
The Spotlight Principle ?

On Combining Process-Summarizing State Abstractions.

Björn Wachter1 and Bernd Westphal2

1 Universität des Saarlandes, Im Stadtwald, 66041 Saarbrücken, Germany
bwachter@cs.uni-sb.de

2 Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany
westphal@informatik.uni-oldenburg.de

Abstract. Formal verification of safety and liveness properties of sys-
tems with a dynamically changing, unbounded number of interlinked
processes and infinite-domain local data is challenging due to the two
sources of infiniteness. The existing state abstraction-based approaches
Data Type Reduction and Environment Abstraction each address one
aspect, but the former doesn’t support infinite-domain local data and
the latter doesn’t support links and is restricted to particular properties.

The contribution of this paper is a combination of both which is obtained
by first stating them in the framework of Canonical Abstraction. This
new use of Canonical Abstraction, originally designed and used for the
analysis of programs with heap-allocated data structures, furthermore
unveils a formal connection between the two rather ad-hoc techniques.

1 Introduction

A good example for the systems we consider is car platooning as studied in the
PATH project [1]. Its objective is to improve highway capacity and fuel consump-
tion by having cars dynamically negotiate, via radio-based communication, the
formation of platoons in which cars drive with reduced safety distance. A platoon
consists of one or more followers and a leader, which is in particular responsible
for notifying its followers in advance about braking manoeuvres. Roadside con-
trollers announce the maximum platoon length for a certain highway segment
and keep track of highway utilisation (cf. Figure 1(a)).

A formal model of the snapshot of car-platooning shown in Figure 1(a) is
depicted in Figure 1(b). There, each car has a local state, like being a follower
(‘flw ’) or leader (‘ldr ’), and a finite-domain variable d indicating the destination,
one of finitely many highway exits. A roadside controller also has a state pc, some
finite-domain highway parameter x, for instance a maximum platoon length, and
some infinite-domain ones, like a real-valued current utilisation of the highway
y. Cars and roadside controllers do not have a global view on the entire highway,
i.e. there is no shared memory, however cars have links to particular other cars.

? This work was partly supported by the German Research Council (DFG) as part of
the Transregional Collaborative Research Center SFB/TR 14 AVACS.

2 Björn Wachter and Bernd Westphal

rbc

ld

ld

fl fl

ctl
plt

(a)

〈flw, d1〉 〈flw, d2〉 〈ldr, d3〉

〈pc, x, y〉

ld

ld

fl fl

ctl
plt

s

(b)

Fig. 1. Car Platooning. A three-car platoon and a roadside controller.

Followers have a link to their leader, a leader knows a list of followers, and there
are links between roadside controllers and leaders. Links are used like pointers,
that is, a follower can query (or even modify) the state of its leader. In addition,
an inherent requirement on a model of car-platooning is that it provides for cars
dynamically entering and leaving the highway, that is, there is no finite upper
bound on the number of cars present at a certain point in time.

Thus the class of systems we consider is characterised by (i) dynamic creation
and destruction of processes of different kinds, (ii) local state with finite-domain
and other variables, and (iii) local and global links. The considered properties
are general LTL formulae with outermost quantification over processes.

A well-established approach to the formal verification of safety (“two different
cars never consider each other to be leader”) or liveness (“a merge request is
finally answered”) properties of transition systems with large or infinite state-
space are so-called finitary abstractions [2]. A finitary abstraction is defined by a
finite abstract domain and a state abstraction mapping states (like the one shown
in Figure 1(b)) to abstract representations of states. The set of initial abstract
states and the transition relation are then induced by the state abstraction;
abstract states are initial (or in transition relation) if they are the abstraction
of initial states (or states in transition relation).

w w n

w n n

n c n

α
7→

w

n

c

Fig. 2. Counter Abstraction.

One of the oldest finitary abstractions is
Counter Abstraction [3–5, 2]. The basic idea
is to map states with many processes, each
in one of finitely many local states, to an ab-
stract state, which only counts how many pro-
cesses are in each local state. Processes are
considered equivalent if they share the same
local state. To obtain a finite abstract domain,
counters are typically cut off at two, i.e. distin-
guish only between 0, 1, and “many” processes. Such a state abstraction function
α maps, for example, the concrete state on the left-hand side of Figure 2 to the
one shown on the right where “many” processes are indicated by double-lines.

Classical Counter Abstraction seems inappropriate to verify car platooning
as it does not support links, only admits finite-domain variables, and suffers from
the problem that processes migrate freely between equivalence classes such that
we cannot tell whether a particular process has made a particular transition.

The Spotlight Principle 3

For example, if one process changes state from c to n and one from w to c in
Figure 2, then the abstract state remains the same.

w w n

w n n

n c n

α
7→ w

n
0 n

1

w0

w
1c

0

c 1

Fig. 3. Environment Abstraction.

Recently, Counter Abstraction was
combined with a particular instance of
Predicate Abstraction to a technique
called Environment Abstraction (EA) [6],
admitting infinite-domain local variables,
like unbounded counters. EA derives its
name from the way it addresses the mi-
gration problem: by representing one pro-

cess precisely and preserving information about the rest from the perspective
of this process in terms of binary so called inter-predicates on the unbounded
variables. In Figure 3, dashed lines indicate whether the single inter-predicate
holds between another and the reference process (indicated by double-line). An
abstract state consists of the reference process’ local state and a vector of bits
indicating whether there is at least one other process in a particular local state
and in inter-predicate relation to the reference process, i.e. counters are already
cut off at 1. For example, in Figure 3 there are no processes in local state n and
in inter-predicate relation to the reference process, thus in the abstract state
the north-east arrow is crossed out. The north-arrow is not crossed out as there
are n-processes not in inter-relation. Not supporting links, EA seems inappropri-
ate for platooning as well. Furthermore, EA cannot verify manoeuvres involving
more than two cars, because it is restricted to two-process safety and one-process
liveness properties.

