
The design and implementation of awib, a

brainfuck compiler written in brainfuck

Mats Linander
matslina@kth.se

January 13, 2008

Abstract

We have, within the constraints of the course DD2464 - Bigger Ad-
vanced, Individual Course in Computer Science, designed and implemented
awib, a brainfuck compiler entirely written in brainfuck.

This document introduces brainfuck and describes our efforts.

1

Contents

1 Preface 3

2 Brainfuck 3
2.1 Background . 3
2.2 Data model . 4
2.3 Instruction set . 4
2.4 Portability . 4

2.4.1 EOF-behaviour . 5
2.4.2 Cell size . 5
2.4.3 Memory size . 6
2.4.4 General oddness . 6

2.5 Comments in brainfuck code . 6

3 Objective 7

4 Design 8
4.1 Portability . 8
4.2 Cross-compilation and extensibility 8
4.3 Performance . 9
4.4 Consistency . 10

5 Components 10
5.1 Frontend . 10

5.1.1 Target identification . 10
5.1.2 IR generation . 11
5.1.3 Syntax verification . 11

5.2 The lang c backend . 11
5.3 The 386 linux backend . 12

6 Performance evaluation 13

7 The future 14

2

1 Preface

An esoteric programming language is a language not only ill-suited for serious
software development, but actually designed with this characteristic in mind.
Rarely intended for real-world usage, the esoteric language is constructed as a
joke, an entertaining puzzle or a proof of concept.

Due to it’s compact notation, the minimal instruction set and a very sim-
plistic data model, the brainfuck programming language, as the profane name
suggests, can definitely be labeled esoteric.

We have designed and implemented awib, a brainfuck compiler entirely writ-
ten in brainfuck. The conceptually simple task of brainfuck compilation is less
than trivial when programmed in this fascinating language.

This document describes our efforts. We start off by giving an introduction
to the programming language and discuss some common portability problems.
We then move on to our development goals and discuss the high level design of
awib. After this follow sections on the project’s three main components. Finally,
we evaluate our results and give an performance comparison against some other
compilers and interpreters.

2 Brainfuck

2.1 Background

The Turing machine is a hugely influential computational model. Devised in the
1930’s by mathematician and early computer scientist Alan Turing, the model
has proven to accurately capture the notion of the modern computer and its
computational capabilities.

According to the Church–Turing thesis, any problem solvable in a reasonable
computational model can also be solved by a turing machine. A computational
model equally powerful to the Turing machine is said to be Turing complete.
Sufficiently expressive programming languages can also be said to be Turing
complete. The criterion is that given any problem solvable by Turing machine,
an algorithm for solving the same problem can be written in the language.

In reality, no Turing complete machine or language implementation can ex-
ist. This is due to the Turing machine being equipped with an infinitely large
memory, which is typically hard to come by in the real world. The term is
however loosely applied when lack of memory is the only missing feature of a
machine or a language.

The brainfuck programming language was created in 1993 by computer en-
thusiast Urban Müller. It is said that Müllers goal was to design a Turing
complete language for which a minimal compiler for the Amiga OS could be
constructed[1]. While the Turing completeness of brainfuck may be intuitively
obvious to some, there are several proofs available. Frans Faase’s arguments [2]
appear to be among the earliest. Also worth noting is Daniel B. Cristofani’s
proof by implementation [3], where a universal Turing machine is implemented
in brainfuck.

3

> Move the pointer a single cell to the right
< Move the pointer a single cell to the left
+ Increase the integer in the current cell
- Decrease the integer in the current cell
, Read input into the current cell from the input stream
. Output the current cell to the output stream

[code] While the current cell is non-zero, execute code.
Here, code is a syntactically correct sequence of instructions.

Table 1: The brainfuck instruction set

2.2 Data model

Clearly inspired by the Turing machine, the brainfuck data model consists of a
memory area and a pointer.

The memory area is a sequence of cells, each containing an integer in the
range [0, 255]. The pointer is a reference to one of the cells. While we often
allow ourselves to consider the memory area infinitely large, it is always finite
in practice. We often apply the directional concepts of left and right on the
memory area, with the first cell in the sequence being considered the leftmost.

