
Semantic Impact and Faults in Source Code Changes: An Empirical Study

Danhua Shao, Sarfraz Khurshid, and Dewayne E. Perry

Electrical and Computer Engineering, The University of Texas at Austin

{dshao, khurshid, perry}@ece.utexas.edu

Abstract

Changes to source code have become a critical

factor in fault predictions. Text or syntactic

approaches have been widely used. Textual analysis

focuses on changed text fragments while syntactic

analysis focuses on changed syntactic entities.

Although both of them have demonstrated their

advantages in experimental results, they only study

code fragments modified during changes. Because of

semantic dependencies within programs, we believe

that code fragments impacted by changes are also

helpful. Given a source code change, we identify its

impact by program slicing along the variable def-use

chains. To evaluate the effectiveness of change impacts

in fault detection and prediction, we compare impacted

code with changed code according to size and fault

density. Our experiment on the change history of a

successful industrial project shows that: fault density

in changed and impacted fragments are higher than

other areas; for large changes, their impacts have

higher fault density than changes themselves;

interferences within change impact contribute to the

high fault density in large changes. Our study suggests

that, like change itself, change impact is also a high

priority indicator in fault prediction, especially for

changes of large scales.

1. Introduction

During software development and evolution, change

is a pervasive phenomenon. Changes happen in every

phase: requirements, design, implementation, and

maintenance. Changes in any phase will affect the

behavior of the delivered software product. Thus,

changes are significantly related to software product

quality and may be used effectively to predict faults.

Since source code is the ultimate definition of the

behavior of a software product, changes in source code

become an important factor in understanding changes

in behaviors and detecting, or predicting, faults.

In studies based on source code changes, textual or

syntactic approaches have been widely used. Textual

analysis treats the source code as just a piece of text

and builds change rules according to the textual

properties of changes. For example, Hassam and Holt

[9], Mockus and Weiss [16], and Nagappan and Ball

[17] analyze how many lines added or deleted in a

change and associate change size with faults. Syntactic

analysis uses syntactic entities, such as

classes/methods/fields in Zimmermann et al. [29], the

number of incoming and outgoing function calls in

Knab et al. [13], and the association or sequence of

function calls in Breu and Zimmermann [3] and Kim et

al. [12]. They extract change rules or patterns on

syntactic entities and relate them to faults.

Although the advantages of textual and syntactic

approaches have been demonstrated with experimental

results, both approaches only focus on the code

modified during changes. Text and syntax are

inherently limited in clarifying the meaning, or

delineating the implications, of changes.

Neither approach considers the semantic

dependencies within a program. For example,

introducing a statement assigning a value to a variable

may adversely impact subsequent statements using the

value of that variable. We believe these impacted

statements (i.e., the change impacts) are extremely

helpful in detecting or predicting faults. A semantic

approach provides us with an inherently deeper

understanding of both the meaning and the implications

of changes [19].

To evaluate the effectiveness of change impact in

fault detection and prediction, we conduct a local data-

flow analysis of the change history of a successful

industry project, the 5ESS system. For each sampled

change, we identify its impact by program slicing along

the variable def-use chains. We group changes

according to change size and compare the size and fault

density of change impacts and changes themselves

across groups. In this study, we want to address three

questions: for small changes and large changes,

1) Is there any difference in the size of their

impacts?

2) Is there any difference in the ratio of impact

size to change size?

3) Is there any difference in the faults densities in

change impacts and in change themselves?

Section 2 gives an overview of the identification of

semantic change impact by local data-flow analysis.

The context for this study is discussed in Section 3.

Section 4 presents the experimental design and its

results. Validity issues are discussed in Section 5.

Related research is discussed in Section 6. Finally, we

summarize our study and propose future work in

Section 7.

2. Semantic Impacts of Source Code

Changes

To identify the impact of source code changes, we

combine local data-flow analysis
1
 and program slicing.

Local data-flow analysis discloses the internal

dependencies between semantic structures in a program

while program slicing identifies semantic structures

impacted by changes. Figure 1 illustrates our semantic

analysis of change impact.

Given two versions (the first is the original version,

the second is the changed version), we first calculate

the control flow graph for each version. From each

control flow graph, we identify the dependencies based

1
 “Local data-flow analysis” means we only analyze

dependencies within the local context, not the transitive

closure that includes all callee functions. See [25] for

further clarification.

on variable def-use pairs. Each identified local data-

flow dependency is represented as a triple (var: def,

use), where var is the variable on which the

dependence is built, def is the line that defines variable

var, and the use line uses the variable defined at def

line. The dependences in version v1 are {(a: 1, 3), (b:

2, 4), (i: 3, 5), (j: 4, 5)}.

