
International Journal of Soft Computing and Engineering (IJSCE)
ISSN: 2231-2307, Volume-2, Issue-6, January 2013

65

Abstract— In this paper, we propose a new conversion’s

method from UML class diagram to ontology in order to serve the
Semantic Web. The ontology which results from the conversion is
expressed in OWL / XML. This method allows us to preserve
semantic of some feature's UML diagram such as inheritance,
encapsulation, types of associations (composition, aggregation,
or simple association), constraints of integrity, class
identifier...etc.

Keywords— UML, ontology, mapping, OWL.

I. INTRODUCTION

Several works of databases to semantic web migration exist
which began with conversion of database schema to XML /
XML Schema standards [4], and result in implementation of
XMI standard for models conversion and exchange [2].
However this standard has some problems of
implementation, which has prompted research in other axes,
especially with the advent of the knowledge representation
language OWL [1], [2]. Thus, there are formalisms of
mapping from databases to ontology like RO2 [11] and
D2RQ [Bizer 2003], and conversion tools like RDB2Onto
[9], DataMaster [10]...

In this paper we propose an automatic method to convert a
UML class diagram to an ontology using OWL / XML
language with keeping the features meaning of the diagram.

If our proposed method allows representing the basics
concepts such as inheritance, identifier of class… the major
contribution is solutions we have conceived to preserve the
semantic of types of associations and also that of the notion of
attributes encapsulation after conversion.

The remainder of this paper is organized as follows:
Section 2 describes the steps involved in the conversion
process. Section 3 describes the proposed solution to convert
UML class and its attributes while keeping the notion of
inheritance between classes and the attributes encapsulation.
Section 4 describes the conversion of associations while
retaining their type and cardinalities. Section 5 presents the
algorithm of conversion. Section 6 describes the
implementation with a case study. The last section is devoted
to the conclusion and perspectives.

II. DESCRIPTION OF METHOD

Our approach provides an algorithm for mapping in a

Manuscript received November 28, 2013.
 Jamal BAKKAS, Department of Mathematics and computer science,

University Hassan I, FSTS, Settat, Morocco.
Mohamed BAHAJ, Department of Mathematics and computer science,

University Hassan I, FSTS, Settat, Morocco.

schema level; it takes as input a class diagram that undergoes
conversion to generate ontology as a set of concepts with data
type properties. Those concepts are semantically related to
each other by object properties and hierarchical relationships
while keeping the semantic of converted class diagram

Thus, to preserve the notion of inheritance, we exploited
the hierarchy of concepts provided by ontologies to represent
inheritance of classes in UML. And to maintain the notion of
encapsulation, our approach proposes a determined structure
of data type properties, which reflect the visibility levels of
UML converted attributes. Another feature of our proposition
concerns the proposed structure of the object properties for
keeping the meaning of the association types of UML (i.e.
composition, aggregation).

Inheritance, encapsulation, composition, aggregation, class
identifier ... etc, are UML concepts that carry a meaning and
their conversion, while maintaining this meaning, is possible
because the ontology allows to represent meaning.

Fig. 1: conversion at the Schema level

In this procedure a class diagram is considered as a set of
classes. Each class is characterized by a name, a list of its
attributes, a list of relationships (roles) linking this class with
other classes, as well as the name of its parent class. If a class
has no superclass, it is considered subclass of the superclass
Object. An attribute can be the identifier of its class or a
simple attribute, each of them has a type that is one of
predefined types of UML. A relationship represents a role; it
is characterized by its name, type (aggregation, composition,
or simple association), the target class, and target
cardinalities.

Formally a class diagram can be represented as follows:

Automatic Conversion Method of Class
Diagrams to Ontologies Maintaining Their

Semantic Features
Mohamed Bahaj, Jamal Bakkas

Automatic Conversion Method of Class Diagrams to Ontologies Maintaining Their Semantic Features

66

classDiagram= { C /
C={ (classeName, classeParent , attributesList ,

 relationShipsList) /
 classeName ∈ classesNamesList

 classeParent ∈ classesNamesList ∪ {"Object"}

 attributesList={(attributeName, ,is_id, attVisibility,
 nbOcuurences, attType) /

 attType ∈ AttributesTypesList
 nbOcuurences > 0
 }
relationShipsList = { (relationName , relationType ,

 classeTarget , cardTarget) /
 relationType ∈ {"AGGREGATION",

 "COMPOSITION","ASSOCIATION"}

 classeTarget ∈ classesNamesList ∪ {"Object"}

 cardTarget ∈ {"0..1" , "1..1" , "1..*" , "*" }
}

}
}

Fig. 2: detailed description of the class diagram
With:

• classesNamesList : names of classes that compose
the class diagram,

• AttributesTypesList : list of predefined data types
of UML,

• is_id : Boolean which set to true if the attribute is an
identifier otherwise it is set to false

• nbOcuurences : If the attribute is an array of
primitive type then nbOcuurences> 1, otherwise
nbOcuurences= 1.