Throughout the execution of a brainfuck program, only the cell currently
referenced, or pointed at, by the pointer can be directly accessed. To access
other cells, the pointer must be moved. Initially when a program is run, every
cell in the memory area holds 0 and the pointer points at the leftmost cell.

In addition to the memory area and the pointer, a brainfuck program has
access to an input stream and an output stream through which data can be read
and written. In a UNIX-environment, the input stream is usually the standard
input and the output stream the standard output. However, the details of where
and how input/output is read/written, is fully dependent on the implementa-
tion.

2.3 Instruction set

A brainfuck program is a finite sequence of brainfuck instructions. The instruc-
tion set, listed in table 1, manipulates the pointer and the cell currently pointed
at. With the exception of the two control flow instructions, [and], instruc-
tions are executed in the order that they appear in the program, one after the
other. For a sequence of instructions to be syntactically correct, all occurrences
of [and] must be well-balanced. Any non-brainfuck character in a program is
considered a comment and is ignored.

Attempting to move the pointer beyond the available memory, in either
direction, results in undefined behaviour. Cells wrap, in the sense that in-
creasing/decreasing a cell beyond its maximal/minimal value produces the min-
imal/maximal value.

2.4 Portability

Unfortunately, the original language specification, as written by Urban Müller,
was far from exhaustive and many important details were left out. Müller’s
original implementation[4] has been given semi-canonical status and is by many

4

considered to be a reference implementation. However, Müller actually provided
two implementations, an interpreter and a compiler, which differ slightly in some
key aspects. As a result, different implementations, especially when written by
inexperienced brainfuck developers, can have wildly different behaviour.

2.4.1 EOF-behaviour

Almost every brainfuck implementation, including Müller’s, use some method of
signaling that an end-of-file (EOF) condition has been raised by the underlying
hardware or operating system. The EOF condition indicates that the current
input stream has been closed and can no longer be read from. While simply
waiting indefinitely for further input may seem semantically sane in these cases,
it is rarely a viable option. The ability to detect EOF is critical in many appli-
cations, and especially so when reading input from a file system.

As mentioned previously, the two implementations provided by Müller dif-
fered in some ways and most significantly so in their EOF-behaviour. If the
input instruction ’,’ was executed after EOF had been reached, the interpreter
wrote −1 to the current cell, while the compiler wrote nothing at all. In addition
to these two behaviours, many implementors choose to write 0 on EOF.

All approaches has their advantages and disadvantages. Writing 0 on EOF
tends to result in pleasantly compact code. For instance, the program

,[.,]

will, assuming 0 on EOF, output it’s input until EOF is reached. If we rewrite
the program for −1 on EOF, we reach the far less elegant

,+[-.,+]

Finally, the no-change on EOF version would read

,[.[-],]

where the loop [-] serves to set the cell to 0, regardless of what was read.
A key advantage of the −1 behaviour is exposed in implementations featuring

a cell size larger than 8-bit, as these allow a program to differentiate between,
on one hand, −1 being read as a result of EOF, and on the other, 255 =
−1 (mod 256) being read as a result of binary non-ascii data in the input.

We tend to favour the no-change EOF-behaviour, as this effectively allows
the developer to decide on an EOF-indicating number (as in: +++,---[code],
where code will be executed unless 3 was read or EOF was reached).

2.4.2 Cell size

In the original implementations, cells were 8-bit integers. Thanks to two’s com-
plement representation of negative numbers, signedness of the cells lacked im-
portance. As one might expect, arithmetic was performed modulo 256.

For various reasons, later implementations have come to deviate from this
behaviour and cells holding 16-, 32- and even 64-bit integers are far from un-
common. In addition to the previously mentioned advantage when using −1
to indicate EOF, these cell sizes enable developers to perform arithmetic with
fairly large integers, without having to go through the cumbersome process of
themselves implementing the arithmetic on top of 8-bit cells.

5

To illustrate one of the classic portability issues arising from varying cell
size, consider the following program for converting lower-case characters into
upper-case.

++++++++[->++++<],
>[-<->]<.[-]
++++++++++.

