MECHANICS, MECHANISMS, AND MODELING OF THE CHEMICAL MECHANICAL POLISHING PROCESS

by

Jiun-Yu Lai

B.S., Naval Architecture and Ocean Engineering National Taiwan University, 1993

S.M., Mechanical Engineering Massachusetts Institute of Technology, 1997

Submitted to the Department of Mechanical Engineering in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY IN MECHANICAL ENGINEERING

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2001

© 2001 Massachusetts Institute of Technology All Rights Reserved

Professor of Mechanical Engineering Chairman, Department Committee on Graduate Students

MECHANICS, MECHANISMS, AND MODELING OF THE CHEMICAL MECHANICAL POLISHING PROCESS

by

Jiun-Yu Lai

Submitted to the Department of Mechanical Engineering on September 30, 2000 in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Mechanical Engineering

ABSTRACT

The ever-increasing demand for high-performance microelectronic devices has motivated the semiconductor industry to design and manufacture Ultra-Large-Scale Integrated (ULSI) circuits with smaller feature size, higher resolution, denser packing, and multi-layer interconnects. The ULSI technology places stringent demands on global planarity of the Interlevel Dielectric (ILD) layers. Compared with other planarization techniques, the Chemical Mechanical Polishing (CMP) process produces excellent local and global planarization at low cost. It is thus widely adopted for planarizing inter-level dielectric (silicon dioxide) layers. Moreover, CMP is a critical process for fabricating the Cu damascene patterns, low-k dielectrics, and shallow isolated trenches. The wide range of materials to be polished concurrently or sequentially, however, increases the complexity of CMP and necessitates an understanding of the process fundamentals for optimal process design.

This thesis establishes a theoretical framework to relate the process parameters to the different wafer/pad contact modes to study the behavior of wafer-scale polishing. Several models of polishing - microcutting, brittle fracture, surface melting and burnishing - are reviewed. Blanket wafers coated with a wide range of materials are polished to verify the models. Plastic deformation is identified as the dominant mechanism of material removal in fine abrasive polishing. Additionally, contact mechanics models, which relate the pressure distribution to the pattern geometry and pad elastic properties, explain the die-scale variation of material removal rate (MRR) on pattern geometry. The pad displacement into low features of submicron lines is less than 0.1 nm. Hence the applied load is only carried by the high features, and the pressure on high features increases with the area fraction of interconnects. Experiments study the effects of pattern geometry on the rates of pattern planarization, oxide overpolishing and Cu dishing. It was observed that Cu dishing of submicron features is less than 20 nm and contributes less to surface non-uniformity than does oxide overpolishing. Finally, a novel in situ detection technique, based on the change of the reflectance of the patterned surface at different polishing stages, is developed to detect the process endpoint and minimize overpolishing. Models that employ light scattering theory and statistical treatment correlate the sampled reflectance with the surface topography and Cu area fraction for detecting the process regime and endpoint. The experimental results agree well with the endpoint detection schemes predicted by the models.

Thesis Supervisor: Dr. Nannaji Saka Title: Principal Research Scientist, Mechanical Engineering

Thesis Supervisor: Dr. Jung-Hoon Chun Title: Associate Professor of Mechanical Engineering

Acknowledgments

I would like to thank many people who have contributed to the completion of this work. First, I wish to express my gratitude to my advisors, Dr. Nannaji Saka and Professor Jung-Hoon Chun, for their guidance throughout this research, for their encouragement of my professional development, and for their advise on organizing and writing this thesis. I appreciate the enormous time that Dr. Saka spent with me to discuss my research in detail, to correct my documents and English, and even to generously share his philosophy of life. I would like to thank Professor Chun for his research attitude - "always looking at the big picture first" - which probably is one of the most important things I learned at MIT. I am also grateful to his financial support through my Master and Ph.D. study. I also thank my committee members, Professor Nam P. Suh and Professor Duane Boning, whose constant feedback on my research and many valuable comments significantly improved this thesis work and document.

This research was sponsored by the Silicon Valley Group, San Jose, CA. Thanks are due Mr. Papken Der Torossian, Dr. Larry Oh, Mr. Daniel Bajuk, and Mr. Sattar Al-Lami of SVG for encouragement and assistance on preparing wafers.

