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Foreword

In the past, the Springer Series in Synergetics has consisted predominantly of
conference proceedings on this new interdisciplinary field, a circumstance dictat-
ed by its rapid grawth. As synergetics matures, 1t becomes more and more desir-
able to present the relevant experimental and theoretical results in a coherent
fashion and to provide students and research workers with fundamental “know-
how” by means of texts and monographs.

From the very beginning, we have stressed that the formation of spatial,
temporal, or functional structures by complex systems can be adequately dealt
with only if stochastic processes are properly taken into account. For this reason,
[ gave an introduction to these processes in my book Synergetics. An Introduc-
tion, Volume 1 of this series. But research workers and students wanting to
penetrate the theory of these processes more deeply were quite clearly in need of a
far more comprehensive text. This gap has been filled by the present book by
Professor Crispin Gardiner. It provides a solid basis for forthcoming volumes in
the series which draw heavily on the methods and concepts of stochastic pro-
cesses. These include Noise-Induced Transitions, by W. Horsthemke and R.
Letever, The Kinetic Theory of Electromagnetic Processes, by Y. L. Klimonto-
vich, and Concepts and Models of a Quantitative Sociology, by W. Weidlich and
G. Haag.

Though synergetics provides us with rather general concepts, it 1S by no
means “art pour I’art”. On the contrary, the processes it deals with are of funda-
mental importance in self-organizing systems such as those of biology, and in the
construction of devices, e.g., 1n electronics. Therefore I am particularly pleased
that the present book has been written by a scientist who has himself applied —
and even developed — such methods in the theory of random processes, for ex-
ample in the fields of quantum optics and chemical reactions. Professor
Gardiner’s book will prove most useful not only to students and scientists work-
Ing 1n synergetics, but also to a much wider audience interested in the theory of
random processes and 1ts important applications to a variety of fields.

H. Haken



Preface to the Corrected Printing

Since I started writing this book ten years ago, a great deal has happened. I have been
gratified to find how popular my exposition has become, and of course continually
bemused that errors still come to light. I am very grateful to all those who have
pointed them out to me, 1n particular to Matthew Collett, Scott Parkins, and Andrew
Smith, who, as students and colleagues, over the last five years have kept me aware
of everything they noticed. As well, I must also thank Prof. Urbaan Titulaer and Mr.
Alexander Kainz, of the Johannes Kepler University of Linz, who sent me a very full
and careful list of corrections.

As a consequence a number of corrections have been made 1n this second printing
of the second edition. The most significant of these is the removal of the converse
result of Sect. 3.7.3b, which was incorrectly derived, and which i1s probably not true.

At this time I must also express my thanks to my wife Helen May and my youngest
daughter Nell, who have been of such support in the years since this book was written.

Pasadena, California C. W. Gardiner
October 1989



Preface to the Second Edition

In this edition I have corrected a number of misprints, and made a few altera-
tions of a more substantial kind. In particular, I have rewritten Sections 4.2.3
and 4.3.6, using a more correct definition of the Stratonovich stochastic integral;
I have clarified a slightly confusing exposition on boundaries in Section 5.2.1e€;
and I have rewritten Sections 6.3.3 and §.4.4c to take account of recent progress
in these fields. I have also slightly augmented the bibliography and references.

Pasadena, California C. W. Gardiner
March 1985



Preface to the First Edition

My intention 1n writing this book was to put down in relatively simple language
and in a reasonably deductive form, all those formulae and methods which have
been scattered throughout the scientific literature on stochastic methods through-
out the eighty years that they have been in use. This might seem an unnecessary
aim since there are scores of books entitled “Stochastic Processes”, and similar
titles, but careful perusal of these soon shows that their aim does not coincide
with mine. There are purely theoretical and highly mathematical books, there are
books related to electrical engineering or communication theory, and there are
books for biologists — many of them very good, but none of them covering the
kind of applications that appear nowadays so frequently in Statistical Physics,
Physical Chemistry, Quantum Optics and Electronics, and a host of other
theoretical subjects that form part of the subject area of Synergetics, to which
series this book belongs.

The main new point of view here i1s the amount of space which deals with
methods of approximating problems, or transforming them for the purpose of
approximating them. I am fully aware that many workers will not see their meth-
ods here. But my criterion here has been whether an approximation 1s systematic.
Many approximations are based on unjustifiable or uncontrollable assumptions,
and are justified a posteriori. Such approximations are not the subject of a
systematic book — at least, not until they are properly formulated, and their
range of validity controlled. In some cases I have been able to put certain
approximations on a systematic basis, and they appear here — 1n other cases I
have not. Others have been excluded on the grounds of space and time, and
I presume there will even be some that have simply escaped my attention.

A word on the background assumed. The reader must have a good knowledge
of practical calculus including contour integration, matrix algebra, differential
equations, both ordinary and partial, at the level expected of a first degree in
applied mathematics, physics or theoretical chemistry. This 1s not a text book for
a particular course, though i1t includes matter that has been used 1n the University
of Waikato in a graduate course in physics. It contains material which I would
expect any student completing a doctorate in our quantum optics and stochastic
processes theory group to be familiar with. There 1s thus a certain bias towards
my own interests, which 1s the prerogative of an author.

I expect the readership to consist mainly of theoretical physicists and
chemists, and thus the general standard 1s that of these people. This 1s not a rigor-
ous book in the mathematical sense, but it contains results, all of which I am con-
fident are provable rigorously, and whose proofs can be developed out of the
demonstrations given.