The program reads a single byte, subtracts 32 from the byte (thereby moving
from lower- to upper-case ascii), outputs it, clears the cell and finally outputs
the ascii code for a newline (10).

What we’re interested in is the clear loop ([-]), which, by repeatedly sub-
tracting 1 from a cell until it is 0, can effectively be seen as a single instruction
for setting a cell to 0. If the read byte is 31, the cell will hold −1 when entering
the clear loop. In an 8-bit environment the program works as expected and
terminates quickly, as a mere 255 iterations are sufficient for the clear loop to
terminate. Consider the same situation in a 64-bit environment, where 264 − 1
iterations are required. On most computers, the time required for this loop to
terminate is far from acceptable.

While the program above still functions correctly and eventually terminates
in a 64-bit environment, this is not always the case. For instance, 8-bit centric
developers often implement 16-bit arithmetic by relying on 255 incremented
becoming 0, which will fail miserably in any other cell size.

2.4.3 Memory size

The memory area is finite in size. What remains for implementors to decide is
just how finite it is. The original specification clearly states that the area must
span 30000 cells or more. More is generally better, but some implementors go
for less. Naturally, portability issues ensue.

2.4.4 General oddness

Finally, some implementations exhibit behaviour which is just plain odd and
can hardly ever be seen as beneficial.

The most disturbing example of this may be implementations that forbid
integer overflow, i.e. implementations not supporting integer wrap-around when
adding/subtracting to/from the maximal/minimal integer value. Our guess is
that this type of behaviour typically stems from the implementor using some
high-level language or system in which explicit modulo-statements are required
for integer overflow not to generate an error.

2.5 Comments in brainfuck code

Since all non-brainfuck characters in a program are considered to be comments,
one is free to use any commenting style that excludes the 8 brainfuck instruc-
tions. We generally place comments on a separate line and prepend a hash-
character (’#’) to make it stand out.

To further clarify what goes on in a program, we often insert pre- and post-
conditions for pieces of code. For this purpose, we have developed a very simple
notation, allowing us to roughly document what the memory area looks like and

6

where the pointer points. Previous attempts at formally defining a notation for
this purpose have all ended badly. It usually turns out that the burden of strictly
adhering to a particular notation do more damage than the notation do good.
We therefore both use and define the notation in a hand-waving manner.

% 0 X (bcode) *1 (where X is the read byte)
->>>+
% 0 X (bcode) 3(0) *1

In the example above, the two lines starting with a percent sign (%) are pre-
and post-conditions for the small piece of code inbetween. The first comment
indicates that the cell currently pointed at holds 1, that there is a block of cells
called bcode at the left (the structure of which is hopefully described elsewhere)
and beyond that block lies at least two cells, of which one holds 0 and the
other holds some value X which has previously been read as input. The second
comment indicates that the pointer has moved three cells to the right, that the
current cell holds 1 and that the three cells between bcode and the current cell
all hold 0.

We would like to stress that this is non-standard notation and not in any
way part of the brainfuck language.

3 Objective

Our intention is to write a capable and usable brainfuck compiler. We will not
settle for the mere fundamentals of brainfuck compilation, but have decided on
a more ambitious set of goals. We truly intend for awib to be a real and viable
alternative for brainfuck developers.

Portability The compiler should itself be highly portable and should run cor-
rectly in all major dialects of brainfuck. To be specific, the code should
run under all three common EOF-behaviours and in any cell-size greater
than or equal to the 8-bit cells of the original implementation.

Cross-compilation The compiler must support multiple target platforms. Ini-
tially, at least Linux on 386-architecture and the C programming language
should be supported.

Extensibility The compiler should be structured and documented in such a
way that other developers can get involved in and contribute to it. In
particular, it should be as easy as possible to develop and add support for
new target platforms.

Efficiency The compiler shall, as far as possible, generate fast and efficient
code. It’s output should be comparable in performance with that of other
compilers and interpreters. As far as possible, this should be achieved
independently of the target platform, hopefully enabling new target plat-
forms to enjoy good performance with minimal effort.