〈flw, d1〉 〈ldr, d3〉

ld

fl

ctl

Fig. 4. Data-Type Red.

The finitary abstraction Data-Type Reduction

(DTR) supports links and the desired properties,
however, it does not admit infinite-domain vari-
ables like counters. DTR was introduced as part of
a compositional verification methodology for pa-
rameterised systems [7]. The underlying idea is to
represent the local state of finitely many processes
exactly, like links between reference processes, re-
member whether there are links into their environ-

ment, and dismiss any other information about their environment. For example,
the state in Figure 1(b) maps to the abstract state shown in Figure 4 if the leader
and the last follower are reference processes. One gray summary node represents
all other cars and all roadside controllers.

EA and DTR come close to a good abstraction technique for platooning.
They have complementary strengths: DTR supporting links and manoeuvres
with more than two cars, and EA supporting infinite-domain local state. They
share the common idea of keeping some distinguished processes exact, intuitively
putting a “spotlight” on them, while abstracting from the rest. Therefore, we
aim for a combination of EA and DTR in order to treat systems like the car-
platooning example. As they are formalised in rather different manners and
have some undesired restrictions, we use the general and powerful framework

4 Björn Wachter and Bernd Westphal

of canonical abstraction (CA) [8] to re-formulate in a common language and,
ultimately, combine the concepts behind EA and DTR.

n n n

y x
α
7→

n

n

n

y x

Fig. 5. Singly Linked List.

Canonical abstraction provides a general
framework for concise and clear definition of state
abstractions. It is widely used in the context of
heap-manipulating programs. For example, the
simplest instance of CA discussed in [8] maps a
state with the linked list shown in Figure 5 to the
abstract state at the bottom where nodes indis-
tinguishable via links x and y collapse. Links into
and between the summary become indefinite as, for example, some summarised
nodes point to the last one and some do not (cf. [8] for details). Thus CA pro-
vides natural means to handle structures with links, and, as it turns out, for the
principle to represent the environment from the perspective of reference indi-
viduals. We obtain an alternative elegant soundness proof of EA and DTR via
the framework of CA. This has practical relevance since, in practice, abstrac-
tions often need to be refined in order to be precise enough. As a consequence of
the CA framework and contrary to the original formalizations of EA and DTR,
abstraction refinement becomes a natural process with guaranteed soundness.

Other Abstractions and Related Work The static analysis-based approach of
Yahav [9] first demonstrated suitability of the CA framework for the verification
of concurrent Java programs with unbounded creation of processes on the heap.
The idea underlying the employed abstraction is similar to EA and DTR, but
the approach is limited to safety properties (or state invariants). This approach
is refined in [10] by demonstrating that splitting a given task into cases and
treating each case separately with a specially tailored abstraction gains efficiency,
and that keeping neighbours of reference processes precise gains precision.

Yahav, Reps, Sagiv, and Wilhelm [11] address the same class of systems but
use significantly stronger Evolutional Temporal Logic (ETL) properties, which
are basically LTL with arbitrary quantification over processes (not only outer-
most) and transitive closure. Their approach is different to finitary abstraction
in that they construct a set of abstract sequences of abstract states via static
analysis. ETL formulae are then checked on this set of abstract traces, where
consecutive similar states collapse to summary states and where evolution of
processes is explicitly traced between (abstract) states of an abstract trace.

A thorough discussion why approaches, from instances of Predicate Abstrac-
tion to indexed predicates, are also insufficient appears in [6].

Most closely related to the aspect of our work, that we compare two inde-
pendently developed and described state abstractions in the CA framework is
Manevich et al. [12] who compare particular state abstractions for linked lists
given via CA to equivalent Predicate Abstractions. Thus they compare single
state abstractions in different frameworks.

Outline We proceed as follows. In Section 2 we formally define the class of
systems and properties we consider. Section 3 introduces state abstractions with

The Spotlight Principle 5

respect to reference processes and briefly provides the Canonical Abstraction
framework. In Section 4, we give native and CA-based definitions of DTR and
EA and propose a combination in Section 5. Section 6 concludes.

2 Computational Model and Property Specification

In order to represent the car-platooning example from the introduction we con-
sider transition systems over signatures. A signature S consists of process types
T (like cars and roadside controllers), global links G and links local to processes
L (like cars’ link to the leader ld), and finite- and infinite-domain variablesX and
Y local to processes (like cars’ current destination d and the controllers’ high-
way utilisation y), all five sets disjoint, and a domain D assigning each variable
v ∈ X∪Y a domain D(v), which is finite if v ∈ X . That is, S = (T,G,L,X, Y,D).

A transition system is a triple (S, S0, R) of a set of states S, initial states
S0 ⊆ S, and a transition relation R ⊆ S×S. It is called transition system over S
iff each state s ∈ S is a structure of S, that is, a pair (U, σ) of a set of individuals
U , called universe, which is partitioned into one (possibly empty) partition per
type in T and σ is a valuation of G, L, X and Y , that is,

– global links g ∈ G are assigned individuals, i.e. σ|G : G→ U ,

– local links l ∈ L and variables v ∈ X ∪ Y are assigned functions mapping
individuals to other individuals or values, i.e. σ|L : L → (U → U) and
σ|X∪Y : L→ (U → D).

