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Design of MLP-NN Classifier Block with PGA
Type of Dimensionality Reduction Technique for
Assessment of State of Degradation in Stator
Insulation of Induction Motor

Amit J. Modak,

Abstract— In the present work, the design of discrefeNN’
simulation model was done for the classification agdalitative
assessment of the state of degradation of insulatiwesent in the
respective phases of three-phase ac induction motdre ‘ANN’
simulation model consists of numbers of discreteured network
classifier blocks. The extraction of mathematicahmmeters of
stator current data pattern, which are simulatingefspecific state
of degradation of insulation based on Park’s curren
transformation model, were presented in the previoesearch
papers. Further, the optimal design specificatioabthe various
neural network classifier blocks, which were realized the basis
of ‘multilayer perceptron’ (MLP) and ‘radial basisfunction’
(RBF) types of neural network architectures were compéie the
same papers. The striking generalizations, which wdezived on
the basis of the comparative performance analysiseamble that
the general optimum design specifications, which atetermined
on the basis of ‘MLP’ network are preferred as an topum
choice over the ‘RBF’ network. The aim of the presemsearch
paper is to explore the possibility of any furthezduction in the
size of the ‘MLP’ network. The present investigati@mphasis the
use of ‘principal component analysis’ type of dim&nonality
reduction technique for the simplification and imprement in the
design of discrete neural network classifier blockshich were
already designed on the basis of ‘multilayer pertem’ (MLP)
neural network architecture for the classificationra qualitative
assessment state of degradation of insulation imei+phase ac
induction motor

Index Terms— induction motor, stator insulation,
dimensionality reduction technique, principal compent
analysis (PCA), sensitivity analysis (SA), artificiaéural network
(ANN).

[. INTRODUCTION

In the previous investigations it is ascertainedttiere is no
correlation between the results of any nondestredtipe of
(d. c/a. c.) assessment parameters with desteugtpe of (d.
c. /a. c. / impulse) breakdown levels [1-3]. Thepbasis is
towards the development of artificial intelligen@d) based
non destructive test method, which is economical &o
assessment of state of degradation in stator itsuolaf
induction motor. In view of the above perspectihe,present
research work presents a novice Al-based nondéiseuest
method to assess the state of degradation of skéboling
insulation, which is being caused due to varioasofis in an
integrated way. The method is based on the conthapthe
degradation occurring in any one of the phasestaibis
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winding insulation, effectively results in the statof
unbalance in the three-phase stator current. Timulation
and execution of computer simulation model to gateer
unbalanced stator current data pattern was mewtionée
previous research papers [4-6]. In these papelthednasis of
Park’s current transformation model the unbalanstdor
current data in three-phase machine variable foan first
transformed into two-phase Park’s current vectonponent
form. The Park’s current vector components weren the
presented in a graphical dg-data pattern form aemthin
mathematical parameters were deduddt ‘n-dimensional
input space vector’ consists of ‘n=6" numbers oftracted
mathematical parameters like — ‘angle of orientatf@,°),
angle of major-axisé{,®), length of major-axis (ka), length
of minor-axis (lyg), eccentricity £), and latus rectum (LR) as
such represents the specific state of degradafiorsalation
present in the respective phases of three-phasedaction
motor [4-6]. The simulation analysis was conductad
three-phase, 10HP (7.5-kW), staf){connected, six-pole,
induction motor.

IIl. SUGGESTEDAPPROACH FOR DESIGN OF ANN
SIMULATION MODEL BASEDON
DIMENSIONALITY REDUCTION TECHNIQUES

The schematic block diagram of design of discréfdN’
simulation model is shown in the ‘Fig.1’. The ‘ANN’
simulation model is designed for the purpose dsifecation
and qualitative assessment of the state of dedomdaf
insulation present in the respective phases otthlase ac
induction motor. The design of ‘ANN’ simulation meld
comprises of several discrete neural network diassilocks.
The discrete neural network classifier blocks &1, 3EQ,
3UNEQ, 3UNEQa, 3UNEQb, and 3UNEQ3c’. These
discrete neural network classifier blocks are ayeahin three
levels viz., ‘top-level NN-model, middle-level NNeadel,
and bottom-level NN-model’. Each one of these bdogk
designed to perform some specific dedicated task.
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Fig. 1 Schematic Block Diagram of Discrete ‘ANN’ Snulation
Model

The ‘6- dimensional input space vector’ is applasian
input data to each one of these discrete neuralonket
classifier blocks in the specific order. The néumatwork
classifier block ‘NN1’ belongs to top-level of NNedel. The
‘NN1’ block is specifically designed to classifyetlstate of
degradation of insulation into two broad categoriesequal
state of degradation of insulation in all threegdsa(i.e. 3EQ)
and unequal state of degradation of insulationllirthaee
phases (i.e. 3UNEQ). The neural network classtfilrck
‘3EQ’ belongs to one of the ‘two’ blocks of middievel of
NN-model. The ‘3EQ’ block is specifically designed
gualitatively assess the equal state of degradatibn
insulation in all three-phases (i.e. 3EQ) into was
gualitative levels such as ‘Very Low (VL), Low (L)Medium
(M), High (H), and Very High (VH)'. The neural netnk
classifier block ‘3UNEQ’ belongs to one of the ‘tWalocks
of middle-level of NN-model. The ‘S3UNEQ’ block is
specifically designed to classify the unequal state
degradation of insulation in all three phases GENEQ),
into three sub-categories i.e. unequal state ofadiagion of
insulation in all three phases but more in ‘phasas
compared to ‘phase-b’ and ‘phase-c’ (i.e. 3UNEQajequal
state of degradation of insulation in all threeg#sabut more
in ‘phase-b’ as compared to ‘phase-c’ and ‘phasé-a.
3UNEQDbD) , and unequal state of degradation of atgn in
all three phases but more in ‘phase-c’ as compaeed
‘phase-a’ and ‘phase-b’ (i.e. 3UNEQC) .

