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The ability to understand auditory stimuli and particularly speech sounds is a complex process 

involving many brain regions. Communication disorders are among the most common 

disabilities in the US and affect over 20% of the general population. Understanding the 

differences in the way the auditory cortex processes speech sounds in individuals with these 

disorders may elucidate the neural mechanisms behind these disorders and lead to more effective 

therapies. Dyslexia is the most common developmental language disorder and causes 

impairments in reading ability in spite of normal non-verbal IQ. Children with dyslexia have 

difficulty recognizing phonemes: the smallest segment of a word that, if changed, alters the 

meaning of the word.  Dyslexic children also have altered neural responses to short auditory 

stimuli, such as phonemes or tones. Since humans with dyslexia have complex genetic profiles, 

the direct link between each of the dyslexia-associated genes and the auditory processing 
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impairments seen in dyslexia cannot be studied in humans and requires the precise control 

available in animal models. In this dissertation, I document the cortical auditory firing 

impairments in rats with in utero RNAi of Kiaa0319, the most well-studied candidate dyslexia 

gene. We document for the first time, that suppression of a candidate-dyslexia gene causes 

impaired phoneme processing in multiple auditory fields compared to normal controls. Many 

studies have shown that abnormal neural firing patterns lead to impairments in comparable 

behavior tasks. We report here that rats with RNAi of Kiaa0319 also have significant behavioral 

impairments on phoneme discrimination tasks. Extensive behavioral training can improve speech 

discrimination accuracy as well as restore neural firing properties to control levels. This result 

provides the first evidence for a possible neural mechanism that drives improvement in dyslexic 

children. Finally, in an effort to develop more biologically plausible analysis tools, we also 

report the development and testing of a new classifier which can use auditory cortex activity to 

locate and identify the evoking speech stimulus in real time. The results of these studies show 

that the variants in the candidate dyslexia gene KIAA0319 can cause neural and behavioral 

impairments in phoneme processing and provide new tools to investigate neural encoding of 

speech sounds in the normal and abnormal brain
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CHAPTER 1 

INTRODUCTION 

 

The ability to understand auditory stimuli and particularly speech sounds is a complex process 

involving many brain regions. Communication disorders are among the most common 

disabilities in the US and affect over 20% of the general population (asha.org). Many individuals 

with communication disorders experience debilitating setbacks in education which often impact 

the individual’s quality of life (McNulty 2003; Shaywitz 1998). Understanding the differences in 

the way the auditory cortex processes speech sounds in individuals with these disorders 

compared to normal individuals may elucidate the neural mechanisms behind these disorders and 

lead to more effective therapies. 

Dyslexia is the most common developmental language disorder and affects 5-10% of the 

population. This disorder causes impairments in reading ability in spite of normal non-verbal IQ. 

Children with dyslexia have difficulty recognizing phonemes- the smallest segment of a word 

that, if changed, alters the meaning of the word (Boscariol et al. 2010; Peterson and Pennington, 

2012; Tallal and Piercy 1974; Vandermosten et al. 2010). Dyslexic children also have altered 

neural responses to short auditory stimuli, such as phonemes or tones. For example, tone-evoked 

EEG responses in dyslexic children were delayed and had lower amplitude compared to control 

children (Nagarajan et al. 1998; Tonnquist-Uhlen 1996). Individuals with dyslexia also have 

reduced neural responses to speech stimuli (Kraus et al. 1996; Kujala et al. 2000; Schulte-Körne 

et al. 2001). 
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Dyslexia is also highly heritable and several candidate dyslexia genes have been proposed 

(KIAA0319, DCDC2, DYC1C1, ROBO1, among others; (Bates et al. 2011; Deffenbacher et al. 

2004; Francks et al. 2004; Galaburda et al. 2006; Harold et al. 2006; Luciano et al. 2007; 

Paracchini et al. 2006; Schumacher et al. 2006). KIAA0319 is the most well-studied of these 

genes and is linked to reduced left hemisphere activation to phoneme stimuli (Pinel, 2012). We 

designed the studies in chapter 2 to determine the role of this specific gene in causing the neural 

firing deficits associated with dyslexia.  

In chapter 2, we document the impaired neural firing to speech and non-speech stimuli in rats 

with in utero RNAi of Kiaa0319. Primary auditory cortex in these rats fired with significantly 

higher variability in onset latency from trial to trial of the same stimulus. An established nearest-

neighbor Euclidean distance classifier can predict behavioral performance in normal rats. We 

used this classifier to see if the impaired firing patterns in KIA- A1 would affect the ability of 

neural activity to discriminate between speech sounds. Neural responses in A1 of KIA- rats were 

significantly impaired at discriminating between pairs of consonant or vowel speech sounds.  

In chapter 2, we focused on analyzing A1 recordings in normal and KIA- rats. Other auditory 

fields likely contribute to speech sound processing and may provide information about 

specialization for certain types of auditory stimuli. In Chapter 3, we document the neural 

responses to speech sounds in primary (A1), anterior (AAF), ventral (VAF), and posterior (PAF) 

auditory fields of the normal adult rat. We observed a comparable set of speech-evoked neural 

response patterns in each of the four fields we examined and saw no apparent advantage for 

speech sound processing in other fields in the normal rat. In spite of the consistent speech-

encoding across fields, we did also observe an increase in encoding diversity in the non-primary 
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fields. Such a result suggests differences in processing, perhaps providing the bandwidth to 

encode many new processing tasks.  

The experiments in this chapter set the foundation for us to look in other auditory fields in 

our dyslexia model (as described in Chapter 2). Other auditory fields can show deficits in 

auditory processing even when primary auditory cortex is responding normally. For example, 

studies have shown that other auditory fields in autistic children respond abnormally to speech 

sounds even when A1 responds normally (Lai et al. 2011). Dyslexic children are treated using 

extensive behavioral therapy to improve impaired performance on phoneme manipulation or 

deletion tasks as compared to controls (‘break’ without the /b/ or switch the first phoneme in two 

words, ‘dog’ and ‘house’; (Paulesu et al. 1996). Dyslexic individuals can also have abnormal 

rhyme or non-word recognition (Howland and Liederman 2012; Paulesu et al. 1996) and these 

deficits in phoneme processing are thought to be due to an underlying deficit in rapid auditory 

processing (Martino et al. 2001; Poelmans et al. 2012; Russo et al 2004; Tallal and Piercy 1974). 

Abnormal neural responses in dyslexic children can improve after extensive training, such as the 

program Fast ForWord (Scientific Learning Corporation, Oakland, CA). The neural mechanism 

by which it is effective, and whether other auditory fields are also benefitted by training, is 

unknown. We hypothesized that training may induce plasticity in primary and non-primary 

auditory fields of KIA- rats. 

In chapter 4, we document the behavioral deficit of rats with in utero RNAi of Kiaa0319. 

These rats have abnormal startle response to oddball tone paradigms (Szalkowski et al., 2012) 

and we hypothesized that they would also have impairment on phoneme discrimination. Rats are 

good models of speech sound discrimination. They are able to accurately discriminate human 
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consonants (Engineer et al., 2008) and vowels (Perez et al., 2012) in quiet, various levels of 

speech-shaped and white background noise (Shetake et al., 2011) and after spectral or temporal 

degradation (Ranasinghe et al., 2012). We report that in utero RNAi of Kiaa0319 causes 

significant behavioral impairments on several of these phoneme discrimination tasks. Extensive 

speech training can improve reliability of neural firing in KIA- A1 and improve the neural 

discrimination performance of this field. A similar plasticity effect was seen in KIA- PAF and in 

Control PAF. The results in this chapter provide the first evidence of speech training-induced 

plasticity in a control animal and suggest a possible mechanism by which training programs like 

Fast ForWord are effective.  

In the previous 3 chapters, we used a nearest-neighbor two-alternative forced choice 

classifier to evaluate neural firing patterns in normal and dyslexia model rats. This classifier had 

several conditions which are biologically implausible. First, the classifier was given knowledge 

of the stimulus onset time, which may not be available to the animal in real world situations. 

Second, the classifier was forced to choose between one of two options for the evoking stimulus, 

which put chance level at 50%. In chapter 5, we document a new classifier which uses 

anesthetized or awake neural data to locate the time at which a speech stimulus was presented 

and identify the evoking speech sound. The benefits of this new classifier are that is it not forced 

to guess and is effective using a variety of previously reported stimulus sets. This classifier can 

also predict behavior on a relatively novel behavioral task in which speech sounds are presented 

in random, rapid sequences at one of 6 speeds.  
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In chapter 6, we discuss the implications of these experiments and how the results relate to 

the current literature. This dissertation consists of 6 chapters and 4 appendices that contain 

supplementary data and figures.  
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CHAPTER 2 

KNOCKDOWN OF THE DYSLEXIA-ASSOCIATED GENE KIAA0319 IMPAIRS 

TEMPORAL RESPONSES TO SPEECH STIMULI IN RAT PRIMARY  

AUDITORY CORTEX* 
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                                                    ABSTRACT 

 

 

One in fifteen school age children have dyslexia, which is characterized by phoneme processing 

problems and difficulty learning to read. Dyslexia is associated with mutations in the gene 

KIAA0319. It is not known whether reduced expression of KIAA0319 can degrade the brain’s 

ability to process phonemes. In the current study, we used RNA interference (RNAi) to reduce 

expression of Kiaa0319 (the rat homolog of the human gene KIAA0319) and evaluate the effect 

in a rat model of phoneme discrimination. Speech discrimination thresholds in normal rats are 

nearly identical to human thresholds. We recorded multi-unit neural responses to isolated speech 

sounds in primary auditory cortex (A1) of rats that received in utero RNAi of Kiaa0319. 

Reduced expression of Kiaa0319 increased the trial by trial variability of speech responses and 

reduced the neural discrimination ability of speech sounds. Intracellular recordings from affected 

neurons revealed that reduced expression of Kiaa0319 increased neural excitability and input 

resistance. These results provide the first evidence that decreased expression of the dyslexia 

associated gene Kiaa0319 can alter cortical responses and impair phoneme processing in 

auditory cortex. 
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INTRODUCTION 

 

Approximately 7% of children with normal intelligence have trouble learning to read (Badian 

1999; Shaywitz et al. 1990; Shaywitz et al. 1992). These children typically have deficits in tasks 

that involve phonemic awareness (Boscariol et al. 2010; Peterson and Pennington, 2012; Tallal 

and Piercy 1974; Vandermosten et al. 2010). Phonemes are the smallest individual acoustic 

component of a word that can change that word’s meaning (i.e. the “b” sound in the word /bad/). 

Normal individuals respond with a consistent threshold when asked to categorize sounds along a 

continuum. For example, in a ba-pa continuum, stimuli with a voice onset time below 25 ms are 

categorized as “ba,” while stimuli with longer voice onset times are categorized as “pa” (Manis 

et al. 1997; Werker and Tees 1987). Dyslexic individuals have a less defined perceptual divide in 

discriminating phonemes. When asked to delete or exchange two phonemes in a spoken phrase 

(i.e. turn “dog house” into “hog douse”), dyslexic individuals perform significantly worse 

(Paulesu et al. 1996).  

The phonemic deficit observed in dyslexia is theorized to be the result of temporal 

processing problems in the central auditory system (Martino et al. 2001; Poelmans et al. 2012; 

Russo et al 2004; Tallal and Piercy 1974). The impaired ability of the dyslexic brain to process 

phonemic stimuli likely interferes with the mapping of phonemes to the corresponding grapheme 

(visual letters). The observation that children with dyslexia are also impaired in rapid tone 

processing (Ahissar et al. 2000; Tonnquist-Uhlen 1996; Wright et al. 1997) suggests that deficits 

in temporal processing are not speech specific and reflect a more general dysfunction in temporal 

processing. 
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Temporal processing deficits associated with dyslexia are theorized to result from 

abnormal firing in the central auditory system (Ahissar et al. 2000; Boscariol et al. 2010; Tallal 

1980; Temple et al. 2001, but see McLean et al., 2011 and Rosen 2003). Primary auditory cortex 

encodes phonemic stimuli with millisecond precision (Eimas 1985; Engineer et al. 2008). 

Altered cortical response properties have been found in dyslexic individuals to simple stimuli 

like brief tones, with longer latencies to tones and lower amplitude in dyslexics compared to 

controls (Nagarajan et al. 1998; Tonnquist-Uhlen 1996). Individuals with dyslexia also have 

reduced neural responses to speech sounds during passive exposure (Kraus et al. 1996; Kujala et 

al. 2000; Schulte-Körne et al. 2001) and during phoneme discrimination tasks (Flowers, Wood, 

Naylor 1991; Rumsey et al. 1992; Rumsey et al. 1997; Temple et al. 2001; Temple et al. 2003; 

Temple et al.).   

Dyslexia displays both environmental and genetic risk components (Cope et al. 2005; 

Fisher and DeFries 2002; Nöthen et al. 1999; Pennington et al. 1991). The co-incidence rate 

among monozygotic twins is 50-68% (Pennington et al. 1991). Allelic variations in the gene 

KIAA0319 have been consistently associated with dyslexia (Bates et al. 2011; Deffenbacher et al. 

2004; Francks et al. 2004; Galaburda et al. 2006; Harold et al. 2006; Luciano et al. 2007; 

Paracchini et al. 2006; Schumacher et al. 2006). In addition, allelic variation in a region 

encompassing the KIAA0319 gene has been associated directly with alterations in fMRI 

responses during reading in left superior temporal cortex in individuals with dyslexia, indicating 

a potentially direct role of KIAA0319 function in cortical processing during reading (Pinel et al. 

2012).   
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We have previously shown that neuronal responses in the primary auditory cortex of rats 

accurately encode human phonemes that can be difficult for dyslexic children to distinguish 

(Engineer et al. 2008; Perez et al. 2012; Porter et al. 2011; Ranasinghe et al. 2012a; Shetake et al. 

2011). This study was designed to determine whether in utero RNAi of Kiaa0319 (the rat 

homolog of the human gene, KIAA0319) can degrade the brain’s ability to process phonemes. 

 

METHODS 

 

Animals 

Subjects were Wistar rats, both male and female, that were 3-6 months old at the time of 

study. All rats used were subjected as embryos to in utero electroporation targeting lateral 

regions of neocortex that included the auditory cortex by methods described previously (Bai et 

al. 2003; Bai et al. 2008; Burbridge et al. 2008; Szalkowski et al. 2012; Threlkeld et al. 2007).  

The animals were transfected with either an shRNA against Kiaa0319 which can decrease the 

Kiaa0319 protein expression in cell culture (Tarkar and LoTurco, unpublished observation) and 

to cause migration delay in neocortex in embryos that was rescued by expression of exogenous 

Kiaa0319 (Parrachini et al 2006).  Control transfection animals received a scrambled sequence 

control of Kiaa0319 shRNA, also previously used, that contained 6 bases in the sequence 

scrambled to render the shRNA inactive in terms of reducing Kiaa0319 expression (Parrachini et 

al 2006).  Kiaa0319 shRNA and scrambled shRNA constructs were injected at a concentration of 

1.0 µg/µL. pB-GFP was co-transfected with the effective shRNA construct, and pB-mRFP was 

co-transfected with the scrambled Kiaa0319 shRNA control construct to identify the 

experimental condition in post experimental histological analysis. Electroporation paddles were 
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placed in a horizontal plane and voltage pulses were discharged across the cerebrum in both 

polarities to achieve bilateral transfections. The experimental status of the subject remained blind 

to the experimenters throughout data collection. Following data collection, each subject was 

perfused transcardially with 250 mL of 0.1 M PB solution with 0.02% heparin, followed by 500 

mL of 4% formalin solution in 0.1 M PB. Sections were taken at 80 µm intervals and analyzed 

under a confocal microscope (Zeiss) to identify the experimental status of each subject (green 

florescent protein marked experimental subjects and red florescent protein marked control 

littermates). All animal protocols were approved by the University of Connecticut Institutional 

Animal Care and Use Committee.     

Anesthetized recordings  

Multiunit recordings were acquired from the primary auditory cortex of 11 rats. After 

histological analysis, we determined that 5 were Kiaa0319 knockdowns (KIA-, 2 females, 3 

males), and 6 were littermate controls (3 females, 3 males). The recording procedure is explained 

in detail elsewhere (Engineer et al. 2008). In brief, animals were anesthetized with pentobarbital 

(50 mg kg
-1

) and given supplemental dilute pentobarbital (8 mg ml
-1

) as needed to maintain 

areflexia, along with fluids to prevent dehydration. A tracheotomy was performed to ensure ease 

of breathing throughout the experiment. Primary auditory cortex and several nearby auditory 

fields were exposed via craniotomy and durotomy. Four Parylene-coated tungsten 

microelectrodes (1-2 MΩ) were simultaneously lowered to layer IV of right primary auditory 

cortex (~600-800 µm).   

        Brief tones were presented at 90 randomly interleaved frequencies (1-48 kHz) at 16 

intensities (1- 75 dB SPL) to determine the characteristic frequency of each site. Tones had 5 ms 
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cosine squared ramps and their total duration was 25 ms. Additional stimuli were randomly 

interleaved and presented at 20 repeats per recording site. Broad band noise was presented in 

trains of six 25 ms long bursts at four different presentation rates (4, 7, 10 and 12.5 Hz). Broad 

band stimuli contained evenly distributed frequencies between 1 and 32 kHz. We also presented 

8 English consonant-vowel-consonant (CVC) speech sounds (/dad/, /sad/, /tad/, /bad/, /gad/, 

/dud/, /deed/, and /dood/) previously tested in our lab (Engineer et al. 2008; Floody et al. 2010; 

Ranasinghe et al. 2012a; Shetake et al. 2011). Sounds were shifted up 1 octave using the 

STRAIGHT vocoder to better match the rat hearing range (Kawahara 1997). Each sound was 

calibrated so that the most intense 50 ms of the stimulus length was 60 dB SPL. All sounds were 

presented approximately 10 cm from the left ear of the rat.  

Awake recordings  

Chronic awake recordings were collected from subjects implanted with 16-channel 

microwire electrode arrays. The implantation surgery and microwire arrays have been previously 

reported in detail (Rennaker et al., 2005a). Briefly, subjects were anesthetized with an 

intramuscular injection of a mixture of ketamine, xylazine and acepromazine (50 mg/kg, 20 

mg/kg, 5 mg/kg, respectively).  Atropine and dexamethazone were administered subcutaneously 

prior to and following surgery. A midline incision was made, exposing the top of the skull, and a 

section of the right temporalis muscle was removed to access primary auditory cortex. Six bone 

screws were fixed to the dorsal surface of the skull (two in each parietal bone and one in each 

frontal bone) to provide structural support for the head cap. The two middle screws had attached 

leads to serve as a reference wire and a grounding wire. A craniotomy and durotomy were 

performed to expose the cortex in the region of primary auditory cortex. The microwire array 
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was then inserted to a depth of 550-600 µm (layer IV/V) in primary auditory cortex using a 

custom built mechanical inserter (Rennaker et al, 2005b). The area was sealed with a silicone 

elastomer (Kwik-Cast, World Precision Instruments Inc, Sarasota, Florida) and the head cap was 

built with a connector secured with acrylic. Finally, the skin around the implant was sutured in 

the front and the back of the head cap. Subjects were given prophylactic minocycline in water ad 

libitum for 2 days prior and 5 days following surgery to lessen immune responses (Rennaker et 

al. 2007), and were also given Rimadyl tablets for 3 days after surgery to minimize discomfort. 

Topical antibiotic was applied to the incision to prevent infection.  

Following a week of recovery, recordings were obtained from each animal in a series of 

daily recording sessions. During each session, the animal was unrestrained in a 30 x 30 cm cage 

and sounds were presented from a calibrated magnetic speaker (Tucker Davis Technologies, 

Alachua, FL) mounted 35 cm directly above the animal (Rennaker et al. 2005). A head-stage 

amplifier was directly attached to the subject’s electrode connector, and neural signals were 

sampled at 25 kHz, amplified, and band-pass filtered from 825 to 4500 Hz using Tucker Davis 

Technologies System 2 hardware.  Custom software was used for displaying and saving 

recordings and for auditory stimulus control.  

Three acoustic stimulus sets were presented to awake subjects in separate recording 

sessions. The first stimulus set consisted of trains of broadband clicks (~1 ms duration, 3 dB 

points at 1.6 and 31.6 kHz) played at 13 presentation rates ranging from 1 Hz to 250 Hz. Click 

intensity was calibrated such that the loudest 50 ms of the fastest clicktrain had an intensity of 60 

dB SPL at a distance of 5 cm from the cage floor.  The second stimulus set consisted of the 5 

English CVC speech sounds that were also presented to the anesthetized subjects that varied by 
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first consonant (/dad/, /sad/, /tad/, /bad/, and /gad/). The third stimulus set consisted of the 4 CVC 

speech sounds that varied by vowel (/dad/, /dud/, /deed/, and /dood/). As with the anesthetized 

recordings, all speech sounds were shifted up 1 octave and calibrated such that the loudest 50 ms 

was heard at 60 dB SPL. Since the animal was unrestrained, sound levels were measured at four 

locations inside the cage and then averaged to account for any change in acoustics.  

Analysis of Neural Recordings 

To define primary auditory cortex (A1) sites, multi-unit recording sites were manually 

analyzed to select the characteristic frequency of each site, as well as to obtain bandwidth, 

latency, peak firing and end of peak response information. From this point on, only A1 sites were 

analyzed. 

Following selection of A1 sites, basic firing properties were calculated in response to 

tones. Firing latency is defined as the point in time (ms) that average firing rate (across all 

repeats) first exceeds 2 standard deviations above the spontaneous firing rate, threshold is 

defined as the lowest intensity that evoked a response from the multiunit site, and bandwidths 

were calculated at 10, 20, 30 and 40 dB above threshold and defined as the range of frequencies 

that evoked responses at the current intensity. In response to broad band click trains, normalized 

spike rate (number of spikes evoked by bursts 2-6, normalized by the number of spikes to the 

first burst) and vector strength (VS) were calculated. VS quantifies the degree of synchronization 

between action potentials and repeated sounds. Mean VS is calculated with the formula: 
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where n = total number of action potentials, ti is the time of occurrence of the i’th action 

potential, and T is the inter-stimulus interval. Perfect synchronization would result in a value of 

one, whereas no synchronization would result in a value of zero. To investigate the reliability of 

onset latency to repetitive stimuli, we calculated the time to peak latency within the first 80 ms 

(the shortest inter-pulse-interval tested) of the first pulse at 4Hz and averaged across multiunit 

sites. The variability in this measure, as reported in variance, was compared across KIA- and 

controls.  

Single trial response patterns to each of the isolated speech sounds were compared using 

a nearest neighbor classifier (Engineer et al. 2008; Foffani and Moxon 2004; Foffani and Moxon 

2005; Perez et al. 2012; Ranasinghe et al. 2012a; Ranasinghe et al. 2012b; Ranasinghe et al. 

2012b; Shetake et al. 2011). We chose this method because our earlier studies showed that the 

performance of this classifier is highly correlated with rat behavioral discrimination (Engineer et 

al. 2008; Perez et al. 2012; Ranasinghe et al. 2012a; Ranasinghe et al. 2012b; Shetake et al. 

2011). We used Euclidean distance to compare single trial activity to the average activity 

(PSTH) evoked by 19 repeats each of two different stimuli. For consonants, activity was binned 

using 1 ms temporal precision over a 40 ms window to encompass the spike timing precision 

present in the initial consonant (Engineer et al. 2008; Porter et al. 2011; Ranasinghe et al. 2012a), 

while vowel activity was binned across a single 400 ms window so that spike count information 

was preserved (Perez et al. 2012; Ranasinghe et al. 2012a). The classifier then compared the 

response of each single trial with the average activity template (PSTH) evoked by all repeats of 

each of the speech stimuli presented. The current trial being considered was not included in the 

PSTH to avoid artifact. The classifier attempted to identify the stimulus that evoked the current 
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single trial activity pattern by selecting the template that was most similar to the single trial in 

units of Euclidean distance. ED was calculated using the formula: 

 

where nsites is each recording site and nbins is each of 40 one-millisecond bins being compared 

between activity evoked by speech sound X versus speech sound Y. For vowel sounds, the 

classifier counted the number of action potentials over a single 400 ms bin and compared the 

single trial response with the two PSTH templates (Ranasinghe et al. 2012a). We used t-tests for 

all pairwise comparisons of the accuracy of both classifiers and across experimental groups. 

When necessary, an α of 0.01 was used to correct for multiple comparisons. 

Brain Slice recordings 

Whole cell patch clamp recording were made from pyramidal neurons in acute brain 

slices as previously described (Maher et al. 2009). Briefly, P28-35 previously electroporated rats 

were deeply anesthetized with isoflurane and transcardially perfused with ice-cold oxygenated 

(95% O2 and 5% CO2) dissecting buffer containing (in mM): 83 NaCl, 2.5 KCl, 1 NaH2PO4, 

26.2 NaHCO3, 22 glucose, 72 sucrose, 0.5 CaCl2, and 3.3 MgCl2. The rats were decapitated and 

the brains rapidly removed and immersed in ice-cold oxygenated dissection buffer. Coronal 

slices (400 µm) were cut using a vibratome (VT1200S, Leica), incubated in a dissection buffer 

for 30-45 min at 34°C, and then stored at room temperature. Slices were visualized using IR 

differential interference microscopy (DIC) (E600FN, Nikon) and a CCD camera (QICAM, 

QImaging). Individual layer 2/3 pyramidal cells expressing GFP or RFP were visualized with 

epifluourescent illumination and a 40x Nikon Fluor water immersion (0.8 numerical aperture) 
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objective. For all experiments, artificial cerebrospinal fluid (ACSF) was oxygenated (95% O2 

and 5% CO2) and contained (in mM): 125 NaCl, 25 NaHCO3, 1.25 NaH2PO4, 3 KCl, 25 

dextrose, 1 MgCl2, and 2 CaCl2, pH 7.3. Patch pipettes were fabricated from borosilicate glass 

(N51A, King Precision Glass, Inc.) to a resistance of 2-5 MΩ. For current-clamp experiments 

pipettes were filled with (in mM): 125 potassium gluconate, 10 HEPES, 4 Mg-ATP, 0.3 Na-

GTP, 0.1 EGTA, 10 phosophocreatine, 0.05% biocytin, adjusted to pH 7.3 with KOH. Voltage 

signals were recorded and current pulses injected with a Multiclamp 700A amplifier (Molecular 

Devices). Data were acquired using Axograph, and data acquisition was terminated when series 

resistances were >15 MΩ.  

 

                                                           RESULTS 

 

 

In utero RNAi of Kiaa0319 causes degraded neural firing to phonemes 

        Variants in the gene Kiaa0319 are associated with dyslexia (Bates et al. 2011; Deffenbacher 

et al. 2004; Galaburda et al. 2006; Harold et al. 2006; Paracchini et al. 2006; Schumacher et al. 

2006). To test whether reduced expression of this gene can cause the abnormal speech-evoked 

potentials observed in dyslexics, we measured speech-evoked local field potentials (LFPs) 

derived from multi-unit recordings in awake rats that were transfected with Kiaa0319 shRNA in 

utero (Paracchini et al. 2006). In response to the sound “dad”, LFPs in transfected rats (KIA-) 

had a longer P1 latency than in control rats (Figure 2.1A; P1:  112.7 ± 4.3 ms vs. 75.8 ± 9.1 ms; 

p< 0.01; KIA- vs. controls respectively). Since we cannot be sure which auditory field or the 

exact depth our awake recordings are from, we also recorded multi-unit speech responses in 

anesthetized rats. Auditory responses do not differ drastically between anesthetized and awake 
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preparations in normal rats (Engineer et al. 2008; Shetake et al. 2011), and anesthetized 

recordings allow for complete control of the targeted auditory field and behavioral state. In 

primary auditory cortex (A1) of anesthetized rats, speech-evoked LFPs to the sound “dad” had a 

significantly lower N1 and P1 amplitude in KIA- sites than in controls (N1 amplitude: -44.1 ± 

1.5 Hz vs. -78.2 ± 2.1 Hz; p< 0.01,P1 amplitude:  27.6 ± 0.9 Hz vs. 45.9 ± 1.2 Hz; p< 0.01; KIA- 

vs. controls respectively; Figure 2.1B). LFP responses to the sound “bad” (Figure 2.1 C&D) 

show the same pattern of response, with some slight variation. These response properties to 

speech sounds mimic the reduced activity seen in human dyslexic imaging studies. 

We next tested whether the differences in the evoked responses were due to a reduction 

in the number of auditory evoked action potentials or due to differences in neural 

synchronization (Blau et al. 2010; Kraus et al. 1996; Lovio et al. 2010). In KIA- rats, multi-unit 

sites fired more spikes per stimulus than control sites. Across the length of the speech sound “da” 

(a 400 ms analysis window), cortical responses in KIA- rats fired 19.9 spikes as compared to 

14.5 spikes from controls (p< 0.01). On average, KIA- sites did not fire significantly more spikes 

than controls in response to speech sounds (an average of 17.9 ± 4.6 spikes/vowel in KIA- sites 

vs. 17.1 ± 5.1 spikes/vowel in controls; p=.10). Since the lower amplitude in KIA- LFP 

recordings cannot be explained by fewer evoked spikes, we tested whether these sites fired with 

greater variability in onset latency across trials. In response to the sound “da,” onset latency of 

KIA- sites was more variable trial by trial (26.8 ms
2
) compared to control sites (13.2 ms

2
 in 

controls; p< 0.01). This increased variability in onset latency was observed in response to all 

speech sounds tested (an average of 27.2 ms
2
 in KIA- sites vs. 12.5 ms

2
 in control sites; p< 0.01). 
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Increased variability in spike timing would be expected to decrease the amplitude of the 

population response to speech sounds. 

          In control rats, each consonant sound evoked a unique pattern of response across the 

tonotopic organization of A1. These different patterns can be seen by plotting the average 

responses to consonant sounds for each of a variety of sites and organizing those sites by 

characteristic frequency (low to high; Figure 2.2A). The consonants “d” and “t” evoked firing 

from high frequency neurons first, followed by an onset of low frequency neurons that 

corresponds to that consonant’s voice onset time. For example, in response to the sound “d,” 

high frequency neurons (> 6 kHz) fired first, followed by low frequency neurons approximately 

20 ms later (Figure 2.2A, first panel). In response to the sound “b” (a voiced consonant), neurons 

fired in the opposite order; low frequency neurons fired first and high frequency neurons almost 

immediately after (Figure 2.2A, second panel). The observation that our control sites responded 

similarly to previous studies in unaffected rats (Engineer et al. 2008; Perez et al. 2012; 

Ranasinghe et al. 2012a; Shetake et al. 2011), suggests that the in utero surgery, plasmid 

injection and electroporation alone did not alter neural responses. 

In contrast to the distinct patterns of speech responses in the controls, KIA- sites 

responded less precisely to speech sounds in a number of ways. As expected from the LFP data, 

KIA- sites responded to speech sounds more slowly, though these trends were not significant. 

For example, the timing of the first evoked spike to the consonant sound /d/ was slightly (but not 

significantly) later in KIA- sites (17.4 ± 0.2 ms) compared to control sites (15.9 ± 0.7ms; p= 

0.07). The peak latency was significantly later for each of the speech sounds presented, firing an 

average of 3.9 ms later than controls (25.3 ± 0.5 vs. 21.4 ± 0.4 ms respectively; p< 0.01; Figure 
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2.3A). The variability in the onset latency across repeats of each speech sound was much higher 

in KIA- sites (variance of 70.1 ± 4.1 ms
2
 vs. 40.6 ± 2.7 ms

2
 in controls; p< 0.01; Figure 2.4A). In 

addition to the variability in latency, the number of spikes fired in the first 400 ms of each 

stimulus in KIA- sites was more variable across repeats (variance of 30.9 ± 0.6 spikes
2
 vs. 24.1 ± 

0.8 spikes
2
 in controls; p= 0.03; Figure 2.4B). This increase in variance could have been due to 

an increase in mean firing rate. We measured the mean firing rate evoked by speech sounds in 40 

ms and 400 ms analysis windows. On average, KIA- sites fired the same number of action 

potentials in response to speech sounds as control sites (Figure 2.4C). This result suggests that an 

increase in mean firing rate is not responsible for the increase in trial by trial variability.  