2.1 Parameterised Systems

DTR and EA originally address parameterised systems, that is, systems where
K ∈

�
processes execute a single program in parallel, so we also introduce a

rather general notion of parameterised systems over signatures. As we do not
aim at exploiting a particular description language, we do not specify one but
consider M to be a finite behavioural description over a signature S with n
process types which, given a tuple (K1, . . . ,Kn) ∈

�
n, determines a transition

system over S whose state-set consists of all structures (U, σ) of S over a fixed
universe U with Ki individuals of type τi, 1 ≤ i ≤ n.

The set of all such instances of M is called M(
�

). Note that each instance has
only finitely many processes, the challenge of parameterised system verification
is to verify all instances at once.

In addition to common practice we use M(∞) to denote the set of instances
with countably infinitely many processes of some type because systems with a
dynamically changing number of processes, like car platooning, can be encoded
therein [13]. For the Canonical Abstraction versions of DTR and EA in Section 4,
it is more suitable to consider the single transition system obtained by taking
the union of all instances, denoted by M � etc., instead of a set of transition
systems.

6 Björn Wachter and Bernd Westphal

type[τ]/1 the given individual is of type τ ∈ T

ref[g]/1 the global link g ∈ G points to the given individual

val[x, d]/1 the local variable x ∈ X has value d ∈ D

ref[l]/2 the local link l ∈ L of the given individual points to the other one

eq/2 the two given individuals are equal

Table 1. Signature Predicates. Symbol p being of arity k is indicated by p/k.

2.2 Properties

As Canonical Abstraction operates on logical structures (cf. Section 3.2), it is
useful to only consider properties in form of formulae over a finite set of pred-
icate symbols P . Given a signature S, we consider the set PS consisting of the
predicate symbols given by Table 1. Note that the predicate symbols in PS dis-
tinguish the complete information about links and processes’ finite variables in a
state, thus together with quantification over processes we do not lose generality
on these aspects by considering only PS .

For EA, we in addition need a set of binary predicate symbols that typically
relate the non-finite aspects of two processes. In the car-platooning example it
could compare the real-valued utilisation of two roadside controllers. We assume
that a parameterised system M defines a finite set PM of these inter-predicates.

A structure s = (U, σ) induces an interpretation ιs of the predicate symbols
in PS . For example, ιs(val[x, d]) holds for u ∈ U iff σ(u)(x) = d. For each inter-
predicate p ∈ PM we assume an interpretation ιs(p) : U2 → {0, 1} to be given. In
general, a pair (U, ι) of a universe U and an interpretation ι of a set of predicate
symbols P is called two-valued logical structure of P . The set of all two-valued
logical structures of P is denoted by 2-Struct[P].

The language of evolution properties consists of formulae of the form

∀ z1, . . . zn . φ, n ∈
�

0 (1)

where z1, . . . , zn are logical variables (without loss of generality denoting different

processes) and φ is an LTL formula with X (Next), U (Until), G (Globally),
and F (Finally) and logical connectives over non-temporal state invariants

ψ ∈ SF ::= z1 = z2 | p(z1, . . . , zn) | ¬ψ1 | ψ1 ∨ ψ2 | ∃ z1 . ψ1 (2)

where p is a predicate symbol from PS ∪PM. DTR supports all evolution prop-

erties, while EA is restricted to properties of the forms

∀ z1, z2 .G ψ(z1, z2) and ∀ z1 .G (ψ1(z1) → F ψ2(z1)) (3)

over the predicate symbols val[x, d]. The former are called called two-indexed

safety properties, the latter one-indexed properties. The semantics of a state in-
variant ψ in a state s, denoted by JψKs, and satisfaction of an evolution property
by a sequence of states π = (Un, σn)n∈ � , denoted π |= Φ, is inductively defined
based on the logical structure (U, ιs) ∈ 2-Struct[PS ∪ PM] induced by state s.

The Spotlight Principle 7

2.3 Augmentation

As outlined in the introduction, both, DTR and EA, depend on a set of desig-
nated reference processes. To provide both uniformly with reference processes,
we’ll employ a simple, technical procedure that has similarly been applied, e.g.
by [2] in the context of safety and liveness properties of parameterised systems
and by [14] in the context of shape analysis for list insertion.

Given a transition system M over a signature S with global links G, let
Ga = {ga1

, . . . , gan
} be a set of fresh global augmentation links. Then the Ga-

augmentation of M is a transition system M̂ over Ŝ with global links G ∪ Ga

where the augmentation links consistently trace n different individuals. Consis-
tency means that the valuation of Ga is constant over transitions, i.e.

((U, σ̂1), (U, σ̂2)) ∈ R̂ =⇒ σ̂1|Ga
= σ̂1|Ga

. (4)

States of M̂ are initial (in transition relation), if the projection onto S is initial
(in transition relation). Among others, Figure 6 illustrates augmentation.

Then, for example, a formula ∀ z1, z2 .G p(z1, z2) holds in M iff

G (∀ z1, z2 . (ref[ga1
](z1) ∧ ref[ga2

](z2)) → p(z1, z2)) (5)

holds in M̂ , the {ga1
, ga2

}-augmentation of M . The example easily extends into

an inductive definition of the transformation of evolution properties Φ into Φ̂.