In a particular case, if ‘3UNEQ’ block classifiehet
‘6-dimensional input space vector’, into the catggof
unequal state of degradation of insulation inlaléé phases
but more in ‘phase-a’ as compared to ‘phase-b"phdse-c’
(i.e. BUNEQa) then the ‘6-dimensional input spaeetor’, is
applied to the neural network classifier block ‘3BQa’. The
neural network classifier block ‘3UNEQa’ belongsatioe of
the three blocks of bottom-level of NN-model.
‘BUNEQa’ block is specifically designed to qualitey
assess an unequal state of degradation of insulati all
three phases but more in ‘phase-a’ as compareghtse-b’
and ‘phase-c’ (i.e. 3UNEQa) into various qualitatievels
such as ‘Very Low (VL), Low (L), Medium (M), HighH),
and Very High (VH)'. Thus, the design of ‘3UNEQd&bbk
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essentially consists of an input layer with ‘sixopessing
elements to accept the ‘6-dimensional input spactov’ and
an output layer with ‘five’ processing elementslassify the
unequal state of degradation of insulation inlaléé phases
but more in ‘phase-a’ as compared to ‘phase-b"phdse-c’
(i.e. 3UNEQAa) into various qualitative levels (f¥ery Low
(VL), Low(L), Medium(M), High (H), and Very High (¥)’).
Like ‘3UNEQa’ block, the ‘3UNEQb and 3UNEQCc’, nelra
network classifier blocks, are also specificallysidaed to
qualitatively assess an unequal state of degradabib
insulation in all three phases but more in the@sfrective
phase’ as compared to the rest of the other ‘remmin
‘phases’ into various qualitative levels such agri/Low
(VL), Low (L), Medium (M), High (H), and Very High
(VH)".

The discrete neural network classifier blocks Nkind
‘BUNEQ’ are designed specifically to classify thtats of
degradation of insulation into various categorié¢snce they
are called as ‘category-classifier’ blocks. The ktasf
classification of state of degradation of insulatassigned to
these category classifier blocks emphasis the rdedn
optimal design considerations, which must ensure th
possibility of the maximum efficiency and classifiion
accuracy of about ‘100 %'.

The discrete neural network classifier blocks ‘3EQ
‘BUNEQa, 3UNEQb, and 3UNEQCc’ are designed spedifica
to qualitatively assess the state of degradatiomsflation
into various qualitative levels. Hence they arelechlas
‘level-classifier’ blocks. The numbers of input®arommon
for each one of these discrete neural networkifiisslocks.
The numbers of outputs for ‘level-classifier’ blacKi.e.
‘five’) are more as compared to the numbers opuots for
‘category-classifier’ blocks (i.e. ‘two’ for NN1 btk and
‘three’ for 3UNEQ block). The more number of outptivr
‘level-classifier’ blocks leads to an increase lie size and
complexity of the design, which ultimately posse #erious
implications towards the hardware implementationtiod
neural network block. The task of qualitative assemt of
state of degradation of insulation into variouslewassigned
to these ‘level-classifier’ blocks emphasis the cheé an
optimal design considerations, which must ensure th
possibility of the reasonable efficiency and clisation
accuracy with an optimal reduction in the complexit the
design.

In order to meet the above stated design considasathe
general optimal design for each one of the blockshe
discrete ‘ANN’ simulation model is done. The gerera
optimal designs of the discrete neural network sifiees
blocks are realized on the basis of ‘multi-layercegtron’
(MLP) and ‘radial basis function’ (RBF) type of mau
network topologies. The comparative performancdysiteof
the general optimal designs of the discrete nemetlork
classifier blocks based on ‘multi-layer perceptr@viLP) and
‘radial basis function’” (RBF) type of neural netkor
architectures is done to select appropriate neueavork

Thdopology. The striking generalizations, which weegived on

the basis of the comparative performance analysithdr
resemble that the general optimum design spedditst
which are determined on the basis of ‘MLP’ netwanle
preferred as an optimum choice over the ‘RBF’ nekwior
the classification and qualitative assessment tésitate of
degradation of insulation in three-phase ac induacthotor.
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design of the network with better generalizatioogarties. In

any reduction in the size of the ‘MLP’ network. Theaddition, a network with fewer weights may be fasbetrain.

peculiarity of the present work, further lies iretfact that, it
emphasis the use of dimensionality reduction tepkes for
the simplification and improvement in the desigrdisfcrete
‘ANN’ simulation model, which is already being dgsed on
the basis of ‘multilayer perceptron’ (MLP) neuradtwork
architecture. The treatment of dimensionality reiduc
technique is introduced here.

A. Dimensionality Reduction (DR) Techniques

In most of the situations, it is seen that the ofida in the
dimensionality of the input space vector would tesuthe

loss of information. A good preprocessing stratsgje one,
which ensures the retention of the most of theveeie
information.  If too much information is lost in &h
preprocessing stage then the resulting performarficie

network does offset any improvement, which mayeans

account of the reduction in dimensionality of thplit space
vector.

A neural network can perform any arbitrary nonlinea

functional mapping task between the sets of vagmbln
principle, a single neural network can be used&p the raw
input data directly onto the desired final outpalues. In
practice, for all types of simple problems, suctprapch
would generally give poor results for any numberezsons.
In the feature extracted input dataset, it is nemgsthat the
most superior features, which would provide the ihamt

cause and effect related information must be smieend
irrelevant or redundant features must be discardéds is

important from the point of view of improvement the

performance of the neural network classifier andtum

avoids the curse of dimensionality. At first, jusefore
initiating the training process, it is necessaryrémsform the
feature extracted input dataset into some new septation.
The input data presented to the neural network
pre-processed in a specific manner. Neverthelesghbice
of preprocessing would be one of the most signifi¢actors
in determining the overall performance of the systdn the
simplest case, the preprocessing may take the déilimear

The overall design strategy for the design of rdise
‘ANN’ simulation model based on ‘principal compomen
analysis (PCA)’ type of dimensionality reductiorchieiques
is detailed in the next section.