The increased trial by trial variability in speech responses could interfere with the brain’s 

ability to distinguish between similar speech sounds. We used a well validated nearest 

neighborhood classifier to test this hypothesis (Engineer et al. 2008; Perez et al. 2012; 

Ranasinghe et al. 2012a; Shetake et al. 2011). The classifier compared single trial activity 

patterns with millisecond precision to the average responses to two different consonant sounds. 

We compared single trial responses from individual recording sites to the average responses to 

two different stimuli. For example, the neural response (peristimulus time histogram, PSTH) of a 

single site in response to the sound “d” was compared to the average response of that site evoked 

by “d” or “b”. The PSTH template that was most similar to the single trial (i.e. had the smallest 

Euclidean distance), was selected as the sound most likely to have elicited the single trial 

response. In control sites, a typical high frequency site responded very quickly after the onset of 

the sound “d,” but with a slight delay following the onset of the sound “b” (Figure 2.5A). In a 

typical high frequency KIA- site, the response is less consistent from trial to trial and causes 
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more errors in stimulus identification (Figure 2.5B). On average, the classifier correctly 

identified the consonant sound 68 ± 1% of the time when using KIA- sites and 77 ± 2% of the 

time when using control sites (p< 0.01; Figure 2.5C). The degree of impairment on consonant 

discrimination caused by reduced KIA0319 expression is equivalent to the impairment caused by 

adding 60 dB SPL background noise, which resulted in a 0 dB signal to noise ratio (Shetake et al. 

2011). This result indicates that in utero RNAi of Kiaa0319 increases firing variability and 

reduces the ability of A1 neurons to discriminate different consonant speech sounds.  

To test whether in utero RNAi of Kiaa0319 might also impair vowel discrimination, we 

used a version of the neural classifier that considers only spike count (and not spike timing; 

Perez et al. 2012). Performance of this classifier on vowel discrimination was highly correlated 

with behavior observations (Perez et al. 2012). The rate based classifier used single trial 

responses and classified sounds based on which sound evoked the closest number of spikes on 

average (across 19 repeats). For example, a high frequency recording site in control rats typically 

fired fewer spikes in response to the vowel sound “a” (as in “dad”) than in response to the vowel 

sound “u” (as in “dud”; Figure 2.5D). In a typical high frequency KIA- site, the variability in 

number of spikes fired trial-to-trial was much greater (Figure 2.5E), while the mean number of 

evoked spikes did not differ. Across sites, the trial by trial variability in number of evoked spikes 

was higher in KIA- sites vs. controls (29.9 ± 1.5 spikes
2
 vs. 23.8 ± 1 spikes

2
 respectively; p<.01). 

Average number of action potentials fired to each vowel was not significantly different between 

control and KIA- sites (to “a”, 17.3 ± 1 spikes in controls vs. 17.9 ± 1 spikes in KIA- sites, 

p=.49; to “u”, 19.2 ± 1 spikes in controls vs. 19.9 ± 1 spikes in KIA- sites, p=.54). We 

hypothesized that the greater trial by trial variability in spike count would lead to impaired vowel 
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discrimination. As expected, neural discrimination of vowel sounds using activity from KIA- rats 

was significantly worse than controls. Activity from sites in KIA- rats was able to correctly 

identify the vowel sounds 55 ± 1% of the time compared to 59 ± 1% in control sites (p< 0.01; 

Figure 2.5F). This result suggests that reduced in utero RNAi of Kiaa0319 can impair both 

consonant and vowel discrimination.   

RNAi of Kiaa0319 causes impaired neural firing to non-speech stimuli 

           The increased A1 response variability caused by in utero RNAi of Kiaa0319 was not 

specific to speech sounds. In response to a noise burst, a representative control site fired 

consistently across twenty repeats of the stimulus. In response to the same stimulus, a 

representative KIA- site fired later and less consistently (Figure 2.6A).  The average onset 

latency was significantly later in KIA- sites (16.9 ± 6.9 ms in KIA- vs. 15.3 ± 4.6 ms in controls; 

p< 0.01; Figure 2.6B). The finding that KIA- sites had longer latency to non-speech stimuli is 

similar to the longer latency of evoked potentials in human dyslexics (Tonnquist-Uhlen 1996). 

The variability in onset latency was also higher across the population of KIA- sites as compared 

to controls (48.7 ± 0.6 ms
2
 in KIA- sites vs. 21.4 ± 1.1 ms

2
 in controls; p< 0.01; Figure 2.6C). 

Similar to the reduced firing amplitude to tones seen in human EEG studies (Nagarajan et al. 

1999; Tonnquist-Uhlen 1996), peak firing rate to a noise burst was significantly lower in KIA- 

sites as compared to controls (256.1 ± 0.4 Hz in KIA- sites compared to 383.9 ± 0.6 Hz in 

controls; p< 0.01; Figure 2.6D). The observation that the number of spikes fired to a broad band 

noise burst was not significantly different in KIA- sites (2.9 ± .04 spikes vs. 2.9 ± .03 spikes; p= 

0.80), suggests that the reduced peak firing rate may be due to greater variability in onset 

latency. To quantify the variability in latency, we measured vector strength in response to noise 
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burst trains and found that KIA- sites were impaired at phase-locking compared to controls at all 

four presentation rates tested (Figure 2.6E; p< 0.01). When we compared the sites’ ability to 

discriminate between different presentation rates (using the same classifier as used for 

phonemes), KIA- sites were significantly worse at identifying presentation rate (63.9 ± 1% 

correct vs. 80.8 ± 1% correct in control sites; p< 0.01). Children with dyslexia have poorer 

sensitivity to modulation rates compared to control children and adults (Lorenzi 2000).  

To determine whether in utero RNAi of Kiaa0319 impaired the sensitivity and selectivity 

of A1 sites, we evaluated responses at each site to a wide range of tonal stimuli (1-32 kHz, 0-75 

dB SPL). The observation that average response threshold was not impaired in KIA- rats 

compared to controls (8.9 ± 0.6 dB SPL vs. 7.2 ± 0.6 dB SPL; p= 0.06) suggests that basic 

hearing ability was not disrupted by Kiaa0319 RNAi. The latency of tone evoked responses was 

later and the response amplitude was lower in KIA- rats (Figure 2.7A), which is consistent with 

tone evoked responses in dyslexics (Tonnquist-Uhlen 1996). Peak latency was 27 ± 0.5 ms in 

KIA- rats and 22 ± 0.5 ms in control sites (p< 0.01). KIA- recordings had higher spontaneous 

firing levels than controls (16.2 ± 0.6 Hz in KIA- vs. 12.6 ± 0.6 Hz in controls; p< 0.01). KIA- 

sites also had significantly narrower bandwidths than controls. For example, BW20 (20 dB 

above threshold) was 1.89 ± .05 octaves in KIA- sites compared to 2.25 ± .04 octaves in control 

sites (p< 0.01). In spite of the lower peak firing rate (Figure 2.7A), KIA- sites actually fired more 

spikes per tone than control sites. The number of spikes evoked by tones within 0.5 octaves of 

the best frequency was computed for intensities from 0 to 75 dB SPL. KIA- sites fired 

significantly more spikes than control sites for intensities from 10 to 65 dB SPL (Figure 2.7B). 

For example, KIA- sites generated approximately 20% more spikes per 40 dB SPL tone than 
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controls (1.4 ± 0.1 vs. 1.23 ± 0.1 spikes, p< 0.01). The average characteristic frequency was 

higher in KIA- sites than in controls (13 kHz in KIA- compared to 9.7 kHz in controls; p< 0.01). 

Although in utero RNAi of Kiaa0319 does not alter tone thresholds and hearing range, it does 

significantly alter A1 response properties which may contribute to the abnormal neural responses 

to speech sounds. 

Firing abnormalities to non-speech stimuli contribute to poor phoneme classification 

To evaluate which of the abnormal A1 response properties were most likely to contribute 

to degraded speech responses, we created subpopulations of sites from control rats which were 

selected to have the same distribution as KIA- rats for several different response properties and 

evaluated which subpopulations were also significantly impaired in speech discrimination (as 

compared to the full sample of control sites; consonant performance of 77 ± 2% and vowel 

performance of 59 ± 1%). Since KIA- sites fired with much higher trial by trial spike count 

variability (over a 40 ms window), control sites could not be found to match the distribution of 

KIA- sites. We analyzed the 10% of control sites with the highest variability and found that these 

sites’ ability to discriminate consonants was significantly different than the full set of control 

sites sites (consonant discrimination; 68 ± 1%; p= 0.01) but was not different on vowel tasks; 58 

± 2%; p=0.24). Control sites with a spontaneous firing distribution selected to match that of 

KIA- rats were significantly different from the full sample of control sites at neural 

discrimination of consonants (68 ± 1%; p<.01; Figure 2.8A) and vowels (57 ± 1%; p<.01; Figure 

2.8B). Control sites with a peak latency distribution or a bandwidth distribution selected to match 

that of KIA- rats were significantly different from the full set of control sites at neural 

discrimination of consonants (latency: 68 ± 1%; p<.01, bandwidth: 68 ± 1%; p<.01), but did not 
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differ at vowels (latency: 59 ± 1%; p=.67, bandwidth: 59 ± 1%; p=.46). Control sites with a CF 

distribution selected to match that of KIA- rats were not significantly different from the full set 

of control sites at consonant (73 ± 1%; p= 0.09) and vowel discrimination (59 ± 1%; p= 0.33). 

These results suggest that abnormal/inconsistent neural excitability and latency may contribute 

the impaired responses to speech sounds observed in rats transfected with Kiaa0319 shRNA in 

utero.  

Neurons with RNAi of Kiaa0319 are more excitable than control neurons 

Kiaa0319 is a very large protein (1052 amino acids, 116 kDa) whose functions are poorly 

understood (Velayos-Baeza et al. 2010; Velayos-Baeza et al. 2008; Poon et al. 2011a).  To 

investigate the effect of reduced expression of this gene on intracellular firing properties, we 

made whole-cell patch clamp voltage recordings from layer II/III pyramidal neurons expressing 

one of four transgenes. Cells expressing Kiaa0319 shRNA fired many more action potentials in 

response to current injection compared to scramble control neurons (same control as above). For 

example, neurons expressing the Kiaa0319 shRNA fired 5.5 ± 1 spikes in response to a 200pA 

current injection, while control (scrambled RNA) neurons responded with 0.5 ± 0.5 spikes to the 

same current injection (p< 0.01; Figure 2.9A). To confirm that the increased excitability is not 

due to a non-specific effect of the Kiaa0319 shRNA, we recorded from cells that expressed both 

the Kiaa0319 shRNA (which reduces Kiaa0319 expression) and a transgene to increase 

Kiaa0319 expression. The normal excitability of the rescue controls suggests that reduced 

Kiaa0319 expression causes greater neural excitability. We also recorded from neurons that 

expressed the transgene to increase Kiaa0319 expression (overexpression control). The normal 

level of excitability seen in recordings from this control confirms that the increased excitability 
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in the reduced Kiaa0319 expression group (KIA-) was not due to any non-specific effect of 

RNAi.  

One possibility for the increased excitability following Kiaa0319 RNAi would be an increase 

in input resistance as cells with increased input resistance may fire more action potentials as 

compared to control cells. To test input resistance of individual neurons, differing amounts of 

current (between -200 and 500 pA in 50 pA increments) were injected into the cell and sub-

threshold membrane potential of the cell was measured at each step (Figure 2.9B&C). KIA- 

neurons showed a significantly greater change in membrane potential for every pA of current 

injected as compared to scramble controls (at 100 pA of current, KIA- membrane potential 

changed by 18.4 ± 3.6 mV versus 8.1 ± 1.1 mV in controls; p= 0.02; Figure 2.9B), indicating a 

greater input resistance in KIA- neurons as compared to controls (193.7 ± 25.3 Mohm in KIA- 

cells vs. 103.6 ± 21.4 Mohm in scramble control; p= 0.01; Figure 2.9C&D). Neurons with 

reduced expression of Kiaa0319 did not have a significant difference in gross anatomy 

(Galaburda et al. 2006; Peschansky et al. 2010), resting membrane potential (-71.1 ± -0.7 mV in 

KIA- vs. -71.5 ± -1.4 in scramble control; p= 0.70) or action potential width (0.7 ± -0.03 ms 

compared to 0.7± -0.02 ms in controls; p= 0.40). Our result that reduced expression of Kiaa0319 

causes increased resistance may help explain the variability in number of action potentials fired 

trial-to-trial in our multi-unit data.  

DISCUSSION 

 

 

Summary of results 

           This study was designed to test the hypothesis that in utero RNAi of Kiaa0319 can disrupt 

the brain’s ability to process speech sounds. Recordings in awake and anesthetized rats 
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demonstrate that Kiaa0319 RNAi degrades auditory cortex responses to both speech and non-

speech sounds. Increased spontaneous firing, increased latency, increased response variability 

and decreased frequency selectivity all contribute to the reduced ability of A1 sites to distinguish 

between speech sounds. Neurons with transfected with Kiaa0319 shRNA have higher input 

resistance and greater excitability compared to control neurons. These results provide the first 

direct evidence of a neural mechanism whereby the dyslexia associated gene Kiaa0319 could 

interfere with phonemic processing.   

Dyslexic individuals have abnormal auditory neural responses 

            Dyslexics have abnormal auditory cortex responses that are similar to the abnormalities 

we observed in rats transfected with Kiaa0319 shRNA in utero (KIA-). 

Auditory-evoked potentials in dyslexic humans are later and weaker than controls in response to 

tones and speech sounds (Nagarajan et al. 1999; Tonnquist-Uhlen 1996). Studies using fMRI 

consistently show reduced cortical response to speech during passive exposure (Kraus et al. 

1996; Kujala et al. 2000; Schulte-Körne et al. 2001) and during phoneme discrimination tasks 

(Flowers, Wood, Naylor 1991; Rumsey et al. 1992; Rumsey et al. 1997; Temple et al. 2001; 

Temple et al. 2003; Temple et al.). Our results suggest that this reduced response may be due to 

higher trial by trial variability rather than a reduced number of action potentials. Human neural 

responses are also less able to lock to gamma-rate modulations of white noise (Lehongre et al. 

2011). The result that neural responses in rats with in utero RNAi of Kiaa0319 are significantly 

worse at phase locking to repetitive broad band stimuli suggests that reduced expression of this 

gene may directly impair the ability of auditory cortex to fire consistently to speech and non-

speech stimuli.  
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 Neural responses in dyslexic humans are abnormal in several non-cortical areas.  

Responses in the left auditory thalamus to phoneme stimuli are weaker in dyslexics (Diaz et al. 

2012). This brain region responds asymmetrically in controls but fire symmetrically in dyslexics. 

For example, in a phoneme task, the left auditory thalamus in controls responds more strongly 

than the right, and for speaker identification tasks, the right thalamus responds more strongly 

than left. In dyslexics, the two hemispheres show no difference relative to the task. Auditory 

brain stem responses (ABRs) in dyslexic humans are also weaker and fire less precisely to the 

timing characteristics of speech sounds (Russo et al. 2004). ABRs in dyslexics also do not adapt 

to repetitive stimuli as they do in controls (Chandrasekaran et al. 2009). Kiaa0319 is expressed 

in many brain areas including brainstem, striatum, hippocampus and cortex (Peschansky et al. 

2010; Poon et al. 2011b). It is likely that variants in the gene Kiaa0319 disrupt neural firing 

properties in multiple brain regions. 

Genetic basis of dyslexia 

The underlying cause of dyslexia has been a matter of great debate for thirty years. 

Factors such as socio-economic status, birth weight, visual function, attention, and genetics have 

all been proposed to explain the disorder (Bates et al. 2011; Galaburda et al. 2006; Hack et al. 

1991; Hari et al. 1999; Miles and Haslum 1986; Pennington et al. 1991; Ramus et al. 2003). 

Twin studies provided the first convincing evidence that genetics plays a major role in the 

development of problems with reading (Pennington et al. 1991). Genome wide association 

studies failed to find a single gene responsible for the majority of cases of dyslexia and instead 

identified a diverse set of genes (KIAA0319, DCDC2, ROBO1, DYX1C1), each one of which 

alone accounts for only a small percentage of the population variance (Bai et al. 2003; Bai et al. 
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2008; Burbridge et al. 2008; Deffenbacher et al. 2004; Fisher and DeFries. 2002; Galaburda et al. 

2006; Meaburn et al. 2008; Roeske et al. 2011; Scerri et al. 2011; Threlkeld et al. 2007). All four 

of the dyslexia associated genes are expressed in the brain, but their contribution to reading 

problems remains unclear. Our study tested the earlier proposal that dyslexia is caused by poor 

phonemic awareness due to a degraded neural representation of speech sounds (Martino et al. 

2001; Poelmans et al. 2012; Russo et al 2004; Tallal and Piercy 1974). The idea was that poor 

phoneme processing is usually not detected until children must explicitly relate specific speech 

sounds (phonemes) to specific letters (graphemes). Although it was clear that dyslexics have 

abnormal brain responses, it was not at all clear how dyslexia associated genes might lead to 

these abnormalities. Our demonstration that in utero RNAi of Kiaa0319 can degrade the neural 

representation of speech sounds is consistent with this hypothesis.  

A small sub-population of humans with dyslexia have known variants in the KIAA0319 

gene (Bates et al. 2011; Deffenbacher et al. 2004; Galaburda et al. 2006; Harold et al. 2006; 

Paracchini et al. 2006; Schumacher et al. 2006). Dyslexics with KIAA0319 variants had reduced 

activation of the left temporal cortex in response to speech (Pinel et al. 2012). This abnormality 

is correlated with poor speech perception and reading ability. Dyslexics with a KIAA0319 variant 

also have white matter abnormalities in left tempo-parietal cortex (Darki et al. 2012). Dyslexics 

with KIAA0319 variants typically have mutations in the promoter region of the gene (Paracchini 

et al 2006), which causes reduced expression of KIAA0319 (Dennis et al 2009). Our observation 

that in utero RNAi of Kiaa0319 in rats results in degraded cortical responses to speech is 

consistent with observations in dyslexics with KIAA0319 mutations. 
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It will be important to determine if other dyslexia genes can degrade the cortical 

representation of speech sounds. If reduced expression of most dyslexia genes can degrade 

speech sound processing, it is likely that degraded auditory processing is the primary deficit 

responsible for dyslexia. If reduced expression of other dyslexia genes does not degrade speech 

sound processing, then the auditory processing hypothesis of dyslexia would be in doubt. A 

recent study reported that human dyslexics with ROBO1 mutations exhibit abnormal evoked 

responses in auditory cortex and the severity of this abnormality is proportional to the level of 

ROBO1 gene expression (Lamminmäki et al. 2012). Additional studies in humans or animals 

with reduced expression of ROBO1, DCDC2, and DYX1C1 are needed to determine whether 

auditory cortex dysfunction is a common consequence of dyslexia gene mutation.  

The amount of genetic suppression present may contribute to the extent of the observed 

deficit. RNAi does not generate uniform suppression and does not affect every neuron. Even 

though this model is not a complete genetic knockout, the suppression of dyslexia associated 

genes can affect cells that were not transfected. Previous work has shown that RNAi of another 

dyslexia associated gene (Dcdc2) can cause non cell-autonomous effects, as demonstrated by 

migration abnormalities in non-transfected cells (Burbridge et al. 2008). Our results show that 

even though it is likely that many cells included in our multi-unit recordings were not 

transfected, the influence of the genetic suppression was significant enough to generate a 

significant impairment in cortical auditory processing. The extent of the effect on non-

transfected auditory cortex neurons is unanswered and would provide insights into the multi-

modal symptoms observed in dyslexics.  
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Future Directions  

Our model of a Kiaa0319 variant in rats is valuable for studying the direct contribution of 

this gene to auditory processing. The behavioral consequence of in utero transfection of 

Kiaa0319 shRNA on speech discrimination in rats is not known. However, a recent study in 

these rats confirmed that they are impaired at discrimination of frequency-modulated (FM) 

sweeps (Szalkowski et al. 2012). Our observation that these rats exhibit impaired speech 

responses suggests that they may have problems discriminating between similar speech sounds. 

A similar degree of degradation of the neural response to speech caused by added background 

noise (Shetake et al. 2011) or signal degradation using a noise vocoder (Ranasinghe et al. 2012a) 

impaired consonant and vowel discrimination in rats. The hypothesis that in utero RNAi of 

Kiaa0319 will impair phoneme discrimination needs to be tested. 

Rats with in utero RNAi of Kiaa0319 could be used to test the neural mechanisms that 

allow for improved phoneme processing with extensive behavioral training. Extensive therapy in 

dyslexics can normalize neural responses in the cortex and brainstem. For example, three months 

of exposure and discrimination training can improve speech evoked responses in auditory cortex 

and brainstem (Gaab et al. 2007; Temple et al. 2003). When interventions focus on only a small 

set of stimuli, improvements in cortical responses can be seen in as little as three weeks (Lovio et 

al. 2012; Tremblay & Kraus. 2002). Speech training can also improve timing and amplitude of 

speech evoked responses in the auditory brainstem (Russo et al. 2004). If neural responses in our 

rat model can be improved by training, recordings of action potential patterns may elucidate the 

mechanisms by which behavioral therapy improves speech sound processing in dyslexics.  
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Phoneme processing problems in dyslexia may be due to inconsistent neural firing 

Many studies have documented that dyslexics have a smaller average auditory evoked 

response compared to control subjects. The simplest interpretation is that fewer neurons respond 

to sound in dyslexics. Our results suggest another explanation. It is possible that abnormal 

expression of dyslexia genes impairs speech processing by increasing trial by trial variability 

(internal noise), rather than by reducing the number of neurons that respond to sound. Several 

imaging studies in humans with dyslexia have suggested that poor phonological awareness is 

directly related to inconsistent neural responses across different stimuli (McAnally and Stein. 

1996; Wible et al. 2002; Ziegler et a.. 2009). We suggest that this inconsistent firing occurs 

across repeats of the same stimulus as well. Rats with transfection of Kiaa0319 shRNA in utero 

have higher trial by trial variability in the timing and the number of spikes generated by each 

sound. This variability appears to be responsible for the lower peak firing rate for the average 

population response to both speech and non speech stimuli. The classifier we used relies on 

single trial responses to discriminate between different sounds. Neural discrimination was 

impaired when Kiaa0319 shRNA was transfected in utero even though the number of evoked 

spikes was not decreased. These results suggest the possibility that phoneme processing 

problems in dyslexics can be caused by increased trial by trial variability even if the average 

response is not reduced. 

Conclusion 

In utero RNAi of Kiaa0319 increases excitability in cortical neurons and degrades the 

spectral and temporal fidelity of auditory cortex responses. The cortex of rats transfected with 

Kiaa0319 shRNA in utero have delayed latency, are impaired at phase-locking to repetitive 
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stimuli, and show significantly poorer discrimination of both consonant and vowel stimuli. We 

have confirmed that the candidate dyslexia gene Kiaa0319 is involved in phonemic processing in 

primary auditory cortex and our results suggest that this gene may contribute to these deficits in 

dyslexic humans. In addition, intracellular recordings revealed that in utero transfection of 

Kiaa0319 shRNA increased the excitability of neocortical neurons and may account for the 

impaired systems level responses. Our observation that a dyslexia associated gene can degrade 

the neural representation of speech sounds is consistent with a prevailing theory of the biological 

basis for dyslexia. The rat model of speech sound processing will be useful in testing the 

relationship between dyslexia gene expression levels and degraded neural responses to speech. 

The model could also be used to elucidate the mechanism of action of current behavioral 

treatments for dyslexia.  
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APPENDIX 

CHAPTER 3 FIGURES 

 
Figure 2.1. In utero RNAi of Kiaa0319 (KIA-) caused delayed speech-evoked local field 

potentials (LFPs) in both awake and anesthetized rats. LFPs in panels A. and C. were created by 

averaging across 47 sites from 9 awake KIA- animals and 6 sites from 3 awake control animals. 

LFPs in panels B. and D. were created by averaging across Responses are averaged across all 

recording sites 247 sites from 5 anesthetized KIA- animals and 255 sites from 6 anesthetized 

control animals. Latency of the LFP was calculated by milliseconds to the peak of each 

component. A. LFPs in response to the speech sound “dad” had a lower amplitude in KIA- 

neurons recorded from awake animals compared to controls. B. These abnormal response 

properties were not affected by pentobarbital anesthesia. Speech evoked LFPs to the sound “dad” 

had longer (but not significantly longer) latency and lower amplitude in KIA- neurons recorded  
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Figure 2.1 continued… 

 

from animals anesthetized with dilute pentobarbital compared to controls. C. LFPs in response to 

the speech sound “bad” had a longer P1 latency than controls.  D. These abnormal properties  

were more obvious in the presence of pentobarbital anesthesia. Though the LFP response to the 

sound “dad” (panels A & B) were slightly different than the LFP response to the speech sound 

“bad” (panels C & D), the average response to these sounds was extremely similar.  
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Figure 2.2. In utero RNAi of Kiaa0319 caused degraded spatiotemporal response patterns to 

consonant speech sounds. A. Consonant sounds evoked unique patterns of activation across the 

A1 of anesthetized control rats. Each multi-unit site’s average response to the speech sound over 

20 repeats is organized by the characteristic frequency of the site. The average response across 

all sites is shown on top of each sub-panel. These patterns are similar to previous studies using 

unaffected rats (Engineer et al. 2008; Perez et al. 2012; Ranasinghe et al. 2012a; Shetake et al. 

2011). B. Response patterns of multi-unit recordings taken from primary auditory cortex of 

anesthetized rats that had undergone in utero RNAi. In utero RNAi of Kiaa0319 caused delayed 

response to speech sounds, as well as reduced precision in firing latency.  
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Figure 2.3. In utero RNAi of Kiaa0319 caused delayed activity to speech sounds. A. Onset 

latency and peak latency in response to the consonant sound /d/ were longer in multi-unit 

recordings from anesthetized rats transfected with Kiaa0319 shRNA in utero (* = p< 0.01). B. 

Average onset latency and peak latency to consonant stimuli were later in multi-unit recordings 

from anesthetized KIA-  rats as compared to anesthetized control sites (* = p< 0.01).  
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Figure 2.4. In utero RNAi of Kiaa0319 caused increased variability in neural responses to speech 

stimuli. A. Onset latency to speech sounds was more variable across trials in multi-unit responses 

from anesthetized KIA- rats (light bar) compared to sites from anesthetized controls (dark bar; * 

= p<0.01). B. The number of action potentials fired during speech sounds was more variable 

trial-to-trial in KIA- sites (light bar) during vowels (400 ms window; * = p< .01). C. The average 

number of evoked action potentials to speech sounds was not significantly different between 

control and KIA- sites for either a 40 ms or a 400 ms analysis window (p=.10). This result 

suggests that the increased trial by trial variability is not due to an increased firing rate.  
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Figure 2.5. In utero transfection with Kiaa0319 shRNA caused impaired neural discrimination of 

consonant and vowel stimuli. A. Single trial neural responses from a typical high frequency 

control site. Action potentials are plotted over the course of the consonant sound and organized 

by repeat (each row is a different repeat). To the sound “d”, this site fired quickly after the sound 

onset, while this site fired with a 10 ms delay to the sound “b.” Repeats during which the 

classifier guessed incorrectly as to the stimulus identity are marked by an ‘x’ on the right. Total 

percent correct for this pair is on top of the panel. B. Single trial neural responses from a typical 

high frequency KIA- site. To the sound “d,” this site fired later than the control site, and with 

greater variability across repeats. To the sound “b,” this site fired later than the control site, and 

with greater variability across repeats. This site made many more errors in identifying the source 

stimulus as compared to the control, due to the amount of variability across repeats. C. Average 

percent correct across ten neural consonant discrimination tasks. A two-alternative forced-choice 

classifier compared the Euclidean distance between a single trial response and the average 

response to two consonant stimuli. Using activity from a single site in 1 ms bins, the classifier 

guesses which sound evoked the single trial activity by picking the comparison yielding the 

smallest Euclidean distance. KIA- neurons were significantly impaired at discriminating between 

consonant sounds (* = p< 0.01). D. Single trial neural responses from a typical low frequency 

control site.  
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Figure 2.5 continued… 

 

Average number of spikes fired per repeat is plotted by repeat. To the vowel sound “a” (as in 

“dad”), this site fired more spikes than in response to the vowel sound “u” (as in “dud”). Vowels 

were more difficult than consonants to discriminate, as the classifier compared each trial’s spike 

count with the average spike count for that sound (vertical lines) and this is reflected by a greater 

number of classifier errors, as marked by an ‘x’ on the right. E. Single trial neural responses 

from a typical low frequency KIA- site. The average number of spikes per vowel was more 

similar in KIA- sites (vertical lines), which makes the classifier guess incorrectly more often.  F. 

Average percent correct across six neural vowel discrimination tasks. The same neural classifier 

used single site activity in 400 ms bins to identify which vowel sound evoked the single trial 

activity using Euclidean distance. KIA- neurons were significantly impaired at discriminating 

between vowel sounds (* = p< 0.01).  
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Figure 2.6. In utero RNAi of Kiaa0319 impaired neural firing properties to repetitive broad band 

stimuli. A. Example of single site responses to the first broad-band noise burst. Each row 

represents a repeat of the stimulus, and each dot shows the location of an action potential with 

respect to time. The control site (top) responded consistently across repeats, while the KIA- site 

(bottom) responded later and with more variability across repeats. B. Onset latency to the first 

broad-band noise burst was later in KIA- neurons compared to control neurons (* = p= 0.01). C. 

Variability in peak latency across repeats was significantly longer in KIA- neurons compared to 

control neurons (* = p< 0.01). D. Firing rate to each broad-band burst was lower in KIA- 

neurons as compared to controls at all four presentation rates (* = p< 0.01). E. Vector strength 

was significantly lower in KIA- neurons at all four presentation rates (* = p< 0.01).  
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Figure 2.7. In utero RNAi of Kiaa0319 caused impaired neural firing to tonal stimuli. A. 

Spontaneous levels in RNAi rats were higher than controls (* = p<0.01). Similar to speech and 

noise-burst stimuli, KIA- neurons had a longer peak latency to tone stimuli compared to control 

neurons (* = p< 0.01). We used only tones louder than 60 dB to plot the average response. This 

cutoff ensured that the narrower bandwidths observed in KIA- recordings did not bias the 

comparison. B. Average number of spikes to tones at each intensity tested. Number of spikes for 

each site was counted within the 10 sites surrounding that site’s CF to account for bandwidth 

difference. KIA- neurons fired more spikes to tones than control neurons at most intensities 

tested (* = p< 0.01).  
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Figure 2.8. Basic neural firing impairments may contribute to poor neural classification of 

phonemes. We tested groups of control neurons that mimicked the distribution of KIA- neurons 

with respect to several neural firing properties. All * are p<.01.  A. Several abnormal firing 

properties contributed to poor consonant classification. Control neurons with a distribution of 

spontaneous firing (third bar; 68 ± 1%; p<.01), peak latencies (fourth bar; 68 ± 1%; p<.01), and 

bandwidths (at 20 dB above threshold, fifth bar; 68 ± 1%; p<.01) that match the KIA- sites were 

significantly different than the full set of control sites on neural discrimination of consonants. B. 