3 Defining and Comparing State Abstractions

A state abstraction of a transition system M = (S, S0, R) consists of an abstract
domain S] and a state abstraction function α mapping concrete to abstract
states, i.e. α : S → S]. It is called finite if S] is finite. The function α induces an
abstract transition system Mα with state-set S] by considering an abstract state
initial iff it is the abstraction of an initial concrete state, and two abstract states
in transition relation if they are the abstractions of two concrete states in tran-
sition relation. This construction is known as finitary abstraction [15]. Together
with α, we always consider its concretisation function γ mapping abstract states
to the concrete states they represent, i.e. γ(s]) = {s ∈ S | α(s) = s]}.

In order to establish properties of the original system on the abstract one, a
state abstraction is complemented by a conservative, three-valued interpretation
of the predicate symbols from PS ∪ PM in each abstract state. An interpreta-
tion is called three-valued iff predicates map to {0, 1, 1/2} instead of {0, 1}; by
3-Struct[P] we denote the set of all pairs (U, ι) of universes and three-valued
interpretations of the predicate symbols in P .

An interpretation of predicate symbols P is called conservative with respect
to another iff it doesn’t introduce contradictions; in our case this spells out as

∀ p ∈ P ∀ s] ∈ S] ∀ s ∈ γ(s]) : JpKs v JpK]

s] (6)

8 Björn Wachter and Bernd Westphal

where “v” is the information order on {0, 1, 1/2}, defined as {b v b, b v 1/2 | b ∈
{0, 1, 1/2}}. Thus the third truth-value 1/2 can be read as “don’t know”. Using
the well-established three-valued semantics of state formulae [8] and temporal
formulae [9], a conservative abstract semantics for temporal formulae is obtained.
Thus if a property Φ holds in Mα, then it also holds in M .

3.1 Comparing State Abstractions

Recall that our overall aim is to provide alternative definitions of EA and DTR
in the framework of Canonical Abstraction. In order to prove that the new defi-
nition is equivalent to the original one, we first introduce notions of equivalence
and being coarser for state abstractions. The following Lemma provides more
easily checkable, sufficient criteria that imply equivalence or being coarser.

A state abstractions α1 : S → S]
1 is called coarser than α2 : S → S]

2, denoted
by α1 � α2, iff the induced abstract transition system satisfies fewer evolution
formulae, i.e. iff

Mα1
|= φ =⇒ Mα2

|= φ (7)

for all evolution formulae Φ. Both are called equivalent, denoted α1 ≡ α2, iff
α2 � α1 and α1 � α2, that is, if both satisfy the same properties.

If there is a simulation relation between the induced abstract models, (7)
and thus the coarser-than relation follow. For existence of a simulation relation
it is sufficient to find a relation % between the two abstract domains such that
related states do not interpret predicates contradictingly3 and the states of the
coarser state abstraction concretise to more concrete states.

Lemma 1 (State Abstraction Comparison). Let α1 : S → S]
1 and α2 : S →

S]
2 be two state abstractions. Let % : S]

1 × S]
2 be a relation such that

1. ∀ s ∈ S : (α1(s), α2(s)) ∈ %

2. ∀ (s]
1, s

]
2) ∈ % ∀ p ∈ P : JpK]

s
]
2

v JpK]

s
]
1

3. ∀ (s]
1, s

]
2) ∈ % : γ1(s

]
1) ⊆ γ2(s

]
2)

Then α1 � α2. With “=” instead of “v” and “⊆”, α1 ≡ α2 is obtained.

3.2 Canonical Abstraction

Canonical Abstraction provides a framework for the definition of state abstrac-
tion functions if concrete states are three-valued structures of a finite set of
predicate symbols P . Following the framework, a choice of a set of unary, so-
called abstraction predicates

A = {pa1
, . . . , pan

} ⊆ P (8)

3 assuming that the interpretation of formulae is inductively defined as discussed in
the previous paragraph

The Spotlight Principle 9

determines the abstract domain as the set of three-valued structures (U, ι) where
U comprises only the canonical names with respect to A, thus it is finite.

The canonical name κA(u) of an individual u is simply the valuation of the
abstraction predicates on u, i.e., the vector (pa1

(u), . . . , pan
(u)). The abstract

domain is finite as there are only finitely many such vectors.
The other predicates from P , which are not used as abstraction predicates,

are principally only required to evaluate conservatively in the abstract state.
A best abstraction with respect to A evaluates them as precisely as possible,
that is, to a definite value from {0, 1} if all summarised individuals agree on the
definite value and to 1/2 only otherwise.

The state abstraction function αA : 3-Struct → 3-Struct is such a best ab-
straction. That is, as it merges individuals indistinguishable by the abstraction
predicates, it preserves information about the abstraction predicates precisely,
all other information may be blurred to 1/2.

If defined by A ⊆ PS ∪ PM, it naturally extends to states that are pairs
s = (U, σ) of a universe and a valuation of signature S by applying it to the in-
duced structure (U, ιs), that is, by setting αA(s) := αA(U, ιs). The concretisation
function is still defined as on page 7.

Formally, Canonical Abstraction is based on the notion of (tight) embedding
of three-valued structures. A surjection h : U → U ′ between two universes is
said to embed the logical structure s = (U, ι) of P into s′ = (U ′, ι′) iff

∀ p ∈ Pk : ι(p)(u1, . . . , uk(p)) v ι′(p)(h(u1), . . . , h(uk(p))). (9)

The embedding is called tight, if the stronger condition

∀ p ∈ Pk : ι′(p)(u′1, . . . , u
′
k(p)) =

⊔

h(ui)=u′
i,1≤i≤k(p)

ι(p)(u1, . . . , uk(p)), (10)

using the least upper bound with respect to information order, holds. A structure
s can (tightly) be embedded into s′ iff a (tight) embedding function exists.