Consistency Compiled code must execute in an environment that is well-
defined and independent of the target platform. Users should be able
to test their code against one of the backends, and trust that it will also
function properly in the others.

7

We also intend to, at some point, release the compiler as Free Software [7]
and further develop it under an Open Source collaborative model. This is a
main motivation for the extensibility objective.

4 Design

In order to achieve the stated objectives, a solid and sound high level design is
appropriate. Especially so given the potentially unreadable nature of brainfuck
code.

We decided early on to separate the bulk of the source code into a frontend
and a number of backends. Each backend would be responsible for one of the
target platforms, while the frontend would hold as much as possible of the target
independent code. In addition to providing us with a logical separation of code
into components, this approach, which is very common in real world compiler
design, proves to fit our design objectives quite well.

Communication between frontend and backends should be in the form of
an internal representation (IR) code. The frontend reads a brainfuck program
as input and generates IR code. The IR code is then passed along to one of
the backends, which moves from the IR to target specific code and outputs the
compiled program.

In the remainder of this section, we discuss our design in the light of the
objectives described in section 3.

4.1 Portability

The portability requirement is not immediately affected by our high level design.
It does, however, imply that all components must be connected by code into a
single source file. The alternative would be to use intermediate files, UNIX pipes
or some other system dependent device for frontend-to-backend communication.
Clearly, this is not acceptable for an implementation claiming to be portable.

As far as the other portability issues are concerned, it is sufficient to pay
close attention during the coding process and take care not to make any un-
reasonable assumptions on cell size or other properties that may vary between
implementations. For instance, whenever input is read, we check for all three
EOF behaviours and accept each one as an EOF indicator.

We have also written a simple but flexible brainfuck interpreter in C, which
is capable of exhibiting the three common EOF behaviours and of using several
different cell sizes. Every piece of code we write is tested against the 12 brainfuck
dialects of this interpreter.

4.2 Cross-compilation and extensibility

Our division of the compiler into frontend and backends lends itself particularly
well to constructing an extensible cross-compiler. All code specific to a par-
ticular target platform is concentrated into a single backend, allowing backend
implementors to ignore everything but moving from IR to target specific code.

Another major focus point, as far as extensibility goes, is that of proper
commenting. In any language, one must always carefully balance between pro-
viding too little and too much information. This is especially true in a language

8

Operation Function
ADD(x) Add x to the current cell
INPUT Read input into current cell (bf: ,)
SUB(x) Subtract x from the current cell
OUTPUT Output current cell (bf: .)
LEFT(x) Move pointer x cells left
RIGHT(x) Move pointer x cells right
OPEN Open loop (bf: [)
CLOSE Close loop (bf:])
CLEAR Set current cell to 0

Table 2: The awib IR

like brainfuck, where the concept of “self documenting code” lacks meaning. In
addition to extensibility, the closely related concept of maintainability, is very
much a product of how well we comment the code.

When released to the public, the project will be available both as a single file
of source code, which is the common way of distributing brainfuck programs,
and as a compressed source tree package aimed at developers and advanced
users. This package will include documentation written from a developer per-
spective, detailing each individual component in wider strokes than the source
code comments do.

We have done our best to make the code readable, both through source code
comments and additional documentation. The frontend-backend design gives
us confidence when it comes to extensibility. In spite of this, since large scale
brainfuck development isn’t a particularly well studied topic, we believe that
only time can truly tell whether we have succeeded or not.

4.3 Performance

To achieve ease of backend implementation without sacrificing performance of
compiled programs, we plan to focus performance enhancing code to the fron-
tend. We believe that with a well chosen IR, backends should be able to settle
for simple operation-for-operation code expansion, and still produce well per-
forming code.

We have settled on an IR (table 2) that is essentially an extension of the
brainfuck instruction set and, as such, operates in the brainfuck data model. In
implementation, each operation is an integer pair representing the operation and
(in some cases) the argument. Additional details are available in the developer
documentation.

There is a clear one-to-one correspondence between the brainfuck instruc-
tion set and the first 8 IR operations (with the argument x=1 where needed).
The IR operation CLEAR corresponds to the common clear-loop construct [-].
Naturally, we will not settle for this trivial correspondence between brainfuck
and IR, but instead do our best to fully exploit the expressiveness of the IR.