[ll. DESIGN OF DISCRETE ‘ANN’ SIMULATION
MODEL BASED ON ‘PRINCIPAL COMPONENT
ANALYSIS' TYPE OF DIMENSIONALITY
REDUCTION TECHNIQUE

The ‘principal component analysis’ (PCA) type of
‘dimensionality reduction’ (DR) technique is exeeil in the
overall design process. The treatment of dimensigna
reduction technique i.e. principal component anal{BCA)
is introduced by means of ‘XLSTAT 2008’ softwarg.[7
is

A. Principal Component Analysis (PCA)

In general, a reduction in the dimensionalityrgdtit space
would be accompanied by a loss of the some infoomat
which is instrumental in discriminating the diffateclasses.

transformation of the input data. The more compleXhe primary goal, in the context of the dimensidgal

preprocessing does involve the reduction of
dimensionality of the input data. Since, the infatimn
content of the input data is somehow lost on actotithe
reduction of the dimensionality of the input da&afirst, the
reduction of the dimensionality of the input dataynappear
to contradict the improvement in the performancethaf
network.

The performance of the network can further be oupd
through the incorporation dprior knowledge! The term

theeduction (DR) technique is to preserve as far@siple the

relevant information. One of the approaches, whick
already discussed, is based on the selectionsflsét’ for a
given set of extracted features or inputs. Thentpal
component analysis’ (PCA) involves the mathematical
procedure that transforms a number of possibleetaaad
variables into smaller number of uncorrelated \des,
which are subsequently termed as ‘principal comptsie
The ‘PCA’ in mathematical term is defined as - ahagonal

‘prior knowledge’refers to the relevant information, whichlinear transformation that transforms the data iatmew

might be used to develop the solution and is aalatito that
already provided by the training (TR) data. Tipeior

coordinate system such that the greatest variagcanly
projection of data, which comes to lie on the fa@brdinate is

knowledgetan either be incorporated into the structur&éeft termed as ‘first principal component’, the secondatest

network itself or at the time of preprocessing stagrhe

variance on the second coordinate is termed asrisec

‘prior knowledge’ modifies the training process. The aspeqgprinciple component’, and so on. The ‘PCA’ in thetacal
of data preparation arises from the fact that ¢la¢ data often term is defined as — an optimum transformationafagiven

suffers from the number of deficiencies such asimisinput

data, which is expressed in least square terms.'HG&’

values or incorrect target values. Since, theitngiprocess of involves the calculation of the ‘Eigen value decasifion’ of

network may involve an iterative algorithm. It isrgerally
convenient to process the entire training datagetsing the

a data covariance matrix or ‘Singular value decasitfmn’ of
a data matrix, which is usually done after meaneararg the

preprocessing transformation and then used thisreentdata for each attribute. The results of a ‘PCA’ aseally

transformed dataset to train the network.

One of the most important forms of the preprocessi

involves the reduction of the dimensionality of thput data.
The principle motivation behind the
reduction’ (DR) of the input data is that, it caelph to
alleviate the worst effects of the curse dimendibna A
network with fewer inputs has fewer adaptive paranseto
be determined. The fewer adaptive parameters are likely
to be properly forced to the desired optimum spetifalues
by means of dataset of limited size. This, in tiefads to the
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‘dimensionality

discussed in terms of component scores.

The ‘PCA’ is a very useful method to analyze nueri
data structured inM observations / N variablegable. It
allows one to:

1) Quickly visualize and analyze correlations betwéen
‘N’ variables.

2) Visualize and analyze the ‘M’ observations (inlyal
described by the ‘N’ variables) on a low dimensiona
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map, which offer an optimal view for a variability

criterion.

3) Build a set of ‘P’ uncorrelated factors (P<=N), alincan
be reused as input for other statistical methods.

‘3UNEQa-MLP-PCA’ Neural Network

The cumulative variability of ‘99.012%’ with ‘four{4)
input features contains almost all the relevardrimiation of
the initial ‘six’ (6) input features. The eigenvah) reflect the

The details of the methodology adopted towards tHH@lity of the projection from an initial ‘n-dimeinsal input

application of the ‘PCA’ type of dimensionality netion
technique, in the design process of the optimalgdesf
‘BUNEQa-MLP-PCA'level-classifier block of discrete ANN
simulation model are provided in the present sactithis
particular discrete neural network block is onetlad four
level-classifier blocks belonging to ‘bottom-lever discrete
‘ANN’ simulation model (i.e. 3UNEQa)lt is marked in the
form of overshadowed block in the ‘Fig.1". The oadér
simulation results of the rest of the other sinedatesigns of
various discrete level-classifier neural networddis, which
are designed on the basis of ‘multilayer percept(dhP)
type of network with ‘principal component analy$iBCA)’
type of dimensionality reduction technique, arevjted for
the sake of comparative performance analysis.

The treatment of ‘PCA’ is exercised by means efdRon’
rule [8]. The quality of projection from the initia
‘six-dimensional’ input feature space to a lowemdnsional
feature space is represented in terms of matheshatigects
like eignvalues and correlation circle. The ‘Tablgresents
the variability of the principal components in tarof their
eignvalues and variability (%), which is expressetérms of
cumulative and standalone percentage (%) value.‘Hig. 2’
provides the graphical representation of the saher®as the
‘Fig.3" presents the correlation circle of
‘six-dimensional’ input feature space in the contek the

initial

space feature (n = 6) to a lower number of dimerssitn the
present case, the first eigenvalue is ‘3.162’ agprasents
‘52.698 (%)’ percentage (%) of the total varialilifThis
means that — if the data is represented on onlyaai® it is
still possible to view the percentage (%) of thaftgariability
of the data. Each eigenvalue corresponds to arfaartd each
factor corresponds to a one dimension. A factaa Iear
combination of the initial variables, and all thectors are
un-correlated (CC = 0). The eigenvalues and
corresponding factors are sorted by descending afdsow
much of the initial variability they must represeite.
converted to %).

As shown in the Fig. 2, it is clear that, the fifsto’
eigenvalues corresponds to a high percentage (%heof
variance. This further ensures that the map basdtefirst
‘two’ factors is a good quality projection of thaitial
‘six-dimensional’ input feature space. In the presmse, the
first ‘two’ factors allow us to represent ‘86.83P6)
percentage (%) of the initial variability of thetdaThis is a
good result. Hence, the ‘first map’ is obtainedwssn the
first ‘two’ variables for the subsequent interptitas. The
‘first map’ is called the correlation circle (i.en axes F1 and
F2).