Given the three-valued interpretation JψK3s′ of state invariants in abstract
states s′ via the monotone Kleene semantics4 the following theorem holds

Theorem 1 (Embedding Theorem [8]). Let s = (U, ι) and s′ = (U ′, ι′) be

logical structures, let h embed s in s′, and let Z be a complete assignment of the

free variables in ψ. Then JψK3s(Z) v JψK3s′ (h ◦ Z).

4 The Spotlight Principle

Intuitively, both EA and DTR focus, or put a spotlight, on one or more processes
and abstract from the rest, the ones in the shadows. Information about the latter
is kept from the perspective of the spotlight individuals.

4 comparison of the summary node with itself then yields 1/2 if there is more than one
individual represented by a summary node, which is always the case in Section 4

10 Björn Wachter and Bernd Westphal

We say that a state abstraction α follows the spotlight principle if it is de-
finable via Canonical Abstraction and there are abstraction predicates pa in A
that concretise to at most one individual in each abstract state, i.e.

∀ (U, ι) ∈ S] : |{u | ι(pa)(u)}| ≤ 1. (11)

A direct consequence is that all other unary predicates in PS are evaluated to
definite values for a spotlight individual (or reference process); binary predicates
may evaluate to 1/2 if evaluated for non-spotlight individuals.

We call α disjoint, if spotlight predicates pa1
, . . . , pan

mutually exclude each
other on individuals. Given a transition system M over a signature, an evolution
formula Φ = ∀ z1, . . . , zn . φ, and a correspondingGa-augmentation M̂ of M with
Ga = {ga1

, . . . , gan
}, each state abstraction

A ⊇ {ref[ga] | ga ∈ Ga} (12)

is a disjoint spotlight abstraction.

In the following, we present the two abstractions EA and DTR in their orig-
inal definition and give an equivalent Canonical Abstraction definition for each.
Thereby, both can be identified as successful applications of the spotlight princi-
ple. In Section 5, we can then use the insights gained in the following sections to
combine both abstractions into one which allows to treat the example from the
introduction, which is neither in the scope of DTR nor in the scope of EA. For
completeness, we additionally compare both to a typical example of the abstrac-
tions that are usually given via Canonical Abstraction, namely Shape Analysis
of programs manipulating linked lists.

4.1 Data-Type Reduction

Data-Type Reduction [7] (DTR) has been introduced for parameterised systems
over signatures without infinite domain variables, i.e. Y = ∅, thus the considered
systems are only infinite by the number of instantiations in M(

�
), or the number

of processes in M(∞).
In the following, let M be a parameterised system over signature S with

Y = ∅ and, as DTR depends on the property, let Φ = ∀ z1, . . . , zn . φ(z1, . . . , zn)
be an evolution property. LetM ∈ M(∞) be the transition system with infinitely

many processes of each type and M̂ a Ga-augmentation corresponding to Φ.

Native Definition The finite state abstraction function αdtr : S → S] maps
states (U, σ) ∈ S to abstract states (U], σ]) where σ] maps global links from Ga

to the corresponding abstract individuals, i.e.

σ](gai
) = u]

i , gai
∈ Ga, (13)

and local and other global links, g /∈ Ga, to the corresponding abstract individual
or the summary individual u]

0, i.e.

σ](g) =

{
u]

i , σ(gai
) = σ(g)

u]
0 , otherwise

σ](l)(u]
i) =

{
u]

j , σ(l)(σ(gai
)) = σ(gaj

)

u]
0 , otherwise

(14)

The Spotlight Principle 11

〈flw, d1〉 〈flw, d2〉 〈ldr, d3〉

〈pc, x,w〉

ld

ld

fl fl

ctlplt

ga1
ga2

bs

7→
〈flw, d1〉 〈ldr, d3〉

ld

fl

ctl

ga1
ga2

u]
1

u]
2

u]
0αdtr(bs)

Fig. 6. Data-Type Reduction.

u1 u2

u3

ld

fl

ctl

ld,fl,rbc,plt ld,fl,rbc,plt

ga1
ga2

ld,fl,rbc,plt

αAdtr
(s)

ga1
ga2

car ctl flw . . .

u1 1 0 1 0 1 . . .

u2 0 1 1 0 0 . . .

u3 0 0 1/2 1/2 1/2 1/2

fl u1 u2 u3

0 0 0

0 1/2 0
1/2 1/2 1/2

Fig. 7. DTR via Canonical Abstraction. The tables exemplary show the valuation
of some predicates, the unary reference individual predicates, the type predicates, and
val[st,flw] on the left and the binary predicate ref[fl] on the right.

and keeps the values of local variables, i.e. σ](x)(u]
i) = σ(x)(σ(gai

)).
Figure 6 illustrates the effect of αdtr on a state of the car platooning system

from Section 2 (assuming w ∈ X , instead of y ∈ Y). The abstract state preserves
the state of the last follower and the leader. Links to individuals in the shadows
change to links to the summary individual, links from them are lost.

The interpretation of a predicate p ∈ PS ∪ PM of arity k in s] is defined as

JpK]

s](w
]
1, . . . , w

]
k) = 1/2 (15)

if one of the individuals is the summary individual, i.e. w]
i = u]

0 for some 1 ≤
i ≤ n, and the value obtained using the regular definition from Section 2.2
otherwise. We immediately have JpKs(u1, . . . , un) v JpK]

αs(w
]
1, . . . , w

]
n) if ui and

w]
i are indistinguishable on the reference link predicates ref[ga], ga ∈ Ga.

