 8 \mathrm{~d}$ @ 6 " $=$	230 plf
Wall C = $8.6 \mathrm{psf}\left(34^{\prime}\right) 15^{\prime} / 30^{\prime}=$	146 plf	use 5/16, 6d @ 6" =	200 plf
Wall $\mathrm{D}=8.6 \mathrm{psf}\left(34^{\prime}\right) 30^{\prime} / 30^{\prime}=$	292 plf	use 5/16, 6d @ 4" =	300 plf
Level 2 shear walls			
Wall $\mathrm{A}=5.2 \mathrm{psf}\left(15^{\prime}\right) 30^{\prime} / 12^{\prime}=$	195 plf	use 5/16, 6d @ 6" =	200 plf
Wall $\mathrm{B}=5.2 \mathrm{psf}\left(19^{\prime}\right) 30^{\prime} / 24^{\prime}=$	124 plf	use 5/16, 6d @ 6" =	200 plf
Wall C = $5.2 \mathrm{psf}\left(34^{\prime}\right) 15^{\prime} / 30^{\prime}=$	89 plf	use 5/16, 6d @ 6" =	200 plf
Wall D $=5.2 \mathrm{psf}\left(34^{\prime}\right) 30^{\prime} / 30^{\prime}=$	177 plf	use 5/16, 6d @ 6" =	200 plf

Note: To simplify construction, fewer wall types could be selected

Example: Rigid diaphragm

Assume: concrete slab on CMU shear walls
$\begin{array}{lr}\text { Allowable masonry shear stress } & \mathrm{Fv}=85 \mathrm{psi} \\ \text { Seismic factor } \mathrm{C}_{s}=0.17 \times 1.5 & \mathrm{C}_{s}=0.26\end{array}$
Note: increase C_{s} by 1.5 per IBC 2106.5.1 for ASD method

Dead Load

Wall lengths L = $12\left(30^{\prime}\right)+14(12)+8(24)$
L=720'
$\begin{array}{ll}\text { Wall } D L=\left(720^{\prime}\right) \\ 8^{\prime}\left(7.625^{\prime \prime} / 12^{\prime \prime}\right) & 120 \mathrm{pcf} /(68 \times 150) \\ \text { Floor/roof (12" slab) } & \mathrm{DL}=43 \mathrm{psf} \\ 150 \mathrm{psf}\end{array}$
Floor/roof (12" slab)
150 psf
Miscellaneous 7 psf
$\Sigma \mathrm{DL}$
$\Sigma \mathrm{DL}=200 \mathrm{psf}$
DL / level: $\mathrm{W}=200 \mathrm{psf} \times 68^{\prime} \times 150^{\prime} / 1000 \quad \mathrm{~W}=2,040 \mathrm{k}$
DL for 3 Levels: W $=3 \times 2040 \mathrm{k}$
$W=6,120 k$
Base shear $V=C s W=0.26 \times 6120$
$V=1,591 k$
Force distribution

Level	W^{*}	h_{x}	$W_{x} h_{x}$	w_{x} W,	$\mathrm{F}_{\mathrm{x}}=\mathrm{V}^{\prime}\left(w_{x} h / / \Sigma w_{i} \mathrm{~h}\right)$	$V_{x}=\Sigma F_{x}$
2	2,040 k	27	55,080 ${ }^{\prime}$	1591×050	700 k	796 k
1	2,040 k	18	$36720{ }^{\circ}$	- 599×0.33	525 k	1,321 k
0	2,040 k	9'	18, $360{ }^{\circ} \mathrm{k}$	-1.591 $\times 0.17$	270 k	1,591 k
\square	$\square]$	Σ w	$110,169 \mathrm{k}$			$\mathrm{V}=1,591 \mathrm{k}$

Relative well stiffr ess:$R=L L^{3} / L^{3}$	
Wall B: $r=12^{3} /\left[12^{3}+24^{3}\right]$	$r=0.11$
Wall C: $r=243 /\left[12^{3+243}\right]$	$r=0.89$
Wall cross section areas:	
A walls $=12\left(30^{\prime}\right) 12^{\prime \prime}\left(7.625^{\prime \prime}\right)$	$\mathrm{A}=32940 \mathrm{in}^{2}$
B walls $=14\left(12^{\prime}\right) 12^{\prime \prime}\left(7.625^{\prime \prime}\right)$	$\mathrm{B}=15372 \mathrm{in}^{2}$
C walls $=8\left(24^{\prime}\right) 12^{\prime \prime}\left(7.625^{\prime \prime}\right)$	$C=17568 \mathrm{in}^{2}$
Level 0 ($\mathrm{V}_{0}=1591 \mathrm{k}$)	
Wall $\mathrm{A}=(1591) 1000 / 32940$	$48 \mathrm{psi}<85$
Wall B $=(1591$) 1000 (0.11) / 15372	11 psi < 85
Wall C = (1591) 1000 (0.89) / 17568	81 psi < 85
Level $1\left(\mathrm{~V}_{1}=1321 \mathrm{k}\right)$	
Wall $A=(1321) 1000 / 32940$	$40 \mathrm{psi}<85$
Wall $\mathrm{B}=(1321) 1000$ (0.11) / 15372	$10 \mathrm{psi}<85$
Wall C = (1321) 1000 (0.89) / 17568	67 psi < 85
Level 2 ($\mathrm{V}_{2}=796 \mathrm{k}$)	
Wall $\mathrm{A}=(796) 1000 / 32940$	24 psi < 85
Wall B = (796) 1000 (0.11) / 15372	$6 \mathrm{psi}<85$
Wall C = (796) 1000 (0.89) / 17568	$40 \mathrm{psi}<85$

1

5
6
4

Seismic design issues

Eccentricity

Offset between center of mass and center of resistance causes eccentricity which causes torsion under seismic load. The plans at left identify concentric and eccentric conditions:
1 X -direction concentric
Y-direction eccentric
2 X-direction eccentric
Y-direction eccentric

$\begin{array}{lll}5 & \mathrm{X} \text {-direction } & \text { concentric } \\ & \text { Y-direction } & \text { concentric } \\ 6 & \text { X-direction } & \text { concentric } \\ & \text { Y-direction } & \text { concentric }\end{array}$
Note:
Plan 5 provides greater resistance against torsion than plan 6 due to wider wall spacing Plan 6 provides greater bending resistance because walls act together as core and thus provide a greater moment of inertia

Hillside construction

To avoid expensive earthquake settlement repair

Critical wood-frame items

Base Isolator

Left: Conventional structure

- Large total and inter-story drift
- Accelerations increase with height
- Potential permanent deformations
- Potential equipment damage

Right: Base isolators:

- Reduce floor accelerations and drift
- Reduce damage to structure and equipment
- Are not good for high-rise structures
- Ton and bottonistel plate
- Rubner streets
- Steel sheets
- Cential lead core

Right: Separate building from ground to allow drift

Drawings, courtesy Widom Wein Cohen Architects, Santa Monica

10

Conceptual Design

Introduction

Conceptual design usually starts with approximate sizing principle elements of a structure and possible alternatives, followed by thorough analysis during design development. Approximate methods are essential to quickly develop alternate designs. They are also useful to verify final designs and computer analysis. If based on good assumptions, approximate methods can provide results of remarkable accuracy, usually within ten percent of precise results. The following conceptual design examples introduce approximate methods, sometimes referred to as back-of-the-envelop design. They are not meant to replace accurate design but as precursor of accurate design and analysis.

System Selection

Structural design starts with the selection of a system and material; often informed by similar past projects, even if not appropriate. For example, light wood structures are common for residential building where hurricanes cause frequent destruction, though heavy concrete or masonry would resist wind load much better. A rational method is proposed with the objective to select more appropriate systems. However, since design criteria may be conflicting in some cases, selection is both art and science, yet the following criteria make the selection process more objective

- Capacity limit
- Code requirements
- Cost
- Load
- Location
- Resources
- Technology
- Synergy

Capacity limit is based on limits ofsstems and inaterials. For example, beams are economical for a given span range. To exceed that range would yield a bad ratio of dead load to live load. A beam's cross seetion increases with span, resulting in heavier dead ioad Eventually, the beam's dead load exceeds its capacity and it would break. Approaching that limit, the beam gets increasingly uneconomical because its dead weight leaves little reserve capacity to carry live load. The span limit can be extended by effective cross section shape. For example, steel beam cross sections are optimized in response to bending and shear stress, to allow greater spans.
Trusses have longer span capacity than beams, due to reduced self weight. They replace the bulk of beams by top and bottom chords to resist global moments, and vertical and diagonal web bars to transfer shear between compression and tension chords. Compared to beams, the greater depth of trusses provides a greater lever arm between compression and tension bars to resist global moments. Similarly, suspension cables use the sag between support and mid-span as moment resisting lever arm. Since cables have higher breaking strength and resist tension only, without buckling, they are optimal for long spans; but the high cost of end fittings makes them expensive solutions for short spans. These examples show, most systems have upper and lower span limits.
Code requirements define structures by type of construction regarding materials and systems; ranging form type I to type V for least and most restrictive, respectively, of the Uniform Building Code (UBC) for example. Each type of construction has requirements for fire resistance, maximum allowable floor area, building height, and occupancy group. Codes also have detailed requirements regarding seismic design; notable structures are categorized by ductility to absorb seismic energy and related height limits. Some code requirements are related to other criteria described in the respective section.

Cost is often an overriding criterion in the selection of structures. In fact, cost is often defined by some of the other selection criteria. However, costs also depend on market conditions and seasonable changes. The availability of material and products, as well as economic conditions and labor strikes may greatly affect the cost of structures. For example, a labor strike in the steel industry may shift the advantage to a concrete structure, or the shortage of lumber, may give a cost advantage to light gauge steel instead of light wood framing. Sometimes, several systems are evaluated, or schematic designs are developed for them, in order to select the most cost effective alternative. Load imposed on a structure is a major factor in selecting a system. For example, roofs in areas without snow must be designed only for a nominal load, yet roof load in mountain areas may be up to 20 times greater than the nominal load. Structures in earthquake prone areas should be lightweight and ductile, since seismic forces are basically governed by Newton's law, force equals mass times acceleration ($f=m a$). In contrast, structures subject to wind load should be heavy and stiff to resist wind uplift and minimize drift. Structures in areas of daily temperature variations should be designed for thermal load as well, unless the structure is protected behind a thermal insulation skin and subjected to constant indoor temperature only.
Location may effects structure selection by the type of soil, topography, and ground water level, natural hazards, such as fire, frost, or flood. Local soil conditions affect the foundation and possibly the entire structure. Soft soil may require pile foundations; a mat foundation may be chosen to balance the floating effect of high ground water. tocations with winter frost require deep foundations to prevent damage due is soil expansion in frost (usually a depth of about one meter). Hillside ocations may require-caissor foundations to prevent sliding, but foundatio is are miore compon on flat sites. Locations with fire hazards require non-combustible marerial. Raising the structure off the ground may be the answer to flooding. $/ \lambda$
Resources have a strong impact on the selection of structure materials. Availability of material was a deciding facior regarding the choice of material throughout history. The Viking build wood structures, a logical response to the vast forests of Scandinavia, yet stone temples of Egypt and Greece reflect the availability of stone and scarcity of wood. More recently, high-rise structures in the United States are usually steel structures, but the scarcity of steel in some other countries makes concrete structures more common.

Technology available at an area also effects the selection of structures. For example, light wood structures, known as platform framing, is most common for low rise residential structures in the United States, where it is widely available and very well known; but in Europe where this technology is less known, it is more expensive than more common masonry structures. Similarly, in some areas concrete technology is more familiar and available than steel technology. Concrete tends to be more common in areas of low labor cost, because concrete form-wok is labor intensive. On the other hand, prefab concrete technology is less dependent on low labor cost and more affected by market
conditions, namely continuity of demand to justify the high investments associated with prefab concrete technology.

Synergy, defined as a system that is greater than the sum of its parts is a powerful concept to enrich architecture, regarding both pragmatic as well as philosophic objectives. Pragmatic example are numerous: Wall system are appropriate for hotel and apartment projects which require spatial and sound separation; but moment frames provide better space planning flexibility as needed for office buildings. However, the core of office buildings, usually housing elevators, stairs, bathrooms, and mechanical ducts, without the need for planning flexibility, often consists of shear walls ore braced frames, effective to reduce drift under lateral loads. Long-span systems provide column-free space required for unobstructed views in auditoriums and other assembly halls; but lower cost short span systems are used for warehouses and similar facilities where columns are usually acceptable.
On a more detailed level, to incorporate mechanical systeme nittin a orig-span roof or floor structure, a Vierendeel girder may be selected irstead of a truss, sirise the rectangular panels of a Vierendeel better faciliate ducts to pass therough tian triangular truss panels. A suspended cable rocf mav be selected for a sports arena if bleachers can be used to effectively resist the roof's lateral thrust which is very substantial and may reauire cost'y founcations otherwise. Synergy is also a powerful concept regarding more philosophical objectives, as demonstrated throughout history, from early post and beam structures, Reman arches, domes and vaults; Gothic cathedrals; to contemporary suspension bridges or roofs. Columns can provide architectural expression as in post and beam systems, or define and organize circulation, as in a Gothic cathedral. The funicular surface of arches, domes and vaults can define a unique and spiritual space. The buttresses to resist their lateral thrust provide the unique vocabulary of Gothic cathedrals. Large retaining walls may use buttressing for rhythmic relieve, as in the great wall of Assisi, or lean backward to express increased stability as the wall of the Dalai Lama palace in Tibet.

Global moment and shear

Global moments help to analyze not only a beam but also truss, cable or arch. They all resist global moments by a couple F times lever arm d:
$M=F d$; hence $F=M / d$
The force F is expressed as T (tension) and C (compression) for beam or truss and H (horizontal reaction) for suspension cable or arch, forces are always defined by the global moment and lever arm of resisting couple. For uniform load and simple support, the maximum moment M and maximum shear V are computed as:
$M=w L^{2} / 8$
$V=w L / 2$
w = uniform gravity load
L = span
For other load or support condïiions use appropriate tomulas
Beam
Beams resist the glooal momert by aforce couple, with lever arm of $2 / 3$ the beam depth d; resisted by top compession C and bottom tension T .

Truss
Trusses resist the global moment by a force couple and truss depth d as lever arm; with compression C in top chord and tension T in bottom chord. Global shear is resisted by vertical and / or diagonal web bars. Maximum moment at mid-span causes maximum chord forces. Maximum support shear causes maximum web bar forces.

Cable
Suspension cables resist the global moment by horizontal reaction with sag f as lever arm. The horizontal reaction H, vertical reaction R, and maximum cable tension T form an equilibrium vector triangle; hence the maximum cable tension is:
$T=\left(H^{2}+R^{2}\right)^{1 / 2}$
Arch
Arches resist the global moment like a cable, but in compression instead of tension:
$C=\left(H^{2}+R^{2}\right)^{1 / 2}$
However, unlike cables, arches don't adjust their form for changing loads; hence, they assume bending under non-uniform load as product of funicular force and lever arm between funicular line and arch form (bending stress is substituted by conservative axial stress for approximate schematic design).

A

Radial pressure

Referring to diagram A, pressure per unit length acting in radial direction on a circular ring yields a ring tension, defined as:
$T=R p$
$\mathrm{T}=$ ring tension
$\mathrm{R}=$ radius of ring
$p=$ uniform radial pressure per unit length
Units must be compatible, i.e., if p is force per foot, R must be in feet, if p is force per meter, R must be in meters. Pressure p acting reversed toward the ring center would reverse the ring force from tension to compression.

Proof
Referring to ring segment B :
T acts perpendicular to ring radius R
p acts perpendicular toring segnentof unit iength
$R e f \in r i r i g t o ~ r i n g ~ s \in g m e n t ~ B ~ a n d ~ v e c t o r ~ t r i a n g l e ~ C: ~$
p and T in C represent equilibrium at o in B
$T / p=R / 1$ (due to similar triangles), hence
$T=R p$

Examples

Vierendeel Girder

Assume
Steel girders spaced 20' $L=100^{\prime}$
Allowable stress (60% of $F_{y}=46$ ksi tubing $) \quad F_{a}=27.6 \mathrm{ksi}$
DL= 18 psf
LL $=12 \mathrm{psf} \quad(20 \mathrm{psf}$ reduced to 60% for tributary area $>600 \mathrm{sq} . \mathrm{ft}$.)
$\Sigma=30 \mathrm{psf}$
Uniform girder load
$\mathrm{w}=30 \mathrm{psf} \times 20^{\prime}$ / $1000 \quad \mathrm{w}=0.6 \mathrm{klf}$
Joint load
$P=w e=0.6 \times 10^{\prime} \quad P=6 k$
Vertical Reaction
$\mathrm{R}=\mathrm{wL} / 2=0.6 \times 100^{\prime} / 2$
END BAY CHORD
Chord shear
$\begin{aligned} & \text { Chord shear } \\ & V_{c}=(R-P / 2) / 2 \\ & \text { Chord bending }\end{aligned}=(30-6 / 2) / 2, ~ V_{c}=13.5 \mathrm{k}$
$M_{c}=V_{c} e / 2=13.5 \times 10^{\prime} \times 12^{\prime \prime} / 2 \quad M_{c}=810 \mathrm{k"}$
Monent of Inertia required
$\mathrm{I}=\mathrm{M}_{\mathrm{c}} \mathrm{c} / \mathrm{Fa}=810 \times 5$ " $/ 27.6 \mathrm{ksi}$

$$
\mathrm{I}=147 \mathrm{in}^{4}
$$

Use ST 10x10x5/16 I $=183>147$, ok
WEB BAR (2nd web resists bending of 2 adjacent chords)
$2^{\text {nd }}$ bay chord shear
$\mathrm{V}_{\mathrm{c}}=(\mathrm{R}-1.5 \mathrm{P}) / 2=(30-1.5 \times 6) / 2 \quad \mathrm{~V}_{\mathrm{c}}=10.5 \mathrm{k}$
$2^{\text {nd }}$ bay chord bending
$M_{c}=V_{c} \mathrm{e} / 2=10.5 \times 10^{\prime} \times 12^{\prime \prime} / 2$
$M_{c}=630 \mathrm{k}{ }^{\prime \prime}$
Web bending
$M_{w}=M_{c}$ end bay $+M_{c} 2^{\text {nd }}$ bay $=810+630 \quad M_{w}=1,440 \mathrm{k"}$
Moment of Inertia required
$\mathrm{I}=\mathrm{M}_{\mathrm{w}} \mathrm{C} / \mathrm{F}_{\mathrm{a}}=1,440 \times 5 / 27.6$
$\mathrm{I}=261 \mathrm{in}^{4}$
Use ST 10x10x1/2 web bar
I $=271>261$, ok
MID-SPAN CHORD (small chord bending ignored)
Mid-span global bending

$M=w L^{2} / 8=0.6 \times 100^{2} / 8$	$M=750 \mathrm{k}^{\prime}$
Mid-span chord force	$\mathrm{P}=125 \mathrm{k}$
$\mathrm{P}=\mathrm{M} / \mathrm{d}=750 / 6$	

$P=M / d=750 / 6$
297 > 125, ok

Wood Arch

Assume
Three-hinge glue-lam arches spaced 16 .
(Available glue-lam dimensions: $3 / 4^{\prime \prime}$ lams; $31 / 8^{\prime \prime}, 51 / 8^{\prime \prime}, 63 / 4^{\prime \prime}, 83 / 4^{\prime \prime}$ and $103 / 4^{\prime \prime}$ wide)
Allowable buckling stress (from case studies)
$\mathrm{Fc}^{\prime}=200 \mathrm{psi}$
$\mathrm{LL}=12 \mathrm{psf}$ (reduced to 60% of 20 psf for tributary area $>600 \mathrm{sq}$. ft.)
DL = 18 psf (estimate)
$\Sigma=30 \mathrm{psf}$
Uniform load
$\mathrm{w}=30 \mathrm{psfx} 16^{\prime} / 1000=\quad \mathrm{w}=0.48 \mathrm{klf}$
Global moment
$M=w L^{2} / 8=0.48 \times 100^{2} / 8=$
$M=600 k^{\prime}$
Horizontal reaction
$H=M / d=600 / 20=$
Vertical reaction
$R=w L / 2=0.48 \times 100^{\prime} / 2=$
Arch compression (max.)
$\mathrm{C}=\left(\mathrm{H}^{2}+\mathrm{R}^{2}\right)^{1 / 2}=\left(30^{2}+24^{2}\right)^{1 / 2}$
Cinss section ar ea eotuired
$A=C / E_{c}^{\prime}=38 / 0.2 \mathrm{ksi}$

Glue.lan? Jepth (try $51 / 8^{\prime \prime}$ wide glue-lam)
$\mathrm{t}=$ A $/$ width $=190 / 5.125=37$; use 50 lams of $3 / 4^{\prime \prime}$
Check slenderness ratio
$L / t=100^{\prime} \times 12^{\prime \prime} / 37.5^{\prime \prime}=$
$\mathrm{L} / \mathrm{t}=32 \mathrm{ok}$
Note:
Arch slenderness of $\mathrm{L} / \mathrm{t}=32$ is ok (the $51 / 8^{\prime \prime}$ arch width is braced against buckling by the roof diaphragm).

Wind bracing at end bays may consist of diagonal steel rods in combination with compression struts. The lateral thrust of arches may be resisted by concrete piers that may be tied together by grade beams to resist the lateral arch thrust.

Final design must consider non-uniform load (snow on half the arch) resulting in combined axial and bending stress; the bending moment being axial force times lever arm between funicular pressure line and arch center. The funicular line may be found graphically.
Graphic method

- Draw a vector of the computed vertical reaction
- Draw equilibrium vectors parallel to arch support tangent
- Equilibrium vectors give arch force and horizontal reaction

Case studies

Skating Rink, Heerenveen, Holland

Architect: Van der Zee \& Ybema
Engineer: Arie Krijegsman, ABT
Steel trusses
Allowable stress $\mathrm{F}_{\mathrm{y}}=36 \mathrm{ksi} \times 0,6$

$$
\begin{gathered}
\mathrm{F}_{\mathrm{a}}=21.6 \mathrm{ksi} \\
\mathrm{~L}=217^{\prime} \\
\mathrm{e}=24^{\prime} \\
\mathrm{d}=19^{\prime}
\end{gathered}
$$

Truss span L=66m/0.3048
Truss spacing e $=7.2 \mathrm{~m} / .3048$
Truss depth at mid span $d=5.8 \mathrm{~m} / 0.3048$
$\mathrm{DL}=0.6 \mathrm{kPa}(12.5 \mathrm{psf})$
$\mathrm{LL}=0.5 \mathrm{kPa}(10.4 \mathrm{psf})$
$\Sigma=1.1 \mathrm{kPa}$ (22.9 psf)
Uniform load per truss

∞

$\mathrm{w}=24^{\prime} \times 22.9 \mathrm{psf} / 1000$
$w^{\prime}=0.55 \mathrm{klf}$
Mid span point load (center truss, A transfers load of circl lar end units) Tributary area of end units
$\mathrm{A}=\pi \mathrm{r}^{2} / 3=\pi\left(217^{\prime} / 2\right)^{2} / 3$
Point load per truss
$P=12,278 \times 229$ PS $\triangle 1000 / 16$ trusses
$A=12,278 \mathrm{sq} . \mathrm{ft}$.

Globar moment \square
$M=P L / 4+v_{v} / 2 / 8=18 \times 217 / 4+0.55 \times 217^{2} / 8 \quad M=4,214 \mathrm{k}$
C.hord bar force
$C=T=M / d=4,214 / 19$
Bottom tension chord
Try wide flange section
$\mathrm{C}=\mathrm{T}=222 \mathrm{k}$

Try wide flange
Allowable force P from AISC table (use $L=0$ ' for tension, no buckling) $P_{\text {all }}=222$
$222=222, \mathrm{ok}$
Top chord un-braced length $L=217^{\prime} / 12$
$L=18$ '
Top chord bending (negative support bending
$\mathrm{M}=\mathrm{w} \mathrm{L}^{2} / 12=0.55 \times 18^{2} / 12$
Try W12x50
$A=14.7 \mathrm{in}^{2}, \mathrm{I}_{\mathrm{x}}=394 \mathrm{in}^{4}, r_{x}=5.17^{\prime \prime}$ (y-axis is braced by roof deck)
Bending stress
$\mathrm{f}_{b}=\mathrm{Mc} / \mathrm{I}=15 \mathrm{k}^{\prime} \times 12^{\prime \prime \prime} \mathrm{x}$ " $/ 394 \quad \mathrm{f}_{\mathrm{b}}=2.74 \mathrm{ksi}$
Axial stress $\mathrm{f}_{\mathrm{a}}=\mathrm{C} / \mathrm{A}=222 \mathrm{k} / 14.7 \mathrm{in}^{2} \quad \mathrm{f}_{\mathrm{a}}=15.1 \mathrm{ksi}$
Slenderness KL/rx $=1 \times 18^{\prime} \times 12^{\prime \prime} / 5.17^{\prime \prime}$
$\mathrm{f}_{\mathrm{a}}=15.1 \mathrm{ksi}$
$\mathrm{kL} / \mathrm{r}=42$
$\mathrm{F}_{\mathrm{a}}=19 \mathrm{ksi}$
Allowable buckling stress (from AISC table)
$\mathrm{f}_{\mathrm{a}} / \mathrm{F}_{\mathrm{a}}+\mathrm{f}_{\mathrm{b}} / \mathrm{F}_{\mathrm{b}}=15.1 / 19+2.74 / 21.6=0.92$
W12x50

Exhibit Hall 26 Hanover

Architect: Thomas Herzog
Engineer: Schlaich Bergermann
Given
Steel suspender bands $30 \times 400 \mathrm{~mm}\left(1.2 \times 16^{\prime \prime}\right)$, spaced $5.5 \mathrm{~m}\left(18^{\prime}\right)$

$\mathrm{LL}=$	$0.5 \mathrm{kN} / \mathrm{m}^{2}$	$(10 \mathrm{psf})$
$\mathrm{DL}=$	$1.2 \mathrm{kN} / \mathrm{m}^{2}$	$(25 \mathrm{psf})$
$\Sigma=$	$1.7 \mathrm{kN} / \mathrm{m}^{2}$	$(35 \mathrm{psf})$

Uniform load
$\mathrm{w}=1.7 \mathrm{kN} / \mathrm{m}^{2} \times 5.5 \mathrm{~m}=\quad \mathrm{w}=9.35 \mathrm{kN} / \mathrm{m}$
Global moment
$M=w L^{2} / 8=9.35 \times 64^{2} / 8$
Horizontal reaction
$H=M / f=4787 / 7$
Vertical reaction R (max.)
Reactions are unequal; use R/H ratio (similar rarigles) to compute max. R
$R H=(2 f+h / 2) /(L / 2)$, hence
$R:=H(2+h / 2 / 2 / /(L / 2)=034(2 x 7+13 / 2) /(64 / 2) \quad 438 \mathrm{kN}$
Susperider tension (max.)
$T=\left(H^{2}+R^{2}\right)^{1 / 2}=\left(684^{2}+438^{2}\right)^{1 / 2} \quad T=812 \mathrm{kN}$
Suspender stress ($A=30 \times 400 \mathrm{~mm}$)
$f=T / A=1000 \times 812 /(30 \times 400)$
US unit equivalent
$67.7 \mathrm{kPa} 0.145 \mathrm{f}=9.8 \mathrm{ksi}$
$9.8<22 \mathrm{ksi}, \mathrm{ok}$

Graphic method

- Draw a vector of the total vertical load
- Equilibrium vectors parallel to support tangents give cable forces
- Equilibrium vectors at supports give H and R reactions.

Note: The unequal support height is a structural disadvantage since the horizontal reactions of adjacent bays don't balance, but it provides lighting and ventilation, a major objective for sustainability. The roof consists of prefab wood panels, filled with gravel to resist wind uplift. Curtain wall mullions at the roof edge are prestressed between roof and footing to prevent buckling under roof deflection. In width direction the roof is slightly convex for drainage; which also gives the interior roof line a pleasing spatial form.

