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Abstract 
 

Changes to source code have become a critical 

factor in fault predictions. Text or syntactic 

approaches have been widely used. Textual analysis 

focuses on changed text fragments while syntactic 

analysis focuses on changed syntactic entities. 

Although both of them have demonstrated their 

advantages in experimental results, they only study 

code fragments modified during changes. Because of 

semantic dependencies within programs, we believe 

that code fragments impacted by changes are also 

helpful. Given a source code change, we identify its 

impact by program slicing along the variable def-use 

chains. To evaluate the effectiveness of change impacts 

in fault detection and prediction, we compare impacted 

code with changed code according to size and fault 

density. Our experiment on the change history of a 

successful industrial project shows that: fault density 

in changed and impacted fragments are higher than 

other areas; for large changes, their impacts have 

higher fault density than changes themselves; 

interferences within change impact contribute to the 

high fault density in large changes. Our study suggests 

that, like change itself, change impact is also a high 

priority indicator in fault prediction, especially for 

changes of large scales. 

 

1. Introduction 
 

During software development and evolution, change 

is a pervasive phenomenon. Changes happen in every 

phase: requirements, design, implementation, and 

maintenance. Changes in any phase will affect the 

behavior of the delivered software product. Thus, 

changes are significantly related to software product 

quality and may be used effectively to predict faults. 

Since source code is the ultimate definition of the 

behavior of a software product, changes in source code 

become an important factor in understanding changes 

in behaviors and detecting, or predicting, faults.  

In studies based on source code changes, textual or 

syntactic approaches have been widely used. Textual 

analysis treats the source code as just a piece of text 

and builds change rules according to the textual 

properties of changes. For example, Hassam and Holt 

[9], Mockus and Weiss [16], and Nagappan and Ball 

[17] analyze how many lines added or deleted in a 

change and associate change size with faults. Syntactic 

analysis uses syntactic entities, such as 

classes/methods/fields in Zimmermann et al. [29], the 

number of incoming and outgoing function calls in 

Knab et al. [13], and the association or sequence of 

function calls in Breu and Zimmermann [3] and Kim et 

al. [12]. They extract change rules or patterns on 

syntactic entities and relate them to faults. 

Although the advantages of textual and syntactic 

approaches have been demonstrated with experimental 

results, both approaches only focus on the code 

modified during changes.  Text and syntax are 

inherently limited in clarifying the meaning, or 

delineating the implications, of changes. 

Neither approach considers the semantic 

dependencies within a program. For example, 

introducing a statement assigning a value to a variable 

may adversely impact subsequent statements using the 

value of that variable. We believe these impacted 

statements (i.e., the change impacts) are extremely 

helpful in detecting or predicting faults. A semantic 

approach provides us with an inherently deeper 

understanding of both the meaning and the implications 

of changes [19]. 

To evaluate the effectiveness of change impact in 

fault detection and prediction, we conduct a local data-

flow analysis of the change history of a successful 

industry project, the 5ESS system. For each sampled 

change, we identify its impact by program slicing along 

the variable def-use chains. We group changes 

according to change size and compare the size and fault 

density of change impacts and changes themselves 

across groups. In this study, we want to address three 

questions: for small changes and large changes, 



1) Is there any difference in the size of their 

impacts? 

2) Is there any difference in the ratio of impact 

size to change size? 

3) Is there any difference in the faults densities in 

change impacts and in change themselves? 

Section 2 gives an overview of the identification of 

semantic change impact by local data-flow analysis. 

The context for this study is discussed in Section 3. 

Section 4 presents the experimental design and its 

results. Validity issues are discussed in Section 5. 

Related research is discussed in Section 6. Finally, we 

summarize our study and propose future work in 

Section 7. 

 

2. Semantic Impacts of Source Code 

Changes 
 

To identify the impact of source code changes, we 

combine local data-flow analysis
1
 and program slicing. 

Local data-flow analysis discloses the internal 

dependencies between semantic structures in a program 

while program slicing identifies semantic structures 

impacted by changes. Figure 1 illustrates our semantic 

analysis of change impact.  