With the variable def-use dependency analysis on

the two versions, the semantic impact of a change can

be calculated by forward slicing from the changed

lines. In this example, change v1�v2 modified Line 1

from “a = 0” to “a = 1”. According to the variable def-

use chains, {(a: 1, 3), (i: 3, 5)}, Line 3 and 5 are

impacted. So the semantic impact of change v1�v2 is

{3, 5}.

3. Study Context

The data in this study comes from the change and

version management history of the Office Automation

(OA) subsystem in 5ESS, an ultra-large-scale,

successful industrial project.

Figure 2. Change and version management

repositories of 5ESS

1: a = 0;

2: b = 0;

3: i = a + 2;

4: j = b * 3;

5: k = i + j;

a

b

j

i

v1

1: a = 1;

2: b = 0;

3: i = a + 2;

4: j = b * 3;

5: k = i + j;

a

b

j

i

v2

Figure 1. Semantic analysis on change: v1����v2

The 5ESS change history has been widely used

for various studies, such as inferring change effort from

configuration management database [7], automatically

extracting reasons for changes [15], studying the

semantic impact of parallel changes and small changes

[20] [21]. Such a widely used data source increases the

content validity of our study.

3.1 Change and Version Management

Repositories

In 5ESS, changes are managed in a layered

hierarchy (Figure 2): Feature, Initial Modification

Request (IMR), Modification Request (MR) and delta.

A feature is the fundamental unit of extension to the

system. Each feature is implemented by a set of IMRs

that represent problems to be solved. An IMR is a

change for fixing a fault, perfecting or improving some

aspect of the system, or adding new features to the

system. In 5ESS, IMRs are recorded in the IMR

Tracking System (IMRTS).

Each IMR is implemented by one or more MRs.

Each MR represents a solution, or part of a solution, to

an IMR’s problem. An MR is usually owned by one

developer and can represent all or part of the

developer’s contribution to the solution to an IMR.

Information about MRs is kept in an ECMS [26]

database. For each MR, ECMS records the data such as

the date it was opened and closed, its developer, and a

short text abstract of the change purpose.

In the context of a MR, every change made to a file

was recorded as a delta in SCCS [23]. A delta records

the actual lines added or deleted in a file. For each

delta, the ECMS also record its date, the developer,

and the MR it belongs to.

The data used in this study are: the lines added or

deleted on source code files and the purpose for the

changes. These data can be retrieved from the ECMS

and SCCS system.

3.2 Change Classification

Changes can be classified based according to the

purpose of the change. In our study, the purpose-based

classification of MRs was derived from the work by

Mockus and Votta [15]. They classified MRs according

to the keywords in the textual abstract of a change. For

example, if keywords like “fix,” “bug,” “error,” and

“fail” were present, the change was classified as

corrective. There are four classes of changes:

• Inspection changes: found in code

inspections.

• Perfective changes: changes to improve

performance, make a piece of code more

maintainable, or generally improve the quality

of the code.

• Adaptive changes: changes to add new

features and functionality into the system.

• Corrective change: changes to fix faults.

Given a change, its class is the class of the MR it

belongs to. For example, a Corrective MR represents

one fault and all the changes belonging to a Corrective

MR are Corrective changes for that fault.

In this study, Corrective changes are used to identify

faults. Matching Corrective changes are used as a

metric to evaluate fault prediction capabilities. Details

are discussed in Section 4.2.

3.3 Implementation Issues

The implementation of the data dependency

calculation and program slicing is based on

GrammaTech’s CodeSurfer [5]. The C compiler is

Visual C++ 6.0. For the variables used in def-use

analysis, we count both pointer variables and non-

pointer variables. For pointer analysis, we select

CodeSurfer’s option that distinguishes individual fields

in a referenced structure and allow Codesurfer to

perform pointer analysis.

4. Study and Results

To address the three questions mentioned before, we

propose three hypotheses:

1) H1: Large changes impact more lines than

small changes;

2) H2: Large changes have a lower impact size to

change size ratio than small changes;

3) H3: For fault density of impacted code, large

changes are higher than small changes; but for

fault density of changed code, large changes

are lower than small changes. Fault density of

changed or impacted code is higher than that

of the code fragments that are neither changed

nor impacted by changes.