The correlation circle (i.e. on axes ‘F1’ and ‘F&fjows the

optimal design of ‘3UNEQa-MLP-PCA’ level-classifier projection of the initial variables in the factagace. When

neural network. As shown in the ‘Table I, the eiglwes and
variability (%) factor of the principle componentsterpret
that, it is possible to transfer the data from aitial
‘six-dimensional’ input feature space (i.emi, Lvs, & LR,
0m°, andby®’) into the lower ‘four- dimensional’ input feat
space for an optimal design of ‘3UNEQa- MLP-PCAura
network level-classifier.

TABLE | PRINCIPAL COMPONENTS FOR OPTIMAL
DESIGN OF ‘3UNEQa-MLP-PCA’ NEURAL NETWORK

Principle Conp i} & &} H 5 6
Eigenvalue 2048 053 0193 | 004
Variability {%) 34133 8.365 3216 0,502 C.087
Cumulative % 35,796 9012 %31 100400

3162 0.005
51693

51,633 36,831

Principle Component Analysis

R — 100

H X

51 - 80
f £ £ ) £

Eigen value

Cumulative variability (%)

Principle Component

Fig. 2 Principal Components for Optimal Design of
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‘two’ variables are far from the center and areselto each
other, then they are significantly positively cdated (i.e.
‘CC’ close to ‘1) with each other. If they aretloogonal, then
they are not correlated (i.e. ‘CC’ close to ‘O"tkvieach other.
If they are on the opposite side of the centem ey are
significantly negatively correlated (i.e. ‘CC’ cldo ‘-1’)

with each other. When ‘two’ variables are closéh® center,
it means that some information is carried on othess, and
that any interpretation might be hazardous. Theetation

circle is useful in interpreting the meaning of suas well. As
shown in the ‘Fig.3’, it is clear that, all the iasles are far
from the center.

Variables {axes F1 and F2: 86.83 %)

F2(34.13%)

F1(52.703%)

Fig. 3 Correlation Circle of Initial Six-Dimensional Input
Feature Space for Optimal Design of ‘3UNEQa-MLP-PCA’
Neural Network
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The variables like - ‘length of minor axis ) and latus
rectum (LR)’ of extended Park’s current data pateare
quite close to each other. Hence, it is ascertainaboth of
them are significantly positively correlated (i€C’ close to
‘1"). Similarly, the variables like —‘length of maj axis (Lya)
and eccentricityd)’ as well as ‘angle of major axif{°) and

orientation angle 6,°)' of extended Park’s current data

pattern are quite close to each other. Hencs,ascertained
that all of them, in their respective pairs, argngicantly
positively correlated (i.e. ‘CC’ close to ‘1’) witkach other.
However, particularly, in the context of the sei@ctof one
variable at a time in between the different padfrsre is a need
to draw further interpretation. The variables like
‘orientation angle §,°) and length of minor axis {lg)’ are
orthogonal to each other. Hence, they are not letee (i.e.
‘CC’ close to ‘0") with each other. Similarly, tivariables like
— ‘angle of major axis6°) and latus rectum (LR)’ are
orthogonal to each other. Hence, they are not leteet (i.e.
‘CC’ close to ‘0’) with each other. The variableigel -
‘eccentricity €) and latus rectum (LR)’ are on the opposi
side of the center. Hence, both of them are sicpnifily
negatively correlated (i.e. ‘CC’ close to ‘-1") Witach other.
The either of the two variables could have beenored
without any effect on the quality of the resultbeTTable 2’
presents the corresponding correlation matrix, Wwhiovides
the computational values of the correlation cogffits
between all variables. It is observed that in naddhe cases
the variables are either partially positively ctated (i.e.
‘CC’ close to ‘+0.5’) with each other or partialhegatively
correlated (i.e. ‘CC’ close to - 0.5") with eacther. There is
a need to execute the principal component ana({&zA)
search procedure for the determination of optimwmivers
of principle components (PC's) as inputs.
‘Neurosolutions 5.0’ neural network design tool {®lised to
perform  the numbers of computer
experimentations.
TABLE Il CORRELATION MATRIX OF INITIAL
SIX-DIMENSIONAL INPUT FEATURE SPACE FOR
OPTIMAL DESIGN OF ‘3UNEQa-MLP-PCA’ NEURAL

NETWORK

Variables 80 fm Lma lmb 3 (R
60 1 0.1 -0.639 0004 056 0338
im 0 1 -0.649 0308 0405 -0.000
Lma -0.639 -0.649 1 0.189 0805  -0.365
Lmi -0.004 -0.398 0.189 1 0305 082
£ 052 -0.405 0.805 -0.308 1 0174

IR 03318 0010 0,365 08% 077 1

The number of principal components (PC’s) as inpués
varied from ‘1’ to ‘6’ PC’s and performance of tigeneral
optimum design of ‘3UNEQa-MLP’ network is verifieth
the training process, the transformed data in tiven fof
‘factor score’ (FS) is tagged in the ratio of ‘80:10’ (%) as
‘TR: CV: TEST’ (%) data, respectively. In the desigrocess
of ‘3UNEQa-MLP’ general optimum design, the perecgat
ratio (i.e. ‘80:10:10 %) for data tagging is aldyabeing
determined on the basis of ‘variable split ratldSR) type of
data partioning scheme. The levels of performaneasures
like — ‘MIN AVE MSE, MSE, NMSE, MAE, and CC’ are
relaxed marginally as compared to that of genepsihmm
design. Since, it is expected that, the some ofréhevant
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information might get lost in view of lower dimeasal input
feature space. The primary aim towards the appicadf
principal component analysis (PCA) type of dimenalay
reduction (DR) technique is to achieve almost thenes
‘average classification accuracy’ (CA) performanceasure
with the lower dimensionality of input feature spac

The variation of ‘MIN AVE MSE’' and ‘average
classification accuracy’ (CA%) performance measore
training (TR) and cross-validation (CV) data isigrated in
the ‘Fig.4’ and ‘Fig.5’ respectively, with differemumber of
principal components (PC’s) as inputs. The vaneiof
performance measures like —NMSE, MAE, and corietat
coefficient (CC)’ are shown in the ‘Table 1lI' witllifferent
number of principal components (PC’s) as inputs.