I thank all the friends in the Droplet Based Manufacturing Group and the Chemical Mechanical Polishing Group for their friendship, help and support. Special thanks to my officemates, Jeanie Cherng, Wayne Hsiao, Shivanshu Gupta, and Hiroyasu Tsuchiya, and the former members, Dr. Chen-An Chen, Dr. Ho-Young Kim, and Juan-Carlos Rocha. They were always ready to listen to me, to offer suggestions, and even to cheer me up when I was down. Also, thanks to my "lab buddies", Jason Melvin, Jamie Nam, Amir Torkaman, Kwangduk Lee, and Shon Yim for many inspiring discussions for my research, experiments, and the project. The excellent administration support from Lisa Falco and Leslie Regan are acknowledged. I would like to thank Fred Cote for teaching me the art of machining, and Yin-Lin Xie for helping prepare some micropraphs in this manuscript. Help from Vicky Diadiuk in Microsystems Technology Laboratories was also very much appreciated.

In my journey here, I look back and treasure those links which still remain: To Jung-Chi Liao, my best friend and classmate since the elementary school, and his fiancee, Kay Wang, I cherish your friendship and consideration. To Dr. Yu-Hsuan Su, thanks to share your wisdom, and to take care of me since the day one I came to Boston. To the friend we lost, Yuan-Chun Wang, the memory of your smile still keeps my heart warm. To all friends in the Cambridge Chinese Choir and the Taiwanese Student Association, thanks to give me a home here.

Most of all, I thank my parents, Yu-Chou Tsai and Edward C.W. Lai, who always believe in me, encourage me to try out my own life, and give me all their support whenever I need it. I also thank my two sisters, Whuei-Fen Lai and Whuei-Wen Lai, for their love and understanding. I would like to dedicate this thesis to my family.

Table of Contents

Title Page	1
Abstract	2
Acknowledgments	3
Table of Contents	4
List of Figures	8
List of Tables	14
CHAPTER 1 INTRODUCTION	16
1.1 General Background	16
1.2 The Role of CMP in Semiconductor Manufacturing	18
1.3 Origins and Evolution of the CMP Process	20
1.3.1 Origins and Early Developments	20
1.3.2 Oxide Planarization	21
1.3.3 The New Era for Copper Polishing Technology	21
1.3.4 CMP Process in the Future	24
1.4 Scope of Present Investigation	24
1.5 Thesis Organization	28
References	29
CHAPTER 2 CHARACTERIZATION AND OPTIMIZATION OF T	HE
CMP PROCESS	30
2.1 Introduction	30
2.2 Theory	33
2.2.1 Interfacial Contact Conditions	33
2.2.2 Kinematics of Polishers	35
2.2.3 The Contact Mode	38
2.2.4 The Hydroplaning Mode	40
2.2.5 The Mixed Mode	47
2.3 Experimental	48
2.4 Results and Discussion	50
2.4.1 Friction Coefficient versus the Parameter $?v_R/p$	50
2.4.2 Contact versus Hydroplaning	55

2.4.3 Material Removal Rate and the Preston Constant	58
2.4.4 Process Optimization	65
2.5 Conclusions	69
Nomenclature	71
References	72
CHAPTER 3 MECHANISMS OF MATERIAL REMOVAL IN THE	
CMP PROCESS	75
3.1 Introduction	75
3.2 Experimental	78
3.3 Results	81
3.3.1 Friction Coefficient	81
3.3.2 Material Removal Rate	
86	
3.3.3 Within-Wafer Nonuniformity	92
3.3.4 Surface Roughness and Scratches	98
3.4 Discussion	104
3.4.1 Surface Melting	104
3.4.2 Microcutting	106
3.4.3 Brittle Fracture	109
3.4.4 Burnishing	110
3.4.5 Process Optimization	114
3.5 Conclusions	118
Nomenclature	120
References	122
Appendix 3A Flash Temperature at the Particle/Wafer Contact in Polishing	124
Appendix 3B Polishing due to Microcutting	126
Appendix 3C Polishing due to Brittle Fracture	130

CHAPTER 4 EVOLUTION OF COPPER OXIDE DAMASCENE STRUCTU	JRES
IN CMP: I. CONTACT MECHANICS MODELING	133
4.1 Introduction	133
4.2 Theory: Contact Mechanics Modeling	137

4.2.1 Geometry and Boundary Conditions	139
--	-----

4.2.2 Uniform Pressure Distribution	
141	
4.2.3 Elliptical Pressure Distribution	
142	
4.2.4 Rigid Flat Punches with Specified Displacement	144
4.3 Results	146
4.3.1 Pad Displacement	146
4.3.2 Effect of Pattern Linewidth	149
4.3.3 Effect of Pattern Area Fraction	
149	
4.3.4 Effect of Pad Elastic Properties	151
4.4 Experimental Validation and Discussion	
153	
4.4.1 Experimental Conditions	153
4.4.2 The Evolution of Patterns	153
4.4.3 Effect of Pattern Geometry	156
4.5 Conclusions	162
Nomenclature	164
References	165

