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Abstract— In this paper, we propose a new conversion’s 

method from UML class diagram to ontology in order to serve the 
Semantic Web. The ontology which results from the conversion is 
expressed in OWL / XML. This method allows us to preserve 
semantic of some feature's UML diagram such as inheritance, 
encapsulation, types of associations (composition, aggregation, 
or simple association), constraints of integrity, class 
identifier...etc. 
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I. INTRODUCTION 

Several works of databases to semantic web migration exist 
which began with conversion of database schema to XML / 
XML Schema standards [4], and result in implementation of 
XMI standard for models conversion and exchange [2]. 
However this standard has some problems of 
implementation, which has prompted research in other axes, 
especially with the advent of the knowledge representation 
language OWL [1], [2]. Thus, there are formalisms of 
mapping from databases to ontology like RO2 [11] and 
D2RQ [Bizer 2003], and conversion tools like RDB2Onto 
[9], DataMaster [10]... 

In this paper we propose an automatic method to convert a 
UML class diagram to an ontology using OWL / XML 
language with keeping the features meaning of the diagram.  

If our proposed method allows representing the basics 
concepts such as inheritance, identifier of class… the major 
contribution is solutions we have conceived to preserve the 
semantic of types of associations and also that of the notion of 
attributes encapsulation after conversion. 

The remainder of this paper is organized as follows: 
Section 2 describes the steps involved in the conversion 
process. Section 3 describes the proposed solution to convert 
UML class and its attributes while keeping the notion of 
inheritance between classes and the attributes encapsulation. 
Section 4 describes the conversion of associations while 
retaining their type and cardinalities. Section 5 presents the 
algorithm of conversion. Section 6 describes the 
implementation with a case study. The last section is devoted 
to the conclusion and perspectives. 

 
 
 

II.  DESCRIPTION OF METHOD 

Our approach provides an algorithm for mapping in a 
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schema level; it takes as input a class diagram that undergoes 
conversion to generate ontology as a set of concepts with data 
type properties. Those concepts are semantically related to 
each other by object properties and hierarchical relationships 
while keeping the semantic of converted class diagram 

Thus, to preserve the notion of inheritance, we exploited 
the hierarchy of concepts provided by ontologies to represent 
inheritance of classes in UML. And to maintain the notion of 
encapsulation, our approach proposes a determined structure 
of data type properties, which reflect the visibility levels of 
UML converted attributes. Another feature of our proposition 
concerns the proposed structure of the object properties for 
keeping the meaning of the association types of UML (i.e. 
composition, aggregation). 

Inheritance, encapsulation, composition, aggregation, class 
identifier ... etc, are UML concepts that carry a meaning and 
their conversion, while maintaining this meaning, is possible 
because the ontology allows to represent meaning. 

 

 
Fig. 1: conversion at the Schema level  

 

In this procedure a class diagram is considered as a set of 
classes. Each class is characterized by a name, a list of its 
attributes, a list of relationships (roles) linking this class with 
other classes, as well as the name of its parent class. If a class 
has no superclass, it is considered subclass of the superclass 
Object. An attribute can be the identifier of its class or a 
simple attribute, each of them has a type that is one of 
predefined types of UML. A relationship represents a role; it 
is characterized by its name, type (aggregation, composition, 
or simple association), the target class, and target 
cardinalities.  

Formally a class diagram can be represented as follows: 
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classDiagram= { C / 
C={ (classeName, classeParent , attributesList ,      

 relationShipsList)  / 
 classeName  ∈ classesNamesList 

 classeParent ∈ classesNamesList ∪   {"Object"} 

 attributesList={(attributeName, ,is_id,  attVisibility,   
       nbOcuurences,  attType)  / 

        attType ∈ AttributesTypesList  
        nbOcuurences > 0 
    } 
relationShipsList = {  (relationName , relationType ,    

       classeTarget , cardTarget) / 
 relationType  ∈ {"AGGREGATION",      

 "COMPOSITION","ASSOCIATION"} 

 classeTarget  ∈    classesNamesList ∪   {"Object"} 

 cardTarget     ∈    {"0..1" , "1..1" , "1..*" , "*"  } 
} 

} 
} 

Fig. 2: detailed description of the class diagram 
With: 

