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Abstract—Temporal logic model checking of infinite state
systems without the use of iteration or abstraction is usually
considered beyond the realm of first-order logic (FOL) reasoners
because of the need for a fixpoint computation. In this paper,
we show that it is possible to reduce model checking of a
finite or infinite Kripke structure that is expressed in FOL to
a validity problem in FOL for a fragment of computational
tree logic (CTL), which we call CTL-live. CTL-live includes the
CTL connectives that are traditionally used to express liveness
properties. Our reduction can form the basis for methods that use
FOL reasoning techniques directly to accomplish model checking
of CTL-live properties without the need for fixpoint operators,
transitive closure, abstraction, or induction.

I. INTRODUCTION

Model checking is the problem of checking whether a
Kripke structure satisfies a temporal logic formula [1]. Model
checking has been used extensively to verify and find bugs
in finite state systems. To deal with the growing complexity
of software and hardware systems, we need methods that can
analyze more abstract models so that we can discover errors
earlier in the development process. The progress in SMT
(satisfiability modulo theories) solvers [2] has turned first-
order reasoners into powerful, efficient verification tools. In
this paper, we examine the challenge of using first-order logic
(FOL) to express the temporal logic model checking problem
for models described in FOL.

Existing model checking methods that use first-order rea-
soners can be divided into two major categories: 1) bounded
model checking (e.g., [3], [4]) and 2) unbounded model
checking (e.g., [5], [6]). Bounded methods check whether a
property holds for a certain length of execution path by cre-
ating a formula consisting of the transition relation expanded
to the desired bound. Since the bound is finite, the problem
can be expressed in FOL, therefore, FOL reasoners can be
used to solve the entire bounded (and therefore incomplete)
model checking problem at one time. Unbounded methods
call a FOL reasoner multiple times iteratively to traverse the
reachable state space. This iteration can result in parts of
the reasoning being redone multiple times. These methods
are mostly used for safety properties; for infinite systems,
termination (without approximation) is guaranteed only in the
case where the property is violated. FOL reasoners, such as
SMT solvers, have not been used to solve an entire unbounded
model checking problem in one call because model checking

is a question of reachability within a graph (in this case
a Kripke structure), and the reachability relation (transitive
closure) is not expressible in FOL. Therefore, temporal logic
model checking for infinite state systems without the use of
iteration or abstraction is usually considered beyond the realm
of FOL reasoners.

Our contribution is to show that model checking an inter-
esting fragment of computational tree logic (CTL) [7], which
we call CTL-live, is reducible to validity checking in FOL; in
other words, model checking a CTL-live property of a Kripke
structure can be done completely using deductive techniques
of FOL. Thus, some reachability queries can be answered
using a FOL reasoner even though the reachability relation
itself is not expressible in FOL. CTL-live includes the CTL
connectives that are often used to express liveness properties
(e.g., AF, AU, etc.). Our result holds for any Kripke structure
expressible symbolically in FOL. Since FOL validity checking
is recursively enumerable (r.e.) [8], if a Kripke structure
satisfies a CTL-live property our reduction can be used to
generate a proof automatically. This is the opposite of iterative
unbounded methods, such as [6], which guarantee termination
only if the property is not satisfied.

Model checking a CTL formula ϕ requires checking
whether the set of initial states of a Kripke structure is included
in the set of states that satisfy ϕ. Validity in FOL is defined
using a universal quantifier over interpretations, which is not a
first-order quantifier. The key insight in our approach is to use
this implicit higher-order quantifier to quantify over sets that
include every state that satisfies ϕ and possibly more; these
sets along with this higher-order quantifier are sufficient to
solve the model checking problem for a CTL-live formula.

Our result can form the basis for using first-order reasoners
directly for model checking CTL-live properties of infinite
Kripke structures expressed symbolically in FOL. By avoiding
external iteration, we allow the reasoning tool to work at
its maximum efficiency with respect to reusing parts of the
deduction. By avoiding manual abstraction, we have removed
a large burden on the user to justify the validity of the
abstraction.

II. PRELIMINARIES

We use standard first-order logic with equality (FOL) [8].
The syntax and semantics of FOL is defined using the concepts
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of signatures and interpretations. A signature is a set of
functional and relational symbols where each symbol has a
corresponding arity, which is a natural number. For a given
signature, an interpretation consists of a domain (a non-empty
set), and a mapping, which determines the content of each
functional and relational symbol in the signature. We use the
notation XI to denote the value that the symbol X is mapped
to under the interpretation I.

We denote the satisfiability relation for FOL by , where
I  Φ means that the interpretation I satisfies the FOL
formula Φ, and I 6 Φ denotes otherwise. If Γ is a set of
FOL formulae and I is an interpretation, the notation I  Γ
means that I satisfies every formula in Γ. Validity (or semantic
entailment) in FOL is denoted by Γ |= Φ.

