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a b s t r a c t

In the Afterword to the second edition of the book ‘‘Estimation of Dependences Based on Empirical
Data’’ by V. Vapnik, an advanced learning paradigm called Learning Using Hidden Information (LUHI) was
introduced. This Afterword also suggested an extension of the SVMmethod (the so called SVMγ +method)
to implement algorithms which address the LUHI paradigm (Vapnik, 1982–2006, Sections 2.4.2 and 2.5.3
of the Afterword). See also (Vapnik, Vashist, & Pavlovitch, 2008, 2009) for further development of the
algorithms.
In contrast to the existing machine learning paradigm where a teacher does not play an important

role, the advanced learning paradigm considers some elements of human teaching. In the new paradigm
along with examples, a teacher can provide students with hidden information that exists in explanations,
comments, comparisons, and so on.
This paper discusses details of the new paradigm1 and corresponding algorithms, introduces some

new algorithms, considers several specific forms of privileged information, demonstrates superiority of
the new learning paradigm over the classical learning paradigm when solving practical problems, and
discusses general questions related to the new ideas.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction: What does it mean ‘‘To Learn using privileged
information’’ ?

The existing machine learning paradigm considers a simple
scheme: given a set of training examples find in a given collection
of functions the one that in the best possibleway approximates the
unknown decision rule. In such a paradigm a teacher does not play
an important role.
In human learning, however, the role of a teacher is very

important: along with examples a teacher provides students with
explanations, comments, comparisons, and so on. In this paper
we introduce elements of human teaching in machine learning.
We consider an advanced learning paradigm called learning using
privileged information (LUPI), where at the training stage a teacher
gives some additional information x∗ about training example x; this
privileged information will not be available at the test stage (Vapnik,
1982–2006).Wewill develop the LUPI paradigm for support vector
machine type of algorithms, and will demonstrate the superiority
of the advanced learning paradigm over the classical one.
Formally, the classical paradigmof supervisedmachine learning

is described as follows: given a set of pairs (training data)
(x1, y1), . . . , (x`, y`), xi ∈ X, yi ∈ {−1, 1},

∗ Corresponding author. Tel.: +1 609 750 0170.
E-mail addresses: vlad@nec-labs.com, vapnik@att.net (V. Vapnik),

vashist@nec-labs.com (A. Vashist).
1 In this article we changed the terminology. We will call this paradigm Learning
Using Privileged Information (LUPI) (instead of LUHI) since thewordprivilege better
reflects the core idea of the new paradigm.
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generated according to a fixed but unknown probability measure
P(x, y), find among a given set of functions f (x, α), α ∈ Λ the
function y = f (x, α∗) that minimizes the probability of incorrect
classifications (incorrect values of y). In this paradigm the vector
xi ∈ X is description of the example and yi is its classification.
The goal is to find the function y = f (x, α∗) that guarantees the
smallest probability of incorrect classifications.
The LUPI paradigm can be described as follows: given a set of

triplets

(x1, x∗1, y1), . . . , (x`, x
∗

`, y`), xi ∈ X, x∗i ∈ X
∗, yi ∈ {−1, 1},

generated according to a fixed but unknown probability measure
P(x, x∗, y) find among a given set of functions f (x, α), α ∈ Λ the
function y = f (x, α∗) that guarantees the smallest probability of
incorrect classification.
In the LUPI paradigm we have exactly the same goal as in the

classical paradigm i.e., to find the best function in the admissible
set of classification functions. However during the training
stage we are given an additional privileged information (triplets
(x, x∗, y) instead of pairs (x, y) as in the classical paradigm). The
additional information x∗ ∈ X∗ belongs (generally speaking) to the
space X∗ which is different from the space X .
Since the additional information is available at the training

stage but it is not available for the test set we call it privileged
information and the new machine learning paradigm learning
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using privileged information or master-class learning2 (Vapnik,
1982–2006).
Let us consider several examples where a teacher has an

additional information during the training stage. More details will
be presented in the latter part of this paper.

1. Suppose our goal is to find a rule that can predict outcome y of
a treatment in a year given the current symptoms x of a patient.
However at the training stage a teacher also can give additional
information x∗ about the development of symptoms in three
months, in six months, and in nine months. Can this additional
information about the development of symptoms improve a
rule that predicts the outcome in a year?

2. Suppose that our goal is to find a rule to classify biopsy images
into two categories: cancer and non-cancer. Here the problem
is given images described in the pixel space find a classification
rule in the pixel space. However, along with the picture the
doctor has a report, written by a pathologist, which describes
the pictures using a high level holistic language. The problem is
to use pictures along with the pathologist’s reports which will
not be available at the test stage to find a good classification
rule in the pixel space. In fact, the goal is to make an accurate
diagnosis without consulting with a pathologist.

3. Suppose that our goal is to predict the exchange rate of a
currency at the moment t in the money exchange problem.
In this problem we have observations about the rate before
the moment t and the goal is to predict if the rate will go
up or down at the moment t . However in the historical data
along with observations about the rates before moment t
we also have observations about rates after moment t . This
information is hidden for testing (but available for training). Can
this privileged information (about future in the past) help one
to construct a better predictive rule?

The situation with existence of privileged information is very
common. In fact, for almost all machine learning problems there
exists some sort of privileged information.
In the next sectionwewill introduce amechanism for SVM type

of algorithms, which allows one to take advantage of privileged
information. However first let us make the following remark:

It is known that well defined learning algorithms (say SVM
with a universal kernel) converge, with increasing number of
observations, to the Bayesian solution (Steinwart, 2002; Vapnik,
1998). The goal of the LUPI paradigm is to use privileged
information to significantly increase the rate of convergence.

2. How privileged information can be used in SVM type of
algorithms

The basic idea of SVM is to find the optimal separating
hyperplane, the one that makes a small number of training errors
and possesses a largemargin (Boser, Guyon, & Vapnik, 1992; Cortes
& Vapnik, 1995).
There are two caseswhen constructing the optimal hyperplane:

constructing the optimal hyperplane in the separable case (when
the number of training errors is equal to zero) and constructing the
optimal separating hyperplane in the non-separable case (when
the number of training errors is not equal to zero).
To find the optimal hyperplane in the separable case one has to

minimize the functional

R(w, b) = (w,w)

2 In human master-class learning teacher’s comments play the most important
role. In fact, master-class learning uses the power of privileged information.
subject to the constraints
yi[(w, xi)+ b] ≥ 1, i = 1, . . . , `.
To find the optimal hyperplane in the non-separable case one

introduces non-negative slack variables
ξi ≥ 0, i = 1, . . . , `,
and minimizes the functional

R(w, b, ξ) =
1
2
(w,w)+ C

∑̀
i=1

ξi (1)

subject to the constraints
yi[(w, xi)+ b] ≥ 1− ξi, i = 1, . . . , `. (2)
For both the problems there exist effective solutions (Platt, 1998;
Vapnik, 1995, 1998).
From (1) and (2) one can see that there exists some small value

of C in objective function (1) that in non-trivial cases makes any
problemnon-separable (not for all i = 1, . . . , ` the equation ξi = 0
is true).
Note that in the separable case using ` observations one has to

estimate n parameters of the vectorw, while in the non-separable
case one has to estimate n + ` parameters (n parameters of
the vector w that defines a hyperplane and ` values of slacks
ξi). Generally speaking, slacks are defined by the values of some
function chosen from a wide set of functions (with high VC
dimension).
This fact is reflected in the bounds for the rate of convergence:

for the separable case one can guarantee a fast rate of convergence
which has an order O(h/`), where h is the VC dimension of the set
of admissible hyperplanes while for the non-separable case one
can guarantee only O(

√
h/`) rate of convergence (Vapnik, 1982–

2006, 1998) (since choosing the slacks is equivalent to choosing a
slack-function φ(x, δ∗) from the set φ(x, δ), δ ∈ ∆ which defines
the values ξi = φ(xi, δ∗), i = 1, . . . , `; the admissible set of slack-
functions can have a high VC-dimension).

2.1. The key observation: Oracle SVM

Suppose now that any vector x ∈ X belongs to one and only one
of the two classes and that there exists the best (which minimizes
the error rate) linear rule, defined by the pairw0, b0. Suppose that
there also exists the so-called Oracle function
ξ(x) = [1− yi((w0, x)+ b0)]+
which satisfies the inequality
yi((w0, xi)+ b0) ≥ 1− ξ 0i , ∀(xi, yi),
where
ξ 0i = ξ(xi).