CHAPTER 5 EVOLUTION OF COPPER OXIDE DAMASCENE STRUCTURES

167
167
169
173
173
177
177
177
191
196
198
200

CHAPTER 6	IN-SITU SENSING AND ENDPOINT DETECTION IN COP	PER
	CMP	203
6.1 Intro	oduction	203
6.2 The	ory	206
6	.2.1 Light Scattering from a Periodic Surface Structure	206
6	2.2 Sensor Kinematics	211
6	.2.3 Statistical Treatment of the Sampled Data	216
6.3 Exp	erimental	220
6.4 Rest	ults	223
6	.4.1 Tests on Blanket Wafers	225
6	.4.2 Off-line Measurements on Pattern Wafers	225
6	.4.3 Off-line Measurements Along the Sensor Loci	236
6	.4.4 In-Situ Measurements on Patterned Wafers	239
6.5 Disc	cussion	245
6	5.1 Locus Design and Sampling Plan	245
6	5.5.2 Variance Components of Surface Reflectance	
246		
6	5.3 Endpoint Detection Algorithms	251
6.6 Con	clusions	257
Nomenc	lature	261
Reference	ces	262
Appendi	x 6A Decomposition of Variance Components	265
CHAPTER 7	SUMMARY	267
CHAPTER 8	SUGGESTIONS FOR FUTURE RESEARCH	271
APPENDIX A	EARLY MODELS OF OXIDE CMP	275
Nomenc	lature	280
Reference	ces	281
APPENDIX B	THE MECHANICAL POLISHING PROCESS BASED ON	
	PIN-ON-DISK EXPERIMENTS	282
B.1 Intr	oduction	282

B.2 Experimental	284
B.2.1 Apparatus	284
B.2.2 Experimental Conditions and Test Materials	284
B.3 Results	288
B.3.1 Two-body Wear	288
B.3.2 Three-body Wear	294
B.3.3 The Effect of Hardness on the Preston Constant	299
B.4 Discussion	304
B.5 Conclusions	306
Nomenclature	307
Reference	308

List of Figures

Figure 1.1	Exponential growth of the number of components per MOS IC chip (from Chang and Sze, 1996).	17
Figure 1.2	Schematic of Chemical Mechanical Polishing Process.	19
Figure 1.3	Schematics of (a) ideal oxide ILD CMP and (b) ideal Cu CMP process.	19
Figure 1.4	Complexity of the CMP process.	25
Figure 2.1	Schematics of the wafer/pad interface at (a) contact mode, (b) mixed mode, and (c) hydroplaning mode.	34
Figure 2.2	Schematics of coordinate systems for (a) linear and (b) rotary CMP processes.	36
Figure 2.3	Schematic of wafer/pad interface in the hydroplaning mode.	41
Figure 2.4	Experimental apparatus.	49
Figure 2.5	The effect of the parameter v_R/p on friction coefficient at the pressures of 14 kPa and of 48 kPa.	54
Figure 2.6	SEM micrographs of pad surfaces: (a) before polishing, and (b) after polishing.	56
Figure 2.7	The effect of pv_R product (energy flux) on Cu removal rate.	59
Figure 2.8	The effect of pv_R product (energy flux) on the Preston constant for Cu polishing.	62
Figure 2.9	The effect of the parameter v_R/p on the normalized material removal rate for Cu polishing.	63
Figure 2.10	The effect of the parameter $2v_R/p$ on the Preston constant for Cu	64

polishing.