Variation of 'MIN AVE MSE' for Different Number of
Principal Components (PC's) as Inputs

=T -0V

MIN AVE MSE

005

Number of Principal Components (PC's) as Inputs

Fig.4 Variation of ‘MIN AVE MSE’ with Number of Princ ipal
Components as Inputs for ‘3UNEQa-MLP’ Neural Network

Varlation of Average Classification Accuracy (CA) with TEST on Training (TR), Cross-
validation (CV) & Test (TEST) Dataset For Different Number of Principle Components

(PC's) as Inputs
MR W T
RN

1 2 3 4 5 ]

TR WLV WTET

100

Average Classification Acturacy (CA)
in Percentage (26}

Number of Principle Components as Inputs

Fig.5 Variation of Classification Accuracy (CA) with Number
of Principal Components as Inputs for ‘3UNEQa-MLP’ Neural
Network

TABLE Il VARIATIONS OF PERFORMANCE MEASURES
WITH NUMBER OF PRINCIPAL COMPONENTS AS INPUTS
FOR '‘3UNEQa-MLP’ NEURAL NETWORK

NMSE

Number of Inputs ~ TEST
1 0.874145
0.463004 0.457676
0.074331 | 0.066102
0.053717 0.053969
0.042903 0.0468835
0043963 0.043511

MAE
TEST w
0.278528 0.282052
0.163645 0.162001 0.732324 0.732260
0.063964 0.062393 0.968073 0.972282
0.053809 0039437 0978520 0.978413
0.058236 0.058958 0.984346 0.983094
0.057458 0.057847 0.984419 0.983864

cc
v
0.3328%4

w
0.891083

TEST
0.350695

o oW B e R

As shown in the ‘Fig.4’, it is observed that thélN AVE
MSE’ performance measure approaches to minimunewaiu
training (TR) as well as cross-validation (CV) d&da‘four’
(4) number of principle components (PC’s) givenrgmits.
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Similarly, as shown in the ‘Fig.5’, it is observéidat the
‘average classification accuracy’ (CA %) is abo@8 %’
with ‘four’ (4) number of principle components (FI'as
input feature space. The performance measures‘NdSE
and MAE’ decreases just near to the acceptabld liith
‘four’ (4) number of PC’s as input on cross-validat (CV)
and testing (TEST) data. On the contrary, the ¢atiosn
coefficient (CC) performance measure increasesghste
the acceptable limit (i.ex 0.97) with ‘four’ (4) number of
PC's as inputs on cross-validation (CV) and tes{iigST)
data. It is inferred that the number input featucas be
reduced from ‘six’ to ‘four’. The same methodologyhich
was adopted for the general optimal design

In order to verify and compare the training andings
results of the newly designed classifier, the ti@msed
dataset in the form of factor score (i.e. FS) ofvdo
dimensionality with the ‘four number of principal
components (PC’s) as inputs is used. The optimsigdeof
‘BUNEQa-MLP-PCA' neural network level classifierook
with the design specifications listed in ‘Table JVis
re-trained over ‘five’ (5) numbers of runs (timesjth
different random weight initializations and latersted on
‘Testing (TEST), Cross-validation (CV), and Traigi(lrR)’
datasets. The different data partioning schemesVariable
Split Ratio (VSR) method, Variation in Groups (V@gthod

and Leave-N-Out (LNO) method’ are used to assess th

‘BUNEQa-MLP’ level classifier block is also adoptedperformance of the network.

towards obtaining the optimum design specificatidos
‘BUNEQa-MLP-PCA' level-classifier neural network sign
with ‘4’ No’s of PC’s as inputs.

The optimal selection of the number of proaagsiements

in the first hidden layer (i.e. ‘Hl) is done by observing the

performance of the network (i.e. 3UNEQa-MLP-PCA}hwi
‘four’ (4) number of principle components (PC’s) iaputs.
The computer simulation experimentation is done tfer
variation in the number of processing elementshan first

hidden layer (i.e. ‘HL). The optimal numbers of processing

elements of first hidden-layer for ‘3UNEQa’ levehssifier

block based on multilayer perceptron (MLP) type of

NN-architecture with principal component analysiCA)
(i.e. ‘S3UNEQa-MLP-PCA) are selected as ‘PE = 0%u§,
the optimal design configuration of
level-classifier block based on ‘multilayer percept (MLP)
type of ‘ANN’ architecture with ‘principal componen
analysis’ (PCA) type of ‘dimensionality reductio(DR)
technique (i.e. 3UNEQa-MLP-PCA)
‘input-layer’ with ‘four’ numbers of processing ehents as
principal components (PC’s), first ‘hidden-layeiithw ‘nine’
numbers of processing elements, and an ‘output:layiéh
‘five’ numbers of processing elements (i.e. ‘4-9-5The

‘Momentum’ (MOM) learning algorithm and the ‘Tanh

Axon’ (TANH) activation function are selected asvalus
choices for the selection of new optimal learniaggmeters
(i.e. ‘learning constant or step size’ (i.g’), and ‘momentum
coefficient or rate’ (i.e. d’), etc ...) of the processing
elements belonging to ‘first hidden layer and outjpyer’)

and the stopping condition (i.e. SC). The new desi¢
design ¢

specifications determined for the optimal
‘BUNEQa-MLP-PCA’ neural network classifier blockear
listed in ‘Table IV'.