We expect and hope to extend the IR in the future. In particular, we are
keen to add something along the lines of an operation ADDLEFT(x), that adds
the value of the current cell to the cell x steps away on the lefthand side. This
would, in combination with the CLEAR operation, allow us to efficiently imple-

9

ment common copy constructs like [->+>>++<<<].

4.4 Consistency

A critical feature of a cross-platform compiler is to guarantee that compiled code
behaves in a well defined and consistent manner, regardless of the chosen target
platform. Therefore, we need to settle on a single definition of the brainfuck
language and ensure that all backends produce programs that adhere to this
standard. Fortunately, this is simple enough:

Cell size Cells are 8-bit wrapping integers

EOF behaviour Executing the input instruction (,) after EOF results the
current cell being left as is.

Memory size At least 216 − 1 = 65535 cells are available. Moving the pointer
beyond the available memory results in undefined behaviour.

To catch consistency problems, and for other purposes, we have created a
catalogue of tests which can be run in an automated fashion. Each test con-
sists of a piece of brainfuck source code and an input-output pair. If the code
produced by a backend fails to produce the correct output, given the corre-
sponding input, the test fails. Also worth noting is that the backends are tested
through the interpreter mentioned in section 4.1, thereby further ensuring that
portability issues will not affect consistency.

Still, the automated tests can only be seen as a complement to backend
developers paying close attention to their work. The most important measure
to ensure backend consistency may well lie in properly highlighting the issues
importance in the developer documentation.

5 Components

5.1 Frontend

The frontend operates in three distinct phases: target identification, IR gener-
ation and syntax verification.

5.1.1 Target identification

The default target platform is set by the first few instructions of the awib source
code and a confident user can easily modify this by hand. Many users will
however prefer to specify the target at runtime. Especially so when using a
compiled versions of awib. For this reason, a large part of the frontend is
dedicated to target identification.

The convention we have settled on is for users to prepend a string to the
source code they wish to compile. The string should be on the format @target,
where target is the name of one of the available target platforms. End-of-file,
whitespace and brainfuck instructions are all considered to terminate the string.
As for the exact position of the target specification, we only demand that it lies
prior to the actual brainfuck code.

10

5.1.2 IR generation

In the second phase, the frontend reads brainfuck source code and compiles it
into IR code. In addition to performing the trivial brainfuck-to-IR translation
(section 4.3), a number of optimizations are performed:

Cancellation Sequences of mutually cancelling instructions are reduced. This
applies to adjacent occurrences of + and - as well as > and <.

Contraction A sequence of n subtractions (-) is compiled into the single IR
operation SUB(n). The same applies to +, > and <.

Dead-code elimination When a [is situated at the very beginning of a pro-
gram, or immediately after a], the loop the [opens will never be entered.
These loops are removed entirely from the code.

Quick clear The common clear-loop ([-]) is replaced with the single IR op-
eration CLEAR.

While we gladly apply the term “optimization” to these transformations,
one could argue that they are far too trivial to do so. Considering that they
are implemented in brainfuck, improve performance greatly and are commonly
ignored by brainfuck implementors, we feel that the term is in fact well deserved.

5.1.3 Syntax verification

In the third and final phase of the frontend, the IR is verified to be syntactically
correct. While this may sound impressive, it is simply a matter of verifying that
all loops (bf: [and], IR: OPEN and CLOSE) are well balanced. If the code is
not correct, an error message is output and a flag is set to indicate that the IR
should not be passed along to the backend.

5.2 The lang c backend

The lang c backend compiles awib IR code into the widely supported C pro-
gramming language. In addition to making awib an option for developers on
nearly any platform, this backend, in combination with a good C compiler, turns
out to produce very fast programs (see section 6).

Translating brainfuck to C code is as old as brainfuck itself, and was first
done in Müller’s original documentation. This method of describing the lan-
guage is well suited for describing brainfuck to programmers already familiar
with imperative/procedural programming. Table 3 holds the brainfuck to C
translation given by Müller. Worth noting is that the practice of writing -1 on
EOF, as discussed in section 2.4.1, is a direct result of the C function getchar()
returning -1 on EOF.