4.1. Constructs

To evaluate these three hypotheses, we need to

define constructs to represent change, change impact,

and fault:

Change: Change has different meanings in different

contexts. In this study, change is represented as the

difference in lines between the old version and the new

version. Given a change, change size is the number of

the lines added, deleted, and modified in the change.

But, SCCS system only records the number of lines

inserted or deleted during a change. Modifications to

the existing lines are tracked as old lines being replaced

by new lines (delete and insert). We use the maximum

of added and deleted lines as change size.

Change impact: Given a change, its impact is

represented as the lines that have local data

dependencies on changed lines. According to the

variable def-use chains, the impact of a change is

identified by forward slicing from the changed lines.

Impact size is the number of lines in a change impact.

Fault: A fault is the collection of all lines changed

in a Corrective type change.

4.2. Studies

In this study, 273 changes were sampled from four

modules in 5ESS change repository. The size of each

version is around 1000 lines. All the changes are

grouped according to change size. For all groups, their

distributions of different change purposes (adaptive,

corrective, and perfective) are very similar.

To evaluate the three hypotheses, we performed

three studies to compare these groups according to

following three metrics: impact size, ratio of impact

size to change size, and fault density.

4.2.1 Impact size

According to the sampled changes and their

impacts, Figure 3 shows the distribution of impact size

for each group. The x-axis is change size and the y-axis

is impact size. For each group, the vertical line is the

box-plot representation of the distribution of impact

size within that change-size group. On each vertical

line, the box shows the central 50% of the distribution.

The upper and lower ends of the box mark the upper

and lower quartiles. The bold dot shows the mean of

the distribution. The solid horizontal line in the box

shows the median of the distribution. The dashed

vertical lines attached to the box indicate the tails of

the distribution. The vertical lines above and below the

box are the maximum and minimum. This figure shows

that, with the increase of the change size, the change

impact size also increases accordingly. For small

changes that modified less than 5 lines, the median and

mean of their impact size are 0 and 2.587413. For large

changes modifying more than 100 lines, the median

and mean of their impact increase to 42 and 60.5.

For all sampled changes, statistical analysis on their

change size and impact size shows that they are

strongly correlated. Their correlation coefficient is R =

0.75, with a very high significance p <= 3.24e-48. In

the t-test for the significance of the coefficient, t =

18.76 with Degrees of Freedom = 271.

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 0

0 ~ 5 5 ~ 1 0 1 0 ~ 2 0 2 0 ~ 3 0 3 0 ~ 5 0 5 0 ~ 1 0 0 > 1 0 0

c h a n g e s iz e

im
p

a
c
t

s
iz

e

 |

Figure 3. Distribution of impact size.

The results from statistical analysis and Figure 3

support hypothesis H1: large changes impact more

lines than small changes.

This result supports our previous study on small

changes [21]. In the change history of this subsystem of

5ESS, less than 4% of small (one-line) changes result

in faults. According to the result from H1, impacts of

small changes are also small. Because there is little

effect on the semantics of the program, small changes

are not likely to introduce faults.

4.2.2 Ratio of impact size to change size

For each group, we also calculate the ratio of impact

size to change size. Figure 4 illustrates the results. The

x-axis is the change size and the y-axis is the ratio of

impact size to change size. The x and y coordinate of

each point represents the average of change size and

ratio for each group. The trend shows that, with the

increase of change size, the ratio goes down quickly.

For changes less than 10 lines, their impact size is

larger than change size. For changes around 70 lines,

the impact size is only half the change size. Statistical

analysis shows a nearly linear relation between change

size (on a logarithmtic scale) and the ratio of impact

size to change size. Their correlation coefficient is R =

-0.951, p <= 0.00103. In the t-test for the significance

of the coefficient, t = 6.874 with Degrees of Freedom =

5

The results of our statistical analysis and Figure 4

support hypothesis H2: Large changes have lower

impact size to change size ratio than small changes.

The relative small impact size suggests that, to detect

or predict faults in large changes, checking the change

impact is cheaper than checking the change itself.

This result also discloses the internal interference

phenomena of large changes. For a large change, the

impacts of different changed lines highly overlap with

each other. In a program, a change on one line usually

touches at least one variable def-use chain. With the

increase of change size, more and more variable def-

use chains are touched. However, the size of change

impact, the union of all lines in all touched variable

def-use chains, increases very slowly. For changes less

than 5 lines, the impact size is larger than change size,

and their impact-change ratio is 1.47. For changes less

than 100 lines and greater than 50 lines, the impact size

is much smaller than change size, their ratio is only

0.49. With the increase on change size, more and more

lines are shared by the impacts of different changed

lines. Since more and more affected variable def-use

chains overlap or converge, their interference degree

becomes higher and higher. According to the trend in

Figure 4, the interference within large changes is very

significant.