Oakland Coliseum

Architect/Engineer: Skidmore Owings and Merrill
Assume
Allowable cable stress (210 ksi breaking strength / 3)
Radial suspension cables, spaced 13 ' along outer compression ring
LL= $\quad 12 \mathrm{psf} \quad$ (60% of 20 psf for tributary area > 600 sq . ft.)
$\mathrm{DL}=\quad 46 \mathrm{psf}$ (estimate)
$\Sigma=\quad 58 \mathrm{psf}$
Uniform load
w = 58 psf x $13^{\prime} / 1000$
$\mathrm{w}=0$ to 0.75 klf
Global moment [cubic parabola with origin at mid-span]
$M x=w L^{2} / 24\left(1-8 X^{3} / L^{3}\right)$ for max. M at mid-span, $X=0$, hence
$M=w L^{2} / 24=0.75 \times 420^{2} / 24$
$\mathrm{M}=5,513 \mathrm{k}$
Horizontal reaction
$H=M / f=5,513 / 30$
Vertical reaction
$\mathrm{R}=\mathrm{wL} / 2=(0,75 / 2) \times 420^{\prime} / 2$
Cable tensior (max.)
$T=\left(H^{2}+R^{2}\right)^{1 / 2}=\left(1812479^{2}\right)^{1 / 2}$
$T=200 k$
Metalic cross section required
$\mathrm{Am}=\mathrm{T} / \mathrm{Fa}=200 / 70 \mathrm{ksi}$
Gross cross section (70% metallic)
$\mathrm{Ag}=\mathrm{Am} / 0.70=2.86 / 0,70$
Am $=2.86$ in 2
$\mathrm{Ag}=4.09 \mathrm{in}^{2}$
Cable size
$\varnothing=2(\mathrm{Am} / \pi)^{1 / 2}=2(4.09 / 3.14)^{1 / 2}=2.28^{\prime \prime}$
use $\varnothing 23 / 8^{\prime \prime}$
Steel tension ring (inner ring radius $\mathrm{r}=15^{\prime}$, cable spacing $=0.94^{\prime}$)
$\mathrm{T}=\mathrm{H} \mathrm{r} / 0.94=184 \times 15 / 0.94$
$\mathrm{T}=2,972 \mathrm{k}$
Cross-section area (assume high-strength steel $\mathrm{Fa}=30 \mathrm{ksi}$)
$A=T / F_{a}=2,936 / 30=98$ in 2
Try W24x335, A=98.2 in ${ }^{2}>98$
use W24x335
Concrete compression ring ($r=210^{\prime}, \mathrm{e}=13^{\prime}$)
$\mathrm{C}=\mathrm{H}$ r/e=184×210/13=
$\mathrm{C}=2,972 \mathrm{k}$
Cross-section area (assume allowable buckling stress $F_{c}{ }^{\prime}=1.2 \mathrm{ksi}$)
$\mathrm{A}=\mathrm{C} / \mathrm{F}_{\mathrm{c}}{ }^{\prime}=2,972 / 1.2=2,477 \mathrm{in}^{2} \sim 72^{\prime \prime} \times 34{ }^{\prime \prime}$
Use 6x3'

Olympic Stadium Munich

Architect: Guenter Behnisch
Engineer: Leonhardt und Andrae
Assume
Allowable cable stress (210 ksi breaking strength / 3) $\quad \mathrm{F}_{\mathrm{a}}=70 \mathrm{ksi}$
DL = 5 psf
5 psf
$\frac{\mathrm{LL}}{}=\quad 20 \mathrm{psf}$ wind uplift 21 psf
Uniform load (cable spacing $75 \mathrm{~cm}=2.5^{\prime}$)
Gravity w $=25 \mathrm{psf} \times 2.5$

$$
\text { w = } 62.5 \text { plf }
$$

$$
p=40 \text { plf }
$$

Global moment
$M=w L^{2} / 8=62.5 \times 197^{2} / 8$
Horizontal reaction
$H=M / f=303,195 \#^{\prime \prime} / 39^{\prime}$
Vertical reaction
$R=w L / 2=62.5 \times 197^{\prime} / 2$
?
$H=-7,774 \#$

Gravity tension (add 10% residual prestiess)
$\left.T=1 \cdot 11_{2}^{2}+R^{2}\right)^{1 / 2}=1.1\left(7,774^{2}+6,156^{2}\right)^{1 / 2}$
Gravity T $=10,908$ \#
Wind upilif tension (add 10\% residual prestress)
Wind suction is normal to surface, hence $T=p r[r=$ curvature radius)
$\mathrm{T}=1.1 \mathrm{pr}=1.1 \times 40 \times 226{ }^{\prime}$
10,907 > 9,944
Wind T = 9,944 \# gravity governs
Metallic cross section area (assume twin $1 / 2^{\prime \prime}$ net cables, 70% metallic)
$A_{m}=0.7 \times 2 \pi r^{2}=2 \times 3.14(0.5 / 2)^{2}$
$\mathrm{A}_{\mathrm{m}}=0.28 \mathrm{in}^{2}$
Net cable stress
$f=T / A_{m}=10,908 /(0.28 \times 1000)$
$\mathrm{f}=39 \mathrm{ksi}<70 \mathrm{ok}$

5.19
of the plexiglass cladding panels
to the net cables
Plexiglas joint / support

Net cable joint

Imos Factory Newport UK

Architect: Richard Rogers
Engineer: Anthony Hunt
This microprocessor factory is a cable stayed structure. Stay rods, instead of stay cables, are suspended from trussed steel pylons along a central circulation spine. The rods support prismatic roof trusses at third points to reduce truss depth and weight for a column-free floor area of maximum flexibility. Truss joists, spaced $6 \mathrm{~m}\left(20^{\prime}\right)$, support the roof deck. Mechanical equipment, located over the central spine, also allows for optimal flexibility, as required for this facility.

Assume

Sports Center UC Berkeley

Architect: G G Schierle
Engineer: T Y Lin

Assume:

Cable truss with vertical compression struts

Span	$L=120^{\prime}$
Depth	$d=10^{\prime}$
Spacing	$e=20^{\prime}$
Allowable cable stress (210 ksi / 3)	$F_{a}=70 \mathrm{ksi}$

Prestress 60% of F_{a} (50% + temperature change reserve)
$\mathrm{DL}=18 \mathrm{psf}$
$\underline{L L}=12 \mathrm{psf}$
$\Sigma=30 \mathrm{psf}$
Uniform load per truss
$w=30 \mathrm{psf} \times 20^{\prime} / 1000$
Global moment (fixed suppoit
$M=w L^{2} / 12=0.6 \times 1202 / 12$
$M=720 k^{\prime}$
∞
Chord force (assume 10% residual prestress)
$T=1.1 \mathrm{Mid}=1.1 \times 720 / 10^{\prime}$
$\mathrm{T}=79 \mathrm{k}$
Cnord cross section area (70% metallic)
$\mathrm{A}=\mathrm{T} /\left(0.7 \mathrm{~F}_{\mathrm{a}}\right)=79 /(0.7 \times 70 \mathrm{ksi})$
$\mathrm{A}=1.61 \mathrm{in}^{2}$
Chord cable size
$\phi=2(\mathrm{~A} / \pi)^{1 / 2}=2(1.61 / \pi)^{1 / 2}=1.43^{\prime \prime}$
Use $\phi 1.5^{\prime \prime}$
Vertical reaction (without guy cable force)
$R=w L / 2=0.6 \times 120^{\prime} / 2$
$R=36 k$
Diagonal cable force (assume 10\% residual prestress)
$\mathrm{T}=1.1 \mathrm{~T}=1.1 \times 65 \mathrm{k}$ (from vector triangle)
$\mathrm{T}=72 \mathrm{k}$
Diagonal cable cross section (twin cables, 70% metallic)
$A=\mathrm{T}^{\prime} /(2 \times 70 \times 0.7)=72 /(2 \times 70 \times 0.7)$
$\mathrm{A}=0,73 \mathrm{in}^{2}$
Diagonal cable size
$\phi=2(\mathrm{~A} / \pi)^{1 / 2}=2(0.73 / \pi)^{1 / 2}=0.96$ in
Use $\phi 1$ in

Portal method

The Portal Method for rough moment frame design is based on these assumptions:

- Lateral forces resisted by frame action
- Inflection points at mid-height of columns
- Inflection points at mid-span of beams
- Column shear is based on tributary area
- Overturn is resisted by exterior columns only

1 Single moment frame (portal)
2 Multistory moment frame
3 Column shear is total shear V distributed proportional to tributary area:
$\mathrm{Va}=(\mathrm{V} / \mathrm{B}) \mathrm{L} 1 / 2$
$\mathrm{Vb}=(\mathrm{V} / \mathrm{B})(\mathrm{L} 1+\mathrm{L} 2) / 2$
$\mathrm{Vc}=(\mathrm{V} / \mathrm{B})(\mathrm{L} 2+\mathrm{L} 3) / 2$
$\mathrm{Vd}=(\mathrm{V} / \mathrm{B}) \mathrm{L} 3 / 2$
4 Column moment = colurinn shear \times neight 10 inflection point
$\mathrm{Ma}=\mathrm{Va}$ 市/ 2
$\square \mathrm{Mb}=\mathrm{vah} / 2$
$\mathrm{NE}=\mathrm{V} \mathrm{Ch} / 2$
$\mathrm{MdF}=\mathrm{Vah} / 2$
Exterior columns resist most overturn; the portal method assumes they resist all
6 Overturn moments per level are the sum of forces above the level times lever arm of each force to the column inflection point at the respective level:
$\mathrm{M} 2=\mathrm{F} 2 \mathrm{~h} 2 / 2$
(level 2)

M1 = F2 (h2+h1 / 2) + F1 h1 / 2 (level 1)
Column axial force $=$ overturn moment divided by width B
$N=M / B$
Column axial force per level:
$\mathrm{N} 2=\mathrm{M} 2 / B$
(level 2)
N1 = M1 / B
(level 1)

7 Beam shear = column axial force below beam minus column axial force above beam Level 1 beam shear:
V = N1-N2
Roof beam:
$\mathrm{V}=\mathrm{N} 2-\mathrm{O}=\mathrm{N} 2$
Beam bending = beam shear times distance to inflection point at beam center
$\mathrm{M}=\mathrm{VL} / 2$
Beam axial force is negligible and assumed 0

Example: 2-story building

Assume:
$\mathrm{L} 1=30^{\prime}$
$\mathrm{L} 2=20^{\prime}$
$B=30+20+30=80^{\prime}$
$h=h 1=h 2=h=14^{\prime}$
F1 $=8 \mathrm{k}$
$\mathrm{F} 2=12 \mathrm{k}$

1st floor

and flower
2nd fioor shear
$V=F 2$
Column a shear
$\mathrm{Va}=(\mathrm{L} 1 / 2)(\mathrm{V} / \mathrm{B})=15$ 'x12/80 $\quad \mathrm{Va}=2.25 \mathrm{k}$
Column b shear
$\mathrm{Vb}=(\mathrm{L} 1+\mathrm{L} 2) / 2(\mathrm{~V} / \mathrm{B})=(30+20) / 2 \times 12 / 80 \quad \mathrm{Vb}=3.75 \mathrm{k}$
Column a bending
$\mathrm{Ma}=\mathrm{Vah} / 2=2.25 \times 14 / 2 \quad \mathrm{Ma}=15.75 \mathrm{k}$
Column b bending
$\mathrm{Mb}=\mathrm{Vb} \mathrm{h} / 2=3.75 \times 14 / 2 \quad \mathrm{Mb}=26.25 \mathrm{k}$ '
Overturn moment
$M 2=F 2 x h / 2=12 \times 14 / 2 \quad M 2=84 \mathrm{k}^{\prime}$
Column axial load
$\mathrm{N} 2=\mathrm{M} 2 / \mathrm{B}=84 / 80 \quad \mathrm{~N} 2=1.0 \mathrm{k}$
Beam shear
V2 = N2
$\mathrm{V} 2=1.0 \mathrm{k}$
Beam 1 bending
M1 = V2 L1/2=1.0x30/2 M1 $=15 \mathrm{k}$
Beam 2 bending
M2 = V2 L2/2=1.0x20/2
$\mathrm{M} 2=10 \mathrm{k}^{\prime}$

Moment frame

Eight story steel moment frame, high strength steel, $\mathrm{F}_{\mathrm{y}}=50 \mathrm{ksi} \mathrm{F}_{\mathrm{a}}=\mathrm{F}_{\mathrm{b}}=30 \mathrm{ksi}$ Live load 50 psf , load reduction R in percent per IBC
$R=0.08$ (A-150)
$\mathrm{A}=$ tributary area
Max. reduction: 40% for members supporting a single level, 60% for other members

Gravity load	Beam (psf)	Column (psf)
Framing	10	10
Concrete slab	37	37
Partitions	20	20
Floor / ceiling	3	3
DL	70	70
LL	50×0.630	$50 \times 0.4=20$
Total DL + LL	100	90
Average wind pressure		$F=33 \mathrm{psf}$

Design ground floor and $4^{\text {th }}$ floor

Uniform beam load (shaded tributaryare
$\mathrm{W}=100 \mathrm{psf} \times 30^{\prime} / 1000 \quad \mathrm{~W}=3 \mathrm{klf}$
Uniform column load(idistributed on bearn)
$w=90,153 i \times 30^{\prime} / 1000$
$\mathrm{w}=2.7 \mathrm{klf}$
Base shear
$V=33$ psf $\times 30^{\prime} \times 7.5 \times 12^{\prime} / 1000$
$\mathrm{V}=89 \mathrm{k}$
Level 4 shear
$\mathrm{V}=33 \mathrm{psf} \times 30^{\prime} \times 3.5 \times 12^{\prime} / 1000$
$\mathrm{V}=42 \mathrm{k}$
Overturn moments
Ground floor $\quad \mathrm{M}_{0}=33 \mathrm{psf} \times 30^{\prime} \times(7.5 \times 12)^{2} / 2 / 1000 \quad \mathrm{M}_{0}=4,010 \mathrm{k}$
First floor $\quad \mathrm{M}_{1}=33 \mathrm{psf} \times 30^{\prime}(6.5 \times 12)^{2} / 2 / 1000 \quad \mathrm{M}_{1}=3,012 \mathrm{k}$
Fourth floor $\quad M_{4}=33 \mathrm{psf} \times 30^{\prime}(3.5 \times 12)^{2} / 2 / 1000 \quad M_{4}=873 \mathrm{k}^{\prime}$
Beam design
Column a \& d axial load
$\begin{array}{lr}N_{0}=M_{0} / B=4,010 / 90 & N_{0}=45 \mathrm{k} \\ N_{1}=M 1 / B=3,012 / 90 & N_{1}=34 k\end{array}$

$$
N_{1}=34 \mathrm{k}
$$

Beam design
Beam shear
$\mathrm{V}=\mathrm{N}_{0}-\mathrm{N}_{1}=45-34 \quad \mathrm{~V}=11 \mathrm{k}$
Beam bending
$M_{\text {lateral }}=\mathrm{V} L / 2=11 \times 30 / 2 \quad M_{\text {lateral }}=165 \mathrm{k}^{\prime}$
$M_{\text {gravity }}=w L 2 / 12=3 \times 30^{2} / 12 \quad M_{\text {gravity }}=225 \mathrm{k}^{\prime}$
$\Sigma M=165+225$
$\begin{aligned} M_{\text {gravity }} & =225 \mathrm{k}^{\prime} \\ \Sigma \mathrm{M} & =390 \mathrm{k}^{\prime}\end{aligned}$
Required $\mathrm{S}_{\mathrm{x}}=\mathrm{M} / \mathrm{F}_{\mathrm{b}}=12^{\prime \prime} \times 390 \mathrm{k} / 30 \mathrm{ksi}$

Use W18x86
$S_{x}=166>156$
Note: W18 beam has optimal ratio L/d = 20

Ground floor

Column shear					
Column	$\mathrm{V}_{\mathrm{c}}=\mathrm{L}_{\text {tributary }} \mathrm{V} / \mathrm{B}$				V_{c}
a \& d	15x89/90				14.8 k
b \& c	30x89/90				29.7 k
Column bending					
Column	$\mathrm{M}_{\text {lateral }}=\mathrm{V}_{\mathrm{c}} \mathrm{h} / 2$		$M_{\text {gravity }}=\mathrm{wL}^{2} / 24$		$\Sigma \mathrm{M}$
a \& d	$14.8 \times 12 / 2=89 \mathrm{k}^{\prime}$		$2.7 \times 30^{2} / 24=101 \mathrm{k}^{\prime}$		$190 \mathrm{k}^{\prime}$
b \& c	$29.7 \times 12 / 2=178 \mathrm{k}^{\prime}$		0		$178 \mathrm{k}^{\prime}$
Column axial force ($\mathrm{n}=$ \# of stories)					
Column	$P_{\text {lateral }}=\mathrm{M}_{0} / B$		$\mathrm{P}_{\text {gravity }}=\mathrm{n}$ w $L_{\text {tributary }}$		$\Sigma \mathrm{P}$
a \& d	$4,010 / 90=45 k$		$8 \times 2.7 \times 15=324 \mathrm{k}$		369 k
b \& c		0	$8 \times 2.7 \times 30=648 \mathrm{k}$		648 k
Column axial force + bending ($\Sigma \mathrm{P}=\mathrm{P}+\mathrm{M} \mathrm{Bx}$, estimate B_{x} than verify)					
Column	P		M SxiconvertM tor",		$\Sigma \mathrm{P}$
a \& d	365 k		-12"x190kx ${ }^{10} 18=7.22 \mathrm{k}$		787 k
b \& c	648 k		(-) 12 ", 178k'x0.185:355 K		1043 k
Design column (assumk $=1.2 \times 12=14$)					
Column	Use	-	Check $\bar{\square}$ allowable vs. P	Check B	vs. B_{x}
c\&d	WV14.09		$803>785$, OK	0.185	85, OK
b\& CD	W14.145		1090 > 1043, OK	0.185	84, OK

4

Column shear				
Column	$\mathrm{V}_{\mathrm{c}}=$			V_{c}
a \& d				7 k
b \& c				14 k
Column bending				
Column		$M_{\text {gravit }}=\mathrm{wL}^{2} / 24$		इM
a \& d		$2.7 \times 30^{2} / 24=101 \mathrm{k}^{\prime}$		$143 \mathrm{k}^{\prime}$
b \& c		0		$84 \mathrm{k}^{\prime}$
Column axial force ($\mathrm{n}=$ \# of stories)				
Column		$\mathrm{P}_{\text {gravity }}=\mathrm{nwL}$ tributary		$\Sigma \mathrm{P}$
a \& d		$4 \times 2.7 \times 15=162 \mathrm{k}$		172 k
b \& c		$4 \times 2.7 \times 30=324 \mathrm{k}$		324 k
Column axial force + bending ($\Sigma P=P+M B_{x}$, estimate B_{x} than verify)				
Column	P	M Bx (c	M to k")	$\Sigma \mathrm{P}$
a \& d	172 k	$12^{\prime \prime} \times 143 \mathrm{k} \times$	= 336 k	508 k
b \& c	324 k	$12^{\prime \prime} \times 84 \mathrm{k}^{\prime}$	= 198 k	522 k
Design column (assume KL $=1.2 \times 12=14^{\prime}$)				
Column	Use	Check $\mathrm{P}_{\text {allowable }}$ Vs. P	Check Bx	vs. $\mathrm{Bx}^{\text {x }}$
a \& d	W14x82	$515>508, \mathrm{OK}$	0.196	96, OK
b \& c	W14x90	664 > 522, OK	$0.196>$	8, OK

Braced frame

Eight story braced frame: high strength steel, $F_{y}=50 \mathrm{ksi}$
$\mathrm{F}_{\mathrm{a}}=\mathrm{F}_{\mathrm{b}}=30 \mathrm{ksi}$

Loads		
Gravity load	Column	Beam
DL	70 psf	70 psf
LL	$50 \times 0.4=20 \mathrm{psf}$	$50 \times 0.6=30 \mathrm{psf}$
Total DL+LL	90 psf	100 psf
Average wind pressure	P $=30 \mathrm{psf}$	

Beam load

w = $100 \mathrm{psf} \times 30^{\prime} / 1000 \quad \mathrm{w}=3 \mathrm{klf}$
Column load (per foot on beam)
w = 90 psf x 30'/1000
Base shear
$V=30 \mathrm{psf} \times 45 \times 90^{\prime} / 1000$

Overturn moment
Lever arm (to floor level for bráced fames)
$\mathrm{L}=\left(8 \times 12^{\prime}-6^{\prime}\right) / 2{ }^{\prime}$ 「 $^{\prime}{ }^{\prime}$
$M_{P}=V L=122 k \times 510$
$M_{0}=6,222 \mathrm{k}^{\prime}$

Column and brace design (K = 1 for pin joints)				
Column	Force P	KL length (K=1)	Use	Pallowable Vs. P
a \& d	324 k	12^{\prime}	W14x61	$410>324$
b \& c	855 k	12^{\prime}	W14x120	$919>855$
Brace	78 k	$\mathrm{L}=\left(12^{2+15^{2}}\right)^{1 / 2}=20^{\prime}$	$\mathrm{TS6x6} \mathrm{\times 5/16}$	$93>78$

Beam *aldesign
Bending moment
$M=w L^{2} / 8=3 \mathrm{klf} \times 30^{2} / 8 \quad \mathrm{M}=338 \mathrm{k}$
Section Modulus
$\mathrm{S}=\mathrm{M} / \mathrm{F}_{\mathrm{b}}=12^{\prime \prime} \times 338 \mathrm{k} / 30 \mathrm{ksi} \quad \mathrm{S}=135 \mathrm{in}^{3}$
Use W18x76
$146>135$
Deflection $\Delta=(5 / 384) \mathrm{WL}^{3} /(E)$
$\Delta=(5 / 384)(3 \times 30)(30 \times 12)^{3 /}(30,000 \times 1330) \quad \Delta=1.37^{\prime \prime}$
Allowable $\Delta=\mathrm{L} / 240=\left(30^{\prime} \times 12^{\prime \prime}\right) / 240=1.5$
$1.5>1.37$, ok
Note: ignore brace beam support of inner beam since lateral load may act in addition to gravity load

$4^{\text {th }}$ floor design

$4^{\text {th }}$ floor shear
$V=33 \mathrm{psf} \times 45 \times 3.5 \times 12 / 1000 \quad \mathrm{~V}=62 \mathrm{k}$
Overturn moment
Lever arm (to floor level for braced frames)
$\mathrm{L}=3.5 \times 12^{\prime} / 2+6^{\prime}$
$L=27$
$M_{4}=\mathrm{VL}=62 \mathrm{kx} 27^{\prime} \quad \mathrm{M}_{4}=1,674 \mathrm{k}^{\prime}$

Column and brace axial forces			
Column	Plateral $=\mathrm{Mo}_{0} / 30^{\prime}$	$\mathrm{P}_{\text {gravity }}=\mathrm{n} w$ Atributary	$\sum \mathrm{P}$
$\mathrm{a} \& \mathrm{~d}$	$\mathrm{P}=0$	$\mathrm{P}=4 \times 2.7 \times 15=162 \mathrm{k}$	162 k
b \& c	$\mathrm{P}=1,674 \mathrm{k}^{\prime} / 30^{\prime}=56 \mathrm{k}$	$\mathrm{P}=4 \times 2.7 \times 30=324 \mathrm{k}$	380 k
Brace	See vectors (tension \& compression, design for compression)	40 k	

Column and brace design ($\mathrm{K}=1$ for pin joints)				
Column	Force P	KL length ($\mathrm{K}=1$)	() Use	Paly
a \& d	162 k	(12)	W 3×31	- $189>162$
b \& c	380 k	π (2)	W\% 4×0 1	$410>380$
Brace	40 k	$5=\left(12^{2}+15^{2}\right)^{42}=20$	TS6x6x3/16	$60>40$

Compare materia
The anount of steel required per square foot $\left(\mathrm{m}^{2}\right)$ is used to compare framing systems.
The steel at nid height provides a quick average weight to compare, assuming all bays
of approximately the same size provides the following comparative results.

Moment frame				
Member	Weight / ft	Length each	Total length	Weight
8 columns W14×82	82 plf	12^{\prime}	96^{\prime}	$7,872 \#$
8 columns W14x90	90 plf	12^{\prime}	96^{\prime}	$8,640 \#$
24 beams W18x86	86 plf	30^{\prime}	720^{\prime}	$61,920 \#$
18 joists W18x35	35 plf	30^{\prime}	540^{\prime}	$18,900 \#$
Total				$97,332 \#$
Total per square foot	$97,332 /(90 \times 90)$	12 psf		

Braced frame				
Member	Weight / ft	Length each	Total length	Weight
8 columns W8x31	31 plf	12^{\prime}	96^{\prime}	$2,976 \#$
8 columns W14x61	61 plf	12^{\prime}	96^{\prime}	$5,856 \#$
24 beams W18x76	76 plf	30^{\prime}	720^{\prime}	$54,720 \#$
18 joists W18x35	35 plf	30^{\prime}	540^{\prime}	$18,900 \#$
4 braces TS6x6x3/16	14.53 plf	20^{\prime}	80^{\prime}	$1,162 \#$
Total				
Total per square foot	$83,614 /(90 \times 90)$	$83,614 \#$		

10-20 DESIGN METHODS Conceptual Design

3

Test models

Static models are useful to test structures for strength, stiffness, and stability. They may have axial resistance (truss), bending resistance (beam), or both axial and bending resistance (moment frame). Static models have three scales: geometric scale, force scale, and strain scale. The geometric scale relates model dimensions to original dimensions, such as 1:100. The force scale relates model forces to the original structure. For a force scale of 1:100, one pound in the model implies 100 pounds in the original structure. The force scale should be chosen to keep model forces reasonable (usually less than 50 pounds). The strain scale relates model strain (deformation) to strain in the original structure. A strain scale of 1:1 implies model strain relates to original strain in the geometric scale; given a geometric scale of 1:10 a model strain of 1 inch implies 10 inch original strain. For structures with small deformations may a strain scale of 5:1, for example, helps to visualize strain. However, structures with large strain like niembranes require a strain scale of 1:1 to avoid errors (see 2). Scales are defined as.

Geometric Scale: $\quad S_{G}=L_{m} / L_{0}=$ model dimension / original dimension
Force Scale: $\quad S_{F}=P_{m} / R_{0}=$ model force c criginaliforce
Strain Scale: $\quad S_{s}=\varepsilon_{m} / \varepsilon_{m}=$ modie stran / original strain
The derivation for axiei and bending resistance models assumes:
$A=$ Cross-section area
$E=$ Modulus of elasticity
I = Moment of inertia
$\mathrm{k}=$ Constant of integration for deflection; for cantilever beams with
point load $\Delta=k P L^{3} /(E I)$ where $k=1 / 3$
$\mathrm{m}=$ Subscript for model
0 = Subscript for original structure

Axial resistance

Unit Strain $\varepsilon=\Delta L / L$	$\Delta L=P L /(A E)$	hence
Force $P=A E \Delta L / L=A E \varepsilon$		hence
Force $\operatorname{Scale}=S_{F}=P_{m} / P_{0}=A_{m} E_{m} /\left(A_{0} E_{0}\right) \varepsilon_{m} / \varepsilon_{0}$	since $\varepsilon_{m} / \varepsilon_{0}=S_{s}$	
$S_{F}=A_{m} E_{m} /\left(A_{0} E_{0}\right) S_{s}$		
$S_{F}=A_{m} E_{m} /\left(A_{0} E_{0}\right)$	if $S_{s}=1$	
$S_{F}=A_{m} / A_{0}=S_{G}{ }^{2}$	if $=E_{m}=E_{0}$	

1 Axial strain $\Delta L=P L /(A E)$; unit strain $\varepsilon=\Delta L / L$
2 Structures with large deformations, such as membranes, yield errors if the strain scale S_{s} is not 1:1; as demonstrated in the force polygon
3 Structures like trusses, with small deformations, may require a strain scale $S_{s}>1$ to better visualize deformations.

1

2
Case A : Assuming $B=1$ and $D=2$
$A=1 \times 2=2$
$1=1 \times 2^{3} / 12=0.66$

Case B : Assuming $\mathrm{B}=1$ and $\mathrm{D}=4$

$A=1 \times 4=4$

$=2 \times$ case A
$I=1 \times 4^{3} / 12=5.33(=8 \times 0.66)$
$=8 \times$ case A

Case C: Assuming $B=2$ and $D=2$
 $1=2 \times 2^{3} / 12=1.33(=2 \times 0.66)$
 3

Bending resistance

$$
\begin{aligned}
& \text { Unit Strain } \varepsilon=\Delta / \mathrm{L} \\
& \Delta=\mathrm{kPL}^{3} / \text { (El) hence } \\
& \text { Force } \mathrm{P}=\mathrm{El} \Delta /\left(\mathrm{kL}{ }^{3}\right)=\mathrm{El} /\left(\mathrm{kL}^{2}\right) \Delta / \mathrm{L}
\end{aligned}
$$

Force Scale $S_{F}=P_{m} / P_{0}=\left[E_{m} I_{m} /\left(E_{0} I_{0}\right)\right] k_{0} / k_{m} L_{0}{ }^{2} / L_{m}{ }^{2} \varepsilon_{m} / \varepsilon_{0}$
Since the model and original have the same load and support conditions the constants of integration $k_{m}=k_{0}$, hence the term k_{0} / k_{m} may be eliminated. The term $L_{0}{ }^{2} / L_{m}{ }^{2}=1 / \mathrm{S}_{\mathrm{G}}{ }^{2}=$ $1 /$ geometric scale squared, and $\varepsilon_{m} / \varepsilon_{0}=S_{s}=$ strain scale. Therefore the force scale is:

$$
\begin{aligned}
& S_{F}=E_{m} I_{m} /\left(E_{0} l_{0}\right) 1 / S_{G^{2}} S_{S} \\
& S_{F}=E_{m} I_{m} /\left(E_{0} l_{0}\right) 1 / S_{G^{2}} \\
& S_{F}=I_{m} / l_{0} 1 / S_{G}{ }^{2} \\
& S_{F}=S_{G}{ }^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } \mathrm{S}_{\mathrm{s}}=1 \\
& \text { If } \mathrm{E}_{\mathrm{m}}=\mathrm{E}_{0} \text {, or simplified } \\
& \text { assuming all model dimensiors, }
\end{aligned}
$$

including details, reate to the original in the germetric scale
In the simplest form the force scale is equatin the geometric scale squared for both axial and bending resistant models. Thus a rodel yith a geometric scale of 1:100 has a force scale of $1 \cdot 10,000$ if it is inade of the same material or modulus of elasticity as the original structure.

Combinied axial and bending resistance

Models with both axial and bending resistance, such as moment frames, should be of the same material or elastic modulus as the original in order to avoid errors. Referring to diagrams 3 , if, for example, the elastic modulus of a model is half as much as in the original structure and the cross-section area is doubled to compensate for it, then the moment of inertia is four times greater, assuming area increase is perpendicular to the bending axis. For small adjustments this can be avoided by increasing the area parallel to the bending axis. Large differences in stiffness, such as wood simulating steel, with an elastic modulus about 20 times greater, are not possible. In such a case the strain scale could be 20:1 to amplify deflection rather than adjusting the cross-section area.
1 Model $\operatorname{strain} \varepsilon=\Delta / L$ must be equal to the original strain.
$\Delta=k$ PL3/EI
where $k=1 / 3$

2 Original strain $\varepsilon=\Delta / L$
$\Delta=k$ PL3/El
where $k=1 / 3$

Since k is the same in the model as in the original, for equal load and support conditions, it may be eliminated from the force scale equation
3 Correlation between cross-section area A and moment of inertia I
demonstrates incompatibility between A and I since they increase at different rates, unless the increase is only in width direction

Test stand

- Light gauge steel frame 3'x5'
- Frame to support test models
- Adjustable platform for loads below the test model (crank mechanism lowers platform to apply load)
- Blocking deice holds load platform at any position
- Support frame for measure gauges above test model

Test procedure

- Position model with open base to allow loads below
- Suspend load cups filled with lead or sand from model (support loads on load platform before loading)
- Attach measure gauges above model
- Lower load platform with crank to apply load
- Measure deformations and stress
- Apply alternate loads (half load, etc.)
- Record deformations and stresses fo all loa conditions.