Given two versions (the first is the original version, 

the second is the changed version), we first calculate 

the control flow graph for each version. From each 

control flow graph, we identify the dependencies based 

                                                           
1
 “Local data-flow analysis” means we only analyze 

dependencies within the local context, not the transitive 

closure that includes all callee functions. See [25] for 

further clarification. 

on variable def-use pairs. Each identified local data-

flow dependency is represented as a triple (var: def, 

use), where var is the variable on which the 

dependence is built, def is the line that defines variable 

var, and the use line uses the variable defined at def 

line. The dependences in version v1 are {(a: 1, 3), (b: 

2, 4), (i: 3, 5), (j: 4, 5)}.  

With the variable def-use dependency analysis on 

the two versions, the semantic impact of a change can 

be calculated by forward slicing from the changed 

lines. In this example, change v1�v2 modified Line 1 

from “a = 0” to “a = 1”. According to the variable def-

use chains, {(a: 1, 3), (i: 3, 5)}, Line 3 and 5 are 

impacted. So the semantic impact of change v1�v2 is 

{3, 5}. 

 

3. Study Context 
 

The data in this study comes from the change and 

version management history of the Office Automation 

(OA) subsystem in 5ESS, an ultra-large-scale, 

successful industrial project. 

 
 

Figure 2. Change and version management 

repositories of 5ESS 
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Figure 1. Semantic analysis on change: v1����v2 



The 5ESS change history has been widely used 

for various studies, such as inferring change effort from 

configuration management database [7], automatically 

extracting reasons for changes [15], studying the 

semantic impact of parallel changes and small changes 

[20] [21]. Such a widely used data source increases the 

content validity of our study.  

 

3.1 Change and Version Management 

Repositories 
 

In 5ESS, changes are managed in a layered 

hierarchy (Figure 2): Feature, Initial Modification 

Request (IMR), Modification Request (MR) and delta. 

A feature is the fundamental unit of extension to the 

system. Each feature is implemented by a set of IMRs 

that represent problems to be solved. An IMR is a 

change for fixing a fault, perfecting or improving some 

aspect of the system, or adding new features to the 

system. In 5ESS, IMRs are recorded in the IMR 

Tracking System (IMRTS).  

Each IMR is implemented by one or more MRs. 

Each MR represents a solution, or part of a solution, to 

an IMR’s problem. An MR is usually owned by one 

developer and can represent all or part of the 

developer’s contribution to the solution to an IMR. 

Information about MRs is kept in an ECMS [26] 

database. For each MR, ECMS records the data such as 

the date it was opened and closed, its developer, and a 

short text abstract of the change purpose.  

In the context of a MR, every change made to a file 

was recorded as a delta in SCCS [23]. A delta records 

the actual lines added or deleted in a file. For each 

delta, the ECMS also record its date, the developer, 

and the MR it belongs to.  

The data used in this study are: the lines added or 

deleted on source code files and the purpose for the 

changes. These data can be retrieved from the ECMS 

and SCCS system.  

 

3.2 Change Classification 
 

Changes can be classified based according to the 

purpose of the change. In our study, the purpose-based 

classification of MRs was derived from the work by 

Mockus and Votta [15]. They classified MRs according 

to the keywords in the textual abstract of a change. For 

example, if keywords like “fix,” “bug,” “error,” and 

“fail” were present, the change was classified as 

corrective. There are four classes of changes: 

• Inspection changes: found in code 

inspections. 

• Perfective changes: changes to improve 

performance, make a piece of code more 

maintainable, or generally improve the quality 

of the code.  

• Adaptive changes: changes to add new 

features and functionality into the system. 

• Corrective change: changes to fix faults. 

Given a change, its class is the class of the MR it 

belongs to. For example, a Corrective MR represents 

one fault and all the changes belonging to a Corrective 

MR are Corrective changes for that fault.  

In this study, Corrective changes are used to identify 

faults. Matching Corrective changes are used as a 

metric to evaluate fault prediction capabilities. Details 

are discussed in Section 4.2. 

 

3.3 Implementation Issues 
 

The implementation of the data dependency 

calculation and program slicing is based on 

GrammaTech’s CodeSurfer [5]. The C compiler is 

Visual C++ 6.0. For the variables used in def-use 

analysis, we count both pointer variables and non-

pointer variables. For pointer analysis, we select 

CodeSurfer’s option that distinguishes individual fields 

in a referenced structure and allow Codesurfer to 

perform pointer analysis. 