4.2.3 Fault density

To evaluate the effectiveness of change impact in

fault prediction, we compare the fault density in

impacted code with changed code across the seven

groups.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 10 100 1000

change size (LOC in logarithmatic scale)

im
p

a
c
t

s
iz

e
/
c
h

a
n

g
e
 s

iz
e

Figure 4. Ratio of impact size to change size

 Identify Fault in change, impact and other parts

To find faults introduced by a change, we search for

Corrective MRs subsequent (in time) to this change in

ECMS. Then, in SCCS, we identify faults by the code

fragments changed in deltas belong to these Corrective

MRs.

Given a change, whatever Corrective or not, we

divide it into two sets of source code lines: added lines

and deleted lines. Modified lines can be defined as

added new lines and removed old lines.

For a Change c: Vi�Vj,

Added-lines(c) = {Line n | Line n exist in version Vj

but not in version Vi};

Deleted-lines(c) = {Line n | Line n exist in version

Vi but not in version Vj};

Impacted-lines(c) = {Line n | Line n in version Vj

and Line n in forward slicing of change c}.

Other-lines(c) = {Line n | Line n in version Vj} -

Added-lines(c) - Impacted-lines(c).

Given a Change c and a subsequent Corrective MR

m, the fault in change, its impact, and other parts are

defined as following:

Change-Fault-Match(c, m) = Added-lines(c) ∩

Deleted-lines(m).

Impact-Fault-Match(c, m) = Impacted-lines(c) ∩

Deleted-lines(m).

Other-Fault-Match(c, m) = Other-lines(c) ∩

Deleted-lines(m).

The intersections are calculated by textual matching

source code lines.

If Change-Fault-Match(c, m) ≠ Ø, a fault is found

in Change c. It is same while searching fault in change

impact and other parts. Note that we do not capture

faults of omission (that is, faults that are corrected only

by adding lines); deleted lines represent changes to fix

faults.

Compare fault density of change, impact and other

parts

With faults identified in change, impact and other

parts, we calculate fault density for each of them. For

each change, the ratio of fault size to impact size is the

fault density of the impact; the ratio of fault size to

change size is the fault density of the change itself; the

ratio of fault size to the size of these code fragments is

the fault density of other parts.

Figure 5 illustrates the fault density of change

impact and change itself according to size groups. The

x-axis is the change size while the y-axis is fault

density. With the increase of change size, the fault

density in change impact increases and fault density in

change itself decreases. For changes less than 5 lines,

their average change size is 1.5 lines and the fault

density in their change impact is only 3.7%, while fault

density in change itself is about 9.1%. For changes less

than 100 lines and greater than 50 lines, their average

change size is 70 lines. Their fault density in change

0%

2%

4%

6%

8%

10%

1 10 100 1000

change size (LOC in logarithmatic scale)

fa
u

lt
 d

e
n

s
it

y

 X

change

impact

other parts

Figure 5. Fault density in change and impact.

impact increases to 7.1%. But the fault density in

change itself drops to 4.6%.

Figure 5 also shows that, although the fault density

in change and its impact varies according to change

size, both of them are higher than fault density parts

that are not changed or impacted. For all change

groups, the fault densities in other parts are always

around 4%. It is roughly equal to the lowest fault

density of changed or impacted code of all change size

groups.

We performed statistical analysis on the correlation

between change size (on a logarithmic scale) and the

ratio of impact fault density to change fault density.

Their correlation coefficient is R = 0.92, p <=

0.003339. In the t-test for the significance of the

coefficient, t = 5.351 with Degrees of Freedom = 5

The results of our statistical analysis and Figure 5

support hypothesis H3: for fault density in change

impacts, large changes are higher than small changes;

but for fault density in the change themselves, large

changes are lower than small changes. The high fault

density in change impact suggests that, to detect or

predict faults in large changes, checking the change

impact is more effective than checking the change

itself.

Combining hypothesis H2 and H3, we come to a

conclusion: change impacts can be complementary to

changes themselves in detecting or predicting faults.

For large changes, checking change impact is efficient

because of its relatively small size and high density; for

small changes, checking the change themselves is more

efficient. Checking changes or their impacts is more

efficient than checking other parts.

4.3. Result Analysis

Our study shows that large changes are dangerous,

not only because of the large change scope, but also for

the high fault density in their impacts. It is more severe

in that change impacts are not as easily identified as

changes themselves.