The C language backend translates IR to C according to the pattern listed in
table 4. Other than the difference in using direct instead of indexed addressing,
our C code has an input instruction crafted to do no-change on EOF, while
Müller’s writes -1.

In implementation, the full C code isn’t actually output for each of the IR
operations. Instead, we output a large program header in which 9 preprocessor
macros, one for each IR operation, are defined. Each macro is on the form

11

Brainfuck C
+ array[p]++;
- array[p]--;
> p++;
< p--;
[while(array[p]) {
] }
. putchar(array[p]);
, array[p]=getchar();

Table 3: Brainfuck to C translation table, as given by Müller.

IR C
ADD(x) *p+=x;
INPUT c=getchar();if(c>=0)*p=c;
SUB(x) *p-=x;
OUTPUT putchar(*p);
LEFT(x) p-=x;
RIGHT(x) p+=x;
OPEN while(*p){
CLOSE }
CLEAR *p=0;

Table 4: IR to C translation table.

eP(x), where the integer P is the integer used internally for representing the
corresponding IR operation, and x is the argument to the operation. The full
macro definition is as follows.

#define e9(x) *p=0;
#define e8(x) }
#define e7(x) while(*p){
#define e6(x) p+=x;
#define e5(x) p-=x;
#define e4(x) putchar(*p);
#define e3(x) *p-=x;
#define e2(x) c=getchar();if(c>=0)*p=c;
#define e1(x) *p+=x;

This method allows the actual IR to C translation to be done in a very small
piece of code, making the backend source much more readable without affecting
performance of output programs.

5.3 The 386 linux backend

The 386 linux backend generates executable programs for Linux on i386. Just
like the C backend, this is done by operation-for-operation expansion to target
specific code (386 machine code in this case). The expansions are listed in
table 5, but with 386 assembly language instead of machine code.

For this expansion to function properly, a number of conditions regarding
register content must be upheld throughout execution. These, along with much

12

IR 386 assembly
ADD(1) inc byte [ecx]
ADD(x) add byte [ecx],x
INPUT mov eax,edi

dec ebx
int 0x80
inc ebx

SUB(1) dec byte [ecx]
SUB(x) sub byte [ecx],x
OUTPUT mov eax,esi

int 0x80
LEFT(1) dec ecx
LEFT(2) sub ecx,ebp
LEFT(x) sub ecx,byte x
RIGHT(1) inc ecx
RIGHT(2) add ecx,ebp
RIGHT(x) add ecx,byte x
OPEN cmp bh,[ecx]

jz word Y
CLOSE jmp word Z
CLEAR mov [ecx],bh

Table 5: IR to 386 assembly translation table

other useful information can be found in the developer documentation. In addi-
tion to compiled brainfuck code, the backend outputs ELF headers (ELF is the
file format used for executable files in Linux) and a block of mandatory code
that performs memory allocation and related tasks.

Since an in-depth discussion of 386 architecture is beyond the scope of this
document, we will not go into detailed discussions of the individual expansions.
Worth noting, however, is that the argument carrying operations each have a
couple of different code expansions that vary depending on the argument. These
operations are all very common and mostly occur with small arguments. Only
using the code accepting any argument x would produce unnecessarily large
programs, and since the 386 backend imposes a 216 byte size limit on produced
programs, we do what we can to produce compact code.

To calculate jump offsets for OPEN and CLOSE we use a stack. The backend
parses the IR twice, calculating jump offsets in the first pass and outputting
machine code in the second. In implementation, the stack is simply a sequence
of 16-bit integers that are arranged to be easily traversable.

6 Performance evaluation

We have performed a series of tests to evaluate the performance of programs
compiled with awib, both for the C language and the 386 Linux backend. For the
C backend, we compiled the C code with gcc using optimization level O1. We
compared awib’s performance against three other brainfuck implementations.