 

4. Study and Results 
 

To address the three questions mentioned before, we 

propose three hypotheses: 

1) H1: Large changes impact more lines than 

small changes; 

2) H2: Large changes have a lower impact size to 

change size ratio than small changes; 

3) H3: For fault density of impacted code, large 

changes are higher than small changes; but for 

fault density of changed code, large changes 

are lower than small changes. Fault density of 

changed or impacted code is higher than that 

of the code fragments that are neither changed 

nor impacted by changes. 

 

4.1. Constructs  
 

To evaluate these three hypotheses, we need to 

define constructs to represent change, change impact, 

and fault:  

Change: Change has different meanings in different 

contexts. In this study, change is represented as the 

difference in lines between the old version and the new 



version. Given a change, change size is the number of 

the lines added, deleted, and modified in the change. 

But, SCCS system only records the number of lines 

inserted or deleted during a change. Modifications to 

the existing lines are tracked as old lines being replaced 

by new lines (delete and insert). We use the maximum 

of added and deleted lines as change size. 

Change impact: Given a change, its impact is 

represented as the lines that have local data 

dependencies on changed lines. According to the 

variable def-use chains, the impact of a change is 

identified by forward slicing from the changed lines. 

Impact size is the number of lines in a change impact.  

Fault: A fault is the collection of all lines changed 

in a Corrective type change. 

 

4.2. Studies 
 

In this study, 273 changes were sampled from four 

modules in 5ESS change repository. The size of each 

version is around 1000 lines. All the changes are 

grouped according to change size. For all groups, their 

distributions of different change purposes (adaptive, 

corrective, and perfective) are very similar. 

To evaluate the three hypotheses, we performed 

three studies to compare these groups according to 

following three metrics: impact size, ratio of impact 

size to change size, and fault density. 

 

4.2.1 Impact size 

 

According to the sampled changes and their 

impacts, Figure 3 shows the distribution of impact size 

for each group. The x-axis is change size and the y-axis 

is impact size. For each group, the vertical line is the 

box-plot representation of the distribution of impact 

size within that change-size group. On each vertical 

line, the box shows the central 50% of the distribution. 

The upper and lower ends of the box mark the upper 

and lower quartiles. The bold dot shows the mean of 

the distribution. The solid horizontal line in the box 

shows the median of the distribution. The dashed 

vertical lines attached to the box indicate the tails of 

the distribution. The vertical lines above and below the 

box are the maximum and minimum. This figure shows 

that, with the increase of the change size, the change 

impact size also increases accordingly. For small 

changes that modified less than 5 lines, the median and 

mean of their impact size are 0 and 2.587413. For large 

changes modifying more than 100 lines, the median 

and mean of their impact increase to 42 and 60.5. 

For all sampled changes, statistical analysis on their 

change size and impact size shows that they are 

strongly correlated. Their correlation coefficient is R = 

0.75, with a very high significance p <= 3.24e-48. In 

the t-test for the significance of the coefficient, t = 

18.76 with Degrees of Freedom = 271. 
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Figure 3. Distribution of impact size. 



The results from statistical analysis and Figure 3 

support hypothesis H1: large changes impact more 

lines than small changes.  

This result supports our previous study on small 

changes [21]. In the change history of this subsystem of 

5ESS, less than 4% of small (one-line) changes result 

in faults. According to the result from H1, impacts of 

small changes are also small. Because there is little 

effect on the semantics of the program, small changes 

are not likely to introduce faults. 

 

4.2.2 Ratio of impact size to change size 

 

For each group, we also calculate the ratio of impact 

size to change size. Figure 4 illustrates the results. The 

x-axis is the change size and the y-axis is the ratio of 

impact size to change size. The x and y coordinate of 

each point represents the average of change size and 

ratio for each group. The trend shows that, with the 

increase of change size, the ratio goes down quickly. 

For changes less than 10 lines, their impact size is 

larger than change size. For changes around 70 lines, 

the impact size is only half the change size. Statistical 

analysis shows a nearly linear relation between change 

size (on a logarithmtic scale) and the ratio of impact 

size to change size. Their correlation coefficient is R = 

-0.951, p <= 0.00103. In the t-test for the significance 

of the coefficient, t = 6.874 with Degrees of Freedom = 

5  

The results of our statistical analysis and Figure 4 

support hypothesis H2: Large changes have lower 

impact size to change size ratio than small changes. 