Because of the high internal interference found in

impacts of large changes, we suggest that internal

interference contributes to the fault density of change

impact. In a large change, modified lines are distributed

across a large scope and their impacts highly overlap

with each other. It is difficult for a developer to

identify all of the impacts and their high degree of

interference.

Statistical analysis on the relation between internal

interference and fault density in change impact also

supports our suggestion. We use the ratio between

change size to impact size as the metric for internal

interference. A larger ratio value means higher internal

interference. Figure 6 shows this result. The x-axis is

the ratio of change size to impact size and the y-axis is

the fault density in change impact. The x and y

coordinate of each point represents the average of

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

0 0.5 1 1.5 2 2.5 3 3.5 4

change size/impact size

fa
u

lt
 d

e
n

s
it

y
 i

n
 c

h
a

n
g

e
 i

m
p

a
c

t

 Figure 6. Relation between internal interference and fault density in change impacts.

change-impact ratio and fault density of each group.

The trend shows that, with the increase change-impact

ratio (interference), the fault density in change impact

increases. For low interference where the ratio is 0.67,

the fault density is less than 4%. For high interference

where the ratio is 3.6, the fault density is almost 8%.

The correlation analysis between change-impact ratio

and fault density shows that their correlation

coefficient is R = 0.877, p <= 0.01149. In t-test for the

significance of the coefficient, t = 4.081, with Degrees

of Freedom = 5.

There might be multiple reasons for large change

with small impact. For example, for a larger size

change, its impact, which is a subset of the unchanged

code fragment, is likely to be smaller because we only

analyse change and its impact locally, within a

function. However, whatever the actual reason is, the

high ratio between change size to impact size indicates

that large changes are more dangerous than expected.

5. Validity Analysis

To analyze the soundness of this experiment, we

discuss its construct, internal, and external validity.

Construct validity concerns in our studies center

around the identification of changes and faults. In this

experiment, changes are identified by textual

comparison and change impacts are identified by

program slicing along the variable def-use chains. Both

of them are widely used constructs in program analysis.

Identification of changes by textual comparison can

introduce false positives. For example, breaking a

statement from one line into two lines is a change

according to text comparison. But such changes have

no syntactic or semantic affect. However, we found

such changes often when we manually checked our

change impact analysis results. Faults are identified by

the MR classification tools [15] with reasonable

reliability. Previous studies [20] [21] showed that such

classification is reasonable.

The data used in our study comes from a real

industrial project and can be considered completely

reliable. All the data in our study comes from an

original history without any artificial instrumentation or

modification.

Our fault identification approach might introduce

some noise. If a fault is found in the impact of a

change, the faulty code should also match at least one

line in the previous change that introduced the faulty

code into code base. One fault is counted twice, one in

change and one in change impact. Another source of

noise is that a fault in the impact of a change may not

be directly related to this change. We believe that this

is unlikely as corrective MRs are written only for a

single faults.

To improve accuracy, we group multiple changes

that belong to the same MR into to one change while

matching with Corrective MRs. Grouping changes

according to their MR is reasonable because an MR is

a logic group of changes made by one developer to

solve one task (or in the case of corrective MRs, one

fault).

Although the faults found in the impact of a change

maybe not directly be related to this change, it is still

worth checking it. First, its fault density is high and it is

almost impossible for a developer to check all previous

changes while submitting a new change. Second, it is

helpful to find change interference. If a piece of code

added by one change was impacted by another change,

the two changes interfere with each other. Our previous

study [24] shows that such interferences between

changes are important in predicting potential faults.

With respect to internal validity, we believe that our

results are consistent with our previous studies. For the

semantic impact of changes, one would intuitively

expect that small changes usually touch few semantic

entities and affect only a small part of a program. In

this study, the statistical analysis of correlation

coefficients, significant levels, and t-tests shows a

strong correlation between change size and change

impact size. The matching between change impact and

faults has already been successfully used in the

previous study on change interference [24]. These

consistencies are strong support for the internal

validity. Thus, we do not believe there are alternative

explanations for our results.

Although our study is based on the history data in a

pessimistic version control system, SCCS, this

approach can be easily extended to optimistic version

control systems, such as Concurrent Versions System

(CVS), which is widely used in open source projects.

CVS can supply the same kinds of data as SCCS for

our change impact analysis algorithm.

