
Implementing Objects 

CS 412/413   Spring 2008 Introduction to Compilers 2

Classes

• Components
– fields/instance variables

• values differ from object to object
• usually mutable

– methods
• values shared by all objects of a class
• usually immutable

– component visibility: public/private/protected

CS 412/413   Spring 2008 Introduction to Compilers 3

Code Generation for Objects

• Methods
– Generating method code
– Generating method calls (dispatching)
– Constructors and destructors

• Fields
– Memory layout
– Generating code to access fields
– Field alignment

CS 412/413   Spring 2008 Introduction to Compilers 4

Compiling Methods

• Methods look like functions, are type-checked like 
functions…what is different?

• Argument list: implicit receiver argument

• Calling sequence: use dispatch vector instead of 
jumping to absolute address



CS 412/413   Spring 2008 Introduction to Compilers 5

The Need for Dispatching
• Example:

interface Point { 
int getx(); int gety(); float norm(); }

class ColoredPoint implements Point {…
float norm() { return sqrt(x*x+y*y); }

class 3DPoint implements Point { …
float norm() { return sqrt(x*x+y*y+z*z); }

Point p;
if (cond)  p = new ColoredPoint();
else p = new 3DPoint();
float n = p.norm();

• Compiler can’t tell what code to run when method is called!

CS 412/413   Spring 2008 Introduction to Compilers 6

norm
code

Dynamic  Dispatch
• Solution: dispatch vector (dispatch table, selector table…)

– Entries in the table are pointers to method code
– Method entry point is computed dynamically!
– If T <: S, then vector for objects of type S is a prefix of 

vector for objects of type T

norm

getx
gety

p

object
reference

object
layout

dispatch
vector

method
code

Dynamic dispatch (contd.)

norm
code

norm

getx
gety

q

object
reference

object
layout

dispatch
vector

method
code

p

object
reference

object
layout

Objects
of same type

CS 412/413   Spring 2008 Introduction to Compilers 8

Why It Works
• If S <: T and f is a method of an object of type T, then

– Objects of type S inherit f; f can be overridden by S
– Pointer to f has same index in the DV for type T and S!

• Statically generate code to look up pointer to method f
• Pointer values determined dynamically

3DPoint
norm
code

norm

getx
gety

p

Point
reference

3DPoint
layout

3DPoint
vector

3DPoint
code

x
y
z getz



CS 412/413   Spring 2008 Introduction to Compilers 9

Dispatch Vector Lookup

• Every method has its own integer index
• Index is used to look up method in dispatch vector

interface A {
void f(); 0

}
class B implements A {

void f() {…}   0
void g() {…}  1
void h() {…}  2

}
class C extends B {

void e() {…}  3
}

interface A {
void f(); 0

}
class B implements A {

void f() {…}   0
void g() {…}  1
void h() {…}  2

}
class C extends B {

void e() {…}  3
}

C <: B <: A

A        f

B        f,g,h

C        f,g,h,e

CS 412/413   Spring 2008 Introduction to Compilers 10

Dispatch Vector Layouts

A

B

C
h

f
g

e

h

f
g

f

2

0
1

3

2

0
1

0
• Index of f is the same in any 

object of type T <: A

• Methods may have multiple 
implementations
• For subclasses with 

unrelated types
• If subclass overrides 

method

• To execute a method i: 
• Lookup entry i in vector
• Execute code pointed to by 

entry value

CS 412/413   Spring 2008 Introduction to Compilers 11

Code Generation: Dispatch Vectors

• Allocate one dispatch vector per class
– Objects of same class execute same method code

• Statically allocate dispatch vectors

.data
A_DV: .long _f
.data
A_DV: .long _f

.data
B_DV: .long _f

.long _g

.long _h

.data
B_DV: .long _f

.long _g

.long _h

.data
C_DV: .long _f

.long _g

.long _h

.long _e

.data
C_DV: .long _f

.long _g

.long _h

.long _e

CS 412/413   Spring 2008 Introduction to Compilers 12

Interfaces, Abstract Classes
• Classes define a type and some values (methods)

• Interfaces are pure object types : no implementation
– no dispatch vector: only a DV layout

• Abstract classes are halfway:
– define some methods
– leave others unimplemented
– no objects (instances) of abstract class