Figure 2.11	The correlation between the Preston constant and the friction coefficient.	66
Figure 2.12	Schematic of process optimization.	67
Figure 3.1	SEM micrographs of Buehler CHEMOMET pad: (a) top surface and (b) cross-section near the top surface.	82
Figure 3.2	SEM micrographs of Rodel IC-1400 pad: (a) top surface, (b) cross- section of the top stack, and (c) cross-section at the interface between the top and the bottom stacks.	83
Figure 3.3	Friction coefficient versus time for various coatings: Buehler CHEMOMET pads, 300 nm abrasive.	84
Figure 3.4	Friction coefficient versus time for various coatings: Rodel IC-1400 pads, 300 nm abrasive.	85
Figure 3.5	Effect of coating hardness on friction coefficient with 300 nm abrasive.	89
Figure 3.6	Effect of coating hardness on material removal rate with 300 nm abrasive.	90
Figure 3.7	Effect of coating hardness on normalized material removal rate with 300 nm abrasive.	91
Figure 3.8	Effect of coating hardness on Preston constant with 300 nm abrasive.	93
Figure 3.9	Effect of coating hardness on wear coefficient with 300 nm abrasive.	94
Figure 3.10	Comparison of material removal rates of various coatings: Buehler and Rodel pads with 300 nm abrasive.	95
Figure 3.11	Thickness variation of the PECVD SiO_2 coating across the wafer: after polishing on (a) Buehler CHMOMET pads, and (b) Rodel IC-1400 pad. The solid and dashed lines represent the thickness before and after polishing, respectively.	96
Figure 3.12	SEM micrograph of a Cu-coated wafer surface after polishing.	99
Figure 3.13	AFM micrographs of Cu surfaces: (a) before polishing (R_a = 3.7 nm, R_q = 4.6 nm, and R_z = 35.1 nm), (b) polished with 50 nm abrasives (R_a = 3.8 nm, R_q = 4.8 nm, and R_z = 41.6 nm), (c) polished with 300 nm abrasives (R_a = 4.0 nm, R_q = 5.7 nm, and R_z = 98.2 nm), and (d) polished with 1000 nm abrasives (R_a = 6.0 nm, R_q = 7.9 nm, and R_z = 85.4 nm).	100
Figure 3.14	AFM micrographs of cross-sections of Cu surfaces: (a) before polishing (R_a = 3.7 nm, R_q = 4.6 nm, and R_z = 35.1 nm), (b) polished with 50 nm abrasives (R_a = 4.0 nm, R_q = 4.9 nm, and R_z = 17.5 nm), (c) polished with 300 nm abrasives (R_a = 2.5 nm, R_q = 3.3 nm, and R_z = 18.1 nm), and (d) polished with 1000 nm abrasives (R_a = 7.1 nm, R_q = 10.4 nm, and R_z = 50.6 nm).	101

Figure 3.15	Surface roughness of Cu coatings polished with 300 nm abrasive.	105
Figure 3.16	SEM micrograph of the plastically deformed Rodel IC-1400 pad after polishing.	115
Figure 3.17	SEM micrograph of the dried post-polishing Rodel IC-1400 pad with slurry particles.	115
Figure 3.18	Process optimization scheme by employing the abrasive size effect (on Cu wafers).	116
Figure 3B.1	Schematics of microcutting model in polishing: (a) with conical shape abrasive, (b) with spherical shape abrasive (from Komvopoulos et al., 1984).	127
Figure 3C.1	Schematic of the mechanisms of brittle fracture in polishing with lateral cracks (after Evans and Marshall, 1980).	131
Figure 4.1	Schematics of Cu damascene structure: (a) before polishing, and (b) after polishing.	135
Figure 4.2	Schematics of the pattern/pad contact interface: (a) initial stage with uniform displacement specified on high feature, (b) planarization stage with pressure specified (either uniform pressure or elliptical distribution) on the contacting high features, (c) end of the planarization with pad in contact with low area, and (d) the onset of dishing and overpolishing.	138
Figure 4.3	Schematic of a moving rigid line structure in contact with a elastic pad.	140
Figure 4.4	Pressure distribution in the contact region of the high feature for various boundary conditions.	143
Figure 4.5	Surface profiles of deformed pad for various boundary conditions.	147
Figure 4.6	Pad displacement versus pattern area fraction for various boundary conditions.	150
Figure 4.7	Effects of applied pressure p_{av} and Young's modulus of the pad <i>E</i> on the pad displacement (elliptical pressure distribution).	152
Figure 4.8	Schematics of the CMP mask: (a) mask layout, and (b) pattern geometry layout.	154
Figure 4.9	Optical micrographs of the evolution of pattern surfaces ($w = 5 \ \mu m$ and $? = 500 \ \mu m$): (a) initial surface, (b) 2 minutes, (c) 3 minutes, (d) 4 minutes, (e) 5 minutes, and (f) 6 minutes.	155
Figure 4.10	Optical micrograph of the evolution of pattern surface ($w = 100 \ \mu\text{m}$ and $? = 200 \ \mu\text{m}$): (a) initial surface, (b) 2 minutes, (c) 3 minutes, (d) 4 minutes, (e) 5 minutes, and (f) 6 minutes.	157
Figure 4.11	Time evolution of step-heights for patterns with constant area fraction 0.5 (w /? = 0.5) and various linewidths.	160
Figure 4.12	Time evolution of step-heights for patterns with constant area fraction	161

0.01 (w/? = 0.01) and 2 and 5 µm linewidths.