A threat to the validity of our study is that 5ESS is a

very large-scale, real-time project with a large number

of developers who are geographically distributed. We

argue, however, that the subsystem we studied is

perhaps by itself more representative of a typical large

project. It is developed with programming languages

(C and C++) under a UNIX environment. Both of them

are very common in software developments. For a large

project like 5ESS, well-trained developers and well-

organized development processes, organization, and

management are required.

Replicating our study is not difficult under other

change or version management systems. This study

needs two kinds of data: versions and delta information

(lines added, deleted or changed) and change

classification. Our data comes from two repositories:

the version management system (SCCS) and change

management system (ECMS). Like SCCS, current

version management systems, such as CVS and

Subversion, can support versions and delta information.

To classify change according to purposes, the text

explanations of current version management systems

can be used. Automatic classification approach in

Mockus and Votta [15] can also be applied on these

new version management systems. A widely used

tracking system, such as BugZilla, can also be used to

classify changes, especially the corrective changes for

bug-fixing. In our study, the classification is based on

MRs, a group of changes made together for a same

purpose. Although MRs are not supported in CVS or

Subversion, there are still other approaches to group

changes. Subversion supports change transactions.

Although CVS does not support transactions, other

effective approaches, such as sliding windows, have

been used to identify transactions. With the help from

current version and change management systems, our

study can be easily replicated.

6. Related Work

In studies on semantic program differencing,

dependence graphs and program slicing are widely

used. Horwitz [10] performs semantic program

differencing by partitioning the components of the two

programs according to equivalent behaviors. The

algorithms based on Horwitz [10] can provide high

precision semantic differencing. Binkley [1] uses

system dependence graph and inter-procedural slicing

to identify the impacted parts of source code changes.

And Yang et al. [28] increased the soundness of

semantic conflict detection with semantic preserving

transformations. These semantic differencing

approaches are based on the comparison on the whole

dependency graph. Their workload is heavy and

difficult to use in practice. While performing analysis

on whole programs, the false positive in one procedure

will be propagated and amplified. Our change impact

identification approach only focuses on local data-flow

analysis. The cost is very inexpensive. Limiting our

analysis scope to local context can reduce the false

positive rate. Such a compromise can reduce the cost

and improve the applicability in large programs. The

benefits of our approach have been demonstrated in

Shao et al. [24].

Dynamic slicing is also an important approach in

impact analysis. Program chopping [8] can minimize

possible fault inducing code fragments. Compared with

static program slicing we used in this study, dynamic

slicing can improve the precision for pointer analysis

and reduce false positives in semantic interference

detection. However executable versions are required

beforehand. This imposes a significant build overhead

in a large system like 5ESS. Further, 5ESS’s need for a

complex hardware context may make this approach

virtually impossible.

Abstract-syntax-tree-based approaches were

proposed by Fluri et al. [4], Raghavan et al. [22], and

Yang [27]. Given two programs, their abstract syntax

trees are compared with tree-matching algorithms.

These approaches identify changes on syntax entities,

but do not calculate impacts from changes.

Similar to our work, Jackson and Ladd [11] check

the variable def-use dependency with a program.

However changes are identified only by added or

deleted dependencies. Impacted dependencies are not

counted.

In empirical evaluation to semantic differencing

algorithms, Binkley et al. [2] applied the system

dependence graph and inter-procedural slicing based

semantic differencing algorithm on 10 programs. On

average, the identified impact is 37% less than the

whole program. The relative small size of change

impact supports the application of semantic

differencing in practical use. However, this work does

not consider the affect of change size on change

impact, and does not relate change impact with faults.

The relations between change size and faults have

been studied in Graves et al. [6], Hassan and Holt [9],

Mockus and Weiss [16], Nagappan and Ball [17],

Ostrand et al. [18], and Purushothaman and Perry [21].

The risks of large changes were also observed in these

studies. But all of them are based on changes

themselves, rather than impact of changes.

Local data-flow analysis was used in our previous

work to detect semantic interference and predict faults

[24]. However, we studied change impact and its

relation to faults according to change intervals rather

than change size as we have done in this study. The

interference identified in our previous study is external

interference, happening between changes. Given two

changes on the same file, they have interference if their

impacts have overlap. The interference found in current

study is internal interference. It happens within the

impact of a single change.

Although external interference and internal

interference come from difference sources, both of

them are related to faults. External interference is

related to faults because of the short interval between

changes. It is difficult for a developer to fully

understand the impact of all the previous changes made

by others in a short interval. So the interference

between short interval changes is dangerous and likely

to introduce faults. Internal interference is related to

faults because of large change size. Modified lines are

distributed across a large scope and their impacts

highly overlap with each other. It is difficult for a

developer to identify all of the impacts and their

interferences. In large changes, the internal interference

is dangerous and is very likely to introduce faults.