Note

- Apply loads brieffyto avoid creep deformation
- Arpiys loacis craduality to avoid rupture
- Tesiailload conditions that may cause critical deformation or stress
- Adjust design if deformation or stress exceeds acceptable limits

Tree structure wood design model

Wood cantilever roof

Arch / grid shell

Prismatic truss

Wood grid shell

Folded truss

Cable stayed roof

For most material the E modulus may be defined, applying load on a cantilever and computing E as:
$\mathrm{E}=\mathrm{PL}{ }^{3} /(\mathrm{I} \Delta)$
For fabric the E modulus is defined, applying axial load on a 5 inch fabric strip:
$\mathrm{E}=\mathrm{PL} /(\mathrm{A} \Delta)$
$\mathrm{E}=$ Elastic modulus in $\mathrm{lbs} / \mathrm{in}^{2}$ (lbs/linear in for fabric)
Δ = deformation
$\mathrm{A}=$ width of fabric strip
$\mathrm{P}=$ point load
$L=$ length of cantilever or fabric strip
I = moment of inertia
Note:
L should be as long as possible for accuracy
Use average E of several tests

Master thesis by Madinu Thangavelu
MAECC. Modular Assembly in Low Earth Orbit, to avoid assembly of lunar station by cos'ily reminte control robotics. Light-weight cable truss of stable triangular configuration suipports three fuel tank modules for habitation, research, power and control.

Moment frame (with joint numbers and member names)

Load diagram (uniform beam load, lateral point load)

Hexagonal grid shell dome

Computer aided design

Advance in computer technology made structural design and analysis widely available. The theory and algorithm of structural design programs is beyond the scope of this book. However, a brief introduction clarifies their potential and use.
Structure programs generate and solve a stiffness matrix of the structure. Based on the degree of freedom of joints, the output provides stress and strain. A two-dimensional truss with pin joints has two degrees of freedom and thus two unknowns per joint, X and Y-displacement. A three-d truss has three unknowns per joint. Two-D frames have four unknowns, X, Y-displacement and X, Y-rotation, but three-D frames have six unknowns per joint, X, Y, Z-displacement and X, Y, Z-rotation.

The structure input is defined by joints, members connecting the joints and loads. Joints of three-d structures are defined by X, Y, Z-coordinates, joint type (pin or moneent joint), and degree of freedom, regarding X, Y Z-displacement and $\because Y$, \mathbb{Z}-rotation (joints attached to the ground are fixed with pin or moment joints). Members are defined by properties, cross section area, moment of ine tia, and modulus of elasticity. Some members may have end release at one or both ends, to allow pili joints of braces to connect to moment joints of beam iocolunim, for enarnple. End releases are simulated by a dummy pin adjacenit to the momentiont. The geometry of a structure may be defined in the amalysis programor impotied as DFX file from a CAD program. Loads are defined as disirioutec or point ioad. Gravity load is usually assigned as uniform beam load, yet lateral witid or seismic loads are usually assigned as point loads at each level.
Output includes force, stress, and deformation for members, joint displacement and rotation, as well as support reactions. Output may be in tables and / or graphic display. Graphic display provides better intuitive understanding and is more convenient to use.

Some programs simulate non-linear material behavior and / or non-linear geometric behavior. For example, non-linear material may include plastic design of steel with nonlinear stress/strain relation in the plastic range. Non-linear geometric analysis is for structures with large displacements, such as cable or membrane structures. Non-linear analysis usually involves an iterative algorithm that converges after several iterations to a desired level of accuracy. Some programs include a prestress element to provide formfinding for membranes structures. Some programs provide dynamic analysis, sometimes referred too as 4-D analysis. Programs with advanced features provide greater versatility and accuracy, but they are usually more complex to use.

Multiframe-4D used for the demonstrations features 2-d and 3-d static and 4-d dynamic analysis. For static analysis Multiframe is very user friendly, intuitive, and thus good for architecture students. The 4-d dynamic feature is beyond the scope of this book. The examples presented demonstrate 2-d and 3-d design/analysis. A very convenient feature are tables of steel sections with pre-defined properties for US sections and for several other countries. The program features US and SI units.

Belt truss effect

CAD-analysis provides efficient means to compare framing systems. For convenience the following example was done with constant W18 beams and W14 columns, 30' beam spans and 12 ' story heights. The results, comparing the effect of belt and top trusses on a moment frame and a braced frame are very reveling:

20-story moment frame

Gravity load	$W=3 \mathrm{klf}$
Wind load	$P=10 \mathrm{k} /$ level

20-story braced frame

Gravity load	W $=3$ klf
Wind load	$P=10 \mathrm{k} /$ level

Frame	Drift
Frame only	$17.6^{\prime \prime}$
Top truss	$11.4^{\prime \prime}$
Belt truss	$11.1^{\prime \prime}$
Top and belt truss	$8.6^{\prime \prime}$

Note:
Belt and top trusses are much more effective to reduce drift at the braced frame than at the moment frame. The combined belt and top trusses reduce drift:

- 7% at moment frame
- 49% at braced frame

Interpreting the results clarifies the stark difference and fosters intuitive understanding of different deformation modes of moment and braced frames

PART IV

HORIZONTAL SYSTEMS

Part III presents structure systems, divided into two categories: horizontal, and vertical/lateral. Horizontal systems include floor- and roof framing systems that support gravity dead- and live load and transfer it to vertical supports, such as walls and columns. As the name implies, vertical/lateral systems include walls, columns and various other framing systems that resist gravity load as well as lateral wind- and seismic load.

In the interest of a structured presentation, both, horizontal and vertical/lateral systems are further classified by type of resistance controlling the design. This also helps to structure the creative design process. Though many actual systems may include several modes of resistance, the controlling resistance is assumed for the ciassification. For example, cable stayed systems usually include bending elements like beams, in addition to cables or other tension members. However, at least at the conceptual levee, their designed is controlled more by tension meinbers than by bending. Trerefore they are classified as tensile structures. 1 Horizonial systems are presented in four chapters for structures controlled by bending, axial, form and tensile resistance. Vertical/lateral systerns aie presented in three chapters ior structures controlled by shear-, bending-, and axial resistarce.

HORIZONTAL SYSTEMS Bending Resistant

Bending resistant systems include joist, beam, girder, as well as Vierendeel frame and girder, folded plate and cylindrical shell. They carry gravity leaci primarily in bending to a support structure. Shear is typically coiculurent with bending; yet bending usually controls the design Though berding resisiant elements and systems are very common, they ternd to be less efficient than other systems, because bending varies from maximum cornpression to maximum tension on opposite faces, with zero stress at the neutral axis. Hence ority half the cross-section is actually used to full capacity. Yet, this disadvantage is often compensated by the fact that most bending members are simple extrusions, but trusses are assembled from many parts with costly connections. Like any structure system, bending elements are cost effective within a certain span range, usually up to a maximum of $120 \mathrm{ft}(40 \mathrm{~m})$. For longer spans the extra cost of more complex systems is justified by greater efficiency.

Bending Concepts

Some concepts are important for an intuitive understanding of bending members and their efficient design. They include the effects of span and overhang, presented in this section. Other concepts, such as optimization and the Gerber beam, are included in the following section.

Effect of span

The effect of the span L for bending members may be demonstrated in the formulas for deflection, bending moment and shear for the example of a simple beam under uniform load.
$\Delta=(5 / 384) \mathrm{wL}^{4 /}$ (EI)
$\mathrm{M}=\mathrm{wL} \mathrm{L}^{2} / 8$
$V=w L / 2$
where
$\Delta=$ Maximum deflection
$\mathrm{E}=$ Elastic modulus
I = Moment of Inertia
L= Length of span
VEmaximum bericing moment
$V=$ maximumil shear force
$w=$ Uniform load per unit length
The formulas demonstrate deflection increases with the 4th power of span, the bending moment increases with the second power, and shear increases linearly. Although this example is for a simple beam, the same principle applies to other bending members as well. For a beam of constant cross-section, if the span is doubled deflection increases 16 times, the bending four times, but shear would only double. Thus, for long bending members deflection usually governs; for medium span bending governs, yet for very short ones, shear governs

1 Beam with deflection $\Delta=1$
2 Beam of double span with deflection $\Delta=16$
3 Short beam: shear governs
4 Medium-span beam: bending governs
5 Long-span beam: deflection governs

品

5

Effect of overhang

Bending moments can be greatly reduced, using the effect of overhangs. This can be describe on the example of a beam but applies also to other bending members of horizontal, span subject to gravity load as well. For a beam subject to uniform load with two overhangs, a ratio of overhangs to mid-span of 1:2.8 (or about $1 / 3$) is optimal, with equal positive and negative bending moments. This implies an efficient use of material because if the beam has a constant size - which is most common - the beam is used to full capacity on both, overhang and span. Compared to the same beam with supports at both ends, the bending moment in a beam with two overhangs is about one sixth! To a lesser degree, a single overhang has a similar effect. Thus, taking advantage of overhangs in a design may result in great savings and economy of resources.

1 Simple beam with end supports and uniform load
2 Cantilevers of about $1 / 3$ the span equalize positive and negative bending moments and reduces them to about one sixth, compared to a beem of equal length and load with but with simple end support

5

Bam optimization

Optimizing long-span girders can save scares resources. The following are a few conceptual options to optimize girders. Optimization for a real project requires careful evaluation of alternate options, considering interdisciplinary aspects along with purely structural ones.
1 Moment diagram, stepped to reflect required resistance along girder
2 Steel girder with plates welded on top of flanges for increased resistance
3 Steel girder with plates welded below flanges for increased resistance
4 Reinforced concrete girder with reinforcing bars staggered as required
5 Girder of parabolic shape, following the bending moment distribution
1 Girder of tapered shape, approximating bending moment distribution

Gerber beam

The Gerber beam is named after its inventor, Gerber, a German engineering professor at Munich. The Gerber beam has hinges at inflection points to reduce bending moments, takes advantage of continuity, and allows settlements without secondary stresses. The Gerber beam was developed in response to failures, caused by unequal foundation settlements in $19^{\text {th }}$ century railroad bridges.

1 Simple beams over three spans
2 Reduced bending moment in continuous beam
3 Failure of continuous beam due to unequal foundation settlement, causing the span to double and the moment to increase four times
4 Gerber beam with hinges at inflection points minimizes bending moments and avoids failure due to unequal settlement

Joist, Beam, Girder

Joists, beams, and girders can be arranged in three different configurations: joists supported by columns or walls ${ }^{1}$; joists supported by beams that are supported by columns ${ }^{2}$; and joists supported by beams that are supported by girders that are supported by columns ${ }^{3}$. The relationship between joist, beam, and girder can be either flush or layered framing. Flush framing, with top of joists, beams, and girders flush with each other, requires less structural depth but may require additional depth for mechanical systems. Layered framing allows the integration of mechanical systems; with main ducts running between beams and secondary ducts between joists. Further, flush framing for steel requires more complex joining, with joists welded or bolted into the side of beams to support gravity load. Layered framing with joists on top of beams with simple connection to prevent displacement only

2 Single layer framing: joists supported directly by walls
3 Double layer framing: joists supported by beams and beamis by cournins
4 Triple layer framing: joists supported by beamis, bearss oy girders, and girders by columns
5 Flush framing: top of joists and beams ine uo
May require additional depth for mechanical ducts
6] Lavered ramnes ioists rest on top of beams
Simpler and less costly framing
Mav have main ducts between beams, secondary ducts between joists
A Joists
B Beam
C Girders
DWall
E Column
F Pilaster
GConcrete slab on corrugated steel deck

Crown Hall, IIT, Chicago (1956)

Architect: Mies van der Rohe
Crown Hall for architecture at the Illinois Institute of Technology, exemplifies Mies' architecture of universal space and structural expression, exposing girders and columns on the outside. His tectonic objectives of exposed girders above the roof reduces air conditioned due to less interior volume but also implies penalties: the girder top is not braced against buckling, and the roof is punctured at many suspension points for potential leaks. A column-free space of $120 \times 220 \mathrm{ft}(37 \times 67 \mathrm{~m})$ is spanned by four moment resistant steel portals of $14 \mathrm{in}(360 \mathrm{~mm})$ wide-flange columns and four $\mathrm{ft}(1.2 \mathrm{~m})$ deep plate girders that span the entire width. The portals, spaced $60 \mathrm{ft}(18 \mathrm{~m})$, support steel joists suspended from the girders on bracket hangers. The joists, spaced 10ft (3m) on center, overhang $20 \mathrm{ft}(6 \mathrm{~m})$ at end portals. To resist buckling, the girders have stiffener plates welded to the web at intervals of the joists. Besides stability, they give the girders a tectonic articulation.
1 Wall cross section
2 Structural diagram
A Top flange of girder
B Column
C_{\square} Stiffener pla'te veerded to girder web
D Cantestrio at roof acioge
Footirg nembiane
F. Euspension brackets

G Roof joist
H Ceiling
I Glass wall
J Concrete floor

National Gallery, Berlin (1968)
 Architect: Mies van der Rohe

The National Gallery was initially commissioned in 1962 for Berlin's twentieth century art collection. In 1965 it was merged with the National-galerie and renamed accordingly. A semi-subterranean podium structure of granite-paved concrete is the base for the main structure; a steel space-frame of $64.8 \mathrm{~m}(212 \mathrm{ft})$ square has a clear interior height 8.4 m $(28 \mathrm{ft})$. At the roof edge eight cross-shaped steel columns with pin joint at the roof cantilever from the podium for lateral resistance. Based on a planning module of 1.2 m , the unique space-frame consists of two-way steel shapes, 1.8 m deep, spaced 3.6 m on center in both directions. The shallow span/depth ratio oh 33 required the roof to have a camper to cancel deformation under gravity load. The entire roof was assembled on ground from factory pre-welded units and hydraulically lifted in place on a single day.

1 Steel roof framing concept
2 Steel roof framing detail
A Steel edge beam
B Cross-shaped steel column

1

School in Gurtweil, Germany (1972)

Architect: H. Schaudt

Engineer: Ingenieurbüro für Holzbau
A grid of equilateral triangles is the base of this honeycomb of ten hexagonal classrooms. The side length of each regular hexagon is $5.4 \mathrm{~m}(18 \mathrm{ft})$. The composition of classrooms defines a free-form hall with entry from a central court. The sloping site provides space for a partial ground floor for auxiliary spaces below the classroom level.

Laminated beams spanning three ways presented a challenge to minimize the number of beam intersections. The continuous beams need moment connections. To this end, the main roof and floor structures have identical configurations but different support conditions. Six columns support each hexagonal classroom at the vertices. The classroom floors have an additional column at the center of each hexagoin to susport the cross point of three girders that span the six hexagon vertices Those columns do not interfere with the auxiliary spaces below classrooms. Theer beams spar betwern the girders to form four triangular panols. Fioor joists rest on the beams and support a particle board sub-floor with ácoustical and thermal insulation. To provide uninterrupted classrooms, the roof structure has no eolumn suppoit within each hexagon. The columnfree spaces requiled heams with moment connections. The roof deck consists of planks vith tongum-and-groove. Diagonal steel rods, $24 \mathrm{~mm}(1 \mathrm{in}) \phi$, with turnbuckles, brace som \in peripheral columns to resist lateral wind load.

3 Moment resistant joint of roof beam at hexagon center without column
A Laminated girder, $12 \times 60 \mathrm{~cm}$ ($5 \times 24^{\prime \prime}$)
B Steel insert bar with dowels ties beams to column
C Hexagonal laminated column, $\phi 21 \mathrm{~cm}$ (8")
D High-strength concrete core resists compression at top of roof beam E Steel strap, $10 \times 80 \mathrm{~mm}(3 / 8 \times 3$ "), resists tension at bottom of roof beam
E Tension straps, $10 \times 80 \mathrm{~mm}$, at bottom of beams

Labor Palace Turin (1961)

Architect/Engineer: Pierre Luigi Nervi
This project, first price of a design competition, was build for the centenary of Italy's unification in 1981 to house an international labor exhibition. The classic order of this structure is a departure from Nervi's funicular oeuvre. Due to a short time from design to completion, one of the design objectives was fast construction. The solution of 16 freestanding mushroom structures allowed for sequential manufacture and erection, a critical factor for speedy completion. The facility measures $158 \times 158 \mathrm{~m}$ and has a height of 23 m . Each of the 16 units measures $38 \times 38 \mathrm{~m}$. The mushrooms are separated by gabled skylights of 2 m width that help to accentuate individual units visually, provide natural lighting and structural separation. Each mushroom consists of concrete pylons that taper from 2.4 m at the top to 5.5 m at the base in response to the increasing bending moment toward the base. The pylons are roundectat the to and cross-formed at the base. Twenty tapered steel plate girders cantilever from the pylons in radial patterns; with increasing depth toward the suppoit iil response to greater bending. Triangular brackets strengthen the transition from girder to pyion. Stiffener plates welded to girder webs stabitizes them against buckitigy and provide a visual pattern in response to the structural imperatives.

5

2

6

7

,

 deformation to avoid instability.

Single-bay Vierendeel girder
Deformation under gravity load
Deformation under lateral load
Web struts with hinges at inflection points
3i-bay Vierendeel girder
Deformation under gravity load
Deformation under lateral load
8 3-bay web struts with hinges at inflection points

1

2

4

5
6

7

5

A

10

Vierendeel girders resist load in combed beam action and frame action as shown on the left and right diagrams, respectively. Load causes global shear and bending which elongates the bottom in tension and shortens the top in compression. The internal reaction to global shear and bending is different in a Vierendeel compared to a beam. A beam's bending stress varies gradually over the cross-section, but global bending in a Vierendeel causes concentrated tension and compression forces in the chords. By visual inspection we can derive simple formulas for approximate axial and shear forces and bending moments. Respective stresses are found using formulas for axial, shear and bending stress and superimposing them. Chord tension T and compression C are computed, dividing the respective global moment M by frame depth D (distance between centers of chords).

$$
C=T=M / D
$$

Bending of individual struts can be visualized too. In a structure where momentresistant strut/chord connections are replaced with hinges, chords would deilieci as incependent beams ${ }^{6}$. Assuming flexible chords and stiff webs vertica shear vould aeform chicrds to S-shapes with inflection point. Assuming fiexibe webs and stiff chords, hiorizontal shear, caused by a compressive force pusfing cutward on top and atensile force pulling inward on the bottom, wrould deform wehs to S-shapes with inflection point. The combined effect of ihese two ioealized cases imparts S -shaped deformation and inflection points in both choid and web struis. The deformation yields strut bending moments which vary from positive to hegative along each strut. Top and bottom chords carry each about half the total shear V. Assuming inflection points at midpoints of chords, the local chord moment M is half the shear V multiplied by half the chord length.

$$
M=(V / 2)(e / 2)
$$

The moment M is maximum at supports where shear is greatest and equal to support reactions. For equilibrium, webs have to balance chord moments at each joint. Their moment equals the difference of adjacent chord moments.

Gravity load on a Vierendeel
Global shear (in overall system rather than individual members)
Global bending (in overall system rather than individual members) Compression and tension in top and bottom chord, respectively
Free-body visualizes derivation of chord tension T and compression C
Global shear deformation
Chord bending, assuming flexible chords and stiff webs
Web bending, assuming flexible webs and stiff chords
9 Combined chord and web bending under actual condition
10 Free-bodies visualize derivation of chord bending moment M

1

2

3

4

Configurations

Vierendeels may have various configurations, including one-way and two-way spans.
One-way girders may be simply supported or continuous over more than two supports. They may be planar or prismatic with triangular or square profile for improved lateral load resistance. Some highway pedestrian bridges are of the latter type. A triangular crosssection has added stability, inherent in triangular geometry. It could be integrated with bands of skylights on top of girders.

When supports are provided on all sides, Vierendeel frames of two-way or three-way spans are possible options. They require less depth, can carry more load, have less deflection, and resist lateral load as well as gravity load. The two-way option is well suited for orthogonal plans; the three-way option adapts better to plans based on triangles, hexagons, or free-form variations thereof.
Moment resistant space frames for multi-story or high-rise buildings may be considered a special case of the Vierendeel concept.

One-way planar Vierendeel girder
One-way prismatic Vierendeel girder of triangular cross-zection
One-way prismatic Vierendeei girder of squate cross-section
Two-vay Viereadel space frame
Threa-Nay Viererideel space frame Mulfi-story Vierendeel space frame

1

Beinecke library, Yale University, New Haven, Connecticut (1963)

Architect and Engineer: Skidmore, Owings and Merrill
The Beinecke library of Yale University for rare books has a 5-level central book tower, freestanding within a single story donut-shaped hall that extends over the full height of the tower. The tower holds 180,000 books and is climatically separated from the surrounding hall by a glass curtain wall.
The library's five-story open space is framed by a unique structural concept. Four Vierendeel steel frames, $50 \mathrm{ft}(15 \mathrm{~m}$) high, support the roof and wall load and span 131 and $88 \mathrm{ft}(40$ and 27 m) in length and width, respectively. The frames are supported by a reinforced concrete plate that transfers the load via steel pin joints to four reinforced concrete pylons. The Vierendeel frames consist of $8^{\prime}-8$ " (2.6 m) prefabricated steel crosses, welded together during erection. The crosses express pin joints at mid-points of chord and web struts, where inflection points of zero bending occur.

$3 A-A$

2

Folded Plate

The effect of folding on folded plates can be visualized with a sheet of paper. A flat paper deforms even under its own weight. Folding the paper adds strength and stiffness; yet under heavy load the folds may buckle. To secure the folds at both ends increases stability against buckling
1 Flat paper deforms under its own weight
2 Folding paper increases strength and stiffness
3 Paper buckling under heavy load
4 Secured ends help resist buckling

4

Folded plate behavior

Folded plates combine slab action with beam action. In length direction they act like thin inclined beams of great depth, stabilized against buckling at top and bottom by adjoining plates. In width direction they are one-way slabs that span between adjacent plates.
1 Folded plate concept
2 Slab action in width direction
3 Slab-and-beam equivalent
4 Beam action in length direction
A Bending deformation causes top compression and bottom tension
B Horizontal shear caused by compression and tension
C Vertical shear is maximum at supports and zero at mid span

Bending in folded plates causes top compression and bottom tension. Folded plates also tend to flatten out under gravity load, which may be prevented by walls or frames at end supports. Tendency of end panel buckling can be resisted by edge beams.
1 Bending visualized as external compression and tension forces
2 Flattened folded plate under gravity load
3 Folded plate with walls and frames to resist flattening
4 Buckled end panels
5 End panels stabilized by edge beams
A Stabilizing wall at support and, for long systems, at mid-span
B Stabilizing frame at support and, for long systems, at mid-span
C Edge beam to stabilize end panel against buckling

Folded plate forms

Folded plates may have many one-way, two-, or three-way spans. They may be motivated by aesthetic or spatial objectives, or to add strength and stability to a system. In areas with snow, flat folded plates are problematic since snow can accumulate in the valleys. One-way systems are shown below; Two and three-way systems are right.

1 Folded plate with one straight and one gabled edge
2 Folded plate with offset gabled edges
3 Folded plate with gabled edges offset at mid-span
4 Folded plate with vertical support folding and gables offset at mid-span

Folded plates may be two or three-way systems.
1 Three-way folded plate unit and assembly on triangular base plan
2 Two-way folded plate unit and assembly on square base plan
3 Three-way folded plate unit and assembly on hexagonal base plan

2
A

Railroad Station Savona, Italy (1958-61)

Architect: Antonio Nervi
Engineer: Pier Luigi Nervi
This first prize of a design competition consists of site-cast concrete folded plates, supported by a folded plate concrete wall on the rear which also provides lateral stability. Ten concrete pylons support the public entry front. The pylons are cantilevered from a grade beam for lateral stability in length direction. The pylons transform from rectangular cross-section in length direction at the ground to rectangular cross-section in width direction at the roof. They support a u-shaped roof girder that is integral with and supports the folded plate roof. One-third of the roof overhangs in front, beyond the girder. The overhang is tapered, transforming from the folded plate profile to a flat roof edge. The taper makes an elegant edge in logic response to the diminished negative bending moment requiring less depth at the edge. Light-weight gabled rosf elements cover the folded plates over interior space for waterproofing. Ove tine central area skylights, integrated in the roof, provide natural lighting.
1 Folded plate concrete roof layout
2 Typical folded plate concrete unit
A Cross-section through roof o verhang with 'apered folded plates and u-shape girder B Lengti-section throuigh folded plates

B

Gunma Music Center, Takasaki, Japan (1961)

Architect: Antonin Raymond
Engineer: Tsuyashi Okamoto
This Gunma music center for the Gunma Philharmonic Orchestra, consist of a folded plate concrete roof of 60 m span and folded plate walls, that form frames to resist gravity and lateral loads. The architect, a former student of Frank Lloyd Wright at Taliesin took the challenge to design the center for the following requirements:

- The center had to be fire and earthquake proof
- Good acoustics for the music center
- Provide for Kabuki performances that required a revolving stage

The folded plate roof is 3.3 m deep for a span/depth ratio of 1:18. Two wings flanking the stage for meeting and green rooms, also have folded plate roofs.

Shopping Center, Würzburg, Germany

Architect: Schönewolff and Geisendörfer
Engineer: Julius Natterer
The folded plate wood roof modules are 7 m wide and span 16.25 m for the large space; 5 m wide and span 12.5 m for small spaces.
1 View of folded plate wood roof
2 Cross-section of typical folded plate module
3 Detail of valley joint
A Tie strut $135 \times 520 \mathrm{~mm}$
B Folded plate cross planking 4 cm
C Transverse ribs, $8 \times 16 \mathrm{~cm}$, spaced 1.9 m

1

3

5

Cylindrical shell behavior

Considering their name, cylindrical shells could be part of shells; but they are included here because they resist load primarily in bending, unlike shells which act primarily in tension and compression. Most cylindrical shells have semi-cylindrical cross-sections and act much like beams of such cross-section, spanning horizontally to transfer gravity load to supports. Similar to beams under gravity load bending in cylindrical shells cause compressive stress on top and tensile stress at the bottom; unlike vaults with primary span in width direction. Differential bending stress, pushing and pulling on top and bottom generates horizontal shear stress in cylindrical shells. To satisfy equilibrium, horizontal shear causes also vertical shear which can be visualized as tendency of individual parts to slide vertically with respect to one-another. Stress distribution over the cross-section is also similar to beams. Bending stress varies from maximum compression on top to maximum tension on the bottom, with zero stress at the neutral axis. In contrast shear stress is maximum at the neutral axis and zero oniop and bottom. Compressive stress in cylindrical shells causes buckling which cien be resisted by crosswalls or ribs.

1 Compressive stress on tom, ter sile stress at botion, with some arch action
2 Horizontal shear generated by differential combiessive and tensile stress
3 Vertical shear visuaized
4 Beriding stress distribution
Shearstress distribution
6 Buckiting under gravity load
7 Buckling under lateral load
8 Wall panels to resist buckling
9 Ribs to resist buckling

Configurations

Cylindrical shells can have various configurations: cross-sections of half or quarter cylinders, or other curved forms; they may have closed ends or be open at one or both ends; they may be simply supported, cantilevered, or span two supports with one or two overhangs. The end units may be open or closed. Butterfly cross-sections are also possible if designed to resist bending in width direction. The intersection between adjacent shells must incorporate a gutter to drain rainwater. In snow areas, horizontal cylindrical shells are problematic, since snow would accumulate in the valleys.
1 Semi-circular cylindrical shells, simply supported, with glass ends
2 Shallow units cantilever from a beam, designed to resist rotation
3 Butterfly units, cantilevered from pylons

Skylights

Various skylight forms maybe integrated with cylindrical shells. This has been a popular solution for natural lighting of industrial buildings. Combining the inherent strength, stiffness, and stability of cylindrical shell forms with natural lighting is a logical design strategy. The skylights may be inclined in the shell form, or flat on top, or in the vertical plane of a quarter-cylindrical shell. Skylights could be incorporated with a truss as part of the cylindrical shell. An important factor in integrated skylights is waterproofing to prevent leaks, and to incorporate some form of gutter for drainage.
1 Cylindrical shell with truss skylight
2 Skylight on top of cylindrical shell
3 Vertical skylight with cylindrical shell of quarter cross-section

Kimbell Art Museum

Architect: Louis Kahn

Engineer: Kommendant

The Kimbell Art Museum is composed of three parts: the central main entrance, facing bookstore and library is flanked by two gallery wings, one on each side. The gallery wings include atrium courtyards. The entire facility is composed of 16 modules of about $30 \times 100 \mathrm{ft}(9 \times 31 \mathrm{~m})$. The modules consist of cycloid shells, $24 \mathrm{ft}(7.3 \mathrm{~m})$ wide with a flat part of $6 \mathrm{ft}(1.8 \mathrm{~m})$ between them (the cycloid cross-section is formed by a point on a moving wheel). A 30in (76 cm) wide skylight extends on top of each shell unit. A metal deflector below each skylight reflects the daylight against the interior surface of the cycloid shells for indirect natural lighting. The cycloid shells consist of post-tensioned cast-in-place concrete. They where cast by using a movable form-work used repetitively. The flat roof between cycloid shells forms an inverted U to house mechanical ducts and pipes as required.