Abnormal spontaneous firing levels seemed to contribute to poor vowel performance. Control 

neurons with a distribution of spontaneous firing rates that match the KIA- sites were 

significantly different from the full set of control sites on neural discrimination of vowels (57 ± 

1%; p<.01).   
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Figure 2.9. Neurons with transfection of Kiaa0319 shRNA had higher membrane resistance than 

controls. Four experimental groups were used in this experiment: KIAA RNAi neurons 

expressed the Kiaa0319 shRNA transgene, KIAA OE (over expression) neurons expressed a 

transgene which increased Kiaa0319 expression, Scramble neurons expressed a scrambled 

shRNA, and Rescue neurons expressed both the Kiaa0319 shRNA (which reduced expression) 

and a transgene to increase expression.  A. KIAA RNAi neurons fired significantly more action 

potentials per pA of current injection than Scramble controls (at 200pA of current, KIAA RNAi 

neurons fire 5.5 ± 1 spike vs.0 .5 ± 0.5 spikes in controls; * = p< 0.01). B. Example voltage 

traces from one KIAA RNAi neuron and two control neurons. In response to current injection, 

membrane  
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Figure 2.9 continued… 

 

potential of KIAA RNAi neurons changed more drastically and fired more action potentials than 

Scramble controls. C. Input resistance function for all four experimental groups tested. For each 

pA of current injected, the membrane potential of KIAA RNAi neurons changed significantly 

more than control groups (at 100 pA of current, KIAA RNAi membrane potential changed by 

18.4 ± 3.6 mV versus 8.1 ± 1.1 mV in controls; * = p=0.02). D. KIAA RNAi neurons had a 

higher membrane resistance than scramble control neurons (193.7 ± 25.3 Mohm in KIA- cells vs. 

103.6 ± 21.4 Mohm in scramble control; * = p= 0.01). KIAA OE and Rescue controls did not 

have increased membrane resistance (* = p= 0.05).  
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ABSTRACT 

 

Different speech sounds evoke unique patterns of activity in primary auditory cortex (A1). 

Behavioral discrimination by rats is well correlated with the distinctness of the A1 patterns 

evoked by individual consonants, but only when precise spike timing is preserved. In this study 

we recorded the speech evoked responses in the primary, anterior (AAF), ventral (VAF), and 

posterior (PAF) auditory fields of the rat and evaluated whether activity in these fields is better 

correlated with speech discrimination ability when spike timing information is included or 

eliminated. Spike timing information improved consonant discrimination in all four of the 

auditory fields examined. Behavioral discrimination was significantly correlated with neural 

discrimination in all four auditory fields. The diversity of speech responses across recordings 

sites was greater in PAF and VAF compared to A1 and AAF. These results suggest that while the 

various auditory fields of the rat process speech sounds differently, neural activity in each field 

could be used to distinguish between consonant sounds with accuracy that closely parallels 

behavioral discrimination. Earlier observations in the visual and somatosensory systems that 

cortical neurons do not rely on spike timing should be reevaluated with more complex natural 

stimuli to determine whether spike timing contributes to sensory encoding. 
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INTRODUCTION 

 

Primary auditory cortex (A1) encodes consonant sounds using precise spike timing information 

within 1-50 ms bins (Engineer et al. 2008; Perez et al. 2012; Ranasinghe et al. 2012a; 

Ranasinghe et al. 2012b; Schnupp et al. 2006a; Shetake et al. 2011; Wang et al. 1995). This 

precision generates unique patterns of activity across the tonotopic organization of this field. For 

example, in rat A1, the consonant sound /d/ causes an evoked response from neurons tuned to 

high frequencies first (higher than ~7 kHz), followed by a response from neurons tuned to lower 

frequencies after a short delay of ~20 ms. The consonant sound /b/ causes the opposite pattern 

such that low frequency neurons fire first, followed by higher frequency neurons. To account for 

the shifted audiogram of the rat, these stimuli are shifted up by an octave and the firing 

differences across frequency groups reflect the frequency information in the stimuli (Engineer et 

al. 2008; also see Figure 3.1). Each consonant sound evokes a unique pattern of activity and the 

difference in these responses can be used to identify the evoking stimulus using a pattern 

classifier (Engineer et al. 2008; Perez et al. 2012; Ranasinghe et al. 2012b; Shetake et al. 2011; 

Foffani and Moxon 2004). 

The uniqueness of these patterns is correlated with behavioral ability of rats in a wide 

range of tasks. Rats are able to discriminate human speech sounds in quiet (Engineer et al. 2008; 

Perez et al. 2012), background noise (Shetake et al. 2011), and after spectral or temporal 

degradation (Ranasinghe et al. 2012b). The neural responses in primary auditory cortex can 

predict behavioral ability in all of these tasks using a Euclidean distance classifier. Sounds that 

create contrasting patterns of activity, such as the opposite patterns evoked by /b/ and /d/, 

correspond to pairs of sounds that are more easily discriminated by rats (Engineer et al. 2008; 
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Ranasinghe et al. 2012a; Ranasinghe et al. 2012b; Shetake et al. 2011). Pairs of sounds that have 

similar spectrotemporal profiles, such as /r/ and /l/, cause similar neural responses and are more 

difficult for rats to behaviorally discriminate (Engineer et al. 2008). Degraded stimuli, like those 

caused by the addition of background noise or a vocoder, can cause delayed and/or weakened 

neural responses. The more severe the degradation to the neural response patterns, the more 

impaired the rats were at the corresponding behavior task (Ranasinghe et al. 2012b; Shetake et 

al. 2011). The preservation of the spike timing information is crucial to these correlations; if 

spike timing information is removed, no tasks are correlated with the differences in patterns of 

neural activity (Engineer et al. 2008; Ranasinghe et al. 2012a; Ranasinghe et al. 2012b; Shetake 

et al. 2011). 

Other sensory systems appear to rely predominantly on spike rate, rather than spike 

timing for discrimination, especially in sensory fields higher up in their respective pathways. In 

the visual system, the primary visual cortex relies on precise spike timing to discriminate 

between stimuli that evoke similar number of spikes (Montemurro et al. 2008). As the 

information is passed to higher level regions, neurons begin to use spike rate information rather 

than spike timing to make behavioral decisions. For example, when monkeys were asked to 

identify the direction of motion of a visual stimulus after a delay, the rate of firing in the 

posterior parietal cortex predicted the behavioral decision of the subject (Shadlen and Newsome 

2001; Shadlen and Newsome 1996).  The somatosensory system functions in a similar manner. 

For example, when monkeys were trained to detect whether the rate of two tactile vibrations 

were the same, high level areas of the somatosensory system perform the task by comparing the 

firing rate of neurons to each stimulus (Romo and Salinas 2003). A well-received theory states 
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that temporal information is consistently transformed into a rate code as the information moves 

up the appropriate neural network (Ahissar et al. 2000). This is plausible in the auditory system 

as well (Buonomano and Merzenich 1995; Wang et al. 2008). The current study was designed to 

test the theory that neural responses to consonant speech sounds would also undergo a 

transformation throughout the auditory pathway. Early auditory cortex requires precise spike 

timing information to encode consonant sounds (Centanni et al. 2013; Engineer et al. 2008; 

Ranasinghe et al. 2012a; Ranasinghe et al. 2012b; Shetake et al. 2011), while vowel stimuli rely 

on spike rate, even at this early sensory level (Perez et al. 2012). We therefore used consonant 

stimuli in the current study to answer the following question: Do auditory fields higher in the 

auditory pathway than A1 use spike timing or spike rate to encode and discriminate consonant 

speech sounds?  

 

METHODS 

 

Anesthetized recordings  

We acquired 1,253 multiunit recordings from the auditory cortex of 15 experimentally 

naïve rats. The recording procedure is explained in detail elsewhere (Engineer et al. 2008). In 

brief, animals were anesthetized with pentobarbital (50 mg kg
-1

) and given supplemental dilute 

pentobarbital (8 mg ml
-1

) as needed to maintain areflexia, along with fluids to prevent 

dehydration. A tracheotomy was performed to ensure ease of breathing throughout the 

experiment. Primary auditory cortex and several nearby auditory fields were exposed via 

craniotomy and durotomy. Four Parylene-coated tungsten microelectrodes (1-2 MΩ) were 

simultaneously lowered to layer IV/V of either left or right auditory cortex (~600-800 µm). 
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Responses were collected in four auditory fields; primary auditory cortex (A1), anterior auditory 

field (AAF), posterior auditory field (PAF) and ventral auditory field (VAF). These fields are 

widely considered core regions in the rat (Doron et al. 2002; Polley et al. 2006; Storace et al. 

2010), but recent evidence suggests that these fields receive input from more than one thalamic 

region, which may suggest a hierarchical organization (Smith et al. 2012; Storace et al. 2012).     

Brief (25 ms) tones with 5 ms ramps were presented at 90 randomly interleaved frequencies (1-

48 kHz) at 16 intensities (0- 75 dB SPL) to determine the characteristic frequency of each site. 

We also presented 7 English consonant-vowel-consonant (CVC) speech sounds (/dad/, /sad/, 

/tad/, /bad/, /gad/, /shad/, and /chad/) previously tested in our lab (Engineer et al. 2008; 

Ranasinghe et al. 2012b; Shetake et al. 2011; Floody et al. 2010). The speech stimuli were 

randomly interleaved and presented at 20 repeats per recording site. Sounds were shifted up 1 

octave into the rat hearing range using the STRAIGHT vocoder (Kawahara 1997; Figure 3.1). 

Each sound was calibrated with respect to its length so that the most intense 100 ms of the 

stimulus length was heard at 60 dB SPL. All sounds were presented approximately 10 cm from 

the contralateral ear of the rat. As the effect of speaker location was beyond the scope of our 

study, the speaker was always located outside of the pinna and aimed directed into the ear canal. 

With this configuration, the sound level was always greater to the contralateral ear (which 

corresponded to our recording sites) versus the ipsilateral ear.  

Neural data analysis 

To define the borders between auditory fields, recording sites were analyzed to select the 

characteristic frequency of each site, as well as to obtain bandwidth, latency, peak firing and end 

of peak response information. Firing latency is defined as the point in time (ms) that average 
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firing rate (across all repeats) first crosses two standard deviations above the spontaneous firing 

rate, threshold is defined as the lowest intensity that evoked a response from the multiunit site, 

and bandwidths were calculated at 10, 20, 30 and 40 dB above threshold and defined as the range 

of frequencies that evoked responses at the current intensity. Each field was defined as 

established in the literature, using characteristic frequency gradients, gradient reversals, and 

tuning curve properties (Doron et al. 2002; Higgins et al. 2010; Pandya et al. 2008; Polley et al. 

2006). A1 sites were defined as having sharp tuning, short onset latency (between 10-20 ms from 

tone onset), high firing rate (100 Hz or greater), and organized tonotopically so that characteristic 

frequencies (CFs) ranged from low to high in a posterior-anterior direction. AAF sites were 

defined using the same parameters as A1, but with a reversed tonotopy, such that CFs ranged 

from low to high in an anterior-posterior direction. The VAF field was located anatomically 

between AAF and A1. We first located the tonotopic gradient reversal at the edges of AAF and 

A1. Next, sites were analyzed for whether or not they exhibited non-monotonic features. Non-

monotonic sites were defined as sites in which the response bandwidth  at 40 dB above threshold 

was not wider than responses 30 dB quieter. VAF as a field also had a higher average 

characteristic frequency as compared to the other fields (Polley et al. 2006). PAF sites were 

defined as having long onset latency (greater than 30 ms) and broad tuning curves and were 

located immediately posterior to A1. These methods of defining site boundaries are consistent 

with previous work in rodent models (Doron et al. 2002; Higgins et al. 2010; Pandya et al. 2008; 

Polley et al. 2006). Out of the 1,253 sites we acquired, 1,116 of these were included in the 

subsequent analyses.  
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Single trial response patterns to each of the isolated speech sounds were compared using 

a nearest neighbor classifier (Engineer et al. 2008; Perez et al. 2012; Popescu and Polley 2010; 

Ranasinghe et al. 2012a; Ranasinghe et al. 2012a; Ranasinghe et al. 2012b; Shetake et al. 2011; 

Foffani and Moxon 2004; Foffani and Moxon 2005). We used Euclidean distance to compare 

single trial activity from 5 random sites to the average post-stimulus time histogram (PSTH) 

template evoked by 19 repeats each of two different stimuli. Activity was binned using 1 ms 

temporal precision over a 40 ms window to encompass the spike timing precision present in the 

initial consonant (Engineer et al. 2008; Ranasinghe et al. 2012b; Porter et al. 2011).  The 

classifier then compared the response of each single trial with the average activity template 

(PSTH) evoked by all repeats of each of the speech stimuli presented. The current trial being 

considered was not included in the PSTH to avoid artifact. The classifier attempted to identify 

the stimulus that evoked the current single trial activity pattern by selecting the template that was 

closest to the single trial in units of Euclidean distance. ED is calculated using the formula: 

 

where #sites is each recording site and #bins is each of 40 one-millisecond bins being compared 

between activity evoked by speech sound X versus speech sound Y. We chose Euclidean 

distance as our metric for two reasons. First, it is a well established metric for this type of neural 

classification (Engineer et al. 2008; Perez et al. 2012; Popescu and Polley 2010; Ranasinghe et 

al. 2012a; Ranasinghe et al. 2012a; Ranasinghe et al. 2012b; Shetake et al. 2011; Foffani and 

Moxon 2004; Foffani and Moxon 2005). Second, this metric is inherently resistant to variations 

in spike rate. Since some auditory fields fire fewer spikes to auditory stimuli than others, we 
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wanted to ensure that this variable was accounted for in evaluating the neural encoding ability of 

various auditory fields. We ran the classifier so that each site was included in the classifier 

analysis at least once (i.e. the classifier ran once for each site recorded) and performance was 

calculated as the average performance across all classifier runs. For example, the classifier ran 

399 times to evaluate every A1 site, 303 times to evaluate every AAF site, and so on. We used an 

ANOVA and t-tests to compare the accuracy of the classifier across all auditory fields. When 

appropriate, a Bonferroni correction was used to correct for multiple comparisons.  

We then compared speech-evoked neural responses between pairs of sites in each field 

that had characteristic frequencies within 1/4 octave. This analysis was designed to compare the 

differences in neural responses between similarly tuned neural sites as a measure of firing 

redundancy (Chechik et al. 2006; Cohen and Kohn 2011). We counted the number of evoked 

spikes to each speech sound within the same 40 ms window used for the classifier. We compared 

the number of spikes evoked by each sound across each pair of sites and quantified the 

relationship using the correlation coefficient. When neural firing redundancy decreased, we refer 

to this as an increase in diversity.  

Recordings from a subset of 4 rats were mapped with a different speaker than the 

remaining 11 rats (Motorola Optimus Bullet Horn Tweeter vs. TDT FF1 free field speaker). To 

ensure that the speaker difference did not significantly change the quality of our neural 

recordings, we compared the classifier’s performance on four consonant tasks (/dad/ vs /bad/, 

/gad/, /sad/, or ‘tad) using sites from three auditory fields in male rats mapped with each speaker. 

There were no significant differences in classifier performance across speaker (Optimus Bullet 
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Horn Tweeter speaker; 74.4 ± 1% correct vs. 71.2 ± 1% correct with FF1 speaker; p=0.55), so all 

data was combined for analysis.  

Behavioral testing 

        We trained 10 rats to discriminate speech sounds using an operant go/no-go procedure. 

Each rat trained for two 1 hour sessions per day (5 days a week). Rats first underwent a shaping 

period in which they were taught to press a lever to hear the target sound and obtain a 45 mg 

sugar pellet reward. Once the rat was able to earn 100 pellets independently for two consecutive 

sessions, the rat was advanced to detection. During detection, the rat learned to withhold pressing 

the lever until the target sound was presented. Silent periods were randomly interleaved into the 

session to serve as catch trials. Rats were initially given 8 seconds to respond to the sound and 

this window was gradually decreased to 3 seconds. Once the rat achieved a d’ of 1.5 or greater 

for 10 sessions, the rat was advanced to discrimination. During discrimination, the rat learned to 

press the lever for a target speech sound and not press for several distracter speech sounds. A 

total of 6 rats were trained to discriminate the sound /dad/ from /bad/, /gad/, /sad/, and /tad/ (data 

previously published in Engineer et al., 2008) and 4 rats trained on /bad/ versus /dad/, /gad/, 

/sad/, and /tad/, as well as /shad/ versus /sad/, /chad/, /dad/, and /gad/. Rats were only rewarded 

for pressing the lever to their respective target sound (presented ~44% of the time). A response 

to a distracter sound (presented ~44% of the time) or to a silent catch trial (presented ~11% of 

the time) resulted in a time out in which the cage lights were extinguished and the program 

paused for 6 seconds. Each discrimination task lasted for 20 training sessions over 2 weeks. 

Behavior percent correct was evaluated on the last day of training and is reported as the mean ± 

sem across rats. Training took place in soundproof, double-walled booth which was lined with 
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foam to reduce noise. Inside the booth, a house light, video camera and speaker were mounted 

outside an 8 x 8 x 8” cage which contained the lever and food dish. A pellet dispenser was 

mounted outside the booth to reduce noise. During the experiment, rats were food deprived to 

above 85% of their original body weight. Rats were housed individually and maintained on a 

reverse 12-hour light-dark cycle. Behavioral percent correct for correlation with classifier 

performance was calculated using data from the last day of training. All protocols and recording 

procedures were approved by the University of Texas at Dallas Institutional Animal Care and 

Use Committee. 

 

RESULTS 

 

Topographic organization of tone frequency tuning was used to identify the four auditory 

fields; primary (A1), anterior (AAF), ventral (VAF), and posterior (PAF). A1 and AAF exhibited 

clearly ordered frequency maps (correlation between site location and characteristic frequency 

R= -0.77 and R= -0.69 respectively) while VAF and PAF did not (R= -0.05 and R= -0.37 

respectively). Characteristic frequencies (CF) in A1 increased in a posterior to anterior direction, 

while CFs in AAF increased in an anterior to posterior direction (Figure 3.2). Firing latency to 

tones was significantly different across all four fields (one-way ANOVA, F (3, 1112) =181.51, 

p<0.001; Figure 3.3). VAF had the narrowest bandwidths at 40 dB above threshold (2.4 ± 0.1 

octaves), followed by A1 (2.6 ± 0.1 octaves, unpaired t-test, p<0.01), AAF (2.8 ± 0.1 octaves, 

unpaired t-tests vs. A1 and VAF, p=0.01), and PAF had the longest bandwidths (3.5 ± 0.1 

octaves (unpaired t-tests vs. AAF, A1, and VAF, p<0.01; Figure 3.3C). Frequency tuning and 

tonotopic organization in each field was consistent with earlier reports (Polley et al. 2007; 
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Carrasco and Lomber 2011; Doron et al. 2002; Jakkamsetti et al. 2012; Pandya et al. 2008; 

Puckett et al. 2007; Takahashi et al. 2011, see Methods and Figure 3.3), so we are confident that 

the boundaries between fields were accurately defined. In total, we recorded from 303 multi-unit 

sites in AAF, 399 sites in A1, 206 sites in VAF and 208 sites in PAF.  

Neural discrimination of consonants is better when spike timing information is preserved 

Neural activity from each field can be used to discriminate between consonant sounds. As 

in previous studies, A1 responded to each speech sound differently (Engineer et al. 2008; Perez 

et al. 2012; Ranasinghe et al. 2012a; Ranasinghe et al. 2012b; Shetake et al. 2011). We used this 

classifier to test the hypothesis that other auditory fields use spike timing information to identify 

speech sounds. We calculated the Euclidean distance between the single trial neural response 

post stimulus time histogram (PSTH) and each of two PSTH templates created from the average 

neural activity evoked by each of two sounds. The classifier then guessed which of the template 

sounds likely caused the single trial pattern of activity by choosing the template which was most 

similar to the single trial (i.e. had the smallest Euclidean distance; see Methods). Each run of the 

classifier used multi-unit activity from one to two hundred recording sites. Classifier 

performance most closely matched previously published behavioral performance of 

approximately 80% correct when the classifier was given data from five randomly selected 

recording sites (Engineer et al. 2008; Figure 3.4). As a result, groups of five sites were used for 

all classifier analyses in this paper. 

We tested the ability of neural activity in each field to discriminate all possible pairs of 

the seven consonant sounds evaluated in this study and compared classifier performance when 

spike timing information was preserved or removed. We preserved spike timing information by 
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analyzing the data with 1 ms temporal bins (over a 40 ms analysis window) and we removed 

timing information by analyzing the data in a single 40 ms bin. The classifier performance was 

significantly different when spike timing information was preserved versus when it was not 

(two-way ANOVA, F (1, 1115) = 2.07, p<0.001). Across all the comparisons we used, PAF sites 

were significantly worse at the neural discrimination task than A1 and AAF (t-tests with 

Bonferroni correction, p<0.01; Figure 3.5).  VAF performance was intermediate between AAF 

and PAF and was not significantly different from either field (t-tests with Bonferroni correction; 

p=0.07 and p=0.02 respectively; Figure 3.5). The classifier performed significantly better when 

spike timing information was preserved in A1 responses compared to when spike timing 

information was removed (1 ms bins, 94.4 ± 1.0% correct vs. a single 40 ms bin, 77.3 ± 1.5% 

correct; t-test, p<0.01; Figure 3.5), which is consistent with our earlier report (Engineer et al. 

2008). The three non-primary fields also performed significantly better when spike timing 

information was preserved than when it was removed (AAF: 93.1 ± 1.0% v s. 72.2 ± 1.5% 

correct; p<0.01, VAF: 86.2 ± 1.3% vs. 68.2 ± 1.4% correct; p<0.01, PAF: 75.2 ± 1.4% vs. 66.5 ± 

1.0% correct; p<0.01, t-tests for with and without spike timing information respectively; Figure 

3.5). This result is not specific to these bin sizes. As expected, the classifier performed 

significantly better when spike timing information was preserved (1-10 ms bin sizes) than when 

spike timing information was removed (40-100 ms bin sizes). When using AAF activity, the 

classifier was significantly worse at consonant discrimination when 10 ms bins were used instead 

of 1 ms bins (89.4 ± 1.4% correct with 10 ms bins vs. 93.1 ± 1.0% correct with 1 ms bins, 

p=0.02). For all of the other fields, there was no significant difference in performance when 1 or 

10 ms bins were used (A1: 92.2 ± 1.0% correct with 10 ms bins vs. 94.4 ± 1.0% correct with 1 
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ms bins, p=0.13; VAF: 84.3 ± 1.5% correct with 10 ms bins vs. 86.2 ± 1.3% correct with 1 ms 

bins, p=0.32; PAF: 75.4 ± 1.5% correct with 10 ms bins vs. 75.2 ± 1.4% correct with 1 ms bins, 

p=0.94). For each of the four auditory fields tested, these results suggest that spike timing can 

provide information about consonant identity.  

Activity from non-primary fields is nearly as effective as A1 in discriminating speech sounds 

         As expected from earlier studies (Polley et al. 2007; Carrasco and Lomber 2011; Doron et 

al. 2002; Jakkamsetti et al. 2012; Pandya et al. 2008; Puckett et al. 2007; Takahashi et al. 2011), 

the speech evoked responses slightly differed across the four fields. Differences in the response 

properties to speech sounds were similar to the differences in the response properties to tones 

(Figure 3.3). AAF and A1 fired quickly after the onset of the speech sound, /dad/ in a single 

burst of activity (average latency of 14.2 ± 0.7 in AAF and 15.2 ± 0.7 ms in A1; p=0.32, Figure 

3.6B&C). VAF sites responded just as quickly as AAF and A1 to the onset of each consonant 

sound (14.3 ± 0.8 ms; t-tests with Bonferroni correction, p=0.39, Figure 3.6D). The onset of the 

response in PAF sites was the latest of any of the fields (average latency of 18.1 ± 0.7 ms across 

all speech sounds; t-test vs. A1, p<0.01). The result that VAF and PAF sites responded more 

quickly to speech sounds than to tones may be due to the broader bandwidths in speech stimuli 

(Barbour and Wang 2003; Petkov et al. 2006; Rauschecker and Tian 2004; Rauschecker et al. 

1995).  In addition, the amplitude of response to speech sounds was highest in AAF (601.8 ± 

73.2 Hz), followed by A1 (556.1 ± 70.5, t-test vs. AAF, p=0.01), VAF (414.9 ± 54.0 Hz, t-test 

vs. AAF and A1, p<0.01) and PAF (314.8 ± 38.2 Hz, t-tests vs. the other 3 fields, p<0.01). The 

representative examples shown in black in Figure 3.6 (example sites used are outlined in black in 

Figure 3.2) are sites tuned to ~10 kHz, but the general timing and strength of the response was 



71 

 

consistent across the range of characteristic frequencies in each field (average responses shown 

in gray; Figure 3.6).  

Here, we examined responses to consonant speech sounds in A1 and three additional non-

primary cortical fields. For example, the sound /d/ caused neurons tuned to high frequencies to 

fire first, followed by lower frequency neurons after a brief delay (Figure 3.7A). The consonant 

sound /g/ caused mid-frequency neurons to fire first, followed by firing from high and low 

neurons milliseconds later (Figure 3.7A). The spatiotemporal response patterns to speech were 

similar in AAF to those in A1 (Figure 3.7B).  The apparent “blurring” of response in PAF may 

be caused by broader bandwidths in this field as sites with broad bandwidths likely responded to 

multiple aspects of the speech signal. In AAF and A1, some narrowly tuned sites fired to the 

consonant burst while other sites fired to the vowel, while PAF neurons fired to both portions of 

the stimulus signal. We hypothesized that these differences in response patterns may cause 

longer latency fields to be worse at encoding speech sounds with a short voice onset time, such 

as /d/ and /b/. 

We calculated the similarity (using Euclidean distance) between patterns of activity 

evoked by all possible pairs of consonant sounds and compared these differences across auditory 

fields (Figure 3.8). In every field, the patterns of activity evoked by /dad/ and /bad/ were the least 

similar (i.e. had the largest Euclidean distance value) and /sad/ and /chad/ were the most similar 

(i.e. had the smallest Euclidean distance value; Figure 3.8). The difference in neural response 

patterns between unvoiced consonants (/t/, /s/, /sh/, and /ch/) was higher in VAF and PAF than in 

A1 (Figure 3.8B&C). The similarity between pairs of neural responses in VAF and PAF were 

lower than in A1, which suggests that these two fields may be better able to discriminate 
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between these sounds. In spite of this apparent advantage, classifier performance on pairs of 

unvoiced consonants was better in A1 than in VAF (90.1 ± 1.8% correct in A1 vs. 82.4 ± 2.6% 

correct in VAF, p<0.02) and in PAF (69.4 ± 2.2% correct, p<0.01). As expected from previous 

studies, these results did not significantly change using larger analysis windows (from stimulus 

onset until between 50-300 ms later), as long as spike timing information was preserved (e.g. 1-

10 ms temporal bins; Engineer et al. 2008; Perez et al. 2012; Ranasinghe et al. 2012a; 

Ranasinghe et al. 2012b; Shetake et al. 2011). These results suggest that while VAF and PAF 

encode unvoiced consonant stimuli differently than A1, the information needed to discriminate 

between these patterns of activity is present in all three fields. Although the auditory fields fired 

to speech sounds with different latencies and bandwidths, the similarity between pairs of speech-

evoked neural responses was strongly correlated across fields (Figure 3.8, not all comparisons 

shown).  

Neural responses are correlated with behavioral discrimination of consonants 

The similarity between speech-evoked patterns in A1 is strongly correlated with 

behavioral discrimination ability in rats (Engineer et al. 2008; Perez et al. 2012; Ranasinghe et al. 

2012b; Shetake et al. 2011). We hypothesized that the similarity between patterns of speech-

evoked neural responses in the three non-primary fields would also be correlated with behavior. 

Neural activity from all four auditory fields was correlated with behavioral discrimination ability 

of rats trained to discriminate several sets of consonant speech sounds. The highest performance 

was achieved by rats trained on tasks in which /dad/ was the target (88.3 ± 2.3% correct; see 

Table 3.1 for performance on each pair) and tasks in which /bad/ was the target (87.6 ± 3.7% 

correct; Table 3.1), followed by tasks in which /shad/ was the target (79.1 ± 9.5% correct; Table 
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3.1). Using the 5-site classifier described above in each field (neural data recorded in untrained 

rats), every field was strongly correlated with behavior (R
2
=0.41, p=0.02 in AAF, R

2
=0.59, 

p<0.01 in A1, R
2
=0.39, p=0.03 in VAF and R

2
=0.48, p=0.01 in PAF). Classifier performance in 

3 of the 4 fields was correlated when spike timing information was preserved but not when it was 

removed (without spike timing in AAF, R
2
=0.18, p=0.16; in A1 R

2
=0.28, p=0.07; and in VAF 

R
2
=0.10, p=0.32). Classifier performance in PAF was correlated with or without spike timing 

(without spike timing; R
2
=0.55, p<0.01). PAF neural discrimination ability was able to correlate 

to rat behavioral ability without spike timing information, even though this field’s classifier 

performance was significantly worse than the other fields.  

Our earlier studies reported that the correlation between speech discrimination 

performance and neural responses does not depend on using a classifier to perform 

discrimination using neural activity (Engineer et al. 2008; Perez et al. 2012; Ranasinghe et al. 

2012b; Shetake et al. 2011). The Euclidean distances between pairs of speech-evoked responses 

(using all neural sites from each field) was correlated to behavioral performance (R
2
=0.47, 

p=0.01 in AAF, R
2
=0.54, p=0.01 in A1, R

2
=0.29, p=0.07 in VAF, and R

2
=0.68; p<0.01 in PAF), 

as expected from our earlier studies. The patterns of evoked activity to speech in all four auditory 

areas were strongly correlated with each other and with behavioral discrimination. We 

hypothesized that the slight differences in response patterns across fields may contribute 

differently to the animal’s performance. We used all sites from all four fields and compared the 

similarity between neural responses to pairs of consonants and behavioral ability. This meta-

ensemble was strongly correlated to behavioral performance (R
2
=0.46, p=0.02) but did not seem 

to perform better or worse than the individual fields. Though we cannot be sure how information 
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in the multiple auditory fields is used by the animal during the task, these results suggest that 

each auditory field contains comparable information about consonant stimuli.  

Response diversity to speech stimuli is higher in non-primary fields  

Diversity was quantified as the strength of the correlation between the responses evoked 

in similarly tuned neurons to a variety of speech sounds. Since VAF and PAF are not as clearly 

organized by characteristic frequency as AAF and A1, we could not simply analyze pairs of sites 

that were anatomically close to each other. For this study, we restricted the analysis to pairs of 

sites that were within ¼ octaves of each other. Similarly tuned sites in A1 and AAF encode 

speech stimuli more similarly than similarly tuned sites in VAF or PAF. For example, in a pair of 

similarly-tuned AAF sites, the speech sound /dad/ evoked more spikes in site #2 than in site #1, 

but the relationship was still significantly correlated (R
2
=0.77, p=0.01; Figure 3.9A). In A1, two 

sites with a CF of 5 kHz fired the most spikes to the sounds /bad/ and /dad/ and fewest to the 

sound /sad/ and the relationship between the firing strength of these two sites to all speech 

sounds was significantly correlated (R
2
=0.86, p<0.01; Figure 3.9B). These results suggest that 

similarly tuned sites in both A1 and AAF encode speech stimuli with a significant level of 

redundancy. In PAF and VAF, spike rate among pairs of sites is also significantly correlated 

(R
2
=0.61, p=0.04 in VAF and R

2
=0.63, p=0.04 in PAF; Figure 3.9C&D), but several consonant 

sounds evoke different responses within each pair. For example, in PAF, site #1 fired almost no 

spikes to the sounds /sad/, /gad/ and /bad/, while site #2 fired strongly to each of these sounds 

(Figure 3.9D). The trends in these single pair examples are representative of the population of 

pairs in each of the four auditory fields we tested.  
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The highest average correlation across pairs of sites with the same CF (±¼ octave) was 

observed in A1, followed by AAF (R= 0.36 and R= 0.33 respectively; p<0.01). In these two 

fields, 10% of site pairs were in the 75
th

 percentile of their respective distributions (R value 

above 0.6; Figure 3.10A&B). VAF and PAF were less correlated than AAF or A1 (t-tests with 

Bonferroni correction, p<0.01), but were not significantly different from each other (in VAF; R= 

0.17 and in PAF; R= 0.18, p=0.04). In VAF and PAF, the distribution shifts so that only 8% of 

pairs were in the 75
th

 percentile (R
 
value above than 0.5; Figure 3.10C&D, respectively). These 

results suggest that pairs of sites in VAF and PAF are encoding the same speech sound with less 

redundancy than in AAF or A1. The encoding redundancy in A1 may increase the efficacy of 

this field in driving downstream neurons (Eggermont 2007). 