Note that ξ 0i < 1 if the classification of the vector xi using
hyperplane defined by the pair w0, b0 is correct and ξ 0i > 1 if the
classification is incorrect.
Now let a teacher supply us with triplets

(x1, ξ 01 , y1), . . . , (x`, ξ
0
` , y`).

In this case instead of solving a non-separable type of problem
(estimating n parameters of vector w of the hyperplane and `
values of slacks ξi) one is faced with solving a separable type of
problem which leads to estimation of only n parameters of the
hyperplane: one has to minimize the functional
R(w, b) = (w,w) (3)
(same as in the separable case) subject to the following constraints
(which are slightly different from the separable case constraints)
yi[(w, xi)+ b] ≥ ri, i = 1, . . . , `, (4)
where ri = 1−ξ 0i are knownvalues. Let us call the problemdefined
by (3), (4) the Oracle SVM problem.
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It is easy to prove the following fact.

Proposition 1. If any vector x ∈ X belongs to one and only one
of the classes and there exists an Oracle function with respect to
the best decision rule in the admissible set of hyperplanes, then with
probability 1− η the following bound holds true

P(y[(w`, x)+ b`] < 0) ≤ P(1− ξ 0 < 0)+ A
h ln `h − ln η

`
, (5)

where P(y[(w`, x) + b`] < 0) is the probability of error for the
Oracle SVM solution on the training set of size `, P(1 − ξ 0 < 0) is
the probability of error for the best solution in the admissible set of
functions, h is the VC dimension of the admissible set of hyperplanes,
and A is a constant.
That is the Oracle solution converges to the best possible solution

in the admissible set of solutions with the rate O(h/`).

Indeed, let a and b be random values. Consider three events
a < 0, b < 0, and a − b < 0. Note that if event a < 0 holds true
then at least one of the two following events b < 0 or a− b < 0 is
valid. Therefore,
P{a < 0} ≤ P{b < 0} + P{a− b < 0}.
Now letw`, b` be the solution to the problemdefined by (3), (4).

Consider random values a = y[(w`, x) + b`], and b = 1 − ξ 0(x).
For these events the following inequality holds true
P{y[(w`, x)+ b`] < 0} ≤ P{y(w`, x)

+ b` < 1− ξ 0(x)} + P{1− ξ 0(x) < 0}, (6)
where probabilities of events in the inequality are generated by the
training sets of size `.
Following exactly as was done in Vapnik (1982–2006) (Chapter

6, Theorem 6.8), one can show, using the uniform convergence
arguments, that for events whose values of empirical error are
equal to zero (w`, b` satisfy (4)), with probability 1 − η the
following inequality holds true

P{y[(w`, x)+ b`] < 1− ξ 0(x)} ≤ A
h ln 2`h − ln η

`
. (7)

Note that
P{y[(w`, x)+ b`] < 0} (8)
is the probability of error of the estimated rule. Since ξ 0 = ξ 0(x)
are the values of the Oracle function for the best admissible rule,
the probability of events {1− ξ 0(x) < 0} defines the error rate for
this rule

P{1− ξ 0(x) < 0}. (9)
Combining (6), (7), (8) and (9) one obtains (5).
Fig. 1 shows the rate of convergence error rate of the SVM, and

the Oracle SVM to the Bayesian rate for an artificial problem.

2.2. Privileged information and SVM

In reality, however, a teacher does not know either the values
of slacks or the Oracle function. Instead, he can supply us with
privileged information x∗ ∈ X∗ and with the admissible set of the
so called correcting functions φ(x∗, δ), δ ∈ ∆ that have a low VC
dimension and contains the correcting function which defines the
values of the Oracle function
ξ 0(xi) = φ(x∗i , δ0), ∀(xi, x

∗

i , yi).
In this case our goal is to minimize (overw, b, δ) the functional

R(w, b, δ) =
∑̀
i=1

θ [φ(x∗i , δ)− 1] (10)

(here θ(u) = 1 if u > 0 and zero otherwise) subject to constraints

yi[(w, xi)+ b] ≥ 1− φ(x∗i , δ), i = 1, . . . , `. (11)
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Fig. 1. An artificial problem. (a) Sample data with Bayes decision boundary
(diagonal line). (b) Comparison of SVM, Oracle SVM, and Bayesian error rate.

For this problem the following proposition analogous to Proposi-
tion 1, is valid:

Proposition 2. Under the conditions of Proposition 1with probabil-
ity 1− η the following bound holds true

P(y[(w`, x)+ b`] < 0)

≤ P(1− φ(x∗, δ`) < 0)+ A
(h+ h∗) ln 2`

(h+h∗) − ln η

`
,

where P(y[(w`, x)+b`] < 0) is the probability of error for solution of
the problem (10), (11) on the training set of size `, P(1−φ(x∗, δ`) <
0) is the probability of event {φ(x∗, δ`) > 1}, h is the VC dimension
of the admissible set of hyperplanes, and h∗ is the VC dimension of the
admissible set of correcting functions.

The proof of this Proposition is analogous to the proof of
Proposition 1. The only difference is that instead of using the
uniform convergence argument over one parameterw that defines
the set of linear admissible decision functions (as in (7)) we use the
uniform convergence argument over two parametersw and δ that
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define both the admissible sets: the set of linear decision functions
and the set of correcting functions. We have

P{y[(w`, x)+ b`] < 1− φ(x∗, δ`)} ≤ A
(h+ h∗) ln 2`

h+h∗ − ln η

`
,

where (h + h∗) is the sum of the capacities of the two sets
of admissible functions: the capacity h of the set of admissible
decision functions and the capacity h∗ of the set of admissible
correcting functions.
To obtain the rate of convergence to the best possible rule one

needs to estimate the rate of convergence P{φ(x∗, δ`) > 1} to
P{φ(x∗, δ0) > 1}. Note that this convergence is defined in the space
suggested by a teacher (not in the decision space for the problem
of interest).
In standard situation the uniform convergence arguments

define an order O(
√
h∗/`) where h∗ is the VC dimension of

the admissible set of correcting functions. However for special
constructions of the correcting space X∗ (for example, that satisfies
the conditions defined by Tsybakov (2004) or the conditions
defined by Steinwart and Scovel for SVM (Steinwart & Scovel,
2004)) the convergence can be faster (O([1/`]α), α > 1/2).
A good correcting space is the one that allows a rate of

convergence faster than the standard one.
The art of teacher is to specify such a space of privileged

information and a set of admissible correcting functions that provide
a fast rate of convergence

2.3. Two models of correcting functions

In this article we consider two models of the set of correcting
functions: (A) the general X∗SVM+ model and (B) the particular
dSVM+ model.
(A) In the X∗SVM+ model, an admissible set of non-negative

correcting functions is defined in the multi-dimensional X∗-space.
(B) In the dSVM+ model, a set of admissible non-negative cor-

recting functions is defined in a special one-dimensional d-space
constructed as follows:
Step 1 Consider the conjugate problem of finding the decision rule

in the space X∗ by minimizing the functional

R(w∗, b∗, ξ ∗) =
1
2
(w∗, w∗)+ C

∑̀
i=1

ξ ∗i

subject to the constraints

yi[(w∗, x∗i )+ b
∗
] ≥ 1− ξ ∗i , ξ ∗i ≥ 0, i = 1, . . . , `

(using the classical SVM approach in X∗ space). Let w∗` and
b∗` be the solution to this problem.

Step 2 Using the solution to this problem define the so-called
deviation values

di = 1− yi[(w∗` , x
∗

i )+ b
∗

`].

Step 3 Construct a new set of triplets of training data
(x1, d1, y1), . . . , (x`, d`, y`)

(use deviation value d as privileged information instead of
vector x∗).