TABLE IV DESIGN SPECIFICATIONS OF OPTIMAL
DESIGN OF ‘3UNEQa-MLP-PCA’' NN- LEVEL CLASSIFIER

BLOCK
Desien Parameter Specification
Data Taggng TR: CV: TEST (%) »
80% Training (TR}, 10% Crogs Validation (CV), 10 % Testing (TEST) B0:10:107%)
MNumber of Processing Elements (PE's) as Optitnal Nurmber of Principal 04
Components (PC"8) as Inputs in Input Layer (i.e *IN")
Error Criterion Ly’ Nom
Stopping Condition(i.e “3C7) *3500° Epachs
Nunber of Hidden Layers (1.e. ‘HLy, HLy, .. 7) 01(ie HLY

Mumber of Processing Elements (FE) in First Hidden Layer (i.e. ‘HL{) 09
Transfer Function (i.e. "TF") ‘Tarh Axon’ (1e ‘TANHY
Learning Algorithm (1e LA™ ‘Meomenturn (e ‘MONM

First Hidden Layer, Learning Constant or Step-Size(ie 'LC7 or'y’ ) 04

Firg Hidden Layer: Momentum Coefficient or Rate (e, ‘MO o ‘o) 0.8

Chutput Layer © Learning Constant or Sep-Size (le. 'LC or'n') 0.8

Chutpat Layer: Momentutn CoefRcient or Rate (le. "MC” or 'o) 07

Murmher of Connection Weights: (e 429+ 03549+ 5) 95

MNumber of Processing Elements (PE) in Output Laver (1.2 OUT) 05
Meural Netwotk Topology 4-0-5-MLP-PCA
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‘BUNEQa’

is consisting of

The ‘Fig.6’ shows the variation of ‘MSE’ performanc
measure with variable percentage of data taggettdoring
(TR) data for ‘3UNEQa - MLP - PCA’ design. The fla V'
shows the variation of ‘NMSE, MAE, and CC’ perfonnca
measures for the same design. On the basis ofshmakation
results, it is observed that, the dataset mustaitipned as
‘50 % -50 %’ for training (TR) and testing (TESTatd for the
best results.

Variation of 'MSE' for TESTING on Training (TR) & Testing (TEST)
Dataset with Specific Percentage of Data Tagged for Training

TR —B-TET

0012

001 1

MeanSquare Error (MSE)

Percentage of Data Tagged for Training (TR Data (%)

Fig.6 Variation of ‘MSE’ Performance Measure with Variable
Percentage of Data Tagged for Training (TR) Data for
‘3UNEQa - MLP - PCA' Design

TABLE V. VARIATION OF ‘NMSE, MAE, AND CC’
PERFORMANCE MEASURES WITH VARIABLE
PERCENTAGE OF DATA TAGGED FOR TRAINING (TR)
DATA FOR ‘3UNEQa — MLP - PCA’ DESIGN

Percentage of Data NMSE MAE C
TR(%)-TEST (%) TEST TR TEST TR TEST R
10(%)-90(%)  0.061488 0039789 0.061414 0057638 0975819 0.986030
20(%)-80 (%)  0.057058 0047619 0.061346 0059453 0977909 0.982624
30(%)-70(%)  0.056536 0.048575 0.060383 0.058529 0.977659 0.981704
40{%)-60(%)  0.059684 0.049369 0.039343 0.057735 0.975730 0.980874
50(%)-50(%)  0.033333 0.049345 0.0603539 0.039572 0979116 0.981116
60{%)-40{%)  0.053368 0.047826 0.039485 (0.058567 0.978921 0.982028
70{%)-30{%) 0.055046 0.049505 0.061004 0.060345 0.79340 0.981881
80{%)-20(%)  0.033041 0.048349 (0.058750 0.057972 0.979183 0.981431
90{%)-10{%)  0.053590 0.031345 0.060425 0.060636 0.979977 0.981074

The variation of ‘MIN AVE MSE’ performance meastiog
different groups of dataset is represented in Trable VI'.
The variation of ‘MIN AVE MSE’ performance measureer
a marginal range (i.e. between ‘0.015’ and ‘'0.@@hfirms
the consistency in the performance of network fifexent
groups of dataset.
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TABLE VI VARIATION OF ‘MIN AVE MSE’
PERFORMANCE MEASURE FOR DIFFERENT GROUPS
OF DATASET FOR ‘3UNEQa — MLP - PCA’ OPTIMAL

DESIGN
GROUP NO VG Avg TrMSE (MIN) Avg CVMSE (MIN)
1 1234 0014269 0.015381
2 2341 0.014905 0.017249
3 3412 0.015652 0.017618
4 1123 0.016181 0.015360
5 2134 0.015870 0.017115
B 3241 0.014376 0.016839
7 4312 0.015810 0.018045
8 2132 0.015956 0.016261
: 2143 0.014227 0.016389
10 3214 0.014737 0.017407
11 4321 0015763 0.014937
12 1432 0.015648 0.016048

The variation of ‘average classification accura¢gA)
performance measure for different numbers of piaddf
subset of exemplars to be skipped (i.e. ‘102, 184, 145,
160, 174, 189, and 205’) during the ‘Leave-N-OWNQ)
type of data partioning training scheme is showtha ‘Fig.
7.

Variation of Average Classification Accuracy (CA) with TEST on Training (TR}, Cross-
validation (CV) & Testing (TEST) Dataset For Shift / Skip in Exemplars By LEAVE-N-OUT

TEMAY Masbad o8 Bata Dactlanling Cabam s
(LIVU] IVIEU0U O1 Uata rarudiing stneie

in Percentage (26)

—————
——
—

Average Classification Accuracy (CA]

Shift/ Skip in Training (TR) & Cross-validation (CV) Exemplars/ Data Rows

Fig. 7 Variation of ‘Average Classification Accurag’ (CA)
Performance Measure for ‘Leave-N-Out’ (LNO) Type of Dda
Partioning Training Scheme of ‘3UNEQa — MLP —PCA’
Optimal Design

The variation of ‘average classification accura¢@A)
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IV. COMPARATIVE PERFORMANCE ANALYSIS
OF OPTIMAL SIMULATED DESIGNSOF
LEVEL-CLASSIFIER NN-BLOCKS BASED ON ‘MLP’
AND ‘MLP-PCA’ DESIGN STRATEGIES

The comparative performance analysis of the design
specifications and the performance measures ogéneral
optimal simulated designs of the level-classifiezural
network blocks (i.e. 3UNEQa, 3UNEQb, and 3UNEQc) of
discrete ‘ANN’ simulation model, which are desigrmdthe
basis of ‘multilayer-perceptron’ (MLP) type of ‘ANN
architecture and their corresponding optimal siteda
designs based on ‘principal component analysis’/APgpe
of ‘dimensionality reduction’ (DR) technique areidfly
summarized in ‘Table VIII".