III. DESCRIPTION OF THE MAPPING ALGORITHM

A. Classes

Before starting the conversion, we create a class OWL
called Object to represent the superclass Object of UML.
Recall that all UML diagram classes inherit default from the
Object class. And then each class of diagram is converted into
an OWL concept with the same name.

B. The Inheritance between Classes

Inheritance is one of the fundamental notions in UML
whose preservation after the mapping is of a major utility.
Thus we propose to use the hierarchy of concepts provided by
the ontology to represent this notion.

Each inheritance relationship between two classes in UML
is translated to a relationship hierarchy (is_a) between two
concepts in ontologies. Thus, any concept of the resultant
ontology has a relationship of hierarchy, either with other
concept or with the super concept Object that will be the root
of the ontology.

C. Attributes

An attribute of class with an UML primitive type is
mapped to property data type defined using the
DatatypeProperty class; however, data type properties in
OWL can have multiple values for a given instance, which is
not the case for an UML attribute (atomicity). In order to
remedy this problem; we declare the property as a functional
property with FunctionalProperty class as follows:

<owl:FunctionalProperty rdf:about="#name" />
Recall that for a functional property, there cannot be two

distinct values y1 and y2 such that the pairs (x, y1) and (x, y2)

are both instances of this property.
To represent array type attributes, we use non-functional

data type properties, but with a cardinality restriction limiting
the maximum number of occurrences to the size of the
converted array using the OWL class: maxCardinality as
follows:
<owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">

 nbOccurrences
</ owl: maxCardinality>

D. Encapsulation

The solution that we propose to keep the semantics of
encapsulation is among the strengths of our method. Indeed,
we propose to create a super-property "Attribute" with
DatatypeProperty class, and then create three sub-properties
of the property "Attribute", These properties represent the
three visibility levels of UML attributes: private (-),
protected (#), and public (+). They are created using the
rdfs:subPropertyOf class as follows:

<owl:DatatypeProperty rdf:ID="private">
 <rdfs:subPropertyOf rdf:resource="#Attribute"/>
</ owl: DatatypeProperty>

Fig. 3: The Hierarchy of Data Type Properties

A Thus, we obtain the previous structure [Fig. 3].
Subsequently, all attributes are represented by data type
properties that inherit directly and necessarily of one of the
three properties: private, protected or public, as the following
example shows:

<owl:DatatypeProperty rdf:ID="matricule">
 <rdfs:domain rdf:resource="#Professor"/>
 <rdfs:range rdf:resource="&xsd;integer"/>
 <rdfs:subPropertyOf rdf:resource="#private"/>
</owl:DatatypeProperty>
We chose to name the super-property "Attribute", because

all the final properties which are sub-properties indirect of
"Attribute" are conversions of UML attributes.

E. The Identifier Of The Class

The identifier of the class is considered as a simple
attribute; therefore, it is converted into a data type property as
described above. And because the identifier must have a
unique value for any given individual, then the property
should be mentioned as inverse functional using OWL class
owl:InverseFunctionalProperty as follows:
<owl:InverseFunctionalProperty rdf:about="#matricule"/>

IV. ASSOCIATIONS CONVERSION

An association is seen as two roles, these roles can be
mapped intuitively by two object properties one is the inverse
of the other using the ObjectProperty class:

<owl:ObjectProperty rdf:ID="teaches">
<rdfs:domain rdf:resource="#professor"/>
<rdfs:range rdf:resource="#course"/>
<owl:inverseOf rdf:resource="#TaughtBy"/>

</owl:ObjectProperty>

A. Associations Type

Among the difficulties that arise at this level, the

International Journal of Soft Computing and Engineering (IJSCE)
ISSN: 2231-2307, Volume-2, Issue-6, January 2013

67

representation of these types of relationships (aggregation,
composition, or simple association). To remedy this problem,
several solutions have been proposed, among them, adding
annotation properties to the object property that represents
the relationship. This possibility is offered by OWL DL.
However, these properties do not have semantic value; they
are not used by reasoners in the process of reasoning, which
leads to a semantic imperfection of converted diagrams.

Our proposal consists to structure the object properties
representing the relationships in a hierarchical form whose
root is the super-property "ASSOCIATION" which has two
sub-properties "AGGREGATION" and "COMPOSITION"
[Fig. 4]. Then each relationship of class diagram is
represented by an object property that inherits necessarily
one of the three previous properties.