• DV needed only for concrete classes



CS 412/413   Spring 2008 Introduction to Compilers 13

Method Arguments
• Methods have a special variable (Java, C++: this) called the 

receiver object
• Historically (Smalltalk): method calls thought of as messages 

sent to receivers
• Receiver object is (implicit) argument to method

class A {
int f(int x, int y) 

{ … }
}

class A {
int f(int x, int y) 

{ … }
}

int f(A this, int x, int y)
{ … }

int f(A this, int x, int y)
{ … }

compile as

CS 412/413   Spring 2008 Introduction to Compilers 14

Static Methods
• In Java, can declare methods static

– they have no receiver object

• Called exactly like normal functions
– don’t need to call via dispatch vector
– don’t need implicit extra argument for receiver

• Treated as methods as way of getting functions inside the 
class scope (access to module internals for semantic 
analysis)

• Not really methods

CS 412/413   Spring 2008 Introduction to Compilers 15

Code Generation: Method Calls

• Code for function calls: pre-call + post-call code

• Pre-function-call code:
– Save registers
– Push parameters

• Pre-method call:
– Save registers
– Push parameters
– Push receiver object reference
– Lookup method in dispatch vector

CS 412/413   Spring 2008 Introduction to Compilers 16

Example

o.foo(2,3);

foo
foo

code

eax ebx [ebx+4]

push $3
push $2
push %eax
mov (%eax), %ebx

call *4(%ebx)

add $12, %esp

push $3
push $2
push %eax
mov (%eax), %ebx

call *4(%ebx)

add $12, %esp

(object) (DV) (code)



CS 412/413   Spring 2008 Introduction to Compilers 17

Object Layout
• Object consists of:

– Methods
– Fields

• Object layout consists of:
– Pointer to DV, which contains pointers to methods
– Fields

DV
x
y

getx
gety

(static data) (code)

getx
code

gety
code

layout

CS 412/413   Spring 2008 Introduction to Compilers 18

Allocation of Objects
• Objects can be stack- or heap-allocated

• Stack allocation:  
(C++)  Point p; 

• Heap:
(C++) 
Point *p = new Point;
(Java) 
Point p = new Point();

DV
x
y

getx
gety

(stack) (static data)

DV
x
y

getx
gety

(heap) (static data)

p

(stack)

CS 412/413   Spring 2008 Introduction to Compilers 19

Inheritance and Object Layout

• Method code copied down from superclass if not overridden
by subclass

• Fields also inherited (needed by inherited code in general)

• Inheritance: add fields, methods
– Extend layout
– Extend dispatch vector
– A supertype object can be used whenever a subtype 

object can be used 

CS 412/413   Spring 2008 Introduction to Compilers 20

color: int

setColor

Inheritance and Object Layout

class Shape {
Point LL, UR;
void setCorner(int which, Point p);

}
class ColoredRect extends Shape {
int color;
void setColor(int col);

}

class Shape {
Point LL, UR;
void setCorner(int which, Point p);

}
class ColoredRect extends Shape {
int color;
void setColor(int col);

}

LL: Point
UR: Point

DV setCorner
LL: Point
UR: Point

DV setCorner

Shape
ColoredRect



CS 412/413   Spring 2008 Introduction to Compilers 21

color: int

setColor

Code Sharing

LL: Point
UR: Point

DV setCorner

LL: Point
UR: Point

DV setCorner

Machine code for 
Shape.setCorner

• Don’t actually copy code!
• Works with separate 

compilation: can inherit 
without superclass source

CS 412/413   Spring 2008 Introduction to Compilers 22

Field Offsets

• Offsets of fields from beginning of object known statically, 
same for all subclasses

• Example:

• Offsets known for stack and heap allocated objects

class Shape {
Point LL /* 4 */ , UR; /* 8 */
void setCorner(int which, Point p);

}
class ColoredRect extends Shape {

Color c; /* 12 */
void setColor(Color c_);

}

class Shape {
Point LL /* 4 */ , UR; /* 8 */
void setCorner(int which, Point p);

}
class ColoredRect extends Shape {

Color c; /* 12 */
void setColor(Color c_);

}

CS 412/413   Spring 2008 Introduction to Compilers 23

Field Alignment
• In many processors, a 32-bit load must be to an address 

divisible by 4, address of 64-bit load must be divisible by 8
• In rest (e.g., Pentium), loads are 10× faster if aligned --

avoids extra load
⇒ Fields should be aligned

struct {
int x; char c; int y; char d;
int z; double e;