• classesNamesList : names of classes that compose 
the class diagram, 

• AttributesTypesList : list of predefined data types 
of UML, 

• is_id : Boolean which set to true if the attribute is an 
identifier otherwise it is set to false 

• nbOcuurences : If the attribute is an array of 
primitive type then nbOcuurences> 1, otherwise 
nbOcuurences= 1. 

III.  DESCRIPTION OF THE MAPPING ALGORITHM 

A. Classes 

Before starting the conversion, we create a class OWL 
called Object to represent the superclass Object of UML. 
Recall that all UML diagram classes inherit default from the 
Object class. And then each class of diagram is converted into 
an OWL concept with the same name. 

B. The Inheritance between Classes 

Inheritance is one of the fundamental notions in UML 
whose preservation after the mapping is of a major utility. 
Thus we propose to use the hierarchy of concepts provided by 
the ontology to represent this notion.  

Each inheritance relationship between two classes in UML 
is translated to a relationship hierarchy (is_a) between two 
concepts in ontologies. Thus, any concept of the resultant 
ontology has a relationship of hierarchy, either with other 
concept or with the super concept Object that will be the root 
of the ontology. 

C.   Attributes 

An attribute of class with an UML primitive type is 
mapped to property data type defined using the 
DatatypeProperty class; however, data type properties in 
OWL can have multiple values for a given instance, which is 
not the case for an UML attribute (atomicity). In order to 
remedy this problem; we declare the property as a functional 
property with FunctionalProperty class as follows: 

<owl:FunctionalProperty rdf:about="#name" /> 
Recall that for a functional property, there cannot be two 

distinct values y1 and y2 such that the pairs (x, y1) and (x, y2) 

are both instances of this property. 
To represent array type attributes, we use non-functional 

data type properties, but with a cardinality restriction limiting 
the maximum number of occurrences to the size of the 
converted array using the OWL class: maxCardinality as 
follows: 
<owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger"> 

  nbOccurrences 
</ owl: maxCardinality> 

D.  Encapsulation 

The solution that we propose to keep the semantics of 
encapsulation is among the strengths of our method. Indeed, 
we propose to create a super-property "Attribute" with 
DatatypeProperty class, and then create three sub-properties 
of the property "Attribute", These properties represent the 
three visibility levels of UML attributes: private (-), 
protected (#), and public (+). They are created using the 
rdfs:subPropertyOf  class as follows: 

<owl:DatatypeProperty rdf:ID="private"> 
  <rdfs:subPropertyOf rdf:resource="#Attribute"/> 
</ owl: DatatypeProperty> 

 
Fig. 3: The Hierarchy of Data Type Properties 

 

A Thus, we obtain the previous structure [Fig. 3]. 
Subsequently, all attributes are represented by data type 
properties that inherit directly and necessarily of one of the 
three properties: private, protected or public, as the following 
example shows: 

<owl:DatatypeProperty rdf:ID="matricule"> 
 <rdfs:domain rdf:resource="#Professor"/> 
 <rdfs:range rdf:resource="&xsd;integer"/> 
 <rdfs:subPropertyOf rdf:resource="#private"/> 
</owl:DatatypeProperty> 
We chose to name the super-property "Attribute", because 

all the final properties which are sub-properties indirect of 
"Attribute" are conversions of UML attributes. 