Data-Type Abstraction via Canonical Abstraction is obtained by choos-
ing the reference individual predicates as abstraction predicates, i.e.

Adtr = {ref[g] | ga ∈ G} ⊆ PS . (16)

Figure 7 illustrates, following the conventions of [8], the effect of αAdtr
on the con-

crete state from Figure 6. Dashed (indefinite) edges indicate the loss of precision
that shows in the original definition only in the evaluation of expressions.

Note that αAdtr
is already too precise as it preserves information about the

shadow individuals if predicates happen to agree on all of them. An equivalent
state abstraction can be obtained by explicitly blurring the truth-value of all
predicates, except for the spotlight predicates ref[ga], when evaluated for at least

12 Björn Wachter and Bernd Westphal

one non-reference individual, i.e. we set α′
Adtr

:= blur ◦ αAdtr
where blur(U, ι) :=

(U, blur(ι)) with

blur(ι)(p)(u1, . . . , un) =

1/2 , if p 6= ref[ga], ga ∈ Ga, and∧
ga∈Ga

1≤i≤n

¬ι(ref[ga])(ui)

ι(p)(u1, . . . , un) , otherwise

(17)

Theorem 2. The native definition of DTR αdtr is equivalent to α′
Adtr

.

Proof. By Lemma 1, letting abstract DTR-states s]
dtr and s]

Adtr
be %-related iff

∀ p ∈ PS ∪ PM : JpK]

s
]
Adtr

(u1, . . . , un) = JpK]

s
]
dtr

(u]
1, . . . , u

]
n) (18)

for ui and u]
i indistinguishable under ref[ga], ga ∈ Ga. ut

4.2 Environment Abstraction

Environment Abstraction [6] (EA) has been introduced for parameterised sys-
tems over signatures with exactly one process type and no links. Thus the consid-
ered systems are infinite by the number of instantiations M(

�
), or the number

of processes in M(∞), and in addition possibly by the domain of variables in Y .
In the following, let M be a parameterised system over signature S without

links and one process type. to simplify the presentation, we follow [6] in assuming
that X comprises only the single, finite-domain variable pc.

w, 9 w, 5 n, 0

w, 4 n, 0 n, 0

n, 0 c, 2 n, 0

Fig. 8. Bakery State.

The car-platooning example from the introduc-
tion is clearly out of scope for EA as it depends on
links between processes. So we employ one (of the
two) examples that have successfully been verified
with EA [6], namely the parameterised system em-
ploying the bakery algorithm [16] for mutual exclu-
sion. Assume, the program counter pc has a domain
of three locations like n (non-critical), w (wait), c
(critical) and there is one (unbounded) integer variable t for the ticket.

Figure 8 shows one state of bakery with K = 9 processes. Oval nodes repre-
sent processes, giving their state (also indicated by different hatch fillings) and
ticket value, assuming idle processes reset the ticket to 0.

In the following, let M ∈ M(∞) be the transition system with infinitely

many processes (of the only type) and M̂ an augmentation with a single link ga.

Native Definition In [6], a set of predicates env[i, j] is constructed in two
steps. Let PM = {p1, . . . , pn} be the inter-predicates of M. Then firstly there
are 2n formulae Ri with two free variables characterise all (mutually exclusive)
combinations of the inter-predicates holding or not for two individuals, i.e.

Ri(z1, z2) := ±p1(z1, z2) ∧ · · · ∧ ±pn(z1, z2) (19)

The Spotlight Principle 13

The Ri secondly induce T := 2n · |D(pc)| so-called environment formulae holding
in state (U, σ) if at least one individual different from the reference individual
has pc value j and is related to the reference individual as described by Ri, i.e.

env[i, j] := ∃ z, z′ . z 6= z′ ∧ ref[ga](z) ∧ Ri(z, z
′) ∧ val[pc, j](z′) (20)

The abstract domain S] of the EA of M is the set of vectors

〈d, ε1,1, . . . , ε2n,|D(pc)|〉 ∈ D(pc) × {0, 1}T (21)

comprising a pc-value d ∈ D(pc) and one boolean εi,j for each of the T environ-
ment formulae env[i, j]. It is finite as D(pc) is finite.

The finite state abstraction function αea : Ŝ → S] maps states ŝ = (U, σ) ∈ Ŝ
to the vector 〈σ(pc)(σ(ga)), Jenv[1, 1]Kbs, . . . , Jenv[2n, |D(pc)|]Kbs〉.

Figure 3 illustrates the effect of αea on an augmented state. Note that the val-
uation of inter-predicates is only shown with respect to the reference individual.
The abstraction function αea keeps the value of pc for the reference process and
one bit for each combination of program counter and inter-predicate being 0 iff
there is no other process with a corresponding pc in the concrete state such that
the inter-predicate holds. In other words, each εi,j encodes presence or absence
of at least one individual that is in env[i, j] relation to the reference individual.

The interpretation of a unary predicate val[pc, d] ∈ PS is defined using a
structure (U, ι) with an arbitrary, two-individual universe {u1, u2} and

ι(val[pc, d]) = {u1 7→ (pc = d), u2 7→
∨

1≤i≤2n

εi,d} (22)

for an abstract state s] = 〈pc, ε1,1, . . . , ε2n,|Dpc|〉. Then Jval[pc, d]K]

s] = ι(val[pc, d]).

Intuitively, val[pc, d] holds in s] if either the first component of the vector is equal
to d or at least one εi,d, 1 ≤ i ≤ 2n, is true.