The relative small impact size suggests that, to detect 

or predict faults in large changes, checking the change 

impact is cheaper than checking the change itself. 

This result also discloses the internal interference 

phenomena of large changes. For a large change, the 

impacts of different changed lines highly overlap with 

each other. In a program, a change on one line usually 

touches at least one variable def-use chain. With the 

increase of change size, more and more variable def-

use chains are touched. However, the size of change 

impact, the union of all lines in all touched variable 

def-use chains, increases very slowly. For changes less 

than 5 lines, the impact size is larger than change size, 

and their impact-change ratio is 1.47. For changes less 

than 100 lines and greater than 50 lines, the impact size 

is much smaller than change size, their ratio is only 

0.49. With the increase on change size, more and more 

lines are shared by the impacts of different changed 

lines. Since more and more affected variable def-use 

chains overlap or converge, their interference degree 

becomes higher and higher. According to the trend in 

Figure 4, the interference within large changes is very 

significant.  

 

4.2.3 Fault density 

 

To evaluate the effectiveness of change impact in 

fault prediction, we compare the fault density in 

impacted code with changed code across the seven 

groups. 
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Figure 4. Ratio of impact size to change size 



 Identify Fault in change, impact and other parts 

 

To find faults introduced by a change, we search for 

Corrective MRs subsequent (in time) to this change in 

ECMS. Then, in SCCS, we identify faults by the code 

fragments changed in deltas belong to these Corrective 

MRs. 

Given a change, whatever Corrective or not, we 

divide it into two sets of source code lines: added lines 

and deleted lines. Modified lines can be defined as 

added new lines and removed old lines.  

For a Change c: Vi�Vj, 

Added-lines(c) = {Line n | Line n exist in version Vj 

but not in version Vi}; 

Deleted-lines(c) = {Line n | Line n exist in version 

Vi but not in version Vj}; 

Impacted-lines(c) = {Line n | Line n in version Vj 

and Line n in forward slicing of change c}.  

Other-lines(c) = {Line n | Line n in version Vj} -

Added-lines(c) - Impacted-lines(c). 

Given a Change c and a subsequent Corrective MR 

m, the fault in change, its impact, and other parts are 

defined as following: 

Change-Fault-Match(c, m) = Added-lines(c) ∩ 

Deleted-lines(m). 

Impact-Fault-Match(c, m) = Impacted-lines(c) ∩ 

Deleted-lines(m). 

Other-Fault-Match(c, m) = Other-lines(c) ∩ 

Deleted-lines(m). 

The intersections are calculated by textual matching 

source code lines.  

If Change-Fault-Match(c, m) ≠ Ø, a fault is found 

in Change c. It is same while searching fault in change 

impact and other parts. Note that we do not capture 

faults of omission (that is, faults that are corrected only 

by adding lines); deleted lines represent changes to fix 

faults. 

 

Compare fault density of change, impact and other 

parts 

With faults identified in change, impact and other 

parts, we calculate fault density for each of them. For 

each change, the ratio of fault size to impact size is the 

fault density of the impact; the ratio of fault size to 

change size is the fault density of the change itself; the 

ratio of fault size to the size of these code fragments is 

the fault density of other parts. 

Figure 5 illustrates the fault density of change 

impact and change itself according to size groups. The 

x-axis is the change size while the y-axis is fault 

density. With the increase of change size, the fault 

density in change impact increases and fault density in 

change itself decreases. For changes less than 5 lines, 

their average change size is 1.5 lines and the fault 

density in their change impact is only 3.7%, while fault 

density in change itself is about 9.1%. For changes less 

than 100 lines and greater than 50 lines, their average 

change size is 70 lines. Their fault density in change 
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Figure 5. Fault density in change and impact. 



impact increases to 7.1%. But the fault density in 

change itself drops to 4.6%. 

Figure 5 also shows that, although the fault density 

in change and its impact varies according to change 

size, both of them are higher than fault density parts 

that are not changed or impacted. For all change 

groups, the fault densities in other parts are always 

around 4%. It is roughly equal to the lowest fault 

density of changed or impacted code of all change size 

groups. 

We performed statistical analysis on the correlation 

between change size (on a logarithmic scale) and the 

ratio of impact fault density to change fault density. 