 These results suggest that similarly tuned neurons encode speech stimuli with various levels of 

redundancy across the auditory fields we recorded from. This difference in redundant firing 

across similarly tuned neurons supports the hypothesis that information is transformed across the 

synapses of the auditory pathway. In spite of this increased diversity, no auditory field was better 

correlated to behavioral performance than any other. It is unlikely that neural circuits use this 

method of calculating similarity between individual neural responses. We report that neural 

firing patterns in each of four auditory fields can be used to achieve comparable levels of 

performance on a consonant discrimination task using Euclidean distance as a metric. This result 

suggests that the information needed to accomplish such a task is encoded in each of the fields 

we investigated.  
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Neural activity from multiple fields can be used to identify consonant sounds. 

Identifying sounds from a list of many possibilities is different than simply categorizing 

sounds into two categories (“go” and “no go”). To determine whether neural responses in 

multiple fields would able to identify consonant speech sounds, we tested the classifier on a 

seven-alternative forced-choice task with and without spike timing information. The classifier 

compared single trial activity to the average template of each of seven sounds instead of two 

sounds used above and in previous studies (Engineer et al. 2008; Centanni et al. 2013; Perez et 

al. 2012; Ranasinghe et al. 2012a; Ranasinghe et al. 2012b; Shetake et al. 2011). The classifier 

was able to identify seven different sounds at well above chance level using activity from any of 

the auditory fields tested (chance is 14%; t-tests for all fields’ performance vs. chance, p<0.001; 

Figure 3.11). Spike timing information improved classifier performance for each field (p<0.001). 

The classifier performed best when using A1 activity, followed by AAF (t-test vs. A1, p<0.01), 

VAF (t-tests vs. AAF and A1, p<0.01), and PAF (t-tests vs. all other fields, p<0.01). Spike 

timing improved classifier performance more in some fields than others. The classifier benefited 

most from having spike timing when AAF activity was used (increase of 40.6 ± 0.7%), followed 

by A1 (36.6 ± 0.7%), VAF (30.8 ± 1.2%), and PAF (13.6 ± 1.2%). These results suggest that 

neural activity patterns in all four fields can be used to accurately identify different consonant 

sounds. 
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DISCUSSION 

 

Summary of results 

 This study was designed to test whether spike timing information contributes to speech 

processing in non-primary auditory fields. We used an established nearest neighbor classifier to 

demonstrate that spike timing information improves accuracy on a neural discrimination task in 

all auditory fields. The classifier performance in each field was correlated with behavioral ability 

of rats trained to discriminate the same sounds in an operant go/no-go paradigm. The response to 

speech sounds between recording sites with the same characteristic frequency is less redundant 

in long latency fields of the auditory pathway. Our results suggest that while the various auditory 

fields process speech sounds differently, each fields’ neural discrimination ability is strongly and 

independently correlated with the behavioral performance of rats. 

Anesthesia may affect neural responses  

         Our recordings were obtained from the auditory cortex of anesthetized adult rats.  Neural 

recordings in awake animals differ from recordings in anesthetized animals, especially to 

repetitive stimuli, and may have affected our recordings using speech stimuli. Auditory cortex 

neurons in awake animals respond strongly to repetitive noise burst stimuli and encode more 

information about these sounds than the anesthetized cortex (Dong et al. 2011; Anderson et al. 

2006). Basic tuning properties in the rat auditory cortex change under anesthesia, including a 

reduction in the number of active neurons and sharper tuning curves in those active neurons 

(Gaese and Ostwald 2001). Although response properties of neurons can differ when animals are 

awake compared to anesthetized, discrimination between similar sounds using cortical activity 

from awake and anesthetized animals is comparable (Engineer et al. 2008; Hromádka et al. 2008; 



78 

 

Huetz et al. 2009; Huetz et al. 2009). In awake rats and monkeys, response patterns evoked by 

speech sounds are just as accurate at encoding the stimulus as in anesthetized cortex (Engineer et 

al. 2008; Centanni et al. 2013; Steinschneider et al. 1994). In spite of the firing differences to 

tones and repetitive stimuli caused by anesthesia, speech sound responses in A1 are not 

qualitatively different in the awake versus the anesthetized rat. The ability to record speech 

sound responses in the anesthetized animal ensures a low spontaneous firing rate (Anderson et al. 

2006; Rennaker et al. 2007). The reduction of spontaneous firing makes the evoked responses 

easily visible and reduces the variability in identifying driven recordings. Responses in non-

primary visual cortex to complex stimuli are similar in anesthetized and awake monkeys 

(Jazayeri et al. 2012; Stoner and Albright 1992; Schmolesky et al. 1998), which suggests that 

responses in non-primary auditory cortex of awake and anesthetized subjects may also be 

similar. In human subjects with intra-cranial electrodes, anesthesia diminishes activity in non-

primary auditory fields, but the general pattern of activity is comparable (Howard et al. 2000). 

Additional studies are needed to determine how anesthesia affects neural encoding of speech 

sounds in non-primary auditory fields during behavioral tasks and in passive listening conditions.  

The effect of training on neural responses to speech sounds 

        The speech-evoked responses in untrained rats is correlated with behavioral ability in 

several different tasks, including consonant and vowel discrimination in quiet (Engineer et al. 

2008; Perez et al. 2012), in various levels of background noise (Shetake et al. 2011) and after 

spectral or temporal degradation (Ranasinghe et al. 2012b). Extensive behavioral training does 

change neural firing patterns in auditory cortex (Takahashi et al. 2011; Reed et al. 2011) and may 

therefore affect the ability of the classifier to predict stimulus identity. Training in ferrets 
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increased the amount of information encoded (as measured by bits), but did not seem to affect 

the fundamental nature of the spatiotemporal response patterns (Schnupp et al. 2006b). 

Additional studies are needed to determine whether speech sound training alters speech 

responses in primary and non-primary cortex of non-human animals. Human imaging studies 

suggest that speech training will enhance neural responses (Kraus et al. 1995; Tremblay et al. 

2001).  

Diversity increases throughout the auditory pathway 

Diversity in the speech-evoked responses in cortical auditory fields may contribute to the 

ability of an animal to generalize to stimuli or accurately perceive stimuli in adverse listening 

conditions (Kilgard 2012). The redundancy of encoded information decreases significantly as 

information is passed from the cochlea to the non-primary cortical fields. In the inferior 

colliculus (IC), neural responses in neurons tuned to the same frequency are highly correlated 

with each other (Chechik et al. 2006). In the thalamus and the primary auditory cortex, the 

response patterns in similarly tuned neurons are already substantially different, likely due to the 

transformation of information to reflect different stimulus characteristics (Chechik et al. 2006; 

Sen et al. 2001; Spitzer and Semple 1998; Winer et al. 2005). Earlier studies have indicated that 

greater diversity results in a more robust representation of sensory information (Morisset and 

Ghallab 2008; Lyons-Warren et al. 2012; Schnupp 2006a; Sharpee et al. 2011; Shimizu et al. 

2000). Novel natural stimuli, such as songbird vocalizations, evoke highly redundant patterns of 

activity in the cat inferior colliculus (IC) as compared to A1 (Chechik et al. 2006; Tishby et al. 

2002). Both the spike rate and the spike timing information of a stimulus encoded by IC neurons 

are strongly correlated across neurons with the same characteristic frequency, while similarly 
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tuned A1 neurons encode less redundant information about the same stimulus. This result is 

likely due to the longer integration time in A1 as compared to IC (Chen et al. 2012). We show 

that the non-primary field, PAF, has significantly longer integration times than A1, and may 

represent a continuation of this hierarchical organization. Classifier performance using PAF 

activity was correlated with behavior both with and without spike timing information. With 

larger numbers of sites, PAF is able to perform the neural discrimination task with higher 

accuracy (Figure 3). Since the brain has access to the entire field of neurons, the performance 

difference we show here may not accurately reflect functional differences across fields. Activity 

from more PAF neurons (compared to the other fields) may be needed to complete the same 

tasks. Our results support these earlier results as we have shown an increase in firing diversity 

throughout the cortical auditory fields we tested.  

The ability of multiple fields to identify complex auditory stimuli may be beneficial in 

ensuring the processing of important auditory cues. The presence of background noise 

dramatically alters the neural responses in the primary auditory cortex in rats. When 60 dB of 

speech shaped background noise is added to a speech sound stimulus, A1 sites fire with a 

delayed latency and lower amplitude in comparison to speech sounds presented in quiet (Shetake 

et al. 2011). In spite of the severe degradation to the neural response, rats are still able to 

behaviorally discriminate speech sounds with this level of background noise significantly above 

chance levels. If non-primary auditory fields are encoding different aspects of the speech 

stimulus, as has been previously suggested (Rauschecker et al. 2009), this may explain the robust 

speech discrimination ability of rats at this signal to noise ratio. Similarly, spectral or temporal 

degradation with a vocoder causes degraded neural firing patterns in rat A1, while the behavioral 
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performance remains significantly above chance (Ranasinghe et al. 2012b). Other auditory fields 

may encode the speech stimuli in a way that is more robust to such interference, allowing the rat 

to accomplish the behavioral task in adverse listening environments. Additional cortical 

deactivation experiments are needed to evaluate whether each auditory field is capable of 

compensating for the loss of other auditory field activity.  

Evidence for an integrated and parallel hierarchical organization 

       There are two opposing theories for sensory organization in the brain that are currently being 

debated. The first suggests that the auditory system is organized into separate streams of 

information processing. Similar to the visual system, a “what” and a “where” pathway may also 

exist in the auditory system (Lomber and Malhotra 2008; Recanzone 2000; Rauschecker and 

Scott 2009). Deactivation of AAF in cats causes selective impairment on pattern discrimination 

tasks while deactivation of PAF causes impairment on spatial awareness tasks (Lomber and 

Malhotra 2008). The second theory suggests that the auditory system functions as an 

arrangement of integrated but parallel groups of neurons (Sharpee et al. 2011; Recanzone 2000). 

Our results, as well as previous work in rats, show that as information moves farther up the 

auditory pathway, onset latency significantly increases and suggests an order of processing 

(Jakkamsetti et al. 2012; Pandya et al. 2008; Polley et al. 2007; Puckett et al. 2007; Storace et al. 

2012). The encoding of different stimulus features across different levels of the auditory system 

may help the brain to better encode spatial location (Recanzone 2000; Walker et al. 2011) or help 

the brain process information in adverse listening environments (Ranasinghe et al. 2012b; 

Shetake et al. 2011). Our data suggest that while multiple auditory fields encode speech sounds 

in a similar but not identical manner, each field is highly correlated with behavioral 
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discrimination ability. The similarity in correlative ability across all fields supports the view that 

processing of novel sounds involves neural activity that is distributed across multiple auditory 

cortex fields. 
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APPENDIX 

 CHAPTER 3 FIGURES AND TABLES 

 

Figure 3.1.Speech sound stimuli were shifted up by an octave. Spectrograms of the seven 

consonant speech sounds that we used in the present study. Since the rat audiogram is 

considerably higher than the human audiogram, we shifted speech sounds up by an octave, 

preserving all other spectral and temporal information using the STRAIGHT vocoder (Kawahara 

1997; see Methods).  
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Figure 3.2. Example of an auditory cortex map from one anesthetized, adult rat. Microelectrode 

recordings were acquired from layer IV/V of 15 experimentally naïve rats. We recorded 

responses from each of four fields; anterior, primary, ventral and posterior auditory fields. 

Tonotopic organization and latency were used to identify boundaries between fields. Anterior 

auditory field was organized from low frequency sites to high frequency in an anterior-to-

posterior direction, while primary auditory field was organized from low to high in a posterior-

to-anterior direction. Ventral auditory field was located anatomically between the two fields but 

had no tonotopic gradient. Posterior auditory field was located posterior to the primary auditory 

field and also had no tonotopic gradient. Sites outlined in black and with black text represent the 

individual examples shown in Figure 3.6.  
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Figure 3.3. Tone response properties in anterior, primary, ventral, and posterior auditory fields 

mimic previous studies. A. AAF and A1 responded to tones with the shortest onset latency (14.8 

± 0.6 ms and 16.2 ± 0.2 ms; p<0.01), followed by VAF (19.8 ± 0.8 ms; t-test vs. A1, p<0.01). 

PAF fired with the longest onset latency of any field and was significantly different from every 

other field (33.1.2 ± 1.2 ms; t-test vs. VAF, p<0.01). B. AAF, A1 and VAF responded to tones 

with the same threshold (14.2 ± 0.5 dB, 14.8 ± 0.6 dB, and 3.2 ± 1 dB respectively), while PAF 

sites had a significantly higher threshold than the other three fields (18.1 ± 1.0 dB; t-tests with 

Bonferroni correction, p <0.01). C. VAF had the narrowest bandwidths at 40 dB above threshold 

(2.4 ± 0.1 octaves), followed by A1 (2.6 ± 0.1 octaves, t-test vs. VAF, p<0.01). AAF had broader 

bandwidths than VAF and A1 (2.8 ± 0.1 octaves (unpaired t-tests with Bonferroni correction, 

p=0.01) and PAF had the broadest bandwidths at this intensity level (3.5 ± 0.1 octaves (unpaired 

t-tests with Bonferroni correction, (p<0.01). D. AAF and A1 fired the most driven spikes to tones 

(2.8 ± 0.1 spikes and 2.7 ± 0.1 spikes respectively); t-test, p=0.14). VAF fired significantly fewer 

spikes than AAF (2.4 ± 0.1 spikes, p<0.01), and PAF fired the least amount of driven spikes of 

any field (1.9 ± 0.1 spikes, respectively; t-tests with Bonferroni correction, p<0.01).  
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Figure 3.4. Classifier performance by auditory field as a function of number of sites. The two-

alternative forced choice classifier reaches ceiling performance in all fields when greater than 20 

sites are used, while performance is close to floor when single sites are used. For the analyses in 

this report, we used 5 sites per classifier run (marked by the vertical line) to achieve performance 

well above chance level while avoiding ceiling performance. Classifier was run in all instances 

using spike timing information: 1 ms temporal bins across a 40 ms analysis window. 
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Figure 3.5. Neural classifier performance in each auditory field with and without spike timing 

information. Neural activity in anterior, primary, ventral, and posterior auditory fields were all 

better able to discriminate pairs of consonant speech sounds when spike timing information was 

preserved than when spike timing information was removed. Classifier performance plotted is 

the average of many groups of 5 random sites performing neural discrimination of 21 different 

consonant pairs (see Methods). In AAF, the classifier achieved 91.3 ± 2.3% correct when spike 

timing information was preserved versus  67.7 ± 2.2% correct when spike timing information 

was removed (p<0.01). In A1, the classifier achieved 92.6 ± 2.1% correct vs. 72.9 ± 2.2% 

(p<0.01). In VAF, the classifier achieved 84.6 ± 2.9% correct vs. 65.0 ± 2.2%, p<0.01. In PAF, 

the classifier achieved 75.0 ± 2.9% correct vs. 62.8 ± 1.6%, p<0.01. All t-tests reported tested 

classifier performance with and without spike timing respectively. Error bars represent standard 

error of the mean across groups of 5 recording sites. 
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Figure 3.6. Single site examples of the evoked-response to consonant speech sounds in each 

auditory field. Average response (from a ~10 kHz site in each field) to 20 repeats of each of four 

consonant speech sounds as compared to the average post-stimulus-response-histograms (PSTH) 

response in each field. The individual site examples are plotted in black and the population 

PSTH for the entire field is plotted in gray for comparison. Onset latency for the individual site is 

marked by a triangle and the mean ± std of the latencies for each site in the population is marked 

by the black bar.  A. Waveforms of four example consonant speech sounds; two voiced 

consonants; /b/ and /d/, and two unvoiced consonants; /s/ and /sh/. B. Single site PSTH of a 

representative AAF site. AAF sites responded quickly to the onset of a speech stimulus in a well 

defined peak of activity (average onset latency of 14.2 ± 0.7ms; mean ± sem). C. PSTH 

responses from a representative A1 site. Like AAF sites, A1 sites responded quickly to the onset 

of a stimulus and had a short peak response (15.2 ± 0.7 ms in A1; t-test vs. AAF, p=0.32). D. 

PSTH responses from a representative VAF site. This result was similar to the longer latency 

seen in response to tones. E. PSTH responses from a representative PAF site. Just as PAF sites 

responded last to tones (compared to the other three fields), this field also responded last to 

speech sounds (18.1 ± 0.7 across all speech sounds; t-test vs. A1, p<0.01). 
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Figure 3.7. Spatiotemporal response patterns to all consonant speech sounds tested in anterior, 

primary, ventral, and posterior auditory fields. Average response to speech sounds from each site 

in each field, organized by characteristic frequency. The average response across all sites is 

shown on top of each sub-panel. The average response plotted is the same as is shown in gray in 

Figure 3.6. A. AAF sites responded strongly to all speech sounds, but responded less strong for 

non-stop consonants (/s/, /sh/, and /ch/). Each speech sound evoked a unique pattern of response. 

For example, the sound /b/ caused low frequency sites to fire first, followed by high. The 

consonant /d/ caused the opposite firing pattern. B. A1 responses to speech sounds were similar 

to AAF and mimic previous recordings in A1. Like AAF, A1 sites responded more strongly to 

stop consonants. C. VAF did not have as many low frequency sites as AAF or A1, which caused 

the response patterns to appear more similar. In spite of the bias in characteristic frequency, VAF  
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Figure 3.7 continued… 

 

sites tuned below 6 kHz did respond to the vowel portion of the speech sounds in a manner that 

mimicked AAF and A1 responses. D. PAF sites were more broadly tuned than the other three 

fields. As a result, each site responded to both the consonant onset as well as the vowel onset.  
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Figure 3.8. Similarity between neural responses to speech sounds is highly correlated across 

fields. Euclidean distance was calculated between the neural responses in each field to every pair 

of consonant sounds. The similarity between neural responses to speech sounds was then 

compared between every combination of fields. In general, /d/ and /b/ were the most distinct and 

/s/ and /ch/ were the least distinct. Despite some variation, the correlation between fields was 

high and significant. Not all comparisons shown. A. The similarity between the neural response 

to pairs of speech-evoked responses is highly correlated between A1 and AAF (R
2
=0.91, 

p<0.01). These two fields perform the neural discrimination task with comparable accuracy. B. 

The similarity between pairs of speech-evoked neural responses between A1 and VAF is highly 

correlated (R
2
=0.76, p<0.01), but the correlation contains more outliers than the AAF/A1 

comparison. VAF is better able to discriminate between unvoiced consonants (for example, S/T 

and S/Ch) than A1. This difference in the similarity between response patterns does not give 

VAF an advantage for these tasks in the neural discrimination task. C. The similarity between 

pairs of speech-evoked neural responses between A1 and PAF is as strongly correlated as A1 and 

AAF (R
2
=0.91, p<0.01). The neural responses in PAF are more distinct than in A1. This 

difference does not give VAF and advantage for these tasks in the neural discrimination 

classifier.  
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Figure 3.9. Example correlations from one pair of sites in each field. We counted the number of 

evoked spikes to each speech sound fired from each of two sites that were tuned within ¼ octave 

of each other and quantified these pairs using the correlation coefficient. These examples 

represent pairs in the 75
th

 percentile in each field. A. AAF sites fire with a similar number of 

spikes per sound. For example, both of these sites fired the most spikes to /b/ and /g/, and the 

least number of spikes to /s/. This example had an R
2
 of 0.77 (p=0.01).  B. A1 pairs had the 

highest correlation, suggesting the largest amount of redundant information. This pair had an R
2 

of 0.86 (p<0.01). C. VAF (R
2
 of 0.61, p=0.04) and D. PAF (R

2
 of 0.63, p=0.03) pairs had weak 

correlations, suggesting that these fields had less redundancy in information encoding. For 

example, in both C. and D., one site in the pair fired more spikes to /g/ than the other site in the 

pair.  
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Figure 3.10. Distribution of correlation coefficients between speech evoked responses in pairs of 

recording sites. In each field, we found pairs of sites tuned within ¼ octave of each other and 

compared the number of evoked spikes to each of the seven consonant sounds presented. We 

quantified these comparisons using the correlation coefficient. A. Pairs of sites in AAF were 

strongly correlated with each other when comparing the number of evoked spikes to speech 

sounds. AAF site pairs had an average R value of 0.33. B. A1 pairs were the most correlated with 

each other (an average R value of 0.36, t-test vs. AAF, p<0.01). C. VAF and D. PAF pairs were 

the least correlated, with an average R value of 0.17 in VAF and 0.18 in PAF. Both of these 

fields were less correlated than AAF or A1 (t-tests with Bonferroni correction, p<0.01), but were 

not different from each other (p=0.04).  
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Figure 3.11. Neural activity from multiple fields can identify consonant sounds better when spike 

timing information is preserved. We ran the classifier using templates for all 7 sounds 

simultaneously to test the ability of neural activity to identify the 7 sounds with and without 

spike timing information. All four fields were significantly better at the identification task when 

spike timing information was preserved (black bars) than when spike timing information was 

removed (white bars; * = p<0.001). AAF was most affected by the removal of spike timing (i.e. 

had the greatest difference in performance across the two conditions), followed by A1, VAF, and 

PAF (p<0.001).  
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Table 3.1. Behavioral speech sound discrimination performance of rats. Rats were trained to 

discriminate speech sounds in one of three tasks; /dad’ versus /bad/, /gad/, /sad/, /tad/ (n=10 rats, 

data previously published in Engineer et al. 2008), /bad/ versus /dad/, /gad/, /sad/, /tad/ (n=4 

rats), or /shad/, versus /dad/, /sad/, /chad/, /gad/ (the same 4 rats trained on the /bad/ task). Mean 

performance across rats on the last day of training is reported ± sem.  
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CHAPTER 4 

SPEECH SOUND PROCESSING DEFICITS AND TRAINING-INDUCED NEURAL 

PLASTICITY IN RATS WITH DYSLEXIA GENE KNOCKDOWN 
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ABSTRACT 

 

Reduced expression of the dyslexia associated gene Kiaa0319 in rats (KIA-) causes degraded 

responses to phoneme stimuli as well as increased trial-by-trial variability in onset latency. Here 

we report that in utero RNAi of this gene causes significant behavioral speech sound processing 

impairments in rats. KIA- rats needed twice as much practice on a speech discrimination task to 

perform at control levels. The percentage of neurons affected by RNAi is strongly correlated 

with speech discrimination ability. Extensive behavioral training (>10 weeks) was able to restore 

trial by trial neural firing variability. This amount of training also restored the performance of 

neural activity patterns to predict stimulus identity. KIA- rats are able to learn difficult speech 

discrimination tasks, but require long training periods. These results provide the first direct 

evidence that in utero suppression of the dyslexia associated gene KIAA0319 can cause 

behavioral phoneme processing impairments.  
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INTRODUCTION 

 

 

Dyslexia is the most common developmental language disorder and affects approximately 7% of 

the population (Shaywitz et al. 1992; Shaywitz et al. 1998). Individuals with this disorder have 

normal nonverbal intelligence, but score at least 1 standard deviation below their peers on 

reading tests (Shaywitz et al. 1992; Tallal 1980; Ziegler and Goswami 2005). Children with 

dyslexia typically have deficits in phoneme perception and manipulation (Boscariol et al. 2010; 

Peterson and Pennington 2012; Tallal and Piercy 1974; Vandermosten et al. 2010). For example, 

dyslexic children are less accurate at identifying consonants along a continuum (Manis et al. 

1997; Vandermosten et al. 2010; Werker and Tees 1987), at exchanging or manipulating 

phonemes (i.e. say “break” without the /b/ sound; (Elbro, Nielsen, Petersen 1994; Paulesu et al. 

1996), or at identifying pairs of rhyming words (Howland and Liederman 2012; Kovelman et al. 

2012). Dyslexia is highly heritable (Cope et al. 2005; Fisher and DeFries 2002; Nöthen et al. 

1999; Pennington et al. 1991) and at least four candidate dyslexia genes have been identified 

(KIAA0319, DYX1C1, DCDC2 and ROBO1; (Bates et al. 2011; Burbridge et al. 2008; Galaburda 

et al. 1985; Galaburda et al. 2006; Harold et al. 2006; Scerri et al. 2011; Threlkeld et al. 2007). 

KIAA0319 variants are consistently associated with dyslexia and are directly related to poor 

speech perception and reading ability (Pinel et al. 2012). The auditory temporal processing 

theory hypothesizes that the behavioral deficits seen in dyslexics are caused by abnormal neural 

firing to rapid auditory stimuli (Ahissar et al. 2000; Boscariol et al. 2010; Tallal 1980; Temple et 

al. 2000) but see McLean 2011 and Rosen 2003). Variants in KIAA0319 are linked with reduced 

left temporal lobe activation to speech sound stimuli (Pinel et al. 2012) and may contribute to 

abnormal auditory processing.  
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Rats with in utero RNA interference (RNAi) of the rat homolog of this gene (Kiaa0319) 

have significantly higher trial-by-trial variability in the timing of neural responses to tones and 

speech stimuli (Centanni et al. 2013). This result suggests that this specific candidate dyslexia 

gene causes unreliable neural firing in auditory cortex and may also contribute to behavioral 

auditory processing impairments. Neural activity patterns are correlated with behavioral ability 

of rats on discrimination tasks using human consonants and vowels in quiet (Engineer et al. 

2008b; Perez et al. 2012), in various levels of background noise (Shetake et al. 2011), and with 

temporal or spectral degradation (Ranasinghe et al. 2012a). Rats with in utero RNAi of 

Kiaa0319 have difficulty discriminating short non-speech stimuli, such as frequency-modulated 

sweeps (Szalkowski et al. 2012) and we hypothesized that these rats would also have impaired 

speech sound discrimination. 

Extensive and targeted behavioral therapy is currently the most effective intervention for 

children with dyslexia. Many programs focus on using synthetically stretched or otherwise 

modified speech stimuli to improve phoneme awareness (Lovio et al. 2012; Penolazzi et al. 

2010; Russo et al. 2005; Temple et al. 2003). Such training can cause changes in neural 

responses at multiple stages of the auditory pathway (Penolazzi et al. 2010; Tremblay and Kraus 

2002). For example, an 8-week training program for phonemic awareness (Earobics, Evanston, 

IL) improved speech in noise responses in the auditory brainstem (Russo et al. 2005). A similar 

remediation program (Fast ForWord (Scientific Learning Corporation, Oakland, CA) increased 

fMRI activation in several cortical brain regions, including the left temporo-parietal cortex and 

inferior frontal gyrus (Temple et al. 2003). These studies support the hypothesis that behavioral 

training can induce neural plasticity in a genetic disorder. However, some studies suggest that 
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behavioral training is not completely effective (Eden and Moats 2002; Lovett et al. 1989; 

Schulte-Körne 2010) and the cause of this discord is unknown. The specific genetic variants of 

the participants in those studies are unknown and it is possible that such behavioral training may 

not induce changes for people with specific genetic variants.  

In the current study, we trained rats with in utero RNAi of Kiaa0319 on a variety of 

speech sound discrimination tasks designed to mimic known deficits in human dyslexics 

including speech in noise, rapid speech sounds, and phonemes. We also recorded multiunit 

neural activity in primary (A1) and posterior auditory fields (PAF) to evaluate whether extensive 

behavioral training improved neural responses to speech and non-speech stimuli.   

 

METHODS 

 

Animals 

Subjects were Wistar rats, both male and female, that were 4-8 months old at the time of 

study. All rats used were subjected as embryos to in utero electroporation targeting lateral 

regions of neocortex that included the auditory cortex by methods described previously (Bai et 

al. 2003; Bai et al. 2008; Burbridge et al. 2008; Centanni et al. 2013; Szalkowski et al. 2012; 

Threlkeld et al. 2007)(Bai et al. 2003; Bai et al. 2008; Burbridge et al. 2008; Szalkowski et al. 

2012; Threlkeld et al. 2007).  The animals were transfected with either an shRNA against 

Kiaa0319 which can decrease the Kiaa0319 protein expression in cell culture (Tarkar and 

LoTurco, unpublished observation) and to cause migration delay in neocortex in embryos that 

was rescued by expression of exogenous Kiaa0319 (Paracchini et al. 2006).  Control transfection 

animals received a scrambled sequence control of Kiaa0319 shRNA, also previously used, that 
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contained 6 bases in the sequence scrambled to render the shRNA inactive in terms of reducing 

Kiaa0319 expression (Paracchini et al. 2006). Kiaa0319 shRNA and scrambled shRNA 

constructs were injected at a concentration of 1.0 µg/µL. pB-GFP was co-transfected with the 

effective shRNA construct, and pB-mRFP was co-transfected with the scrambled Kiaa0319 

shRNA control construct to identify the experimental condition in post experimental histological 

analysis. Electroporation paddles were placed in a horizontal plane and voltage pulses were 

discharged across the cerebrum in both polarities to achieve bilateral transfections. The 

experimental status of the subject remained blind to the experimenters throughout data 

collection. Following data collection, each subject was perfused transcardially with 250 mL of 

0.1 M PB solution with 0.02% heparin, followed by 500 mL of 4% formalin solution in 0.1 M 

PB. Sections were taken at 80 µm intervals and analyzed under a confocal microscope (Zeiss) to 

identify the experimental status of each subject (green florescent protein marked experimental 

subjects and red florescent protein marked control littermates). All animal protocols were 

approved by the University of Connecticut Institutional Animal Care and Use Committee. 

Behavioral Training 

We trained 26 rats to discriminate a target speech sound (/dad/) in four different contexts. 

Of these rats, 16 received RNAi of Kiaa0319 (KIA-) and 10 received scrambled RNAi and 

served as controls. The behavior tasks we tested are described in detail elsewhere (Engineer et al. 

2008b; Perez et al. 2012; Porter et al. 2011; Sloan, Dodd, Rennaker II 2009). Briefly, rats were 

trained to respond to a target sound /dad/ using either a lever press or withdrawal from an infra-

red nose poke. Once rats understood the mechanism of response was either a lever press or a 

withdrawal from the nose poke, rats were trained to wait for the presentation of a target sound 
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prior to making a response. Once rats reached a d’ of >= 1.5 for 10 sessions, they were moved on 

to 20 sessions of each of four discrimination tasks.  

The isolated speech task consisted of a go-no go paradigm in which rats were trained to 

press a lever in response to the target sound and to reject 7 distracters: /dad/ versus /bad/, /gad/, 

/sad/, /tad/, /dud/, /deed/, /dood/ (Engineer et al. 2008b). The speech in noise task involved a 

similar lever press discrimination task where the same set of speech sounds described above 

were presented in four levels of background speech shaped noise: 0, 48, 60, 72 dB speech shaped 

background noise (Shetake et al. 2011). The phoneme task presented only the first 40 ms of the 

consonant information and rats were required to press the lever in response to ‘da’ and ignore the 

distracters (Porter et al. 2011). The rapid speech task presented a random sequence of distracter 

sounds (/bad/, /gad/, /sad/, /tad/), with the target sound (/dad/) inserted randomly between 2-7 

seconds from the start of the trial. Responses were registered in this task by removal from an 

infra-red nose poke (Sloan, Dodd, Rennaker II 2009).  

