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Abstract—Multiple reference frame motion compensation is a 

new feature introduced in H.264/MPEG-4 AVC to improve video 
coding performance. However, the computational cost of 
Multiple Reference Frame Motion Estimation (MRF-ME) is very 
high. In this paper, we propose an algorithm that takes into 
account the correlation/continuity of motion vectors among 
different reference frames. We show that the algorithm 
effectively reduces the computations of MRF-ME, and achieves 
similar coding gain compared to the motion search approaches in 
the reference software.  
 

Index Terms—H.264/AVC, multiple reference frames, motion 
estimation. 
 

I. INTRODUCTION 
.264/MPEG-4 AVC is the newest international video 
coding standard of the ITU-T Video Coding Experts 

Group and the ISO/IEC Moving Picture Experts Group [1]. It 
represents the state-of-the-art video compression technology, 
and addresses the full range of video applications including 
low bit-rate wireless video applications, standard-definition & 
high-definition broadcast television, and video streaming over 
the Internet. In terms of compression performance, it provides 
more than 50% bit-rate savings for equivalent video quality 
relative to the performance of MPEG-2 video coding standard. 
To achieve such a high coding efficiency, AVC includes many 
new features such as variable blocksize motion compensation, 
quarter-pixel accuracy motion compensation, and multiple 
reference frame motion compensation. 

In the variable blocksize motion compensation, AVC 
supports luma block-sizes of 16x16, 16x8, 8x16, and 8x8 in 
the inter-frame prediction. In case 8x8 is chosen, further 
smaller block-sizes of 8x4, 4x8, and 4x4 can be used.  

In the multiple reference frame motion compensation, a 
signal block with uni-prediction in P slices is predicted from 
one reference picture out of a large number of decoded 
pictures. And similarly, a motion compensated bi-prediction 
block in B slices is predicted from two reference pictures, 
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both can be chosen out of their candidate reference picture 
lists. A scenario of Multiple Reference Frame Motion 
Estimation is shown in Figure 1.  It is an effective technique 
to improve the coding efficiency [2]. However, MRF-ME 
dramatically increases the computational complexity of the 
encoders because the Motion Estimation (ME) process needs 
to be performed for each of the reference frames. Considering 
motion estimation is the most computationally intensive 
functional block in the video codec, this increased complexity 
penalizes the benefit gained from the better coding efficiency, 
and thus may restrict its applicability.  

 

 

Current Frame NN-1N-2

• • • •

N-5  
Figure 1. Multiple reference frame motion estimation 

 
The reference software of AVC JM 8.6 [3] performs the 

motion estimation for all block-sizes across all reference 
frames in the encoder. In [4], a fast algorithm is proposed to 
speed-up the MRF-ME by considering the different sub-pixel 
sampling position of each block, and performing ME on the 
selected reference frames with similarly sampled contents. In 
[5][6], several heuristics are used to decide whether it is 
necessary to search more than the most recent reference 
frame, and hence reduce the computations. In [7], a fast multi-
frame motion estimation algorithm based on Motion Vector 
(MV) reusing similar to our basic ideas described in [8][9] is 
independently proposed. The motion vector composition in [7] 
is done by choosing a dominant MV, and 5~7 checking points 
are needed to refine the composed MV. The proposed multi-
frame motion estimation method in this paper differs from [7] 
in using a weighted average for motion composition, and there 
is no further refinement needed.  

In this paper, we first investigate why multiple reference 
frames provide better predictions, based on the observations 
from experiments on standard test sequences. We then 
propose a fast MRF-ME algorithm, which can achieve nearly 
the same coding efficiency as the search approaches in the 
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reference software, but cut down the computations 
significantly.  

 

II. ANALYSIS OF MULTIPLE REFERENCE FRAME MOTION 
ESTIMATION 

A. Multiple Reference Frame Motion Estimation Review 
Stage 
In the AVC reference encoder [3], the MV search for a 

given block referring to a given reference frame returns the 

MV mv  that minimizes a cost function 

( , ) ( , ( )) ( )pMOTION MOTIONJ mv D s c mv R mv mvλ λ= + ⋅ − , 

where pmv  being the prediction for the MV, and λ  being 

the Lagrange multiplier. Here the arrowed symbol mv  
denotes a motion vector with horizontal and vertical 
components.  