Their correlation coefficient is R = 0.92, p <= 

0.003339. In the t-test for the significance of the 

coefficient, t = 5.351 with Degrees of Freedom = 5 

The results of our statistical analysis and Figure 5 

support hypothesis H3: for fault density in change 

impacts, large changes are higher than small changes; 

but for fault density in the change themselves, large 

changes are lower than small changes. The high fault 

density in change impact suggests that, to detect or 

predict faults in large changes, checking the change 

impact is more effective than checking the change 

itself. 

Combining hypothesis H2 and H3, we come to a 

conclusion: change impacts can be complementary to 

changes themselves in detecting or predicting faults. 

For large changes, checking change impact is efficient 

because of its relatively small size and high density; for 

small changes, checking the change themselves is more 

efficient. Checking changes or their impacts is more 

efficient than checking other parts. 

 

4.3. Result Analysis 
 

Our study shows that large changes are dangerous, 

not only because of the large change scope, but also for 

the high fault density in their impacts. It is more severe 

in that change impacts are not as easily identified as 

changes themselves. 

Because of the high internal interference found in 

impacts of large changes, we suggest that internal 

interference contributes to the fault density of change 

impact. In a large change, modified lines are distributed 

across a large scope and their impacts highly overlap 

with each other. It is difficult for a developer to 

identify all of the impacts and their high degree of 

interference.  

Statistical analysis on the relation between internal 

interference and fault density in change impact also 

supports our suggestion. We use the ratio between 

change size to impact size as the metric for internal 

interference. A larger ratio value means higher internal 

interference. Figure 6 shows this result. The x-axis is 

the ratio of change size to impact size and the y-axis is 

the fault density in change impact. The x and y 

coordinate of each point represents the average of 
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  Figure 6. Relation between internal interference and fault density in change impacts. 



change-impact ratio and fault density of each group. 

The trend shows that, with the increase change-impact 

ratio (interference), the fault density in change impact 

increases. For low interference where the ratio is 0.67, 

the fault density is less than 4%. For high interference 

where the ratio is 3.6, the fault density is almost 8%. 

The correlation analysis between change-impact ratio 

and fault density shows that their correlation 

coefficient is R = 0.877, p <= 0.01149. In t-test for the 

significance of the coefficient, t = 4.081, with Degrees 

of Freedom = 5.  

There might be multiple reasons for large change 

with small impact. For example, for a larger size 

change, its impact, which is a subset of the unchanged 

code fragment, is likely to be smaller because we only 

analyse change and its impact locally, within a 

function. However, whatever the actual reason is, the 

high ratio between change size to impact size indicates 

that large changes are more dangerous than expected.  

 

5. Validity Analysis 
 

To analyze the soundness of this experiment, we 

discuss its construct, internal, and external validity. 

Construct validity concerns in our studies center 

around the identification of changes and faults. In this 

experiment, changes are identified by textual 

comparison and change impacts are identified by 

program slicing along the variable def-use chains. Both 

of them are widely used constructs in program analysis. 

Identification of changes by textual comparison can 

introduce false positives. For example, breaking a 

statement from one line into two lines is a change 

according to text comparison. But such changes have 

no syntactic or semantic affect. However, we found 

such changes often when we manually checked our 

change impact analysis results. Faults are identified by 

the MR classification tools [15] with reasonable 

reliability. Previous studies [20] [21] showed that such 

classification is reasonable.  

The data used in our study comes from a real 

industrial project and can be considered completely 

reliable. All the data in our study comes from an 

original history without any artificial instrumentation or 

modification.  

Our fault identification approach might introduce 

some noise. If a fault is found in the impact of a 

change, the faulty code should also match at least one 

line in the previous change that introduced the faulty 

code into code base. One fault is counted twice, one in 

change and one in change impact. Another source of 

noise is that a fault in the impact of a change may not 

be directly related to this change. We believe that this 

is unlikely as corrective MRs are written only for a 

single faults. 

To improve accuracy, we group multiple changes 

that belong to the same MR into to one change while 

matching with Corrective MRs. Grouping changes 

according to their MR is reasonable because an MR is 

a logic group of changes made by one developer to 

solve one task (or in the case of corrective MRs, one 

fault). 