Use this training data in SVM+ method (described in the next
section) to learn a decision rule.
This idea stresses the main goal, to provide information about

the slack variables in the simplest form (which allows one to
choose the correcting functions from the set of one-dimensional
functions with small VC dimension).
In sections devoted to experiments we will show that both

methods of estimating slacks (the general X∗SVM+ and the
particular dSVM+) lead to results that significantly outperform the
classical SVM method. Also in almost all of our experiments the
dSVM+ method outperforms the X∗SVM+ method.
3. Background: SVM and SVM+ methods

3.1. Background of SVM

To learn the decision rule y = f (x) given training data, SVM
first maps vectors x of space X into vectors z of space Z where
it constructs the optimal separating hyperplane. (In the space X
this hyperplane corresponds to some non-linear function (Cortes
& Vapnik, 1995; Vapnik, 1998)). In other words, we consider the
following problem: minimize the functional

R(w, b, ξ) =
1
2
(w,w)+ C

∑̀
i=1

ξi (12)

subject to constraints
yi[(w, zi)+ b] ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , `. (13)
The standard technique for solving this quadratic optimization

problems is to construct Lagrangian

L(w, b, ξ , α, β) =
1
2
(w,w)+ C

∑̀
i=1

ξi

−

∑̀
i=1

αi [yi((w, zi)+ b)− 1+ ξi]−
∑̀
i=1

βi, ξi,

where αi ≥ 0 and βi ≥ 0 are the Lagrange multipliers, minimize
this functional over w, b, and ξ and maximize it over multipliers
α and β . The (dual space) solution of this problem requires to
maximize the functional

R(α) =
∑̀
i=1

αi −
1
2

∑̀
i,j=1

αiαjyiyj(zi, zj) (14)

subject to constraints∑̀
i=1

yiαi = 0, (15)

0 ≤ αi ≤ C, (16)
where the vectorw is defined by the equation

w =
∑̀
i=1

yiαizi,

and therefore the decision function sgn[(w, z)+ b] is defined as

(w, z)+ b =
∑̀
i=1

yiαi(zi, z)+ b. (17)

Since according to Mercer’s theorem (Vapnik, 1998) for any
inner product in Z space there exists a positive definite function
(kernel) K(xi, xj) such that

(zi, zj) = K(xi, xj) (18)
and vice-versa for any kernel there exists a space Z for which the
equality (18) holds one can rewrite the Eqs. (14) and (17) as follows

R(α) =
∑̀
i=1

αi −
1
2

∑̀
i,j=1

αiαjyiyjK(xi, xj) (19)

f (x) =
∑̀
i=1

yiαiK(xi, x)+ b.

Therefore, to find the decision rule one needs to maximize the
functional (19) subject to constraints (15) and (16). For detail on
the SVMmethod see Vapnik (1995, 1998).

3.2. Background of SVM+

In the SVM+ method we map vectors x of our training triplets
(x, x∗, y) into space Z and vectors x∗ into space Z∗ where we define
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our decision rule and correcting (slack) function as linear functions
(w, z)+b and ξ = (w∗, z∗)+b∗, respectively (Vapnik, 1982–2006).
To find these functions we minimize the functional

R(w,w∗, b, b∗) =
1
2
[(w,w)+ γ (w∗, w∗)]

+ C
∑̀
i=1

[(w∗, z∗i )+ b
∗
]

(here we define ξi = [(w∗, z∗i )+ b
∗
]) subject to constraints

yi[(w, zi)+ b] ≥ 1− [(w∗, z∗i )+ b
∗
], i = 1, . . . , `,

[(w∗, z∗i )+ b
∗
] ≥ 0, i = 1, . . . , `.

As in the previous section to solve this problem we construct
the Lagrangian

L(w, b, w∗, b∗, α, β) =
1
2
[(w,w)+ γ (w∗, w∗)]

+ C
∑̀
i=1

[(w∗, z∗i )+ b
∗
] −

∑̀
i=1

αi
[
yi[(w, zi)+ b]

− 1+ [(w∗, z∗i )+ b
∗
]
]
−

∑̀
i=1

βi[(w
∗, z∗i )+ b

∗
],

minimize it with respect tow, b,w∗, b∗ andmaximize with respect
to Lagrange multipliers α ≥ 0, β ≥ 0.
The (dual space) solution to this problem is defined by the

decision function

f (x) = (w, z)+ b =
∑̀
i=1

yiαiK(xi, x)+ b. (20)

and the corresponding correcting function

φ(x∗) = (w∗, z∗)+ b∗ =
1
γ

∑̀
i=1

(αi + βi − C)K ∗(x∗i , x
∗)+ b∗.(21)

Here K(xi, xj) and K ∗(x∗i , x
∗

j ) are kernels in X and X
∗ spaces that

define inner products in Z and Z∗ spaces and α, β are the solution
of the following optimization problem: maximize the functional

R(α, β) =
∑̀
i=1

αi −
1
2

∑̀
i,j=1

αiαjyiyjK(xi, xj)

−
1
2γ

∑̀
i,j=1

(αi + βi − C)(αj + βj − C)K ∗(x∗i , x
∗

j ) (22)

subject to three types of constraints∑̀
i=1

(αi + βi − C) = 0,

∑̀
i=1

yiαi = 0, (23)

αi ≥ 0, βi ≥ 0.

3.3. Remarks on SVM+ algorithm

SVM+algorithmhas a simple interpretation. It has twokernels –
which in different spaces define similarity measures between two
objects. The decision function (20) depends on the kernel defined
in the decision space. However, coefficients α generally speaking
depend on similarity measures in both the spaces: decision and
correcting spaces. Note that admissible SVM+ solutions contain the
SVM solution. When the first constraint in (23) is valid as follows
αi + βi − C = 0, i = 1, . . . , `, (24)
(rather than overall sum being 0 as in (23)) the third term in
(22) reduces to zero and constraints (23) become equivalent
to constraints3∑
i=1

yiαi = 0

0 ≤ αi ≤ C, i = 1, . . . , `.
Also when γ tends to zero the equalities (24) hold true. In these
situations we are back to SVM solution. That is when similarity
measures in the correcting space are not appropriate the SVM+
algorithm can reject privileged information and construct the SVM
solution. Otherwise the SVM+ takes privileged information into
account.
From a mathematical point of view the SVM+ algorithm that

takes into account both privileged and unprivileged information
is very similar to SVM algorithms for finding solutions in the
classical pattern recognition framework. It requires solving a
quadratic optimization problem under constraints that are similar
to constraints in the classical SVM. However the SVM+ algorithm
is computationally costlier than SVM. It requires tuning of four
hyper-parameters instead of two.

4. Some extensions of the SVM+ method

In this section we consider three extensions of the SVM+
method.

4.1. Mixture model of slacks

In the previous section we modeled slacks by values of some
smooth function. This is not always the best choice. Let us model
slacks by a mixture of values of some smooth function φ(x∗i ) =
[(w∗, z∗i )+ b

∗
] and some values ξ ∗i

ξi = [(w
∗, z∗i )+ b

∗
] + ξ ∗i , i = 1, . . . , `, (25)

(w∗, z∗i )+ b
∗
≥ 0, ξ ∗i ≥ 0, i = 1, . . . , `. (26)

Our goal is to minimize the functional

R(w,w∗, b, b∗, ξ ∗) =
1
2
[(w,w)+ γ (w∗, w∗)]

+ C
∑̀
i=1

[(w∗, z∗i )+ b
∗
] + θC

∑̀
i=1

ξ ∗i (27)

subject to constraints
yi[(w, zi)+ b] ≥ 1− [(w∗, z∗i )+ b

∗
] − ξ ∗i ,

[(w∗, z∗i )+ b
∗
] ≥ 0,

ξ ∗i ≥ 0.
In the Eq. (27) we choose value θ > 1 to reinforce the smooth
function part of the solution. (Note that for 0 < θ ≤ 1 we are back
to SVM solution while for sufficiently large value of θ we get the
solution described in the previous section.)
The algorithm for finding the dual space solution for this

extension almost coincides with the SVM+ algorithm described in
the previous section. To define decision and correcting functions
(20), (21) one has to maximize the same functional (22) subject to
constraints (23) and the constraints
0 ≤ αi ≤ θC, i = 1, . . . , `.

4.2. Model where privileged information is available only for a part of
the training data

Let us consider the situationwhen at the training stage a teacher
supplies privileged information only for a fraction of examples.
That is, the given training data has n pairs
(x1, y1), . . . , (xn, yn),

3 One can consider the SVM+ algorithm as a form of relaxation of the SVM
algorithm.
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and `− n triplets

(xn+1, x∗n+1, yn+1), . . . , (x`, x
∗

`, y`).
In this situation one can introduce a model of slacks only for

the cases where we are given the triplets, so we minimize the
functional

R(w,w∗, b, b∗, ξ) =
1
2
[(w,w)+ γ (w∗, w∗)]

+ C
n∑
i=1

ξi + C∗
∑̀
i=n+1

[(w∗, z∗i )+ b
∗
]

subject to constraints

yi[(w, zi)+ b] ≥ 1− ξi, i = 1, . . . , n,
ξi ≥ 0, i = 1, . . . , n,
yi[(w, zi)+ b] ≥ 1− [(w∗, z∗i )+ b

∗
], i = n+ 1, . . . , `,

[(w∗, z∗i )+ b
∗
] ≥ 0, i = n+ 1, . . . , `.