Figure 5.1	Schematics of the onsets of dishing and overpolishing.	171
Figure 5.2	Schematic of the pattern layout on the test wafer.	174
Figure 5.3	Schematics of the CMP mask: (a) mask layout, and (b) pattern geometry layout.	175
Figure 5.4	SEM micrographs of the pattern ($w = 0.5 \ \mu m$ and $? = 1 \ \mu m$): (a) cross section of the patterned oxide ILD, and (b) surface topography after Cu deposition.	176
Figure 5.5	Optical micrographs of the evolution of pattern surfaces ($w = 25 \ \mu m$ and $? = 25 \ \mu m$).	179
Figure 5.6	Cross-sectional profiles of the evolution of the pattern (w = 5 μ m and ? = 200 μ m).	181
Figure 5.7	Time evolution of various patterns: AFM micrographs at (a) 3 minutes 30 seconds, and (b) 5 minutes: surface profiles at (c) 3 minutes 30 seconds and (d) 5 minutes.	183
Figure 5.8	Time evolution of step-heights for patterns with constant area fraction 0.5 ($w/? = 0.5$) and various linewidths.	185
Figure 5.9	Time evolution of step-heights for patterns with constant area fraction 0.5 ($w/? = 0.01$) and various linewidths.	187
Figure 5.10	Time evolution of step-heights for patterns with constant linewidth ($w = 0.5 \ \mu m$) and various area fraction (w /?).	189
Figure 5.11	Comparison between the present work on dishing with neutral slurry and the results from literature (Park, et al., 1999) with chemical slurry.	190
Figure 5.12	Oxide overpolishing for patterns with constant linewidth ($w = 0.5 \ \mu m$) and various area fraction (w /?).	192
Figure 5.13	Comparison between the theoretical and experimental results for rate of oxide overpolishing for various pattern with constant linewidth 0.5 μ m and various area fraction.	193
Figure 5.14	Time evolution of step-heights for patterns with constant area fraction 0.5 ($w/? = 0.5$) and various linewidths.	194
Figure 5.15	Oxide overpolishing for patterns with constant area fraction 0.01 (w /? = 0.01) and various linewidths.	195
Figure 6.1	Schematics of light scattering on a patterned Cu surface.	207
Figure 6.2	Schematics of light scattering from (a) a planar composite surface, and (b) a wavy composite surface.	212
Figure 6.3	Sensor kinematics.	212
Figure 6.4	The simulated locus for the reflectance sensor across the wafer at the	215

condition $\mathbf{?}_{w} = \mathbf{?}_{p}$ and $r_{s} = r_{cc}$. Figure 6.5 The simulated locus for the reflectance sensor across the wafer at the 217 condition $\mathbf{?}_{w} = 1.05\mathbf{?}_{p}$ and $r_{s} = r_{cc}$. Figure 6.6 The spectrum of the LED light source of the reflectance sensing system. 221 Figure 6.7 The effect of gap distance between the wafer surface and the fiber 222 optics tip on the sensor input. Figure 6.8 The evolution of surface reflectance for the blanket wafer polishing. 226 Figure 6.9 The results of off-line measurements at the Cu planarization regimes on 227 the pattern with 0.5 area fraction (w/? = 0.5). 228 Figure 6.10 The results of off-line measurements at the Cu planarization regimes on the pattern with 0.01 area fraction (w/? = 0.01). Figure 6.11 Time evolution of step-heights for patterns with constant area fractions 229 0.5 and 0.01. Figure 6.12 The results of off-line measurements at various process regimes on the 232 pattern with 0.5 area fraction. Figure 6.13 The results of off-line measurements at various process regimes on the 233 pattern with 0.01 area fraction. Figure 6.14 Time evolution of step-heights for patterns with constant area fraction 234 0.5 (w/? = 0.5) and various linewidths. Figure 6.15 Time evolution of step-heights for patterns with constant area fraction 235 0.01 (w/? = 0.01) and various linewidths. 237 Off-line measurements of the mean and standard deviation of surface Figure 6.16 reflectance along different loci across the wafer at the onset of endpoint. Comparison of the off-line measurements (mean and standard 238 Figure 6.17 deviation) on the center die and across wafer at various polishing stages. The across-wafer data is calculated based on the measurements along five loci. Figure 6.18 Raw data from the in-situ reflectance measurement. 240 Results of in-situ measurements of the moving average and standard 241 Figure 6.19 deviation of wafer-level surface reflectance. Figure 6.20 Results of in-situ measurements of the standard deviation of wafer-level 243 surface reflectance. Figure 6.21 Distribution of surface reflectance versus polishing time from the in-situ 244 measurements. The simulated loci for the reflectance sensor across the wafer at the 247 Figure 6.22 condition $?_w = 1.05?_p$ and $r_s = 1.25r_{cc}$.

