
Stabilization of Loop-Free Redundant Routing

Jorge A. Cobb

Department of Computer Science, The University of Texas at Dallas, U.S.A
cobb@utdallas.edu

Abstract. Consider a network of processes that exchange messages via
FIFO communication channels. Each process chooses a subset of its
neighboring processes to be its successors. Furthermore, there is a distin-
guished process, called root, that may be reached from any other process
by following the successor relation at each hop. Thus, under the successor
relation, the processes are arranged as a directed acyclic graph that con-
verges on the root process, i.e., a converging DAG (c-DAG). We present
a network where each process may dynamically change its choice of suc-
cessors, and during this change, the following two nice properties are
satisfied. First, if the initial state of the network forms a c-DAG, then a
c-DAG is preserved at all times. Second, if the protocol is started from
an arbitrary state (i.e., where each variable has an arbitrary value), then
a c-DAG is automatically restored.

1 Introduction

A network consists of a set of processes that exchange messages via FIFO commu-
nication channels. A common task in a network is the construction of a spanning
tree. To build a spanning tree, each process chooses ones of its neighbors as its
parent on the tree. The parent is also known as the successor of the process.

Spanning trees have multiple uses. Two of the most common are unicast and
broadcast routing of data messages. In unicast routing [1, 2], a spanning tree
is built with the destination as the root of the tree. When a process receives a
message addressed to the destination, the message is forwarded to the parent
on the tree. In broadcast routing [3, 4], when a process receives a broadcast
message from a neighbor on the spanning tree, it forwards the message to all
other neighbors that are also on this tree.

In both unicast and broadcast routing, the spanning tree is required to adapt
to network conditions, such as congestion, and modify its structure. In doing so,
temporary loops may be introduced, and processes may become disconnected
from the tree. This is undesirable, since it reduces routing performance. Thus,
loop-free spanning trees were developed [5–7]. These ensure that, even while the
spanning tree is modifying its structure, no temporary loops are introduced,
and no process is disconnected from the tree. Maintaining loop-freedom is of
particular importance in ad-hoc networks, due to the frequent changes in network
connectivity and low network bandwidth [8–10].

An alternative approach is to maintain multiple successors at each node. A
single process, called, root, has no successors, and all processes lead to the root.

Thus, rather than maintaining a tree, a converging directed acyclic graph (c-
DAG), is maintained, where all paths converge on the root process. This graph
is used in unicast routing to provide multiple paths to the destination, i.e., to
the root [11–13]. In broadcast routing, it provides alternative paths in the event
of link failures.

All the works above assume a fail-safe model of fault-tolerance: if a process
or channel fails, it simply stops functioning. This, however, does not cover some
failures that are hard to detect. These include: transient hardware or software
faults at lower layers, undetected corrupted messages, improper initialization of a
node, or temporary disruptions from a network intruder. A broader fault-tolerant
model that captures all of these transient faults is known as stabilization.

A network of processes is said to be stabilizing iff, starting from any arbitrary
state (such as the state after an undetected fault), the network converges to a
normal operating state within finite time. Stabilizing protocols are desirable
due to their high degree of fault-tolerance [14]. They have the advantage of not
requiring a global initialization, plus they tolerate all types of transient faults.

Multiple techniques to build loop-free and stabilizing spanning trees exist in
the literature [15–18]. All of these techniques assume a shared memory model.

To our knowledge, only a single technique for constructing a loop-free and
stabilizing c-DAG has been presented in the literature [19]. However, it suffers
from the following drawbacks: a) a shared memory model is assumed, b) when a
process chooses to change its successor set, this is restricted to occur only during
a diffusing computation initiated by the root, and c) a temporary loop may be
created in the event of a channel failure, even though the failed channel is not
part of the c-DAG.

In this paper, we present a technique that solves the above problems. Pro-
cesses exchange information via message passing, which is a more practical model
than shared memory. A process is free to change its successor set without having
to coordinate with the root process. Finally, loops are never introduced, even if
channels fail.

We present our network of processes in three steps. First, we present processes
that avoid loops at all times. However, the choice of successors for each process
is limited. Then, we enhance our processes to have freedom in choosing their
successors. Finally, we further enhance our processes to be stabilizing.

2 A Converging DAG of Processes

In this section, we present a general overview of the problem. We begin with
some notation.

A network consists of a set of processes interconnected via communication
channels. Two processes are neighbors if they are joined by a pair of channels. A
network path is a sequence of processes where for each pair (u, v) of consecutive
processes in the path, v is a neighbor of u.

x

root

u
v

w

Fig. 1. Converging DAG of processes.

Each process u maintains a variable, u.S, where it stores the identifiers of
a subset of its neighboring processes. If process v ∈ u.S, then v is said to be a
successor of u and u is said to be a predecessor of v.

A path is active when, for each pair (u, v) of consecutive processes in the
path, v is a successor of u. Process v is reachable from a process u when there is
an active path from u to v.