The dual space solution for this case defines the decision
function as (20) and the correcting function (for examples n +
1, . . . , `) as

φ(x∗i ) =
1
γ

∑̀
j=n+1

(αj + βj − C∗)K ∗(x∗j , x
∗

i )+ b
∗,

i = n+ 1, . . . , `,

where coefficientsαi, βi are defined by the vector ofmaxima of the
quadratic form

R(α, β) =
∑̀
i=1

αi −
1
2

∑̀
i,j=1

αiαjyiyjK(xi, xj)

−
1
2γ

∑̀
i,j=n+1

(αi + βi − C∗)(αj + βj − C∗)K ∗(x∗i , x
∗

j )

subject to the constraint∑̀
i=1

yiαi = 0,

the constraint∑̀
i=n+1

(αi + βi − C∗) = 0,

the constraints

0 ≤ αi ≤ C, i = 1, . . . , n,
αi ≥ 0, i = n+ 1, . . . , `,

(or the constraints

0 ≤ αi ≤ θC∗, i = n+ 1, . . . , `,

if one considers the mixture model (25), (26) of slacks ξi, i =
n+ 1, . . . , `) and the constraints

βi ≥ 0, i = n+ 1, . . . , `.

4.3. Multiple-space privileged information

Supposewe are given privileged information described inmany
different spaces. Without loss of generality let us consider two
spaces: space X∗ and space X∗∗.
Suppose we are given the triplets

(xi, x∗i , yi), i = 1, . . . , n,

for one part of data and the triplets

(xi, x∗∗i , yi), i = n+ 1, . . . , `,

for another part of data.
Let us map vectors x ∈ X into space Z , vector x∗ ∈ X∗ into
space Z∗ and vector x∗∗ ∈ X∗∗ into space Z∗∗ where we consider
the linear functions

(w, z)+ b, (w∗, z∗)+ b∗, (w∗∗, z∗∗)+ b∗∗.

Our goal is to minimize the functional

R(w,w∗, w∗∗, b, b∗, b∗∗) =
1
2
[(w,w)+ γ ((w∗, w∗)

+ (w∗∗, w∗∗))] + C
n∑
i=1

[(w∗, z∗i )+ b
∗
] + C

∑̀
i=n+1

[(w∗∗, z∗∗i )+ b
∗∗
]

subject to the constraints

[(w∗, z∗i )+ b
∗
] ≥ 0, i = 1, . . . , n,

[(w∗∗, z∗∗i )+ b
∗∗
] ≥ 0, i = n+ 1, . . . , `,

yi[(w, zi)+ b] ≥ 1− [(w∗, z∗i )+ b
∗
], i = 1, . . . , n,

yi[(w, zi)+ b] ≥ 1− [(w∗∗, z∗∗i )+ b
∗∗
], i = n+ 1, . . . , `.

The dual space solution to this problem defines the decision
function y = sgn[f (x)]

f (x) =
∑̀
i=1

yiαiK(xi, x)+ b,

and the two correcting functions: the correcting function for the
first set of examples

φ1(x∗j ) =
1
γ

n∑
i=1

(αi + βi − C)K ∗(x∗i , x
∗

j )+ b
∗, j = 1, . . . , n,

and the correcting function for the second set of examples

φ2(x∗∗j ) =
1
γ

∑̀
i=n+1

(αi + βi − C)K ∗∗(x∗∗i , x
∗∗

j )+ b
∗∗,

j = n+ 1, . . . , `.

To find the unknown parameters of these functions one has to
maximize the functional

R(α, β) =
∑̀
i=1

αi −
1
2

∑̀
i,j=1

yiyjαiαjK(xi, xj)

−
1
2γ

n∑
i,j=1

(αi + βi − C)(αj + βj − C)K ∗(x∗i , x
∗

j )

−
1
2γ

∑̀
i,j=n+1

(αi + βi − C)(αj + βj − C)K ∗∗(x∗∗i , x
∗∗

j )

subject to constraints

αi ≥ 0, βi ≥ 0,∑̀
i=1

yiαi = 0,

n∑
i=1

(αi + βi − C) = 0,

∑̀
i=n+1

(αi + βi − C) = 0.

One can introduce more versions of the LUPI paradigm,
however, we restrict ourself to these three.

5. Generalization for the regression estimation problem

The LUPI paradigm can be applied to the regression estimation
problem also (see Vapnik (1982–2006), Section 2.5.3 of the
Afterword).
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5.1. Background of SVM regression

In the classical setting of SVM regression (RSVM), we are given
a set of i.i.d. training data
(x1, y1), . . . , (x`, y`),
where x ∈ X is a vector and y ∈ (−∞,∞) is a real value. Our goal
is to estimate a real-valued regression function y = f (x).
As before, to solve this problem using the kernel technique we

map our vectors x ∈ X into vectors z ∈ Z and approximate the
regression by a linear function in Z space
y = (w, z)+ b,
where w and b have to be determined. In RSVM we consider the
following setting: we minimize the functional

R(w, b) =
1
2
(w,w)+ C

∑̀
i=1

|yi − (w, zi)− b|ε,

where uε is the so-called ε-insensitive function introduced
in Vapnik (1995):
uε = 0 if |u| ≤ ε and uε = u if |u| > ε.

To minimize this functional we solve the following equivalent
problem: minimize the functional

R(w, b, ξ , ξ ∗) =
1
2
(w,w)+ C

∑̀
i=1

(ξi + ξ
∗

i )

subject to constraints
yi − (w, zi)− b ≤ ε + ξi, i = 1, . . . , `,
(w, zi)+ b− yi ≤ ε + ξ ∗i , i = 1, . . . , `.
The dual space solution of this problem has a form

y =
∑̀
i=1

(α∗i − αi)K(xi, x)+ b,

where K(·, ·) is a positive definite kernel (that defines inner
product of Z space in X space).
To find the parametersα, α∗ onehas tomaximize the functional

R(α, α∗) = −ε
∑̀
i=1

(αi + α
∗

j )+
∑̀
i=1

yi(α∗i − αi)

−
1
2

∑̀
i,j=1

(α∗i − αi)(α
∗

j − αj)K(xi, xj)

subject to constraints∑̀
i=1

α∗i =
∑̀
i=1

αi,

0 ≤ αi ≤ C, 0 ≤ α∗i ≤ C .

5.2. Background of SVM+ regression

In the situation with privileged information we are given the
triplets
(x1, x∗1, y1), . . . , (x`, x

∗

`, y`)
at the training stage rather than pairs (xi, yi)).
As in SVM+ let usmap vector x into Z space, vector x∗ into space

Z∗ where we consider three sets of linear functions:
(1) a set of linear functions in Z space (w, z) + b in which we

will look for approximating a decision function,
(2) a set of linear functions (w∗1, z

∗)+ b∗1 in which we will look
for approximation of correcting functions for slacks ξi, and
(3) a set of linear functions (w∗2, z

∗)+ b∗2 in which we will look
for approximation of the correcting functions for slacks ξ ∗i .
Therefore our problem (let us call it RSVM+) will be minimiza-
tion of the functional

R(w,w∗1, w
∗

2, b, b
∗

1, b
∗

2) =
1
2
[(w,w)+ γ [(w∗1, w

∗

1)+ (w
∗

2, w
∗

2)]]

+ C
∑̀
i=1

[(w∗1, z
∗

i )+ b
∗

1] + C
∑̀
i=1

[(w∗2, z
∗

i )+ b
∗

2]

subject to constraints

yi − (w, zi)− b ≤ ε + (w∗1, z
∗

i )+ b
∗

1, i = 1, . . . , `,
(w, zi)+ b− yi ≤ ε + (w∗2, z

∗

i )+ b
∗

2, i = 1, . . . , `,
[(w∗1, z

∗

i )+ b
∗

1] ≥ 0, i = 1, . . . , `,
[(w∗2, z

∗

i )+ b
∗

2] ≥ 0, i = 1, . . . , `.