E. The Identifier Of The Class 

The identifier of the class is considered as a simple 
attribute; therefore, it is converted into a data type property as 
described above. And because the identifier must have a 
unique value for any given individual, then the property 
should be mentioned as inverse functional using OWL class 
owl:InverseFunctionalProperty  as follows: 
<owl:InverseFunctionalProperty rdf:about="#matricule"/> 

IV.  ASSOCIATIONS CONVERSION 

An association is seen as two roles, these roles can be 
mapped intuitively by two object properties one is the inverse 
of the other using the ObjectProperty class: 

<owl:ObjectProperty rdf:ID="teaches"> 
<rdfs:domain rdf:resource="#professor"/> 
<rdfs:range rdf:resource="#course"/> 
<owl:inverseOf rdf:resource="#TaughtBy"/> 

</owl:ObjectProperty> 

A. Associations Type  

Among the difficulties that arise at this level, the 
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representation of these types of relationships (aggregation, 
composition, or simple association). To remedy this problem, 
several solutions have been proposed, among them, adding 
annotation properties to the object property that represents 
the relationship. This possibility is offered by OWL DL. 
However, these properties do not have semantic value; they 
are not used by reasoners in the process of reasoning, which 
leads to a semantic imperfection of converted diagrams. 

Our proposal consists to structure the object properties 
representing the relationships in a hierarchical form whose 
root is the super-property "ASSOCIATION" which has two 
sub-properties "AGGREGATION" and "COMPOSITION" 
[Fig. 4]. Then each relationship of class diagram is 
represented by an object property that inherits necessarily 
one of the three previous properties. 

 

Fig. 4: Structure of Relationship Types 

We opted for this hierarchy, because it means that all 
relationships are associations. Those who inherit directly of 
the property "ASSOCIATION" or those who inherit them via 
the two others 

B. Cardinalities Conversion 

OWL Classes: cardinality, maxCardinality, 
minCardinality, allow applying cardinality restrictions and 
value restrictions to property linking two concepts of 
ontology. We use these classes to represent UML 
cardinalities by applying cardinality restrictions to object 
properties representing the relations of diagram. If the 
association is an integrity constraint (cardinality 1..1), we 
propose to use a functional property to the linker of the 
cardinality restriction to value 1. Below a table of various 
restrictions to apply to object properties based on the UML 
cardinalities: 
 

Table I: Cardinality Restrictions Applied To Object 
Properties 

 

Card Restrictions 

0..1 

<owl:maxCardinality 
rdf:datatype="&xsd;nonNegativeInteger"> 

1  
</owl:maxCardinality> 

1..1 
<rdf:type   rdf:resource="&owl;FunctionalProperty" 
/> 

1..* 

<owl:minCardinality 
rdf:datatype="&xsd;nonNegativeInteger">  

1  
</owl:minCardinality> 

* no restriction 

V. THE CONVERSION ALGORITHM 

The algorithm of conversion is as follow: 

Create Class "Object" 
Create ObjectProperties "ASSOCIATION" 
Create ObjectProperties "COMPOSITION", 
"AGGREGATION" sub-propertyof "ASSOCIATION"  
Create DataTypeProperty "Attribute"  
Create DataTypeProperty "private","protected","public" 
sub-propertyof "Attribute" 
FOR EACH C of classDiagram do 
Create Class "C.classeName" sub-ClassOf 
"C.classeParent"    
 For each A of C.attributList do 
   Create DataTypeProperty "A.attributeName "   
   sub-PropertyOf "A.attVisibility" 
   with Domain "C.ClasseName" 
   with Range "getType(A.attributType)"  
   if     A.is_id  then   
     "A" is InverseFunctionalProperty 
   else 
    if  nbOcuurences=1  then   
       "A" is FunctionnalProperty 
    else  maxCardinality= nbOcuurences 
    endif 
   endif 
 End For 
 For each   R   of C.relationShipsList  do 
  Create ObjectProperty "R" sub-PropertyOf     
  "R.relationType"  
  with Domain "C.ClasseName" 
  with Range "R.classTarget" InverseOf       
 "getRelationName(C.className,R.classTarget)" 
  RestrictionCardinalities(C.R.cardTarget) 
 End For 
END FOR 

Fig. 5: Algorithm of Conversion 

With 
• getType (UMLDataType): a function that takes as 

parameter the UML primitive data type and returns the 
corresponding XSD type. 