7. Conclusions and Future Work

One of the fundamental problems in software

evolution is that changes often introduce faults. Worse,

changes to fix faults often introduce new faults. Our

primary goal in our empirical studies of change is to

understand these issues and what factors contribute to

the occurrence of faults in software evolution. We

believe that semantic-based approaches offer the most

cogent means both to understanding change and to

detecting and/or predicting faults.

Source code change histories provide abundant

resources for understanding the evolution of software

systems. Based on the source code involved in changes,

many studies have been performed and interesting

results have been generated. However, most of them

are at the textual level or syntactic level, and do not

consider internal dependencies at the semantic level.

To apply semantic analysis to source code change

histories, we performed an empirical study to use local

data-flow analysis on the history of a successful

industry project. Our studies show that:

• Large changes impact, not surprisingly,

more lines than small changes; but

• Large changes have smaller impact size to

change size ratio than that of small

changes; and

• For fault density of impacted code, large

changes are higher than small changes; but

for fault density of changed code, large

changes are lower than small changes.

Fault density in change or its impact is

higher than fault density in other parts.

For large changes, our experiment found a high

degree of interference within their impacts. It is

difficult for a developer to identify all of the impacts

and their high degree of interference. We suggest that

the high degree internal interference contributes to the

high fault density in the impact of large changes.

The high fault density found in impacts aggravates

the danger of making large changes. For large changes,

the fault density in changes themselves has already

become very dangerous. Lezak et al. [14] suggest that a

component should be rewritten if more than 25% of the

code is changed. The high fault density in impacts

intensifies the danger of large changes because change

impacts are not as easily identified as the changes

themselves.

The high fault density in the impact of large changes

suggests some future research topics. To detect or

predict more faults, efficient calculation of the

semantic impact of large change becomes important.

To disclose the internal mechanisms of high fault

density, more semantic analysis on change impact is

required, especially on large changes. Dynamic

analysis techniques, such as dynamic slicing, might

also be introduced to provide more precise impact

identification and fault prediction.

8. Acknowledgements

We thank Harvey Siy, University of Nebraska,

Omaha, for his help on the change management system

of 5ESS. This work was supported in part by NSF

CISE Grant IIS-0438967.

9. References

[1] D. Binkley, “Using semantic differencing to reduce the

cost of regression testing”, Proc. of IEEE International

Conference on Software Maintenance (ICSM'92), Orlando,

FL, USA, Nov. 1992, 41-50.

[2] D. Binkley, R. Capellini, L.R. Raszewski, and C. Smith,

“An implementation of and experiment with semantic

differencing”, Proc. of IEEE International Conference on

Software Maintenance (ICSM'01), Florence, Italy, Nov.

2001, 82-91.

[3] S. Breu, T. Zimmermann, “Mining Aspects from Version

History”, 21st IEEE International Conference on Automated

Software Engineering (ASE'06), 2006, 221-230.

[4] B. Fluri, M. Wursch, M. Pinzger, and H.C. Gall, “Change

Distilling:Tree Differencing for Fine-Grained Source Code

Change Extraction”, IEEE Transactions on Software

Engineering, Special Issue on Mining Software Repositories,

Vol. 33, Issue 11, Nov. 2007, 725-743.

[5] GrammaTech, Inc. http://www.grammatech.com/

[6] T.L. Graves, A.F. Karr, J.S. Marron and H. Siy,

“Predicting Fault Incidence Using Software Change

History,” IEEE Transactions on Software Engineering, Vol.

26, No. 7, July 2000, 653-661.

[7] T.L. Graves, A. Mockus, “Inferring Change Effort from

Configuration Management Databases”, Proc. of the Fifth

International Symposium on Software Metrics, IEEE, 1998,

267-273.

[8] N. Gupta, H. He, X. Zhang, and R. Gupta, “Locating

Faulty Code Using Failure-Inducing Chops”, Proc. of the

20th IEEE/ACM International Conference on Automated

Software Engineering (ASE 2005), Long Beach, California,

Nov. 2005, 263-272.

[9] A.E. Hassan, and R.C. Holt, “The top ten list: Dynamic

fault prediction”, Proc. of IEEE International Conference on

Software Maintenance (ICSM'05), Budapest, Hungary, Sep.

2005, 263-272.