The dual space solution to this problem defines the decision
function

f (x) =
∑̀
i=1

(α∗i − αi)K(xi, x)+ b

and the two correcting functions

φ1(x∗) =
1
γ

∑̀
i=1

(αi + βi − C)K ∗(x∗i , x
∗)+ b∗1,

φ2(x∗) =
1
γ

∑̀
i=1

(α∗i + β
∗

i − C)K
∗(x∗i , x

∗)+ b∗2,

where K(·, ·) and K ∗(·, ·) are kernels that define inner products
for spaces Z and Z∗, respectively. The parameters α, α∗, β, β∗
are solution to the following optimization problem: maximize the
functional

R(α, α∗, β, β∗) = −ε
∑̀
i=1

(αi + α
∗

i )

+

∑̀
i=1

yi(α∗i − αi)−
1
2

∑̀
i,j=1

(α∗i − α)(α
∗

j − αj)K(xi, xj)

−
1
2γ

∑̀
i,j=1

(α∗i + β
∗

i − C)(α
∗

j + β
∗

j − C)K
∗(x∗i , x

∗

j )

−
1
2γ

∑̀
i,j=1

(αi + βi − C)(αj + βj − C)K ∗(x∗i , x
∗

j )

subject to constraints∑̀
i=1

α∗i =
∑̀
i=1

αi,

∑̀
i=1

(α∗i + β
∗

i − C) = 0,

∑̀
i=1

(αi + βi − C) = 0,

α∗i ≥ 0, αi ≥ 0, β
∗

i ≥ 0, βi ≥ 0, i = 1, . . . , `.

From a computational point of view the RSVM+ algorithm
that finds a solution using privileged information is similar to
the classical RSVM algorithm for solving regression estimation
problem.
For the RSVM+ algorithm one can consider all the extensions

described for the pattern recognition problem.
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6. Extracting privileged information by adapting to teacher’s
concept of distance

Consider onemore idea of using privileged information defined
by the training vectors

(x1, x∗1, y1), . . . , (x`, x
∗

`, y`).

Let vectors

x∗i = (x
∗

i (1), . . . , x
∗

i (m)) ∈ X
∗, i = 1, . . . , `

have pair-wise distances in them-dimensional Euclidean space X∗
defined by the following `× `matrix

M∗ = ‖a∗i,j‖, i, j = 1, . . . , `

a∗i,j =

√√√√ m∑
k=1

(x∗i (k)− x
∗

j (k))2,

where x∗i (k) is value of coordinate k of vector x
∗

i .
Consider the simplest (from computational point view) case: let

us define the metric in X space as follows

ai,j =

√√√√ n∑
k=1

(xi(k)− xj(k))2λk (28)

where themetric of space X has n fixed parameters λk ≥ 0 (scaling
factors not necessarily equal to one).
Based on this metrics we define matrix of pairwise distances

M = ‖ai,j‖, i, j = 1, . . . , `.

Let us choose such scaling factors in the metric of X-space that
specify the closest matrixM to thematrixM∗ where closeness ρ of
the matrixes we define by the expression

ρ =
∑̀
i,j

(a2i,j − (a
∗

i,j)
2)2. (29)

The explicit form of this expression is

ρ(λ) =
∑̀
i,j

(
n∑
k=1

λk(xi(k)− xj(k))2 − (a∗i,j)
2

)2
.

To find the optimal scaling factor one has to minimize the
functional ρ(λ) with respect to λk ≥ 0. This leads to the solution
of the following problem: maximize the quadratic form
n∑
k=1

λkck −
1
2

n∑
k,m=1

λkλmdk,m

subject to the constraints λk ≥ 0,where we have defined

ck =
∑̀
i,j

(xi(k)− xj(k))2(a∗i,j)
2

dk,m =
∑̀
i,j

(xi(k)− xj(k))2(xi(m)− xj(m))2.

In these equations xi(k) is the value of coordinate k of vector xi.
Now one can use vectors xλi = (

√
λ1xi(1), . . . ,

√
λnxi(n))

instead of vector xi = (xi(1), . . . , xi(n)) which is constructed
by taking into account the properties of privileged information.
This leads to an adaptation of the kernel in solving our learning
problems.
For example, using vectors xλ (instead of x) in the Gaussian

kernel one obtains the kernel

K(xi, xj) = exp
{
−
(xi − xj)TΣ(xi − xj)

σ 2

}

whereΣ is a diagonal matrix with diagonal elements λk obtained
as result of adaptation to the teacher’s concept of metric and σ is
parameter of the kernel that defines the best capacity factor for the
SVM+ solution.
In the general case one can define the distance between two

vectors as follows

‖xi − xj‖A =
√
(xi − xj)TA(ai − xj), (30)

where A is positive semi-definite matrix. To find this matrix one
has to solve the positive definite optimization problem: minimize
the functional

R(A) =
∑̀
i,j=1

[(xi − xj)TA(xi − xj)− (a∗i,j)
2
]
2 (31)

in the set of positive semi-definite matrixes A. This, however, is
computationally a very intensive problem (when ` is large).
One can consider the intermediate case, when matrix A is

restricted to the set

A = UUT, U = (u1, . . . , ut),

where u1, . . . , ut are t linearly independent vectors. In this
situation one has to minimize the functional

R(r1, . . . , rt) =
∑̀
i,j=1

[
t∑
d=1

(uTdxi − u
Txj)2 − (a∗i,j)

2

]2
over n× t parameters of vectors u1, . . . , ut .
The idea of using additional information formatrix learningwas

considered in the unsupervised learning framework (Chechik &
Tishby, 2002; Xing, Ng, Jordan, & Russell, 2002). However in the
LUPI paradigm it looks more direct.

7. Three examples of privileged information

In this sectionwe present three exampleswhere different types
of privileged information are used for solving different pattern
recognition problems. In all these examples we consider a very
basic setting of the LUPI paradigm (we consider only one type of
privileged information, privileged information is available for all
the training data, the correcting values are defined only by the
correcting function).

7.1. Advanced technical model as privileged information

One of the important problems in bioinformatics is classifica-
tion of proteins: to define how they are evolutionarily related. To
describe such a relationship human experts have created a hierar-
chical scheme of organization of proteins taking into account their
3D-structures. The determination of 3D-structures of proteins is
very hard and time consuming problem (formany proteins it is not
possible to obtain their 3D-structure using existing techniques). On
the other hand one can easily obtain amino-acid sequences of pro-
teins. The problem is to construct a rule for classification of pro-
teins into families based on their amino-acid sequences. The main
difficulty in this problem is that for some proteins for which the
3D-structure allows to strongly infer homology the amino-acid se-
quences contain only a weak signal (see Fig. 2(a)).
To obtain the classification rule based on amino-acid sequences

the pattern recognition technique is used. There exist several
databases that define the hierarchical organization of the pro-
teins, contain their 3D structures and corresponding amino-acid
sequences. From these databases one chooses a pair of classes
of proteins of interest, uses specific examples of amino-acid se-
quence and corresponding classification (position in the hierarchy)
as training data in the pattern recognition problem to construct the
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Fig. 2. (a) Two homologous proteins with low amino-acid sequence similarity but high 3D-structure similarity (the similarity is clear after aligning the two schematic
3D-structures) (b) Hierarchical organization of proteins in SCOP database into class, fold, superfamily, family and sequences.
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Fig. 3. Comparison of error rates obtained using different algorithms on 80 protein homology problems. (a) dSVM+ vs. SVM, (b) dSVM+ vs. X*SVM+, and (c) dSVM+ vs. SVM
based on 3D structures.
desired decision rule. SVM is considered to be one of the best tech-
niques in constructing such decision rules (Kuang et al., 2005; Liao
& Noble, 2003).

Below we compare the results of solving protein classification
problems in the classical paradigm (SVM algorithm applied to
amino-acid sequences and their classifications as training data)
with the results of solving the same problems in the LUPI paradigm
(using SVM+ algorithm, applied to amino-acid sequences and their
classifications, and 3D-structures as privileged information).

In our experiments we used SCOP (Structural Classification
of Proteins) database (Murzin, Brenner, Hubbard, & Chothia,
1995), which provides protein sequences and their hierarchical
organization (see Fig. 2(b)) defined by human experts according
to the 3D-structures of proteins. The 3D-structures for SCOP
sequences are available at PDB (Protein Data Bank) (Berman et al.,
2000) We focused on determining homology based on protein
amino-acid sequences from different superfamilies (third level
of hierarchy). We considered 80 binary classification problems,
shown in Table 2 which contain 80 different superfamilies with
the largest number of sequences. For results to be representative
the superfamilies were chosen so that they span diverse protein
classes and folds. The similarity between amino-acid sequences
was computed using the profile-kernel (Kuang et al., 2005) and that
between3D-structureswas computedusingMAMMOTH a program
to compare 3D-structures (Ortiz, Strauss, & Olmea, 2002).