The subset relation symbol (⊆) is overloaded in this paper:
suppose X and Y are relational symbols with arity 1; the
formula X ⊆ Y is a short form for ∀s : X(s)→ Y (s).

Computational tree logic (CTL) is a temporal logic to
specify properties over time [7]. A temporal connective of
CTL consists of two parts: a path and a state quantifier.
A path quantifier is either E (there exists a path) or A
(for all paths). The state quantifiers are X (next state), F
(eventually), G (globally), and U (strong until). The semantics
of CTL formulae is defined using Kripke structures. A Kripke
structure is a four tuple, K = 〈S,S0,N ,P〉, where: S is a set
of states; S0, the set of initial states, is a non-empty subset of
S; N , the next-state relation, is a total binary relation over S;
P is a finite set of unary predicates over states. Predicates
represent the local properties of the states, and are called
labelling predicates.

The notation K, s c ϕ denotes that the state s of the Kripke
structure K satisfies the CTL formula ϕ and K, s 6c ϕ denotes
otherwise. We use the standard semantics of CTL [1].

The set of states of a Kripke structure K that satisfies a
CTL formula ϕ is denoted by [ϕ]K:

[ϕ]K = {s ∈ S | K, s c ϕ}
The Kripke structure K satisfies the CTL formula ϕ, denoted
by K c ϕ, iff for all s ∈ S0 we have K, s c ϕ:

K c ϕ ⇐⇒ S0 ⊆ [ϕ]K

III. OVERVIEW

The goal of this work is to reduce the model checking
problem (c) to validity checking in FOL (|=). The first
step is to represent a Kripke structure symbolically in FOL.
For a Kripke structure K = 〈S,S0,N ,P〉, its symbolic
representation (symbolic(K)) is a set of FOL formulae over
the signature K = {S0, N, P1, .., Pn} where relational symbol
N has arity 2 and every other symbol has arity 1.

Since symbolic(K) is a set of FOL formulae, it can have
multiple satisfying interpretations (each of which is a Kripke
structure) that are not isomorphic because it may use uninter-
preted functions and relations, and it may underconstrain the
model.

Reduction Procedure:
INPUT:

symbolic(K) :symbolic representation of a Kripke structure.
ϕ : a CTL-live formula.

OUTPUT:
symbolic(K)

⋃
CTLL2FOL(ϕ) |= S0 ⊆ dϕe

Fig. 1. Reduction Procedure

We define symbolic(K) |=c ϕ to mean that every satisfying
interpretation K of symbolic(K) satisfies the CTL formula ϕ:

symbolic(K) |=c ϕ⇐⇒ ∀K : K  symbolic(K) =⇒ K c ϕ

If symbolic(K) has only one satisfying interpretation up to
isomorphism, then symbolic(K) |=c ϕ is equivalent to K c
ϕ. However, we do not require symbolic(K) to have only one
satisfying interpretation up to isomorphism.

Our main contribution is to identify a fragment of CTL such
that its model checking problem for a symbolic representation
of a Kripke structure is reducible to validity checking in FOL.
We call this fragment CTL-live. We show that there exists a
Γ (set of FOL formulae) and Φ (FOL formula) such that:

symbolic(K) |=c ϕ ⇐⇒ Γ |= Φ

for ϕ in CTL-live. We present a function CTLL2FOL that
takes a CTL-live ϕ formula as input and generates a finite
set of FOL formulae that represent the satisfiability of ϕ. The
function CTLL2FOL introduces a new relational symbol with
arity 1 for every sub-formula of ϕ including ϕ itself. We use
the notation dϕe to refer to the relational symbol introduced
by CTLL2FOL for the formula ϕ. The formulae generated by
CTLL2FOL are constraints over these new relational symbols.
Figure 1 is an overview of our reduction. The input of the
reduction is a symbolic representation of a Kripke structure(s)
(symbolic(K)) and a CTL-live formula (ϕ). The reduction
procedure asserts whether the union of symbolic(K) with the
formulae generated by CTLL2FOL(ϕ) entails S0 ⊆ dϕe.

IV. REDUCING CTL-LIVE MODEL CHECKING TO FOL

In this section, first, we present the intuition behind reducing
model checking to FOL validity checking. Then, we define
CTL-live and CTLL2FOL(ϕ).