We trained half of the rats using one task order (isolated speech, speech in noise, rapid 

speech, phonemes) and the other half using a second task order (phonemes, isolated speech, 

speech in noise, rapid speech).  This change in order was to determine if KIA- rats were able to 

learn the difficult short speech task if given extensive training. Since there were only minor 

differences across groups in the neural responses following training, neural activity from both 

groups was combined for analysis. Percent correct is average hits-false alarms across all tasks. 

Acute neural recordings 

Following the approximately 4 months of training needed to complete all four tasks; rats 

were anesthetized with pento barbital and mapped. The techniques used for acute recordings are 
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described in detail elsewhere (Centanni et al. 2013; Engineer et al. 2008a; Ranasinghe et al. 

2012a; Shetake et al. 2011). In brief, animals were anesthetized with pentobarbital (50 mg kg
-1

) 

and were given supplemental dilute pentobarbital (8 mg ml
-1

) as needed to maintain areflexia, 

along with a 1:1 mixture of dextrose (5%) and standard Ringer’s lactate to prevent dehydration. 

A tracheotomy was performed to ensure ease of breathing throughout the experiment and filtered 

air was provided through an air tube fixed at the open end of the tracheotomy. A craniotomy and 

durotomy was performed, exposing right primary auditory cortex. Four Parylene-coated tungsten 

microelectrodes (1-2 MΩ) were simultaneously lowered to layer (4/5) of right primary auditory 

cortex (~600-800 µm). Electrode penetrations were marked using blood vessels as landmarks. In 

addition, we recorded multiunit responses from 11 experimentally naïve rats to evaluate the 

effect of training on neural responses (5 KIA-, 6 controls, previously published in Centanni et al. 

2013).  

All animals were exposed to the same set of auditory stimuli. Brief (25 ms) tones were 

presented at 90 randomly interleaved frequencies (1-47 kHz) at 16 intensities (1- 75 dB SPL) to 

determine the characteristic frequency of each site. Trains of six 25 ms tones were presented, 

with a frequency change between the 5
th

 and 6
th

 tones. This set of stimuli was used to evaluate 

the presence of mismatched negativity response between a repeated standard and a deviant 

frequency. Next, broad band noise burst trains were presented at four different speeds (4, 7, 10 

and 12.5 Hz) to evaluate following ability of A1 neurons. Each train consisted of 6 bursts with 

duration of 25 ms for each burst. We also presented a series of speech stimuli identical to those 

used in our lab previously (Engineer et al. 2008b; Porter et al. 2011; Shetake et al. 2011). The 

sounds were recorded in a double-walled, soundproof booth and were spoken by a female native- 
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English speaker. The spectral envelope was shifted up in frequency by a factor of two using the 

STRAIGHT vocoder (Kawahara 1997) to better accommodate the rat hearing range. Eight 

individual speech sounds that were the same as those discriminated during the isolated speech 

task (see Behavior Training section). Finally, we presented a sequence of speech sounds to 

mimic the stream task. /Bad-bad-gad-sad-tad-dad/ was played at six speeds, measured in 

syllables per second (2, 4, 5, 6.667, 10 and 20 sps). Each set of stimuli was randomly interleaved, 

and presented at 20 repeats per recording site. All sounds were presented approximately 10 cm 

from the left ear of the rat. Stimulus generation, data acquisition and spike sorting were 

performed with Tucker-Davis hardware (RP2.1 and RX5) and software (Brainware). All animal 

protocols were approved by the University of Texas at Dallas Institutional Animal Care and Use 

Committee. 

Analysis of neural recordings 

Though behavior did not differ between groups, we analyzed tuning curves for each group to 

see if the training order caused differences in the neural responses. No major differences were 

seen, so all neural data was also pooled for analysis. To define primary (A1) and posterior (PAF) 

auditory cortex sites, multi-unit recording sites were manually analyzed to select the 

characteristic frequency of each site, as well as to obtain bandwidth, latency, peak firing and end 

of peak response information. From this point on, only A1 and PAF sites were analyzed. 

Following selection of A1 and PAF sites, basic firing properties were calculated in response 

to tones. Firing latency is defined as the point in time (ms) that average firing rate (across all 

repeats) first exceeds 2 standard deviations above the spontaneous firing rate, threshold is 

defined as the lowest intensity that evoked a response from the multiunit site, and bandwidths 
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were calculated at 10, 20, 30 and 40 dB above threshold and defined as the range of frequencies 

that evoked responses at the current intensity. In response to broad band click trains, normalized 

spike rate (number of spikes evoked by bursts 2-6, normalized by the number of spikes to the 

first burst) and vector strength (VS) were calculated. VS quantifies the degree of synchronization 

between action potentials and repeated sounds. Mean VS is calculated with the formula: 

 

where n = total number of action potentials, ti is the time of occurrence of the i’th action 

potential, and T is the inter-stimulus interval. Perfect synchronization would result in a value of 

one, whereas no synchronization would result in a value of zero. To investigate the reliability of 

onset latency to repetitive stimuli, we calculated the time to peak latency within the first 80 ms 

(the shortest inter-pulse-interval tested) of the first pulse at 4Hz and averaged across multiunit 

sites. The variability in this measure, as reported in variance, was compared across KIA- and 

controls.  

Single trial response patterns to each of the isolated speech sounds were compared using 

a nearest neighbor classifier (Centanni et al. 2013; Engineer et al. 2008b; Foffani and Moxon 

2004; Foffani and Moxon 2005; Perez et al. 2012; Ranasinghe et al. 2012b; Shetake et al. 2011). 

We chose this method because our earlier studies showed that the performance of this classifier 

is highly correlated with rat behavioral discrimination. We used Euclidean distance to compare 

single trial activity to the average activity (PSTH) evoked by 19 repeats each of two different 

stimuli (Centanni et al. 2013; Engineer et al. 2008b; Foffani and Moxon 2004; Foffani and 

Moxon 2005; Perez et al. 2012; Ranasinghe et al. 2012b; Shetake et al. 2011). For consonants, 
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activity was binned using 1 ms temporal precision over a 40 ms window to encompass the spike 

timing precision present in the initial consonant (Engineer et al. 2008b; Porter et al. 2011; 

Ranasinghe et al. 2012a), while vowel activity was binned across a single 400 ms window so that 

spike count information was preserved (Perez et al. 2012; Ranasinghe et al. 2012a). The 

classifier then compared the response of each single trial with the average activity template 

(PSTH) evoked by all repeats of each of the speech stimuli presented. The current trial being 

considered was not included in the PSTH to avoid artifact. The classifier attempted to identify 

the stimulus that evoked the current single trial activity pattern by selecting the template that was 

most similar to the single trial in units of Euclidean distance. ED was calculated using the 

formula: 

 

where nsites is each recording site and nbins is each of 40 one-millisecond bins being compared 

between activity evoked by speech sound X versus speech sound Y. For vowel sounds, the 

classifier counted the number of action potentials over a single 400 ms bin and compared the 

single trial response with the two PSTH templates (Perez et al. 2012)(Ranasinghe et al. 2012a). 

We used t-tests for all pairwise comparisons of the accuracy of both classifiers and across 

experimental groups. 1-way ANOVA was used to compare vector strength across groups. When 

necessary, Bonferroni correction was used to correct for multiple comparisons. 
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RESULTS 

 

In utero RNAi of Kiaa0319 causes speech sound discrimination impairment  
 

Rats with in utero RNA interference (RNAi) of the dyslexia-associated gene Kiaa0319 (KIA-

) have significantly higher trial-by-trial variability in neural firing to speech and non-speech 

stimuli (Centanni et al. 2013) and we hypothesized that they would also have deficits on 

behavioral speech sound discrimination tasks. We trained KIA- rats to discriminate a target 

speech sound from a variety of speech sound distracters. Rats with in utero RNAi of Kiaa0319 

were impaired at this task on the first couple days, but were not impaired in their ability to reach 

the performance criterion compared to controls (10 sessions with a d’≥1.5; Figure B4.1). Both 

groups reached this criterion in approximately 5 days (Controls: 4.4 ± 0.8 days vs. KIA-: 5.4 ± 

5.4 days; unpaired t-test, p=0.35; Figure B4.1). We tested 8 KIA- rats and 5 control rats on a full 

speech task in which they were required to press the lever to the target sound /dad/ and withhold 

pressing to the distracter sounds (/bad/, /gad/, /sad/, /tad/, /dud/, /deed/, /dood/). On the first day, 

both controls and KIA- rats performed at chance (51.9 ± 3.1% correct by controls vs. 44.8 ± 

2.4% correct by KIA- compared to 50% chance; unpaired t-tests, p=0.84 and p=0.59 

respectively; Figure A4.1A). On the following 4 days of the testing period, KIA- rats were 

significantly worse than controls at performing this task (unpaired one-tailed t-tests, p<0.01; 

Figure A4.1A), while control rats significantly improved during this time period (last day 

performance was 76.5 ± 3.0% correct, paired t-test vs. first day, p=0.01; Figure A4.1A). On the 

last day of testing, KIA- rats were better at vowel tasks than consonant tasks (58.9 ± 7.8% on 

vowel tasks vs. 46.7 ± 5.0% correct on consonant tasks, paired t-test, p=0.01) and KIA- rats false 

alarmed to distracter sounds more than control rats (61.3 ± 9.3% false alarms by KIA- rats vs. 
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32.7 ± 8.2% false alarms by control rats; unpaired t-test, p=0.04, Figure A4.1B&C). The result 

that KIA- rats were impaired at speech sound discrimination tasks suggests that a variant in the 

candidate dyslexic gene KIAA0319 can cause behavioral phoneme awareness deficits. The 

observation that consonant sounds were more difficult than vowels for KIA- rats is consistent 

with the phoneme impairments seen in humans with dyslexia (Tallal and Piercy 1974).  

Rats with in utero RNAi of Kiaa0319 can improve on certain tasks with extensive speech 

training 

         The most effective therapy for dyslexic children is extensive behavioral training using 

modified speech sounds (Lovio et al. 2012; Penolazzi et al. 2010; Russo et al. 2005; Temple et 

al. 2003). Training programs often focus on intensive practice on phoneme awareness and can 

lead to improved speech perception (Lovio et al. 2012; Penolazzi et al. 2010; Russo et al. 2005; 

Temple et al. 2003). We hypothesized that with additional training, KIA- rats would also 

improve. KIA- rats did reach 80% correct on the full speech task (81.4 ± 2.3% correct on the last 

day of training), but it took significantly longer to reach this point compared to controls (9.6 ± 

0.6 days of training vs. 6.2 ± 0.6 days for control rats, unpaired t-test, p<0.01; Figure A4.2A).  

We hypothesized that if the RNAi of Kiaa0319 was responsible for the impaired 

performance in KIA- rats, that rats with a greater number of neurons affected by the RNAi 

transfection would perform worse at the task than rats with fewer transfected neurons. We 

counted the percentage of pyramidal neurons which were co-transfected with fluorescent protein 

(see Methods) in layer 2/3 of primary auditory cortex bilaterally and compared the extent of the 

transfection with the animals’ last day performance on the full speech discrimination test.  In rats 

with in utero RNAi of Kiaa0319, the percent of affected neurons was strongly correlated with 
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last day speech discrimination performance. Rats with a greater percentage of affected neurons 

were more impaired at the task than rats with fewer affected neurons (R
2
= 0.77, p<0.01; Figure 

A4.3A). The percentage of transfected neurons in control rats (injected with a scramble mRNA 

and a different color protein) did not correlate with behavioral performance (R
2
= 0.61, p=0.12; 

Figure A4.3B). The lack of correlation in our control rats suggests that the surgery itself did not 

cause the behavioral impairment, but that the deficit seen in KIA- rats was due to RNAi of the 

candidate dyslexia gene Kiaa0319. Our results suggest that the degree of in utero suppression of 

this gene is related to each rats’ aptitude for learning the full speech sound task. 

Following this additional week of training on full speech, we trained all rats for 2 weeks 

on a speech in noise task. The same target and distracters from the full length task were used and 

were presented with speech-shaped background noise at one of 4 intensities (0, 48, 60, or 72 dB 

SPL; Shetake et al. 2012). We hypothesized that KIA- rats would be less able to learn a more 

difficult speech discrimination task, such as speech in background noise. Children with dyslexia 

can often perform speech discrimination in quiet at control levels, but have significant 

impairment on the same task in background noise (Chandrasekaran et al. 2009; Nagarajan et al. 

1999; Ziegler and Goswami 2005; Ziegler et al. 2009). On the first day of speech in noise 

training, KIA- rats and control rats both experienced a drop in overall performance levels 

compared to their last day of full speech training (first day of speech in noise by KIA- rats was 

64.3 ± 6.3% correct vs. 81.1 ± 3.1% correct on the last day of full speech; p<0.01, and first day 

of speech in noise by controls was 67.2 ± 8.0% correct vs. 84.2 ± 2.1% correct on the last day of 

full speech; p<0.01; Figure A4.2A). The drop in performance seen from the last day of full 

speech to the first day of speech in noise is likely due to the stress of switching from a relatively 
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easy task (speech in silence) to a more difficult task (speech sounds in a variety of background 

noise). Control rats were able to improve over the course of 10 training days at 3 of the 4 noise 

levels (last day performance and paired t-test of last day performance vs. first day; 0 dB 91.2 ± 

1.5% p<0.01; 48 dB 86.9 ± 2.3% p<0.01; 60 dB 72.2 ± 2.3% p<0.01; 72 dB 51.9 ± 1.5% p=0.38; 

Figure A4.2B). The inability to improve on the loudest intensity noise mimics previous chance 

level performance at this noise level using control rats (Shetake et al. 2011). KIA- rats were also 

able to improve over the course of training on two of the four noise levels (last day performance 

and paired t-test of last day performance vs. first day; 0 dB 83.5 ± 3.0% p<0.01; 48 dB 78.9 ± 

2.8% p<0.01; 60 dB 62.0 ± 2.1% p=0.11; 72 dB 51.2 ± 1.2% p=0.96; Figure A4.2B), but 

remained significantly worse than control rats at three of the four noise levels (unpaired t-tests, 0 

dB p=0.02, 48 dB p=0.03, 60 dB, p<0.01, 72 dB p=0.72). The improved performance caused by 

full speech training did not seem to generalize to other conditions. This result suggests that 

training with clear speech in quiet conditions may be the key to improving performance.  

          To test whether KIA- rats could learn an equally difficult task using clear speech in quiet, 

we next trained rats for 40 days on a speech sequence task in which a target speech sound (/dad/) 

was inserted into a random string of distracter sounds. This task was designed to be a difficult 

task for rats to learn and to evaluate whether KIA- rats are simply unable to learn a challenging 

speech task. Rats responded to the target sound by removing their noses from an infra-red 

nosepoke (Sloan, Dodd, Rennaker II 2009). Since this task required a different response 

mechanism than the previous tasks (infra-red nosepoke vs. lever press), several days of training 

were required to teach rats the new task. There was no difference in the amount of time needed 

to learn the task between control and KIA- rats. Performance between these two groups did not 
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differ on any day of the 40 day training period (Figure A4.2A). During the last 10 days of 

training, rats were trained on all six presentation rates within a single session (in random blocks 

of 20 trials per presentation rate; see Methods). Control and KIA- rats performed at the same 

level on all six presentation rates (control and KIA- rats last day performance respectively; at 2 

sps, 64.6 ± 13.9% correct vs. 74.6 ± 6.9%, unpaired t-test, p=0.45; 4 sps, 74.4 ± 10.7% vs. 68.8 ± 

7.4%, p=0.68; 5 sps, 79.4 vs. 4.7% vs. 71.9 ± 3.6%, p=0.27; 6.67 sps, 60.9 ±11.5% vs. 67.2 ± 

7.9%, p=0.65; 10 sps, 47.6 ±14.2% vs. 47.8 ±8.7%, p=0.99; 20 sps, 21.4 vs. 9.6% vs. 17.9 

±4.9%, p=0.74). These results suggest that KIA- rats are not impaired at their ability to learn 

complex speech discrimination tasks, as long as the task occurs in a quiet setting.  

KIA- rats are impaired at short speech discrimination 

       The ability to discriminate phoneme sounds without additional cues such as pitch or duration 

is extremely difficult for normal rats. We hypothesized that the months of prior training would 

help KIA- rats learn this difficult task. We truncated the speech sounds so that only the 

consonant and the beginning of the transition to the vowel remained (each stimulus was exactly 

40 ms; Porter et al. 2011) and tested KIA- and control rats on this task for 2 weeks. On the first 

day of testing, control rats were significantly better than KIA- rats (89.7 ± 0.6% correct by 

controls vs. 82.4 ± 0.6% correct by KIA- rats; unpaired t-test, p<0.01; Figure A4.2A) and KIA- 

rats remained significantly impaired until the final day of training (unpaired t-tests, day 1-9, 

p<0.01; day 10, p=0.08; Figure A4.2A). This result suggests that any behavioral benefit caused 

by speech training with full speech tasks in quiet does not generalize to more difficult listening 

environments. We hypothesized that more focused training using the short speech sounds in 

quiet, would better generalize to the other behavior tasks.  
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KIA- rats can learn phoneme discrimination with extensive training 

         We trained a second group of 8 KIA- and 5 control rats on the short speech task for 28 days 

(the length of time needed for control rats’ performance to reach ceiling; Porter et al. 2010). All 

rats were trained on shaping and detection as described above. Following detection, group 2 rats 

were trained on discrimination using the short speech stimuli. As seen previously, this task was 

extremely difficult to learn; both control and KIA- rats needed 7 days of training to perform 

above chance levels. Controls were able to perform the task at 80% correct after 12 ± 1.2 days of 

training. KIA- rats were only slightly impaired at reaching this level of performance and needed 

16.3 ± 2.1 days (unpaired 1-tailed t-test, p=0.07; Figure A4.4A). KIA- rats were not significantly 

different from controls by the end of the 28 day training period (94.5 ± 1.6% correct on day 28 

by controls vs. 90.8 ± 1.9% correct on day 28 by KIA- rats; unpaired 1-tailed t-test, p=0.11; 

Figure A4.4A). These results suggest that with focused training, KIA- rats are able to learn the 

short speech task and perform at control levels. We then tested these rats on the full speech task 

to determine whether or not the focused short speech training would generalize to performance 

on the other tasks using full speech sounds. KIA- rats were able to perform the full speech task 

as well as control rats throughout the 10 day testing period (average percent correct in KIA- rats 

was 87.7 ± 3.1% vs. 93.9 ± 2.2% in controls, unpaired t-test, p=0.37; Figure A4.4A). KIA- rats 

were significantly below controls on only one of the four noise levels (average performance at 0 

dB noise in KIA- rats was 89.5 ± 0.6% vs. 92.9 ± 0.9% correct in controls, p<0.01, at 48 dB, 

KIA- rats achieved 90.1 ± 1.2% correct vs. 89.9 ± 2.3% by controls, p=0.97, at 60 dB, KIA- rats 

achieved 76.6 ± 1.8% correct vs. 78.2 ± 3.6% correct by controls, p=0.71, at 72 dB, KIA- rats 

achieved 49.6 ± 0.9% correct vs. 49.8 ± 1.2% correct by controls, p=0.53; Figure A4.4B) or 
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during the speech sequence task (average performance at 2 sps in KIA- rats was 76.0 ± 7.7% 

correct vs. 71.1 ± 9.0% correct by controls; p=0.69, at 4 sps, KIA- rats achieved 69.8 ± 10.1% 

correct vs. 63.1 ± 12.6% correct by controls; p=0.69, at 5 sps, KIA- rats achieved 78.1 ± 6.9% 

correct vs. 74.7 ± 7.5% correct by controls; p=0.75, at 6.67 sps, KIA- rats achieved 73.6 ± 5.6% 

correct vs. 69.4 ± 7.0% correct by controls; p=0.66, at 10 sps, KIA- rats achieved 41.7 ± 6.2% 

correct vs. 44.4 ± 5.3% correct by controls; p=0.75, at 20 sps, KIA- rats achieved 15.6 ± 2.8% 

correct vs. 21.0 ± 7.7% correct by controls; p=0.53; Figure A4.4C). Extensive behavioral 

training in normal rats and in human dyslexics can improve neural responses to speech and non-

speech stimuli (Engineer et al. 2012; Habib et al. 2002; Jakkamsetti, Chang, Kilgard 2012; 

Penolazzi et al. 2010; Takahashi et al. 2011). We hypothesized that the extensive training 

programs our rats completed would also improve neural responses.  

Extensive behavioral training restores neural firing patterns in KIA- auditory cortex 

After 4 months of training and testing on the speech sound discrimination tasks described 

above, all rats were anesthetized and neural recordings were acquired from primary (A1) and 

posterior (PAF) auditory fields. Neural responses in untrained KIA- rats were significantly later 

than control rats (Centanni et al. 2013).  In response to tones and speech sounds, control A1 and 

PAF sites fired faster after training. For example, untrained KIA- A1 sites fired 25.8 ± 0.6 ms 

after tone onset versus 17.7 ± 0.6 ms after training (unpaired t-test, p<0.01) and PAF sites fired 

45.6 ± 7.1 ms after tone onset vs. 29.5 ± 2.2 ms after training (unpaired t-test, p<0.01; Figure 

B4.4A). Training also shortened control responses to tones in A1 (22.3 ± 0.7 ms in untrained A1 

vs.  17.2 ± 0.6 ms in trained A1; unpaired t-test, p<0.01) but was less effective at shortening 

latency in PAF (42.5 ± 7.2 ms in untrained PAF vs. 31.8 ± 2.7 ms in trained PAF; unpaired t-test, 
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p=0.11; Figure B4.4A). In addition to the significantly shorter onset latency, the trial by trial 

variability in onset latency was significantly decreased in KIA- A1 (70.2 ± 4.1 ms
2
 in untrained 

vs. 27.9 ± 4.4 ms
2 

after training; unpaired t-test, p<0.01; Figure A4.5A and Figure A4.6F) and 

PAF (103.2 ± 3.9 ms
2 

in untrained vs. 44.5 ± 3.2 ms
2 

after training; unpaired t-test, p<0.01; 

Figure A4.5A and Figure A4.6H). Training also decreased trial-by-trial variability in control A1 

(40.6 ± 2.7 ms
2 

in untrained vs. 31.8 ± 3.3 ms
2 

after training; unpaired t-test, p=0.04; Figure 

A4.5A and Figure A4.6E) and control PAF (103.2 ± 3.9 ms
2 
in untrained vs. 55.3 ± 3.5 ms

2 
after 

training; unpaired t-test, p<0.01; Figure A4.5A and Figure A4.6G). The additional 4 weeks of 

training by group 2 rats caused control A1 and PAF variability to significantly decrease 

compared to the group 1 control rats (A1: 65.3 ± 2.1% correct by group 1 vs. 77.2 ± 5.5% correct 

by group 2; unpaired t-test, p<0.01, PAF: 59.4 ± 4.3 ms
2
 in group 1 vs. 29.5 ± 2.6 ms

2
 in group 

2; unpaired t-test, p<0.01; Figure B4.5A), but had no effect on KIA- neural variability (A1: 27.3 

± 4.6 ms
2
 in group 1 vs. 29.4 ± 4.5 ms

2
 in group 2; p=0.72, PAF: 44.5 ± 3.6 ms

2
 in group 1 vs. 

44.5 ± 3.9 ms
2
 in group 2, p=0.99; Figure B4.5A). The improved reliability in trial-by-trial 

neural firing to auditory stimuli may generalize to improved neural discrimination ability.  

We hypothesized that the training-induced neural plasticity would also extend to the ability 

of KIA- neural recordings to identify speech stimuli. Using the nearest-neighbor classifier 

described above, we compared neural classifier performance in trained versus untrained neural 

recordings. Control A1 sites did not improve on the neural discrimination task as a result of 

speech training (consonant tasks: 76.6 ± 0.9 correct vs. 76.4 ± 0.9% correct, using untrained or 

trained A1 sites respectively; unpaired t-test, p=0.94; vowel tasks: 59.9 ± 0.9% vs. 58.9 ± 0.8% 

correct using trained or untrained PAF sites, respectively; unpaired t-test, p=0.33; Figure 
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A4.5B&C and Figure B4.3E&G). The lack of training-induced plasticity in control rats supports 

earlier studies showing an absence of plasticity after tone (Reed et al. 2011) in the A1 of normal 

animals. PAF sites in control rats did significantly improve after training on neural 

discrimination of consonant sounds (59.7 ± 3.2% correct in untrained sites vs. 66.9 ± 1.9% 

correct after training; unpaired t-test, p<0.01; Figure A4.5B and Figure A4.6G). Training did not 

improve control PAF sites’ ability to identify vowel stimuli (56.2 ± 3.4% correct in untrained 

sites vs. 56.2 ± 1.6% correct after training; unpaired t-test, p=0.97; Figure A4.5C and Figure 

B4.3G). A1 sites in KIA- rats were significantly better at the neural discrimination task following 

behavioral training. KIA- A1 sites were significantly better after training at consonant 

discrimination (67.8 ± 0.9% correct in untrained vs. 74.6 ± 0.8% correct after training; unpaired 

t-test, p<0.01; Figure A4.5B and Figure A4.6F). Training was less effective at improving KIA- 

A1 sites on neural discrimination of vowels (55.7 ± 1.1% correct in untrained vs. 57.4 ± 0.7% 

correct after training; unpaired t-test, p=0.09; Figure A4.5C and Figure B4.3F). Trained KIA- A1 

sites were not significantly different from trained control A1 sites (consonants p=0.46; vowels 

p=0.13). Training improved KIA- PAF sites’ performance on neural consonant discrimination 

(58.8 ± 2.0% correct in untrained sites vs. 67.7 ± 2.0% correct after training, p<0.01; Figure 

A4.5B and Figure A4.6H) but not neural discrimination of vowels (56.4 ± 1.9% correct in 

untrained sites vs. 55.4 ± 1.9% correct after training; unpaired t-test, p=0.52; Figure A4.5C and 

Figure B4.3H). As with neural variability, we saw an increase in consonant classifier 

performance in group 2 control PAF as compared to group 1 controls (65.3 ± 2.1% correct by 

group 1 vs. 77.2 ± 5.5% correct by group 2; unpaired t-test, p<0.01; Figure B4.5). This result 
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may suggest that there is a ceiling to the amount of training-induced neural plasticity in a brain 

with in utero knockdown of Kiaa0319 as compared to control rats.  

We expected that extensive training would improve the ability of KIA- neurons to fire to 

repetitive stimuli as well as to brief tones. Auditory cortex in untrained KIA- rats had 

significantly lower vector strength than control rats (Centanni et al. 2013, Figure A4.7A and 

Figure B4.4). After 4 months of speech discrimination training, vector strength in KIA- A1 was 

no longer significantly different from control rats at any speed we tested (an average of 0.65 ± 

0.1 in controls vs. 0.62 ± 0.1 in KIA- rats; 1-way ANOVA, F(1,6)=0.18, p=0.68; Figure 

A4.7A&C). There were no significant differences in vector strength in PAF across control and 

KIA- groups (unpaired t-tests; 4 Hz p=0.67, 7 Hz p=0.24, 10 Hz p=0.06, 12.5 Hz p=0.39). 

Training did significantly improve vector strength in KIA- PAF (0.32 ± 0.1 in untrained KIA- 

PAF vs. 0.51 ± 0.1 in trained KIA- PAF; 1-way ANOVA, F (1,6)=16.1, p<0.01; Figure 

A4.7C&D), but did not affect vector strength in control PAF (0.45 ± 0.1 in untrained control 

PAF vs. 0.55 ± 0.1 in trained PAF; 1-way ANOVA, F(1,6)=4.52, p=0.08; Figure A4.7C&D). 

Untrained KIA- A1 sites fired more action potentials both spontaneously as well as to auditory 

stimuli, such as tones, broad band bursts, and speech sounds (Centanni et al. 2013; Figure B4.3). 

Training also changed these basic firing properties in both KIA- A1 and PAF (Figure B4.2). 

These results suggest that extensive speech training also improves neural firing to non-speech 

stimuli. 

 EEG and fMRI recordings from dyslexic children before and after training demonstrate an 

improvement in the amplitude and latency of auditory-evoked responses (Hornickel et al. 2012; 

Penolazzi et al. 2010; Russo et al. 2005; Temple et al. 2003; Tremblay and Kraus 2002). We 
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hypothesized that the average improvement in our multi-unit recordings (as local field potentials, 

or LFPs) would also show improvements in amplitude and onset latency. After speech 

discrimination training, local field potentials (LFPs) in control A1 responded faster to the onset 

of the speech sound /dad/ (40.9 ± 0.4 vs. 35.9 ± 0.6 ms, untrained vs. trained, respectively; 

unpaired t-test, p<0.01; Figure A4.8A). Trained KIA- A1 LFPs also responded faster compared 

to untrained recordings (43.7 ± 0.8 vs. 32.9 ± 0.7 ms; unpaired t-test, p<0.01; Figure A4.8B). N1 

amplitude was significantly increased as a result of training in control A1 (-72.4 ± 2.0 mV in 

untrained control A1 vs. -151.3 ± 4.2 mV after training; unpaired t-test, p<0.01; Figure A4.8A) 

and in KIA- A1 (-41.3 ± 1.5 mV in untrained KIA- A1 vs. -100.6 ± 2.9 mV after training; 

unpaired t-test, p<0.01; Figure A4.8B). Latency of the N1 in control PAF was not significantly 

affected by training (46.1 ms ± 1.3 ms in untrained control PAF vs. 42.4 ± 1.1 ms after training; 

unpaired t-test, p=0.07; Figure A4.8C). KIA- PAF LFP had a longer latency following training 

(20.8 ± 14.5 ms in untrained KIA- PAF vs. 42.0 ± 0.9 ms after training; unpaired t-test, p<0.01; 

Figure A4.8D). The longer latency may be due in part to the significant increase in N1 amplitude 

in KIA- PAF (-18.9 ± 3.5 mV in untrained KIA- PAF vs. -73.8 ± 5.1 mV after training; unpaired 

t-test, p<0.01; Figure A4.8D), which sharpened the peak response. N1 amplitude in control PAF 

was also significantly increased by training (-42.1 ± 5.2 mV in untrained control PAF vs. -94.6 ± 

10.4 mV after training; unpaired t-test, p<0.01; Figure A4.8C). Our observation that training 

induced plasticity improved neural discrimination performance of KIA- A1 and PAF sites 

suggests a possible neural basis for the success of current therapeutic options for humans with 

dyslexia. The result that control PAF improved after training supports the idea that auditory 
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fields higher than A1 may support auditory learning tasks in a unique and meaningful way (Lai 

et al. 2011; Takahashi et al. 2011).  

 

DISCUSSION 

 

Summary of results 

        This study was designed to test the hypothesis that in utero RNAi of the candidate dyslexia 

gene Kiaa0319 would cause impaired speech sound discrimination in adult rats. KIA- rats were 

significantly impaired at discriminating a target speech sound from distracter speech sounds in a 

variety of contexts and required twice as much training to perform at control levels. KIA- rats 

were able to learn more difficult speech tasks, such as sequences and short speech. Extensive 

training significantly reduced the variability in KIA- auditory cortex responses and improved the 

neural encoding of speech sounds. Our results provide the first direct evidence that the 

candidate-dyslexia gene KIAA0319 is directly related to phoneme perception. We provide 

evidence that the impairments caused by specific developmental genetic variants may be 

mediated by training.  