1 Exploded isometric view
2 Cycloid, formed by a point on a cycle that moves horizontally
3 Cross-section of cycloid shells
A Point on the cycle that
B Cycloid traced by the point on a cycle
C Linear skylight
D Reflectors of polished metal
E Mechanical ducts
F Duct cover

California Museum of Science and Industry

Architect: California State Architect Office

Engineer: T. Y. Lin and Associates
The roof of this rectangular museum consists of ten cylindrical shells and two half shells as curved overhangs on the north and south sides. A group of eight inverted conical shells provides a canopy for the main south side entry. The cylindrical shells provide spatial relief and articulation for this stark rectangular plan. They continuo over two bays and have span/depth ratios of 10. Post-tensioned tendons are draped to approximate a parabola in space. Reflecting the bending deformation of the shells, the parabolic form has an uplifting effect to counteract and minimize deflection. The tendons are prestressed to produce a camber, designed to offset deflection due to dead load and partial live load. The cylindrical shells where site-cast, using lightweight concrete. 80% of normal weight concrete) to minimize dead load. This is important in areas of seismic activity, like Los Angeles, since seismic forces are pioportional to mass, which corresponds to deadweight. The shell thinkess increases toward the base where they form beams between adjacent units

1 Isometric roof plan
2 -Length section in east-west direction
3 Trpical shell cross-3ection
A Post tensioned prestress tendons, draped to offset deflection

Kindergarten Yukari, Tokyo

Architect: Kenzo Tange

The fan-shaped plan of the Yukari Kindergarten for 280 children is designed in response to a conic site of mild slope. The director of the facility, an artist, wanted an environment of artistic inspiration for children of this kindergarten. The plan and space are strongly defined by prefabricated cylindrical concrete shells, consisting of twin quarter-circular elements with top stems for assembly and to hold the prestress tendons. Fan-shaped shells accommodate the plan layout: each twin unit covers a modular space; large spaces are covered by several units. Glass end walls emphasize the cylindrical shells and extend them visually to the outside. Unit lengths vary with the spatial requirements. The plan shows at left the roof and at right the floor plan with shells as dotted lines.

14

HORIZONTAL SYSTEMS

 Tensile ResistantTensile-resistant systems include stayed, suspended, cable truss, anticlastic, and pneumatic structures. Although compression, bending and shear may be present in some tensile structures, tensile stress is most prominent. For example, cable-stayed systems may include bending resistant beams and joists, yet they are secondary to primary stay cables or rods. Compared to bending and compression, tensile elements are most efficient, using material to full capacity. Bending elements use only half the material effectively, since bending stress varies from compression to tension, with zero stress at the neutral axis. Compression elements are subject to buckling of reduced capacity as slenderness increases. Furthermore, some tension elements, such as steel cables, have much greater strength than columns or beams of mild steel, because they are drawn (stretched) during manufacturing to increase strength. However, the overall efficiency of tensile structures depends greatly on supports, such as ground anchors. If poorly integrated, they may require a large share of the budget. Therofore effective anchorage is an important design factor. For example, the USe of self-siabilizing compression rings or infrastructures, such as grandstands, to resist tensile forees can be an effective means of reducing support cosits.

Tension members

stee rod

$\mathrm{E}=30,600 \mathrm{ksi}, \mathrm{F}_{\mathrm{a}}=30 \mathrm{ksi}, 100 \%$ metallic
Strand consists of 7 or more wires (provides good stiffness, low flexibility) $\mathrm{E}=22,000$ to $24,000 \mathrm{ksi} ; \mathrm{F}_{\mathrm{a}}=70 \mathrm{ksi}, 70 \%$ metallic
3 Wire rope consists of 7 strands (provides good flexibility, low stiffness) $\mathrm{E}=12,000$ to $20,000 \mathrm{ksi}, \mathrm{F}_{\mathrm{a}}=70 \mathrm{ksi}, 60 \%$ metallic

1

Prestress

Tensile structures usually include flexible membranes and cables that effectively resist tensile forces but get slack under compression. Yet, under some load conditions, compressive forces may be induced in flexible tensile members. Prestress allows flexible members to absorb compressive stress without getting slack which would cause instability. Prestress also reduces deformation to half. These phenomena may be observed on a simple string.

Consider a vertical string fastened on top and bottom. If a load is applied at mid-height, the top link absorbs the entire load, and the lower link will get slack and unstable.
Now consider the same string prestressed (with turnbuckles for example). The same load applied at mid-height will be carried half by the top link (throngh iincrease of prestress) and half by the lower link (through decrease of prestress) Sirce both links are active, each will absorb only half the load, reducing the deformation to hali and avoiding the lower link from getting slack ansuanstable. Sirce half the loadis absorbed by each link, when the applied load reaches twice the prestress or mimore, the lower link will get slack, just as the sting with no prestress. Given similar conditions in a structure, prestress sinold be at least half of the design load to prevent slack members and instability Also, loss of prestress due to creep and temperature variation should be considered.
-
The correlation between prestress, load, and deformation, described above, is visualized in the stress/strain diagram below.
1 String without prestress
2 String with prestress
3 Stress/strain diagram of both strings
A Stress/strain line of un-prestressed string
B Stress/strain line of prestressed string
C Point where prestress is reduced to zero under load
D Stress/strain line of string after loss of prestress
F Force
f Stress
P applied load
PS Prestress
Δ Deformation

Stayed Structures

Stayed structures consist of beams or trusses that are intermittently supported by strands or rods (strands and rods have greater stiffness than wire ropes and hence reduce deflection). Although stays usually support structures, pulling from above, they may also push from below by means of compression struts. The latter is also referred to as cablepropped or just propped. Given the slope of stays, they generate not only a vertical uplift but also a horizontal reaction in the supported members and masts. In beams the horizontal reactions yield compression; in masts they introduce bending and overturn moments, unless stays on both sides balance the horizontal reactions.
The span/depth ratio of stayed and propped structures is an important design factor. A shallow depth results in great tension and compression in stays and beam respectively, a steep slope has the opposite effect. The relationship of cable slope and restring forces is illustrated in the diagrams, showing various slopes and resultingiorces ior an assumed gravity load as vertical vector. Optimal span/depth ratios, depend or both, architectural and structural factors. Architectura! faciors include appearence and spatial considerations. Structural factors irciude the irmpact on' deflection, overall cost of stays, beams, masts, and compression struts, As a rule ar thumb, the optimal slope for stays is about 30 degrees. Optimum span/dept. ratio tor propped systems is about 10 to 15.

Step stay siope causes small forces but high masts
Star slope of 25° to 30° is usually optimal
Shallow stay slope causes high forces but low masts
Steep props cause small forces but great depth
Span/depth ratio of about 10 to 15 is optimal
6 Shallow props cause great forces but small depth

5

6

Configurations

Stayed structures may have radial or parallel strands, called radial and harp systems, respectively. Combinations of both systems are also possible. Harp systems have constant stay forces; the force of radial systems varies with the stay slope. The tributary length between radial stays may be adjusted to keep forces constant, i.e., strands with shallow slope support small tributary lengths.
1 Radial system (stay forces vary with slope)
2 Harp system (constant stay forces)
3 Mixed system, combining radial and harp patterns
4 System with variable distance between stay supports to equalize stay forces

1

For light-weight roofs, with wind uplift greater than the roof dead weight, stays could by added roof to resist wind uplift. Stays can also branch out like trees to reduce length. Single masts must be designed to resist overturning under unbalanced load. One-sided load causes unbalanced conditions that require guy cables. The dead weight of an inclined mast may help to balance loads.
1 Stay cables below the roof resist wind uplift
2 Inverse tree stays reduce length but require more joints
3 Single tower with tie-downs at both beam ends to resist overturning
4 One-sided support with guy cable are unbalanced and less efficient; the inclined mast can help to balance the one-sided load

3

4

4

McCormick Place, Chicago (1987)

Architect: Skidmore, Owings and Merrill
Engineer: Knight and Associates
The expansion of McCormick Place exhibit hall, located over existing railroad tracks, required a long-span roof to provide column-free exhibit space without interfering with the tracks. Several structure systems had been investigated before selecting a stayed roof. The roof is suspended from 12 concrete pylons, spaced $120 \times 240 \mathrm{ft}$, with 120 ft overhangs on both long sides. The pylons project 60 feet above the roof. The clear interior height is 40 feet. Stay cables consist of 3.75in galvanized steel strands, coated with corrosion resistant PVC, arranged in parallel harp form at an angle of 25 degrees. The stays support steel trusses which support secondary trusses, both 15 ft deep and exposed at the interior. The concrete pylons are shaped to incorporate mechanical ducts which bring conditioned air from a mezzanine below the main floor and exhaust it ovsit the roof, without mechanical equipment exposed on the roof. The ronf trass edges are fiad to the podium of the main hall to provide stability for unhalanced load. The podiurn is supported by steel columns, spaced to accommodieto the rail tracks. Cornbined with the deep trusses, the stays have enoligh edurdancy that they can ne removed and replaced without affecting the structure's integrity. A qlass barid along the entire façade under the roof trusses arid roofsinvlights, provide natural lighting.
1 Isometio rooi structure
2 Cross-section of upper level with stayed roof
3 Mid-span stay support detail
4 Roof edge detail
A Concrete pylons, shaped to accommodate mechanical ducts
B Stays, 3.75in galvanized steel strands, PVC coated
C Truss web bar
D Stay connection bracket
E Steel tie secures roof to [odium

Patscenter, Princeton, USA (1986)

Architect: Richard Rogers
Engineer: Ove Arup and Robert Silman
Patscenter is a research facility for PA Technology. The stayed roof structure was chosen to provide column-free work space and to express technology as architectural language desired by the client. One design criteria was to resist wind uplift load without added dead weight on the roof. Based on a module of $4.5 \times 9 \mathrm{~m}$, the single-story facility measures $54 \times 72 \mathrm{~m}$. The plan layout, as well as the structure and service technology are all arranged along a central spine, 9 m wide and flanked by two 22.5 m wide work areas. The entire roof is suspended from 9 triangular pylons, spaced 9 m along the central spine and supported by moment resistant portal frames. Steel stay rods on each side of the pylons branch out to support the roof. Intersecting joints for the branches consist of circular steel plates to which the rods are attached by means of stanclerd ititirigs. Steel rods where chosen over stay cables for greater stiffness and to faciitate paining. The two inner stays are compression struts to resist wind uplift, with both outer stay secured to columns that are tied to foundations. Using graptric vecior analysis, the engineers studied the gesmetry of the irveited ree brancios to determine branch forces and overall stability. Treroof rests on joisis, spaced at 4.5 m , spanning 9 m between beams which are suspended fo m the pylons by stay rods. The beams continue over the full width bi Each wing. A platform for mechanical equipment is suspended by rods of triangular configuration to provide lateral stability for the pylons in length direction. In width direction, lateral stability is provided by the triangular pylons and moment frames along the central spine.

Pan Am Terminal, J F K airport, New York (1959)
Architect/Engineer: Tippetts, Abbet, McCarthy, Stratton
This air terminal was designed with a large overhanging roof to protect boarding passengers. Passenger circulation is straight forward. Departing passengers arrive at the center and fan out to the peripheral departing gates. Arriving passengers proceed in reversed direction. The structure, completed in 1959, was designed with an elliptical roof of $422 / 528 \mathrm{ft}$, with overhang that projects 114 ft beyond the building enclosure. Thirty-two radial steel girders are supported by stays, each consisting of six 2.5 in zinc-coated strand bundles. The stays, attached near the edge of the steel girders, run over saddles of a mid ring of concrete columns and are anchored to an inner ring of columns. The position of columns is such that the girder load on both side is approximately balanced, a strategy which made this giant overhang economically feasible. Steel ioists, spaced 13 ft span between the radial girders to support the roof metal deck.

Roof plan

Section Mast top detai

Stays, $6-2.5$ in ϕ strands at each
Stay saddle, rests on concrete columns
32 radial steel girders, 4.5 ft to 7 ft deep

1 B

Propped Structures

Propped structures are supported from below rather than from above the horizontal span members. They may consist of one or more struts which, propped by a strand or rod, give elastic support to a girder. Struts require fixed connections to the girder to prevent rotation; or they may form triangular configurations. The connection of tension members may be concentric or eccentric. Concentric connections exert uniform compressive stress on beams. Eccentric connections may be designed to cause negative support moments that reduce the positive span moment and deflection.

A Concentric tie joint
B Eccentric joint (may reduce beam bending)
1 Twin struts with concentric tie connection
2 Single strut with eccentric tie connection to reduce beam bericing
3 V-struts supporting two adjacent beams provine lateral-bracirg
4 Vertical and V-struts supporting theee adijacent beams provide lateral bracing
5 Continuous propped beari
6 Gable with propped rafters supporited by buttress to resist lateral thrust
$7 \square$ Gable with propped iafters ard tie rod to resist lateral thrust

St. Martin Church, Ingolstadt, Germany (1981)

Architect: Hempel and Brand

Engineer: Sailer + Stepan
A simple gable roof over a rectangular plan defines the space of this church. The exposed wood structure adds natural warmth and a sense of balance. Six laminated three-hinge twin-girder assemblies, span 20 m across the full width of the nave. The twin girders rest on concrete piers that cantilever from footings to resist gravity load, lateral wind load and part of the outward roof thrust. Roof purlins that span between girders support tongue-and-groove boards of diagonal patterns. The diagonal patterns stabilize the roof for lateral wind load.

1 Structure system
2 Half section of three-hinge twin girders with prop cable and sirit
Roof purlins; $20 \times 20 \mathrm{~cm}$, spaced 1 m
B Twin girders; 2-20x50 cm, spaced 5 m , span 20 m
C Steel rods support twir girders and resists butward thrust

2

1

3

Concert Hall, Snape, UK (1967)

Architect/Engineer: Ove Arup
Remodeling this former malt house into a concert hall had to be done with care to preserve the original character of the malt house, including the roof shape with four large wood ventilation shafts. The concert hall with 840 seats measures $18.3 \times 42 \mathrm{~m}$ and has a height of 15.5 m to the flat part of the trapezoidal roof. The roof trusses are spaced 3.8 m , span 18.6 m and consist of:

- Twin rafters
- Compression struts
- Tension rods

The trusses are supported by peripheral walls. The twin rafters are propper by two diagonal compression struts which are supported by tie-rods that are part of ine lattice truss. A compression strut links the rafters on ton Longi(udinal joists suppor two ayers of planks that make up the roof diaphragm

1 Roof plan
2 Cross-section
$3 \square$ Tension rod jcirt
4 Tersion rod to rafter connection
A. Diagonal compression struts, $9.5 \times 11 \mathrm{~cm}$ lumber

B Steel plates
C Tie-rods, 19 mm diameter
D Top compression strut, $9.5 \times 23 \mathrm{~cm}$ lumber
E Rafters, 2-4.5x23cm lumber

Suspended Structures

Suspended structures are used for long-span roofs. They are most effective if the curvature is compatible with spatial design objectives, and the horizontal thrust is resisted by a compression ring or by infrastructures, such as grandstands. Suspended cables effectively resist gravity load in tension, but are unstable under wind uplift and uneven loads. Under its own weight a cable assumes the funicular shape of a catenary (Latin for chain line). Under load uniformly distributed horizontally, the funicular will be parabolic; under point load the funicular is a polygon. Thus, without some means of stabilizing, cables assume different shapes for each load. Furthermore, under wind uplift suspended cables tend to flutter. Several means can be used to stabilize cables for variable loads and wind uplift. Among them are stabilizing cables, anticlastic (saddle-shaped) curvature, described later, and ballast weight. However, in seismic areas ballast weight would increase the mass and thus lateral loads.
1 Suspended roof with compression ring to atosorb lateral thrust

Catenary funicutar under cable seli weicht

Paraboic tunicular under hiorizontally distributed load
Polvgoriunicular under point load
Deformed roof under point load
7 Deformed roof under uneven load (snow at one side, for example) Roof subject to wind uplift

Roof with convex stabilizing cables to resist uplift and uneven loads Dead load to resist uplift and reduce deformation under uneven load

Span/sag ratio

The span/sag ratio of suspended roofs is an important design factor (span is the horizontal distance between supports and sag the vertical distance between supports and cable low-point at mid-span). Considering constant gravity load, the effect of various span/sag ratios can be seen by equilibrium vector polygons at the supports. Constant gravity load causes approximately constant vertical reaction V for all sags, but horizontal reaction H and cable tension T vary with the span/sag ratio. Consider the cable at left under uniform load. The three equilibrium vector triangles below the cable clearly show:

- A small sag (shallow roof) causes a large cable force and horizontal thrust
- A big sag has the opposite effect but requires tal and more costly supports

The optimal span/sag ratio is usually about 10 , depending on space requirements
f Sag: distance between supports and cable low point aitmic-span
L Length of span between supports
H Horizontal support reaction
T Maximum cable tensior
\checkmark Vertical supporireaction

O (

Dulles airport terminal, Washington, DC (1958-62)

Architect: Ero Saarinen
Engineer: Ammann and Whitney
The Dulles international airport terminal near Washington, DC, has a cable roof supported by concrete pylons. The outward leaning pylons partly resist the cable thrust. Based on the dimensions of movable loading docks, designed by Saarinen, the pylons are spaced at $40 \mathrm{ft}(12 \mathrm{~m})$ for a column-free concourse space of $150 \times 600 \mathrm{ft}(46 \times 183 \mathrm{~m})$, recently expanded, extruding the same structure. Given the slanted pylons, the suspension cables actually span $161 \mathrm{ft}(49 \mathrm{~m})$. Concrete edge beams span the pylons at heights that vary from $65 \mathrm{ft}(20 \mathrm{~m})$ along the entry to 40 ft (12m) facing the runways. Suspended from the edge beams are 128 bridge strands of \varnothing 1in $(25 \mathrm{~mm})$ which support site-cast concrete roof panels. The concrete dead weight resists wind uplift and minimizes roof deformations under unbalanced roof loads. In Saarinen's own wiords the Dulles roof is "a strong form between earth and sky that seems bsth to rise from the plain and hover over it." It presents functional integrity and synergy of form and striciure

1

1 Burgo factory, Mantua, Italy (1961-63)
Engineer: Pier Luigi Nervi
The large production machines of this paper factory required a column-free interior space of $30 \times 250 \mathrm{~m}$ and a 140 m opening between exterior supports. Nervi's solution was a roof structure like a suspension bridge. Two concrete frames support four parabolic cables from which a flat concrete roof is suspended by hangers. The frames are braced as inverted Y's for lateral stability in length direction. The suspension cables' lateral thrust is resisted in the concrete roof slab. A glass wall provides the non-structural enclosure.

2

2 Lufthansa aircraft hanger, Frankfurt (1968-72)
Architect: Beckert \& Beckert
Engineer: Helmut Bomhard, Dyckerhoff \& Witmann
This aircraft maintenance hanger of $100 \times 270 \mathrm{~m}$ accommodates up to six 747 jets. Large hanger doors required the roof to span the long way, with a concrete girder on two columns supports at mid-span. Recessed columns create overhangs to reduce the girder bending moment. The roof consists ten bands of pre-stressed, suspended concrete slabs, separated by linear gable skylights. Given an overall height limit of 34 m for air traffic safety, and an interior height of 24 m , the roof structure was limited to 10 m depth for a span/depth ratio of 13.5 between supports. At both ends the suspension roof rests on inclined supports with ballast weight to resist lateral trust. Prismatic steel containers filled with concrete provide the ballast. Straight horizontal tension strands resist outward support displacement under wind uplift, restrain the ballast gravity load, and contribute to overall stability. Perpendicular struts tie the suspended slabs together for rotational stability. The curvilinear roof, flooded with natural light, creates a floating interior space, in contrast to the normally heavy material of concrete.

1

Sports hall, Dijon, France (1976)

Architect: J. F. Devaliere
Engineer: R. Weisrock, SA
With floor plan dimensions of $47.25 \times 70 \mathrm{~m}$, this sports hall has a suspension roof spanning the length in response to an interior profile of spectator seating for 4,000 . Glue laminated tension girders; spaced 6.75 m are suspended from concrete piers with pin joints. They act primarily in tension, but have sufficient bending stiffness to resist deformation under unbalanced gravity load and wind uplift. To facilitate transportation, they are spliced at center. Glue laminated joists, spaced at 2.53 m ; support a metal roof with thermal insulation. Wood struts brace the girders to the joists against rotation. Roof heating is provided to remove snow. A grid of diagonal wood slats provides lateral wind tiaacing in the roof plane.

1 Roof plan
2 Cross-section
3 Isometric roof framing detail
A Glue laminated tension giraers, $15 \times 1500 \mathrm{~m}$
B Guelaminate joists, $11 \times 33 \mathrm{cmin}$
0 Diagional vood bracing slats
D Girder bracing, $5 \times 15 \mathrm{~cm}$

Recycling hall, Vienna (1981)

Architect: L. M. Lang

Engineer: Natterer and Diettrich

This recycling center features a tent-like wood structure of 560 feet (170 m) diameter that soars to a height of 220 feet (67 m) above ground, supported by a central concrete mast. The suspended wood roof consists of 48 radial laminated ribs that rise from outer concrete pylons with wood compression ring to the mast top. The ribs follow the funicular tension line to carry uniform roof load in pure tension, but asymmetrical loads may cause bending stress in the radial ribs that are designed as semi-rigid tension bands with some bending resistance capacity. Diagonal boards form the roofing membrane and add shear resistance to the assembly of ribs and ring beams. The cylindrical concrete support mast cantilevers from a central foundation. It was designed to resist asymmetricai erection loads and to contribute to lateral wind load resistance. The periotreral pyions are triangular concrete walls with metal brackets on top to secure the radial ribs.

```
Cross section
Roof plan
Top of ceniral surport mast
Tynicail ioot assembly
Radial laminated wood tension rib, \(7.8 \times 31-43\) (20x80-110cm)
Laminated wood ring beams, \(5 \times 15 \mathrm{in}(12 \times 39 \mathrm{~cm})\)
Laminated wood compression ring
D Steel tension ring
E Steel anchor bracket
```


14-16 HORIZONTAL SYSTEMS Tensile Resistant

9 Concave gable truss with fan support and stabilizing cables and central compression strut
10 Concave gable truss with tension struts and central compression strut
11 Concave support cable and fan stabilizing cables
12 Parallel chord truss, vertical compression struts and diagonal tension braces

1

2

3

Parallel chord cable truss

The load bearing mode of parallel chord cable trusses is more complex than that of concave or lintel type trusses since they have no funicular cable but it may be explained as follows.

Consider a four-bay truss with loads P1 and P2. They are transferred to the supports be a polygon formed by the center bay bottom chords and end-bay diagonal braces. A third load applied at the center strut is transferred by a second polygon in conjunction with the latter one. Thus, half the bars resist the load in active tension and the other (passive) bars resist the load by reducing prestress. For uplift wind load the load bearing is reversed with active bars becoming passive and vice versa. This load bearing mode applies also to trusses with more bays, as long as they are prestressed in order for passive bars to resist load by reducing prestress. In these trusses the prestress must be externally stabilized. Trusses with compression chord bars may be internall; stabilized and simply supported. In order to avoid slack cables, prestress must we at least half of the design load stress as described at the beginning of this crapter. When prestress approaches zero under load, the bar forces are about equal io those in a corviventional truss under equal load and propoffions and car be found by graphic vectors or other static methods.
$1 \square$ Externailo prestressed cabie truiss with four bays
Load bearing oolvgon formed to resist two loads
Load bearing polygons to resist three loads
Externally stabilized truss with six bays
5 Internally stabilized truss with six bays

1 Open air theater Ötigheim, Germany (1961)

Architect: E. Heid
Engineer: Jawerth
The roof structure for this largest German outdoor theater resembles a hammock with cable trusses that span between two girders that are supported by two columns each. The cable trusses span 37 m (121 feet) between the girders and converge to two ground anchors. The truss depth of 3.6 m (12 feet) results in a span/sag ratio of about 20 for concave and convex cables that support gravity load and wind uplift, respectively. Crescent-shaped seating layout, with two columns near the front edge, provides unobstructed views for most seats. The prestressed cable trusses stabilize the girders against buckling and rotation. The roof consists of metal deck and two membranes over rigid insulation. The rigid insulation dampens rain water pounding, rather than providing thermal insulation which is not needed for the outdoortheater.

2 Plan, open air theater Ötigheim

The plan shows the area between side girders represerts as square of $37 \times 37 \mathrm{~m}$ (121×121 feet). The radial corivergence of cable trusses toward ground anchors induces compressive stioss in addition to bending stress in the girders. The girder bending momeits could ha ee been. greatly reduced by recessing the columns to provinde overhangs of about $1 / 3$ the span between columns. The column recess woulư have aiso improved unobstructed views from most seats.

3 Factory at Lesjöers, Sweden

Architect: Lennart Bergström
Engineer: Jawerth
The factory features cable trusses, spaced 4 m (13 feet) with intermediate supports. Five bays of 16 m (53 feet) and two end bays of 6 m (20 feet) provide a total length of 92 m (302 feet). Continued arrangement balances lateral trust of adjacent trusses. Linear skylights over the supports and at truss mid-spans provide natural lighting. The inclined end supports equalize forces in guy cables and truss cables. The angle of inclination can be determined by graphic vectors: equal angles between mast and cables causes imply equal cable forces.

Auditorium Utica, USA (1958)

Architect: Gehron and Seltzer
Engineer: Lev Zetlin
For a seating capacity of 6,500 , the Utica auditorium has a circular plan of $240 \mathrm{ft}(73 \mathrm{~m})$ diameter. Radial cable trusses of concave lintel profile provide the roof structure. Compression struts separate bottom and top strands. The cable trusses are supported by a circular exterior concrete compression ring and connected to two steel tension rings at the center. The circular compression ring is a highly efficient method to support cable roofs, eliminating the need for costly lateral supports. The cable trusses are prestressed by jacking the central tension rings apart. Different lengths of top and bottom chords induced different prestress and natural frequencies to reduce vibration due to wind gusts. The bottom support cables are 2 in $(50 \mathrm{~mm})$ zinc coated strands with 175 kip prestress. The stabilizing top cables are $15 / 8 \mathrm{in}$ (41 mm) strands with 135 kip prostress. The roof was erected in three weeks, with temporary support of the centrait tensior ting oniy.

A Circular concrete compression Ting
B Top stabilizing cable, teis (42min) strands
C Steel compression struts
Bettorn cable, 2" (50mm) striands Stee tersion ring

Convex alternate

It is of interest to consider the implications of an alternate convex roof. Cable trusses of convex profile require two outer compression rings but only one central tension ring. The vertical compression struts can be replaced by tension rods. Two compression rings would likely cost more than a single compression ring since compression rings have to be designed to resist buckling under unbalanced load... The inward sloping roof would require rain water to be removed by pumps, but the concave Utica roof is self-draining.

Anticlastic Structures

Anticlastic tensile structures are flexible membranes or cable nets of saddle-shaped curvature. The term membrane is used here to imply membranes and cable nets. Given the nature of flexible membranes, double curvature and prestress are essential for stability. This can be observed with simple string models. Two strings pulled in opposite directions stabilize a point at their intersection. If the strings are in non-parallel planes the stability will be three-dimensional. Similarly, if a series of strings cross in opposite directions they stabilize a series of points at their intersection. The cross points form a surface, stabilized by anticlastic curvature. The surface may be a membrane of fabric or other material or a cable net. Although anticlastic curvature provides stability, some elastic deformation is possible due to material elasticity. Thus, steel cable nets with high elastic modulus deform less than fabric membranes with lower stiffness.

In addition to curvature, prestress is also required to stabilize anticlastic inembranes. This too can be observed on a string model. Applied load slongates one string in tension and shortens the other in compression. Withomi prestress the compressea sting will get slack and unstable; but prestressed sirings absorb conipressive stress by reduction of prestress. Since prestress rencers bott string:s active to resist load, the resulting deflection is reduced to half comparte to mon-prestressed condition where only one string is active. This observation is also described under Prestress at the beginning of inis ch anier.
Flat membranes are unstable. This, too, can be observed on a string model. Two strings in a flat surface must deform into a polygon to resist load (a straight string would assume infinite forces). Therefore, flat membranes are unstable under load. Similarly, synclastic (dome-shape) membranes would deform excessively under gravity load and flutter in wind.

1 Two strings crossing in non-parallel planes stabilize a point in space
2 A series if strings (or a membrane) form a stable surface
3 Without prestress, one string (or series of strings) would get slack under load, causing instability
4 Strings in a flat surface deform excessively under load, causing instability

Minimal surface

As the name implies, a minimal surface covers any boundary with a minimum of surface area. The minimal surface is defined by three criteria:

- Minimum surface are between any boundary
- Equal and opposite curvature at any point
- Uniform stress throughout the surface

A minimal surface may be anticlastic or flat. A surface of flat or triangular boundaries is always flat. Flat membranes are unstable structures. Increased curvature increases stability. The minimal surface can be studied on soap film models; but they disappear quickly. The author studied quadrilateral plastic models that keep a minimal surface after drying. The models revealed:
f1/f2 $=A / B$
This is contrary to Hyperbolic Paraboloid shells. The surface of HP shells passes at midheight between low and high points regardless of boundary conditions.
1 Minimal surface of square plan
2 Minimal surface of rhomboid plan
3 Hyperbolic Paraboloid of square plan
4 Hyperbolic Paraboloid of rhomboid plan

Minimal surface equations

The minimal surface models also revealed equations that define the principle curvature of equilateral minimal surfaces (Schierle, 1977):

$$
\begin{aligned}
& Y=f 1(X / S 1)^{(f 1+f 2) / f 1}+X \tan \phi \\
& Y=f 2(Z / S 2))^{(f 1+f 2) / f 2}
\end{aligned}
$$

The equations are based on empirical studies of minimal surface models of plastic film, measured by means of a projected light grid with an accuracy of only 1.26% standard deviation. The findings were first published in the Journal for Optimization Theory and Application (Schierle, 1977)
Although the equations are for minimal surface of quadrilateral plans, they provide reasonable accuracy for other boundaries as well. This should be further studied.
1 Plan view of quadrilateral minimal surface
2 Length section of quadrilateral minimal surface
3 Length section with Y -axis vertical
4 Cross section

Cable nets

Anticlastic cable nets may approximate a minimal surface. However, even if mesh cables have equal prestress, minor mesh distance variations cause uneven density and stress distribution. Various cable net configurations are possible. The method of manufacture is a primary factor in defining a cable net. If assembled on-site, support cables may be strung from edges to hang in vertical planes. Stabilizing cables may also be placed in a vertical plane position. Such a net could have perfectly square meshes in plan projection. Cables could also be arranged following the principle curvatures with the least distance across the surface. Such a net is more complex to manufacture. A cable net can also be prefabricated as an orthogonal grid of equal meshes flat on the ground. The meshes deform from squares into rhomboids to assume the anticlastic curvature. This method was used for the German pavilion of the 1968 Montreal Worlds fair and for sports facilities of the 1972 Olympic Games in Munich. Cables parallel to the edges are nearly straight, like generating lines of a Hyperbolic Paraboloid shell. Such flat cables will deform much more under applied load than curved cibles. This Was first demonstrated by tests the author conducted with siudents at the University of Califiornia, Berkeley in 1967. One cable nets was tested with curved cables arin the other with flat cables. Under equal load the net vith flat cables deformed about six times more than the one with curved cables. The test resills, diawn as dots on both nets, show the great difference in siifress. It is clear from this test, later confirmed by computer, that nets vith flactables are noia viable solution as structures. The test results have been widely published.)
1 Net with cables arranged in vertical planes, with square grid projection
2 Net with cables in direction of principle curvature
3 Net of square meshes, prefabricated flat, deform into rhomboids in space
4 Net of cables running nearly straight in direction of generating lines
5 Net 3 under gravity load (dots show small deformations)
6 Net 4 under gravity load (dots show 6 times greater deflection than net 3)

Edge conditions

Anticlastic structures may have three edge types: cable, arch, beam/truss. Cables resist membrane stress in tension, forming a curve of equal radius in space under uniform prestress. Arches resist primarily in compression, with bending under some loads. Edge beams resist in bending and trusses axial mode. Regarding architectural objectives, straight beams or trusses are easy to connect walls, but edge cables require more complex enclosures.