For example, consider Figure 1. In this figure, the neighbor relation is denoted
by lines, and the successor relation is denoted by arrows. Thus, all processes are
neighbors of u, v has two successors, i.e., v.S = {u, root}, and w has only one
successor, w.S = {v}.

We require that all active paths be simple paths, i.e., loop-free. In conse-
quence, the successor relation forms a directed acyclic graph.

We assume that there exists a distinguished process, which we call root (see
Figure 1). In addition, we require that for every non-root process, there must
exist an active path from the process to the root. This implies that the successor
set of all non-root processes is non-empty. Also, the root process becomes a
convergence point for the digraph, and hence, we refer to this structure as a
converging DAG (c-DAG).

Contrary to earlier work [15, 19, 16–18], our processes do not choose which
neighbors should be added to the successor set. We assume this is guided by
a higher-layer application that chooses a particular structure. To capture the
behavior of the application without imposing any restrictions, our processes
simply choose non-deterministically whether or not to add a neighbor to the
successor set. Our processes ensure that the requirements presented above are
met at all times. Furthermore, if these requirements are not met initially, then
the processes automatically converge to a state where the requirements are met.

We conclude this section with some path notation.

|P | : number of processes in path P

Pj : jth process in P , 1 ≤ j ≤ |P |
L : maximum length of a simple path

active(P) : (∀ j : 1 < j ≤ |P | : Pj ∈ Pj−1.S)
below(u, v, x) : (∃P : active(P) ∧ |P | ≤ x : P1 = u ∧ P|P | = v)

3 Process Notation

Before presenting our processes, we first give a short overview of the notation that
we use in specifying their behavior. This is similar to the notation introduced in
[20]. Processes communicate with each other via the exchange of messages over
FIFO channels. We use the following notation when referring to channels and
messages.

Ch(u, v) : channel from u to v
m(u, v) : message of type m from u to v

m(u, v).f : value of field f in message m(u, v)
neigh(u, v) : function returning true iff both Ch(u, v) and Ch(v, u) exist.

Without loss of generality, for every pair of distinct processes u and v, either
both Ch(u, v) and Ch(v, u) exist or neither of these two channels exist.

Each process is specified by a set of inputs, a set of variables, a parameter,
and a set of actions. In general, a process is specified as shown below.

process <process name>
inp

<input name> : <type>,
. . .

var
<variable name> : <type>,

. . .
par

<parameter name> : <type>
begin

<action>
[]

. . .
[]

<action>
end

The inputs declared in a process can be read, but not written, by the actions
of that process. The variables declared in a process can be read and written by
the actions of that process. The parameter is discussed below. To distinguish
between variables of different processes, we prefix the variable names with the
process name. For example, variable u.r corresponds to variable r in process u.
If a variable does not have a process prefix, the process is understood from the
context.

Every action in a process is of the form: <guard> → <statement>. The
<guard> can be of three types: local, receiving, and timeout.

A local guard is a boolean expression over the inputs, variables, and param-
eter declared in the process. A receiving guard at process u is of the form

rcv m from v

where v is a neighbor of u. Finally, a timeout guard is of the form

timeout m /∈ Ch(u, v) ∧ m′ /∈ Ch(v, u)

where v is a neighbor of u.
The <statement> is a sequence of message send statements or conditional

statements. Conditional statements are of the following form.

<variable> := <expression> if <boolean expression>

If <boolean expression> is true before the conditional statement is executed,
then <variable> is assigned the current value of <expression>.

The parameter declared in a process is used to write a set of actions as one
action, with one action for each possible value of the parameter. For example, if
we have the following parameter definition,

par
g : 1 .. 2

then the following action

x = g → x := x + g

is a shorthand notation for the following two actions.

x = 1 → x := x + 1
[]

x = 2 → x := x + 2

An execution step of a protocol consists of choosing an action whose guard
evaluates to true and executing the statement of this action. We assume all
executions of a protocol are weakly fair, that is, an action whose guard is con-
tinuously true must be eventually executed.

We often refer to each element in an array variable A. With some abuse of
notation, the expression A = x is equivalent to (∀ i :: A[i] = x). Similarly, the
assignment statement A := x assigns the value x to each element of A.

4 Ranked Processes

In this section we present a network of simple processes that maintain a c-DAG.
We assume such structure exists in the initial state. Thus, this network is not
stabilizing.

Active paths are maintained loop-free as follows. Each process is assigned a
rank value. We denote by R the set of all possible rank values, and by u.r the
rank of process u. Whenever process u adds a new successor to u.S, the new
successor must have a rank greater than that of u. In consequence, for every
pair of processes u and v, where v ∈ u.S, v.r is greater than u.r.

The reason all active paths are loop-free is simply as follows. Let P be an
active path with a loop, that is, P1 = u = P|P |. Then, because ranks increase
from each process to its successor, this implies that u.r is greater than u.r, which
is not possible.