Although the faults found in the impact of a change 

maybe not directly be related to this change, it is still 

worth checking it. First, its fault density is high and it is 

almost impossible for a developer to check all previous 

changes while submitting a new change. Second, it is 

helpful to find change interference. If a piece of code 

added by one change was impacted by another change, 

the two changes interfere with each other. Our previous 

study [24] shows that such interferences between 

changes are important in predicting potential faults. 

With respect to internal validity, we believe that our 

results are consistent with our previous studies. For the 

semantic impact of changes, one would intuitively 

expect that small changes usually touch few semantic 

entities and affect only a small part of a program. In 

this study, the statistical analysis of correlation 

coefficients, significant levels, and t-tests shows a 

strong correlation between change size and change 

impact size. The matching between change impact and 

faults has already been successfully used in the 

previous study on change interference [24]. These 

consistencies are strong support for the internal 

validity. Thus, we do not believe there are alternative 

explanations for our results. 

Although our study is based on the history data in a 

pessimistic version control system, SCCS, this 

approach can be easily extended to optimistic version 

control systems, such as Concurrent Versions System 

(CVS), which is widely used in open source projects. 

CVS can supply the same kinds of data as SCCS for 

our change impact analysis algorithm.  

A threat to the validity of our study is that 5ESS is a 

very large-scale, real-time project with a large number 

of developers who are geographically distributed. We 

argue, however, that the subsystem we studied is 

perhaps by itself more representative of a typical large 

project. It is developed with programming languages 

(C and C++) under a UNIX environment. Both of them 

are very common in software developments. For a large 

project like 5ESS, well-trained developers and well-

organized development processes, organization, and 

management are required. 

Replicating our study is not difficult under other 

change or version management systems. This study 



needs two kinds of data: versions and delta information 

(lines added, deleted or changed) and change 

classification. Our data comes from two repositories: 

the version management system (SCCS) and change 

management system (ECMS). Like SCCS, current 

version management systems, such as CVS and 

Subversion, can support versions and delta information. 

To classify change according to purposes, the text 

explanations of current version management systems 

can be used. Automatic classification approach in 

Mockus and Votta [15] can also be applied on these 

new version management systems. A widely used 

tracking system, such as BugZilla, can also be used to 

classify changes, especially the corrective changes for 

bug-fixing. In our study, the classification is based on 

MRs, a group of changes made together for a same 

purpose. Although MRs are not supported in CVS or 

Subversion, there are still other approaches to group 

changes. Subversion supports change transactions. 

Although CVS does not support transactions, other 

effective approaches, such as sliding windows, have 

been used to identify transactions. With the help from 

current version and change management systems, our 

study can be easily replicated.  

 

6. Related Work 
 

In studies on semantic program differencing, 

dependence graphs and program slicing are widely 

used. Horwitz [10] performs semantic program 

differencing by partitioning the components of the two 

programs according to equivalent behaviors. The 

algorithms based on Horwitz [10] can provide high 

precision semantic differencing. Binkley [1] uses 

system dependence graph and inter-procedural slicing 

to identify the impacted parts of source code changes. 

And Yang et al. [28] increased the soundness of 

semantic conflict detection with semantic preserving 

transformations. These semantic differencing 

approaches are based on the comparison on the whole 

dependency graph. Their workload is heavy and 

difficult to use in practice. While performing analysis 

on whole programs, the false positive in one procedure 

will be propagated and amplified. Our change impact 

identification approach only focuses on local data-flow 

analysis. The cost is very inexpensive. Limiting our 

analysis scope to local context can reduce the false 

positive rate. Such a compromise can reduce the cost 

and improve the applicability in large programs. The 

benefits of our approach have been demonstrated in 

Shao et al. [24].  

Dynamic slicing is also an important approach in 

impact analysis. Program chopping [8] can minimize 

possible fault inducing code fragments. Compared with 

static program slicing we used in this study, dynamic 

slicing can improve the precision for pointer analysis 

and reduce false positives in semantic interference 

detection. However executable versions are required 

beforehand. This imposes a significant build overhead 

in a large system like 5ESS. Further, 5ESS’s need for a 

complex hardware context may make this approach 

virtually impossible. 