Surface conditions

Anticlastic membranes may have four surface conditions with many variations: saddle shape, wave shape, arch shape, point shape. The most appropriate type for a given situation is determined by architectural and structural considerations.

Pioneering structures (1953)

State Fair Building, Raleigh, North Carolina
 Architect: Novicki and Deitrick

Engineer: Severud, Elstad, Krueger
Built in 1953, the Raleigh arena was the first saddle shape roof of curved cables (Schuchow's 1889 Nischni Nowgorod exhibit anticlastic cable roof had straight cables. The support cables span 300 ft with 31 ft sag , for a span/sag ratio of 9.7. The concave support cables, spaced about 6 ft vary from $3 / 4$ to $15 / 16$ inch, the convex cables vary from $1 / 2$ to $3 / 4$ inch. The concrete compression arches are inclined about 22 degree to the horizontal and supported by concrete covered steel columns. The roof consists of corrugated metal with thermal insulation.

Hockey rink Yalo University (1958)
 Architect: Ero/Sabrinen

Enginger. Severua Elstad, Krueger
The 200 $\quad 05$ feet rink, built 1958, has an arch supported anticlastic cable net. The central concrete arch is designed to resists unbalanced load in bending, rather than using the cable net for stability. Both support and stabilizing cables are $13 / 4$ inch diameter, spaced 6 feet. The roof consists of 2×8 inch wood planking, nailed to 2×6 inch wood strips. The oval plan provides most spectators seating at the preferred location near the rink center.

Entry arch Kőln (1957)

Architect: Frei Otto
Engineer: Fritz Leonhard
This arch marked the entry of the 1957 Kőln garden show. The steel arch of 112 feet span and only 7.5 inch diameter is stabilized by the membrane to resist unbalanced loads and wind uplift. The membrane, projecting 39 feet on both sides of the arch is prestressed by edge cables which are supported by four steel masts.

Wave shapes

Recycling center project, Mil Valley, California (1971)
Architect: Neil Smith and G G Schierle
Engineer: G G Schierle
This structure was designed to expand easily in response to needed growth, using a modular system. A base module of $25 \times 80 \mathrm{ft}(7.6 \times 24 \mathrm{~m})$ is supported by $22 \mathrm{ft}(6.7 \mathrm{~m})$ high masts. Two half end modules provide enclosure at both ends. Only one base module with both end enclosures is shown here. For sustainable energy efficiency the membrane was designed of translucent natural canvass allowing natural daylight. Edge, ridge, and valley cables where designed as bridge rope for flexibility in adjusting to the curvatures. Membrane prestress was introduced by turnbuckle adjustment at cable ends anchored to helix ground anchors. Variable prestress was required in order forthe ridge cables to remain in vertical plains as required for repeatability of the moduies The prestress levels were determined by computer analysis. Mats were designed as standard steel pipes with pin joint attachreent of the foundation. The pirioints avoided bending stress for optimal efficiericy, moinent resisiant jo nts tvouid introduce bending stress in the masts under any inovenient

14-33 HORIZONTAL SYSTEMS Tensile Resistant

San Diego Convention Center (1987-89)

Architect: Arthur Erickson and a joint venture team
Engineer/membrane designer: Horst Berger
The San Diego Convention Center features a linear plan of 1.7 million square feet $\left(157,935 \mathrm{~m}^{2}\right)$. Part of the top level is designed as semi-outdoor exhibit space, covered with a wave-shape membrane roof covering an area of 300×300 feet. The membrane undulates between ridge and valley cables that are suspended from triangular concrete pylons spaced 60×300 feet. Openings at membrane ridges provide natural ventilation. The openings are protected by secondary membranes hovering above. Flying buttress masts, supported by guy cables, hold up the ridge cables to provide a column-free space. The guy cables are also suspended from the triangular concrete pylons. This creative support system makes the translucent roof appear hovering seemingly weightless above the space which is flooded in filtered natural light. The lightweight roof provides a stark contrast to the conventional concrete infrastructure. The concreto pyoms reinforce this contrast with compelling elegance. The Teflon-coated glass fiber mermbrene provides a fireproof enclosure as required for permanent structures.

Schlumberger Research Center, Cambridge, UK (1984)

Architect: Michael Hopkins
Engineer: Ove Arup
The Schlumberger Center conducts basic research for oil exploration which includes drilling, fluid mechanics, etc. that work in close cooperation. Thus a major objective was to facilitate contacts among theoretical and experimental researchers as well as administrators. The client also required an option for future expansion. The design features a 24 m wide central space for drilling equipment and a recreation area between two single story research wings with private offices, discussion rooms and laboratories, all separated from the central space by 21 mm thick sound insulation glass. The central space is covered by a removable fabric, suspended from a network of cables that are supported by braced steel frames. Three wave-shape membranes have two ridge cables each. The ridge cables are suspended from overhead guy cables. The translucent fabric provides natural lighting and is removable to provide access for replacing the drilling equipment.

Skating rink, Munich (1983)

Architect: Kurt Ackermann
Engineer: Sclaich Bergermann
This facility, initially designed as ice skating rink was recently converted into an inlineskating facility due to the increasing popularity of this new sport. The elliptical rink of $88 \times 67 \mathrm{~m}$ is covered by a cable net roof, suspended from a central arch and supported along the edges by a series if steel masts with guy cables. A prismatic trussed steel arch spans 104 m between concrete abutments. The arch supports the cable net and is itself stabilized by it. The cable net is suspended to the arch by means of looping edge cables along the central spine. The space between the edge cables is designed as a skylight that exposes the arch from the inside and provides natural lighting in addition to a translucent roofing membrane. The cable net of double strands has $75 \times 75 \mathrm{~cm}$ meshes to which a lattice grid of wood slats is attached at the joints. A translucent PVC nembrane is nailed to the lattice grid. This unusual combination of matrrials creates a unique interior spatial quality of quite elegance, contrasting the lightiress of the translucent fabric membrane with the warms of the wood lattice g idi.

$$
q
$$

Garden show pavilion Hamburg (1963)

Architect: Frei Otto
This pavilion for the international Garden Show 1961 covers an area of 29/64m and has 5.5 m high masts. The point shape roof was fabricated as flat fabric without patterns. The canvass stretched enough to assume the curvature between high and low points. The high points are supported by steel masts with laminated wood springs over octagonal steel ring to avoid stress peaks. Low points are anchored to the ground to resist wind uplift and act as drainage points with rain water collector basins. Membrane edge cables are anchored to the ground by guy cables.

Ice skating rink Villars, Switzerland (1959)

Architect: Frei Otto
The sunken skating area is surrounded by spectator seating and covered by a point shape canvass membrane roof of $32 \times 64 \mathrm{~m}$. The roof membrane hangs from three suspension cables that span the length of the rink with steel masts at both ends. Metal dishes distribute the membrane stress at support points. Light fixtures are suspended from the same support points. Guy cables anchor membrane edge cables to the ground.

Pneumatic Structures

Pneumatic structures are flexible membranes that derive their stability from air pressure. They usually have synclastic curvature like domes, but anticlastic curvatures are possible as well. Two generic types of pneumatic structure are air supported (low pressure) and air inflated (high pressure) systems. The air pressure in inflated high pressure structures is 100 to 1000 times greater than in air supported low pressure structures.
Air supported structures typically have a single fabric layer enclosing a space in form of domes or similar shapes. The fabric is supported by inside air pressure. However, considering human comfort, air pressure can be only slightly higher than outside atmospheric pressure. The low air pressure makes air supported structures more vulnerable to flutter under wind load. Since the usable space is under air pressure, door openings must have air locks, usually in form of revolving doors to minimize loss of air pressure. Air supported structures require continuous air supply, usjallily vich standby electric power generator to retain air pressure in case of power cuiage.
Air inflated structures are hermetically $\approx m \mathrm{l} \cdot \mathrm{s} \in \mathrm{d}$ volumes that are inilated unduer high pressure much like a footbali to provide sability. They cam have various tubular or cushion forms with high air pressure betweer iwd layers of fabric that provide usable space under normar air pressure The air pressure ranges from 2 to 70 meters of water, vieldir g 2.8 to 100 pounds per square inch pressure, enough to resist gravity and lateral cad. Without air pressure they would have no stability. Air inflated structures also require some continuous air supply to make up for pressure loss due to membrane leaks.
1 Air supported dome or vault
2 Air supported vault
3 Air supported vault with support cables
4 Air supported dome repetitions
5 Air inflated cushion
6 Air inflated tubular vault
7 Air inflated tubular dome
8 Air inflated cushion repetitions

US Pavilion, Expo 70, Osaka (1970)
Architect: Davis, Brody, Chermayeff, Geismar, De Harak
Engineer: David Geiger
The US Pavilion was the first large-scale pneumatic structure in 1970 with an elliptical plan of 466×272 feet (142×83 meters); yet rising only 20 feet (6 meters) from a peripheral earth berm, the structure had a very low profile. This shallow curvature was possible because the translucent roof membrane was laced to a grid of diagonal cables, spaced 20×20 feet (6×6 meter) that provided the primary support. The tension cables were supported by a concrete compression ring on top of the earth berm by means of adjustable anchor bolts. The compression ring formed a gutter to collect rain water along the periphery. Bending moments that could have been generated in the compression ring resulting of asymmetrical loads, were transferred to and resisted by the earth berm. The pavilion impressed not only by its great size but by its combination of understatement and technical innovation and refined sophistication.

Elliptical roof plan
2 Length section
3 Laced membrane to cable attach ment
Concrete compression wing with gutter and aújustable cable anchors

Fuji Pavilion, Expo 70, Osaka (1970)

Architect: Yutaka Murata
Engineer: Mamoru Kawaguchi
The Fuji Pavilion housed an exhibit and light show of the Fuji Corporation in a unique, organic form. Over a circular floor plan of 164 feet (50 meter) diameter, the pavilion featured a vaulted fabric structure composed of 16 pneumatic arched tubes. The tubes of 13 feet (4 meter) diameter were tied together by horizontal belts at 13 feet (4 meter) intervals. The tubes consisted of two vinyl fabric layers that were glued together for improved tear resistance. Given the circular floor plane, the arching tubes of equal length form cross sections that vary from semi-circular at the center to semi-elliptical at the entries on both opposite ends. To adjust the structure's stiffness in response to various wind pressures, the tubes were connected by pipes to a multi-stage turbo blower that provided 1,000 to $2,500 \mathrm{~mm}$ water pressure.

Atoms for Peace pavilion (1960)
 Architect: Victor Lundy

Engineer: Severud, Elstad, Krueger
This pavilion housed a traveling exhibit of the United States Atomic Energy Commission that was sent throughout Central and South America in 1960 when the adverse effect of atomic energy were not yet fully understood. The pavilion included a cinema with seating for 300 and a demonstration reactor under a double skin air supported structure. The structure had air pressure between the two fabric layers as well as the inside usable space; seemingly combining air supported and air inflated technologies; but it is indeed air supported. The double skin fabric of vinyl coated polyamide improved the thermal performance and added structural rigidity. The space between the double membrane was divided into air chambers, separated by fabric ribs that provided addaitione! strength. The stout outside form reflected the interior space, given the corstant spacing of 4 feet $(1.2 \mathrm{~m})$ between the two membranes. The portable pavilion of $131 / 328$ feet $(40 \times 100$ meters) was erected at each new extiibit site in 12 days by a crew of 12 workers.

PART V

VERTICAL SYSTEMS

Vertical structures are presented in four categories, considering primary resistance to load: shear, bending, axial, and suspended (tensile). Although most structures combine several categories, one usually dominates. For example, axially stressed braced frames may also have moment resistant joints, yet the bracing provided most strength and stiffness.

VERTICAL SYSTEMS General Background

Vertical structures have been a chalienge sirce the farned tower oi Babylon. Motivations to build tall strustures inclucue. a desiis to reach ioward heaven; to see the world from above; the prestige of being taliest, and high iand costs. The tallest church tower in Ulm, Germariy exempliies the spiritual motivation. The Eiffel tower allows seeing Paris from above. The towers of the Italian hill-town San Gimignano, and contemporary corporate cffice buildings express power and wealth; the latter are also motivated by high land cost. Traditional building materials like wood and masonry imposed height limitations overcome by new materials like steel and prestressed concrete. The Eiffel tower in Paris marks the beginning of tall steel towers. Prestressed concrete towers were pioneered 1955 by Fritz Leonhard with a television tower in Stuttgart.

Gravity load

Gravity load is the combined live and dead load, acting vertically to generate compressive stress in supporting columns or walls. At every level they carry the combined loads from above. Since load accumulates from top down, members at the top carry the least; those at the bottom carry the most. Steel structures usually have the same nominal column size but of increasing unit weight, resulting in thin columns at top and bulky ones at ground level. For example W14 wide flange columars cone in many weights from 43 to 730 plf (64 to $1,086 \mathrm{~kg} / \mathrm{m}$) with capacities of 272 to $4,644 \mathrm{k} 71,210$ to $20,656 \mathrm{kN}$). It is also possible to use higher sirength steel at lower floors. However, increase in steel strength does not yield ligiger siffness since, the modulus of elasticity of steel is constant regardless of strength. For corcree structures it is possible to increase concrete strength and stiffness, or to if crease the cross sectional area. If a mechanical room is on the top floor it is possible to balance the decreasing need for duct sizes from ior dovin, with reed for increasing column sizes from top to bottom. Eero Saarinen designed the EBS tower New York with such a strategy but was only partly consistent sinice the lower floors are served from a mechanical room on the second floor.

1 structure with increasing column size as load increases from top down
2 Light-weight wide-flange column
3 Heavy weight wide-flange column of equal nominal size as in 2 above
4 Increasing column size dovetails with reducing duct size from top down
5 Small column cross section and large duct size on top column
6 Large column cross section and small duct size on lower floor column
$7 \quad$ Large column on ground level where no duct space is needed

1 Cantilever beam with shear and bending derormation
2 Tall building with shear and bending defirmation
3 Shear and bending diagrams for uniform load on a cantilever beam
4 Shear and bending diagrains ior ideatized unitiorm load on a building
5■ Vortical/clistributiori of wind force, shear, and bending diagrams
Vortical disiribution of seismic force, shear, and bending diagrams
A Loadilforce diagram
B Shear deformation
C Bending deformation
D Shear diagram
E Moment diagram

Lateral load

The effect of lateral load on tall structures is similar to gravity load on cantilevers, such as balconies. Tall structures act like cantilevers projecting from the ground. Lateral load generates shear and bending that may be presented in respective shear and bending diagrams as in a cantilever beam. Yet there are important differences. The shear and bending diagrams for buildings are usually global, for the entire system rather than for individual elements like beams. For example, global bending (overturn moment) causes axial tension and compression in columns, and local shear and bending in beams. Further, lateral wind and seismic loads are non-uniform. Wind force increases with height due to higher wind speed and reduced friction. Seismic forces increase with height in proportion to increasing acceleration (acceleration increases with height due to increased drift). However, shear increases from top to bottom since the structure at each floor must resist not only the force at that floor but the forces from all floors absve as well. The non-uniform wind and seismic loads cause nonlinear shear distribution.

1

3

5

6
4

Lateral resistance

Lateral loads may be resisted by shear walls, cantilevers, moment frames, braced frames, or combinations thereof. The choice of a suitable system depends on structural and architectural objectives. Shear walls and braced frames are strong and stiff, cantilevers and moment frames are more ductile, to dissipate seismic energy. Shear walls are good for apartments or hotels that require party-walls between units. Moment frames offer better planning flexibility required for office buildings with changing tenant needs.

Shear walls resist lateral load primarily through in-plane shear. They may be of reinforced concrete or masonry, or, for low-rise, of wood studs with plywood or particle board sheathing. Short shear walls tend to overturn and must be stabilized by dead load or tie-downs

Cantilevers are slender elements that resist load primarily in bending Fole houses are cantilevers; but more commonly, cantilevers are of reinforced concrete or masonry, anchored to foundations, wide enough to resist overturn. Overturn cause compression on one side and tension on the other. Compression acts in addition to gravity, tension may be partly offset by gravity comore;sion. ri tal cantilever's, tension due to lateral load may be greater than. Gravity compression, resulting in net tension.
Mcinerit trames consistent of posts and beams connected by moment resistant joints. They may be of sieel or reinforced concrete. To resist seismic load, concrete should have ductile reinforcement that yields before brittle concrete failure. Ductile design results in greater concrete members with less reinforcing steel.

Braced frames may have diagonal-, A-, X-, or V-braces. The best bracing scheme depends on structural and architectural considerations. K-bracing tends to buckle columns and must not be used. X-bracing allows no doors and requires more joints for greater cost; but X-bracing can be of tension rods to eliminate buckling. A- and V-braces are shorter than single diagonals and result in reduced buckling. (However, beams must be designed for the full span since bracing may adversely affect the beam load). Braced frames are usually of steel but may be of reinforced concrete or wood (for low-rise).

[^2]

1

3

Braced /moment frame

Combined braced/moment frames are used to reduce drift under lateral load. Moment frames have the greatest drift at the building base, but braced frames have the greatest drift on top. Combining the two systems reduces drift at both base and top. The objectives to reduce drift are:

- To prevent occupant discomfort
- To reduce the risk of failure of cladding and curtain walls
- To reduce secondary stress caused by P- \triangle effects
(the $\mathrm{P}-\Delta$ effect generates bending moments caused by column gravity load P and the lateral drift Δ as lever arm)

1 Bending resistance of moment frame portal under lateral oad
2 Axial resistance of braced frame poitar under lateral load
3 Lateral drift of moment frame is maximurn al base
4 Lateral drift of braced frame is maximum on tor
$5 \square$ Reduced drift offombined braced/moment frame

Structure systems

The vertical-lateral framing systems of wall, cantilever, braced frame, and moment resisting frame, shown from left to right, may be optimized for height and use, including combinations of systems. The importance to select an efficient system increases with building height in order to achieve a low weight per floor area ratio for the structure. The late engineer Fazlur Kahn of Skidmore Owings and Merrill recommended the following systems for various heights:

Concrete moment resisting frame	20 stories
Steel moment resisting frame	30 stories
Concrete shear wall	35 stories
Braced moment resisting frame	40 stories
Belt truss	60 stories
Framed concrete tube	60 stories
Framed steel tube	80 stories
Braced tube	100 stories
Bundled tube	110 stories
Truss tube without interior colarnns	

1 Cellular shea Nalls
Exterior shear vials
Curya shear wails
Cantilever core with cantilever floors
Cantilever round core with cantilever floors
Cantilever core with suspended floors
Moment resistant frame
Moment frame with two shear cores
Moment frame with single shear core
Braced core
Braced exterior bays
Braced core with outrigger trusses

Structure systems vs. height

The diagram is based on a study by the late Fazlur Kahn regarding optimal structure
system for buildings of various heights, defined by number of stories.

Structure weights

The amount of structural steel required per floor area is a common measure of efficiency for steel structures. Comparing various systems demonstrates the importance of selecting a suitable system. As shown in the diagram, considering gravity load alone, the structural weight would increase only slightly with height. The effect of lateral load, however, accelerates the increase dramatically and at a non-linear rate.

1 Structural steel weight related to building height (by Fazlur Kahn)
2 Weight of structural steel per floor area of actual buildings
A Number of stories
B Weight of structural steel in psf (pounds per square foot)
C Weight of structural steel in $\mathrm{N} / \mathrm{m}^{2}$
D Weight of structural steel considering floor framing only
E Weight of structural steel considering gravity load only
F Weight of structural steel for total structure optimized
G Weight of structural steel for total structure not optimized
H Empire State building New YO
I Chrysler building New York
J World Trade ceenter New York
Sears tower Chicago
PanAm builuing New York
1 United Nations building New York
N US Steel building Pittsburgh
O John Hangkock building Chicago
P First Interstate building Los Angeles
Q Seagram building New York
R Alcoa building Pittsburgh
S Alcoa building San Francisco
T Bechtel building San Francisco
U Burlington House New York
V IDS Center Minneapolis
W Koenig residence Los Angeles

Floor and roof framing

The layout of horizontal framing is important not only for the transfer of gravity load to columns but also to resist lateral load. For example, beam framing should transfer gravity load to columns subject to uplift forces caused by overturn moments. Gravity load may cancel uplift at least in part to avoid the need for foundation anchorage. It is also advantageous to design beams to distribute gravity load to girders evenly, rather than all load to some and none to others.

1 Single-layer system: beams rest on columns
2 Two-layer system: joists rest on beams that rest on columns
3 Three-layer system: joists rest on beams that rest on girders that rest on columns
4 Flush joist and beam
Requires joist connection into side of beam
Joists resist rotational buckling of beam
Mechanical ducts must run below framing
5 Layered framing
Provides easy connections
Main ducts between bean, feeder ducts between joists reduces height Joists dort resist rotatior al buckiling of beamis

```
joist [/Cl
Beam suppoits joist
```

Gincuers supports beam
Column supports beam or girder
E Symbol for moment resisting connection common in framing plans

Beam-column interface

The type of interface between spandrel beam and column on a facade is important considering architectural and structural implications. Assuming moment resisting connections, the best structural solution is to frame the beam directly into the column for effective moment transfer without torsion. If shown on the facade, this expresses most clearly a moment resisting frame. Beams may run behind the column to express verticality, or in front of the column to express horizontally; yet both cases generate torsion in the beam and bending in the column due to eccentricity.
1 Visual expression of frame
2 Axon of beam framed directly into column
3 Section of beam framed directly into column
4 Visual expression of columns
5 Axon of beam running behind column
Section of beam running behind column yielding a mamen coupla Visual expression of beam
8 Axon of beam running in front of column
9 Section of beam running in front of colum n yieding a moment couple

17

VERTICAL SYSTEMS Bending Resistant

Bending resistant structures include cantilever, moment frame, framed tube, and bundled tube structures. They resist lateral load by combed axial and bending stresses. Since bending stress varies from tension to compression with zero stress at the neutral axis, only half the cross section is effectively engaged. This makes them less stiff than shear walls or braced frames, but it provides greater ductility to absorb seisric, energy in the elastic range, much like a flower in the wind. On the other hand, bending resistance implies large deformations that may cause darnoge to nor-structural iems. Bending resistant structures are sometimes combined with other systems, such as braced frames or shear walls, for greater stiffnessunder rioderase load; but moment frames provide ductility under seve eitad, after the brecing or shear walls may fail.

Pirelli tower, Milan (1956-58)
Architect: Ponti, Fornaroli, Rosselli, Valtolina, Dell Orto
Engineer: Arturo Danusso, Pier Luigi Nervi
Facing Milan's central station across a major urban plaza, the 32-story Pirelli tower rises prominently above the surrounding cityscape. A central corridor, giving access to offices, narrows toward both ends in response to reduced traffic. The reinforced concrete structure features two twin towers in the midsection for lateral resistance in width direction and triangular tubes at both ends for bilateral resistance. The towers and tubes also support gravity load. The gravity load of the towers improves their lateral stability against overturning. The central towers are tapered from top to base, reflecting the increasing global moment and gravity load. The towers are connected across the central corridors at each level by strong beams that tie them together for increased stability. In plan, the central towers are fan-shaped to improve buckling and bending resistance. The tubular end towers of triangular plan house exit stairs, service-ele'aitors, and ducts. Concrete rib slabs supported by beams that span betweernthe overs orovide columnfree office space of 79 and 43 ft (24 and 13 m). Tine plan and structure give the tower its unique appearance, a powerfyl synerigy of form and struciure.

Floor plan:
Height.
Typical siory height:
Height/widin ratio
$13 \times 68 \mathrm{~m}(55 \times 223 \mathrm{ft})$
$127 \mathrm{~m}(417 \mathrm{ft}))$
3.9 m (12.8 feet)

7

Hypo Bank, Munich (1980)

Architect: Bea and Walter Betz
The design objective for the Hypo Bank headquarters was to create a landmark for Munich and a unique architectural statement for the bank. Built 1980, the 22 story bank has 114 m height. The structure consist of four tubular concrete towers that support a platform which supports 15 floors above and 6 floors suspended below. The suspended floors had been built from top down simultaneous with upper floors being built upwards. Four towers combined with a platform form a mega-frame to resist gravity and lateral loads. The four towers include exit stairs in prestressed concrete tubes of 7 m diameter and 50 to 60 cm wall thickness. A fifth tower of 12.5 m diameter, houses eight elevators and mechanical equipment. The support platform consist of prestressed site-cast concrete of 50 cm thick concrete slabs on top and bottom, joined by 1.5 m rib walls that are tied around the towers. The formwork for the platform was assembled on griound and lifted 45 m by 12 hydraulic jacks.
The office space consists of three triangular units ieined by a T-shaped certer. Two-way beams for office floors are supported by colums above the piatform and suspended below. Three sub-grade levels incude parking security cortrol, and loading stations.
\(\left.\begin{array}{l}Floor plan:

Height:

Fieighi/wigth\end{array}\right]\)| $7 \mathrm{~m}(23 \mathrm{ft})$ diameter towers |
| :--- |
| $114 \mathrm{~m}(374 \mathrm{ft})$ |
| 16 per tower |

1 Typical upper floor supported by columns above the platform
2 Story-high platform forms a mega frame with four towers
3 Typical lower floor suspended from the platform
4 Isometric view of building
5 Roof plan
6 Typical office floor framing
7 Support platform framing
8 Typical floor plan layout

5

6

7

8

1 Commerzbank Düsseldorf (1965)

Architect: Paul Schneider-Esleben

This 12 -story bank building is located at the boundaries between the old and new banking district of Düsseldorf, linked by a pedestrian footbridge to an older building of the bank. The 12 -story building above a 2 -story podium was initially designed to allow a drive-in bank at street level. A free-standing service core supports the pedestrian bridge and makes the link to the office floors. A second stair and bathroom core is located at the far end of the building, providing undivided and flexible office space. The curtain wall façade is designed and manufactured using vehicular technology of insulating sandwich panels. The structure consists of reinforced concrete. Two rows of square cantilever columns support cantilever beams and concrete floor slabs. The interior core helps to resist lateral load in length and width directions, but the exterior core at the other end of the building resist lateral load in width direction only.

\square

This 15-story office tower with north-south orientation of its length axis has movable exterior blinds for sun control. They give the facade an ever-changing appearance. On sunny mid-days, they are horizontal for optimal sun protection. On cloudy days, in lowered position, they tend to darken the inside rooms. The orientation provides inspiring views to the Sydney harbor and a nearby botanical garden. A two-story showroom with mezzanine floor is located on the ground floor, above a four-story underground parking garage. The office floors feature elevators, stair and bathrooms on one end and an exit stair at the opposite end, providing flexible office floors. Mechanical equipment is in a roof penthouse. The structure consists of reinforced concrete. Two rows of wall-shape cantilever columns support cantilever slabs. The cantilever columns resist both gravity and lateral loads.

Floor plan:
Height:
Height/width ratio

$12 \times 30 \mathrm{~m}(39 \times 98 \mathrm{ft})$

38 m (125 ft)
4.7 per twin cantilever

Moment frame

Moment frames consist of one or more portals with columns joint to beams by moment resistant connections that transmit bending deformation from columns to beam and viceversa. Beams and columns act together to resist gravity and lateral loads in synergy and redundancy. Bending resistance makes moment frames more ductile and flexible than braced frames or shear walls. The ductile behavior is good to absorb seismic energy, but increases lateral drift, a challenge for safety and comfort of occupants, and possible equipment damage.

Moment frames provide optimal planning freedom, with minimal interference of structure. Office buildings that require adaptable space for changing tenant needs usually use moment frames. To reduce lateral drift in tall buildings, dual systems may include bracing or shear walls, usually at an interior core where planning flexibility is not required. Given the high cost of moment-resistant joints, low-rise buildings may provide onily some bays with moment resistant frames. The remaining bays, w th pin joints cniy, carry gravity load and are laterally supported by adjaceni momeni frames.

Moment frame behavior can be visualized by amplifiec creformations. The connection of column to beam is usually perpendicular aind assumed to remain so after deformation. Under lateral load columns with momernt joints at both ends assume positive and negative bending at opposite ends, causing S-shapes with inflection points of zero berdirg at mid-span and end rotation that rotates the ends of a connected beam. By resisting iotation, beams help to resist lateral load. Similarly, a beam subject to bending under gravity load will rotate the columns connected to it and thus engage them in resisting the gravity load. Columns with moment-resistant joints at both ends deform less than columns with only one moment joint. Deformations under gravity and lateral loads are visualized in the diagrams, with dots showing inflection points of zero bending stress.