We next formalize process ranks and the relation on rank values. We are
given a relation ¹ on ranks. This relation satisfies the following properties.

i. Transitive:
For every r, r′, and r′′,
(r ¹ r′ ∧ r′ ¹ r′′) ⇒ (r ¹ r′′)

ii. Antisymmetric:
For every r and r′,
r ¹ r′ ∧ r′ ¹ r ⇒ r = r′

iii. Bounded:
There exists a value > (top) such that, for all r, r ¹ >, and a value ⊥
(bottom) such that, for all r, ⊥ ¹ r.

We denote the reflexive reduction of ¹ as ≺.
The above general definition of rank allows for many possible choices of R

and ¹. For example, R could simply be the set of natural numbers, ¹ be ≤, and
≺ be <. In addition, ranks could be based on the model of maximizable metrics
introduced in [21, 22]

Ranks could be independent of the application that chooses the successor
set. In this case, ranks would simply be used to prevent the application from
violating the requirements on active paths. On the other hand, ranks could
be intimately related to the application. E.g., assume the c-DAG is used for
datagram routing in computer networks. Then, the successor set may be chosen
to be those neighbors that provide the lowest metric to the root process. The
metric could be as simple as the hop count to the root, or it could be a more
complex metric, such as bottleneck bandwidth, queuing delay, or a combination
of all of these. The rank in this case would simply be the metric used by the
application.

We next present the processes in this network. The rank given to each process
is fixed. However, we relax this requirement in the next section. We first show
the specification of a non-root process u.

process u
inp

G : set of pid’s, {neighbor set}
r : element of R {rank}

var
S : subset of G {successor set}

par
g : element of G {any neighbor}

begin
true → upd.r := r;

send upd to g

[]
rcv upd from g → S := S

⋃ {g} if r ≺ upd.r ∧ any
[]

any ∧ |S| > 1 → S := S − {g}
end

Each process periodically sends an upd (update) message to each of its neigh-
bors. The upd message contains the rank of the process.

Each non-root process contains three actions. In the first action, process u
sends an update to neighbor g, and includes its rank in this update.

In the second action, process u receives an upd message from neighbor g. If
the rank of g is greater than that of u, then u adds g to its successor set. We model
the application’s choice of adding g to the successor set by including the operator
any in the statement’s condition. The operator any nondeterministically returns
true or false.

In the third action, process u removes a neighbor g from its successor set.
This, however, is done only if the successor set of u does not become empty.
Again, we represent the choice of removing g from the successor set of u by
including the operator any in the guard of the action.

The specification of the root process is given below.

process root
inp

G : set of pid’s, {neighbor set}
const

S : ∅ {successor set}
r : > {rank}

par
g : element of G {any neighbor}

begin
true → upd.r := r;

send upd to g
[]

rcv upd from g → skip
end

The root process consists of two actions. In the first action, the root sends
an update message to a neighbor. In the second action, the root receives an
update message from a neighbor. Since the root is not allowed to have successors,
it simply discards the message. Note that the successor set and the rank are
constant values, which are the empty set and the top rank, respectively.

5 Dynamically-Ranked Processes

Having a fixed rank at each process restricts significantly the set of neighbors
from which the process can choose successors. In consequence, the overall struc-
ture of the c-DAG is also restricted. To allow a dynamic structure, the rank of

each process must also be dynamic. We address dynamic ranks in this section,
and show how loops are avoided. Our technique has some similarities with earlier
non-stabilizing loop-free protocols [5–7].

In the previous section, loops were avoided by ensuring the following two
conditions.

1. The rank of every process is less than the rank of each of its successors.
2. When a process adds a new successor, the rank of the new successor is greater

than that of the process.

However, these conditions are stronger than necessary, and are a consequence
of processes having a fixed rank. To support dynamic ranks, we replace the above
conditions with the following.

Definition 1. (Loop-Avoidance Conditions)

1. When a process adds a new successor, the rank of the new successor is greater
than the rank of the process.

2. When a process u adds a new successor, all processes below u must have a
rank at most the rank of u.

3. A process cannot increase its rank to a value greater than the rank of any of
its successors.

4. If the rank of a process is greater than that of any of its successors, then the
process must reduce its rank to be at most the rank of all of its successors.

ut
Note that the above conditions allow a process to reduce its rank at any time

and by any amount.
The first three conditions imply that a new successor cannot be below the

process, and thus loops are avoided. That is, if process u adds a new successor, the
rank of the successor is greater than that of u, but at the same time all processes
below u have a rank at most that of u. Hence, the new successor cannot be below
u. The fourth condition aids in the implementation of the second condition, as
will be shown later in this section.

As an example, consider Figure 2(a). The structure is the same as that in
Figure 1, and each process is labeled with its rank. The rank of each process is
an integer, and ≺ is simply <.