For every problemwe divided our data (amino-acid sequences)
into three parts: about 1/3 of data for training set, about 1/3 of
data for validation set and about 1/3 of data for testing set. From
these amino-acid sequences we constructed two sets of data X and
X∗ as follows.
Using two different similarity measures we created two sets
of n-dimensional vectors: set of vectors x ∈ X and set of vectors
x∗ ∈ X∗. In set X coordinate k of vectors xi was defined by the
value of closeness (in the profile kernelmeasure) of amino-acid i to
the amino-acid kwhile in the set X∗ vectors x∗ was defined by the
value of closeness (in theMAMMOTH measure) of the 3D-structure
of amino-acid i to the 3D-structure of the amino-acid k. To obtain
a solution in the classical paradigmwe used the RBF kernel in SVM
method. To obtain advanced learning paradigm solutions, we used
two RBF kernels in the SVM+ method. For the LUPI paradigm we
considered both the dSVM+ and X∗SVM+ methods.
Results of our experiments which compare the classical

paradigm with the LUPI paradigm which uses dSVM+ method are
summarized in Fig. 3. For details see Table 2.
Fig. 3(a) shows that:

Among the 80 problems considered there was none in which
the classical paradigm outperformed the LUPI paradigm.
In 3 cases both the SVM and the LUPI made no test error.
In 11 cases the LUPI schemewas not able to improve the results
of the classical one (points lying on diagonal, Fig. 3(a)).
In the remaining cases the LUPI scheme outperformed the
classical scheme.
In 15 cases the improvement was small (the number of errors
was reduced by less than 1.2 times, points in region R1).
In 12 cases the improvement was significant (the number of
errors was reduced between 1.2 and 1.5 times, points in region
R2).
In 17 cases the improvement was big (the number of errors was
reduced between 1.5 and 2 times, points in region R3).
In 13 cases the improvement was major (the number of errors
was reduced between 2.5 and 5 times, points in region R4).
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Table 1
Error rates of SVM, X*SVM+, dSVM+, and Oracle SVM on qualitatively predicting the Mackey–Glass series.

Steps ahead, T = Training size 1 5 8 Steps ahead, T = Training size 1 5 8

SVM 100 2.7 5.2 8.2 400 2.2 3.5 5.2
X∗SVM+ 100 2.4 5.0 7.8 400 1.8 3.1 4.7
dSVM+ 100 2.0 4.8 7.2 400 1.7 2.9 4.3
Oracle SVM 100 1.6 2.9 5.3 400 1.2 1.8 2.8

SVM 200 2.5 4.9 7.3 500 2.1 3.2 5.0
X∗SVM+ 200 2.1 4.6 6.8 500 1.7 3.1 4.5
dSVM+ 200 1.9 3.8 6.5 500 1.7 2.7 4.2
Oracle SVM 200 1.2 2.2 4.6 500 1.1 1.5 2.7

≈Bayes (SVM with 10,000 training examples) 0.3 0.5 0.6 0.3 0.5 0.6
In 9 cases the improvementwas dramatic (the number of errors
was reduced by more than 5 times, points in region R5).

Results obtained using the X∗SVM+ method of the LUPI
paradigm also outperform the classical SVM paradigm. However,
as shown in Fig. 3(b), in almost all cases the dSVM+ method out-
performed the X∗SVM+ method. Fig. 3(c) shows that classification
based on information about 3D-structure of proteins is muchmore
accurate than classification based on information about amino-
acid sequences.

7.2. Future events as privileged information

Inmany problems (for example, in financemarket prediction) it
is important to predict values of time series. There are two settings
of the time series prediction problem:
1. The quantitative prediction problem: given historical informa-
tion about the values of time series up to moment t predict the
value of the time series at the moment t +∆.

2. The qualitative prediction problem: given historical informa-
tion about the values of time series up to moment t predict if
the value of the time series at the moment t +∆will be larger
(the first class) or smaller (the second class) than the value at the
moment t (roughly speaking tomake a decision to sell or buy4).

For both the settings one can use the LUPI paradigm: for the
quantitative setting one uses it in the regression framework and
for the qualitative setting one uses it in the pattern recognition
framework. We experimented with the qualitative problem (using
the pattern recognition technique).
Many researchers consider the model chaotic time series

introduced byMackey andGlasswhich is a solution of the equation
dx(t)
dt
= −ax(t)+

bx(t − τ)
1+ x10(t − τ)

,

where a, b, and τ (delay) are parameters of the equation. Using
different initial conditions x(τ ) = xτ one obtains different
realizations this quasi-chaotic series.
We used the Mackey–Glass series with parameters a = 0.1,

b = 0.2, τ = 17 (these are the usual parameters for experimental
studies of algorithms for chaotic time series prediction) and initial
condition x(τ ) = 0.9.
There exist many articles devoted to the prediction of the

Mackey-Glass time series using different algorithms (Casdagli,
1989; Mukherjee, Osuna, & Girosi, 1997). Below to compare the
LUPI paradigm with the SVM, we use the same parameters as
used in the article (Mukherjee et al., 1997) where it has been
demonstrated that SVM outperformsmany classical algorithms for
time series prediction.
In contrast to Mukherjee et al. (1997), we used the pattern

recognition setting rather than the regression setting. This setting

4 There also exists a third decision ‘‘hold’’ which we do not consider here.
better reflects finance market problems (as it relates to buy or sell
decisions). Article (Mukherjee et al., 1997) considered one step
ahead prediction problem (T = 1). It turn out, however, to be an
easy problem. Therefore along with one step prediction we also
considered five and eight step prediction problems (T = 1, T =
5, T = 8).
To predict if x(t + T ) > x(t) we use (as in Mukherjee et al.

(1997)) a four dimensional vector of observations on time series
xt = (x(t − 3), x(t − 2), x(t − 1), x(t)).
Our goal is to compare the SVM method for time series

prediction with SVM+ that uses future events (observations) of
series as privileged information. As privileged vectors x∗t we
consider
x∗t = (x(t + T − 2), x(t + T − 1), x(t + T + 1), x(t + T + 2)).
In Table 1 we report on error rates of SVM and SVM+ (for both

dSVM+ and X∗SVM+ methods) for three different problems (one
step five steps and eight steps ahead predictions (T = 1, 5, 8),
and four sizes of training sets: ` = 100, 200, 400, 500. For model
selection, we used a validation set of size 500. It also shows the
Oracle SVM error rates and approximation to the Bayesian error
rate (≈Bayes).
To evaluate closeness of the obtained error rate to Oracle SVM

and the Bayesian, we first found an approximation to the Bayesian
rule

f0(z) = (w0, z)+ b0 =
∑̀
i=1

α0i yiK(xi, x)+ b0,

using the SVM solution for a large data set (10,000 examples).
Since the SVM error rate converges to the Bayesian error rate we
consider the obtained rule as an approximation to theBayesian rule
and its error rate as the Bayesian error rate. Then using f0(z) we
constructed the Oracle slacks
ri = yi f0(zi)
and using the technique described in the Section 2.1 calculated the
Oracle SVM error rate.

7.3. Holistic description as privileged information

In this example we consider the digit recognition problem of
classifying images of digits 5 and 8 in the MNIST database. This
database describes digits as vectors in the 28 × 28 pixel images
and contains 5.522 and 5.652 images of 5 and 8, respectively.
Distinguishing between these two digits in 28 × 28 pixel space is
an easy problem. To make it more difficult we resized the digits to
10×10pixel images. A sample of 28×28 images and corresponding
10 × 10 images are shown in Fig. 4. We used 100 examples of
10×10 images as a training set, 4000 as a validation set (for tuning
the parameters in SVM and SVM+) and the rest 1866 as the test
set (Vapnik et al., 2008).
For every training image we created its holistic (poetic)

description (Vapnik et al., 2008). A poetic description for the first
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Complete Images:
(28×28 pixels)

Resized Images:
(10×10 pixels)

Fig. 4. Sample digits along with their resized images.

image of 5 (see Fig. 4) is as follows:
Not absolute two-part creature. Looks more like one impulse. As
for two-partness the head is a sharp tool and the bottom is round
and flexible. As for tools it is a man with a spear ready to throw it.
Or a man is shooting an arrow. He is firing the bazooka. He swung
his arm, he drew back his arm and is ready to strike. He is running.
He is flying. He is looking ahead. He is swift. He is throwing a spear
ahead. He is dangerous. It is slanted to the right. Good snaked-ness.
The snake is attacking. It is going to jump and bite. It is free and
absolutely open to anything. It shows itself, no kidding. Its bottom
only slightly (one point!) is on earth. He is a sportsman and in
the process of training. The straight arrow and the smooth flexible
body. This creature is contradictory - angular part and slightly
roundish part. The lashingwhip (the ropewith a handle). A toewith
a handle. It is an outside creature, not inside. Everything is finite
and open. Two open pockets, two available holes, two containers.
A piece of rope with a handle. Rather thick. No loops, no saltire. No
hill at all. Asymmetrical. No curlings.