Fig. 4: Structure of Relationship Types

We opted for this hierarchy, because it means that all
relationships are associations. Those who inherit directly of
the property "ASSOCIATION" or those who inherit them via
the two others

B. Cardinalities Conversion

OWL Classes: cardinality, maxCardinality,
minCardinality, allow applying cardinality restrictions and
value restrictions to property linking two concepts of
ontology. We use these classes to represent UML
cardinalities by applying cardinality restrictions to object
properties representing the relations of diagram. If the
association is an integrity constraint (cardinality 1..1), we
propose to use a functional property to the linker of the
cardinality restriction to value 1. Below a table of various
restrictions to apply to object properties based on the UML
cardinalities:

Table I: Cardinality Restrictions Applied To Object
Properties

Card Restrictions

0..1

<owl:maxCardinality
rdf:datatype="&xsd;nonNegativeInteger">

1
</owl:maxCardinality>

1..1
<rdf:type rdf:resource="&owl;FunctionalProperty"
/>

1..*

<owl:minCardinality
rdf:datatype="&xsd;nonNegativeInteger">

1
</owl:minCardinality>

* no restriction

V. THE CONVERSION ALGORITHM

The algorithm of conversion is as follow:

Create Class "Object"
Create ObjectProperties "ASSOCIATION"
Create ObjectProperties "COMPOSITION",
"AGGREGATION" sub-propertyof "ASSOCIATION"
Create DataTypeProperty "Attribute"
Create DataTypeProperty "private","protected","public"
sub-propertyof "Attribute"
FOR EACH C of classDiagram do
Create Class "C.classeName" sub-ClassOf
"C.classeParent"
 For each A of C.attributList do
 Create DataTypeProperty "A.attributeName "
 sub-PropertyOf "A.attVisibility"
 with Domain "C.ClasseName"
 with Range "getType(A.attributType)"
 if A.is_id then
 "A" is InverseFunctionalProperty
 else
 if nbOcuurences=1 then
 "A" is FunctionnalProperty
 else maxCardinality= nbOcuurences
 endif
 endif
 End For
 For each R of C.relationShipsList do
 Create ObjectProperty "R" sub-PropertyOf
 "R.relationType"
 with Domain "C.ClasseName"
 with Range "R.classTarget" InverseOf
 "getRelationName(C.className,R.classTarget)"
 RestrictionCardinalities(C.R.cardTarget)
 End For
END FOR

Fig. 5: Algorithm of Conversion

With
• getType (UMLDataType): a function that takes as

parameter the UML primitive data type and returns the
corresponding XSD type.

• getRelationName (C1, C2): a function that returns the
name of the relationship (role) that connects C1 with C2

• RestrictionCardinalities(UMLCardinality): a function
that takes as parameter UML cardinality and returns the
cardinality restrictions corresponding [Table I]

A. The OWL sublanguage used:

All previous conversions can be expressed using only
OWL Lite except attribute conversions. To convert these, we
are forced to switch to OWL Full to apply Functional
Property and Inverse Functional Property, which are reserved
to the object properties, to data type property. Because in
OWL, Full DatatypeProperty class is a subclass of
ObjectProperty class, unlike in OWL DL and OWL Lite
where the two classes are disjoint.

VI. CASE STUDY

Consider the following case study: A university is an
establishment, which is composed of a set of departments to
whom attached a set of teachers. This example thus illustrates
three types of relationships that are: inheritance, aggregation
and composition, and attributes with three levels of visibility.

Automatic Conversion Method of Class Diagrams to Ontologies Maintaining Their Semantic Features

68

Fig. 6: Example of a Class Diagram

Detailed description of the class diagram [Fig. 7], as we
described [in Fig. 2], is stored in a text file. This file is the
input of our system, which parses it using the previous
algorithm [Fig. 5] and generates an output file containing the
resultant ontology of the conversion.

classDiagram={

(Professor,Object,{(matricule,private,

1,integer,true),(name,public,1,string,

false),(dateBirth,protected,1,date,

false)},{(isAttached,AGGREGATION,

Departement,1)}),

(Departement,Object,{(idDept,private,1

,integer,true),(nomDept,protected,1,

string,false)},{(groups,AGGREGATION,

Professor,1..*),(compose,COMPOSITION,

University,1)}),

(University,Establishement,{(

idUniversity,private,1,integer,true),

(nomUniver,public,1,string,false)},

{(isComposedOf,COMPOSITION,Departement

,1..*)}),

(Establishement,Object,{(idEtab,

private,1,integer)},{(,,,)})

}

Fig. 7: Detailed Description of the Class Diagram

To test the semantic consistency of our resultant ontology,
we loaded it under Protegé, and using the OntoGraf plugin we
obtained the hereafter form [Fig. 8]. Then we created
individuals for different classes with assertions of their
properties without applying any reasoner [Fig. 9(a)].