Assume u attempts to add x to its successor set. Since the rank of u is greater
than that of x, from the perspective of u, x may be below u. To determine if
this is the case, u decreases its rank to be less than the rank of x, as shown in
Figure 2(b). This in turn causes all processes below u to decrease their ranks,
as shown in Figure 2(c). Once this operation completes, if the rank of x is still
greater than that of u, then x is not below u, and u can add x to its successor
set. This is shown in Figure 2(d).

We next consider each of the first three loop avoidance conditions. For each,
we show how violating the condition may result in a loop.

Consider the first condition, and consider Figure 2(a). If u adds a successor
with lesser rank, namely w, then a loop is formed. Consider the second condition,

v 4

root 100

w 4

x 5
u 4v 4

(d)

root 100

w 8

x 5

root 100

w 4

x 5
u 4

(c)

(a)

root 100

w 8

x 5
u 4v 9

(b)

u 10v 9

Fig. 2. Avoiding a loop while decreasing the rank.

and consider Figure 2(b). If u adds a successor, again w, before the rank of w
has been decreased to be less than that of u, then a loop is formed, even though
the rank of w is greater than that of u. Finally, consider the third condition and
Figure 2(c). If w were to increase its rank to a value greater than the rank of v,
its rank would be greater than the rank of u. This would allow u to add w to its
successors and cause a loop.

We next address how to implement the conditions above. In particular, each
process must lower its rank to be at most the rank of each of its successors. In
addition, each process must be able to determine that each process below it has
a rank no greater than its own. We consider each of these in turn.

As in the previous section, each process u periodically sends an upd message
to all its neighbors. The message contains the rank of the process. Process u
maintains two additional variables, u.r̃ and u.S̃. Variable u.S̃ is a set containing
those neighbors from whom u has received an upd message. Variable u.r̃ contains
a lower bound on the ranks of the successors of u from whom u has received an
upd message, i.e., from successors in u.S̃. When u has received an upd message
from all successors, i.e., u.S ⊆ u.S̃, r̃ contains a lower bound on the rank of
all successors. At this time, u.r̃ is assigned to u.r. Furthermore, to prepare for
another round of upd messages from each neighbor, u.S̃ is set to the empty set,
and u.r̃ is assigned the top rank.

We next address how a process can determine that the ranks of all processes
below it are at most its own rank. Each process maintains an array D with the
depth of rank ordering. That is, D has an entry per neighbor, and the value of
the entry is in the range 0 .. L. Let g be a predecessor of u. If u.D[g] = i, then
all processes that are below both u and g up to i hops below u have a rank that
is at most the rank of u.

More formally, we have the following rank ordering property.

Definition 2. (Rank Ordering Property)
Consider any active path P , where: t = P1, g = P|P |−1, u = P|P |, and 2 ≤ |P | ≤
u.D[g]. Then, the following holds:

t.r ¹ u.r ∧ (t.r̃ ¹ u.r ∨ P2 /∈ t.S̃) ∧ (∀x : neigh(x, t) : upd(t, x).r ¹ u.r)

In addition, if u.D[g] = 1, then upd(u, g).r ¹ u.r. ut
Note that when u.D[g] = L, the rank of all processes below u is at most the

rank of u, and u is free to add a new successor.
Finally, consider how D should be updated. When a neighbor g receives an

upd message from process u, g returns an ack message to u. This ack message
contains two values. The first value, ack(g, u).r, is the current rank of g. The
second value, ack(g, u).d, contains the minimum of all the elements in array D
at g. This indicates to u the depth at which processes below g have a rank at
most that of g. However, if u is not a successor of g, then ack(g, u).r = ⊥ and
ack(g, u).d = L.

When process u receives an ack message from neighbor g, it checks the rank
of the message and its own rank. If the rank of g is at most the rank of u, then the
depth along g is increased by one. That is, u.D[g] := max(u.D[g], ack(g, u).d+1).

We have yet to address when the value of u.D[g] is decreased. Note that as
long as u.r increases, then the value of u.D[g] need not decrease, since the rank
ordering property is not violated. However, if u.r decreases, this property may
no longer hold. Thus, whenever u.r is decreased, u.D[g] is assigned zero for all
g.