TABLE VII OPTIMAL SIMULATED DESIGNS OF

LEVEL-CLASSIFIER NN-BLOCKS BASED ON ‘MLP-PCA’
NETWORK ARCHITECTURE

Specifications / Optimal Simulated Design Specifications and Performance Measuresof Level
Perfi M Chssifier Neural Network Blocks
JUNEQaMLP-PCA [ 3ONEQh-MLP-PCA | 3UNEQeMLEPCA
INN-Topobgy 49.5 415 495
TR: CV: TEST (%) 80:10:10 Mn:15:15 0:15:15
(Primary Data Tagging Percentase)
Error Criterion Ly-Norm L;-Norm L;-Norm
(EQ)
Siopping Criterion (5C) 2500Ep ochs 5000 Epochs 4000 Epochs
Leamning Alorithm Momentum Momerttur Momentun
(L)
Transfer Function TANH TANH TANH
(T
MIN MSE (5C) 0012755 0012776 0.013519
MIN AVE MSE (5C) 0015680 0017333 0.014819
TR: TEST (%) 50:50 60:40 0:30
(VSR Data Tagging)
MSE (VSR) 0008604 0007550 0.007792
NMSE (VSR) 0053333 D.D46654 0047922
MAE (VSR) 0060359 0039020 0.034039
CC (V5R) 0979116 0978287 0.980964
AVE CA (%) (VSR) BT B.0D5 984084
TR: CV: TEST (%) 02525 60:20:20 0:13:15
(VG Daia Tagging)
MIN AVE M3E (VG) (D0.014987 ; 0D1845) | (D.014655 ; DOZNG) | (0013582 ;0.016006)
(MIN; MAZ)
AVE MSE (LNO) (D012570; 0.015106) | (D.007562 ;0.015650) | ( D008TTS ;D.0IIA3T)
(MIN; MAX)
AVE CA (“)(LNO) (959390 ; 07.7988) | (97452; 9B59R2) | (UGTIER ;BMT4)
(MIN; MAX))
No. of Connertion Weizhts 9% 78 %

The following are the few of the striking generatinns,

performance measure over a marginal range on ifigin which are established on the basis of the compahistween

(TR), cross-validation (CV), and testing (TEST)atdset
confirms the consistency in the performance of pnétwor
different ‘Leave-N-Out’ (LNO) data partioning schenT his

further ensures that the network is truly learnedd a

generalized. Thus, the optimal design

‘BUNEQa-MLP-PCA' neural network level classifieraok
with the design specifications listed in ‘Table Vs
determined for qualitative assessment of an unestass of
degradation of insulation in all three phases botremin

the specifications and performance measures.

(1) Inthe context of the stopping criterion (SC), lineels of
‘MIN MSE’ and ‘MIN AVE MSE’' performance
measures are marginally higher and just lying detsie

of  permissible acceptable limits for ‘MLP-PCA’ netwaak

compared to the ‘MLP’ network. Further, in the case
‘MLP-PCA' network, by an average, the number of
‘epochs’ required for the stopping criterion arerenas
compared to the ‘MLP’ network.

‘phase-a’ as compared to ‘phase-b’ and ‘phase-@. (i (2) The performance tests based on the variable sii r

3UNEQa) into various qualitative levels such asr{veow

(VL), Low (L), Medium (M), High (H), and Very High

(VH)'.

The overall simulation results of the rest of thiheo
simulated designs of various discrete neural nétwiassifier
blocks based on multilayer perceptron (MLP) typ& NN’

architecture with principal component (PCA) type of

dimensionality reduction technique are provided the
‘Table-VII' for the sake of comparative performararslysis.
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(VSR) method of data partioning scheme suggest that
the ‘seventy’ percent (70%) of data tagging for the
training (TR) data and remaining ‘thirty’ perce0@b)

of data tagging for the cross-validation (CV) aasting
(TEST) data is preferred as an optimum selection fo
most of the cases of ‘MLP’ networks while in theseaof
‘MLP-PCA' networks, by an average, the ‘sixty’ pent
(60%) of data tagging for the training (TR) datad an
remaining ‘forty’ percent (40%) of data tagging fie
cross-validation (CV) and testing (TEST) data is
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preferred as an optimum selection. Thus, in the cds
‘MLP-PCA'’ network, even on account of large number
of ‘epochs’ required for the stopping criterion,eth
‘effective time elapsed per epoch per exemplaguge
less as compared to the ‘MLP’ network.