The interpreter bff4 [6], by Oleg Mazonka, is often mentioned as one of the
fastest available. We have compiled it with the gcc compiler, using optimization

13

bff4 bf obfc awib lang c awib 386 linux
long.b 11.93 15.15 1.06 1.69 3.55
factor.b 2.64 1.31 0.30 0.56 1.44

Table 6: Results of the performance evaluation. Runtimes in seconds.

level O2 and with the “linear loop optimization” of bff4 activated.
The compiler bf [1], by Brian Raiter, is a very compact compiler for Linux

on 386. It is written in assembly language with small size as the primary goal.
Finally, obfc[5] is an optimizing compiler for Linux on 386, written in roughly

1000 lines of C code by Manuel Schiller. Unlike awib, obfc generates assembly
language as intermediate format, so an external assembler program is required.

The programs we have run are long.b, used by the bff4 developer for per-
formance evaluation, and the classic factor.b by Brian Raiter. The former
performs some resource hungry dummy calculation and the latter is a program
for factoring arbitrarily large integers. In our tests, we factored 258 − 1 =
3 · 59 · 233 · 1103 · 2089 · 3033169.

As illustrated in table 6, awib performs quite well. As expected, the ambi-
tious obfc project performs very well for all programs and is the only compiler
to beat both awib backends for both test programs. We also note that the awib
C backend, when combined with the optimization of gcc, produces very decent
programs. The real surprise is how well Brian Raiter’s bf fares on the factor
program.

Raiter’s compiler only performs the most basic translation from brainfuck
to machine code and yet outperform the optimizing 386 backend of awib. After
disassembly and analysis of bf’s output, we are still not quite certain as to why.
Awib produces far more compact code, compiling factor.b into a program of
half the size and about one third the number of instructions as that of Raiter’s
compiler.

The most likely explanation lies in how the two compilers implement the
loop construct. Awib performs a comparison at the beginning of the loop and
unconditionally jumps back to this comparison at the end of the loop. Raiter,
on the other hand, always jumps to the end of the loop and performs the com-
parison there. In situations when a number of nested loop are terminated with
a sequence of adjacent], our model results in two jumps and one comparison
per loop, while Raiter’s model only requires a single comparison per loop. Our
model performs better on adjacent [, but these are far less common, both in
factor.b and in brainfuck code in general.

7 The future

As mentioned once or twice before, we intend to keep on developing and extend-
ing awib. In addition to adding more target platforms (a 386 FreeBSD backend
is nearly completed as of this writing), we believe that far better performance
can be achieved. We especially hope to add IR operations ADDLEFT(x) and
ADDRIGHT(x), as mentioned in 4.3, to optimize copy loops.

Another useful feature would be to allow the size of the memory area to be
specified when compiling a program. Ideally, this should be done in a manner
similar to how the @target flag is used to choose a target platform.

14

Also, in light of the results of section 6, we will definitely have to consider
adopting Raiter’s loop model for the 386 backend. Another option is to have
comparisons and conditional jumps both at the start and at the end of each loop.
This later approach generates larger programs, but should improve performance.
Further research is however required before any decision can be made.

References

[1] B. Raiter, “The Brainfuck Programming Language,” http://www.
muppetlabs.com/~breadbox/bf/; accessed October 20, 2007.

[2] F. Faase, “BF is Turing-complete,” http://www.iwriteiam.nl/Ha_bf_
Turing.html; accessed October 20, 2007.

[3] D. Cristofani, “a universal Turing machine,” http://www.hevanet.com/
cristofd/brainfuck/utm.b; accessed October 20, 2007.

[4] U. Müller, “240 byte compiler. Fun, with src. OS 2.0,” http:
//www.hevanet.com/cristofd/brainfuck/brainfuckorigdistro/
brainfuck-2.readme; accessed October 20, 2007.

[5] M. Schiller, “obfc homepage,” http://hinterbergen.de/mala/obfc/; ac-
cessed October 24, 2007.

[6] O. Mazonka, “Fast Brainfuck interpreter bff4.c,” http://mozaika.com.
au/oleg/brainf/; accessed October 24, 2007.

[7] Free Software Foundation, “The Free Software Definition,” http://www.
fsf.org/licensing/essays/free-sw.html; accessed October 24, 2007.

ÿ

15