We are now ready to present the specification of a network with dynamic
rank. Below, we present the specification of a non-root process u.

process u
inp

G : set of pid’s {neighbor set}
L : integer {max. path length}

var

S, S̃ : subset of G {successor set and its iteration set}
r, r̃ : element of R {rank and its iteration value}
D : array [G] of 0 .. L {rank depth}

par
g : element of G {any neighbor}

begin
timeout upd /∈ Ch(u, g) ∧ ack /∈ Ch(g, u) →

D[g] := max(1, D[g]);
upd.r := r;
send upd to g

[]

rcv upd from g → S̃ := S̃
⋃ {g};

S := S
⋃ {g} if r ≺ upd.r ∧ D = L ∧ any;

r̃ := any{x |x ¹ min(r̃, upd.r)} if g ∈ S;
reply(g)

[]
rcv ack from g → D[g] := max(D[g], ack.d + 1)

if ack.r ¹ r ∧ D[g] > 0
[]

S ⊆ S̃ → D := 0 if r̃ ≺ r;

r, r̃, S̃ := r̃,>, ∅
[]

any ∧ |S| > 1 → S := S − {g}
end

The process consists of five actions. In the first action, a new upd message
is sent to a neighbor g. The message is sent only if the previous upd message
has been received (or is lost) and its corresponding ack has been received (or
is lost). Furthermore, since upd(u, g).r = u.r, we can safely assign a value of at
least one to u.D[g].

In the second action, an upd message is received from a neighbor g. Neighbor
g is added as a successor if the rank ordering property is not violated, and in
addition, the higher layer application chooses g as a successor. We represent this
by the operator any, which nondeterministically returns true or false. In this
action, reply(g) is a shorthand for the following sequence of statements.

ack.r, ack.d := r, min{D} if g ∈ S;
ack.r, ack.d := ⊥, L if g /∈ S;
send ack to g

In the third action, an ack is received from a neighbor g. Variable u.D[g] is
increased provided the rank of g is at most the rank of u and u.D[g] > 0. The
reason for u.D[g] > 0 is as follows. If u.D[g] = 0, then is possible that the ack
received is in response to an upd message sent before u.r was decreased. This
would cause synchronization problems between u and g, and the rank ordering
property may be violated.

In the fourth action, process u has finished receiving an upd message from
all neighbors. It then updates u.r, u.r̃, and u.S̃ as discussed earlier.

In the fifth action, process u removes neighbor g from its successor set, pro-
vided the successor set does not become empty, and provided that the higher-
layer application, which we model by the operator any, chooses to remove g.

We present below the specification of the root process.

process root
inp

G : set of pid’s {neighbor set}
L : integer {max. path length}

const

S, S̃ : ∅, ∅ {successor set and its iteration set}
r, r̃ : >,> {rank and its iteration value}
D : array [G] of L {rank depth}

par
g : element of G {any neighbor}

begin
timeout upd /∈ Ch(u, g) ∧ ack /∈ Ch(g, u) = 0 →

upd.r := r;
send upd to g

[]
rcv upd from g → reply(g)

[]
rcv ack from g → skip

end

The root process consists of three simple actions. In the second action,
reply(g) is a shorthand for the following sequence of statements.

ack.r, ack.d := >, L;
send ack to g

Notice that the value of root.D is always L, and that the value of root.r is
always >. This is because the root does not need to decrease its rank, since it
has no successors.

6 c-DAG Restoration

The processes in the previous section ensure that the network is maintained
loop-free at all times. However, they are not stabilizing. In particular, if a loop
exists at the initial state of the execution, then the loop may be maintained
throughout the execution. In this section, we enhance our processes with the
ability of automatically breaking any existing loop, and restoring the integrity of
the c-DAG. Loops are detected using an extension of the spanning-tree technique
we presented in [16].

Although the dynamically-ranked processes of the previous section are not
stabilizing, they have an interesting property. Starting from any arbitrary state,
the rank ordering property will eventually hold and continue to hold. That is,
the processes stabilize to the rank-ordering property. Therefore, even though
loops that exist at the initial state may not be broken, there is a point in the
execution after which no new loops may be created.

0 THs

Given that the rank-ordering property is stabilizing, the main obstacle in the
stabilization of our processes is the removal of existing loops. Thus, processes
must be able to detect the presence of a loop. In addition, the loop must be
broken, and any processes that become separated from the c-DAG must rejoin
it.

To detect loops, each process maintains an estimate of the number of hops to
the root process. This estimate is maintained in variable u.h. Each upd message
from u now contains two values: the rank u.r and hop count u.h. Process u
assigns to u.h the largest hop count of each of its successors plus one.

To collect the hop counts from each neighbor, process u maintains a variable
u.h̃. This variable contains the maximum hop count (plus one) of every neighbor
in u.S̃, i.e., of every neighbor from whom an upd message has been received.
When an upd has been received from every neighbor, u.h̃ is assigned to u.h and
u.h̃ is assigned zero.

Since the maximum length of a simple network path is L, we expect the value
of u.h to never increase beyond L− 1. Thus, a straightforward way to detect a
loop is to check if u.h ≥ L. If so, process u concludes that it is involved in a
loop. However, this is not accurate due to the dynamic nature of the network,
as we demonstrate below.

d(2, 5)

a(2, 1)

b(2, 2)

a(1, 1)

b(2, 6)

c(2, 7)c(2, 3)

(i) (iii)

rootroot

f(3, 1)

e(2, 4)

d(2, 5)

f(3, 1)

e(3, 2)

d(2, 5)

a(1, 1)

b(1, 2)

c(1, 3)

(ii)

root

f(3, 1)

e(3, 2)

Fig. 3. Incorrect loop detection.