1 portal with hinged joints unable to resist lateral load
2 Moment joints at base, hinge joints at beam, large drift
3 Moment joints at strong beam, hinge joints at base, large drift
4 Moment joints at base and strong beam, drift reduced to half
5 Hinged base, moment joints at beam, beam forms inflection point
6 Gravity load, hinged base, beam moment joints, 2 beam inflection points
7 Lateral load, all moment joints, inflection points at beam and columns
8

Gravity load, all moment joints, inflection points at beam and columns Multi-bay frame deformation under lateral load Multi-bay frame deformation under gravity load

Inflection point of zero bending stress

Moment-resistant Joints

Moment-resisting joints usually consist of steel or concrete. They join members (usually column to beam) to transfer bending moments and rotations of one member to the other. The moment resistant connection makes post and beam act in unison to resist both gravity and lateral loads. In seismic regions, moment frames must be ductile to absorb seismic energy without breaking.

Steel moment joints are usually wide-flange beams connected to wide-flange columns. Generally, post and beam are connected about their strong axis. Semi-rigid joints connect the strong beam axis to the weak column axis. Moment resistant joints require stiffener plates welded between column flanges. They resist bending stress of beam flanges that tend to bend column flanges without stiffener plates. Compact columns with very thick flanges do not require such stiffener plates. Steel is a ductile material which is good to absorb seismic energy in the elastic range. Yet the seismic performance of steel joints was challenged by failures during the 1994 Northridqe Earinquake. Vine failure resulted primarily from joint welds. Research developed soiutior sor momeni-resisting steel joints, notably dog-bone beam ends io form plastic hiriges to educe stress at the

Concrete frames actieve ductie joints by proper steel reinforcing, designed to yield before the concrete crushes in brittle mode. Usually that implies 25% to 50% less steel and more corcrete theri used for balanced design (balanced design has just enough reinfcrcing to balance the concrete strength). Ductile design also requires: closely spaced tie bars near beam/column joints; column rebars to extend through beams; beam rebars to extend through columns; and column ties to continue through beams.

B Steel wide-flange beam
C Stiffener plates resist bending stress of beam flanges
D Steel bar welded to column in shop and bolted to beam in field
E Weld, joining beam flange to column
F Steel reinforcing bars in concrete beam
G Steel ties to restrain reinforcing bars from buckling
H Column reinforcing bars to resist compression and bending
Moment-resisting
Momentresising
Momentrising concrete joint at end column
Stel wide-lange colmn

Steel framing

Steel framing with wide-flange profiles requires careful orientation of columns in order to achieve proper strength and stiffness to resist lateral load in both orthogonal directions. Measured by the moment of inertia, typical wide-flange columns have a stiffness ratio of about a $3: 1$ about the x and y-axis, respectively, yet some deep sections have stiffness ratios up to 50:1, about strong to weak axes. Therefore, column orientation for lateral resistance is an important design consideration for moment frames. Assuming equal lateral load and column size, half of the columns should be oriented in either direction. For unequal loads, column orientations should provide strength proportional to loads. For example a rectangular building has more wind load on the long than on the short facade. If wind governs lateral design, this should be considered in column orientation. Further, column orientation should provide symmetry of stiffness in both directions to prevent torsion. Torsion would occur for example if one end of a building has columns with greater stiffness than the other end. Also to better resist possipie crsion from asymmetric mass distribution, columns should be placed tear or at the bulding edge, rather than near the center of mass where they have no effective lever arm to resist torsion. Column size should also accourt for sethacks or upperfloors, io account for asymmetric wind or seismic !gad resuliing from such setbackó.

1 Front view of mionent resisting frarne with setback floors on top Coiumn layout in pian for moment resistance in both directions
colwn oriented for lateral support in width direction
Column oriented for lateral support in length direction

Casa Terragni, Como, Italy (1936)

Architect: Guiseppe Terragni
With $33.2 \times 33.2 \times 16.6 \mathrm{~m}$ height, the building is a perfect half cube. The plan is organized around a central atrium, surrounded by circulation. Terragni used the concrete moment frame as organizing grid in a liberal manner, modified as required to meet planning needs: the 4.75 m grid is reduced for circulation and increased for large spaces. Beams of variable depth express the respective spans. The front facade is recessed behind a veranda to emphasize the frame. Moment frames with shear walls have proven a failsafe solution in earthquakes prone areas: shear walls provide good stiffness under moderate load, and the moment frame provides ductility if shear walls fail in sever earthquakes.

Commonwealth (formerly Equitable) Building (1944-48)

Architect: Pietro Belluschi
The Equitable Building 1948 pioneered the clear expression of a steel moment frame, a model for many subsequent buildings. With this building Beluschi also pioneered the first double glazed aluminum curtain wall of simple elegance... The building is a National Historic Landmark of mechanical engineering because it was the first building using heat pumps for efficient air conditioning... It was the first skyscraper to use double-paned glass. The first building with air conditioning completely sealed and the first to use a flush curtain wall design. The first building completely clad in aluminum. 1982 the American Institute of Architects awarded the building the 25 -year award. The building is a compelling testimony of Beluschi's philosophy of simplicity.
\square

Seagram building, New York (1954-58)

Architect: Mies van der Rohe, Philip Johnson, Kahn and Jakobs Engineer: Severud, Elstad, Krueger

The 38-story Seagram building is a classic icon of modem architecture. It was the result of unique cooperation between the client, Samuel Bronford, his daughter, Phyllis Lambert as planning director, and the architects. The building exemplifies Mies' philosophy of Baukunst (art and craft of building), with great attention to detail and proportion. The structure, based on a $28 \mathrm{ft}(8.5 \mathrm{~m})$ module, is expressed as colonnade at the base to signal the entrance. The skin of the mechanical floor on top provides a visual cap. Most of the structure is concealed behind the curtain wall which eliminates thermal stress and strain due to outside temperature variations, an important factor in tall structures. The recessed rear gives the tower its classic proportions of five to three for front and side, respectively. The steel moment frame structure is embedded in concree for fire protection and added stiffness. The core walls have diagonal bracing up to the 29th floor for additional wind bracing. Concrete shear walls up to the 17 th floor provide additional stiffness.

Floor plan:
Height
Typlaal Story height:
Height'wicth ratio
84×140 Fet $(25 \times 43 \mathrm{~m})$ without extrusion 525 feet (160 m)
13.6 feet (4.15m)
6.3 without extrusion

1 Axon view of tower
2 Comer detail of structure and skin
3 Typical plan with recessed comers to express 3 to 5 proportion
A Air conditioning duct as parapet
B Glare reducing pink glass appears without color from inside
C Bronze cover of steel column embedded in concrete

Crown Zellerbach building, San Francisco (1959)

Architect: SOM and Hertzka and Knowles
Engineer: H. J. Brunnier
The 20-story Crown Zellerbach headquarters building covers about one third of a triangular site on Market Street, the main street of San Francisco. The building features a large office wing flanked by an external core for stairs, elevators, bathrooms, and mechanical ducts. The exterior core gives the office wing a column-free floor area for optimal space planning flexibility. A planning module of 5.5 feet (1.6 m) provided for good size office spaces.
The structure is a moment resistant steel frame with wide-flange girders spanning 63 feet (19 m) across the width of the building, supported by wide-flange columns, spaced 22 feet (6.7 m) on center. Spandrel beams connect the columns in the longitudinal direction. Steel joists, spaced 7 feet (2.1 m), support concrete slabs on cellular metal deciks. The joists cantilever at each end of the building. All columns are orienied with their strong axis to provide moment resistance in the width direction, givirg the building much greater strength and stiffness in width than in lergitin direction. Since the bui.iding is much longer than wide, the column orientation is good for wind load which is greater on the long
 the eccentric/service tower causes scismic torsion. The fire exits on both side of the service tower are loo ciose together for fire safety and would not be allowed by current code. The building is supported by a mat foundation, 8 feet (2.4 m) deep, extending the full width and length of the building. The foundation rests on firm soil 45 feet (13.7 m) below grade under a 2 -story parking garage. The steel structure is protected by fire proofing that consists of stucco applied to metal lath wrapped around beams and columns.

Floor plan:
Height:
Typical story height:
Height/width ratio
A
A Column spaced 22 ft (6.7 m)
Spandrel beam
C Girder spanning the full width of the building Joist spaced 7ft (2.1 m)
E Stiffener plate for moment connection
F Fire proofing on metal lath

Thyssen tower, Düsseldorf (1957-60)

Architect: Hentrich and Petchnigg
Engineer: Kuno Boll
The Thyssen tower's unique plan of three slabs is a composition with efficient circulation and good delighting for all offices that are never more than $7 \mathrm{~m}(23 \mathrm{ft})$ from a window. The floor area of offices is 62.7% of the gross floor area. Located at the center of town, the long axis is oriented north-south with a park to the North. The central block includes the service core and, as tallest block, houses mechanical and elevator equipment in the top floors of this 25 -story tower. Parking for 280 cars is in the - underground darage, rapped around the building. The long facades feature glass curtain walls: the narion end facades are glad in stainless steel. The steel frame structure is entedded ir concrete for fire protection and to provide additiona stififtess. The coumms consist of steel pipes produced by the building owner The strutatial module is $7 \times 4.2 \mathrm{~m}(23 \times 14 \mathrm{ft})$, with some variation between ceintral and outer slaos. Sraced end walls provide some additional stifiness to lesist wind Joad on the long building sides. The exterior composition of the builoing expressing the internal organization, has earned the nickname "Drei-Scheiben Haus" "tinee-slab-house). The pristine design, combining American know-how with European sophistication stands as an icon of the modern movement in Europe.

Floor plan:	$21 \times 80 \mathrm{~m}(70 \times 226$ feet $)$
Height:	$94 \mathrm{~m}(308$ feet $)$
Typical story height:	12.2 feet $(3.7 \mathrm{~m})$
Heightwidth ratio	4.48

Framed Tube

Framed tubes are a variation of moment frames, wrapping the building with a "wall" of closely spaced columns and short spandrel beams. To place the lateral resistance system on the façade rather then at the interior gives it a broader base for greater stability as well as improved rotational resistance. In addition, the lateral resisting system on the façade allows smaller columns on the interior to carry gravity load only. Further, designing floors and roof to span the full width of a building can make the interior completely column free for optimal flexibility. A major challenge of framed tubes is the high cost of numerous moment resistant joints between closely spaced columns and beams. To minimize this adverse cost factor, designers often use prefab methods to weld the joints in the fabrication hop rather than on the job site. This process also improves quality control and reliability.

1 Framed tube without interior core
2 Framed tube with interior core
3 Global stress diagram of framed tube
4 Framed tube with belt and top tiuss for additional stiffress
5 Prefab frame with joints ic caied at bearn inflection point of zero bending
Prefab elernentready for assemibly
Reduced shear resistance (shear lag) at hollow interior Peak axial torce from overturn moment
Pinjoint at inflection point of zero beam bending stress

CBS Tower New York (1961-650

Architect: Eero Saarinnen

Engineer: Paul Weidlinger
The 38-story CBS tower is a stark vertical extrusion of the rectangular floor plan. Columns forming a framed tube are expressed as triangular extrusions on the upper floors and diamond shaped on the ground floor. The triangular columns include niches for mechanical ducts and pipes. The niches decrease from top to bottom with the decreasing duct sizes that run down from the mechanical room on the top floor. The decreasing niches result in increasing net column size that coincides with increasing load as it accumulates from top down. Concrete floors span between the walls of a central core and the framed tube, providing a column-free donut-shape floor space fon flexible use. The four sides facing the core feature one-way rib slabs, but the four cormers have two-way waffle slabs, designed to make the transition from ore direction to the other. Glad in black granite the closely spaced trianguiter columns, express a stark verticality, perforated with regular windows on all but the top and greurid floors. The top mechanical floor has ventilation louvers instead of windov/s the ground floors have taller windows and doors. The articulation of top and botiom of the façade emphasizes the most promirent pari of the ousilding, a strategy often use for the design of tall buildings.

Foor plan.	155×125 feet $(47 \times 38 \mathrm{~m})$
Hicight:	494 feet $(151 \mathrm{~m})$
Typical story height:	12 feet $(3.66 \mathrm{~m})$
Floor-to-ceiling height:	8.75 feet $(2.67 \mathrm{~m})$
Height/width ratio	3.9

A Column profile at top floor
B Column profile at lower floors
C Column profile at ground floor

World Trade Center, New York (1977
(demolished by terrorists 9-11-2001)
Architect: Minoru Yamasaki and E. Roth
Engineer: Skilling, Helle, Jackson, Robertson
The World Trade center housed 50,000 employees and up to 80,000 visitors daily in two 110 -story towers. Both towers, in diagonal juxtaposition, were vertical extrusions of square plans, with very closely spaced steel columns. Each tower had two-story mechanical spaces on top, near the bottom, and two distributed at $1 / 3$ intervals, with elevator sky-lobbies two floors above each. Each tower had 100 passenger and four service elevators. Each sky-lobby was reached by 11 or 12 elevators from ground floor; with five express elevators non-stop to the $107^{\text {th }}$ and $110^{\text {th }}$ floors. Since elevators are stacked, 56 shafts needed, take 13% floor area on each floor. The framed tube structure consisted of 56 box steel columns on each façade, joint at each floor by spandrel beams with moment resistant connections. This giant Vierendeel frarne was assembled from prefab elements of three two-story columns with beam and column joints at mid-span and mid-height where inflection peints of zero bending occur under lateral load. Combined with rigid floor diaphragme, the tovers formed torsion-resistant framed tubes that cantilever from a fil ϵ-story underground struciure that houses train and subway stations as well as parking for 2,000 cars. Although the framed tube columns overall dimensions are constant, their wall thickness increases from top to bottom in response to increasing load's ficor truss joists span from the framed tube to columns around the central core. Mechanical ducts run between truss joists for reduced story height. The core columns are designed to carry gravity load only. The framed tube resisted both lateral and gravity load.

Floor plan (square):	208×208 feet $(63.4 \times 63.4 \mathrm{~m})$
Height:	1361 feet $(415 \mathrm{~m})$
Typical story height:	12 feet $(3.66 \mathrm{~m})$
Floor-to-ceiling height	8.6 feet $(2.62 \mathrm{~m})$
Height/width ratio	6.5

[^3]\square

1

$?$

3

Bundled Tube

Bundled tube structures are composed of tubes framed by closely spaced columns joined to beams to form moment frames. The bundled tubes resulting from the rows of columns add lateral resistance to the structure, transferring shear between exterior columns subject to tension and compression under lateral load. This shear transfer makes it possible for the exterior columns to act in synergetic unison, whereas independent columns would act alone to provide much less lateral resistance. Bundled tubes transfer shear not only through exterior frame "walls" but also through interior cell "walls" thereby reducing shear lag.

An alternative to framed bundled tube are braced bundled tube systems. However, though they provide greater stiffness, the braces disrupt spatial flow between interior columns. Regarding plan geometry, bundled tubes may have bundles of square, rectangular, or triangular polygons that are repeatable. However, hexagorai polygons would be less efficient

Square tube modules
Triangular tube modules
Hexagona! tubes woular ine less effective o reduce shear lag
Framed tube stear lag
Bundlec tube vith reduced shear lag
Shiear lay between connecting shear walls
Peak resistance at shear wall

Sears tower, Chicago (1973)

Architect/ Engineer: Skidmore, Owings and Merrill
With 110 stories, the Sears Tower was the tallest building in the world for many years and occupies an entire city block on the southwest of Chicago's loop. The tower starts at ground level with nine square modules of 75 feet $(22.9 \mathrm{~m})$ each. The nine modules gradually reduce to a twin module on top in response to needed office space and also to reduce wind resistance and overturn moments. The large areas of the lower floors are occupied by Sears; the smaller floors at higher levels serve smaller rental needs. Elevators serve the building in three zones of 30 to 40 stories separated by sky-lobbies that are reached by double deck elevators express elevators. The building façade is glad in black aluminum and tinted glass. The structure is anchored to a five-story underground structure. Nine bundled tubes are separated by rows of columns, spaced 15 feet (4.6 m) on center. The columns, welded to beams, form moment resistina portals to transfer global shear under lateral load from compressed to tersed side of the structure, to reduce lateral drift. This shear transfer between extericr walls reduces "shear lag" and gives the bundled tube mireatestrength and stiffress to eesist lateral loads. The bundled tube concepiconceived facilitates the setback's as the floors get smaller toward the top. Belftrusses at ihreelevels in conjunction with mechanical floors reduce lateral deflection by about 15 percert and help distribute uneven gravity load causediny floor setinacks. The horizontal floor framing consists of trusses that span 75 feet 23 (im) betwean coiumns and support concrete slabs on metal deck. The one-way ticoi trusses of 40 inch (1 m) depth change direction every $6^{\text {th }}$ floor to redistribute the gravity load to all columns. Trusses consist of top and bottom T-bars, connected by twin angle web bars. They allow mechanical ducts between top and bottom chords. The small truss depth was possible, using composite action; shear studs engage the concrete slab in compression for increased resistance.

Vertical Systems Suspended

Vertical systems, suspended, also referred to as suspended high-rise structures, are different from suspension structures like suspension bridges, which are draped from two suspension points; suspended high-rise structures hang usually about vertically from top. A rational for suspended high-rise structures is to free the ground floor from cibstiructions. Other architectural and structural reasons are described on the rexi page.

Regarding Lateral load, the challenge of sispericed high-rise is usualy a narrow footprint and slender aspect ratio. Thus ther behavior is comparable to a tree, where the drunk resists load primarily in bencing and large roots are required to resist overturning. Properly desionec, the narrow aspect ratio can enhance ductility to make the structure benave lige a flover in the wind to reduce seismic forces.

1

Suspension rational

At first glance suspended high-rise structures seem irrational, given the load-path detour: gravity load travels to the top and then down to the foundation. However, as described below, there are advantages, both architectural and structural, that justify this detour. Understanding the pros and cons and their careful evaluation are essential for design.

Challenges

- Load path detour: load travels up to the top, then down to foundation
- Combined hanger / column deflection yields large differential deflection

Architectural rational

- Less columns at ground floor provides planning flexibility and unobstructed vjew
- Facilitates top down future expansion with less operation interfererige
- Small hangers instead of large columns improve flexibility and viev

Structural rational

- Eliminates buckling in hangers, replacing comprission with tension
- High-strength hangers replace large compression columns
- Ficors may be billt.on grounid and raised after completion
- Concentration of compression to a few large columns minimizes buckling

Design options

- Multiple towers with joint footing to improve overturning resistance
- Multiple stacks to limit differential deflection
- Adjust hangers for DL and partial LL to reduce deflection
- Prestress hangers to reduce deflection to half

1 Gravity load path
Load travels to top, then down to foundation
2 Differential deflection is cumulative
Shortening of columns and elongation of hangers are additive
3 Prestress can reduce deflection to half
Top resists half the load through increase of prestress Bottom resists half the load through decrease of prestress
4 Ground anchors for improved stability (assuming hangers as ground anchors are ok)

1

3

2

Design options

Suspended high-rise structures may be designed in various configurations with distinct limitations and implications regarding behavior. The following description provides guidelines for rational design, starting with the introduction of a terminology, followed by implications of various design options:

- Single towers (one vertical support)
- Multiple towers (several vertical supports)
- Single stacks (one set of floors)
- Multiple stacks (several sets of floors)

The effect of these options are described and illustrated as follows:
1 Single tower / single stack
Single towers require large footing like a tree to resist overtwining
2 Multi towers
Multiple towers with joinfifooirg increase stability
3■ Twin stacks

Twinstecks reduce the length of hangers and thus differential deflection (ten stories per stack limits differential deflection to < 2 inch (50 mm)

4 Twin stacks / towers
Twin stacks reduce the length of hangers and thus differential deflection Twin towers with joint footing increase stability

5 Triple stacks
Three or more stacks limit hanger length and thus differential deflection
6 Triple stacks / twin towers
Three or more stacks limit hanger length and thus differential deflection Two or more towers with joint footing increase stability

Limits

An important limit for suspended high-rise structures is the limited number of floors per stack. More than ten floors per stack would cause unacceptable differential deflections. Conventional columns in compression are subject to about equal strain under load. Suspended high-rise structures are subject to greater differential deflection since hangers elongate but columns shorten under gravity load. Without buckling, the high tensile stress of hangers causes greater strain which further increases differential deflection.

1
$-$

Case studies

Westcoast Transmission Tower, Vancouver (1969)
Architect: Rhone and Iredale
Engineer: Bogue Babicki
The 12-story tower, initially designed and built as Westcoast Transmission headquarters, has become an architectural icon of Vancouver. With support of the City of Vancouver, the historically significant building was converted in 2005 to 180 unique residential suites in studio, one and two bedroom configurations. The suspension concept was selected to provide an unobstructed view to the beautiful bay of Vancouver. According to the Bogue Babicki, the suspension option was also more economical than a conventional aiternative they had considered. The suspended structure, stating 30 €ei $g \mathrm{~m}$, anove grade provided unobstructed views at ground level to the beautiful bay of Varcouver. The tower is supported by a site-cast concrette core, 36 feet (11 m) square. The floors are suspended by 12 cables. Each cable consists of tivo $27 / 3^{\prime \prime \prime}(73 \mathrm{~mm}$) diameter strands. The sloping guy cables have t wo adiditional $2 \frac{1 / 2}{1 / 2}(64 \mathrm{~mm})$ diameter strands (the 45 dergree slopeiricreased their vector force by 1.414).

Size:	
Core size:	
Height	36×108 feet $(36 \times 33 \mathrm{feet}(11 \times 11 \mathrm{~m}))$
Typical story height:	12 stories, $224^{\prime}(68 \mathrm{~m})$
Core height/width ratio:	12 feet $(3.65 \mathrm{~m})$
	6.2

[^4]

BMW Headquarters Munich (1972)

Architect: Karl Schwanzer
Engineer: Helmut Bomhard
The Viennese architect Karl Schwanzer won the international design competition for the BMW tower with his idea to represent the automobile company in form of a four-cylinder engine. Four cylinders are suspended from an assembly of four semi-cylindrical concrete cores by means of hangers, suspended from concrete cores of stairs, elevators, etc. The core extends as four cylinders on top of the floor stacks. Each floor is supported by a hanger at its center and stabilized by the core. To keep differential deflection within acceptable limits, the tower is partitioned into two stacks of eleven and seven office floors of the lower and upper stacks, respectively. Eight elevators, stairs and services are located in the core. Except for the four central hangers, the office space around the core is free from columns to provide highly flexible office areas. Construction of the tower started with the central core in conventional method; but then proceeded form lop down. Post-tensioned concrete floor plates, cast on the ground, where liited up by hiydraulic means; starting with the top flocir followed by successive floors downward. Silver gladding exterior conveys a sophisticated higit-ech image, true to the BMW philosophy.

52, 30 m (172 feet) diameter
24.4 m (80 feet)

18 suspended stories, 101 m (331 feet)
3.82 m (10.8 feet)
4.1

Standard Bank Center, Johannesburg (1968)

Architect: Hentrich and Petschnigg
Engineer: Ove Arup and Partners
The Standard Bank Center is located in the financial center of Johannesburg. Given the dense surroundings, the design objective was to access the center via an open plaza with the least amount of bulk and obstructions. The response to this objective was a suspended structure. The central support core only keeps the plaza level open for free and spacious access. The suspension system also facilitated construction at the dense urban surrounding. After the central core was built, floors were suspended from three cantilevers. To limit differential deflection, the building is organized into three stacks of nine office floors each, suspended from concrete cantilever beams of 18 fei (5.4 m) depth. The cantilever beams are attached to the outside face oif the concrete core by shear connection. The cantilever floors houise the mechenical equipnient and transformer stations. Basement floors for comouter rooms and parking provide stability for the central core

Floor size:
Core size:
Building height:
Core neight:
Core height/width ratio:
112×12 teet $(34.29 \times 34.28 \mathrm{~m})$
48×48 feet ($14.63 \times 14.63 \mathrm{~m}$) 27 stories, 456 feet (139 m) 520 feet (158.5 m) 10.8

Hon Kong and Shanghai Bank (1985)

Architect: Norman Foster
Engineer: Ove Arup
The design of the Hong Kong and Shanghai Bank emerged from a competition among seven invited architects. Foster's winning scheme is a suspension system intended to provide large public space at ground level without interior columns. The large floor area of $55 \times 70 \mathrm{~m}\left(180^{\prime} \times 230^{\prime}\right)$ is supported by 8 Vierendeel towers, each consisting of four round columns spaced $5.1 \times 4.8 \mathrm{~m}\left(17^{\prime} \times 16^{\prime}\right)$ and connected at each level with tapered beams. The floors are suspended from twin suspension trusses which span the towers and cantilever from them on both sides to support service modules and exit stairs. A large floor area of $33.6 \times 55 \mathrm{~m}$ ($110^{\prime} \times 180^{\prime}$) between the towers are disrupted by only eight hangers, an additional benefit of the suspension scheme, besides the open ground floor. The space between two-story high suspension trusses serves as focal point of each stack of floors, as reception, conference and dining areas arid lead to oper eecreation terraces with dramatic views of Hong Kong.
The maximum mast pipe diameter is $1400 \mathrm{~mm}(5.50)$ and $100 \mathrm{mmin}\left(3.9^{\prime \prime}\right)$ thick The maximum hanger pipe ciam eter is 400 mir ($10^{\prime \prime}$) and 60 mm (2.4") thick

The suspension trusses and X-bracing perpendicular to them are also intended as belt trusses to reduce drift under lateral load. However, since the Vierendeel towers are moment resistant, the belt trusses are less effective than they would in conjunction with truss towers.

Size

Tower axis distance
Height
Typical story height:
Height/width ratio:

55x70m (180'x230')
38 m (126')
35 floors, 180 m (590')
3.9 m (12.8')
4.7

Federal Reserve Bank, Minneapolis (1971-73)

Architect: Gunnar Birkerts
Engineer: Skilling, Helle, Christiansen, Robertson
The Federal Reserve Bank features a structure similar to suspension bridges. The floors are suspended from parabolic "cables". However, the "cables" are actually wide-flange steel sections of parabolic curvature to balance the distributed floor loads. A major reason to suspend the building from two towers was to keep the bank voulits located below grade free of columns. Wide flange parabolic suspondero of 37 inct ($9.4 \mathrm{e}-\mathrm{emm}$) span 328 feet (100 m) between two concrete towers. Trussess on top of the to vers resist the lateral trust of the parabolic susponders. Floors above thes suspenderis are supported by compression columns, whereas those below are suspended by tension hangers. The façade treatmem reflects the compressive and tensiie support zones by different recess of the glass linie with respect to curtain wall mullions. Floor construction of concrete slabs iests on steel trusses that span the 60 feet (18m) width without interior columns.

Size.
Span between towers
Height
Typical story height
Height/width ratio:
335×60 feet ($102 \times 18 \mathrm{~m}$)
275 feet (84 m)
220 feet (67 m)
12.5 feet (3.8 m)
3.7

Concrete

Material

Concrete is a versatile material that can be molded into many forms. It was first known in ancient Rome. Quarrying limestone for mortar, the Romans discovered that burning the limestone mixed with silica and alumina yields cement stronger and more adhesive than ordinary lime mortar. The new material also could be used for underwater construction. Mixing the cement with sand and other materials, the Roman's invented the first concrete and used it widely in their construction, often filled between masonry.
The technology of concrete construction was lost with the fall of the Roman Empire. Only toward the end of the eighteenth century did British inventors experiment to develop concrete again. In 1825, Joseph Aspdin patented Portland cement which he named after Portland limestone of similar color. The material was soon in wide use-ard the name Portland cement is still common today. It consists of lime, silica, and alumina, burned to clinkers in a furnace at about $3000^{\circ} \mathrm{F}\left(1650^{\circ} \mathrm{C}\right)$, and then crushed to a fire powder.

Concrete, consisting of cement, sand, and gra el mixed with water, is strong in compression, but very weak in tension and shear. Thus, concrete by itself is limited to applications subjec D Ocompressive stress onily. This limit was soon recognized and by 1850 several inventors experimented with adding reinforcing steel to concrete. In 1867 the Fiench gardener, Joseph Monier, obtained a patent for flower pots made of reiniorced concrete. He went on to build water tanks and even bridges of reinforced concrete. Monier is credited to invent reinforced concrete...

As any material, concrete has advantages and disadvantages. Concrete ingredients are widely available and rather inexpensive. Concrete combines high compressive strength with good corrosion and abrasion resistance. It is incombustible and can be molded in many forms and shapes. Concrete's main disadvantage is its weakness in resisting tension and shear. Steel reinforcing needed to absorb tensile stress can be expensive. Concrete has no form by itself and requires formwork that also adds much to its cost. The heavy weight of concrete yields high seismic forces but is good to resist wind uplift. Concrete is inherently brittle with little capacity to dissipate seismic energy. However, concrete frames with ductile reinforcing can dissipate seismic energy. The inherent fire resistance of concrete is an obvious advantage in some applications.
Today, concrete serves many applications usually with reinforcing. In buildings, concrete is used for items like footings and retaining walls, paving, walls, floors, and roofs. Concrete is also used for moment resistant frames, arches, folded plates and shells. Apart from buildings, many civil engineering structures such as dams, bridges, highways, tunnels, and power plants are of concrete.

Concrete properties

Normal concrete has compressive strengths of 2 to 6 ksi (14 to 41 MPa) and high strength concrete up to $19 \mathrm{ksi}(131 \mathrm{MPa})$. Low-strength concrete is used for foundations. Concrete strength is determined by the water-cement ratio (usually 0.6) and the cement-sand-gravel ratio (usually 1-2-3). Specified compressive strength of concrete $f_{c}{ }^{c}$, usually reached after 28 days, defines concrete strength. By the strength method (ultimate strength method) a structure is designed to 85% of the specified compressive strength f^{\prime}, with factored loads as safety factor. By the working stress method, a structure is designed to allowable stress, i.e., a fraction of the specified compressive strength $f^{\prime}{ }_{c}$.