In AVC reference software JM8.6 [3], exhaustive motion 
search algorithm and a fast motion search algorithm are 
supported.  In both cases, the MV search process is the most 
computationally intensive part in video encoders. When 
multiple reference frames are used, the same search process is 
applied to each reference frame. Thus the amount of 
computations increases linearly with the number of reference 
frames.  

B. Why Do Multiple Reference Frame Help Predictions? 
There are many reasons for the MRF-ME to achieve better 

predictions than those using just single reference picture.  
Often cited reasons include [5]:  

1) Repetitive motions.  Due to the repetitive nature of the 
motion, there are better appearances of the same object/texture 
several frames ago. 

2) Uncovered background.  Some parts of the picture may 
originally be covered by a moving object.  As the object 
moves, the uncovered backgrounds may not find a good match 
from the previous frame, but may be able to find a good match 
from several frames ago when they were also uncovered.  

3) Alternating camera angles that switch back and forth 
between two different scenes.  

Besides these reasons, based on our observations from 
experiments on standard video sequences, there are several 
other reasons why MRF-ME performs better than single 
reference frame motion estimation: 

4) Sampling. When an object moves with a non-integer 
pixel displacement, the sampling positions of the object in 
different frames may be different.  Due to this different 
sampling, the current block may get a better match to a block 
in more previous reference frames. This phenomenon is also 
addressed in [4]. 

5) Shadow and lighting changes.  An area or a moving 
object may not have exactly the same pixel values as those at 
the previous locations in the previous frame since they may 
have different shadowing, lighting conditions, or reflections. 

6) Camera shaking, such as the last part of the Foreman 
sequence.  When a camera is moving up and down, the current 
frame may better resemble a frame appeared several frames 
ago. This reason can also be attributed to sampling effects.  

7) Noises in the source signal produced by the camera and 
other factors.  Even in the stationary areas of the picture, some 
blocks may find a better match in more previous reference 
pictures, which happens in many sequences. 

In practice, the situations of 4)-7) actually occur quite often, 
and we found that they are the dominant reasons for the 
advantages of using MRF in standard video sequences. Due to 
their similar impact on the video signal, we summarize these 
reasons in a term “noise effect”. An example is the moving 
calendar in the MobileCalendar sequence, with a zoom-in 
view of the current block to be coded and the best matched 
blocks in the previous two reference frames shown in Figure 
2. The ResidualBlock(N-1) has MSE=203.8, versus 
MSE=32.4 for ResidualBlock(N-2) although they were 
referenced to the same object position in the corresponding 
reference frames.  

 

 
Figure 2. Example of sampling/noise effect 

 
Under these situations with noise effects, there are strong 

correlations among the motion vector fields with multiple 
reference frames, which are discussed in the next section. 

C. Correlations in Multiple Reference Picture Motion 
Vectors 

The continuity of the motion can be explored in order to 
facilitate the motion estimation across multiple reference 
frames.  

Assume a part/block of object is moving in an image 
sequence and keeps the similar appearance in adjacent frames. 
The continuity of this block moving across images will result 
in strong correlation among the motion vector fields in 
multiple reference frames, which can be expressed simply as: 

  
1 1

1

( )k k k k
n n n kMV MV MV
− − − −

−≈ +          (1) 

which is shown in Figure 3. In (1) 
k

nMV
−

 represents the 
motion vector of Frame n referring to Frame (n-k), which is 
called k-step MV.  
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Figure 3. Illustration of motion continuity 

 
We try to use this correlation to save the computation of the 

MRF-ME process, i.e., to compose the motion vector estimate 
k

nMV
−

 by combining 
1k

nMV
−

 and 
1

1

( )k k
n kMV
− −

− , or to perform 
ME only along the motion trajectories. In this paper, a k-step 