Consider the network in Figure 3. The rank of each process is an integer,
and ≺ is simply <. In this network, L = 7. Alongside each process are its rank
and its distance, in that order. The initial state of the network is given in Figure
3(i).

Assume process e adds f to its successor set, and then removes c from its
successor set. For the moment, assume the channel from e to d is slow, so d does
not update its values from those of e for some time. After e changes successors,
the rank of a drops to one, and this new rank is propagated to b and c. Still, d
has not updated its values from those of e. This is shown in Figure 3(ii). Next,
assume process b chooses d as a successor, and then removes a from its successor

set. The new rank of b is then propagated to c. Still, d has not updated its values
from those of e. This is shown in Figure 3(iii).

Note that in Figure 3(iii), c.h = 7 = L. Thus, c.h indicates the presence of a
loop, even though none exists. (The scenario in Figure 3 can be extended further
to show that c.h grows without bound even though a loop is never present.)
Therefore, a simple hop count cannot be used as a method of loop detection.

The above problem of erroneous loop detection is due to the flexibility in
adding and removing successors. These operations need to be restricted, but not
to the extent of making the structure inflexible. We choose to restrict them as
follows.

Definition 3. (Loop Detection Conditions)

1. A process u cannot add a neighbor v to its successor set if v.h ≥ L.
2. A process u, where u.h ≥ L, cannot add nor remove neighbors from its

successor set unless all of processes v below it have v.h ≥ L.
3. A process u cannot decrease u.h to less than L until all processes v below it

have v.h ≥ L.
ut

From the above restrictions, when process u reaches a hop count of at least
L, it stops adding or removing successors. In addition, no process will choose u
as its successor. Then, a hop count of at least L propagates to all descendants
of u. In this way, the structure below u will cease to change. Thus, since the
maximum length of a simple path is L, no process below u should obtain a hop
count of 2L unless a loop exists.

When u.h ≥ 2L, process u assumes that either itself or a process above it is
part of a loop. Process u will empty its successor set (thus breaking the loop)
and then choose as a successor the first neighbor which indicates that its hop
count is less than 2L. As in the previous section, process u ensures that the new
successor is not below u, and thus, no new loops are be formed.

What remains to be addressed is the method by which process u determines
that all its descendants have a hop count of at least L. We present a property
similar to the rank ordering property of the previous section. Previously, u.D = i
implied that all processes at most i hops below u have a rank that is at most
u.r. We now strengthen the meaning of u.D = i to also imply that, if u.h ≥ L,
then all processes at most i hops below u have a hop count of at least L.

We refer to the pair of values (u.r, u.h) as the extended-rank of u. For terse-
ness, we will write this pair as u.(r, h). Below, we define a relation ¹ on extended-
ranks1. The loop-avoidance conditions (Definition 1) of the previous section also
hold for extended-ranks.

We define ¹ on extended-ranks as follows: (r, h) ¹ (r′, h′) iff

r ¹ r′ ∧ (h′ ≥ L ⇒ h ≥ L)

1 We overload the symbol º to be a relation on ranks and a relation on extended-ranks.
Which of these two meanings is appropriate is evident from the context.

We define (r, h) ≺ (r′, h′) similarly, except that r ¹ r′ is replaced by r ≺ r′.
The rank-ordering property of the previous section (Definition 2) can now be

replaced by the following extended-rank-ordering property.

Definition 4. (Extended-Rank Ordering Property)
Consider any active path P , where: t = P1, g = P|P |−1, u = P|P |, and 2 ≤ |P | ≤
u.D[g]. Then, the following holds:

t.(r, h) ¹ u.(r, h) ∧ (t.(r̃, h̃) ¹ u.(r, h) ∨ P2 /∈ t.S̃)∧
(∀x : neigh(x, t) : upd(t, x).(r, h) ¹ u.(r, h))

In addition, if u.D[g] = 1, then upd(u, g).(r, h) ¹ u.(r, h). ut
Using the above property, each process u can deduce that, if u.D = L ∧ u.h ≥

L, then all processes below u have a hop count of at least L. Once this happens,
u, can reduce its hop count to less than L (if allowed by the hop counts of its
successors) and make changes to its successor set.