• getRelationName (C1, C2): a function that returns the 
name of the relationship (role) that connects C1 with C2 

• RestrictionCardinalities(UMLCardinality): a function 
that takes as parameter UML cardinality and returns the 
cardinality restrictions corresponding [Table I] 

A. The OWL sublanguage used: 

All previous conversions can be expressed using only 
OWL Lite except attribute conversions. To convert these, we 
are forced to switch to OWL Full to apply Functional 
Property and Inverse Functional Property, which are reserved 
to the object properties, to data type property. Because in 
OWL, Full DatatypeProperty class is a subclass of 
ObjectProperty class, unlike in OWL DL and OWL Lite 
where the two classes are disjoint. 

VI.  CASE STUDY 

Consider the following case study: A university is an 
establishment, which is composed of a set of departments to 
whom attached a set of teachers. This example thus illustrates 
three types of relationships that are: inheritance, aggregation 
and composition, and attributes with three levels of visibility. 
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Fig. 6: Example of a Class Diagram 

Detailed description of the class diagram [Fig. 7], as we 
described [in Fig. 2], is stored in a text file. This file is the 
input of our system, which parses it using the previous 
algorithm [Fig. 5] and generates an output file containing the 
resultant ontology of the conversion. 

 

classDiagram={ 

(Professor,Object,{(matricule,private,

1,integer,true),(name,public,1,string,

false),(dateBirth,protected,1,date, 

false)},{(isAttached,AGGREGATION, 

Departement,1)}), 

(Departement,Object,{(idDept,private,1

,integer,true),(nomDept,protected,1, 

string,false)},{(groups,AGGREGATION, 

Professor,1..*),(compose,COMPOSITION, 

University,1)}), 

(University,Establishement,{( 

idUniversity,private,1,integer,true), 

(nomUniver,public,1,string,false)}, 

{(isComposedOf,COMPOSITION,Departement

,1..*)}), 

(Establishement,Object,{(idEtab, 

private,1,integer)},{(,,,)})   

} 

Fig. 7: Detailed Description of the Class Diagram 

To test the semantic consistency of our resultant ontology, 
we loaded it under Protegé, and using the OntoGraf plugin we 
obtained the hereafter form [Fig. 8]. Then we created 
individuals for different classes with assertions of their 
properties without applying any reasoner [Fig. 9(a)]. 

 

 
Fig. 8: Ontograf Diagram of the Resultant Ontology 

Subsequently, we applied a reasoner. The version used of 
Protégé integrates both reasonneurs Fact + + and Hermit. If 
we take, for example, an individual P1, of Professor type, and 
an individual mathematics of Department type, connected to 
each other by the object property IsAttached, the reasoner 
automatically infers that a IsAttached is an association and 
that this association is of type: aggregation, as shown below 
[Fig. 9(b)]. The same for the attributes encapsulation. 

 

 
Fig.9 (A): Before the Launch The Reasoner 

 
Fig. 9(B): After the Launch the Reasoner 

VII.  CONCLUSION AND PERSPECTIVES 

Our proposal differs from antecedent proposals by 
preservation of the semantics of some specific characteristics 
of the class diagram, namely inheritance, attributes 
encapsulation, the types of associations (composition and 
aggregation), and cardinalities. 

In this paper we propose a conversion at the schema level 
between a UML class diagram and the model part of ontology 
(TBOX). Our future work will focus on the level "data" [Fig. 
10] to convert an object database to the instance’s part of 
ontology (ABOX), which contains assertions of different 
elements of schema level. After this conversion, we will 
discuss the querying of resultant ontology in analogy to that 
of an object database. 

 
Fig. 10: Conversion At The "Data" Level 
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