Preface to the First Edition IX

The organisation of the book is as 1n the following table, and might raise some
eyebrows. For, after introducing the general properties of Markov processes, I
have chosen to base the treatment on the conceptually difficult but intuitively
appealing concept of the stochastic differential equation. I do this because of my
own experience of the simplicity of stochastic differential equation methods, once
one has become familiar with the Ito calculus, which I have presented in Chapter 4
in a rather straightforward manner, such as I have not seen in any previous text. It
1s true that there 1s nothing in a stochastic differential equation that is not in a
Fokker-Planck equation, but the stochastic differential equation is so much easier
to write down and manipulate that only an excessively zealous purist would try to
eschew the technique. On the other hand, only similar purists of an opposing camp
would try to develop the theory without the Fokker-Planck equation, so Chapter S
introduces this as a complementary and sometimes overlapping method of
handling the same problem. Chapter 6 completes what may be regarded as the
“central core” of the book with a treatment of the two main analytical approxima-
tion techniques: small noise expansions and adiabatic elimination.

The remainder of the book is built around this core, since very many methods
of treating the jump processes in Chapter 7 and the spatially distributed systems,
themselves best treated as jump processes, depend on reducing the system to an
approximating diffusion process. Thus, although /ogically the concept of a jump
process 1s much simpler than that of a diffusion process, analytically, and in
terms of computational methods, the reverse is true.

Chapter 9 1s included because of the practical importance of bistability and,
as indicated, it 1s almost independent of all but the first five chapters. Again, I
have included only systematic methods, for there is a host of ad hoc methods in
this field.

Chapter 10 requires some knowledge of quantum mechanics. I hope it will be
of interest to mathematicians who study stochastic processes because there is still
much to be done in this field which is of great practical importance and which
naturally introduces new realms in stochastic processes — in particular, the
rather fascinating field of stochastic processes in the complex plane which turn
up as the only way of reducing quantum processes to ordinary stochastic proc-
esses. It 1s with some disappointment that I have noted a tendency among mathe-
maticians to look the other way when quantum Markov processes are mentioned,
for there 1s much to be done here. For example, I know of no treatment of escape
problems 1n quantum Markov systems.

It 1s as well to give some 1dea of what is not here. I deal entirely with Markov
processes, or systems that can be embedded in Markov processes. This means
that no work on non-linear Markovian stochastic differential equations has been
included, which I regret. However, van Kampen has covered this field rather
well, and 1t 1s now well covered in his book on stochastic processes.

Other subjects have been omitted because I feel that they are not yet ready for
a definitive formulation. For example, the theory of adiabatic elimination in
spatially distributed systems, the theory of fluctuating hydrodynamics, renor-
malisation group methods 1n stochastic differential equations, and associated
critical phenomena. There 1s a great body of literature on all of these, and a
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Preface to the First Edition X1

Further, for the sake of compactness and simplicity I have normally present-
ed only one way of formulating certain methods. For example, there are several
different ways of formulating the adiabatic elimination results, though few have
been used in this context. My formulation of quantum Markov processes and the
use of P-representations 1s only one of many. To have given a survey of all
formulations would have required an enormous and almost unreadable book.
However, where appropriate I have included specific references, and further
relevant matter can be found in the general bibliography.

Hamilton, New Zealand C. W. Gardiner
January, 1983
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1. A Historical Introduction

1.1 Motivation

Theoretical science up to the end of the nineteenth century can be viewed as the
study of solutions of differential equations and the modelling of natural phenomen:
by deterministic solutions of these differential equations. It was at that time
commonly thought that if all initial data could only be collected, one would b
able to predict the future with certainty.

We now know this 1s not so, in at least two ways. Firstly, the advent of quantun
mechanics within a quarter of a century gave rise to a new physics, and hence :
new theoretical basis for all science, which had as an essential basis a purels
statistical element. Secondly, more recently, the concept of chaos has arisen, 1
which even quite simple differential equation systems have the rather alarmin;
property of giving rise to essentially unpredictable behaviour. To be sure, one cat
predict the future of such a system given its initial conditions, but any error in th
initial conditions is so rapidly magnified that no practical predictability is left
In fact, the existence of chaos is really not surprising, since it agrees with more o

our everyday experience than does pure predictability—but 1t is surprising perhap
that 1t has taken so long for the point to be made.

Number of molecules
N

3

0
0 2 4 6 8 10 12 14 16 18 20

Fig. 1.1. Stochastic simulation of an isomerisation reaction X — A4



2 1. A Historical Introduction

Chaos and quantum mechanics are not the subject of this chapter. Here I wish
to give a semihistorical outline of how a phenomenological theory of fluctuating
phenomena arose and what its essential points are. The very usefulness of predic-
table models indicates that life 1s not entirely chaos. But there is a limit to predic-
tability, and what we shall be most concerned with in this book are models of
limited predictability. The experience of careful measurements in science normally
gives us data like that of Fig. 1.1, representing the growth of the number of mole-
cules of a substance X formed by a chemical reaction of the form X = 4. A quite
well defined deterministic motion i1s evident, and this 1s reproducible, unlike the
fluctuations around this motion, which are not.

1.2 Some Historical Examples

1.2.1 Brownian Motion

The observation that, when suspended in water, small pollen grains are found to
be in a very animated and irregular state of motion, was first systematically
investigated by Robert Brown in 1827, and the observed phenomenon took the
name Brownian Motion because of his fundamental pioneering work. Brown was
a botanist—indeed a very famous botanist—and of course tested whether this
motion was in some way a manifestation of life. By showing that the motion was
present in any suspension of fine particles—glass, minerals and even a fragment of
the sphinx—he ruled out any specifically organic origin of this motion. The motion
is illustrated in Fig. 1.2.

Fig. 1.2. Motion of a point undergoing Brownian
motion

The riddle of Brownian motion was not quickly solved, and a satisfactory
explanation did not come until 1905, when Einstein published an explanation under
the rather modest title ‘“‘liber die von der molekular-kinetischen Theorie der
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