Effect of anesthesia on neural responses 

          The majority of our neural recordings were made in the auditory cortex of anesthetized 

rats. There is evidence that anesthesia affects basic firing properties of auditory cortex to tonal 

stimuli. For example, neural responses in anesthetized animals can have sharper tuning curves 

(Gaese and Ostwald 2001) and fire less spontaneous action potentials than when the animal is 

awake (Capsius and Leppelsack 1996). In spite of these basic firing differences, neural encoding 

of natural sounds, specifically human speech sounds, are not significantly different as a result of 
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anesthesia (Engineer et al. 2008b; Hromádka, DeWeese, Zador 2008; Huetz, Philibert, Edeline 

2009; Steinschneider et al. 1994). In the current study, we recorded speech sounds from 

anesthetized animals, but did not record from trained, awake rats. In our previous study, we 

reported that anesthesia did not significantly affect neural responses to speech sounds in 

experimentally-naïve rats (Centanni et al. 2013). Training on auditory tasks can affect neural 

responses. For example, when rats are trained to identify a low frequency tone, there is a 

corresponding expansion in the amount of auditory cortex neurons that preferentially respond to 

the target frequency (Takahashi et al. 2011). It is possible that extensive training on speech 

sound stimuli may also cause changes in the organization or firing patterns of awake rats. 

Additional studies are needed to evaluate whether the auditory cortex of trained KIA- rats fires 

differently following training and how those responses compare to the anesthetized responses 

reported here.  

Training effects may be larger in non-primary auditory fields 

           Extensive training can change firing patterns in primary auditory cortex. For example, 

after rats are trained to discriminate sequences of auditory sounds, the bandwidth of primary 

auditory cortex responses was significantly narrowed and response latencies were significantly 

shorter (Engineer et al. 2012). Responses in other auditory fields can also be affected by 

extensive training. After more than 20 days of behavioral training, the percentage of neurons 

firing to the target frequency was significantly increased compared to naïve controls, and this 

effect is just as big or bigger in other auditory fields, such as the ventral auditory field 

(Takahashi et al. 2011). 
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Our results show that the trial-by-trial variability was reduced more after training in 

control and KIA- PAF than in A1. There are several explanations for this observation. It is 

possible that non-primary auditory fields are more sensitive to insult and are therefore more 

affected in communication disorders than the primary field. When autistic children listen to 

speech sounds, there is less evoked activity in the superior temporal gyrus compared to controls, 

while primary auditory cortex responses do not differ (Lai et al. 2011). Another explanation 

could be that this effect is merely an artifact of the degree of firing differences across fields. In 

experimentally naïve posterior auditory field, tone-evoked responses are significantly later than 

A1 and PAF has a significantly higher threshold, broader bandwidths and fewer evoked spikes 

than A1, anterior, or ventral auditory fields (Polley et al. 2007). The observation that PAF seems 

to benefit more from training than A1 does may be due to the smaller beginning impairment in 

A1 causing a floor effect after training. Additional studies should be conducted in other auditory 

fields to see if the other non-primary fields experience greater training-induced plasticity than 

A1.  

Effect of training time on neural improvement 

          Neural plasticity is likely a transient phenomenon, causing observable changes in the 

cortical organization of auditory cortex during the learning phase of behavioral training, but 

disappearing once the task is mastered (Reed et al. 2011; Takahashi et al. 2011). Such plasticity 

is necessary for learning, but does not seem to be needed for continued accuracy at the task 

(Reed et al. 2011). The degree of neural plasticity is related to task difficulty. Tasks that are easy 

for an animal to acquire do not cause an obvious expansion in neurons dedicated to the task 

(Engineer et al. 2012). Our observation that KIA- animals with a greater percentage of 
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transfected neurons were worse at the speech discrimination task suggests that animals with 

more transfection may need more training to achieve high levels of accuracy than animals with 

less transfection. The degree of impairment is likely related to the amount of training needed to 

cause the improvement in neural response we report here. Future experiments should investigate 

a link between the amount of transfection and the amount of training needed to normalize both 

behavioral and neural responses to speech sounds.  

Are these training effects specific to this candidate dyslexia gene? 

        We report here that in utero RNAi of the candidate dyslexia gene Kiaa0319 in rats causes 

impaired speech discrimination performance. Humans with variants in this gene also have 

impairments in phoneme awareness which correlates to reduced activation in left auditory cortex 

(Pinel et al. 2012). KIAA0319 is not the only candidate dyslexia gene and accounts for a small 

percentage of all dyslexia cases. The candidate dyslexia gene DCDC2 has been linked to visual 

and spatial impairments in both rat models and in human dyslexics (Lind et al. 2010; Scerri et al. 

2011), and knockout mice show some signs of rapid auditory processing impairment (Truong 

2009). The dyslexia-associated gene ROBO1 has been linked to phonological impairments, but 

only in one subpopulation of humans with the disorder (Bates et al. 2011). In addition, rats with 

in utero RNAi of the gene DYX1C1 have small deficits in the ability to process rapid tonal 

stimuli (Threlkeld et al. 2007). No studies to date have investigated the effect of in utero RNAi 

of any of the other three dyslexia-associated genes on neural or behavioral speech processing. 

Future studies are needed to evaluate these genes on tasks using speech sounds as stimuli. This 

work will be critical to understanding the role variants in these other genes play on creating the 

variety of behavioral symptoms seen in dyslexic individuals.  
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Improved variability may be the mechanism for therapy in human dyslexics 

          We report that extensive training of rats with in utero knockdown of Kiaa0319 can 

improve both behavioral and neural processing of speech sound stimuli. Behavioral training 

programs can improve speech processing in humans with dyslexia (Lovio et al. 2012; Penolazzi 

et al. 2010; Russo et al. 2005; Temple et al. 2003), but the mechanism by which this training is 

effective is still unknown. Our results show that extensive training was able to significantly 

reduce trial-by-trial variability in onset latency to both speech and non-speech stimuli. Recent 

studies suggest that this variability may be an underlying cause of the auditory phoneme 

awareness deficits in dyslexic people. Auditory brain stem responses in children with dyslexia 

are significantly more variable in response to speech sounds than healthy control children 

(Hornickel and Kraus 2013). Neural responses in people with other disorders, such as autism, 

can also be unreliable to a variety of sensory stimuli. Variability in the neural encoding of visual, 

auditory, and somatosensory stimuli is significantly higher in autistic individuals compared to 

controls (Dinstein et al. 2012). Interventions for dyslexic children can improve the latency and 

firing amplitude of speech-evoked neural responses (Hornickel et al. 2012; Lovio et al. 2012; 

Penolazzi et al. 2010; Russo et al. 2005; Temple et al. 2003), but it is not yet known what effect 

this training has on the trial-by-trial variability in onset response. As individuals age, the neural 

onset to auditory stimuli becomes less precise and reliable. With auditory training, the onset 

latency to speech sounds is significantly reduced and corresponds to an increase in behavioral 

ability (Anderson et al. 2013) . We suggest that trial-by-trial variability may be a mechanism for 

the auditory processing impairments seen in dyslexia and the significant reduction in variability 

caused by training may be a possible mechanism by which such training is effective.  
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Additional studies are needed in both human dyslexics as well as in animal models to further 

evaluate this claim.  

Conclusion 

         In utero RNAi of the candidate dyslexia gene Kiaa0319 causes behavioral impairments on 

speech sound discrimination tasks by rats. These rats are able to learn complex tasks, such as 

identifying a target sound in a rapid sequence, but still have difficulty identifying phonemes 

without additional cues like duration or pitch. This result provides the first evidence that the 

suppression of the gene KIAA0319 directly causes speech sound discrimination deficits. The 

extent of the deficit is strongly correlated to the percentage of affected neurons and suggests a 

possible mechanism for the large degree of variance seen in the symptoms of human dyslexics. 

Extensive training reduces trial-by-trial onset variability and improves the accuracy of neurons to 

encode speech sounds. This improvement in neural firing suggests that impairments caused by 

developmental genetic variants may not be permanent.  
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APPENDIX A 

 CHAPTER 4 FIGURES 

 
 

Figure A4.1. Rats with in utero RNAi of Kiaa0319 are impaired at speech discrimination tasks. 

A. On the first day of testing, KIA- and control rats both performed at chance level (unpaired t-

tests, p=0.84 and p=0.59 respectively). KIA- rats were significantly worse than control rats on 

the full speech discrimination task for the remainder of testing (unpaired, one-tailed t-tests, 

*=p<0.01). B. KIA- rats hit to the target sound dad at the same rate as control rats (unpaired t-

test; p=0.33), but false alarmed to the distracter sounds significantly more than control rats  
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Figure A4.1 continued… 

 

(*=p=0.04). C. Break down of lever press rates to each of the distracter sounds. KIA- rats 

responded to every sound significantly more than control rats (unpaired t-tests, *=p<0.01).  
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Figure A4.2. Extensive speech discrimination training can improve on clear speech tasks. A. 

After an additional week of training, 8 KIA- rats were able to perform the full speech task at the 

same level as 5 control rats (unpaired t-test, p=0.24). Rats were then trained for 2 weeks on a 

speech in noise task. On the first day, control and KIA- rats experienced a drop in performance 

compared to full speech (paired t-tests; p<0.01). By the last day of training, control rats had 

significantly improved on 3 of the 4 noise levels (last day performance and paired t-test of last 

day performance vs. first day; 0 dB p<0.01; 48 dB p<0.01; 60 dB p<0.01; 72 dB p=0.38). KIA- 

rats remained significantly below control levels at the end of training (unpaired t-tests, 0 dB 

p=0.02, 48 dB p=0.03, 60 dB, p<0.01, 72 dB p=0.72). Rats were next trained on a sequence task 

in which a target sound was inserted into a sequence of random distracter speech sounds. There 

were no significant differences between control and KIA- rats during this 40 day training period 

(at 2 sps; p=0.41, at 4 sps; p=0.90, at 5 sps; p=0.50, at 6.67 sps; p=0.85, at 10 sps; p=0.91, at 20 

sps; p=0.97). For this task, chance performance was 0% rather than 50% because in this task, 

distracters were presented significantly more often than targets. Finally, rats were trained for 2 

weeks on a short speech task in which only the first 40 ms of the speech stimulus was presented. 

KIA- rats were significantly impaired at this task compared to controls until the final day of 

training (unpaired t-tests, day 1-9, p<0.01; day 10, p=0.08). B. Breakdown of the last day 

performance of rats on the speech in noise task. Both control and KIA- rats performed at chance 

level at the highest noise intensity (72 dB; unpaired t-test, p=0.72). KIA- rats were significantly 

impaired at the remaining 3 noise levels compared to controls (0 dB; p=0.02, 48 dB; p=0.03, 60 

dB; p<0.01). C. Breakdown of last day performance of rats on the sequence task. There were no 

significant differences between control and KIA- rats at any presentation rate tested (2 sps, 

p=0.45; 4 sps, p=0.68; 5 sps, p=0.27; 6.67 sps, p=0.65; 10 sps, p=0.99; 20 sps, p=0.74).  
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Figure A4.3. Percentage of transfected neurons predicts behavioral aptitude in KIA- rats. A. The 

percentage of layer 2/3 pyramidal neurons affected by the transfection was calculated in A1 

bilaterally. Affected neurons were co-transfected with GFP (green florescent protein) to make 

the cells easily visible and the number of labeled neurons was counted. In KIA- rats, a higher 

percentage of transfected neurons was strongly correlated with impaired behavioral performance 

on the last day of full speech training (R
2
=0.77, p<0.01). B. The percentage of transfected 

neurons in control animals was not correlated with performance (R
2
= 0.61, p=0.12), which 

suggests that the surgery itself did not affect performance.  
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Figure A4.4. Extensive short speech training improves full speech and speech in noise 

performance in KIA- rats. A. 8 KIA- rats and 5 control rats were trained for 28 days on the short 

speech task. KIA- rats needed slightly longer to reach 80% correct compared to controls 

(unpaired 1-tailed t-test, p=0.07). At the end of training, there was no significant difference in 

performance across groups (unpaired 1-tailed t-test, p=0.11). Rats were then trained on the full 

speech task for 2 weeks, and we saw no difference in performance across the 10 days of testing 

(unpaired t-test, p=0.37). We also saw no difference in performance during the 10 days of speech 

in noise training that followed (0 dB p=0.06, at 48 dB, p=0.51, at 60 dB, p=0.39, at 72 dB, 

p=0.52). KIA- rats and control rats performed equally well on all 40 days of the sequence task, 

which came next (unpaired t-test, p=0.18). For this task, chance performance was 0% rather than 

50% because in this task, distracters were presented significantly more often than targets.  B. 

Breakdown of the last day of speech in noise performance by control and KIA- rats. We saw no 

significant difference in performance at 3 of the 4 noise intensities (at 0 dB; p<0.01, at 48 dB; 

p=0.97, at 60 dB; p=0.71, at 72 dB; p=0.53). C. Breakdown of the last day of speech in noise 

performance. We saw no significant difference in performance at any presentation rate we tested 

(at 2 sps: p=0.69, at 4 sps; p=0.69, at 5 sps; 0.75, at 6.67 sps; p=0.66, at 10 sps; p=0.75, at 20 

sps; p=0.53).  
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Figure A4.5. Extensive behavioral training improves reliability of neural firing and neural 

discrimination performance. A. Trial-by-trial variability was compared between trained and 

untrained neural recordings in control A1, KIA- A1, control PAF, and KIA- PAF. Training 

significantly decreased the variability in onset latency in KIA- A1 (unpaired t-test,*= p<0.01) 

and KIA- PAF (unpaired t-test, *=p<0.01). Training also decreased variability in control A1 

(unpaired t-test, *=p=0.04) and control PAF (unpaired t-test, *=p<0.01). B. Extensive behavioral 

training improved the ability of neural responses to discriminate consonant speech sounds in 

every field except control A1. Control PAF sites significantly improved after training (unpaired 

t-test, *=p<0.01), as did KIA- A1 (unpaired t-test,*= p<0.01) and KIA- PAF (unpaired t-test, 

*=p<0.01). C. Training did not improve neural discrimination performance on vowel tasks in 

any field: in control A1 (unpaired t-test, p=0.33), control PAF (unpaired t-test, p=0.97), KIA- A1 

(unpaired t-test, p=0.09), or KIA- PAF (unpaired t-test, p=0.52).  
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Figure A4.6. Training improves firing reliability in response to consonant speech sounds. Single 

site examples of neural responses to the consonant sounds /d/ and /b/ in every field before and 

after training. Classifier performance for each site is plotted on top of each panel, and trials 

which the classifier guessed incorrectly are marked by an ‘x’. A. A representative single site in 

untrained control A1. This data was originally collected for and reported in Centanni et al. 2013. 

B. A representative single site in untrained KIA- A1. This data was originally collected for and 

reported in Centanni et al. 2013. C. A representative single site example in untrained control 

PAF. Control PAF sites had longer onset latency to tones than A1 sites and had a higher 

variability in onset latency (unpaired t-tests, p<0.01 and p<0.01 respectively).  D. A 

representative single site example in untrained KIA- PAF. KIA- PAF sites had longer onset 

latency to tones than A1 sites and had a higher variability in onset latency (unpaired t-tests, 

p<0.01 and p<0.01 respectively).   E. A representative single site example in trained control A1. 

Training did not significantly affect the ability of control A1 sites to encode consonant stimuli. 

F. A representative single site example in trained KIA- A1. Training significantly improved the  
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Figure A4.6 continued… 

 

trial by trial variability in KIA- A1 sites (unpaired t-test, p<0.01) as well as reduced the number 

of action potentials fired (unpaired t-test, p<0.01; Figure B4.2). These aspects of neural plasticity 

likely contributed to the increased classifier performance. G. A representative single site 

example in trained control PAF. Training significantly improved trial by trial variability in this 

field (unpaired t-test, p<0.01) and likely contributed to the improved classifier performance. H. 

A representative single site example in trained KIA- PAF. Training shortened onset latencies 

(unpaired t-test, p<0.01) and reduced trial-by-trial variability in this field (unpaired t-test, 

p<0.01). These properties likely contributed to the improved classifier performance.  

  



138 

 

 
 

Figure A4.7. Training improves the ability of KIA- A1 and PAF sites to fire reliably to repetitive 

stimuli. A. Untrained KIA- A1 sites are significantly worse at following repetitive stimuli as 

measured by vector strength (*=p<0.01). Data was originally collected for and reported in 

Centanni et al. 2013. B. There was no significant difference in A1 vector strength between 

control and KIA- rats after extensive behavioral training (one-way ANOVA F(1,6)=0.18, 

p=0.68). C. Prior to training, there were no significant differences in vector strength between 

control and KIA- PAF sites (unpaired t-tests; 4 Hz p=0.67, 7 Hz p=0.24, 10 Hz p=0.06, 12.5 Hz 

p=0.39). D. Extensive training significantly improved KIA- PAF vector strength (one-way 

ANOVA F (1,6)=16.1, p<0.01) but did not affect control PAF vector strength (F(1,6)=4.52, 

p=0.08).  
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Figure A4.8. Extensive behavioral training shortens latency and amplitude of N1 component of 

LFP response to the speech sound /dad/. Responses are plotted with gray markers at -50 and 50 

mV to help visualize differences across plots. Significant differences are marked by a black line. 

A. LFP response to the sound /dad/ in untrained control and KIA- A1. This data was originally 

collected for and reported in Centanni et al. 2013. B. Extensive training improves onset latency 

and amplitude of the LFP response in KIA- A1. After this training, there were no differences in 

LFP response between control and KIA- A1. C. LFP response to the sound /dad/ in untrained 

control and KIA- PAF sites. As was seen in A1 recordings, latency and amplitude of KIA- PAF 

responses were significantly different from control recordings. D. Following training, there were 

not significant differences in the LFP response to the sound /dad/ between control PAF and KIA- 

PAF.  
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APPENDIX B 

 CHAPTER 4 SUPPLEMENTARY FIGURES 

A. Figure B4.1, related to Figure A4.1.  

Rats were first trained to press a lever, which triggered the presentation of the target sound 

(/dad/) and a sugar pellet reward. KIA- rats learned this task in the same amount of time as 

control rats (to criterion of 2 sessions of 100 self presses; 113.4 ± 14.2 minutes for KIA- rats vs. 

141.5 ± 27.2 minutes for controls; unpaired t-test, p=0.30).  After learning to press the lever, rats 

were transitioned to detection in which they were 

required to press the lever only when the target sound 

/dad/ was presented. Rats with in utero RNAi of 

Kiaa0319 were not impaired in their ability to switch 

from free pressing to waiting for the target sound. Both 

groups were able to reach the performance criterion (10 

sessions with a d’≥1.5) in approximately 5 days 

(Controls: 4.4 ± 0.8 days vs. KIA-: 5.4 ± 5.4 days; 

unpaired t-test, p=0.35; Figure B4.1A). To determine 

whether KIA- rats also had attention impairments, we 

analyzed reaction times as well as hit and false alarm 

rates. KIA- rats did not take longer to respond to speech 

sounds as compared to controls. On the first day of 

training, KIA- rats actually responded faster than 

controls (1.7 ± 0.1 s vs. 2.2 ± 0.1 s, KIA- and controls 

respectively, one tailed t-test, p<0.01; Figure B4.1B). 

KIA- rats did not false alarm to silent catch trials more 

than control rats at any point during detection training 

(one tailed t-tests, p=0.51; Figure B4.1C). KIA- rats did 

miss more target sounds than controls did early in 

training, but were not significantly different from 

controls throughout the remainder of detection training 

(days 2 and 3 of detection training, one tailed t-test, 

p<0.01; Figure B4.1C). In utero RNAi of Kiaa0319 did 

not impair rats’ ability to learn to press a lever in 

response to a target sound, and were then able to 

transition to a more difficult discrimination task (Figure 
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Figure B4.1 continued… 

 

A4.1, Main text). This observation supports earlier reports that these animals can hear speech 

sounds and can learn behavioral tasks (Centanni et al. 2013; Szalkowski et al. 2012). 

 

Figure B4.1. Rats with in utero RNAi of Kiaa0319 are able to learn a simple lever pressing task. 

A. KIA- rats were not impaired at their ability to reach a criterion of 10 sessions with a d’≥1.5 as 

compared to control rats. Both groups were able to learn this task within 7 days of training (14 

sessions). B. KIA- rats responded to the target sound later than control rats on the first day of 

training (p<0.01). By the following day, and for the rest of the training period, there was no 

difference in response times across groups. C. KIA- rats respond to the target sound less than 

control rats do during the first 3 days of training (*=p<0.01). Performance was not significantly 

different overall due to the “normal” false alarm rate to silent catch trials on these days. By the 

middle of training, KIA- rats were hitting to the target and withholding response to the silent 

catch trials at the same rate as control rats.  
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B. Figure B4.2, related to Figures A4.3 & A4.4.  

We trained rats for 4 months on a variety of speech discrimination tasks (Figures A4.3& 

A4.4, Main Text) and evaluated the effect of such training on neural firing properties. Training 

reduced onset latency in both KIA- A1 (25.8 ± 0.6 ms in untrained vs. 17.7 ± 0.7 ms after 

training; p<0.01) and PAF (45.6 ±7.1 ms in untrained vs. 29.5 ± 2.2 ms after training, p=0.01; 

Figure B4.2A), and KIA- A1 also fired fewer evoked spikes after training (2.9 ± 0.1 spikes in 

untrained vs. 2.4 ± 0.1 spikes after training, p<0.01; Figure B4.2D).  This reduction in action 

potentials may be related to the decrease in neural variability we observed (Figure A4.5, Main 

Text). Control A1 sites had shorter latencies (22.3 ± 0.7 ms in untrained vs. 17.2 ± 0.6 spikes 

after training, p<0.01; Figure B4.2A), narrower bandwidths (2.3 ±0.1 octaves in untrained vs. 1.9 

± 0.1 octaves after training, p<0.01; Figure B4.2B), and had a greater number of driven action 

potentials to tones (2.8 ± 0.1 spikes in untrained vs. 3.2 ± 0.1 spikes after training, p<0.01; 

Figure B4.2D). Thresholds were not affected by training in any group (Figure B4.2C).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B4.2. Training affects basic neural firing properties to tonal stimuli in KIA- and Control 

rats. A. Training significantly shortened the onset latency in Control A1 (22.3 ± 0.7 ms in 

untrained vs. 17.2 ± 0.6 spikes after training, p<0.01), KIA- A1 (25.8 ± 0.6 ms in untrained vs. 

17.7 ± 0.7 ms after training; p<0.01), and KIA- PAF (45.6 ±7.1 ms in untrained vs. 29.5 ± 2.2 ms 

after training, p=0.01). No significant differences were seen in control PAF sites. B. Extensive 

behavioral training shortened bandwidths in Control A1 (2.3 ±0.1 octaves in untrained vs. 1.9 ± 

0.1 octaves after training, p<0.01), but had no effect on bandwidths in the other fields. C.  
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Figure B4.2 continued… 

 

Extensive behavioral training had no effect on auditory thresholds in any group or field (control 

A1; p=0.72, KIA- A1; p=0.06, control PAF; p=0.90, KIA- PAF; p=0.53). D. Extensive 

behavioral training increased the number of tone-evoked action potentials fired in control A1 

(2.8 ± 0.1 spikes in untrained vs. 3.2 ± 0.1 spikes after training, p<0.01), but reduced the number 

of tone-evoked spikes fired in KIA- A1 (2.9 ± 0.1 spikes in untrained vs. 2.4 ± 0.1 spikes after 

training, p<0.01). The reduction in spikes in KIA- A1 may contribute to the improved neural 

encoding of consonants, since the spontaneous rate of firing and the number of evoked spikes in 

untrained KIA- was significantly higher than controls (Centanni et al., 2013).  
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C. Figure B4.3, related to Figure A4.6.  

After training, trial-by-trial variability in onset latency across sites in KIA- A1 and PAF as 

well as control PAF were significantly reduced (Figure A4.5, Main Text). Responses to 

consonant speech sounds were significantly more precise following training and were better able 

to encode the differences between consonant sounds (Figure A4.6, Main Text). We saw a similar 

effect in the encoding of vowel sounds following training. Vowel sounds are encoded using 

spike count over a single 400 ms analysis window (Perez et al. 2012). As reported previously, 

untrained control and KIA- A1 responded to vowel sounds with a high degree of variability, and 

these two sites performed worse at the vowel task than at the consonant task (Figure B4.3 A&B; 

data originally collected for and reported in Centanni et al. 2013). Untrained PAF in control 

animals was slightly worse at the vowel task than A1 in each group. Average performance by 

untrained control PAF sites was 64.4 ± 2.4% correct vs. 73.4 ± 0.6% correct in untrained control 

A1 (p<0.01; Figure B4.3C). 

Performance in untrained 

KIA- PAF sites was not 

significantly worse than 

untrained KIA- A1 sites (64.3 

± 1.4% correct in PAF vs. 

62.9 ± 0.1% correct in A1; 

p=0.71; Figure B4.3D). 

Following training, we 

noticed a slight (but not 

significant) improvement in 

the neural encoding of 

vowels. Trial-by-trial 

variability was reduced in 

every field (Figure B4.3 E-H 

and Figure A4.5, Main Text), 

which slightly improved the 

ability of each site to encode 

differences in vowel sounds. 

This result suggests that the 

specific training tasks we 

used benefitted consonant 

processing more effectively 

than vowel processing. 

 

Figure B4.3. Extensive behavioral training improves neural encoding of vowel sounds in control 

and KIA- auditory cortex. A. A representative site from untrained control A1. The number of  
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Figure B4.3 continued… 

 

spikes encoded in response to each vowel sound was used to predict which sound evoked each 

single trial response. Data originally collected for and reported in Centanni et al. 2013. B. A  

representative site from untrained KIA- A1. The variability in neural firing was significantly 

higher in KIA- sites, which significantly impaired the ability of these sites to perform the vowel 

discrimination task. Data originally collected for and reported in Centanni et al. 2013. C. A 

representative site from untrained control PAF. D. A representative site from untrained KIA- 

PAF. E. A representative site from trained control A1. Though training did not have a significant 

impact on the classifier performance, the reduced variability in this field following training did 

provide some improvement on neural processing of vowels in this field. F. A representative site 

from trained KIA- A1. The improved variability in KIA- neurons after training did improve 

classifier performance on the vowel tasks, though this improvement was not significant. G. A 

representative site from trained control PAF. There was significant reduction in trial-by-trial 

variability in this field after training, and there was slight (but not significant) improvement in 

this fields’ vowel classifier performance. H. A representative site from trained KIA- PAF. There 

was significant reduction in trial-by-trial variability in this field after training, and there was 

slight (but not significant) improvement in this fields’ vowel classifier performance.  
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D. Figure B4.4, related to Figure A4.7.  

Rats were implanted with a chronic array of 16 microelectrodes into right primary auditory 

cortex. Neural recordings were acquired in a single session while the animals were awake, 

unrestrained, and passively listening to a variety of stimuli. This data was collected for and 

partially reported in Centanni et al. 2013. In response to click trains at a variety of speeds, 55 

sites in 9 KIA- rats were less able then controls (16 sites in 3 animals) to phase-lock to these 

stimuli as measured by vector strength (Figure B4.4). The difference between vector strength in 

KIA- rats versus control rats is not significant at speeds less than 76 Hz in the awake animals 

(Figure B4.4), while it was significant at 4, 7, 10, and 12.5 Hz in the anesthetized condition 

(Figure A4.7, Main Text). Vector strength is a metric that relies on spike count for the 

calculation. Since recordings from awake animals have higher spontaneous firing than 

anesthetized recordings, this discrepancy in spike count may be driving the lack of a significant 

effect at the slower speeds in the awake recordings.  

 

 
 

Figure B4.4. Untrained, awake KIA- neurons are impaired at following repetitive stimuli. 

Primary auditory cortex responses to repetitive click trains from 9 KIA- rats and 3 control rats 

chronically implanted with a 16 microelectrode array. Vector strength in KIA- rats was 

significantly worse than control rats at speeds between 76 and 166 Hz (*=p<0.01). At speeds of 

9 through 40 Hz, KIA- rats have slightly (but not significantly) lower vector strength. The higher 

spontaneous firing rate in awake rats is likely the factor keeping this trend from reaching 

significance.  
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E. Figure B4.5, related to Figure A4.5.  

The 4 weeks of additional training was also able to further reduce the trial-by-trial onset 

latency variability in control rats, but not KIA- rats as compared to group 1. In control A1, neural 

recordings from group 2 rats had lower trial-by-trial variability compared to group 1 (34.6 ± 3.3 

ms
2
 in group 1 vs. 20.3 ± 3.2 ms

2
 in group 2; unpaired t-test, p=0.01; Figure B4.5A and Figure 

A4.6, Main Text). Control PAF in group 2 was also less variable trial-by-trial as a result of the 

additional training (59.4 ± 4.3 ms
2
 in group 1 vs. 29.5 ± 2.6 ms

2
 in group 2; unpaired t-test, 

p<0.01; Figure B4.5A). Trial-by-trial variability in KIA- rats did not decrease with additional 

training (A1: 27.3 ± 4.6 ms2 in group 1 vs. 29.4 ± 4.5 ms2 in group 2; p=0.72, PAF: 44.5 ± 3.6 

ms2 in group 1 vs. 44.5 ± 3.9 ms2 in group 2, p=0.99; Figure B4.5A). We observed an increase 

in neural discrimination (as measured by the nearest-neighbor classifier) ability selectively in 

control PAF. Neural activity from group 2 control PAF sites were better able to discriminate 

between pairs of consonants than group 1 control PAF (65.3 ± 2.1% correct by group 1 vs. 77.2 

± 5.5% correct by group 2; unpaired t-test, p<0.01; Figure B4.5B). Control and KIA- A1 and 

KIA- PAF sites did not improve on the neural consonant discrimination task as a result of 

additional training (unpaired t-tests; p=0.29, p=0.16, and p=0.88, respectively; Figure B4.5B). 

Similarly, no group experienced an increase in neural vowel discrimination performance as a 

benefit of additional training (Control A1, p=0.05; Control PAF, p=0.36; KIA- A1, p=0.42; KIA- 

PAF, p=0.70; Figure B4.5C). The result that additional training did not provide additional neural 

plasticity in KIA- rats suggests that there may be a limit in how beneficial behavioral therapy can 

be in mediating the impairment caused by variants in Kiaa0319.  

 

 

 
 

 

Figure B4.5. An additional 4 weeks of behavior training causes additional plasticity in control 

rats. A. The additional training received by group 2 caused a significant reduction in trial-by-trial 

variability in control A1 (p=0.01) and control PAF (p<0.01). No significant changes were seen in  
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Figure B4.5 continued… 

 

either field in KIA- rats (p=0.72 and p=0.99 in A1 and PAF respectively). B. Additional training 

improved the ability of control PAF sites to perform the consonant neural discrimination task 

(p<0.01), but this training did not improve classifier performance in control A1 (p=0.29), KIA- 

A1 (p=0.16), or KIA- PAF (p=0.88). C. Additional training did not improve the ability of neural 

activity in any group or field to perform the neural discrimination task using vowel stimuli. 

Control A1; p=0.05, KIA- A1; p=0.42, control PAF; p=0.36, KIA- PAF, p=0.70.  

  



 

 

 

 

 

 
 

149 

REFERENCES 

 

Ahissar M, Protopapas A, Reid M, Merzenich MM. 2000. Auditory processing parallels reading 

abilities in adults. Proceedings of the National Academy of Sciences 97(12):6832. 

Anderson S, White-Schwoch T, Parbery-Clark A, Kraus N. 2013. Reversal of age-related neural 

timing delays with training. Proceedings of the National Academy of Sciences . 