Suppose symbolic(K) is a symbolic representation with a
unique satisfying Kripke structure K, and P ∈ P is a labelling
predicate. We are interested in checking whether K satisfies
EF P . From the semantics of CTL and its encoding in the
mu-calculus [1], we know that the set of states that satisfy
EF P , [EF P ]K, is the smallest set, dEF P e, such that the
following two FOL formulae hold:

A1) P ⊆ dEF P e
A2) ∀s, s′ :

(
N(s, s′) ∧ dEF P e(s′))→ dEF P e(s) (1)

Formula A1 states that every state that satisfies P also satisfies
EF P , and Formula A2 states that if a state s has a next state
that satisfies EF P , then s also satisfies EF P . We use the
symbol dEF P e rather than [EF P ] because there are multiple
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S

[EF P ]K

dEF P eK′0

dEF P eK′1 dEF P eK′3
dEF P eK′2

Fig. 2. Possible values for dEF P e

sets that satisfy formulae A1 and A2. Any Kripke structure K′
that is a satisfying interpretation of symbolic(K)

⋃{A1, A2}
is equal to K plus it can map dEF P e to a set that includes
[EF P ]K, but is potentially larger, i.e., dEF P e may be an
overapproximation of [EF P ]K. This property is depicted in
Figure 2, where dEF P eK′

i means the value of relational
symbol dEF P e under the interpretation/Kripke structure K′i.

Since [EF P ]K equals the smallest amongst the dEF P eK′
s

satisfying symbolic(K)
⋃{A1, A2}, checking whether S0 is a

subset of [EF P ]K is equivalent to checking whether S0 is a
subset of dEF P eK′

for every K′:

S0 ⊆ [EF P ]K ⇐⇒
∀K′  symbolic(K)

⋃
{A1, A2} : S0 ⊆ dEF P eK′

(2)

The universal quantifier in Equation 2 is over interpretations,
which is not available in FOL, but it is implicitly used in the
definition of validity: recall that Γ |= Φ iff every satisfying
interpretation of Γ satisfies Φ; therefore:

K c EF P ⇐⇒ S0 ⊆ [EF P ]K ⇐⇒
symbolic(K)

⋃
{A1, A2} |= S0 ⊆ dEF P e

We reduce model checking of EF to validity checking in
FOL by using the higher-order quantifier in the meta-language
of FOL. What we have shown here is that even though the
constraints on dEF P e in Equation 1 do not precisely express
the set of states that satisfy EF P , they express a set that
includes every state that satisfies EF P (and possibly more).
Since in model checking, it is important to see whether the
set of initial states is included in the set of states that satisfy
EF P , these constraints along with the definition of validity
in FOL, which implicitly uses a universal quantifier over
interpretations, can be used to express the model checking
problem for the CTL connective EF.

The key idea behind this result is that the CTL connec-
tive EF can be expressed as the smallest set that satisfies
some FOL formulae. We can generalize this result for other
CTL connectives that have the same property: AF, EU, and
AU. We can also include the propositional connectives ∧ and

Temporal part
ϕ ::= π | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2

::= EXϕ | AXϕ | EFϕ | AFϕ
::= ϕ1EUϕ2 | ϕ1AUϕ2

Propositional part
π ::= P | ¬π | π1 ∨ π2

where P is a labelling predicate.

Fig. 3. CTL-live

∨ since their corresponding set operations (intersection and
union) are monotonic with respect to set inclusion.

Figure 3 presents the fragment of CTL for which the model
checking problem can be expressed in FOL. We call this
fragment CTL-live, since it contains the CTL connectives that
are usually used to express liveness properties. CTL-live’s
grammar has two parts: temporal and propositional. CTL-live
disallows a temporal connective to be within the scope of
negation (¬); e.g., the CTL formula ¬(AF P ) is not part of
CTL-live, but AF (¬P ) is.

To check if symbolic(K) |=c ϕ where ϕ is a CTL-live
formula, we use a function called CTLL2FOL, shown in
Figure 4, to create a set of FOL formulae expressing the
meaning of these connectives. In Figure 4, dϕe is a new
relational symbol that is introduced by CTLL2FOL for the
formula ϕ; for a labelling predicate P , dP e is equal to P .
The complexity of CTLL2FOL is linear with respect to the
size of ϕ.

Theorem 1 presents our main contribution: model checking
a symbolic representation of a Kripke structure(s) (|=c) for
a CTL-live formula is reducible to validity checking in FOL
(|=). Complete proofs can be found in Vakili and Day [9].

Theorem 1: Let symbolic(K) be a set of FOL formulae that
specifies a Kripke structure(s); we have:

symbolic(K) |=c ϕ ⇐⇒
symbolic(K)

⋃
CTLL2FOL(ϕ) |= S0 ⊆ dϕe

V. RELATED WORK

Based on [10], we reduced model checking of CTL with
fairness constraints for finite symbolic Kripke structures to
validity checking in FOL(TC) and used Alloy for model
checking [11]. Since transitive closure for an infinite system
is not expressible in FOL, this encoding cannot be used with
a FOL reasoner.