We may now present the specification of a non-root process u in the c-DAG-
forming network of processes.

process u
inp

G : set of pid’s {neighbor set}
L : integer {max. path length}

var

S, S̃ : subset of G {successor set and its iteration set}
r, r̃ : element of R {rank and its iteration value}
h, h̃ : 0 .. 2L {hop count and its iteration value}
D : array [G] of 0 .. L {rank depth}

par
g : element of G {any neighbor}

begin
timeout upd /∈ Ch(u, g) ∧ ack /∈ Ch(g, u) →

D[g] := max(1, D[g]);
upd.r, upd.h := r, h;
send upd to g

[]

rcv upd from g → S̃ := S̃
⋃ {g};

S := S
⋃ {g} if new succ(g);

r̃ := any{x |x ¹ min(r̃, upd.r)}
if g ∈ S;

h̃ := max{h̃, upd.h + 1}
if g ∈ S;

S, r̃, h̃ := {g}, upd.r, upd.h + 1
if break(g);

reply(g)
[]

rcv ack from g → D[g] := max(D[g], ack.d + 1)
if ack.(r, h) ¹ (r, h) ∧ D[g] > 0

[]

S ⊆ S̃ → h̃ := max(h̃, L) if max(h, h̃) ≥ L ∧ D < L;

r̃ = ⊥ if h̃ = 2L;

D := 0 if (r̃, h̃) ≺ (r, h);

r, h, r̃, h̃, S̃ := r̃, h̃,>, 0, ∅
[]

any ∧ |S| > 1 → S := S − {g} if ¬(max(h, h̃) ≥ L ∧ D < L)
end

Process u consists of five actions. In the first action, process u sends an
upd message to a neighbor g. This action is the same as before except that the
message also contains the hop count.

In the second action, an upd message is received from a neighbor g. The
first two statements are similar to those in the previous section. In this action,
new succ(g) is equivalent to the following.

(r, h) ≺ upd.(r, h) ∧ D = L ∧ upd.h < L

Thus, the only difference from before is that extended-ranks are used when
comparing the values of u against those of the received message, and furthermore,
upd.h < L is necessary to satisfy the loop-detection conditions.

The next two statements in the action remain the same. The fifth statement
breaks away from a loop. Here, break(g) is defined as follows.

(r, h) = (⊥, 2L) ∧ D = L ∧ (r, h) ≺ upd.(r, h)

That is, if h = 2L, then u is involved in a loop, and it may choose g as its sole
successor (thus breaking the loop) provided the loop avoidance conditions are
not violated, i.e., the extended-rank of g is greater than that of u and D = L.
The reason we chose r = ⊥ is explained below.

Finally, reply(g) in the second action is a shorthand for the following sequence
of statements.

ack.r, ack.h := r, h;
ack.d := L if g /∈ S;
ack.d := min{D} if g ∈ S;
send ack to g

In the third action, an ack message is received from a neighbor g, and D[g]
is increased. The only difference between this action and that of the previous
section is that the decision to increase D[g] is based on process extended-ranks.

In the fourth action, r and h are updated from r̃ and h̃ after an upd message
has been received from every neighbor. The action differs from the previous
section by not allowing h to be reduced below L until all descendants of u

have a hop count of at least L. This is necessary to satisfy the loop detection
conditions. In addition, if h = 2L, i.e., if a loop is detected, the rank is set to
the bottom value. This is done to “poison” all the descendants of u also with a
bottom rank, and thus the successor which will be used to break the loop must
have a rank higher than the bottom value.

In the fifth action, a successor is removed. This operation is not allowed if
the hop count of u is at least L and there are still neighbors whose hop count is
less than L. This is also necessary to satisfy the loop detection conditions.

The specification of the root process is shown below.

process root
inp

G : set of pid’s {neighbor set}
L : integer {max. path length}

const

S, S̃ : ∅, ∅ {successor set and its iteration set}
r, r̃ : >,> {rank and its iteration value}
h, h̃ : 0, 0 {hop count and its iteration value}
D : array [G] of L {rank depth}

par
g : element of G {any neighbor}

begin
timeout upd /∈ Ch(u, g) ∧ ack /∈ Ch(g, u) →

upd.r, upd.h := r, h;
send upd to g

[]
rcv upd from g → reply(g)

[]
rcv ack from g → skip

end

The process consists of four simple actions. In the first action, the root sends
an upd message to a neighbor g. In the second action, the root receives an upd
message and it returns an ack message. In this action, reply(g) is a shorthand
for the following sequence of statements.

ack.r, ack.h, ack.d := >, 0, L;
send ack to g

In the third action, the root receives (and discards) an ack.

7 Protocol Correctness

Due to space restrictions, we present the proof of correctness in [23]. Here, we
very briefly outline the proof for the interested reader.

A network stabilizes to a predicate Z iff every computation of the network
contains a suffix where each state of the computation satisfies Z [14]. Thus, the
system will reach a state after which it will continuously satisfy Z.

Starting from any initial state, the first property that is restored automat-
ically is the rank-ordering property (in the dynamic-rank network), and the
extended-rank-ordering property (in the c-DAG-forming network). Since the
structure of the proof is similar for both networks, in [23], we abstract both
of these proofs into a single one by introducing a network of abstract processes,
where each abstract process has a general behavior that captures the behavior
of both the dynamically-ranked processes and the stabilizing processes.