[10] S. Horwitz, “Identifying the Semantic and Textual

Differences between Two Versions of a Program”, Proc. of

the ACM SIGPLAN conference on Programming language

design and implementation (PLDI’90), New York, June

1990, 234-245.

[11] D. Jackson, and D.A. Ladd, “Semantic Diff: A Tool for

Summarizing the Effects of Modifications”, Proc. of IEEE

International Conference on Software Maintenance

(ICSM'94), Nov. 1994, pages 243-252.

[12] M. Kim, D. Notkin, D. Grossman, “Automatic Inference

of Structural Changes for Matching across Program

Versions”, Proc. of the International Conference on

Software Engineering (ICSE'07), 2007, 333-343.

[13] P. Knab, M. Pinzger, A. Bernstein, “Predicting defect

densities in source code files with decision tree learners”,

Proc. of the 2006 international workshop on Mining

software repositories (ICSE'06), Shanghai, China, 119 - 125.

[14] M. Leszak, D.E. Perry, and D. Stoll, “Classification and

evaluation of defects in a project retrospective”, Journal of

Systems and Software Vol. 61, Issue 3, April 2002, 173-187.

[15] A. Mockus, and L.G. Votta, “Identifying Reasons for

Software Changes Using Historic Databases”, Proc. of IEEE

International Conference on Software Maintenance

(ICSM'00), San Jose, CA, USA, October. 2000, 120-130.

[16] A. Mockus, and D.M. Weiss, “Predicting risk of

software changes”, Bell Labs Technical Journal 5, 2, 2000,

169-180.

[17] N. Nagappan, and T. Ball, “Use of relative code churn

measures to predict system defect density”, Proc. of

International Conference on Software Engineering

(ICSE’05), Saint Louis MO, May 2005, 284- 292.

[18] T.J. Ostrand, E.J. Weyuker, R.M. Bell, “Predicting the

location and number of faults in large software systems”

IEEE Transactions on Software Engineering, Vol. 31, Issue

4, April 2005, 340-355

[19] D.E. Perry, “Software interconnection models”, Proc. of

the 9th International Conference on Software Engineering

(ICSE’87), Monterey, CA, March, 1987, 61- 69.

[20] D.E. Perry, H.P. Siy, and L.G. Votta, “Parallel Changes

in Large Scale Software Development: An Observational

Case Study”, ACM Transactions on Software Engineering

and Methodology, Vol. 10, No. 3, July, 2001, 308-337.

[21] R. Purushothaman, and D.E Perry, “Toward

Understanding the Rhetoric of Small Source Code Changes”,

IEEE Transactions on Software Engineering, Special Issue

on Mining Software Repositories, Vol. 31, No. 6, June 2005,

511-526.

[22] S. Raghavan, R. Rohana, D. Leon, A. Podgurski, V.

Augustine, “Dex: A Semantic Graph Differencing Tool for

Studying Changes in Large Code Bases”, Proc. of IEEE

International Conference on Software Maintenance

(ICSM'04), September 2004, 188-197.

[23] M.J. Rochkind, “The Source Code Control System”,

IEEE Transactions on Software Engineering, Vol. SE-1, No.

4, December 1975, 364-370.

[24] D. Shao, S. Khurshid, and D.E. Perry, “Evaluation of

semantic interference detection in parallel changes: an

exploratory experiment”, Proc. of the 23rd IEEE

International Conference. on Software Maintenance

(ICSM’07), Paris, France, October 2007, 74-83.

[25] G.L. Thione, and D.E. Perry, “Parallel Changes:

Detecting Semantic Interferences”, The 29th Annual

International Computer Software and Applications

Conference (COMPSAC 2005), Edinburgh, Scotland, July

2005, 47-56.

[26] P. A. Tuscany, “Software Development environment for

Large Switching Projects”, Proc. of the 6th International

Conference on Software Engineering, Tokyo, September

1992, 58-67.

[27] W. Yang, “Identifying syntactic differences between two

programs”, Software - Practice & Experience, Vol. 21, Issue

7, July 1991, 739 - 755.

[28] W. Yang, S. Horwitz, and T. Reps, “A program

integration algorithm that accommodates semantics-

preserving transformations”, ACM Transactions on Software

Engineering and Methodology, Vol. 1, No. 3, July 1992,

310-354.

[29] T. Zimmermann, A. Zeller, P. Weissgerber, S. Diehl,

“Mining version histories to guide software changes”, IEEE

Transactions on Software Engineering, Vol. 31, Issue 6,

June 2005, 429 - 445.