MV 
k

nMV
−

 is composed by combining k 1-step MV’s 
recursively, i.e., for l=2:k,  

 
( 1) 1

( 1)

l l

n n n lMV MV MV
− − − −

− −= +         (2) 
In order to verify the strong MV correlations across 

multiple reference frames, simulations are performed to 

compare the true MV’s 
k

nMV
−

using the motion search in the 

reference software and MV estimates 
k

nMV
−

from motion 
compositions. The details of motion composition are 
described in Section III. Motion Composition Error (MCE) is 
used as the difference measure, which is the L-1 distance 
between the true and the composed motion vectors: 

( ) ( ) ( ) ( )

1

kk
n n

L

k kk k
n n n n

MCE MV MV

MV x MV x MV y MV y

−−

− −− −

= −

= − + −

 (3) 

Table I lists the percentage of times when MCE is no 
greater than a threshold d (in pixel). The statistics are 
collected from encoding the whole Mobile sequence (CIF size 
and 300 frames) with different k. All experiments are 
conducted with fixed Qp=20 (high bitrate scenario), and 
exhaustive search is used as motion search method.  The high 
bit-rate scenario is of more interest since the MRF-ME is 
more important for applications where video quality is more 
important than computational complexity.  

 
TABLE I  

MOTION COMPOSITION ERROR 
Sequence d=0 d=1 d=2 d=3 
Mobile, k=2 81% 92% 95% 96% 
Mobile, k=3 80% 89% 92% 94% 
Mobile, k=4 78% 87% 90% 92% 

 
Clearly, the motion composition gives good estimates for 

the real motions, with majority of them within a small spatial 

neighborhood of 
k

nMV
−

. Because the composition of 
motions are based on the continuity assumption, this also 

shows that d)-g) in the previous section are the dominant 
reasons in the advantage of enabling MRF in those sequences.  

There are rare cases the motion vector continuity 
assumption may fail, for example on object boundaries where 
covering/uncovering happens and MV’s are unreliable. To 
handle these rare cases, in our proposed algorithm to be 
described in detail later, we incorporate a simple boundary 
macroblock detector and perform processing adaptively.  We 
found that in most situations, our algorithm performs well 
even without the special handling of the boundary 
macroblocks. 

 

III. MOTION VECTOR COMPOSITION FOR VARIABLE BLOCK-SIZE ME  
AVC allows seven different block-sizes. To compose the 

motion vector for different block-sizes, all MV’s are stored in 
the 4x4 blocks, which is the smallest common unit in the 
variable block-size ME. 

A. Motion Composition 
The motion composition process described in this section 

applies on a block B with the size 
{ }s t 16 16, 16 8, 8 16, 8 8, 8 4, 4 8, 4 4× ∈ × × × × × × × . The 

inputs of the motion composition process are two 4x4 block-

based motion vector fields: 
( 1)l

n

− −

MV and 
1

( 1)n l
−

− −MV . The 

output is the composed motion vector 
l

nMV
−

 for B. Note here 

that the bold symbol MV  represents the motion vector field 
for the whole frame, not a single motion vector. 

The motion composition has two parts: motion 
concatenation and weighted average estimate: 

1) Motion concatenation:  

Collect all block motion vectors 
( 1)l

i nmv
− −

∈ MV  covered 

by current block B, we have 
16
s t⋅  possibly different MV’s, one 

for each 4x4 block. Each such MV imv  will point to a 4x4 
area in the frame (n-l+1), but generally will not align with 

block boundaries. Thus each imv  will usually refer to 4 
neighboring 4x4 blocks in the frame (n-i+1), which in turn 

covers 4 
1

( 1)j n lmv
−

− −∈ MV .  For each imv  and its 

associated jmv , the overlapping area is denoted as ijw . 

Adding imv ’s and jmv ’s: ij i jmv mv mv= + , we have a 
set of candidate MV’s with their corresponding overlapping 

areas { , }ij ijS mv w= .  

An example of this motion concatenation is shown in 
Figure 4.  The current block has size 4x8, which covers two 
4x4 blocks. There are four referred blocks in the frame (n-

l+1) for one imv , each with possibly different overlapping 
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areas ijw  and motion vector jmv . Only one concatenation is 

shown for clearer illustrations.  
 