Theorem 1. (Restoring Ranks)

– The rank-ordering property (Definition 2) is stabilizing in the dynamic-rank
network of processes (Section 4).

– The extended-rank-ordering property (Definition 4) is stabilizing in the c-
DAG-forming network (Section 6). ut
Once ranks between nodes have the correct relationship, new loops cannot

be formed, and we have the following.

Theorem 2. (Loop-Freedom)
The c-DAG-forming network stabilizes to the following:

(∀u :: ¬(∃P :: active(P) ∧ (P1 = u) ∧ loop(P)))

ut
That is, loops are broken when the hop-count of processes reaches 2 ·L, and

no new loops are formed due to the label-ordering property. Finally, the desired
state is then reached.

Theorem 3. (c-DAG Restoration)
The c-DAG-forming network stabilizes to the following:

(∀u :: (∃P :: active(P) ∧ P1 = u ∧ P|P | = root)

ut
We therefore have that all active paths are loop-free, and each node has at

least one active path to the root, i.e., a c-DAG is restored and maintained.

References

1. Hedrick, C.: Routing information protocol. RFC 1058 (1988)
2. Moy, J.: Ospf version 2. RFC 1247 (August 1991)
3. Cobb, J.A., Gouda, M.G.: The request-reply family of group routing protocols.

IEEE Transactions on Computers 46(6) (June 1997) 659–672
4. Deering, S., Cheriton, D.: Multicast routing in datagram networks and extended

lans. ACM Transactions on Computer Systems 8(2) (May 1990)
5. Garcia-Luna-Aceves, J.J.: Loop-free routing using diffusing computations.

IEEE/ACM Transactions on Networking 1(1) (February 1993)

6. Garcia-Luna-Aceves, J.J., S., M.: A path-finding algorithm for loop-free routing.
IEEE/ACM Transactions on Networking 5(1) (February 1997)

7. Segall, A.: Distributed network protocols. IEEE Transactions on Information
Theory IT-29(1) (January 1983) 23–35

8. Garcia-Luna-Aceves, J., Soumya, R.: On-demand loop-free routing with link vec-
tors. In: Proceedings of the 12th IEEE International Conference on Network Pro-
tocols. (2004)

9. Johnson, D.B., Maltz, D.A., Hu, Y.C.: The dynamic source routing protocol for
mobile ad hoc networks (dsr). work in progress, draft-ietf-manet-dsr-09.txt (2003)

10. Perkins, C.E., Royer, E.M.: Ad hoc on-demand distance vector routing. In: Pro-
ceedings of the 2nd IEEE Workshop on Mobile Computing Systems and Applica-
tions. (1999) 90–100

11. Vutukury, S., Garcia-Luna-Aceves, J.J.: An algorithm for multi-path computation
using distance-vectors with predecessor information. In: Proceedings of the ICCCN
Conference. (1999)

12. Vutukury, S., Garcia-Luna-Aceves, J.J.: A distributed algorithm for multi-path
computation. In: Proceedings of the IEEE GLOBECOM Conference. (1999)

13. Zaumen, W., Garcia-Luna-Aceves, J.J.: Loop-free multi-path routing using gener-
alized diffusing computations. In: Proc. of the INFOCOM Conference. (1998)

14. Gouda, M.G.: The triumph and tribulation of system stabilization. In: Proceedings
of the 9th International Workshop on Distributed Algorithms, (LNCS Vol 972).
(1995) 1–18

15. Arora, A., Gouda, M.G., Herman, T.: Composite routing protocols. In: Proceedings
of the Second IEEE Symposium on Parallel and Distributed Processing. (1990)

16. Cobb, J.A., Gouda, M.G.: Stabilization of general loop-free routing. Journal of
Parallel and Distributed Computing 62 (2002) 922–944

17. Cobb, J.A., Waris, M.: Propagated timestamps: A scheme for the stabilization
of maximum-flow routing protocols. In: Proceedings of the Third Workshop on
Self-Stabilizing Systems. (1997) 185–200

18. Gouda, M.G., Schneider, M.: Maximum flow routing. In: Proceedings of the Second
Workshop on Self-Stabilizing Systems. (1995)

19. Cobb, J.A.: Convergent multipath routing. In: Proceedings of the International
Conference on Network Protocols. (2002)

20. Gouda, M.: The Elements of Network Protocols. Wyley (1997)
21. Gouda, M.G., Schneider, M.: Maximizable routing metrics. In: Proceedings of the

IEEE International Conference on Network Protocols. (1998) 71–78
22. Gouda, M., Schneider, M.: Stabilization of maximal metric trees. In: Proceedings

of the Workshop on Self-Stabilizing Systems at the International Conference on
Distributed Computing Systems. (June 1999)

23. Cobb, J.A.: Stabilization of loop-free redundant routing. The University of Texas
at Dallas technical report (2007)