Environment Abstraction via Canonical Abstraction is based on a slightly
different set of environment predicates. Let env[p], p ∈ PM be unary predicate
symbols that indicate whether an individual is not the reference individual and
in p-relation to the reference individual, i.e.

Jenv[p]K(U,σ)(u) := (u 6= σ(ga) ∧ JpK(U,σ)(σ(ga), u)) (23)

Then as abstraction predicates we choose the one for the reference individual,
for finite-domain variable valuation, and the new environment predicates, i.e.

Aea = {ref[ga]} ∪ {val[pc, d] | d ∈ Dpc} ∪ {env[p] | p ∈ PM} (24)

Figure 9 illustrates the effect of CA with Aea on the concrete state from
Figure 3. Note that there are no edges between nodes as we do not have binary
predicates in P and as all predicates in P are abstraction predicates. Loss of

14 Björn Wachter and Bernd Westphal

w w n

w n n

n c n

7→

αAea(bs)

w

n, 0

w, 1

c, 1

ga

ga n w c env[p1] sm

u1 1 0 1 0 0 0

u2 0 0 1 0 1 1/2

u3 0 1 0 0 0 1/2

u4 0 0 0 1 1 1/2

Fig. 9. EA via Canonical Abstraction. The table shows the valuation of all pred-
icates considered in the Bakery example and the summary predicate sm.

precision takes place in the choice of predicates which, in contrast to DTR,
doesn’t preserve all information of concrete states.

Similar to DTR, the more natural choice of abstraction predicates, namely

A′
ea = {ref[ga]} ∪ {val[pc, d] | d ∈ Dpc} (25)

is already more precise than the original definition of EA as it would preserve
information on the relation between the individuals in the shadows.

Theorem 3. The native definition of EA αea is equivalent to αAdtr
.

Proof. By Lemma 1, letting abstract states s]
ea = 〈d, ε1,1, . . . , ε2n,|D(pc)|〉 and

s]
Aea

= (U, ι) be %-related iff εi,j = J∃u′. pi(u, u
′) ∧ val[pc, j](u) ∧ ref[g](u)Ks]

and
∨

j∈D(d = j ⇔ J∃u. val[pc, j](u) ∧ val[pc, j](u)K) . ut

4.3 Shape Analysis

A natural question is how EA and DTR relate to the abstractions for which
Canonical Abstraction is typically used (cf. Section 1). The abstraction predi-
cates of the coarsest abstraction for linked lists in [8] are A = {ref[x], ref[y]}. As
program variables refer to at most one individual at a time, the abstractions for
singly linked lists also follow the spotlight principle (although not disjointly).

This observation doesn’t contradict the intuition that program variables
change on update, while augmentation is constant. The abstraction used for
linked lists is on such a high level of abstraction that it concretises as well to
topologies of interlinked processes where x denotes a fixed process; the expecta-
tion that the value of x necessarily changes, exists only in the eye of the beholder.

5 Combining DTR and EA

As discussed in the introduction, both DTR and EA alone are not sufficient
to establish properties like liveness of the merge procedure of car-platooning as
DTR excludes infinite-domain variables and EA doesn’t handle links between
cars and is restricted to properties over at most two processes.

The Spotlight Principle 15

Furthermore, DTR doesn’t preserve invariants about individuals outside the
spotlight. In practice, this tends to give rise to spurious counter-examples, which
have to be excluded by user-supplied non-interference lemmata [7, 13].

Given the formulation of both, DTR and EA, in the Canonical Abstraction
framework a sound abstraction that combines the strengths of both is obtained
by simply taking the union of their abstraction predicates, i.e. A := Adtr ∪Aea.
As adding abstraction predicates makes abstractions more precise, the state
abstraction defined by A is more precise than both, DTR and EA. From EA it
inherits support of unbounded local state variables and from DTR support for
links and multiple process types in general evolution logic formulae.

Practically, stating a state abstraction is only one aspect, the other one is
finding an implementation, which computes the abstract finite-state transition
system directly without the need to explicitly enumerate the concrete, infinite
state space. Specialised implementations for DTR and EA proposed in [7] and [6].
In contrast, the Canonical Abstraction framework is generally supported by tools
like TVLA [17] and bohne [18] for the verification of state invariants. Due to their
generality, a non-optimised application of, e.g., TVLA to DTR or EA may not
be as efficient as the procedures of [7, 6], but they provide for easy prototyping
when refining abstractions. One of the authors successfully implemented the
variant of DTR given in Section 4.1 in TVLA to verify mutual exclusion for
the bakery algorithm [19]. There the unbounded counter domain is modeled and
abstracted by the list-like abstraction described in [9] admitting only increment
and decrement operations. The ability of CA to preserve information about
individuals in the shadow proved crucial to verify mutual exclusion.

6 Conclusion

There is a need for state abstractions suitable to treat systems with dynamic links
between processes and infinite-domain variables and general temporal properties.
From the literature, DTR and EA come closest but neither one is sufficient.

In order to obtain a combination with the strengths of both, we stated them
uniformly in the Canonical Abstraction framework, which is a new application
of the framework. By comparison of the employed abstraction predicates it turns
out that both DTR and EA share a common principle which we call the spotlight
principle. Individuals in the spotlight are kept precise while information about
the others is represented from the perspective of those in the spotlight.

Stating other abstractions like [9, 10] in this framework in order to dissect
the ideas employed there remains for the full version of the paper. Further work
comprises an investigation of the effect of cutting off counters at 2, as it is
done for Shape Analysis, instead of at 1. Another question concerns the other
direction, i.e. whether particular abstractions stated via Canonical Abstraction
may profit from the efficient implementations of DTR or EA. And we would
like to gain a deeper insight into the consequences of the spotlight principle, i.e.
whether a set of preserved properties (possibly along segments of computation
paths) can be characterised.