Current Frame NReference Frame N-l+1Reference Frame N-l

1jmv 2

3 4
imv

ijmv

ijw

 
Figure 4. Illustration of the MV concatenation 

 
2) Weighted average estimation: 

After the motion concatenation process, a weighted average 

vector cmv  is formed from the set S , treating ijw ’s as 

weights: ijij
c

ij

w mv
mv

w
⋅

= ∑
∑

, where cmv is the output of the 

motion composition process.  
The motion flow across multiple frames is captured 

effectively by the motion concatenation in step 1). The 
weighted average in step 2) summarizes the dispersive output 
of motion concatenation, providing a robust and 
computational efficient estimation. 

B. Summary of the Proposed Algorithm 
The process of the proposed fast MRP-ME algorithm for 

the n-th frame is summarized as follows:  
Step 1) First motion estimation referring to frame (n-1) is 

performed, which results in 
1

n
−

MV .  A motion dispersion 
measure is computed for each Macroblock (MB). The 
dispersion measure is defined as the sum of absolute 
difference between any horizontal pair and vertical pair of 
4x4 MV’s within the current MB. If the dispersion 
exceeds certain threshold, this MB is declared as a 
boundary block and the 4x4-blocksize motion search is 
performed as in the reference software for further 
reference frames, otherwise, the search process is 
described in step 2). The threshold is set to 32 in later 
simulations.  

Step 2)  For l from 2 to k, for each MB: 
 Step 2.1) For each block of each blocksize, motion 

composition process as defined in Section III is invoked 

with cmv  as output. cmv  and the prediction MV pmv  
are compared using the cost function J, and the winner is 
the final output. After that, sub-pixel motion search is 
conducted.  

 Step 2.2) Perform the block-size mode decision among 
variable blocksizes using motion search costs, and a 4x4 

based MV field 
l

n
−

MV  is obtained for later processing.  
In Step 1), any single reference frame fast ME algorithm 

can be applied to obtain 
1

n
−

MV . Also, the proposed algorithm 
does not assume that MV’s of all variable blocksizes are 
available, which is the case for many fast AVC ME algorithms 
such as [10].  

In step 2.1), both temporal and spatial correlations among 

MV’s are considered: pmv  for spatial correlation and cmv  
for temporal correlation.  

Due to the variable blocksize ME in AVC, there are MV’s 
associated with different blocksizes for the same MB. Since 
the proposed algorithm only assumes one 4x4-based MV field 
representation in the motion composition step, mode decisions 
among variable blocksizes must be performed for each 
reference frame, which is done in step 2.2). 

C. Complexity Analysis 
Assuming the image size is W-by-H in pixel units. We need 

following additional memories to implement the motion 
compositions: 

1) k motion vector fields storing one step motion vectors, 
each contains W/4*H/4*2 integers 

2) One temporary motion vector field as we traverse the 
reference frames from 1 to k, with size W/4*H/4*2 integers.  
Clearly the additional memories needed are very moderate.  

For computational complexities, the majority of MB’s are 
non-boundary. For non-boundary blocks, motion composition 
is conducted. In one motion composition process, only two 
check points are needed in the ME: one from MV composition 

cmv  and one from prediction MV pmv . 
 

IV. SIMULATION RESULTS 
The proposed MRF-ME algorithm was tested on several 

standard video sequences which show significant gains when 
MRF-ME is enabled: Mobile.cif (300 frames), Foreman.cif 
(300 frames), Tempete.cif (260 frames) and Carphone.qcif 
(382 frames).  

The scheme is implemented based on the reference software 
JM8.6 [3].  Some common simulation settings are listed as 
follows: 

• Microsoft® Windows platform, P4 2.0G CPU 
• Compiled using Visual Studio® 6, Release mode 
• Using RDO_Off in mode decisions 
• SearchRange = ±32 
• P frames coding only, with the first I-frame 
• No rate control 
• Peak Signal to Noise Ratio (PSNR) of Luminance in 

dB is used as distortion measure  
Also, both exhaustive search (FME_Off) and fast motion 

search (FME_On) in JM8.6 are tested and compared with our 
proposed algorithm. In each comparison, the first reference 
frame ME in the proposed algorithm is the same as in the 
JM8.6. 