Bai J, Ramos RL, Paramasivam M, Siddiqi F, Ackman JB, LoTurco JJ. 2008. The role of DCX 

and LIS1 in migration through the lateral cortical stream of developing forebrain. Dev 

Neurosci 30(1-3):144-56. 

Bai J, Ramos RL, Ackman JB, Thomas AM, Lee RV, LoTurco JJ. 2003. RNAi reveals 

doublecortin is required for radial migration in rat neocortex. Nat Neurosci 6(12):1277-83. 

Bates TC, Luciano M, Medland SE, Montgomery GW, Wright MJ, Martin NG. 2011. Genetic 

variance in a component of the language acquisition device: ROBO1 polymorphisms 

associated with phonological buffer deficits. Behav Genet 41(1):50-7. 

Boscariol M, Guimarães CA, Hage SRV, Cendes F, Guerreiro MM. 2010. Temporal auditory 

processing: Correlation with developmental dyslexia and cortical malformation. Pró-Fono 

Revista De Atualização Científica 22(4):537-42. 

Burbridge TJ, Wang Y, Volz AJ, Peschansky VJ, Lisann L, Galaburda AM, Lo Turco J, Rosen 

GD. 2008. Postnatal analysis of the effect of embryonic knockdown and overexpression of 

candidate dyslexia susceptibility gene homolog Dcdc2 in the rat. Neuroscience 152(3):723-

33. 

Capsius B and Leppelsack H. 1996. Influence of urethane anesthesia on neural processing in the 

auditory cortex analogue of a songbird. Hear Res 96(1):59-70. 

Centanni T, Booker A, Sloan A, Chen F, Maher B, Carraway R, Khodaparast N, Rennaker R, 

LoTurco J, Kilgard M. 2013. Knockdown of the dyslexia-associated gene Kiaa0319 impairs 

temporal responses to speech stimuli in rat primary auditory cortex. Cerebral Cortex. 

Chandrasekaran B, Hornickel J, Skoe E, Nicol T, Kraus N. 2009. Context-dependent encoding in 

the human auditory brainstem relates to hearing speech in noise: Implications for 

developmental dyslexia. Neuron 64(3):311-9. 



150 

 

Cope N, Harold D, Hill G, Moskvina V, Stevenson J, Holmans P, Owen MJ, O’Donovan MC, 

Williams J. 2005. Strong evidence that< i> KIAA0319</i> on chromosome 6p is a 

susceptibility gene for developmental dyslexia. The American Journal of Human Genetics 

76(4):581-91. 

Dinstein I, Heeger DJ, Lorenzi L, Minshew NJ, Malach R, Behrmann M. 2012. Unreliable 

evoked responses in autism. Neuron 75(6):981-91. 

Eden GF and Moats L. 2002. The role of neuroscience in the remediation of students with 

dyslexia. Nat Neurosci 5:1080-4. 

Elbro C, Nielsen I, Petersen DK. 1994. Dyslexia in adults: Evidence for deficits in non-word 

reading and in the phonological representation of lexical items. Annals of Dyslexia 

44(1):203-26. 

Engineer CT, Kilgard MP, Assmann PF, Atzori M, Thompson LT. 2008a. Speech Sound Coding 

and Training-Induced Plasticity in Primary Auditory Cortex . 

Engineer CT, Perez CA, Chen YTH, Carraway RS, Reed AC, Shetake JA, Jakkamsetti V, Chang 

KQ, Kilgard MP. 2008b. Cortical activity patterns predict speech discrimination ability. Nat 

Neurosci 11(5):603-8. 

Engineer N, Engineer C, Reed A, Pandya P, Jakkamsetti V, Moucha R, Kilgard M. 2012. 

Inverted-U function relating cortical plasticity and task difficulty. Neuroscience . 

Fisher SE and DeFries JC. 2002. Developmental dyslexia: Genetic dissection of a complex 

cognitive trait. Nature Reviews Neuroscience 3(10):767-80. 

Foffani G. and Moxon KA. 2005. Studying the role of spike timing in ensembles of neurons. 

Neural engineering, 2005. conference proceedings. 2nd international IEEE EMBS 

conference onIEEE. 206 p. 

Foffani G and Moxon KA. 2004. PSTH-based classification of sensory stimuli using ensembles 

of single neurons. J Neurosci Methods 135(1):107-20. 

Gaese BH and Ostwald J. 2001. Anesthesia changes frequency tuning of neurons in the rat 

primary auditory cortex. J Neurophysiol 86(2):1062-6. 

Galaburda AM, LoTurco J, Ramus F, Fitch RH, Rosen GD. 2006. From genes to behavior in 

developmental dyslexia. Nat Neurosci 9(10):1213-7. 

Galaburda AM, Sherman GF, Rosen GD, Aboitiz F, Geschwind N. 1985. Developmental 

dyslexia: Four consecutive patients with cortical anomalies. Ann Neurol 18(2):222-33. 



151 

 

Habib M, Rey V, Daffaure V, Camps R, Espesser R, Joly-Pottuz B, Démonet JF. 2002. 

Phonological training in children with dyslexia using temporally modified speech: A three-

step pilot investigation. International Journal of Language & Communication Disorders 

37(3):289-308. 

Harold D, Paracchini S, Scerri T, Dennis M, Cope N, Hill G, Moskvina V, Walter J, Richardson 

A, Owen M. 2006. Further evidence that the KIAA0319 gene confers susceptibility to 

developmental dyslexia. Mol Psychiatry 11(12):1085-91. 

Hornickel J and Kraus N. 2013. Unstable representation of sound: A biological marker of 

dyslexia. The Journal of Neuroscience 33(8):3500-4. 

Hornickel J, Zecker SG, Bradlow AR, Kraus N. 2012. Assistive listening devices drive 

neuroplasticity in children with dyslexia. Proceedings of the National Academy of Sciences 

. 

Howland KA and Liederman J. 2012. Beyond decoding: Adults with dyslexia have trouble 

forming unified lexical representations across pseudoword learning episodes. J Speech Lang 

Hear Res . 

Hromádka T, DeWeese MR, Zador AM. 2008. Sparse representation of sounds in the 

unanesthetized auditory cortex. PLoS Biology 6(1):e16. 

Huetz C, Philibert B, Edeline JM. 2009. A spike-timing code for discriminating conspecific 

vocalizations in the thalamocortical system of anesthetized and awake guinea pigs. The 

Journal of Neuroscience 29(2):334-50. 

Jakkamsetti V, Chang KQ, Kilgard MP. 2012. Reorganization in processing of spectral and 

temporal input in the rat posterior auditory field induced by environmental enrichment. J 

Neurophysiol 107(5):1457-75. 

Kawahara H. 1997. Speech representation and transformation using adaptive interpolation of 

weighted spectrum: Vocoder revisited. Acoustics, speech, and signal processing, 1997. 

ICASSP-97., 1997 IEEE international conference onIEEE. 1303 p. 

Kovelman I, Norton ES, Christodoulou JA, Gaab N, Lieberman DA, Triantafyllou C, Wolf M, 

Whitfield-Gabrieli S, Gabrieli JDE. 2012. Brain basis of phonological awareness for spoken 

language in children and its disruption in dyslexia. Cerebral Cortex 22(4):754-64. 

Lai G, Schneider HD, Schwarzenberger JC, Hirsch J. 2011. Speech stimulation during functional 

MR imaging as a potential indicator of autism. Radiology 260(2):521-30. 

 



152 

 

Lind PA, Luciano M, Wright MJ, Montgomery GW, Martin NG, Bates TC. 2010. Dyslexia and 

DCDC2: Normal variation in reading and spelling is associated with DCDC2 

polymorphisms in an australian population sample. European Journal of Human Genetics 

18(6):668-73. 

Lovett MW, Ransby MJ, Hardwick N, Johns MS, Donaldson SA. 1989. Can dyslexia be treated? 

treatment-specific and generalized treatment effects in dyslexic children's response to 

remediation. Brain Lang 37(1):90-121. 

Lovio R, Halttunen A, Lyytinen H, Näätänen R, Kujala T. 2012. Reading skill and neural 

processing accuracy improvement after a 3-hour intervention in preschoolers with 

difficulties in reading-related skills. Brain Res . 

Manis FR, McBride-Chang C, Seidenberg MS, Keating P, Doi LM, Munson B, Petersen A. 

1997. Are speech perception deficits associated with developmental dyslexia? J Exp Child 

Psychol 66(2):211-35. 

McLean, G.M.T., Stuart, G.W., Coltheart, V., Casltes, A. 2011. Visual temporal processing in 

dyslexia and the magnocellular deficit theory: the need for speed? Journal of Experimental 

Psychology: Human Perception and Performance, 37(6): 1957-1975. 

Nagarajan S, Mahncke H, Salz T, Tallal P, Roberts T, Merzenich MM. 1999. Cortical auditory 

signal processing in poor readers. Proceedings of the National Academy of Sciences 

96(11):6483. 

Nöthen MM, Schulte-Körne G, Grimm T, Cichon S, Vogt I, Müller-Myhsok B, Propping P, 

Remschmidt H. 1999. Genetic linkage analysis with dyslexia: Evidence for linkage of 

spelling disability to chromosome 15. Eur Child Adolesc Psychiatry 8:56-9. 

Paracchini S, Thomas A, Castro S, Lai C, Paramasivam M, Wang Y, Keating BJ, Taylor JM, 

Hacking DF, Scerri T. 2006. The chromosome 6p22 haplotype associated with dyslexia 

reduces the expression of KIAA0319, a novel gene involved in neuronal migration. Hum 

Mol Genet 15(10):1659-66. 

Paulesu E, Frith U, Snowling M, Gallagher A, Morton J, Frackowiak RSJ, Frith CD. 1996. Is 

developmental dyslexia a disconnection syndrome? evidence from PET scanning. Brain 

119(1):143-57. 

Pennington BF, Gilger JW, Pauls D, Smith SA, Smith SD, DeFries JC. 1991. Evidence for major 

gene transmission of developmental dyslexia. JAMA: The Journal of the American Medical 

Association 266(11):1527-34. 

Penolazzi B, Spironelli C, Vio C, Angrilli A. 2010. Brain plasticity in developmental dyslexia 

after phonological treatment: A beta EEG band study. Behav Brain Res 209(1):179-82. 



153 

 

Perez CA, Engineer CT, Jakkamsetti V, Carraway RS, Perry MS, Kilgard MP. 2012. Different 

timescales for the neural coding of consonant and vowel sounds. Cerebral Cortex . 

Peterson RL and Pennington BF. 2012. Developmental dyslexia. The Lancet . 

Pinel P, Fauchereau F, Moreno A, Barbot A, Lathrop M, Zelenika D, Le Bihan D, Poline JB, 

Bourgeron T, Dehaene S. 2012. Genetic variants of FOXP2 and 

KIAA0319/TTRAP/THEM2 locus are associated with altered brain activation in distinct 

language-related regions. The Journal of Neuroscience 32(3):817-25. 

Polley DB, Read HL, Storace DA and Merzenich MM. Multiparametric auditory receptive field 

organization across five cortical fields in the albino rat. J Neurophysiol 97: 5: 3621-3638, 

2007.  

Porter BA, Rosenthal TR, Ranasinghe KG, Kilgard MP. 2011. Discrimination of brief speech 

sounds is impaired in rats with auditory cortex lesions. Behav Brain Res 219(1):68-74. 

Ranasinghe KG, Vrana WA, Matney CJ, Kilgard MP. 2012a. Neural mechanisms supporting 

robust discrimination of spectrally and temporally degraded speech. JARO-Journal of the 

Association for Research in Otolaryngology :1-16. 

Ranasinghe KG, Carraway RS, Borland MS, Moreno NA, Hanacik EA, Miller RS, Kilgard MP. 

2012b. Speech discrimination after early exposure to pulsed-noise or speech. Hear Res . 

Reed A, Riley J, Carraway R, Carrasco A, Perez C, Jakkamsetti V, Kilgard MP. 2011. Cortical 

map plasticity improves learning but is not necessary for improved performance. Neuron 

70(1):121-31. 

Rosen, S. 2003. Auditory processing in dyslexia and specific language impairment: Is there a 

deficit? What is its nature? Does it explain anything?.Journal of Phonetics, 31(3): 509-527. 

Russo NM, Nicol TG, Zecker SG, Hayes EA, Kraus N. 2005. Auditory training improves neural 

timing in the human brainstem. Behav Brain Res 156(1):95-103. 

Scerri TS, Morris AP, Buckingham LL, Newbury DF, Miller LL, Monaco AP, Bishop DVM, 

Paracchini S. 2011. DCDC2, KIAA0319 and CMIP are associated with reading-related 

traits. Biol Psychiatry . 

Schulte-Körne G. 2010. The prevention, diagnosis, and treatment of dyslexia. Deutsches 

Ärzteblatt International 107(41):718. 

Shaywitz SE, Escobar MD, Shaywitz BA, Fletcher JM, Makuch R. 1992. Evidence that dyslexia 

may represent the lower tail of a normal distribution of reading ability. N Engl J Med 

326(3):145-50. 



154 

 

Shaywitz SE, Shaywitz BA, Pugh KR, Fulbright RK, Constable RT, Mencl WE, Shankweiler 

DP, Liberman AM, Skudlarski P, Fletcher JM. 1998. Functional disruption in the 

organization of the brain for reading in dyslexia. Proceedings of the National Academy of 

Sciences 95(5):2636. 

Shetake JA, Wolf JT, Cheung RJ, Engineer CT, Ram SK, Kilgard MP. 2011. Cortical activity 

patterns predict robust speech discrimination ability in noise. Eur J Neurosci . 

Sloan AM, Dodd OT, Rennaker II RL. 2009. Frequency discrimination in rats measured with 

tone-step stimuli and discrete pure tones. Hear Res 251(1-2):60-9. 

Steinschneider M, Schroeder CE, Arezzo JC, Vaughan HG. 1994. Speech-evoked activity in 

primary auditory cortex: Effects of voice onset time. Electroencephalography and Clinical 

Neurophysiology/Evoked Potentials Section 92(1):30-43. 

Szalkowski CE, Fiondella CG, Galaburda AM, Rosen GD, LoTurco JJ, Fitch RH. 2012. 

Neocortical disruption and behavioral impairments in rats following< i> in utero</i> RNAi 

of candidate dyslexia risk gene< i> Kiaa0319</i>. International Journal of Developmental 

Neuroscience . 

Takahashi H, Yokota R, Funamizu A, Kose H, Kanzaki R. 2011. Learning-stage-dependent, 

field-specific, map plasticity in the rat auditory cortex during appetitive operant 

conditioning. Neuroscience . 

Tallal P. 1980. Auditory temporal perception, phonics, and reading disabilities in children. Brain 

Lang 9(2):182-98. 

Tallal P and Piercy M. 1974. Developmental aphasia: Rate of auditory processing and selective 

impairment of consonant perception. Neuropsychologia 12(1):83-93. 

Temple E, Deutsch GK, Poldrack RA, Miller SL, Tallal P, Merzenich MM, Gabrieli JDE. 2003. 

Neural deficits in children with dyslexia ameliorated by behavioral remediation: Evidence 

from functional MRI. Proceedings of the National Academy of Sciences 100(5):2860. 

Temple E, Poldrack R, Protopapas A, Nagarajan S, Salz T, Tallal P, Merzenich M, Gabrieli J. 

2000. Disruption of the neural response to rapid acoustic stimuli in dyslexia: Evidence from 

functional MRI. Proceedings of the National Academy of Sciences 97(25):13907. 

Threlkeld SW, McClure MM, Bai J, Wang Y, LoTurco JJ, Rosen GD, Fitch RH. 2007. 

Developmental disruptions and behavioral impairments in rats following< i> in utero</i> 

RNAi of Dyx1c1. Brain Res Bull 71(5):508-14. 

Tremblay KL and Kraus N. 2002. Auditory training induces asymmetrical changes in cortical 

neural activity. Journal of Speech, Language and Hearing Research 45(3):564. 



155 

 

Truong D. 2009. Behavioral implications of knockout for the dyslexia-risk gene Dcdc2 in mice. . 

Vandermosten M, Boets B, Luts H, Poelmans H, Golestani N, Wouters J, Ghesquière P. 2010. 

Adults with dyslexia are impaired in categorizing speech and nonspeech sounds on the basis 

of temporal cues. Proceedings of the National Academy of Sciences 107(23):10389. 

Werker JF and Tees RC. 1987. Speech perception in severely disabled and average reading 

children. Canadian Journal of Psychology/Revue Canadienne De Psychologie 41(1):48. 

Ziegler JC and Goswami U. 2005. Reading acquisition, developmental dyslexia, and skilled 

reading across languages: A psycholinguistic grain size theory. Psychol Bull 131(1):3. 

Ziegler JC, Pech‐Georgel C, George F, Lorenzi C. 2009. Speech‐perception‐in‐noise deficits in 

dyslexia. Developmental Science 12(5):732-45. 

 



 

 

 

 

 

 
 

156 

CHAPTER 5 

REAL TIME IDENTIFICATION OF SPEECH SOUNDS USING CORTICAL 

ACTIVITY PATTERNS 

 

 

 

 

Authors- Tracy M. Centanni, Andrew M. Sloan, Robert Rennaker II, and Michael P. Kilgard 

 

 

School of Behavioral and Brain Sciences, GR41 

The University of Texas at Dallas 

800 W. Campbell Road 

Richardson, Texas, 75080-3021 

 



 

 

 

 

 

 
 

157 

ABSTRACT 

 

 

We developed a classifier that can accurately identify nine English consonants from neural 

activity in real time. The classifier searches primary auditory cortex activity for action potential 

patterns that indicate that a speech sound has occurred and identifies the speech sound within 40 

milliseconds of stimulus onset. The classifier can accurately identify the occurrence of nine 

consonants without prior knowledge of the stimulus onset times. The classifier performs as well 

as rats trained on several previously reported consonant discrimination tasks. To test the 

temporal limits of the classifier, we developed a novel task that requires rats to identify 

individual consonants from a stream of distracter consonants. The classifier successfully 

predicted the ability of rats to accurately identify speech sounds when the syllable presentation 

rate was at or below 10 syllables per second. These results suggest a novel method to read out 

detailed information from cortical networks in real time.   
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INTRODUCTION 

 

 

Speech sounds evoke unique spatiotemporal patterns in the auditory cortex of many species 

(Eggermont 1995; Engineer et al. 2008; Kuhl and Miller 1975). Consonant sounds evoke 

transient bursts of neural activity in primary auditory cortex (A1). A1 neurons fire to all 

consonants, but fire at different times for different sounds. For example, the consonant /d/ evokes 

activity first in neurons tuned to high frequencies, followed by neurons tuned to lower 

frequencies. The sound /b/ causes the opposite pattern such that low frequency neurons fire first, 

followed by high (Engineer et al. 2008; Perez et al. 2012; Ranasinghe et al. 2012; Shetake et al. 

2011). This pattern of activity can be used to identify auditory stimuli. EEG recordings in 

patients listening to isolated words (Chang et al. 2010; Pasley et al. 2012) can be used to identify 

which word was presented, provided that the recordings encompass a large frequency range. 

Since consonant sounds are transient and occur on a millisecond time scale, microelectrode 

recordings in rats provide the high level of spectral and temporal precision needed to visualize 

the neural patterns evoked by these complex stimuli.  

These unique patterns of activity predict behavioral discrimination accuracy in rats. Rats are 

a good model of human speech sound discrimination as these rodents have neural and behavioral 

discrimination thresholds that are similar to humans. Rats can discriminate isolated human 

speech sounds with high levels of accuracy (Engineer et al. 2008; Perez et al. 2012). Rats and 

humans can discriminate speech sounds with as few as 4 bands of spectral information 

(Ranasinghe et al. 2012). Rats and humans are also able to discriminate speech sounds when 

presented at 0 dB signal to noise ratio (Shetake et al. 2011). Sounds that evoke different patterns 

of neural activity are more easily discriminated than two sounds that evoke similar patterns of 
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activity (Engineer et al. 2008; Ranasinghe et al. 2012; Shetake et al. 2011). Speech sounds 

presented in background noise evoke neural response patterns with longer latency and lower 

firing rate than speech presented in quiet and the extent of these differences is correlated to 

behavioral ability (Martin and Stapells 2005; Shetake et al. 2011). Neural activity patterns in 

anesthetized rats also predict behavioral discrimination ability of spectrally and/or temporally 

degraded speech stimuli (Ranasinghe et al. 2012).  

The classifier used in the aforementioned studies was provided the stimulus onset time, 

which may not be readily available to the brain during discrimination tasks. Previous classifiers 

in our lab performed as a two-alternative forced choice classifier in which the correct answer was 

always one of the two choices. In the current study, we designed a classifier that could identify 

any of nine consonant sounds, but was not forced to guess if a decision criterion was not met. We 

hypothesized that neural activity patterns should be sufficient to identify the evoking stimulus in 

real-time and report a novel behavioral paradigm to test this hypothesis.  

 

METHODS 

 

 

Speech Stimuli 

          For this study, we used the same stimuli as several previous studies in our lab (Engineer et 

al. 2008; Floody et al. 2010; Porter et al. 2011; Ranasinghe et al. 2012; Shetake et al. 2011). We 

used nine English consonant-vowel-consonant (CVC) speech sounds differing only by the initial 

consonant: (/bad/, /dad/, /gad/, /kad/, /pad/, /sad/, /tad/, /wad/, and  /zad/), which were recorded in 

a double-walled, soundproof booth by a female native- English speaker. The spectral envelope 

was shifted up in frequency by a factor of two while preserving all spectral information using the 
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STRAIGHT vocoder (Kawahara 1997) to better accommodate the rat hearing range. The 

intensity of each sound was calibrated with respect to its length, such that the loudest 100 ms was 

presented at 60 dB SPL and 5 ms on and off ramps were added to prevent any artifacts.   

Surgical procedure- anesthetized recordings  

Multiunit recordings were acquired from the primary auditory cortex of anesthetized, 

experimentally-naïve Sprague-Dawley rats. Recording procedures are described in detail 

elsewhere (Engineer et al. 2008; Ranasinghe et al. 2012; Shetake et al. 2011). In brief, animals 

were anesthetized with pentobarbital (50 mg kg
-1

) and were given supplemental dilute 

pentobarbital (8 mg ml
-1

) as needed to maintain areflexia, along with a 1:1 mixture of dextrose 

(5%) and standard Ringer’s lactate to prevent dehydration. A tracheotomy was performed to 

ensure ease of breathing throughout the experiment and filtered air was provided through an air 

tube fixed at the open end of the tracheotomy. A craniotomy and durotomy was performed, 

exposing right primary auditory cortex. Four Parylene-coated tungsten microelectrodes (1-2 

MΩ) were simultaneously lowered to layer (4/5) of right primary auditory cortex (~600 µm). 

Electrode penetrations were marked using blood vessels as landmarks.  

Brief (25 ms) tones were presented at 90 randomly interleaved frequencies (1-47 kHz) at 16 

intensities (1- 75 dB SPL) to determine the characteristic frequency of each site. A set of four 

stimuli were created using Adobe Audition for comparison to our behavioral task (described 

below). Each stimulus consisted of a train of six individual speech sounds such that across all 

four sequences, 24 possible sound pairs were presented once (/bad bad gad sad tad dad/, /tad tad 

sad gad bad dad/, /gad gad tad bad sad dad/, /sad sad bad tad gad dad/). The temporal envelope of 

the stimuli was compressed so that when presented with a 0 second inter-stimulus interval, 



161 

 

sounds were presented at 2, 4, 5, 6.667, 10 and 20 syllables per second (sps). All speech stimuli 

were randomly interleaved, and presented at 20 repeats per recording site. All sounds were 

presented approximately 10 cm from the left ear of the rat. Stimulus generation, data acquisition 

and spike sorting were performed with Tucker-Davis hardware (RP2.1 and RX5) and software 

(Brainware).  

Surgical procedure- awake recordings 

        Rats were anesthetized and implanted with a chronic array of 16 polyimide-insulated 50 µm 

diameter tungsten micro wires. The implantation surgery and microwire arrays have been 

previously reported in detail (Rennaker et al. 2005). Briefly, subjects were anesthetized with an 

intramuscular injection of a mixture of ketamine, xylazine and acepromazine (50 mg/kg, 20 

mg/kg, 5 mg/kg, respectively).  Atropine and dexamethazone were administered subcutaneously 

prior to and following surgery. A midline incision was made, exposing the top of the skull, and a 

section of the right temporalis muscle was removed to access primary auditory cortex. Six bone 

screws were fixed to the dorsal surface of the skull (two in each parietal bone and one in each 

frontal bone) to provide structural support for the head cap. The two middle screws had attached 

leads to serve as a reference wire and a grounding wire. A craniotomy and durotomy were 

performed to expose the cortex in the region of primary auditory cortex. The microwire array 

was then inserted to a depth of 550-600 µm (layer IV/V) in primary auditory cortex using a 

custom built mechanical inserter (Rennaker et al. 2005). The area was sealed with a silicone 

elastomer (Kwik-Cast, World Precision Instruments Inc, Sarasota, Florida) and the head cap was 

built with a connector secured with acrylic. Finally, the skin around the implant was sutured in 

the front and the back of the head cap. Subjects were given prophylactic minocycline in water ad 
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libitum for 2 days prior and 5 days following surgery to lessen immune responses (Rennaker et 

al. 2005), and were also given Rimadyl tablets for 3 days after surgery to minimize discomfort. 

Topical antibiotic was applied to the incision to prevent infection. After a minimum of 5 days of 

recovery, neural activity was collected in a single 2.5 hour session and saved using custom 

MATLAB programming. The session included an abridged tuning curve (to assess each site’s 

best frequency) and the same set of speech sequence stimuli presented to the anesthetized 

animals. All passive sound sets were created and run through custom MATLAB programming. 

Neural analysis and classifier 

To identify stimulus identity in real-time using neural activity, we modified a well 

established classifier (Engineer et al. 2008; Foffani and Moxon 2004; Perez et al. 2012; 

Ranasinghe et al. 2012; Schnupp et al. 2006; Shetake et al. 2011). The classifier searched neural 

activity (from a random selection of a subgroup of sites) for the onset of a sound by locating a 

pattern of activity. We trained the classifier to recognize nine patterns of activity, corresponding 

to each consonant sound in the English language, by providing the mean activity across 19 

repeats of each stimulus. 150 random sites was enough to capture the range of characteristic 

frequencies sampled and show the unique pattern of activity evoked by each consonant. The 

classifier then analyzed a single repeat of neural activity and identified if a pattern was located, 

when it occurred, and which sound caused the pattern of activity. We calculated decision 

thresholds for each possible consonant sound which allowed the classifier to determine which 

consonant sound most likely caused the activity, and when that sound was likely presented.  To 

calculate the thresholds, we compared the similarity between each average pattern of activity, or 

template, to the response of each single repeat (20 repeats x 20 speech sounds). To reduce the 
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influence of uncorrelated spontaneous activity, we smoothed the data using a Gaussian filter with 

a half width of approximately 15% of the total number of sites to smooth sites across bins with 

similar characteristic frequency. Euclidean distance was used to measure the similarity between 

the single trial and each template and is calculated by taking the square root of the sum of the 

squared differences between two patterns of neural activity. The threshold was set to maximize 

the sensitivity index for each sound to ensure the maximum number of correct responses while 

minimizing the number of false alarms (Figure 5.1).  

Once all thresholds were calculated, we normalized the single trials and templates so that 

the comparison between spontaneous activity and any template equaled 0. A normalized metric 

of Euclidean distance values for each single trial were calculated so that the values centered on 0 

and templates similar to the single trial returned positive values while templates less similar to 

the single trial returned negative values. This was done using the equation: 

 

where c is the window currently being analyzed, EDc is the raw Euclidean distance at that point, 

EDsp is the Euclidean distance between this template and spontaneous activity, tc is the threshold 

for this template and mt is the minimum threshold across all templates. Once this normalized 

metric (NM) was calculated for the entire single trial, the classifier then searched each single trial 

recording sweep and identified when a pattern of activity occurred (when a threshold was 

crossed) and which stimulus caused that pattern of activity. If more than one template crossed the 

threshold, the classifier guessed the template with the highest NM value, or the template that was 
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closest to the single trial being analyzed. Since the classifier runs in real time, the first crossing is 

counted as the guess, even if the threshold would have been met again later in the sequence. The 

classifier was run thirty times, with a different randomly sampled neural population for each run. 

The average percent correct for each compression level was calculated and plotted with behavior. 

The strength of the correlation was measured using the correlation coefficient.  

Behavioral Paradigm 

Sprague-Dawley albino rats were trained using either an established lever press paradigm 

for the isolated speech task (Engineer et al. 2008; Perez et al. 2012; Ranasinghe et al. 2012; 

Shetake et al. 2011) or an operant paradigm with an infrared nose poke (for the speech sequence 

task), developed by Dr Robert Rennaker (Sloan, Dodd, Rennaker II 2009). Each rat trained for 

two 1-hour sessions per day, 5 days per week. For the isolated speech task, the behavioral 

training procedures and data reported here were the same as was reported in Engineer et al. 

(2008). In brief, 6 rats were trained to press a lever when a target speech sound was presented 

and to withhold pressing when a distracter sound was presented (/d/ vs. /s/, /d/ vs. /t/, and /d/ vs. 

/b/ and /g/). Rats were trained for 2 weeks on the tasks in the order given and performance was 

assessed after training on each task to obtain the values reported in Engineer et al. (2008) and the 

current study.  

For the speech sequence task, all animals were first trained to associate the infrared (IR) 

nose poke with the sugar pellet reward. Each time the rat broke the IR beam, the target speech 

sound (/dad/) was played and a 45 mg sugar pellet was dispensed. After each animal earned over 

100 pellets, each rat was then trained to wait patiently in the nose poke and withdraw their nose 

from the nose poke after hearing the target. During training stages, d’ was used as a criterion for 
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advancing to the next stage (Green and Swets 1966). This stage lasted until the animal performed 

with a d’ greater than 1.5 for 10 sessions. For these first two stages, the animal had a response 

window of 800 ms to withdraw their nose in response to the target. 

Rats were then introduced to the four possible distracters by presenting a string of repeats 

of a single distracter prior to the presentation of the target. The inter-stimulus-interval (ISI) was 1 

second and the response window was also reduced to 650 ms during these stages. Since the task 

involved random patterns of distracters, we trained the animals on a fixed pattern of distracters to 

introduce the concept of multiple distracters per trial. For each trial in this stage, two or three of 

the four CS- were randomly selected and alternated. In the final two training stages, a sequence 

for each trial was randomly generated using all four possible distracters and presented to ensure 

that the rat could not memorize the pattern or time their responses. In addition, the ISI was 

reduced to 0 seconds and the response window was reduced to 500 ms. Once rats performed with 

a d’ > 1.5 for at least two sessions, they were introduced to each compression level. During this 

period of training, rats were presented with blocks of 20 trials each. Each trial contained a 

random hold time (the time before the onset of the target sound) between 2 and 7 seconds, with 

the sounds prior to the target consisting of randomly selected distracters (Figure 5.5). The 

presentation rate of each block was either 2 sps or one of the additional presentation rates. These 

blocks were presented in random order. 20% of trials were catch trials in which no target was 

presented to ensure the rats were listening for the target and not attempting to time the target 

location (Figure 5.5).  

Animals were tested for a minimum of 10 sessions during which all six presentation rates 

were randomly interleaved. The animals were individually housed with free access to water and 
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were food deprived to no less than 85% body weight while experimenting. When not 

experimenting, they were given free access to water and food and housed on a reverse 12:12 

light/dark schedule. The behavioral paradigm was written and executed via a custom-designed 

MATLAB (The Mathworks Inc, Natick, Massachusetts) program and run through a PC computer 

with an external real-time digital-to-analog processor (RP2.1; Tucker-Davis Technologies), 

which monitored the infrared nose poke and controlled the stimuli presentation and lights. Each 

of the 5 sounds was analyzed for response rate (number of responses/number of presentations 

*100). Target responses are referred to as hits and the summed response to all four distracters is 

referred to as false alarm rate. Overall performance is reported in terms of hits-false alarms per 

presentation rate. All protocols and recording procedures were approved by the University of 

Texas Institutional Animal Care and Use Committee. 