K-induction is a technique for unbounded model checking
of safety properties [5]. This technique extends bounded model
checking by proving that bounded model checking for bound
K is sufficient. The number K is dominated by the diameter of
a Kripke structure. The diameter is computed iteratively using
a SAT solver to check the equivalence of two formulae: the
equivalence holds iff no new state can be reached by taking
more than K steps. In [5], termination is guaranteed due to
the finiteness of the Kripke structures under study.
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CTLL2FOL(ϕ):
case ϕ of

1) P -> {} where P is a labelling predicate
2) ¬ψ -> { ∀s : dϕe(s)↔ ¬dψe(s) } ⋃ CTLL2FOL(ψ)
3) ψ1 ∨ ψ2 -> { ∀s : dϕe(s)↔ dψ1e(s) ∨ dψ2e(s) }

⋃
CTLL2FOL(ψ1)

⋃
CTLL2FOL(ψ2)

4) ψ1 ∧ ψ2 -> { ∀s : dϕe(s)↔ dψ1e(s) ∧ dψ2e(s) }
⋃

CTLL2FOL(ψ1)
⋃

CTLL2FOL(ψ2)
5) EXψ -> { ∀s :

(∃s′ : N(s, s′) ∧ dψe(s′))→ dϕe(s) } ⋃ CTLL2FOL(ψ)
6) AXψ -> { ∀s :

(∀s′ : N(s, s′)→ dψe(s′))→ dϕe(s) } ⋃ CTLL2FOL(ψ)
7) EFψ -> { dψe ⊆ dϕe , ∀s :

(∃s′ : N(s, s′) ∧ dϕe(s′))→ dϕe(s) } ⋃ CTLL2FOL(ψ)
8) AFψ -> { dψe ⊆ dϕe , ∀s :

(∀s′ : N(s, s′)→ dϕe(s′))→ dϕe(s) } ⋃ CTLL2FOL(ψ)
9) ψ1EUψ2 -> { dψ2e ⊆ dϕe , ∀s : dψ1e(s) ∧

(∃s′ : N(s, s′) ∧ dϕe(s′))→ dϕe(s) } ⋃
CTLL2FOL(ψ1)

⋃
CTLL2FOL(ψ2)

10) ψ1AUψ2 -> { dψ2e ⊆ dϕe , ∀s : dψ1e(s) ∧
(∀s′ : N(s, s′)→ dϕe(s′))→ dϕe(s) } ⋃

CTLL2FOL(ψ1)
⋃

CTLL2FOL(ψ2)

Fig. 4. Definition of CTLL2FOL. ϕ is a CTL-live formula.

Bultan, Gerber, and Pugh used Presburger formulae to
represent infinite sets of states symbolically [6]. Their model
checking approach requires a fixpoint calculation, and termi-
nation is achieved by using conservative approximation. This
approach allows false negatives.

Kesten and Pnueli presented a sound and relatively complete
(oracle based) deductive system for CTL* [12] to provide
proof-like evidence for a model that satisfies a property.
CTL-live is less expressive than CTL* but based on the
completeness of FOL, CTL-live has a sound and complete
deductive system.

Beyene, Popeea, and Rybalchenko encoded CTL model
checking of infinite state systems into forall-exists quantified
Horn clauses (which we call ExQH) [13]. The contribution of
[13] is to develop a solver for ExQH and demonstrate its use
for model checking CTL properties. Their method requires the
models and the model checking constraints to be expressed
in ExQH and to satisfy some well-foundedness conditions,
whereas our results hold for any set of FOL constraints, which
may describe multiple Kripke structures. Termination of their
method is not guaranteed.

VI. CONCLUSION

We presented a fragment of CTL, called CTL-live, whose
model checking problem is reducible to validity checking in
FOL. Our reduction shows that FOL deductive techniques are
sufficient for model checking CTL-live formulae, without the
need for iteration, abstraction, or induction. The key insight
in our approach is to use the implicit higher-order quantifier
in the definition of validity to require that all initial states of
a Kripke structure are within all the sets of states that satisfy
an overapproximation of a CTL-live temporal operator, and
thereby, reducing model checking to validity in FOL. Validity
checking for FOL is r.e.; as a result, this reduction ensures
that a proof can be automatically generated when a CTL-
live formula is satisfied by a model. We have also proved
that CTL-live is maximal in the sense that it is the largest

fragment of CTL such that its model checking is reducible to
FOL validity [9].

Our theory provides the basis for using first-order reasoners
directly for model checking CTL-live properties of abstract
and infinite Kripke structures expressed symbolically in FOL.
By avoiding iteration, the tool can reuse its internal deductions
to increase productivity. The rapid improvements in the effi-
ciency of SMT solvers, FOL automated theorem proving, etc.
have a direct effect on the practical application of our results.
We are currently studying the use of SMT solvers for model
checking CTL-live formulae [14].
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