CSVT-04-10-20 
 

5

A. Coding Efficiency Results 
The rate-distortion (R-D) coding performance comparisons 

are conducted for the following three test cases:  
• 1 reference frame, JM8.6 
• 5 reference frames, JM8.6 
• 5 reference frames, proposed algorithm 

Figure 5 and Figure 6 show the R-D plots using fixed 
{ }20, 25,30,35, 40pQ ∈ , for FME_Off and FME_On 

respectively. The proposed scheme performs almost the same 
as JM8.6 in all coding efficiency results.  

B. Computational Efficiency Results 
The total motion estimation runtime for the following two 

test cases: 
• 5 reference frames, JM8.6 
• 5 reference frames, proposed algorithm 

are listed in Table II and Table III, for FME_Off and 
FME_On respectively. Three fixed Qp’s {20,30,40} are used 
for high, median, and low bitrates, respectively. The timings 
only include the integer pixel ME parts.  

Assuming 1t  is the runtime of the ME algorithm for one 

reference frame in the JM8.6, and 2t  is the runtime of our 
proposed fast MRF-ME algorithm for each additional 
reference frame. The total runtime of the proposed algorithm 
is 1 2( 1)FastSearchT t k t= + − ⋅  and the total runtime of JM8.6 

is 1FullSearchT k t= ⋅ . The averaged speedup ratio r  is defined 

as /FullSearch FastSearchr T T= , which is also listed in Table II 
and Table III for five reference frames, showing significant 
computational savings of the proposed algorithm comparing 
to JM8.6. To better visualize the computational saving, Figure 
7 shows the relationship between the normalized runtime of 
MRF motion estimation module and the number of reference 
frames. The linear behaviors of the curves in Figure 7 with 
different slopes justify the advantage of the proposed 
approach. 

 

V. CONCLUSION 
In this paper, a novel multiple reference frame motion 

estimation algorithm is proposed. The proposed algorithm is 
based on the conceptually simple idea of tracing motion across 
frames. In the MRF-ME process, MVs are formed based on 
the motion trajectories and spatial MV predictions. Results 
show the scheme is very effective in reducing the 
computational cost comparing with both exhaustive search 
and fast motion search, while keeping good coding efficiency. 
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TABLE II 

COMPUTATIONAL COMPARISON WITH FME_OFF 
Carphone.qcif Mobile.cif  
Qp = 20 Qp = 30 Qp = 40 Qp = 20 Qp = 30 Qp = 40 

Ref5_Orig 351.0s 360.2s 374.2s 4005.3s 4048.1s 4181.6s 
Ref5_New 110.3s 103.9s 95.8s 1096.7s 1011.2s 930.8s 
r 3.18 3.47 3.90 3.65 4.00 4.49 

 
TABLE III 

COMPUTATIONAL COMPARISON WITH FME_ON 
Carphone.qcif Mobile.cif  
Qp = 20 Qp = 30 Qp = 40 Qp = 20 Qp = 30 Qp = 40 

Ref5_Orig 59.6s 55.8s 50.1s 352.6s 354.2s 385.0s 
Ref5_New 30.8s 28.7s 28.3s 131.6s 133.5s 142.4s 
r 1.94 1.94 1.77 2.68 2.65 2.70 
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(d) 

Figure 5. Rate-Distortion efficiency comparisons with FME_Off for (a) 
Foreman, (b) Mobile, (c) Tempete, (d) Carphone 
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(d) 

Figure 6. Rate-Distortion efficiency comparisons with FME_On for (a) 
Foreman, (b) Mobile, (c) Tempete, (d) Carphone 
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(b) 

Figure 7. Computational comparisons with different number of reference 
frames for Carphone sequence (a) FME_Off (b) FME_On 
 