Allowable concrete stress for working stress method
Compressive bending stress

Elastic modulus (iv = concrete densievin. pct):
$w^{1.5} 33 f^{c} c^{c}{ }^{1 / 2}$
Temperatre increase causes expansion of concrete defined by the thermal coefficient $\alpha=5.5 \times 10^{-6}$ inin $/{ }^{\circ} \mathrm{F}\left(3.1 \times 10^{-6} \mathrm{~m} / \mathrm{m} /{ }^{\circ} \mathrm{C}\right)$. Hence, concrete slabs need temperature reinforcing to prevent cracks due to uneven expansion. Concrete also has creep deformation over time, mostly during the first year. Concrete shrinks about 1.3% due to loss of moisture, notably during curing. The temperature reinforcing helps to reduce shrinkage cracks as well. Density of concrete is determined by the type of aggregate. Light-weight concrete weighs about $100 \mathrm{pcf}\left(1602 \mathrm{~kg} / \mathrm{m}^{3}\right)$. Normal concrete 145 pcf $\left(2323 \mathrm{~kg} / \mathrm{m}^{3}\right)$ without reinforcing and $150 \mathrm{pcf}\left(2403 \mathrm{~kg} / \mathrm{m}^{3}\right)$ with reinforcing.
Concrete has good fire resistance if reinforcing steel is covered sufficiently.
An 8 in $(20 \mathrm{~cm})$ wall provides 4 hours and a 4 in $(10 \mathrm{~cm})$ wall 2 hours fire resistance.
Stress-strain curves for concrete
Concrete creep (deflection with time)
Concrete strength increase with time as percentage of 28-day strength
Point defining line of E-module on curve
Elastic limit of idealized line for working stress method
Idealized line for strength method
Actual stress-strain curve
E Elastic modulus, defined as the slope from 0 to $0.5 f^{\prime}{ }_{c}$
$\varepsilon \quad$ Unit strain, in/in (m/m)
F Unit creep strain, in/in (m / m)
G Days after pouring concrete

Cement comes in bags of $1 \mathrm{ft}^{3}\left(.028 \mathrm{~m}^{3}\right)$, classified by ASTM-C150 as:
Type I Normal cement (for most general concrete)
Type II Moderate resistance to sulfate attack
Type III High early strength
Type IV Low heat (minimizes heat in mass concrete, like dams)
Type V High resistance to sulfate attack
Types IA, IIA, IIIA correspond to I, II, III, but include air-entraining additives for improved workability and frost resistance.
Water must be clean, free of organic material, alkali, oil, and sulfate. The water-cement ratio defines the strength and workability of concrete. Low water content yields high strength, but is difficult to work. Typical water ratios are 0.4 to 0.6 , verified by a slump test. For this test, a metal cone is filled with concrete and tamped. Lifting the cone slumps the concrete to under 3 in $(7 \mathrm{~cm})$ for foundations and walls, and 4 in (10 cm) for columns and beams.

Aggregate should be clean and free of organic material. Fine aggregaie (sanoli is less than $1 / 4 \mathrm{in}(6 \mathrm{~mm})$. Coarse aggregate (giavel or einisheid rochit is used in normal concrete. Lightweight concrete has aggregate oi shale, siate, or slag. Perlite and Vermiculite are aggregates for insulating conicrete.
Adimixtures are substances added to concrete to modify its properties:

- Airentraned agents improve workability and frost resistance

Accelerators reduce the curing time and increase early strength

- Retarders slow the curing and allow more time to work the concrete
- Plasticizers improve the workability of concrete
- Colors and pigments add colors to concrete

Curing of concrete is a process of hydration until it reaches its full strength. Although this process may take several months, the design strength is reached after 28 days. During the curing process the concrete should remain moist. Premature drying results in reduced strength. Exposed concrete surfaces should be repeatedly sprayed with water or covered with a protective membrane during curing. This is most important in hot or windy climates. The curing process accelerates in hot temperatures and slows down in cold temperatures. Concrete shrinks about 2% during curing. This may cause cracks. Synthetic fibers of $1 / 8$ to $3 / 4$ in (3 to 20 mm) are increasingly added to improve tensile strength and reduce cracking of concrete.
1 Concrete compressive strength defined by water-cement ratio
2 Slump test: sheet metal cone and slumped concrete, $C=$ slump
3 Maximum aggregate sizes: $1 / 3$ of slab, $1 / 5$ of wall, $3 / 4$ of bar spacing
A Compressive strength of normal concrete
B Compressive strength of air entrained concrete
C Slump is the amount the wet concrete settles

Reinforced concrete

Concrete is strong in compression, but weak in tension and, when cracked, has zero tensile strength. Under tensile stress, concrete requires reinforcement with deformed bars or welded wire fabric. Concrete and steel are compatible, with thermal coefficients of $\alpha=6 \times 10^{-6} / \mathrm{F}^{\circ}$ and $6.5 \times 10^{-6} / \mathrm{F}^{\circ}$ for concrete and steel, respectively. With different thermal expansions, major thermal stress would result. Some temperature reinforcement is required to prevent cracks. Concrete protects the embedded steel from fire and corrosion, but cracks cause steel corrosion by exposing it to humidity.
Deformed bars have round cross sections with ribs to bond with concrete. Under certain conditions bars need a hook at the end to resist slippage. Bar sizes are designated by numbers 3 to 18. Up to size 8, bar numbers correspond to the bar diameter in eighth of an inch (No. $7=7 / 8$ in. Bars are available in the following grades and corresponding yield strengths f_{y}

* Available for bars No. 14 and 18 only (for compression renforcement).

Properties of reinforcing bars

Size			Area		Weight	
			in ${ }^{2}$	mm^{2}	lb. /ft	kg / m
ค 3	0.375	9.50	0.11	71	0.376	0.560
7) 4	0.500	12.70	0.20	129	0.668	0.994
5	0.625	15.88	0.31	200	1.043	1.552
6	0.750	19.05	0.44	284	1.502	2.235
7	0.875	22.22	0.60	387	2.044	3.042
8	1.00	25.40	0.79	510	2.670	3.973
9	1.128	28.65	1.00	6.45	3.400	5.060
10	1.270	32.26	1.27	819	4.303	6.404
11	1.410	35.81	1.56	1006	5.313	7.907
14	1.693	43.00	2.25	1452	7.650	11.380
18	2.257	57.33	4.00	2581	13.600	20.240

Deformed bars with stamp for mill, bar \#, steel type, and grade Bar hooks of $90^{\circ}, 180^{\circ}$, and 135°; the latter for stirrups and ties only Minimum bar bend defined by bar diameter

Hook length: 6D, stirrups and ties; 12D all others; or min. 2.5 in (6 cm) Hook length: 4D; or min. 2.5 in (6 cm)
Hook length: 6D (10D for seismic regions); or min. 2.5 in (6 cm) Bar diameter
E Bend diameter: 4D, No. 5 bars and smaller for stirrups and ties only; Other bars: 6D, No. 3 to 8; 8.5D, No. 9 to 11; 10.5D, No. 14 and 18

Bar cover is the distance between bar edges and the outside surface of concrete. Structurally, reinforcing is most effective near the surface to resist cracking and bending. The distance from the neutral axis near the center increases the resisting lever arm for steel. This makes it more effective to resist bending. However, bars placed too close to the surface are more susceptible to corrosion and are poorly protected against fire. The ACl code defines the minimum cover for various members and exposure conditions for the purpose of fire and corrosion resistance. This is particularly important for members in contact with soil, such as foundations, or basement walls.

Bar spacing must be wide enough to allow wet concrete to flow freely and to transfer stress between spliced bars. But spacing should be close enough to provide effective reinforcing. The ACl code defines upper and lower limits for bar spacing.

The diagrams show minimum bar cover and spacing for typical concrete Structures, including beam, post, foundation, and slab and plate.

```
Beam
2 Slab or plate
3 Column
4 ~ F o u n d a t i o n ~
```

wali

Minimum bar covers: 1.5 " for beam and post; 1 " for joist Minimum bar spacing for beam: $3 / 4^{\prime \prime}$ or 1.33 max. bar ϕ
C Minimum bar cover for slab and plate: $3 / 4^{\prime \prime}$ for \#5 bar and smaller ($1.5^{\prime \prime}$ when exposed to weather); $2^{\prime \prime}$ for \#6 bars and larger D Minimum bar cover for foundation: 3"

Welded Wire Fabric is common as reinforcement for slabs on grade and thin slabs. It consists of orthogonal welded wire mesh. Wires are smooth or deformed for better bonding and come in yield strengths from 56 to $70 \mathrm{ksi}(386$ to 483 MPa$)$. The largest wire has 0.2 sq in area and $1 / 2$ in (13 mm) diameter. A typical welded wire fabric designation is $4 \times 6-\mathrm{W} 10 \times \mathrm{W} 20$, implying:
4×6
Wire spacing (in)
W10xW20 wire size and type (W for smooth, D for deformed wires)

Beam Reinforcement

Concrete beams require reinforcement for bending and shear in correlation with the respective stress patterns. This is illustrated for a simply supported beam under uniform load and for other beams on the next page.
Bending reinforcement is placed where the bending moment causes tensile stress. A simply supported beam under uniform gravity load deforms downward to generate compression on top and tension at the bottom. Thus, bending reinforcement is placed at the bottom. Beams with negative bending require tensile reinforcement on top. This is the case in beams with moment resistant supports, cantilever beams, and beams continuing over three or more supports. Some beams may require additional bars at mid-span or over supports to resist increased bending moment. Beams of limited depth also require compressive reinforcement to make up for insufficient concreste. Some reinforcement bars have hooks at both ends to anchor them to the cor criete ff the bond length between steel and concrete is insufficient. Deformiad bars usually' dor't need hooks, given sufficient bond length. Temperaturereinforcement resists sircss caused by temperature variation and shrinkage during curing.
Shear reinforcement is placed where the shear sitess exceeds the shear strength of coincrete whinh is very small compared to compressive strength. Beams under uniform grevity (Coad have mazy mum shear at supports which decreases to zero at mid-span. Thus shear reinforcement in form of stirrups is closely space near the supports and spacing increases toward mid-span. Stirrups are usually vertical for convenience, though combined horizontal and vertical shear stresses generate diagonal tension which may cause diagonal cracks near the supports. Small longitudinal bars on top of a beam tie the stirrups together.
1 Shear diagram: maximum shear at supports and zero at mid-span
2 Isostatic or principal stress lines: diagonal tension, dotted, near support
3 Side view of beam with reinforcement
4 Axon view of beam with reinforcement
A Bottom steel bars resist tensile stress
B Stirrups resist shear stress which, for uniform load, is maximum at the supports and zero at mid-span

Wall

The unsupported height to width ratio of bearing walls should not exceed 25 with 6 in (15 $\mathrm{cm})$ minimum thickness -8 in $(20 \mathrm{~cm})$ for basement walls. Non-bearing walls may be 4 in $(10 \mathrm{~cm})$ thick. Walls of 10 in $(25 \mathrm{~cm})$ or thicker should have 2 layers of reinforcement. Unless reinforcement is determined to be greater for a given condition, the following minimum reinforcement shall be provided as a percentage of the wall cross-section area.
Horizontal reinforcement:
0.25\% min.
Vertical reinforcement:
0.15% min.

Additional reinforcement is required at wall tops, corners, around all openings, as well as foundations.

Dowel bars connect walls to foundations, floor and roof slabs. They should overlap with rebars at least 40 bar diameters or the $n=$ minimum computed bond length.
1 Exterior wall with flat slab
2 Interior wall with flat slab
3 Exterior wall with rib or waffle slab
4 Interior wall with rib or waffle stan
5 Exterior wall with foundation and slak on grade
$6 \square$ Interior wall with:icundation and siab on grade
Nail with 2 layers of reinforcement
B Fiat slab with dowel bars connected to wall
Rib or waffle slab with dowel bars connected to wall
D Slab on grade with construction joint at wall
E Gravel bed under slab on grade
F Foundation with dowel bars and key

Slab

Depending on the support conditions, concrete slabs may span one-way or two-ways. If supports are on two opposite sides, a one-way slab is the only option. For a slab supported along all edges and of approximately equal span in both directions, a two-way slab is preferred and more efficient. However, if spans in the two directions are different, a one-way slab is better since deflection increases with the fourth power of span, causing 16 times greater deflection for double spans. In two-way slabs of unequal spans, the rebars spanning the short direction carry most of the load and bars spanning the long direction are ineffective. The ratio between short and long span should not exceed 1:2, but is most effective at 1:1.

The span capacity for slabs is about 20 or 30 feet for one-way and two-way slabs, respectively. Slabs exceeding those limits require intermediate beams or josists. Oneway and two-way slabs are shown on the left and right, respectivelv.

1 One-way slab supported by two edge beams
2 Two-way slab supported by four edge beems

3 One-way beams (supporting slat) suprot ted by two edge Deams
4
Two-way Deams (supporting slab) supported by four edge beams
5
One-vav Rib-stao (pan joist) suipported by beams
Slab depth $25^{\prime \prime}$ to $4.5^{\prime \prime}(6$ to 10 cm$)$
Total depth 10 " to $24^{\prime \prime}(25$ to 60 cm$)$; L/d= 20-28
Rib width 5" to 10 " (13 to 25 cm)
Rib spacing 2' to 3^{\prime} (0.6 to 1 m)
6 Two-way waffle slab with solid panels over columns to resist shear: Slab depth 2.5 " to 4.5 " (6 to 10 cm)
Total depth $10^{\prime \prime}$ to $24^{\prime \prime}(25$ to 60 cm$)$; L/d = 33
Rib width $5^{\prime \prime}$ to $6^{\prime \prime}$ (13 to 15 cm)
Waffle size 2^{\prime} to 5^{\prime} (0.6 to 1.5 m)

Slab and plate

Depending on span and support type concrete slabs may span one-way or two-way. For supports on two sides one-way span is the only option. For supports on all sides and about equal span in both directions, two-way slabs are better, but for unequal spans oneway slabs are better. Deflection increases with the fourth power of span or 16 times greater deflection for a double span. Therefore, rebars spanning the long way are ineffective since the shorter span deflects less and carries most load. Slabs and plates have reinforcement at the bottom of mid-span and on top of multi-span supports. The diagrams show only one layer of reinforcement for clarity. Sections on the next page show both top and bottom reinforcement. The following slab span/depth ratios L/d give minimum slab depths if deflection is not checked.

One-way slabs have rebars in one direction but require some rebars to resist stress due to temperature variation and shrinkage. The temperature reinforcing runs perpendicular to main reinforcing and must be a minimum percentage of the concrete cioss section area as follows:

Grade 40
Grade 60
 Grade
40 Grade cancilever

Two-way slabs need no temperature rebars. Slabs without beams require different reinforcement for middle strips and column strips. Column strips need more rebars since they carry a greater load share. Two-way slabs need about 20 \% less depth, but require support on all sides.
1 One-way slab on walls
2 One-way slab on beams
3 Two-way slab on walls; $\mathrm{L} / \mathrm{d}=36$ for multiple bays
4 Two-way slab on beams; L/d = 36 for multiple bays
5 Two-way slab on columns with drop panels to resist shear at columns; L/d = 33 for multiple bays
6 Two-way plate on columns without drop panels;
$\mathrm{L} / \mathrm{d}=30$ for multiple bays (for moderateload; low formwork cost)
A Concrete strip of 1' (1 m) wide assumed for slab analysis like a beam.
B Reinforcement of one-way slab
C Temperature reinforcement of one-way slab
D Reinforcement of two-way slab running both ways
E Middle strip reinforcement
F Column strip reinforcement carries a greater share of the load

Slab and plate reinforcement

Slabs and plates require bending reinforcement at zones of tensile stress, at bottom of mid-span, top of fixed-end support, and of multi-span supports. One-way slabs require some perpendicular reinforcement due to temperature variation and shrinkage. Thin slabs are sometimes reinforced with welded wire fabric rather than individual bars. Shear stress is usually resisted by concrete alone without shear reinforcement. Flat slabs without beams have drop panels, or column caps, to resist high shear on top of columns. Plates are similar to slabs without drop panels or column caps. They are commonly used for relatively light loads, such as roofs.
Depth of slabs and plates, depending on span, range from
4 to 12 in (10 to 30 cm) for slabs on beams
6 to 12 in (15 to 30 cm) for flat slabs on columns; and 6 to 14 in (15 to 36 cm) for plates
1 One-way slab on beams
2 Two-way slab on beams
3 Two-way flat slab on columns with dros, panels, columnstip
4 Two-way fiat slab on columns with drop panets, mid-strip
5■ Two-vas flat slat with mushroom columns, column-strip
Twow-wa pate vilitout drop panels, column strip
Top reinforcement at zone of negative bending
B Temperature reinforcement of one-way slab
C Bottom reinforcement in zone of positive bending
D Beam
E Drop panel on top of column
F Mushroom panel on top of column

Rib slab

Rib slabs, also called pan joists, are one-way systems for medium spans where flat slabs or plates would be too deep and heavy. Rib slabs reduce dead weight by eliminating concrete between ribs, providing structural depth without bulk. The tensile steel for positive bending is placed at the bottom of ribs and rib top and slab, resist compressive stress like a T-beam. Given narrow spacing of ribs, the minimum slab depth is determined not by depth/span ratio but by rebar size plus concrete cover. Long ribs may need bracing by cross-ribs to prevent buckling. Because of one-way span, rib slabs are not limited to square plans like two-way slabs. Rib slabs are formed placing reusable, prefabricated pans of plastic or steel on wood boards. Ribs may be tapered near the supports to resist the maximum support shear. Design and analysis of rib slabs is similar to T-beams.
Rib slab dimensions:
Span/depth ratio L/d =20-24 ($\mathrm{d}=$ total depth)
Maximum span $=50^{\prime}(15 \mathrm{~m})$
Slab depth 2.5 " to $4.5^{\prime \prime}$ (6 to 11 cm)
Total depth $12^{\prime \prime}$ to $24^{\prime \prime}(30$ to 00 cm$)$
Rib width 5 " to 9 " 1 (13tin 23 cm)
Rin spooing 2' to 3' (60 to 90 cm)

Slab on bear?

S!abs on beams may be one- or two-way systems depending on proportions of spans between the boundary beams. For equal spans, two-way slabs are appropriate. For unequal spans, one-way slabs are better and should span the shorter direction. Slabs on beams are an intermediate solution between flat slab or plate, and rib or waffle slabs. The formwork for slab on beam is more complex and costly than for rib slabs.
The slab on beam is designed by the Direct Design Method as two-way system and as beam-like strip as one-way system.

Slab on beam dimensions:
Span/depth ratio L/d $=30-36$
Maximum span $=30^{\prime}$ (9 m)
Slab depth $4^{\prime \prime}$ to 12 " (10 to 30 cm)
1 Rib slab braced by intermediary cross rib
2 Slab on beam may be one-way or two-way span

可

Waffle slab

Waffle slabs are two-way systems for medium spans where flat slabs or plates would be too deep and too heavy. They reduce dead weight by two-way ribs to eliminate excess weight between the ribs. The tensile steel for positive bending is placed at the bottom of ribs and the rib top and slab resist compressive stress. Since negative bending reverses the stress, waffle slabs are not efficient as cantilever with negative bending. Waffle slabs need either solid panels on top of columns to resist shear stress or two-way beams. Waffle slabs are formed placing re-usable prefabricated pans of plastic or steel over a grid of wood boards.

Waffle slabs may be designed similar to the previously described Direct Design Method like a flat slab on columns. Typical waffle dimensions: 2^{\prime} to $5^{\prime}(60$ to 150 cm$)$

1 Waffle slab with a single solid panel over columns
2 Waffle slab with four solid panels over columns
3 Waffle slab supported by beams

Special slabs

The Italian engineer Arcangeli proposed a waffle slab with curvilinear ribs that follow isostatic lines for optimum stress distribution and a more elegant appearance. Pierre Luigi Nervy built such a slab for a wool factory in Rome. For a tobacco factory in Bologna, Nervi built a waffle slab with ribs wedged toward supporting beams for increased shear capacity.

1 Slab with isostatic ribs, proposed by Arcangeli
2 Slab with isostatic ribs; for a wool factory in Rome, by Nervi
3 Waffle slab with ribs wedged to increase shear capacity

1

1

2

Sicil type

Soft clay	2 ksf	100 kPa
Stiff clay	4 ksf	200 kPa
Sand, compacted	6 ksf	300 kPa
Gravel	15 ksf	700 kPa
Sedimentary rock	50 ksf	2400 kPa
Hard rock (basalt, granite)	200 ksf	9600 kPa

1 Column footings are usually square, from 1 to $2 \mathrm{ft}(30 \mathrm{to} 60 \mathrm{~cm}$) thick with two-way rebars at bottom and dowel bars extending into column
2 Grade beams carry uniform load (of walls) to caissons, piers, orpiles; or distribute column loads and tie them together as shown
3 Wall footings are linear and usually about twice the width of the wall, with bottom rebars in length direction and cross bars for wide footings
4 Mat foundations can bridge uneven settlements in variable soil and may counteract groundwater buoyancy with appropriate mat depth
5 Pile caps distribute column load to piles and tie them together
6 Grade beams may connect pile caps for increased lateral stability

Pile and pier

Piles and piers, or caissons, are used in poor soil conditions. They have been used since antiquity. Vitrusius wrote of wood piles driven by machinery. Piles are driven into soil but piers are poured into excavated shafts.
Piles are driven into soft soil by a pile driver either as friction piles relying on soil friction, or end-bearing piles to rest on firm soil or rock. Uplift loads are resisted by friction with coefficients ranging from 0.35 to 0.6 . Pile capacities are verified by resistance to the last blows or by test loads. Piles can be vertical or inclined for lateral load. Due to capacity limits and difficulty in precise placement, piles are in clusters of usually three or more, spaced about 30 to 36 in (75 to 90 cm) and supporting columns at cluster centroid. Pile caps distribute column load to piles and tie them together. Piles come in steel, wood and concrete. Wood piles are peeled and pressure treated trunks. They need dry soil or should be fully under water to prevent rotting. Steel piles of round pipes or H-shapes can be weld-spliced to great length as they are driven. H-piles displace the ieast sojil for easy penetration. Concrete piles may be plain, reinforced, prestressed, precast, or site-cast. They are the most common because of inherent corrosion resistance

Piers are usually shorter than piles and are used in firmer soil where pile driving is difficult. They are cast in place against excavated soil or a steel form that is gradually removed as the concrete is poured. Piers resting on soft soil may need a bell at the bottom to enlarge the bearing area but those on rock have straight shafts. The bell is formed by partially removing the form and compacting the concrete to push it outward. Placing of piers is more precise than piles. Thus, only a single pier is needed to support a column. Pier diameters range from 1.5 to $7 \mathrm{ft}(0.5-2.1 \mathrm{~m})$ with bells 2 to 3 times wider. Capacities range from 70 to $10,000 \mathrm{k}(300$ to $45,000 \mathrm{kN}$).

Steel H-pile cross section Wood pile cross section
Concrete pile cross sections
Piles: end-bearing pile at left; friction pile at right
Piers: bell pier at left; straight pier at right
6 Pile caps: common plans and cross sections

Retaining wall

Retaining walls facilitate abrupt changes in topography. They resist lateral soil pressure and possible surcharges, such as buildings. Three types of retaining walls are mass walls (rare today), cantilever walls of concrete and masonry. Retaining walls should have weep holes spaced about $10 \mathrm{ft}(3 \mathrm{~m})$ with gravel backfill. They also require expansion joints spaced about $30 \mathrm{ft}(10 \mathrm{~m})$ to prevent cracking. Retaining wall design depends on location. At property lines the footing must point away from the property line, otherwise footings are located to best resist overturning, using soil as ballast. Cantilever retaining walls require footing widths of about $2 / 3$ the height from top of footing to top of wall. Walls with sloped backill need footings of about 1-1/4 their height and also need a key below the footing to help resist lateral sliding. Walls up to $6 \mathrm{ft}(1.8 \mathrm{~m})$ height require 8 in $(20 \mathrm{~cm})$ width. Higher walls up to $9 \mathrm{ft}(3 \mathrm{~m})$ height require 12 in $(30 \mathrm{~cm})$ at their lower portion. Depending on height, vertical rebars range from \# 3 to \# 8 , spaced 8 to 32 in (20 to 81 cm) and horizontal bars are spaced about 16 in (40 cm . Reaning walls are usually designed using equivalent fluid pressure as lateral lioad

Mass walls resist lateral pressure by tineir mass or dead weight and are thus very bulky. They are usually of plain concerete, but may se reinforced to reduce cracking. Mass walls are about 12 in (30 cim) wide on top and increase in width about $1 / 3$ of the distance from the top G
Concreate walls are cantilever retaining walls that resist lateral pressure by being cantiievered from the ground. They balance overturn moments by their own weight combined with soil surcharge imposed on their footing and resist sliding by lateral soil pressure and friction at the base. They are more expensive than concrete masonry walls due to the expense of formwork.

Concrete masonry walls are also cantilever retaining walls that resist lateral pressure by cantilever action. They resist overturn moments by their own weight and soil imposed on the footing and resist sliding by lateral soil pressure and friction at the base. The footing usually requires a key below the footing to help resist lateral sliding. Concrete masonry retaining walls are most common due to a balance of strength and economy.

1-3 Mass retaining walls
4 Concrete /CMU wall at property line with adjacent land lower
5 Concrete / CMU wall not at property line
6 Concrete / CMU wall at property line with adjacent land higher
7 Concrete / CMU wall at property line with adjacent land lower
8 Concrete / CMU wall not at property line
9 Concrete / CMU wall at property line with adjacent land higher

Prestressed concrete

The effect of prestress on concrete is to minimize cracks, reduce depth and dead weight, or increase the span. Analogy with a non-prestressed beam clarifies this effect. In a simply supported non-prestressed beam the bottom rebars elongate in tension and concrete cracks due to tensile weakness. In prestressed concrete tendons (high-strength steel strands) replace rebars. The tendons are pulled against concrete to compress it before service load is applied. Service load increases the tension in tendons and reduces the initial concrete compression. Avoiding tensile stress in concrete avoids cracks that may cause corrosion in rebars due to moisture. Further, prestress tendons can take the form of bending moments that balances the service load to minimize deflection. This, combined with higher strength concrete of about $6000 \mathrm{psi}(40 \mathrm{MPa})$, allows for longer span or reduced depth in beams.
Pre-tensioning and post-tensioning are two methods to prestress concrete. They are based on patents by Doehring (1886) and Jackson (1888); yet both were unsuccessful due to insufficient stress that dissipated by cieep. Deehring stressed vires before casting the concrete, and Jackson used turnbuckles oo stress iron rods aiter the concrete had cured. Subsequent experimenis b) Dithers (ed to the first successful empirical work by Wettstein in 1021 and the first theoret cai study by French engineer Eugene Freyssinet curing 1920, followed by his practical development. In 1961 the US engineer TYLin pioneered presiress tendons that follow the bending diagram to balance bending due to load. Lin's method controls deflections for any desired load, usually dead load and about half the live load. By his method, before live load is applied a beam (or slab) bows upward. Under full load, they deflect and under partial live load they remain flat. Diagram 5 illustrates this for a simply supported beam.

Simply supported beam without prestress, cracked at tensile zone Prestress beam with concentric tendon deflects under service load Prestress beam with eccentric tendon pushes up without service load Same beam as 3 above with service load balanced at max. mid-span moment but not elsewhere since tendon eccentricity is constant Prestress beam with parabolic tendon to balance bending moment
Bending stress: top concrete compression and bottom steel tension Prestress uniform due to concentric tendon
C Prestress with greater compression near tendon at bottom
D Prestress for eccentric tendon: bottom compression and top tension (tension where tendon is outside beam's inner third (Kern). Simply supported beam of zero end moments has concentric tendon at ends
E Service load stress: top compression and bottom tension
F Combined stress from prestress and service load
G Combined stress with uniform distribution due to balanced moments

4

6

Tendons are high strength steel strands used in prestressed concrete. They have a breaking strength of $270 \mathrm{ksi}(1860 \mathrm{MPa})$ and are composed of 7 wires, six of them laid helically around a central wire. Tendons come in sizes of 0.5 and 0.6 in (13 and 15 mm) diameter. Both sizes are used in post-tensioned concrete but only small tendons are used in pre-tensioned concrete which requires no bond length. The great strength of tendons allows initial stress levels high enough to make up for loss of stress due to creep, most notably during initial curing.
Post-tensioning begins by placing of metal or plastic tubes that house the prestress tendons prior to the pouring of concrete. Some tendons come enclosed in the tubes, but most are inserted after concrete has cured. Tubes prevent tendons to bond with the concrete to allow free movement for subsequent prestress operation. Once concrete has reached sufficient strength, the tendons are prestressed using hydraulic jacks that press against concrete to transfer prestress into it. Short members have tension applied at one end only but long members may require tension at bothends to overcome friction. Several devices are available to anchor the erids of post-ensioned tendoris into concrete. One such device is a conical wedge that hoids tendens by mechanical friction between the tendon and a rough surface of the device. Post-tensioning is usually done at the building site. Di allows tendons to take any form desired to balance bending momentis induced b, service load.