Figure 6.23 Decomposition of the within-wafer and within-die variance for the in- 249

situ measurements.

Figure 6.24	Results of the sampled moving average versus time with estimated interval at 99.5% confidence interval.	253
Figure 6.25	Results of in-situ measurements of the ration of the standard deviation to the mean reflectance (wafer-level).	255
Figure 6.26	Results of the range of surface reflectance versus polishing time (wafer-level).	256
Figure 6.27	Pictures of patterned wafer surface at the onset of process endpoint (wafer-level) determined by the proposed detection schemes.	258
Figure 6.28	Pictures of patterned wafer surface (a) before polishing, and (b) at the onset of process endpoint (wafer-level) determined by the proposed detection schemes.	259
Figure B.1	Schematic of the pin-on-disk apparatus.	285
Figure B.2	Micrograph of the abrasive surfaces of lapping films with grit sizes (a) 3,000 nm, (b) 1,000 nm, and (c) 300 nm.	287
Figure B.3	Friction coefficient versus the nominal diameter of the abrasive particles in two-body wear conditions.	290
Figure B.4	Friction force measurement (y-axis: 10 unit = 20 gf, normal load is 200 gf) on Cu versus sliding distance (x-axis).	292
Figure B.5	Preston constant versus the nominal diameter of the abrasive particles in two-body wear conditions.	295
Figure B.6	Wear coefficient versus the nominal diameter of the abrasive particles in two-body wear conditions.	296
Figure B.7	Friction coefficient versus the nominal diameter of the abrasive particles in three-body wear conditions.	297
Figure B.8	Preston constant versus the nominal diameter of the abrasive particles in three-body wear conditions.	300
Figure B.9	Wear coefficient versus the nominal diameter of the abrasive particles in three-body wear conditions.	301
Figure B.10	Preston constant versus the hardness of the slid material in two-body wear conditions.	302
Figure B.11	Preston constant versus the hardness of the slid material in three-body wear conditions.	303

List of Tables

Table 1.1	SIA International technology roadmap for semiconductors (ITRS) for interconnect technology (1998 updated).	23
Table 1.2	Scope of the process research	27
Table 2.1	Density and hardness of experimental materials.	51
Table 2.2	Properties of slurry.	51
Table 2.3	Pad properties.	52
Table 2.4	Experimental conditions.	52
Table 2.5	Experimental results.	53
Table 2.6	Experimental conditions among different researchers.	60
Table 3.1	Physical and mechanical properties of experimental coatings.	79
Table 3.2	Experimental conditions.	80
Table 3.3	Experimental results of blanket wafers (Buehler CHEMOMET pad).	87
Table 3.4	Experimental results of blanket wafers (Rodel IC-1400 pad).	88
Table 3.5	Within-wafer nonuniformity (WIWNU) before and after polishing on Rodel pad.	97
Table 3.6	Abrasive size effect in Cu polishing.	102
Table 3.7	Surface roughness before and after polishing on Rodel pads with 300 nm abrasive.	103
Table 3.8	Estimates of the threshold load and the critical size for lateral crack initiation.	111
Table 4.1	Elastic properties of materials.	148
Table 4.2	Experimental results of step-height evolution at planarization stage.	158
Table 5.1	Linewidth (w), pitch (?) and area fraction (A_f) of patterns on test mask.	175
Table 5.2	Experimental conditions	178
Table 5.3	Experimental results of dishing evolution.	184
Table 6.1	Specifications of the reflectance sensor.	221
Table 6.2	Experimental conditions.	224
Table 6.3	Analysis of variance of two-level nested model for surface reflectance.	250
Table B.1	Experimental conditions.	286
Table B.2	Experimental materials.	289
Table B.3	Experimental results for two-body wear conditions.	291

Table B.4	Experimental results for three-body wear conditions.	298
Table B.5	Comparison of the Preston constant of Al, Cu, and W in two- and three- body wear experiments and the present CMP process. (The abrasive size is 200 nm.)	305