Abstract-syntax-tree-based approaches were 

proposed by Fluri et al. [4], Raghavan et al. [22], and 

Yang [27]. Given two programs, their abstract syntax 

trees are compared with tree-matching algorithms. 

These approaches identify changes on syntax entities, 

but do not calculate impacts from changes. 

Similar to our work, Jackson and Ladd [11] check 

the variable def-use dependency with a program. 

However changes are identified only by added or 

deleted dependencies. Impacted dependencies are not 

counted.  

In empirical evaluation to semantic differencing 

algorithms, Binkley et al. [2] applied the system 

dependence graph and inter-procedural slicing based 

semantic differencing algorithm on 10 programs. On 

average, the identified impact is 37% less than the 

whole program. The relative small size of change 

impact supports the application of semantic 

differencing in practical use. However, this work does 

not consider the affect of change size on change 

impact, and does not relate change impact with faults.  

The relations between change size and faults have 

been studied in Graves et al. [6], Hassan and Holt [9], 

Mockus and Weiss [16], Nagappan and Ball [17], 

Ostrand et al. [18], and Purushothaman and Perry [21]. 

The risks of large changes were also observed in these 

studies. But all of them are based on changes 

themselves, rather than impact of changes. 

Local data-flow analysis was used in our previous 

work to detect semantic interference and predict faults 

[24]. However, we studied change impact and its 

relation to faults according to change intervals rather 

than change size as we have done in this study. The 

interference identified in our previous study is external 

interference, happening between changes. Given two 

changes on the same file, they have interference if their 

impacts have overlap. The interference found in current 

study is internal interference. It happens within the 

impact of a single change. 

Although external interference and internal 

interference come from difference sources, both of 

them are related to faults. External interference is 

related to faults because of the short interval between 

changes. It is difficult for a developer to fully 



understand the impact of all the previous changes made 

by others in a short interval. So the interference 

between short interval changes is dangerous and likely 

to introduce faults. Internal interference is related to 

faults because of large change size. Modified lines are 

distributed across a large scope and their impacts 

highly overlap with each other. It is difficult for a 

developer to identify all of the impacts and their 

interferences. In large changes, the internal interference 

is dangerous and is very likely to introduce faults.  

 

7. Conclusions and Future Work 
 

One of the fundamental problems in software 

evolution is that changes often introduce faults.  Worse, 

changes to fix faults often introduce new faults.  Our 

primary goal in our empirical studies of change is to 

understand these issues and what factors contribute to 

the occurrence of faults in software evolution.  We 

believe that semantic-based approaches offer the most 

cogent means both to understanding change and to 

detecting and/or predicting faults. 

Source code change histories provide abundant 

resources for understanding the evolution of software 

systems. Based on the source code involved in changes, 

many studies have been performed and interesting 

results have been generated. However, most of them 

are at the textual level or syntactic level, and do not 

consider internal dependencies at the semantic level. 

To apply semantic analysis to source code change 

histories, we performed an empirical study to use local 

data-flow analysis on the history of a successful 

industry project. Our studies show that: 

• Large changes impact, not surprisingly, 

more lines than small changes; but 

• Large changes have smaller impact size to 

change size ratio than that of small 

changes; and 

• For fault density of impacted code, large 

changes are higher than small changes; but 

for fault density of changed code, large 

changes are lower than small changes. 

Fault density in change or its impact is 

higher than fault density in other parts. 

For large changes, our experiment found a high 

degree of interference within their impacts. It is 

difficult for a developer to identify all of the impacts 

and their high degree of interference. We suggest that 

the high degree internal interference contributes to the 

high fault density in the impact of large changes.  

The high fault density found in impacts aggravates 

the danger of making large changes. For large changes, 

the fault density in changes themselves has already 

become very dangerous. Lezak et al. [14] suggest that a 

component should be rewritten if more than 25% of the 

code is changed. The high fault density in impacts 

intensifies the danger of large changes because change 

impacts are not as easily identified as the changes 

themselves. 

The high fault density in the impact of large changes 

suggests some future research topics. To detect or 

predict more faults, efficient calculation of the 

semantic impact of large change becomes important. 

To disclose the internal mechanisms of high fault 

density, more semantic analysis on change impact is 

required, especially on large changes. Dynamic 

analysis techniques, such as dynamic slicing, might 

also be introduced to provide more precise impact 

identification and fault prediction. 
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