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Abstract  A new application of the remarkable 
D G

G



-expansion method based on a fractional order ordinary 

differential equation is used to find exact solutions of the space-time fractionalsymmetric regularized long wave 

(SRLW) equation and the space-time fractional Sharma-Tasso-Olver (STO) equation. This method involves 

Jumarie’s modified Riemann-Liouville derivative and uses some of its basic properties. Exact solutions for both 

equations are obtained. 
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1. Introduction 

Nonlinear fractional partial differential equations 

(FPDEs) are generalization of the classical nonlinear 

partial differential equations (PDEs) of integer order. In 

recent years, nonlinear FPDEs become one of the hottest 

topics for mathematician and other scientists because they 

are widely used to describe large number of new complex 

phenomena in many fields such as engineering, physics, 

biology, signal processing, systems identification, control 

theory, finance and others [1-9]. In the past, scientists 

defined and established a lot of powerful methods to find 

numerical and exact solutions of nonlinear FPDEs, such as 

the finite difference method [10,11], the finite element 

method [12,13,14], the Adomian decomposition method 

[15,16], the variational iteration method [17,18,19,20], the 

homotopy perturbation method [21,22], the fractional sub-

equation method [23,24,25], the 
'G

G
-expansion method 

[26] and many others. 

In this paper, we will apply the 
D G

G



-expansion 

method [26], which is an improvement of the fractional 

'G

G
-expansion method, to solve two nonlinear FPDEs, 

namely SRLW and STO equations. The fractional 

derivatives in these equations are described in the sense of 

Jumarie’s modified Riemann-Liouville derivative which is 

defined as follows: 
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where the Gamma function is defined for        by 

     ∫    
 

 

         

Using simple calculations, we can obtain 

      Γ 1 Γ ,Γ 1 !z z z z z     

Here we summarize some basic properties of the 

Jumarie’s modified Riemann-Liouville derivative: 
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2. Description of The 
   

 
Expansion 

Method 

Step 1. Assume that we have the following nonlinear 

FPDE in the form: 

  , , , , , 0, 0 1,x t x tP u u u D u D u       (5) 

where   
  and   

   are Jumarie’s modified Riemann-

Liouville derivatives of            is an unknown 

function,    is a polynomial in  and its various partial 

derivatives, in which the highest order derivatives and 

nonlinear terms are involved.
 

Step 2. Using the wave transformation: 

    , ,   ,u x t U z z k x c t    (6) 

where   and   are constants to be determined later, the 

nonlinear FPDE in Eq. (5) is reduced to the following 

nonlinear fractional ordinary differential equation (FODE) 

for       : 

  , ', ', , , 0,0 1.z zP U kU cU k D U c D U         (7) 

Step 3. Suppose that Eq. (7) has the solution in the 

following form: 
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where                 are coefficient constants to be 

determined later,   is a positive integer determined by 

balancing the highest order derivatives and nonlinear 

terms in Eq. (5) or Eq. (7), while      satisfies the 

following fractional ordinary equation (FODE): 

 2 ( ) ( ) ( ) 0,0 1,z zD G z D G z G z         (9) 

                             
The following solutions of fractional Eq. (9) in the form 

of  
( )

( )

D G z
W z

G z



  are as follows: 
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Step 4. Substituting Eq. (8) along with Eq. (9) into Eq. 

(7) and using the properties of Jumarie’s modified 

Riemann-Liouville derivative (2), (3) and (4), we can get a 

polynomial in  
( )

( )

D G z
W z

G z



 . Setting all these 

coefficients of                   to zero, yields a set 

of over determined nonlinear algebraic system of 

equations for                              
Step 5. Finally, assuming that the constants      

                      can be obtained by solving the 

algebraic system of equations in Step 4, substituting these 

constants and the solutions of Eq. (9) into Eq. (8), then by Eq. 

(6) we can obtain the explicit solutions of Eq. (5) immediately. 

3. Applications 

3.1. The Space-Time-Fractional SRLW Equation 

The space-time-fractional SRLW equation is given by 
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where            
This equation arises in many nonlinear problems of 

mathematical physics and applied mathematics including 

ion sound waves in plasma. It is symmetrical with respect 

to x and t. see [27]. 

Using the wave transformationin Eq. (6), we get the 

following: 

        , .x z t zD u z k D U z D u z c D U z        (12) 

Substituting Eq. (6) and Eq. (12) in Eq. (11) we get: 
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Balancing the order of the highest derivative term 

   
       and the highest nonlinear term        

       
in Eq. (13), we obtain    . Thus, Eq. (8) reduces to: 
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2
0 1 2

2
0 1 2or simply,

( ) ( ) ( )

.

U z a a W z a W z
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 (14) 

Therefore, we can compute the fractional derivatives of 

         
     

      
          

    and substituting 

them in Eq. (13), we get the coefficients of powers of  

are as follows: 
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Equating the coefficients (15) to (21) to zero, then 

solving the resulting system of these equations for 

             by Maple, we get the following solutions: 

 2
0 ( 8 )a c k c k c k c k                (22) 

 1 12a c k    (23) 

 2 2 .1a c k   (24) 

Therefore, by substituting Eq. (10) and Eq. (22) to Eq. (24) 

in Eq. (14) we can write the following solutions for Eq. (13):  
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As an illustration, the graphs of the solutions        of 

Eq. 11are shown, with the following assumptions: 
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3.2. The Space-Time-Fractional STO 

Equation 

The space-time-fractional STO equation is given by 
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Where            , see [28] 

When    , then Eq. (28) becomes 
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Using the wave transformation (6) and Eq. (12) in Eq. 

(29), we get the following: 
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Now, by balancing the order of the highest derivative 

term    
       and the highest nonlinear term 

      
      , we get   .Thus, Eq. (8) reduces to: 

    0 1 0 1or simply, .U z a a W z U a a W     (31) 

Similar to section 3.1, we can compute the fractional 

derivatives of           
     

          
    and 

substituting them in Eq. (30),we get the coefficients of 

powers of  as follow: 
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Equating the coefficients of powers of   from (32) to 

(36) to zero, then solving the resulting system for         

and   by Mathematica, we get the following of solutions: 
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 The total number of solutions is 16 

So the solutions of Eq. (30) in case 1and 2 are as follows:                becomes 
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and by a similar way, the remaining solutions can be found. 

As an illustration, the graphs of two solutions        of Eq. 29are shown, with the following assumptions: 
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4. Conclusion 

In this paper, the  
   

 
 expansion method which is one 

of the powerful fractional sub-equation method has been 

successfully used to find exact solutions for the well-

known SRLW and STO equations in an efficient way. 

Even though this method is not easy to implement, 

however, it produces many convenient solutions to 

nonlinear FPDEs. 

Finally, we believe that this method provides a 

powerful and remarkable mathematical tool to obtain 

exact analytical solutions for a large number of nonlinear 

FPDEs in physics, biology and engineering. 
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