TABLE VIIl OPTIMAL SIMULATED DESIGNS OF

LEVEL-CLASSIFIER NN-BLOCKS BASED ON ‘MLP’ AND

‘MLP-PCA’ NETWORK ARCHITECTURE

Specifications [ Optirnal Srolated Desizm Specifications and Performance Measures of Level Chassifier Neural NetworkBlocks
Perfomance | 3UNEQaMLP | 3UNEQa.MLP-PCA | 3UNEQh-MLP | 3UNEQh-MLP-PCA | SUNEQe-MLP | 3UNEQeMLP-PCA
Measures
INN-Topology 695 495 611-5 475 685 495
TR:CV:TEST(%) | 60200 0:10:10 0:20:0 01515 0:20:0 01515
(Primary Data
| Tagging Percentage)
Ernr Criterion Ly Normn Ly-Norm Ly Normn Ly-Norm Ly-Norm Ly-Norm
Q)
Stopping Criterion | 3000 Epochs 2500 Epochs 4000 Epochs S00Epochs 2000 Epochs 4000Epochs
(50)
Learning Algorithn | Momentum Momenturn Momentum Momentum Momentum Momentum
(L)
Transter Furction TANH TANH TANH TANH TANH TANH
MINMSE (5C) 0011704 0012755 0011437 00101% 0010086 001319
MINAVEMSE (SC) | 0.01%67 0015680 0011669 [TEEH 0010889 0014819
TR: TEST (%) 0.0 B 03 6040 k] 30
(VSR Data Tageing)
MSE 0.00687% 0008806 000697 000750 0005723 000792
IVMSE (VSR) 0042185 0053333 0028580 0046654 00558 0p4m2
I [ [0 [k [ [0
CC (VSR) 09850% 097116 098686 0978287 09859 0980964
AVECA(%)(VSR) | %752 BT 98.9¢55 BI85 oy %4984
TR:CV:TEST (%) | 80:10:10 0525 M:15:15 60:20:0 M:1515 01515
VG Data Tagging)
MINAVE MSE(VG) | ( 0.009608; (0014987, (0008585 ; (014658 ; (0008170; (0013682,
(MIN; MAX) 0013506 ) 0018045 ) 0011839) 0.020206) 0.012197) 0.016006 )
AVEMSE(QLNO) | (DOI919; (001257; (0007320; (0007562, (0007590 ( 0.008775;
(MIN; MAX) 0.021245) 0.015106) 0BLIE3) 0.015650) 0.012662) 0.011837)
AVE CA(%)(LNO) | (889376; (959390 ; (967251 (973482; (957716, (96.7188;
(MIN; MAX) 9.709) 77088 ) 9.2503) B3052) WT4) BHUU)
To.of Comnection 113 % 137 7 1l 9
Weights
Percentage (%) 1593% 455% 394%
Reduetion in Sz
(3) The performance tests based on the variable sid r

(4)

()

(VSR) method of data partioning scheme suggest that
the levels of ‘MSE, NMSE, and MAE’ performance
measures are marginally higher for ‘MLP-PCA’ netlwor
as compared to the ‘MLP’ network. However, the Isve
of all these performance measures are lying justinvi

the acceptable permissible limits for ‘MLP-PCA’
network. Further, the level of cross-correlation
coefficient (CC) performance measure is quite

comparable in both the cases.

The performance tests based on the ‘variable isgild’
(VSR) method of data partioning scheme suggest that
the average classification accuracy (CA) perforreanc
measure is just above ‘ninety eight’ percent (98fét)
both ‘MLP’ as well as ‘MLP-PCA’ network. Thus, the
case of ‘MLP-PCA’ network, the average classifioati

(6)

(7)

(8)

VIII). This marginal deterioration in the performanof
the ‘MLP-PCA’ network is expected because of theslo
of marginal relevant information on account of lowe
dimensionality input feature space.

The performance tests based on the ‘leave-n-odQL
method of data partioning scheme suggest that, the
variation in the ‘AVE MSE’ performance measure is
marginal and varies just outside the acceptable
permissible limit for different numbers of shifskip in
exemplars of dataset for ‘MLP’ as well as ‘MLP-PCA’
network. This particular fact ensures the consistén

the performance of the networks, which are desigmed
the basis of ‘MLP’ as well as ‘MLP-PCA’ network
topology. However, the marginal variation in thev&
MSE’ performance measure is particularly noticed at
lower level for ‘MLP-PCA’ network as compared taeth
‘MLP’ network.

The performance tests based on the ‘leave-n-odtQL
method of data partioning scheme suggest that, the
variation in the ‘average classification accurg@y CA)
performance measure is marginal for different numbe
of shift / skip in exemplars of dataset for ‘MLF well as
‘MLP-PCA' network. This particular fact ensures the
consistency in the performance of the networksclvhi
are designed on the basis of ‘MLP’ as well as
‘MLP-PCA'’ network topology. However, the marginal
variation in the ‘average classification accurg@y CA)
performance measure is particularly noticed at dnigh
level for ‘MLP-PCA’ network (i.e. ‘95 % to 98 %')sa
compared to the ‘MLP’ network (i.e. 88 % to 98 %).

In the case of '‘MLP-PCA’ network, the average
classification accuracy (CA) performance measure is
achieved well within the desired limit (i.e. 98.0 %).
This is irrespective, on account of the lower
dimensionality input feature space for ‘MLP-PCA’
network. The lower dimensionality input feature sp&
accountable for the reduction in the number of
connection weights and in turn the size of the nekw
The size of the network is reduced by ‘15.93 %2835,
and 5.94%’ for SUNEQa, 3UNEQb, and 3UNEQc level
classifier blocks, respectively. This particulactfes very
important in view of the feasibility in the hardwear
implementation of the design specifications.

V. CONCLUSIONS

The methodology adopted in the design process ®f th

accuracy (CA) performance measure is achieved walhrious simulated designs of discrete neural netwiassifier

within the desired limit. This is irrespective, aocount

blocks (i.e. 3UNEQa, 3UNEQb, and 3UNEQCc’) of disere

of the lower dimensionality input feature space fofANN’ simulation model, based on ‘multilayer perd¢egmn’

‘MLP-PCA'’ network.
The performance tests based on the ‘variation aupjr

(MLP) type of neural network architecture with peipal
component analysis’ (PCA) type of dimensionaldguction

(VG) method of data partioning scheme suggest that, (DR) technique, is presented in the paper. Therreat of
variation in the ‘MIN AVE MSE’ performance measuredimensionality reduction technique i.e. ‘princigaimponent

is marginal for different groups of dataset for ‘MlLas
well as ‘MLP-PCA’ network. This particular fact enss

analysis (PCA)’ is introduced by means of ‘XLSTATOB’
software. The levels of performance measures liK®IIN

the consistency in the performance of the networkgVE MSE, MSE, NMSE, MAE, and CC’ are relaxed
which are designed on the basis of ‘MLP’ as well amarginally as compared to that of general optimuesigh.
‘MLP-PCA'’ network topology. However, the marginal Since, it is expected that, the some of the relewdormation
variation in the ‘MIN AVE MSE’ performance measuremight get lost in view of lower dimensional inpwature

is particularly noticed at higher level for ‘MLP-RC

varies just outside the acceptable permissiblé (ifd@ble
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space. The primary aim towards the applicatiorpahcipal
network as compared to the ‘MLP’ network. In faitt, component

analysis’ (PCA) type of ‘dimensionality

reduction’ (DR) technique is to achieve almost tame
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