A poetic description for the first image of 8 (see Fig. 4) is as follows:
Two-part creature. Not very perfect infinite way. It has a deadlock,
a blind alley. There is a small right-hand head appendix, a small
shoot. The right-hand appendix. Two parts. A bit disproportionate.
Almost equal. The upper one should be a bit smaller. The starboard
list is quite right. It is normal like it should be. The lower part is not
very steady. This creature has a big head and too small bottom for
this head. It is nice in general but not very self-assured. A rope with
two loopswhich do notmeetwell. There is a small upper right-hand
tail. It does not look very neat. The rope is rather good - not very
old, not very thin, not very thick. It is rather like it should be. The
sleeping snake which did not hide the end of its tail. The rings are
not very round - oblong - rather thin oblong. It is calm. Standing.
Criss-cross. The criss-cross upper angle is rather sharp. Two criss-
cross angles are equal. If a tool it is a lasso. Closed absolutely. Not
quite symmetrical (due to the horn).

Poetic descriptions were translated into 21-dimensional feature
vectors. A subset of these features (with range of possible values)
is: two-part-ness (0 - 5); tilting to the right (0 -
3); aggressiveness (0 - 2); stability (0 - 3); uniformity
(0 - 3), and so on. The values of these features (in the order
they appear above) for the first 5 and 8 are [2, 1, 2, 0,
1], and [4, 1, 1, 0, 2], respectively. Poetic descriptions and
their translations were created prior to the learning process
by an independent expert. The data for the digits, their poetic
descriptions with corresponding feature vectors, and their ying-
yang style descriptions with corresponding feature vectors are
publicly available at www.nec-labs.com/research/machine/ml_
website/department/software/learning-with-teacher.
Our goal was to construct a decision rule for classifying 10x10

pixel images using the 100 dimensional pixel space X and the
corresponding 21-dimensional vectors in the space X∗. This idea
was realized using the SVM+ algorithm in the two forms X∗SVM+
form and in dSVM+ form, described in the Section 2.3. For every
training data size, 12 different random samples selected from the
training data were used and we report the average of test errors.
a

b

Fig. 5. (a)Error rates of SVM+ on the digit recognition task. (b) Plot between
deviation values from the decision rule in poetic space and corresponding
correcting function values. This representative plot was generated for a training
sample of size 70.

Results of using different correction spaces (21-dimensional
poetic space and 1-dimensional space of deviation values) in SVM+
are shown in Fig. 5(a). The error rate of SVM trained and tested on
10× 10 digits is shown by the line marked with circles. Error rate
of using 21-dimensional poetic space as correction space (dSVM+
form) is shown by the line marked with crosses. Error rate using
deviation values in the poetic space as correction space (X∗SVM+
form) is shown by the line with stars. In both cases the use of
privileged information improves performance.
Fig. 5(b) shows the functional relationship between the

deviation values defined in the poetic space and the values of the
correcting function.
To understand how much information is contained in poetic

descriptions, we conducted the following experiment. We used
28 × 28 pixel digits (784 dimensional space) instead of the 21-
dimensional poetic descriptions in dSVM+ and X∗SVM+ methods
in SVM+ (results shown in Fig. 6). In both the settings, using the
28×28 pixel description of digits SVM+performsworse than SVM+
using poetic descriptions.

7.4. Analysis of the experimental results

1. Classification of protein families. In experiments on prediction
of homology between protein sequences we used 3D structures
of proteins as privileged information. This is a very strong

www.nec-labs.com/research/machine/ml_website/department/software/learning-with-teacher
www.nec-labs.com/research/machine/ml_website/department/software/learning-with-teacher
www.nec-labs.com/research/machine/ml_website/department/software/learning-with-teacher
www.nec-labs.com/research/machine/ml_website/department/software/learning-with-teacher
www.nec-labs.com/research/machine/ml_website/department/software/learning-with-teacher
www.nec-labs.com/research/machine/ml_website/department/software/learning-with-teacher
www.nec-labs.com/research/machine/ml_website/department/software/learning-with-teacher
www.nec-labs.com/research/machine/ml_website/department/software/learning-with-teacher
www.nec-labs.com/research/machine/ml_website/department/software/learning-with-teacher
www.nec-labs.com/research/machine/ml_website/department/software/learning-with-teacher
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Fig. 6. Comparison between information obtained from 28 × 28 pixel space and
poetic description.

information. In fact the human classification of protein families
is made based on this information. Therefore for many problems
the error rate of SVM classification of families of proteins based
on 3D information was significantly better than the error rate
obtained for amino-acid classificationusing the LUPI paradigm (see
Fig. 3(c)).
Nevertheless, there are many problems where LUPI provides

remarkable results. One also has to keep in mind that information
contained in a protein amino-acid sequence is much more
restricted than information that is contained in the 3D protein
structure and that there exist problems where one can perform
very well using 3D structure but very poorly using protein
sequences. For example, it is known that two different minerals
diamond and graphite are composed of the same element,
carbon. However they have different structures and therefore it
is impossible to distinguish them without information about the
structure. Such examples (9, 10, 11, 67, 77 and 80) can be found in
Table 2.
2. Time series prediction. In our experiments with time series

prediction also, the LUPI paradigm demonstrated a significant
advantage over the classical one. Note that here the construction of
a prediction rule y = f (x) from the data (xi, yi) is an extrapolation
problem while the construction of a rule y = φ(x∗) from the data
(x∗i , yi) is an interpolation problem.
For the time series prediction problems the differences between

LUPI and Oracle SVM solutions (especially for small training sets,
see Table 1) was not big. To make the performance of LUPI even
closer to the Oracle SVM performance one has to find a better
X∗ space. The difference between SVM with 10,000 observations
(approx. Bayes rule) and Oracle SVM, however, was huge. This
reflects themathematical nature ofMackay-Glass equation: to find
a trajectory close to the desired the one on a large interval requires
a lot of observations.
3. Digit recognition problem. In this problem the LUPI paradigm

also performed much better than the classical one.
To evaluate the limits of possible improvement, we use the

same method as before: we constructed a decision rule by using
SVMwith about 6500 10×10 pixel digits. The test error for this rule
was considered as an approximation to the Bayesian error. Using
this approximation to the Bayes rule we calculate the deviation
values for all elements of the training data created training triplets
using these deviations and use these triplets to construct a LUPI
paradigm rule. The obtained performance and is shown by the line
markedwith diamonds (Fig. 5(a)). A goodmaster-class teacher can,
probably, can develop descriptions of privileged information that
Table 2
Error rates of SVM, X*SVM+, dSVM+, and SVM based on protien 3D structures.

Problem
number

Superfamily pair SVM (X) X*SVM+ dSVM+ SVM (3D)