Fig. 8: Ontograf Diagram of the Resultant Ontology

Subsequently, we applied a reasoner. The version used of
Protégé integrates both reasonneurs Fact + + and Hermit. If
we take, for example, an individual P1, of Professor type, and
an individual mathematics of Department type, connected to
each other by the object property IsAttached, the reasoner
automatically infers that a IsAttached is an association and
that this association is of type: aggregation, as shown below
[Fig. 9(b)]. The same for the attributes encapsulation.

Fig.9 (A): Before the Launch The Reasoner

Fig. 9(B): After the Launch the Reasoner

VII. CONCLUSION AND PERSPECTIVES

Our proposal differs from antecedent proposals by
preservation of the semantics of some specific characteristics
of the class diagram, namely inheritance, attributes
encapsulation, the types of associations (composition and
aggregation), and cardinalities.

In this paper we propose a conversion at the schema level
between a UML class diagram and the model part of ontology
(TBOX). Our future work will focus on the level "data" [Fig.
10] to convert an object database to the instance’s part of
ontology (ABOX), which contains assertions of different
elements of schema level. After this conversion, we will
discuss the querying of resultant ontology in analogy to that
of an object database.

Fig. 10: Conversion At The "Data" Level

REFERENCES

[1] G. Antoniou, F. van Harmelen “Web Ontology Language: OWL”.
pages 76-92 Springer-verlag .2003

[2] D. L. McGuinness, F. van Harmelen, http://www.w3.org
[3] M. R. Jensen, T. H. Møller Torben, B. Pedersen “Converting XML

Data to UML Diagrams For Conceptual Data Integration”. Data &
Knowledge Eng., vol. 44, no. 3, pp. 323-346, 2003

International Journal of Soft Computing and Engineering (IJSCE)
ISSN: 2231-2307, Volume-2, Issue-6, January 2013

69

[4] J. Fong, F. Pang, C. Bloor “Converting Relational Database into
XML Document”. DEXA Workshop, pp 61-65. 2001

[5] N. GHERABI, K. ADDAKIRI, M. BAHAJ “Mapping relational
database into OWL Structure with data semantic preservation”.
CoRR abs/1205.5922. 2012

[6] J. Seidenberg, A. Rector “Web Ontology Segmentation: Analysis,
Classification and Use”. IW3C 2006. ACM, 2006

[7] M. Arnoux, T. Despeyroux “ Multi-représentation d’une ontologie :
OWL, bases de données, systèmes de types et d’objets”. CoRR
abs/1104.2982. 2011

[8] D. Gasevic, D. Djuric, V. Devedzic, V. Damjanovi “Converting
UML to OWL ontologies”. In Proceedings of the 13 th International
World Wide Web Conference, NY, USA, pp. 488-489. 2004

[9] M. Šeleng, M. Laclavík, Z. Balogh, L. Hluchý “RDB2Onto:
Approach for creating semantic metadata from relational database
data”. In INFORMATICS´ 2007: proceedings of the ninth
international conference on informatic, Bratislava Slovak Society for
Applied Cybernetics and Informatics, 113–116. 2007

[10] C. Nyulas, M. O’Connor, S. Tu “DataMaster – a Plug-in for
Importing Schemas and Data from Relational Databases into
Protégé” In Proceedings of 10 th International Protégé Conference,
Budapest, Hungary, 2007

[11] J. Barrasa, Ó. Corcho, A. Gómez-Pérez “R2O, an Extensible and
Semantically Based Database to ontology Mapping Language”. In
Proceedings of the 2nd Workshop on Semantic Web and
DatabasesSWDB2004Springer, p. 1069-1070, 2004

Jamal BAKKAS was born in 1979, in Marrakech,
Morocco. He is PhD student in the Department of
Mathematics and computer science, FSTS, University
Hassan I, Settat, Morocco. His area of interest includes
web ontologies and semantic web.

Mohamed BAHAJ was born in 1964, in ouezzane, Morocco. He got his
PhD in Applied Mathematics, from University of Pau, France, in 1993. He
is now working as a Professor at the Department of Mathematics &
Computer Sciences, University of Hassan 1er, Faculty of Sciences &
Technology Settat, Morocco. His research interests include pattern
recognition, Semantic web & Ontology in MAS, Controls of mobiles agents.