16 Björn Wachter and Bernd Westphal

Acknowledgements. The authors want to express their gratitude to Andreas Podelski

and Reinhard Wilhelm for their valuable comments on early versions of this work.

References

1. Hsu, A., Eskafi, F., Sachs, S., Varaiya, P.: The design of platoon maneuver protocols
for IVHS. PATH Research Report UCB-ITS-PRR-91-6, Institute of Transportation
Studies, University of California at Berkeley (1991) ISSN 1055-1425.

2. Pnueli, A., Xu, J., Zuck, L.: Liveness with (0,1,infty)-counter abstraction. In Hunt,
Jr., W.A., Somenzi, F., eds.: Computer Aided Verification, 15th International Con-
ference, CAV 2003, Boulder, CO, USA, July 8-12, 2003, Proceedings. Volume 2725
of Lecture Notes in Computer Science., Springer (2003) 107–133

3. Lubachevsky, B.D.: An approach to automating the verification of compact parallel
coordination programs. Acta Informatica 21 (1984) 125–169

4. Pong, F., Dubois, M.: Formal verification of complex coherence protocols using
symbolic state models. J. ACM 45 (1998) 557–587

5. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J.
ACM 39 (1992) 675–735

6. Clarke, E.M., Talupur, M., Veith, H.: Environment abstraction for parameterized
verification. In Emerson, E.A., Namjoshi, K.S., eds.: Verification, Model Check-
ing, and Abstract Interpretation, 7th International Conference, VMCAI 2006,
Charleston, SC, USA, January 8-10, 2006, Proceedings. Volume 3855 of Lecture
Notes in Computer Science., Springer (2006) 126–141

7. McMillan, K.L.: Verification of infinite state systems by compositional model
checking (charme). In Pierre, L., Kropf, T., eds.: Correct Hardware Design and
Verification Methods, 10th IFIP WG 10.5 Advanced Research Working Conference,
CHARME ’99, Bad Herrenalb, Germany, September 27-29, 1999, Proceedings. Vol-
ume 1703 of Lecture Notes in Computer Science., Springer (1999) 219–234

8. Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
ACM Transactions on Programming Languages and Systems 22 (2001)

9. Yahav, E.: Verifying safety properties of concurrent Java programs using 3-valued
logic. ACM SIGPLAN Notices 36 (2001) 27–40

10. Yahav, E., Ramalingam, G.: Verifying safety properties using separation and het-
erogeneous abstractions. In: Proceedings of the ACM SIGPLAN 2004 conference
on Programming language design and implementation, ACM Press (2004) 25–34

11. Yahav, E., Reps, T., Sagiv, S., Wilhelm, R.: Verifying temporal heap properties
specified via evolution logic. In Degano, P., ed.: Programming Languages and
Systems, 12th European Symposium on Programming, ESOP 2003, Held as Part
of the Joint European Conferences on Theory and Practice of Software, ETAPS
2003, Warsaw, Poland, April 7-11, 2003, Proceedings. Number 2618 in Lecture
Notes in Computer Science, Springer-Verlag (2003) 204–222

12. Manevich, R., Yahav, E., Ramalingam, G., Sagiv, M.: Predicate abstraction
and canonical abstraction for singly-linked lists. In Cousot, R., ed.: Verification,
Model Checking, and Abstract Interpretation, 6th International Conference, VM-
CAI 2005, Paris, France, January 17-19, 2005, Proceedings. Volume 3385 of Lecture
Notes in Computer Science., Springer (2005) 181–198

13. Damm, W., Westphal, B.: Live and Let Die: LSC-based Verification of UML-
Models. In Boer, F., Bonsangue, M., Graf, S., de Roever, W.P., eds.: Formal
Methods for Components and Objects First International Symposium, FMCO

The Spotlight Principle 17

2002, Leiden, The Netherlands, November 5-8, 2002, Revised Lectures. Number
2852 in Lecture Notes in Computer Science, Springer-Verlag (2003) 99–135

14. Dams, D., Namjoshi, K.S.: Shape analysis through predicate abstraction and model
checking. In: VMCAI 2003: Proceedings of the 4th International Conference on
Verification, Model Checking, and Abstract Interpretation, London, UK, Springer-
Verlag (2003) 310–324

15. Kesten, Y., Pnueli, A.: Control and data abstraction: The cornerstones of prac-
tical formal verification. International Journal on Software Tools for Technology
Transfer 2 (2000) 328–342

16. Lamport, L.: A new solution of dijkstras concurrent programming problem. Com-
munications of the ACM 17 (1974) 453–455

17. Lev-Ami, T., Sagiv, M.: Tvla: A system for implementing static analysis. In
Palsberg, J., ed.: Static Analysis, 7th International Symposium, SAS 2000, Santa
Barbara, CA, USA, June 29 - July 1, 2000, Proceedings. Number 1824 in Lecture
Notes in Computer Science, Springer-Verlag (2000) 280–301

18. Podelski, A., Wies, T.: Boolean heaps. In Hankin, C., Siveroni, I., eds.: Static
Analysis, 12th International Symposium, SAS 2005, London, UK, September 7-9,
2005, Proceedings. Volume 3672 of Lecture Notes in Computer Science., Springer
(2005) 268–283

19. Wachter, B.: Checking universally quantified temporal properties with three-valued
analysis. Master’s thesis, Universität des Saarlandes (2005)