}

x
c

y
d

z

e

CS 412/413   Spring 2008 Introduction to Compilers 24

Accessing Fields
• Access fields of current object

– Access x equivalent to this.x
– Current method has “this” as argument

• Access fields of other objects
– Access of the form o.x

• In both cases:
– Use pointer to object
– Add offset to the field

• Access o.x depends on the kind of allocation of o
– Stack allocation: stack access (%epb + stack offset)
– Heap allocation: stack access  + dereference



CS 412/413   Spring 2008 Introduction to Compilers 25

Code Generation: Allocation 

• Heap allocation: o = new LenList()
– Allocate heap space for object
– Store pointer to dispatch vector

• Stack allocation: 
– Push object on stack
– Pointer to DV on stack

push $16  # 3 fields+DV
call _GC_malloc
mov $LenList_DV, (%eax)
add $4, %esp #pop $16
mov $eax, dispo(%ebp)

push $16  # 3 fields+DV
call _GC_malloc
mov $LenList_DV, (%eax)
add $4, %esp #pop $16
mov $eax, dispo(%ebp)

sub $16, %esp # 3 fields+DV
mov $LenList_DV, -4(%ebp)
sub $16, %esp # 3 fields+DV
mov $LenList_DV, -4(%ebp)

CS 412/413   Spring 2008 Introduction to Compilers 26

Constructors
• Java, C++: classes can declare object constructors that 

initialize new objects:
class LenList {

int len;  
Cell head, tail;
LenList() { len = 0; }

}
. . .
new LenList();

• Need to know when objects are constructed
– Heap: new statement
– Stack: at the beginning of their scope (blocks for locals, 

procedures for arguments, program for globals)

CS 412/413   Spring 2008 Introduction to Compilers 27

Compiling Constructors
• Compiled like methods:

– pseudo-variable “this” passed to constructor
– return value is “this”

o = new LenList(); LenList() { len = 0; }

push $1  # 3 fields+DV
call _GC_malloc
mov $LenList_DV, (%eax)
add $4, %esp
push %eax
call LenList$constructor
add $4, %esp
mov %exa, dispo(%ebp)

push $1  # 3 fields+DV
call _GC_malloc
mov $LenList_DV, (%eax)
add $4, %esp
push %eax
call LenList$constructor
add $4, %esp
mov %exa, dispo(%ebp)

LenList$constructor: 
push %ebp
mov %esp,%ebp

mov 8(%ebp), eax
mov $0, 4(%eax)

mov %ebp,%esp
pop %ebp
ret

LenList$constructor: 
push %ebp
mov %esp,%ebp

mov 8(%ebp), eax
mov $0, 4(%eax)

mov %ebp,%esp
pop %ebp
ret

CS 412/413   Spring 2008 Introduction to Compilers 28

Destructors

• In some languages (e.g., C++), objects can also 
declare code to execute when objects are destructed

• Heap: when invoking delete (explicit de-allocation)
• Stack: when scope of variables ends 

– End of blocks for local variables
– End of program for global variables
– End of procedure for function arguments



CS 412/413   Spring 2008 Introduction to Compilers 29

Analysis and Optimizations

• Dataflow analysis reasons about variables and values
• Records (objects) consist of a collection of variables (fields) –

analysis must separately keep track of individual fields 

• Difficult analysis for heap-allocated objects
– Object lifetime outlives procedure lifetime
– Need to perform inter-procedural analysis

• Constructors/destructors: must take their effects into account

CS 412/413   Spring 2008 Introduction to Compilers 30

Class Hierarchy Analysis
• Method calls = dynamic, via dispatch vectors

– Overhead of going through DV
– Prohibits function inlining
– Makes other inter-procedural analyses less precise

• Static analysis of dynamic method calls
– Determine possible methods invoked at each call site
– Need to determine principal types of objects at each 

program point (Class Hierarchy Analysis)
– If analysis determines object o is always of type T (not 

subtype), then it precisely knows the code for o.foo()

• Optimizations: transform dynamic method calls into static 
calls, inline method calls

CS 412/413   Spring 2008 Introduction to Compilers 31

Summary
• Method dispatch accomplished using dispatch vector, implicit 

method receiver argument
• No dispatch of static methods needed

• Inheritance causes extension of fields as well as methods; 
code can be shared

• Field alignment: declaration order matters!

• Each real class has a single dispatch vector in data segment: 
installed at object creation or constructor

• Analysis more difficult in the presence of objects
• Class hierarchy analysis = precisely determine object class