1 a.26.1 vs c.68.1 7.3 7.3 7.3 0.0
2 a.26.1 vs g.17.1 16.4 14.3 14.3 0.0
3 a.118.1 vs b.82.1 19.2 10.6 6.4 0.0
4 a.118.1 vs d.2.1 41.5 39.6 24.5 3.8
5 a.118.1 vs d.14.1 13.1 13.1 13.1 2.2
6 a.118.1 vs e.8.1 22.8 13.6 2.3 2.3
7 b.1.18 vs b.55.1 14.6 13.5 13.5 0.0
8 b.18.1 vs b.55.1 31.5 12.4 15.1 0.0
9 b.18.1 vs c.55.1 36.2 36.2 36.2 0.0
10 b.18.1 vs c.55.3 38.1 36.5 36.6 0.0
11 b.18.1 vs d.92.1 25.0 13.3 11.8 0.0
12 b.29.1 vs b.30.5 16.9 16.9 16.9 3.6
13 b.29.1 vs b.55.1 10.0 5.5 5.5 0.0
14 b.29.1 vs b.80.1 8.3 7.1 5.9 0.0
15 b.29.1 vs b.121.4 35.9 32.8 16.8 5.3
16 b.29.1 vs c.47.1 10.2 8.3 3.2 0.0
17 b.30.5 vs b.80.1 43.3 16.7 6.7 0.0
18 b.30.5 vs b.55.1 25.5 14.6 14.6 0.0
19 b.55.1 vs b.82.1 11.8 10.3 10.3 0.0
20 b.55.1 vs d.14.1 20.9 19.4 19.4 0.0
21 b.55.1 vs d.15.1 17.7 16.5 12.7 0.0
22 b.80.1 vs b.82.1 4.7 4.7 4.7 0.0
23 b.82.1 vs b.121.4 7.9 7.9 3.4 0.0
24 b.121.4 vs d.14.1 29.5 25.0 23.9 0.0
25 b.121.4 vs d.92.1 15.3 13.3 9.2 0.0
26 c.36.1 vs c.68.1 8.9 8.9 0.0 0.0
27 c.36.1 vs e.8.1 12.8 2.2 2.2 0.0
28 c.47.1 vs c.69.1 1.9 0.6 0.6 0.0
29 c.52.1 vs b.80.1 11.8 5.9 5.9 0.0
30 c.55.1 vs c.55.3 45.1 39.4 28.2 22.5
31 c.55.1 vs c.66.1 35.2 5.9 6.2 3.4
32 c.55.1 vs c.67.1 30.6 14.1 14.1 0.0
33 c.55.1 vs c.68.1 35.5 14.6 16.2 1.6
34 c.55.1 vs c.69.1 25.0 13.9 13.9 0.0
35 c.55.1 vs d.2.1 19.2 19.2 17.8 0.0
36 c.55.3 vs c.67.1 3.9 3.9 3.9 0.0
37 c.55.3 vs c.68.1 24.5 24.5 24.5 1.9
38 c.55.3 vs d.2.1 21.9 21.9 21.9 0.0
39 c.55.3 vs d.15.1 42.1 33.3 31.9 1.5
40 c.67.1 vs c.68.1 0.0 0.0 0.0 0.0
41 c.67.1 vs g.39.1 0.0 0.0 0.0 0.0
42 c.68.1 vs d.2.1 25.5 23.4 23.4 0.0
43 c.68.1 vs d.14.1 12.5 10.4 10.4 2.1
44 c.68.1 vs e.8.1 13.1 8.7 10.9 0.0
45 d.2.1 vs d.3.1 24.0 16.0 6.7 1.3
46 d.2.1 vs d.14.1 39.0 22.0 22.0 1.7
47 d.2.1 vs d.15.1 25.4 12.7 7.1 1.4
48 d.2.1 vs d.92.1 26.1 8.7 7.3 0.0
49 d.3.1 vs d.15.1 22.5 15.0 15.0 1.2
50 d.3.1 vs d.92.1 14.2 9.0 9.0 2.6
51 e.8.1 vs d.15.1 29.1 27.4 27.4 1.6
52 e.8.1 vs d.92.1 33.3 8.3 8.3 3.3
53 e.8.1 vs g.17.1 40.0 22.5 25.0 2.5
54 g.3.7 vs g.39.1 34.3 13.8 5.9 3.9
55 c.37.1 vs c.2.1 6.5 4.8 2.9 0.0
56 c.1.8 vs c.47.1 1.6 0.8 0.0 0.0
57 b.29.1 vs b.40.4 18.0 8.0 5.2 0.0
58 a.4.5 vs a.39.1 3.4 3.0 2.5 0.0
59 c.66.1 vs c.67.1 0.0 0.0 0.0 0.0
60 a.4.5 vs b.40.4 12.0 6.5 4.0 0.0
61 a.4.5 vs b.40.1 11.9 6.0 5.0 0.0
62 c.26.1 vs c.66.1 21.8 10.5 7.0 1.8
63 a.4.5 vs g.39.1 14.5 13.1 8.7 0.0
64 a.3.1 vs c.69.1 12.9 0.6 0.6 0.0
65 c.69.1 vs d.153.1 6.8 6.8 6.8 0.0
66 a.4.1 vs a.4.5 27.5 23.5 19.8 2.2
67 b.1.18 vs b.121.4 39.3 39.3 35.9 4.3
68 b.18.1 vs b.30.5 30.4 30.4 30.4 2.2
69 c.36.1 vs c.52.1 21.9 9.8 2.4 2.4
70 c.36.1 vs c.55.1 20.6 7.9 7.9 0.0
71 c.36.1 vs c.55.3 11.1 7.4 5.6 1.9
72 c.47.1 vs b.1.18 23.1 2.8 2.1 0.7
73 c.52.1 vs c.55.1 24.1 20.7 20.7 16.2

(continued on next page)
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Table 2 (continued)

Problem
number

Superfamily pair SVM (X) X*SVM+ dSVM+ SVM (3D)

74 c.52.1 vs c.55.3 30.6 28.6 28.6 16.3
75 c.55.1 vs c.67.1 32.9 14.1 14.1 0.0
76 c.55.3 vs c.66.1 25.3 11.4 8.9 1.3
77 c.55.3 vs d.14.1 45.6 43.9 43.9 8.8
78 d.3.1 vs d.14.1 38.8 16.2 13.2 11.8
79 d.14.1 vs d.92.1 27.4 14.5 12.9 9.7
80 e.8.1 vs d.14.1 36.0 36.0 36.0 0.0

allow one to be close to this performance. Our first experiencewith
master-class teaching of computers to recognize digits yielded
only 60% of the possible improvement. We believe that one
can obtain similar results by using a kernel defined directly in
the space of poetic texts instead of the kernel defined in the
space of features obtained from the poetic texts (as done in our
experiments).
Experiments where we used ying-yang descriptions instead of

the poetic descriptions yielded very similar results.

8. General remarks about the LUPI paradigm

In this article we considered a new learning paradigm, the
LUPI paradigm which allows one to introduce in the machine
learning process, human elements of teaching: teacher’s remarks,
explanations, analogy, and so on.
For SVM type of algorithms this can speed up the rate of con-

vergence of the obtained solutions to the Bayesian solution (espe-
cially for the important case of small training sets). We demon-
strated an advantage of the LUPI paradigm using three different
concepts of privileged information: an advanced technical model,
future events, and holistic descriptions. These, however, are very
simple ideas of the controlling learning process by privileged infor-
mation. Great teachers usemore sophisticatedmethods (for exam-
ple in master-classes they combine sophisticated holistic descrip-
tions with advanced models).
More complex forms of privileged information can be con-

structed using many ideas, for example, based on different semi-
scientific empirical models. Here are two examples.

1. In the 1930s, Elliott suggested the so-called Elliott wave
technique to predict stock markets. This technique can explain
the past behavior of themarket verywell andmany researchers
believe that it can predict the future developments as well.
Elliott’s technique uses both formal rules and the art of data
interpretation. There exists a huge literature dedicated to
predictions based on the Elliott wave technique.5 One of the
main elements of the Elliott wave approximation technique
is that a good approximation of market movement has the
form: two steps up and one step down. The problem of data
interpretation is to specify if at any given moment the market
has achieved a local bottom (or top) or is yet to achieve it. There
exist many suggestions on how to specify this.
As a privileged information for market prediction one can use
Elliott wave graphs constructed based on future events in the
historical data. These graphs approximate well the values of
stock market around the time of required prediction.

2. In modern medicine along with the classical Western medicine
there also exists the so called alternative medicine. Let us
consider Eastern (say Chinese) medicine as an example. One
of the main philosophical differences between these medicines
can be described as follows. Western medicine tries to specify

5 Google search for Elliott waves returns with over a million entries.
the nosology of disease and concentrates on the treatment of
this nosology. Easternmedicine considers a specific disease as a
disease of thewhole organism and tries to treat the organism as
whole. They use different models (descriptions) of the diseases.
Both medicines have their advantage in specific cases. (Say, the
Westernmedicine is better suited for acute conditionswhile the
Eastern medicine is better suited for chronic situations.)
Using the LUPI paradigm one can try to improve the technology
of the Western medicine taking into account description of
the disease defined in terms of the Eastern medicine as
a privileged information x∗. (And vice-versa one can try
to improve the technology of the Eastern medicine using
privileged information given in terms of theWesternmedicine.)
It is very important that to do this one can use two models
(languages) approach without trying to map one model into
another.

These sorts of ideas lead to an integration, in learning tech-
niques, of elements of an exact science and art of data interpre-
tation, an exact science and humanities, an exact science and emo-
tions, and so on.We sawelements of such an integration in the digit
recognition problem with poetic descriptions as privileged infor-
mation, where it turns out that privileged information contained
the poetic description is more helpful than privileged information
contained in images as the advanced technical space (28×28 pixel
space).
The new paradigm is widely applicable. It can be an important

direction of analysis not only in machine learning technology
but also in statistics (say, in time series prediction), cognitive
science (say, in understanding of the role of the left and right
part of the brain), and philosophy of science (say, in analysis of
differences in themethodologies of science for simple and complex
worlds).
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