Tendon eross section.
Conical tendon lock rests against steel sleeve (not shown) inserted into concrete and squeezes the tendon and hold it by friction
3 Beam with straight eccentric tendon below neutral axis
4 Parabolic tendon emulate bending moment to reduce deflection
5 Multiple parabolic tendons with offset anchors
6 Continuous beam with tendons emulating bending moment distribution
7 Continuous slab with tendons emulating bending moment distribution

Pre-tensioning stresses tendons between abutments in a precast concrete plant. Once concrete has sufficient strength (with the help of steam in about 24 hours) tendons are cut off at the abutments to transfer prestress into the concrete. After cut off, tendons are anchored by friction with the concrete at both ends. Since abutments are difficult to secure at construction sites, pre-tensioning is usually done in a precast plant. Similar pieces may be laid in a row and cast together requiring only two abutments per row. Pretensioning is simplest with straight tendons, but some approximate curves that emulate bending moments are possible. They require temporary tie-downs to be cut off along with tendons after curing is complete.
Pre-tensioned members must be carefully handled during transportation to avoid damage or breakage. Since the reinforcement is designed for a given load direction, any reversed load may result in overstress and possible breakage. To avoid this they must be placed on the truck in the same position as in their final installation. Also, to avoid breakage of corners, it is advisable to provide corners with chamiers.
1 Beam with tendons anchored to abutments
2 Beam with tendons cut off to transfer prestress into concrete atter it has reached sufficient strength
Beam with tericion tie-dover to approximate bending moment curves
Rolim of pre-tensioned mernivers with tendon anchors at ends only
For men bers like walls and columns with possible bending in any direction, tendons may be placed at the center
5 Row of pre-tensioned beams with tendon tie-down to approximate bending moments of service loads

A Close approximation of parabolic bending moment by tendon shape
B Temporary tendon tie-downs to approximate bending moments are cut off after tendons are cut from abutments

5

Precast concrete

Precast concrete comes in a wide variety of shapes for both structural and architectural applications. Presented are structural systems and members: floor and roof members, columns, and walls. Though precast members may be of ordinary concrete, structural precast concrete is usually prestressed. The primary reinforcement of prestressed concrete is with tendons, yet normal rebars are often used as stirrups to resist shear. Rebars are also added for different loads during transportation and erection. Compared to site-cast concrete, precast concrete provides better quality control, repeated use of formwork, faster curing with steam, and concurrent operations while other site work proceeds. The advantages must offset the cost of transportation to a construction site. Precast concrete is similar to steel framing by allowing preparatory site work to be concurrent, yet it has the advantage to provide inherent fire resistance. Steel on the other hand, has lower dead weight, an advantage for seismic load that is proporional to dead weight. To reduce high costs of formwork the number of difierent precast members should also be reduced; yet this objective must be balanced by other consiafrations. For example, fewer parts may result ina rornotone and unirspired design. Combining precast with site-cast concrete may saisfy ecinony as well as aesthetic objectives.
Piecast framing alows many variations, both with and without site-cast concrete. A few iypica cxamples are presented. They are possible with columns of several stories, linited verimarily by transportation restrictions. The capacity of available cranes could also impose limitations. In such cases, columns should be spliced near mid-height between floors where bending moments from both gravity and lateral loads are zero.
1 T-columns with deep spandrel beams support floor and roof slabs. Shear connections between adjacent beams combine them to moment frames to resist lateral as well as gravity loads
2 Frames of split columns and deep spandrel beams support floor and roof slabs for gravity and lateral loads. Shear connections at adjacent split columns tie the frames together for unified action
3 T-columns with normal spandrel beams support floor and roof rib slabs Shear connections between adjacent beams combine them to moment frames to resist lateral as well as gravity loads
4 Tree-columns with beam supports allow flexible expansion. Twin beams allow passage of services between them. Lateral load resistance must be provided by shear walls or other bracing
5 Rib slab or double T's supported on site-cast frame
6 U-channels with intermittent skylights supported on site-cast frame

1

2

Floor and roof members span primarily horizontally to carry load in bending to supporting columns or walls. Some are designed for bridge structures but also used in buildings. A primary objective is to keep the dead weight low yet providing relatively long spans. To this end long-span members have ribs or hollow cores to reduce weight yet seeking optimal synergy for the tensile and compressive properties of steel and concrete, respectively. Precast members are usually covered with site-cast concrete of about two inch $(5 \mathrm{~cm})$ to provide a smooth surface and bond individual panels together. The following dimensions are approximate and vary by precast plant.

	Item	B	D	L	L/D
1	Solid plank	2-4 ft	4-8 in	$10-30 \mathrm{ft}$	25-40
		0.6-1.2 m	$10-20 \mathrm{~cm}$	3-10 m	
2	Hollow plank	2-8 ft	6-12 in	$20-50 \mathrm{ft}$	ρ^{30-40}
		$0.6-2.4$ m	$15-30 \mathrm{~cm}$	7-15.m	
3	Single T	4-8 ft	12-48 in	$\left(\begin{array}{r} 20-120 \mathrm{tt} \\ 7-36 \mathrm{~m} \end{array}\right.$	(1) 20-40
		1.2-2.4 m	$30-120 \mathrm{~cm}$		
4	Double T	4-8, it	12-48in	2i-120 ft	20-40
		1.2-2.4 n	$30-12.0 \mathrm{~cm}$	6-36 m	
	I-beam	U	- 20-48 in	20-120 ft	15-30
			$50-120 \mathrm{~cm}$	6-36 m	
$\int_{7}^{6} \int_{\text {Inverted } T}^{\text {-eean }}$			20-48 in	20-60 ft	10-20
			$50-120 \mathrm{~cm}$	6-24 m	
			20-48 in	20-60 in	10-20
			$50-120 \mathrm{~cm}$	6-24 m	

Precast columns must support beam gravity load and prevent sliding under lateral load. This is possible by steel dowels, grouting, bolting, welding, or tie-rods. Dowel bars are joint by grouting after erection. Bolting and welding connect metal plates welded to rebars of joining members. Bearing pads prevent overstress due to uneven surface of beam or column. Precast columns several stories high, limited by transportation constraints are spliced at the mid-height of a story where moments are zero.

Column with semi-corbel recessed into beam for flush bottom face
Column with two beams connected by steel dowels
Column with one-sided corbel to support beam
Column with two-sided corbels to support beams
5 Column splice with recessed metal brackets
6 Column to footing connection with steel plate and anchor bolts

Concealed moment resistant joints

1 Concealed beam/column joint
A Steel angle cast into beam end
B Wide-flange steel haunch cast into column
C Rebars welded to steel haunch
2 Moment resistant beam/beam joint (or similar beam/column joints)
A Dry-pack grout
B Post tensioned rod extending through column
C Anchor plate
D Pocket for tensioning jack
E Grouted pocket after completion of post tensioning
F Bearing pad

2

Precast wall

Walls can be precast in many sizes and configurations: small modular panels; walls extending entire spaces; complete walled boxes (hotel rooms); single story walls; and multi-story walls. The choice of size and configuration depends on means of construction and limitations imposed by transportation requirements. Exhaustive coverage is beyond the scope of this book. Only some basic conditions are presented. Precast walls may be prestressed or with normal reinforcement that would be similar to site-cast concrete walls presented before. For thick walls two layers of tendons are placed near the wall faces. For most walls single layers are placed at the center of walls to resist buckling and bending in any direction. For walls that continue over several stories concrete floors and roofs are supported by concrete corbels, steel and wood by steel and wood ledgers, respectively. Walls extending from floor to ceiling are anchored to floors or roofs and adjacent walls by welded or bolted steel brackets, or by dowel bars inserted in grout or site-cast concrete. Exterior walls may be temporarily stabilized by dowe! bais that are tied or welded to dowel bars extending from floor slabs. A slot in the slab is leifiopen to that end and is filled after the wall is done

Roof support by exteriorivall corbe with welded brackers
Roof support by interior wall with boitedil and we.ded brackets
Floor support cy exterior wall corbegl witt welded brackets
Fioor suppoit by Literior beam with bolted bracket
Exterio footing with wall tied to floor by overlapping dowels. A slot in floor slab is filied after dowels are tied or welded together
Interior column footing
A Metal reglet for flashing, inserted in concrete wall
B Roofing membrane on rigid thermal insulation or site-cast concrete
C Metal plate welded to connect brackets in wall and floor or roof
D Precast roof slab (hollow core or other)
E Bearing pads of neoprene or rubber to distribute load evenly
F Grouted dowel bars to connect adjacent floor slabs
G Site-cast concrete top for smooth floor and to join precast slab panels
H Steel bracket to tie walls of adjacent floors together
I Pocket for bolting bracket (grouted after completion)
J Corbel for floor and roof (or ledger for wood or steel floors and roofs)
K Concrete beam, precast or site-cast
L Slot in floor slab to tie or weld wall to floor dowels (filled subsequently)
M Wall and floor dowels tied or welded together to anchor wall to floor
N Gravel to support floor slab in connecting slot

Tilt-up concrete

Tilt-up concrete is a precast technique performed on the building site. Due to relatively low cost, tilt-up construction is popular for industrial buildings and warehouses, but is adaptable to other building types. Wall panels are cast on top of the floor slab under construction to eliminate most formwork. The floor slab must be smooth and flat and carefully treated with a bond-breaking compound to prevent wall panels to bond with the slab. Depending on the wall finish desired, panels may be cast with the outside face facing up or down. The latter is more common and is the only logical option when corbels or other projections for floors or roofs are needed on the inside. Electrical wiring and similar items needed, including lifting and temporarily bracing inserts, pie-installed prior to concrete. Panels may be up to $30 \mathrm{ft}(9 \mathrm{~m})$ wide and 60 fit 18 (n) hign but they are usually much smaller. The lifting capacity of available cranes mus be consictered in selecting panel sizes. The crane capacity should be about twice the panel weight to account for initial inertia and pane bording with the floor sla'. Snce the panel has reached sufficient strength, aiter aboyt seven davs the lifting process begins. Panels must be designed noi only for service load but for any possible load during lifting and erection. Atter eiection the wall panels are braced with telescopic steel braces that allow proper alignment. The panels are connected to the floor slab by overlapping dowel bars that extend from wall panels and floor slab. Dowels are tied or welded together to anchor panels to the floor for initial stability until roof or floor diaphragms are in place. Those diaphragms transfer lateral loads to wall panels that act as shear walls parallel the load.

A Wall panel installed with temporary bracing
B Wall panel being tilt-up and lifted into the footing
C Wall panel on the floor slab ready for tilt-up
D Steel braces with telescopic spindle for panel alignment
E Floor slab dowel bars to be tied or welded to wall dowels
F Wall panel dowel bars to be tied or welded to floor dowels
G Possible dowel bars at panel edges to tie panels together
H Steel ledger supports steel roof (wood ledgers or concrete corbels are used for wood or concrete roofs)

Tilt-up details are similar to other precast wall details but some are unique to tilt-up construction. Wall panels may be connected by various butt joints or cast-in-place concrete splices or pilasters or by precast columns. Only some common details are presented. Walls may have concrete corbels, steel or wood ledgers, for concrete, steel and wood floors or roofs, respectively. Reinforcement, except for connecting dowels, is not shown for clarity.
1 Wall corner with cast-in-place concrete splice
2 Wall corner with mitered butt joint and sealant
3 Wall joint with cast-in-place concrete splice
Wall joint with cast-in-place concrete pilaster Wall joint with grouted key in precast double pilaster Wall joint with grouted key in butt joint
Roof supported by exterior wall corbel with welded brackets
Roof supported by exterior wall with steel ledger
9 Roof supported by exterior wall with wood IEdger
10 Exterior footing with wall tied to flocr Dy Deverlarping dowels. A floo clab slot is filled after dowels are tifa or welded loyeth er
11 Exterior footing after floo slab is completed
A Tilt-up vall paneí
Cast-in-place conicrete splice
Dowel bars extending from wall panels into concrete splice
Grouted concrete shear key ties panels together
E Silicone sealant with backer rod
F Metal reglet for flashing, inserted in concrete wall
G Metal plate welded to connect wall and roof brackets
H Roofing membrane on rigid insulation or concrete topping
I Bearing pads of neoprene or rubber to distribute load evenly
J Corbel to support roof or floor
K Steel angle ledger to support metal roof or floor
L Wood ledger to support wood roof or floor
M Anchor bolt to connect steel or wood ledger to wall panel
N Slot in floor slab to tie or weld wall to floor dowels
O Wall and floor dowels tied or welded together to anchor wall to floor
P Gravel to support floor slab in connecting slot

Projects

Hellas research foundation, Crete

Architect: Panos Koulermos
Engineer:Technical offices of the Hellas Research Foundation and the Greek Ministry of Industry, Research and Technology
This research foundation has four building blocks, clockwise from top left: administration and mathematics; physics and laser research; molecular biology; and a plaza over research offices. A vaulted gallery, reminiscent of the vaults in nearby Heracleon, is supported by columns that flank a gallery to link the various elements, evoking memories of classical Greek architecture. Moment resisting reinforced concrete frames supports two-way concrete slabs between its beams. The frames are based on a module that varies from 4.8 to $6 \mathrm{~m}(16$ to 20 ft$)$ in response to program needs and is cominined with shear walls for increased resistance to lateral load. Concrete masonry pariitoris provide further resistance. Koulermos explored the plastic qualifies of concrete to articulate facades in response to program needs. The oblique research wings intecrate in 1.2 m $(4 \mathrm{ft})$ deep envelope zone exposed coiumns ar a u-shaped walls for sun control and as mechanical chases that facilitate changing needs The plaza block features freestanding columns to frame ciramatic viens and support sun-shading devices. Articulation of the administiation wing facade refiects interior functions. Facade elements of research wings, reets to typical fioor framing, are shown below.

Terrace Homes Taipei, China (1980)

Architect: G.G. Schierle
Engineer: Kuan Wai Yen
This 200 unit community on a hillside with dramatic valley view includes eight types of terrace homes for various needs and local topographies. Most units are in groups of four; two of them with access from below with street level parking, living above and bedrooms on the third floor. The other two units, with access from above, are in reversed order. Both types have two large terraces with party walls and planters for privacy.

Moment resistant concrete frames, based on a grid in the range of 3 to 4 m (10 to 13 ft) in response to space needs, support two-way concrete slabs and are vertically aligned for straight load paths. Masonry walls add stiffness to minimize movement in wind or moderate earthquakes, whereas frames provide ductility for fail-safe performance should brick walls fail in severe earthquakes, a proven effective combination in seisinic regions.
A Two-way reinforced concrete slab on bea rs, all site-cast.
B Concrete slab on grade
C Retaining wall with waterprocfing
D Concrete beam
\qquad

Lloyd's of London (1986)

Architect: Richard Rogers
Engineer: Ove Arup
Loyd's of London, a society of syndicated underwriters, needs a market place known as "The room". The program required a facility for the twenty-first century, including an underwriter room three times larger than the old one. Given the location in London's financial district, an area of mostly small and winding streets, the design is in response to this urban context as well as the program. A permanent structure for the central space, expected to last, is flanked by service towers, expected to adapt with changing technology. The central space is an efficient box with an atrium covered by vaulted truss. Roof terraces step from 12 stories facing a high-rise on the North to six stories on the South. The service towers with stairs and elevators respond to small scale urban context. Located on the outside they allow continued operations during future changes. Reinforced concrete columns, spaced $35 \times 59 \mathrm{ft}(11 \times 18 \mathrm{~m})$, support the inain strsture.

A One-way ribs at $1.8 \mathrm{~m}(6 \mathrm{ft})$ and cross-ribs act as dia.phragin to carry la eral inad to vertical bracing. Cross ribs distributerib load to adjacent ribs
B Access floors on stubs provide space for service distribution
C Precast, prestrossed conciete chianno! beemis
D Cantilever breckets suppor beams
5 Diagor al bracina on six façade bays resists lateral loads

23-29 MATERIAL Concrete

Cafeteria, state college Hayward, California (1967)

Architect: Worley K Wong and Associates
Engineer: Eric Elsesser
This cafeteria was built with two structural precast concrete components: Channel beams supported by channel columns; though the beams vary in lengths and width. A large interior atrium links the two levels and provides visual relieve to the strictly modular structure. The columns cantilever from underground foundations to resist lateral load in bending as well as gravity axial load. Columns step back at floor and roof levels to provide supporting shoulders for beams. Thus, the columns are largest at the base where moments from lateral loads are greatest. Roof beams are slightly wider than floor beams due to column setbacks. The void of channel columns, and the aligned space between beams, house electrical and mechanical services and recessed folding partitions. On-site concrete provides the finish over and bridges the gap between beams. Beams are connected to columns by inserts, welded together after erection Niveprene pads provide smooth load transfer from beams to columns. Most of the precas concrete has exposed aggregate finish; only the inside of channel beams is smoth and painted white for a striking contrast and to erinance natural ighting by reflection.

Max-Eyth school Schöntal, Germany

Architect: P. M. Kaufmann
Engineer: W. Böck
Located on the edge of the Jagst valley with its rich history, the school is named after the poet-engineer Max-Eyth. The terracing follows the natural grade and adjacent vineyards. Clear story light floods the central atrium and stair. The atrium provides visual continuity. Terracing creates dynamic space composition. The structural grid provides vertical continuity for load paths and installations. A concrete moment frame of 8.4/8.4/3.6 m resists gravity and lateral loads. Exposed two-way joists, spaced 2.4 m , span the square modules and support a two-way concrete slab. The exposed concrete frame and precast exterior wall panels are contrasted by wood partitions

Hampshire national building, Culver City, California

Architect: James Tyler
Engineer: Dimitry Vergun
This two-story facility of three 60×100 feet units is designed on a $25 / 25$ feet module. Tiltup concrete panels on the long sides are joined to steel moment frames on the short sides to resist gravity load and lateral load in length and width direction, respectively. Interior steel columns carry gravity load only. The 6 inch tilt-up wall panels, $25 / 25$ feet are spliced with poured-in-place concrete, and welded to steel columns at four corners. Steel truss joists support floor and roof metal decks. The tilt-up panels were poured on the concrete floor, adjacent to their erected positions. The panel's outside was sandblasted for a textured gravel finish.

24

Cable and Fabric

Material

Tent membranes have been around since ancient history, notably in nomadic societies. However, contemporary membrane structures have only evolved in the last forty years. Structural membranes may be of fabric or cable nets. Initial contemporary membrane structures consisted of

- Natural canvass for small spans
- Cable nets for large spans

Industrial fabric of sufficient strength and durability was not available prior to 1970. Contemporary membrane structures usually consist of synthetic fabric with edge cables or other boundaries. Cables and fabric are briefly described.
Fabric for contemporary structures consists of synthetic fibers that are woven into bands and then coated or laminated with a protective film Common fabrics include:

- Polyester fabric with PVC coating
- Glass fiber fabric with PTFE coating
- Glass fiber rabric with silicon coating
- \square Fine meshi fabric: amminated with? PTFE film

Far
Fabric prore ties are taibulated on the next page. Foils included are only for very short spans duc to low tensile strength. Unfortunately the elastic modulus of fabric is no longer provided by fabric manufacturers, though it is required for design and manufacture of fabric structures. The elastic modulus of fabric is in the range of:
$\mathrm{E}=2000 \mathrm{lb} / \mathrm{in}, 11492 \mathrm{kPa} / \mathrm{m}$ to
$\mathrm{E}=6000 \mathrm{lb} / \mathrm{in}, 34475 \mathrm{kPa} / \mathrm{m}$

Cables may be single strands or multiple strand wire ropes as shown on following pages. Cables consist of steel wires, protected by one of the following corrosion resistance:

- Zinc coating (most common)
- Hot-dip galvanizing
- Stainless steel (expensive)
- Plastic coating (used at our cable nets at Expo64 Lausanne)

Depending on corrosion protection needs, zinc coating comes in four grades: type A, type B (double type A), type C (triple type A), type D (four times type A). Cables are usually prestressed during manufacture to increase their stiffness.

Elastic modulus of cables:

$\mathrm{E}=20,000 \mathrm{ksi}, 137900 \mathrm{MPA}$	(wire rope)
$\mathrm{E}=23,000 \mathrm{ksi}, 158,585 \mathrm{MPa}$	(strand >2.5 inch diameter)
$\mathrm{E}=24,000 \mathrm{ksi}, 165,480 \mathrm{MPa}$	(strand <2.5 inch diameter)

Fabric

Type	Makeup	Common use	Tensile strength
Coated fabric*	Polyester fabric PVC coating	Permanent + mobile Internal + external	$\begin{aligned} & 40 \text { to } 200 \mathrm{kN} / \mathrm{m} \\ & 228 \text { to } 1142 \mathrm{lb} / \mathrm{in} \end{aligned}$
Coated fabric*	Glass fiber fabric PTFE coating	Permanent Internal + external	$\begin{aligned} & 20 \text { to } 160 \mathrm{kn} / \mathrm{m} \\ & 114 \text { to } 914 \mathrm{lb} / \mathrm{in} \end{aligned}$
Coated fabric	Glass fiber fabric Silicone coating	Permanent Internal + external	$\begin{aligned} & 20 \text { to } 100 \mathrm{kN} / \mathrm{m} \\ & 114 \text { to } 571 \mathrm{lb} / \mathrm{in} \end{aligned}$
Laminated fabric*	Fine mesh fabric Laminated with PTFE film	Permanent Internal + external	$\begin{aligned} & 50 \text { to } 100 \mathrm{kN} / \mathrm{m} \\ & 286 \text { to } 571 \mathrm{lb} / \mathrm{in} \end{aligned}$
Foil	PVC foil	Permanent internal Temporary external	6 to $40 \mathrm{kN} / \mathrm{m}$ 34 to $228 \mathrm{lb} / \mathrm{in}$
Foil*	Flouropolymer foil ETFE	Permanent Internal + external	$\begin{aligned} & 5 \text { in } 2 \mathrm{kN} / \mathrm{mi} \\ & 34 \text { to } 59 \mathrm{lb} / \mathrm{in} \end{aligned}$
Coated or uncoated fabric*	PTFE fabric (good qualities for sustainability	F'ermanent + mobile Internal + external	$\begin{aligned} & 40 \text { to } 100 \mathrm{kN} / \mathrm{m} \\ & 228 \text { to } 571 \mathrm{lb} / \mathrm{in} \end{aligned}$
Coa ed or uncoated fabric"	Flourc poiymer fabric	Permanent + mobile Internal + external	8 to $20 \mathrm{kN} / \mathrm{m}$ 46 to $114 \mathrm{lb} / \mathrm{in}$

* Self-cleaning properties

Sl-to-US unit conversion:
$1 \mathrm{kN} / \mathrm{m}=5.71 \mathrm{lb} / \mathrm{in}$

Fire rating ++ incombustible + low flammability 0 none	UV light resistance ++ very good + good	Translucency	Durability
+	+	0 to 25 \%	15 to 20 years
++	++	4 to 22 \%	> 25 years
++	++	$10 \text { to } 20 \%$	$>20 \text { years }$
++	++		$525 \text { vears }$
		IJp to 90%	15 to 20 years internally
	++	Up to 96%	> 25 years
++	++	15 to 40%	> 25 years
++	++	Up to 90 \%	> 25 years

Maximum fabric span*

Tensile strength	Maximum span
$500 \mathrm{lb} / \mathrm{in}$	60 ft
$1000 \mathrm{lb} / \mathrm{in}$	120 ft

* Assuming:

Live load $=20 \mathrm{psf}, 956 \mathrm{~Pa}$ (wind or snow)
Safety factor $=4$
Fabric span/sag ratio $=10$

Cables

Cables may be of two basic types and many variations thereof. The two basic types are strands and wire ropes.
Strands have a minimum of six wires twisted helically around a central wire. Strands have greater stiffness, but wire ropes are more flexible. To limit deformation, strands are usually used for cable stayed and suspension structures.
Wire ropes consist of six strands twisted helically around a central strand. They are used where flexibility is desired, such as for elevator cables.
Metallic area, the net area without air space between wires, defines the cable strength and stiffness. Relative to the gross cross section area, the metallic area is about: 70% for strands and 60% for wire ropes. To provide extra flexibility, some wire ropes have central cores of plastic or other fibers which further reduce the metallic area.
1 Strand (good stiffness, low flexibility)
$\mathrm{E}=22,000$ to $24,000 \mathrm{ksi} ; 70 \%$ metallic
2 Wire rope (good flexibility, low stiffness)
$E=12,000$ to $20,000 \mathrm{ksi} ; 60 \%$ metallic

Cable fittings

Cable fitting for strands and wire ropes may be of two basic types: adjustable and fixed. Adjustable fittings allow to adjust the length or to introduce prestress by shortening. The amount of adjustment varies from a few inches to about four feet
3 Bridge Socket (adjustable)
4 Open Socket (non-adjustable)
5 Wedged Socket (adjustable)
6 Anchor Stud (adjustable)
A Support elements
B Socket/stud
C Strand oivire ope

1

Mast / cable details

The mast detail demonstrates typical use of cable or strand sockets. A steel gusset plate usually provides the anchor for sockets. Equal angles A and B cause equal forces in strand and guy, respectively.

A Mast/ strand angle
B Mast/guy angle
C Strand
D Guy
E Sockets
F Gusset plates
G Bridge socket (to adjust prestress)
H Foundation gusset (at strand and marat)
I Mast

\square

2

Production process

Fabric pattern

To assume surface curvature, fabric must be cut into patterns which usually involve the following steps:

- Develop a computer model of strips representing the fabric width plus seems
- Transform the computer model strips into a triangular grids
- Develop 3-D triangular grids into flat two-dimensional patterns

The steps are visualized ad follows:
1 Computer model with fabric strips
2 Computer model with triangular grid
2 Fabric pattern developed from triangular grid

Pattern cutting

Cutting of patterns can be done menually of automatio.
The manual method requires drawing the conputer plot on the fabric
The automatic rnethogdirects a cutting laseroi knife from the computer plot
Note:
For radial patterns as shown at left, cutting two patterns from one strip, juxtaposing the
wide and narrow ends, minimizes fabric waste.

Pattern joining

Fabric patterns are assembled by one of three methods:

- Welding (most common)
- Sewing
- Gluing

Edge cables

Unless other boundaries are used, edge cables are added, either embedded in fabric sleeves or attached by means of lacing.

Fabric panels

For very large structures the fabric may consist of panels that are assembled in the field, usually by lacing. Laced joints are covered with fabric strips for waterproofing.

Projects

US Pavilion, Expo 70, Osaka
Architect: Davis, Brody, Chermayeff, Geismar, De Harak Engineer: David Geiger
The pneumatic structure was supported by diagonal cables

2 Cable crossing clamp

Watts Towers Canopy

Architect: G G Schierle with Joe Addo
Engineer: ASI
A transparent membrane suspended from radial cable trusses is designed to provide sun shading for occasional performances at the Watts towers. The crescent-shaped roof follows the crescent-shaped seating below. The cable trusses minimize bulk for optimal view of the towers and facilitate fast erection and removal at annual events. The truss depth provides desired curvature for the anticlastic membrane panels. Two membranes provide shading for spectators and performers over the respective areas. The architectural design is shown below. The final computer drawings are shown at right.

Strut top

2 Fabric corner

A Top chord strand
B Diagonal strand
C Fabric attachment
D Metal plate at fabric corvier, acjustabie to incluce prestress
E Edge cab' ϵ
Edgelnebbing

About the book

Structures not only support gravity and other loads, but are essential to define form and space. To design structures in synergy with form and space requires creativity and an informed intuition of structural principles. The objective of this book is to introduce the principles as foundation of creative design and demonstrate successful application on many case studies from around the world. Richly illustrated, the book clarifies complex concepts without calculus yet also provides a more profound understanding for readers with an advanced background in mathematics. The book also includes structural details in wood, steel, masonry, concrete, and fabric to facilitate design of structures that are effective and elegant. Many graphs streamline complex tasks like column buckling or design for wind and seismic forces. The graphs also visualize critical issues and correlate US with metric SI units of measurement. These features make the book useful as reference book for professional architects and civil engineers as well as a text book for architectural and civil engineering education. The book has 613 pages in 24 chapters. http://www.usc.edu/structures

About the author

Professor Schierle, FAIA, has PhD and Master of Architecture degrees from UC Berkeley and a Dipl-Ing degree from Stuttgart, Germany. He was founding Director of USC's Graduate Program of Building Science and teaches structures at the USC School of Architecture. Prior to USC he taught at UC Berkeley and the Stanford University. He has been Visiting Professor at UCLA and EPFL Lausanne, lectured at AIA National Conventions and these universities: Arizona, Carnegie-Mellon, Harvard, MIT, Utah, Braunschweig, Delft, EPFL, Stuttgart; Mexico; and Sydney. He has received several grants from the National Science Foundation, the Department of Housing and Urban Development, and FEMA for research on seismic safety. His research on lightweight structures and seismic safety is widely published. Dr. Schierle chaired the architectural license examination on structures and serves on the Fabric Architecture advisory board. He also served on the Journal for Architectural Education Editorial Board and the Fabric Structures Awards Jury. His architecture practice includes major projects in America, Asia, and Europe.
http://www-rcf.usc.edu/~schierle

[^0]: Poisson's ratio effect
 Creep deformation ($\mathrm{C}=\mathrm{creep}, \mathrm{T}=$ time)
 Elastic / plastic stress / strain curve ($\mathrm{E}=$ elastic range, $\mathrm{P}=$ plastic range)
 Abstract steel graph ($\mathrm{A}=$ proportional limit, $\mathrm{B}=$ elastic limit, $\mathrm{C}=$ yield point,
 $\mathrm{CD}=$ yield plateau, $\mathrm{E}=$ ultimate strength, $\mathrm{F}=$ breaking point)
 Mild steel stress / strain curve
 High strength steel stress / strain curve
 Concrete stress / strain curve (compressive strengths: $A=9 \mathrm{ksi}, \mathrm{B}=4 \mathrm{ksi}, \mathrm{C}=3 \mathrm{ksi}$)
 Stress / strain of linearly elastic wood

[^1]: 1.4D
 $1.2 \mathrm{D}+1.6 \mathrm{~L}+0.5(\mathrm{Liors})$
 $1.2 \mathrm{D}+1.6(\mathrm{~L}$ r or S$)+(1 \mathrm{~L}$ o 0.8 W$)$
 $1.2 D+1.3 \mathrm{~V}+f 1 \mathrm{~L}+0.5(\mathrm{Lr}$ or S$)$
 $1.2 \mathrm{D}+1.0 \mathrm{E}+(\mathrm{f} 1 \mathrm{~L}+\mathrm{f} 2 \mathrm{~S})$
 $0.9 \mathrm{D} \pm$ (1.0E or 1.3 W)
 D = Dead load
 $E=$ Earthquake load
 L = Live load
 Lr = Roof live load
 S = Snow load
 W = Wind load
 $\mathrm{f} 1=1.0$ for floors of public assembly, live load >100 psf and garage live load 0.5 for all other live loads
 $\mathrm{f} 2=0.7$ for roofs that don't shed snow 0.2 for all other roofs

[^2]: Long shear wall resists in-plane load in shear primarily
 Shear wall supports adjacent bays (slender walls tend to overturn)
 Cantilever resists lateral load primarily in bending
 Cantilever supporting adjacent bays
 Moment frame requires moment resisting beam-column joints to resist lateral load by beam-column interaction
 Moment frames at both ends supports intermittent bays
 Braced frame with diagonal bracing
 braced center core supports adjacent bays

[^3]: 1 Axon of tower
 2 Typical floor framing plan
 3 Typical prefab two-story façade assembly
 4 Typical framed tube column size and spacing

[^4]: Section
 Exploded axon
 Floor framing