 

RESULTS 

 

 

Neural activity patterns predict stimulus identity in real time 

Speech sounds evoke unique spatiotemporal response patterns in primary auditory 

cortex (Engineer et al. 2008; Perez et al. 2012; Ranasinghe et al. 2012; Shetake et al. 2011). 

Previous classifiers have been able to use these patterns to identify the evoking stimulus when 

the stimulus onset time was provided. We have developed a neural classifier that can identify a 

wide range of speech sounds from continuous activity recorded in the primary auditory cortex 

(A1) of anesthetized rats, without prior knowledge of the stimulus onset time. Previous 

classifiers were forced to guess (in a two-alternative paradigm), while our classifier did not need 

to guess if a decision criterion was not met. The classifier was trained to recognize nine different 
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English consonants. Decision thresholds were determined by calculating the Euclidean distance 

between the average response to each consonant and the single trial responses evoked by each 

sound (all using 2 ms temporal bins over an 80 ms analysis window). We then compared the 

Euclidean distances that occurred when the single trial matched the template (i.e. when the single 

trial and the template were both evoked by the same sound) to the Euclidean distance that 

occurred when the single trial and the template were evoked by different sounds. The threshold 

was set at the Euclidean distance value that optimized the sensitivity index for each sound. This 

value ensured the maximum number of correct responses while minimizing the number of false 

alarms (Figure 5.1). The classifier then searched single trials of neural activity for a location in 

which one of the decision thresholds was crossed. A normalized metric of Euclidean distance 

values for each single trial were calculated so that the values centered on 0 and templates similar 

to the single trial returned positive values while templates less similar to the single trial returned 

negative values. We then tested both the detection and discrimination abilities of this new 

classifier. 

Evoked patterns of neural activity are identifiable when neurons with a variety of 

characteristic frequencies (CFs) are recorded. For example, if the stimulus onset time was 

unknown and only one recording site was available for analysis, it would be impossible to 

identify when a speech sound occurred compared to spontaneous activity. Small numbers of sites 

could identify if a sound occurred, but performed at chance when asked to identify the sound (60 

site detection at 53.4 ±22.8% correct, discrimination performance at 31.8 ± 13.1% correct; 

Figure 5.2A). This inability to identify stimuli using 60 sites corresponds with the amount of bits 

encoded with this number of sites (0.8 bits of information) compared to almost 3 bits of 
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information in a group of 400 sites (Figure 5.2B). This increase in bits could be due to a larger 

frequency range included in larger site groups. If a large number of sites are used, synchronized 

activity across those sites could be used to identify when a sound occurred. For example, in 

response to the sound /dad/, sites with a characteristic frequency above ~7 kHz responded to the 

consonant /d/ first, while lower frequency sites fired only to the onset of the vowel (Figure 

5.3A). To the sound /bad/, the opposite pattern occurred; low frequency sites fired first, followed 

by high frequency sites (Figure 5.3A, third panel). Some sounds evoked neurons in the same 

order, such as /d/ and /t/, which both evoked responses from high frequency neurons first, 

followed by low frequencies.  We used these distinct patterns of activity to train our classifier to 

recognize the evoked response to each sound. Using large numbers of sites, this entire frequency 

range was represented and the classifier was able to perform the task well above chance level.  

Our recordings were not acquired simultaneously (4 electrodes were inserted at a time) 

and the uncorrelated spontaneous activity seemed to significantly impair the classifier’s 

performance. The synapses in the sensory cortex likely have ways of strengthening the weight of 

evoked responses and dampening the weight of spontaneous neural firing. To diminish the 

influence of uncorrelated spontaneous firing, we ran the data through a Gaussian filter to 

strengthen the influence of the evoked signal (Giraud et al. 2000; Langers, Backes, Dijk 2003; 

Langers, Backes, Van Dijk 2007). Since our classifier counts every spike equally, this technique 

of spectral smoothing allowed us to strengthen the evoked activity in a biologically plausible 

manner (Figure 5.3B; Bear, Cooper, Ebner 1987; Hao et al. 2009; Poirazi, Brannon, Mel 2003a; 

Poirazi, Brannon, Mel 2003b; Sengpiel and Kind 2002). While various amounts of spectral 

smoothing were adequate to dampen the spontaneous activity (10-20% of the total number of 
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sites), peak performance was obtained using data from 400 sites that had been smoothed with a 

Gaussian filter with a half width of approximately 15% of the total number of sites (data 

collected for Engineer et al. 2008). Even with a smaller group of 150 sites, this classifier was 

able to identify the onset of a speech sound as well as identify the stimulus with high levels of 

accuracy (64.7 ± 6.0%; Figure 5.2A). These results validate that our new classifier is able 

perform the task using neural activity without specific knowledge of the stimulus onset time. In 

addition, our results show that a Euclidean distance classifier can perform with high levels of 

accuracy without being forced to guess. 

To test the temporal limits of this new classifier, we created four sequences of speech 

sounds (/bad bad gad sad tad dad/, /tad tad sad gad bad dad/, /gad gad tad bad sad dad/, /sad sad 

bad tad gad dad/; neural responses acquired from a different set of four rats). We applied the 

same spectral smoothing as was used for the classification of isolated speech sounds. Following 

smoothing, the classifier was able to guess the location of the target sound with an accuracy 

of 70.0 ± 0.5% using random groups of 150 sites. Figure 5.4 shows a single trial example of the 

classifier’s performance at the sequence /bad-tad-gad-dad/. As described earlier, the Euclidean 

distance values are normalized to a scale from 0-1 where values close to 0 indicate that the 

template does not match the single trial and values equal to 1 indicate that the template matches 

the single trial activity. Note in this example that the values for more than one template are close 

to 1 (Figure 5.4). If multiple templates reach a value of 1, the classifier uses the template with the 

highest value as a tie-breaker. This method takes into account that some sounds are similar and 

may therefore account for some common errors made by humans in difficult listening 

environments.  
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It was possible that our classifier would perform differently using awake recordings, due 

to differences in spontaneous activity or attention effects (Steinmetz et al. 2000; Treue 2001). A 

different group of rats were implanted with a chronic array of 16 micro-electrodes. After 

recovery, we presented four speech sound sequences during a single passive recording session. 

Awake recordings had a higher spontaneous firing rate than anesthetized recordings (64.2 ±1.8 

Hz compared to 23.4 ± 1 Hz in the anesthetized preparation, unpaired t-test; p=1.2*10
-21

) but this 

did not change the effectiveness of the Gaussian filter. The classifier performed at an average 

of 45.0 ± 8.3 % using random groups of 100 sites and a Gaussian filter with a half width of 15% 

the total number of sites. This accuracy mimics what the anesthetized classifier was able to 

accomplish with this number of sites. The result that awake neural activity can perform the 

neural discrimination task with comparable accuracy to anesthetized recordings is similar to what 

we saw using our earlier classifier (Engineer et al. 2008). The new classifier described here was 

able to locate and identify speech sounds in isolation or in sequences and performed with 

surprising accuracy using both anesthetized and awake neural recordings.  

Neural responses predict behavioral ability 

Our new classifier performed significantly above chance at identifying speech sounds in 

real time, but may not have performed the task as well as rats could behaviorally. We used 

behavioral data published in our previous report (Engineer et al. 2008) for comparison with our 

new classifier. Six rats were to press a lever when a target speech sound was presented and to 

withhold pressing when a distracter sound was presented (/d/ vs. /s/, /d/ vs. /t/, and /d/ vs. /b/ and 

/g/). Using groups of 150 recording sites, the classifier performed with accuracy levels 

comparable to rats’ behavioral performance (average classifier performance on these four tasks 
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was 89.9 ± 6.9% correct vs. 88.3 ± 2.4% correct by the rats; unpaired t-test, p=0.64). This result 

suggests that our new classifier performs at the same level of accuracy as the rats and may be 

applicable to a range of speech stimuli and new behavior tasks.  

Since the stimulus onset time is not provided to the classifier, a potential advantage of the 

current classifier is the ability to identify a speech sound from within a sequence. We developed 

a novel behavioral paradigm to see if our real-time classifier could predict rats’ ability to identify 

a target speech sound in a stream of speech distracters. Rats were trained to initiate trials using 

an infra-red nose poke, and to withdraw from the nose poke upon presentation of the target 

sound /dad/ and to withhold responding to four distracter sounds (Figure 5.5; /bad/, /gad/, /sad/, 

and /tad/). This task required a longer learning period than previous studies of speech sound 

discrimination. Our rats required 38.2 ± 1.7 days to reach performance of d’≥1.5 compared to 

17.4 ± 2.3 days for isolated speech tasks (Engineer et al. 2008). After ~40 days of training, rats 

were able to consistently respond to the target (/dad/) and withhold responding to distracters 

(/sad/,/bad/,/gad/ or /tad/). The average percent correct (hits-false alarms) of rats was 69 ± 5.2%, 

which was the same as the average classifier performance using neural responses from untrained 

rats (70.0 ± 0.5%; Figure 5.6A). The new real time classifier we report here can identify stimuli 

with accuracy levels that are comparable to behavioral ability.   

Since our awake recordings (classifier performance: 45.0 ± 8.3% correct) were acquired 

from trained rats (though they were not performing the task when recordings were acquired), we 

were able to evaluate if the classifier’s ability directly related to the behavior in the same 

animals. We noticed that the classifier was less accurate on two of the four sequences (/gad gad 

tad bad sad dad/ and /sad sad bad tad gad dad/). To investigate whether or not these sequences 
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were also more challenging for the animal, we looked for trials in which these exact sequences 

were presented. Since the stimuli were presented randomly during the behavior task, these exact 

sequences were only played a few times. Comparing the average percent correct across all rats 

on these trials (sequence 1; n=20 trials, sequence 2; n=8 trials, sequence 3; n=9 trials, sequence 

4; n=12 trials), the classifier performance was strongly correlated to behavioral ability (Figure 

5.6C; R
2
= 0.90, p=0.05). Sequences that the classifier was less accurate on were the same 

sequences that rats had trouble with behaviorally. Neural activity recorded from trained, awake 

rats predicted the relative difficulty of the same sequences in the behavioral task. This result 

suggests that our classifier may be able to predict performance in real time using neural 

recordings acquired from awake and behaving animals.  

Behavioral performance and neural responses were robust up to 10 sps 

Behavioral discrimination accuracy gradually decreased as the presentation rate increased 

using a speech vocoder. Performance remained well above chance (0%) up to 10 sps (2 sps: 69.2 

± 5.2%, 4 sps: 62.4 ± 8.7%, 5 sps: 56.5 ± 10.9%, 6.67 sps: 59.0 ± 12.7%, 10 sps: 46.1 ± 9.2%), 

though performance at this rate was significantly worse than performance at 2 sps (46.1 ± 9.2% 

vs. 69.2 ± 5.2%, 10 sps vs 2 sps respectively; paired t-test; p=0.007). Poor performance at 20 sps 

(6.1 ± 2.0% correct) was consistent with performance in humans at the same rate (Figure 

5.6A; Ahissar et al. 2001; Ghitza and Greenberg 2009; Poldrack et al. 2001). At presentation 

rates faster than 2 sps, false alarm rates did not differ between distracters (two-way analysis of 

variance; F (5, 3) = 2.11; p=0.07). The classifier was able to perform the neural discrimination 

task as well as the rats were able to behaviorally at every speed tested (classifier performance at 

2 sps: 70.0 ± 0.9%; p=0.93, 4 sps: 57.9 ± 1.1%; p=0.72, 5 sps: 72.8 ± 0.7%; p=0.37, 6.67 sps: 
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71.6 ± 0.7%; p=0.54, 10 sps: 75.9 ± 0.5%; p=0.15, 20 sps: 24.9 ± 0.9%; p=0.17; unpaired t-tests; 

Figure 5.6B). The classifier performance was robust up until 20 sps, and then performed 

significantly worse than at 2 sps (Figure 5.6B). Similarly, neural activity patterns were strong 

and distinguishable at rates up to 10 sps (Figure 5.7). The significant reduction in neural firing 

strength at 20 sps as well as the impaired performance of the animals and the classifier at this 

speech suggests that as long as neural response patterns are unique and are distinguishable from 

spontaneous firing, A1 activity can predict behavioral ability of rats to identify a target sound in 

a rapid sequence. 

 

DISCUSSION 

 

 

Calculation of decision thresholds 

In our study, we designed a real time classifier that sweeps neural activity for a pattern of 

activity evoked by a speech sound and decides which sound caused that activity using 

predetermined decision thresholds. Our classifier used neural activity recorded in primary 

auditory cortex and supports the idea that the information needed to perform speech sound 

identification is located in A1 (Engineer et al. 2008; Perez et al. 2012; Ranasinghe et al. 2012; 

Shetake et al. 2011). However, we found no evidence of a target specific response in A1. 

Previous studies showed that removing A1 does not impair the ability of animals to perform 

speech sound discrimination tasks or to learn new speech sound targets (Floody et al. 2010; 

Porter et al. 2011). In order to predict behavioral accuracy, we needed to transform the data by 

highlighting simultaneously occurring evoked activity. We smoothed across the spectral 

dimension, to mimic a biologically plausible way in which the brain weights excitatory synaptic 
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inputs (Bear, Cooper, Ebner 1987; Poirazi, Brannon, Mel 2003a; Poirazi, Brannon, Mel 2003b). 

The need for such smoothing suggests that the ability to use A1 activity to identify a speech 

stimulus requires integration across synapses. It is therefore unlikely that these thresholds are 

calculated or even exist in this core auditory region. 

Brain regions even one synapse higher than the core sensory area may code the 

relationship between two stimuli. For example, when monkeys were asked to identify whether 

two tactile stimuli were the same or different, primary somatosensory cortex encoded only the 

current stimulus, while secondary somatosensory cortex was already beginning to compare the 

two stimuli (Romo and Salinas 2003). It is likely that higher level brain regions contain 

integrator neurons that recognize patterns of activity occurring in lower level areas. Neural 

networks designed to mimic sensory neurons can be trained to integrate basic sensory 

information into categorical decisions (Buonomano and Merzenich 1995; Mazurek et al. 2003). 

Single neurons recorded in premotor cortex of monkeys can also predict the intended motor 

sequence when a maximum-likelihood decoder analyzes the firing rate (Shanechi et al. 2012). 

Our classifier does not propose a mechanism for how this threshold is created or where in the 

brain it is stored, but it is the first to show that a real time classifier can predict the location and 

identity of speech stimuli without being forced to choose between a set list of options. As in 

behavioral tasks, if the decision threshold is not met, the classifier is not required to guess. In 

addition, if multiple thresholds are met, our classifier is designed to choose the template which is 

most like the single trial.  

In the current study, we used Euclidean distance to determine the location of maximum 

sensitivity; the point at which most hits would be captured while minimizing false alarms. Once 
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calculated, these thresholds did not change as a result of testing, and our classifier used these 

thresholds to determine which stimulus evoked a single pattern of neural activity. It is unlikely 

that the brain does not adapt to real-time feedback during testing. If thresholds never changed, 

the brain would be inept at tasks of generalization. For example, the same word spoken with 

small changes in pitch, pronunciation and/or context may cause the brain to categorize these as 

two different words. It is well known that synapses change as a result of real-time feedback 

(Buonomano and Merzenich 1998; Cohen-Cory 2002; Malenka and Nicoll 1993; Malinow and 

Malenka 2002), but the question of how the brain monitors these changes and how drastic the 

adjustments are remains to be answered. A classifier that could adjust its thresholds in relation to 

real time feedback would provide a more biologically accurate model and may be able to explain 

models of learning impairments. 

Evaluation of the data set and classifier 

The data reported in our study was acquired from many animals and analyzed post hoc. 

In the anesthetized recordings, four electrodes were recorded simultaneously. In the awake 

preparation, up to seven electrodes were viable at any given time point. Single neuron recordings 

in premotor cortex can predict motor sequences in real time using spike rate information 

(Shanechi et al. 2012). Since consonant identification requires precise spike timing information, 

we were only able to achieve above chance performance with our classifier using more than 60 

sites. The development of multi-channel electrode arrays with at least this many channels will 

allow us to record enough neurons simultaneously to locate and identify an evoking speech 

stimulus in an awake-behaving animal.  
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The classifier uses a fixed window (80 ms) to scan a single trial of neural activity for evoked 

responses. There is sufficient information present in this window for consonant identification to 

take place (Engineer et al. 2008; Kuhl and Miller 1975; Miller and Nicely 1955). However, it is 

likely that rats and humans also use information occurring in larger integration windows, 

especially in difficult hearing environments (Shetake et al. 2011). Our classifier attempts to 

account for this by analyzing the normalized metric values within 5 ms of the initial guess. This 

allows the classifier some flexibility to wait until all similar templates are considered and then 

make a decision using the strongest signal. This time period of flexibility is biologically 

plausible as it is well within the minimum amount of time in which the brain can make a decision 

(Stanford et al. 2010). 

Future applications for the classifier 

In the current study, we demonstrate that a classifier can locate and identify speech sound 

stimuli in real time using single repeats of A1 neural activity. Real time classifiers have been 

developed in the motor system to identify and read out sequences of intended motor movements 

(Shanechi et al. 2012). Such work will be invaluable for the development of prosthetic limbs that 

carry out intended movements. Neural activity in other sensory systems, such as vision, has also 

been used in successful classifiers to identify objects presented to human and non-human primate 

participants. When participants are shown or asked to imagine varying images, the pattern of 

active voxels acquired by fMRI differs between categories of objects (Haxby et al. 2001; 

Norman et al. 2006; Stokes et al. 2009). Multiple voxel pattern analysis (MVPA) can be used to 

identify lines of varying orientation, the direction of movement of an image, or whether the 

visual object is a picture or a sentence. In a task where two competing images are presented, 
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MVPA can also predict when one image is perceived over the other, and which image is 

dominant on a second-to-second timescale (Haynes and Rees 2005; Polonsky et al. 2000). In 

addition, the use of pattern classification for olfactory information has been successfully 

integrated into electronic devices that identify odors by mimicking the human olfactory bulbs 

(Gutierrez-Osuna 2002). Such devices also contain feedback loops for optimization as well as 

several internal controls to account for differences in sensor settings and other sources of noise. 

The ability to integrate such controls into a speech sound classifier will greatly improve the 

performance of the classifier on tasks involving generalization or distortion.  

Conclusion 

       We developed a classifier that can locate and identify a speech stimulus using single trial 

neural responses. Unlike previous models, the current classifier is not forced to make a guess if 

the decision criterion is not met and is a good computational model for a possible mechanism of 

speech sound processing. The current study showed that such a classifier can predict rats’ speech 

sound discrimination ability in a previously described task as well as a novel task in which rats 

are trained to locate a target sound in a stream of speech sounds. These results indicate that the 

rat is a good animal model of human speech sound processing and will be valuable in evaluating 

the neural mechanisms responsible for many human speech sound processing disorders. Neural 

activity recorded from the awake and anesthetized rat can predict behavioral ability on a variety 

of tasks using single repeats in real-time. 
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APPENDIX 

 CHAPTER 5 FIGURES 

 

Figure 5.1. Explanation of decision threshold calculation. Decision thresholds were calculated by 

comparing single trial neural responses to the average evoked response to each consonant sound. 

For example, to create the decision threshold for the sound /sad/, the average response to this 

sound (over 19 repeats) was compared to all single trial responses to every sound. The similarity 

of the single trials to the template was calculated using Euclidean distance. We then plotted the 

Euclidean distance values generated when the single trials were evoked by the template sound 

(e.g. when template and single trial were both evoked by /sad/) versus the Euclidean distance 

values when the template did not match the single trial (e.g. when the template was evoked by 

/bad/ while the template was evoked by /sad/). The decision threshold was then set at the 

intersection point between these two distributions, as marked by a * in the bottom half of the 

figure. This maximized the sensitivity index so that the most correct answers were preserved 

while excluding the maximum number of false alarms.   
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Figure 5.2. A real time classifier could locate and identify nine consonant speech sounds with 

high levels of accuracy. A. The real time classifier was able to locate the onset of a speech 

stimulus with high levels of accuracy, but required a larger number of sites to accurately identify 

the speech sound. This is likely due to the limited frequency range included in small groups of 

sites. Previous classifiers provided the stimulus onset time and were able to achieve high levels 

of accuracy using single sites of neural activity. Points marked by black circles represent data 

sets that performed significantly above chance level (8% chance for detection, 10% chance for 

identification). B. Number of bits encoded in various subgroups of sites. 60 sites were able to 

locate the sound onset, but could not identify the sound, as this number of sites contained less 

than 0.8 bits of information. Larger groups of sites contained up to 3 bits of information and 

were better able to perform the task. C. Confusion matrix of classifier performance on nine 

English consonant sounds. The classifier performed the task with high levels of accuracy at 

every sound presented.  
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Figure 5.3. A Gaussian filter was necessary for highlighting evoked activity. A. Neural activity 

patterns in A1 without any smoothing. The first 40 ms of average evoked activity from each site 

is organized by characteristic frequency. Each consonant evoked a unique pattern of activity such 

that each group of neurons fire at a different latency depending on the characteristic frequency of 

the group. Red lines mark the onset response of each frequency group. B. The same neural 

activity plotted in A. after a Gaussian filter has been applied to the spectral dimension. We used 

a filter with a half width of 15% of the total number of sites. This ensured that spontaneous 

activity is not as influential on the classifier as evoked activity.  
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Figure 5.4. The classifier was able to locate and identify multiple speech sounds in a sequence. A 

single trial example of the classifier’s performance on a speech sequence. The classifier analyzed 

a single trial neural response to the sequence ‘bad tad gad dad’ by comparing the response to 

each of five templates. The Euclidean distance responses were converted to the normalized 

metric (NM) to that responses were between 0 and 1 (see Methods). If the NM value reached 1, 

the classifier signaled that a speech sound occurred at that time point and guesses that the 

corresponding template sound was presented. Each colored line represents the values yielded 

from comparison with each template, and *’s represent the location of a guess. Note that the 

template /sad/ never registered a guess during this sequence, signaling that the classifier correctly 

registered that the sound /sad/ was never presented.  
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Figure 5.5. Schematic of the behavioral task. Speech sounds are presented in random order 

beginning when a rat breaks the infra-red (IR) beam. Target sound (/dad/) was presented in a 

single random location anywhere from the third sound of the sequence until the end of the 2-7 

second trial. A. Example of a possible target trial. From the onset of the target sound, rats had 

500 ms to respond by withdrawing from the IR beam. If the target sound was less than 500 ms 

long, additional distracters were added afterwards to avoid the use of silence as a cue. Correct 

responses to the target were rewarded with a 45 mg sugar pellet. Incorrect responses to distracter 

sounds or missed responses to the target were punished by a 5 second timeout in which the booth 

lights were extinguished and the IR beam was disabled. B. Example of a possible catch trial. 

Twenty percent of trials were catch trials in which no target was presented. A false alarm to any 

of the stimuli triggered a time-out period. Correct rejections were un-rewarded and the next trial 

began after a brief delay. C. Simplified schematic of the behavior task. Top row shows a sound 

sequence, each box represents a speech sound. The colored box represents a possible target 

location. The middle row represents possible responses by the rat. The bottom row represents the 

outcomes of each response; a premature response yielded a time out in which the cage lights 

were extinguished and the program was paused. A correct response triggered a sugar pellet 

reward.  
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Figure 5.6. Average performance of rats and the classifier on the speech sequence task. A. 

Average behavioral performance by rats was measured by hits-false alarms for each of six 

presentation rates tested. Performance was plotted across a minimum of 10 sessions per rat of the 

testing stage in which all presentation rates were randomly interleaved in blocks of 20 trials per 

block (see Methods). Performance was robust until 10 and 20 sps (compared to performance at 2 

sps; *p<.01). The task was almost impossible for rats when sounds were presented at 20 sps (** 

p<.001 as compared to 2 sps). B. Average classifier performance at each of the six presentation 

rates. Performance was calculated by counting the number of correct responses per sequence 

over 20 repeats of each sequence. This process was repeated 30 times with random groups of 

sites and average performance across the 30 runs is plotted. The classifier performed with 

accuracy levels that did not differ from rats’ behavioral ability (unpaired t-tests, p=0.93, p=0.72, 

p=0.37, p=0.54, p=0.15, and p=0.17 at each presentation rate, respectively). C. Awake neural 

activity was able to predict the order of difficulty for rats to perform the sequence task for four 

specific speech sound sequences (R
2
=0.90, p=0.05). Both rats and the classifier performed best 

on the sequence /bad bad gad sad tad dad/ and worst on the sequence /sad sad bad tad gad dad/.  

 

  



185 

 

 
 

Figure 5.7. Cortical speech-evoked activity patterns were robust up to 10 sps. Neural responses 

were averaged for each site and plotted organized by characteristic frequency. Each consonant 

speech sound (by row) evoked a unique pattern of activity at 2 sps (first column). The response 

of these patterns was robust through the 10 sps presentation rate. At 20 sps, responses were 

visibly weaker and were less distinct that at the previous presentation rates. This drastic change 

in neural responses may be the reason that both behavior and classifier performance fall at this 

speed.  
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CHAPTER 6 

CONCLUSION 

  

The ability of the auditory cortex to encode natural sounds, specifically speech sounds, is a 

critical component to a high quality of life of all humans. Many disorders, such as dyslexia and 

autism, cause abnormal speech sound processing and can lead to poor school performance, low 

self esteem, and delinquency in adult life. Dyslexia is known to be caused by genetic variants, 

though the specific genes and severity of the impairment varies widely across individuals. In this 

dissertation, we provide the first evidence that in utero suppression of the dyslexia candidate 

gene Kiaa0319 causes a significant increase in the trial-by-trial variability of the neural response 

to auditory stimuli and that these impairments can be ameliorated with extensive behavioral 

training.  

The role of each associated gene on causing the neural and behavioral symptoms of 

dyslexia has only recently been explored. Humans with variants in KIAA0319 have reduced 

activation in left auditory cortex in response to auditory stimuli, and this corresponds to a 

significant behavioral impairment (Pinel et al. 2012).  Our results show that the reduced 

activation in human EEG studies is likely due to the increased trial-by-trial variability in neural 

responses. We show in Chapters 2 and 4 that at least 2 auditory fields (primary and posterior 

auditory cortices) have neural firing impairments and these deficits improve following training. 

Variants in another candidate dyslexia gene, DCDC2, are relatively common in humans and have 

been studied in rats as well (Lind et al. 2010; Scerri et al. 2011; Schumacher et al. 2006). 
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Humans with variants in this gene are known to have reading problems, but whether this gene 

also causes auditory processing impairments is unknown (Lind et al. 2010; Scerri et al. 2011). 

Dcdc2 knockout mice are impaired at rapid auditory processing and spatial maze tasks (Truong 

2009; Wang et al. 2011). The role of this gene in causing the behavioral speech processing 

impairments seen in the KIA- rats is unknown. DYX1C1 is a candidate-dyslexia gene whose role 

has been debated in the literature. It seems to cause visual and spatial impairments in rat models 

(Marino et al. 2007; Threlkeld et al. 2007), but its exact role in auditory processing is still 

unknown. In addition, some researchers deny that this gene is a risk factor for dyslexia at all 

(Marino et al. 2005; Scerri et al. 2004). Humans with ROBO1 variants have phonemic processing 

problems, but these mutations are rare and have never been studied in an animal model (Bates et 

al. 2011). Dyslexia is a complex disorder with a variety of symptoms that seem to affect 

individuals differently.  The variability in symptoms is likely due to the differences in genetic 

variants across individuals. Some genes may be responsible for the visual and spatial symptoms 

commonly seen in this disorder, while other genes seem to cause the auditory temporal 

processing deficits. All of these symptoms together likely cause the impaired reading scores 

which are the hallmark diagnostic criterion of this disorder. 

The auditory phoneme processing impairments discussed in Chapters 2 and 4 of this 

dissertation may be caused by the high trial-by-trial variability we saw in the onset latency of 

neural responses. Extensive training significantly reduced this variability, and returned neural 

firing precision of rats with in utero RNAi of Kiaa0319 to control levels. Future experiments are 

needed to determine whether this reduced variability was the driving mechanism behind the 

improved behavioral performance or whether this is a non-functional consequence of the 
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training. In Chapter 3, we described normal neural firing patterns in multiple auditory areas and 

suggested that non-primary areas may be functioning not only as a stimulus encoder, but also 

areas like the posterior auditory area (PAF) may be the first auditory area in which integration 

may be taking place. In primary, anterior, and ventral auditory fields, consonant sounds are more 

accurately encoded when spike timing information is preserved, while PAF can encode such 

stimuli with or without spike timing information (Chapter 3). The classifier performance was 

correlated to behavior using activity from each of the four auditory fields. It is possible that the 

comparable classifier performance serves as a way to help the brain process sound in adverse 

listening conditions. For example, in noisy conditions, speech-evoked responses in primary 

auditory cortex are significantly degraded (Shetake et al. 2011). Other auditory fields may not be 

similarly affected by background noise, allowing the brain access to necessary components of the 

speech signal (Figure 6.1). Additional studies are needed to address the speech-evoked responses 

in other auditory areas and inactivation studies are needed to address the hypothesis that the 

multiple auditory fields function cooperatively in adverse listening conditions. 

People with other communication disorders, such as autism, have a greater impairment in 

non-primary auditory areas. Neural recordings in our KIA- rats did not provide evidence of this 

in the two fields we investigated (A1 and PAF), but future studies are needed to evaluate other 

auditory areas as well as other brain regions. We hypothesize that variants in the dyslexia-

associated gene KIAA0319 will cause high trial-by-trial neural variability in other auditory areas, 

as well as other brain regions, such as visual and somatosensory cortices. This increased 

variability in other sensory systems may contribute to other dyslexia symptoms, such as impaired 

vision and spatial awareness. Additional studies are needed to evaluate whether other sensory 
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systems are similarly affected by suppression of the gene KIAA0319. Studies on visual acuity 

would also be beneficial for understanding whether KIAA0319 also causes impairment in this 

system. Genetic knockout rat models are beginning to be widely available and will provide an 

ideal system for answering some of these questions. Additional studies are also needed to 

evaluate the contribution of the other candidate dyslexia genes described above.  It is rare for a 

human with dyslexia to acquire the disorder due to a variant in only one of the dyslexia-

associated genes (or one of a number of other currently undocumented dyslexia-associated 

genes). Rat models will allow researchers to evaluate the consequence of in utero RNAi of 

combinations of genes on neural function in multiple brain areas and the behavioral consequence 

of such interference. 

The real time neural classifier described in Chapter 5 of this dissertation can use primary 

auditory cortex activity to locate and identify a speech sound stimulus with levels of accuracy 

comparable to the behavioral ability of rats. This classifier is likely able to perform the same task 

using neural activity from other sensory systems. Such a classifier would be valuable in 

evaluating other sensory system processing in not only dyslexia, but in disorders that can be 

more difficult to study, such as autism or schizophrenia.
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APPENDIX 

 CHAPTER 6 FIGURES  

 

 

Figure 6.1 Schematic of the possible role of multiple auditory fields for robust speech perception 

in adverse listening conditions. The auditory pathway consists of many parallel connections, 

depicted by the series of vertical lines. Since speech perception is robust in many adverse 

listening conditions, I hypothesize that these parallel connections may facilitate this process. If a 

particular masker, for example, a certain type of background noise, interferes with the 

transmission of information in a few of these pathways, the redundancy in other pathways may 

allow for the transmission of necessary information to integration and decision centers of the 

brain. 
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