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Abstract

In this paper we introduce a new class of double coset Cayley digraphs induced by quasigroups. These graphs can be
considered as the generalization of Double Coset Cayley Digraphs induced by loops. Moreover, various graph properties
are expressed in terms of algebraic properties. This did not attract much attention in the literature.
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1. Introduction

A binary relation on a set V is a subset E of V × V . A digraph is a pair (V, E) where V is a non-empty set (called vertex
set) and E is a binary relation on V . The elements of E are the edges of the digraph. An edge of the form (x, x) is called a
loop. A walk in a di-graph is an alternating sequence W = x0, e0, x1, e1, . . . , xk−1, ek−1, xk where xi are the vertices and ei

is an edge from xi to xi+1. A walk W = x0, e0, x1, e1, . . . , xk−1, ek−1, xk is called a path, if all the vertices x0, x1, . . . , xk are
distinct. We will use the notation (x0, x1, x2, . . . , xk) for the path W = x0, e0, x1, e1, . . . , xk−1, ek−1, xk. A digraph (V, E) is
called (i) trivial if E = ∅, (ii) reflexive if each vertex has a loop, (iii) symmetric if E = E−1, (iv) transitive if E ◦ E ⊆ E, (v)
a hasse diagram if for every positive integer n ≥ 2 and every v0, v1, . . . , vn of V , (vi, vi+1) ∈ E for all i = 0, 1, 2, . . . , n − 1,
implies (v0, vn) < E, (vi) complete if E = V × V , (vii) connected (some would say strongly connected) if v is connected to
u for all u, v ∈ V , (viii) locally connected iff for every pair of vertices u, v ∈ V there is a path from v to u whenever there is
a path from u to v, (ix) semi connected for every pair of vertices u, v, there is a path from u to v or a path from v to v, (x)
vertex-transitive if, given any two vertices a and b of V , there is some graph automorphism f : V → V such that f (a) = b,
that is, a digraph is vertex-transitive if its automorphism group acts transitively upon its vertices (C. Godsil & R. Gordon,
2001). Whenever the word graph is used in this paper it will be referring to a digraph unless otherwise stated.

A non-empty set G, together with a mapping ∗ : G × G −→ G is called a groupoid. The mapping ∗ is called a binary
operation on the set G. If a, b ∈ G, we use the symbol ab to denote ∗(a, b). A groupoid (G, ∗) is called a quasigroup, if
for every a, b ∈ G, the equations, ax = b and ya = b are uniquely solvable in G (H. B. Richard, 1971). This implies both
left and right cancelation laws.

Let G be a group and let S be a subset of G. The Cayley di-graph of G with respect to S is defined as the di-graph
X = (G, E), where E is a subset of G ×G, such that (x, y) ∈ E if and only if x−1y ∈ S . The cayley graph of G with respect
to S is denoted by Cay(G, S ). The subset S is called the connection set of X. That is, Cayley di-graph Cay(G, S ) has as
its vertex-set and edge-set, respectively, V = G and E = {(x, y) : y = xz for some z ∈ S }(E. Dobson, 2006, p. 105–150).

Theorem 1.1 Let G be a group and let A and B be subgroups of G. Let D and D∗ be subsets of G. Let G/[A, B] denote
the collection of all double cosets of A and B in G. Let

RD,D∗ = {(AxB, AyB) : y = z1xz2 for some z1 ∈ ADA, z2 ∈ BD∗B}

Then
(
G/[A, B],RD,D∗

)
is a graph.

The graph defined in theorem 1.1 is called the double coset cayley digraph induced by groups (K. V. Anil, 2011, p. 747 –
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753). Observe that if A = B = D = {1}, then double coset cayley digraph
(
G/[A, B],RD,D∗

)
reduces to a Cayley di-graph.

So double coset cayley di-graphs are generalizations of cayley di-graphs.

In the paper entitled “A class of double coset cayley graphs induced by loops”(K. V. Anil, 2011, p. 1073 – 1084), K. V.
Anil generalized theorem 1.1 and prove that a class of double coset cayley di-graphs can be induced by loops. It is found
that a bigger class of double coset cayley di-graphs can be induced by quasigroups and analogous results are derived
concerning properties of the graphs and those of quasigroups. We start with the following definition

Definition 1.2 Let G be a quasigroup, and let A be a subset of G. Then A said to be a R associative (right associative)subset
of G, if for every x, y ∈ G, (xy)A = x(yA). This means, if x, y ∈ G and a ∈ A, then (xy)a = x(ya′) for some a′ ∈ A. Observe
that the R associative law not only allows to interchange the positions of parenthesis, the left most two elements should
be in G and they will be same on both sides, the rightmost element in the left hand side is in A and is changed to another
element a′ ∈ A as the right most element in the right side. Similarly, we can define L associative (left associative) subset
of G.

Lemma 1.3 Let A and B be R associative (L associative) subsets of a quasigroup G. Then AB is also R associative (L
associative).

2. Main Result

In this section we generalize the main result of K. V. Anil (International Journal of Algebra, 2011, 5(22), p. 1073-
1084) and prove that a bigger class of double coset Cayley digraphs can be induced by quasigroups. These graphs can
be considered as the generalization of double coset cayley di-graphs induced by loops. Moreover analogues results are
obtained between the properties of graphs and those of quasigroups. Let A, B and C be subsets of a quasigroup G, then
we may define the product ABC as follows:

ABC = {(ab)c : a ∈ A, b ∈ B and c ∈ C}

Theorem 2.1 Let G be a quasigroup and let A and B be non empty subquasigroups of G such that A is L associative and
B is R associative. Let G/[A, B] denote the collection of all double cosets of A and B in G. Let D and D∗ be subsets of G
such that D is L associative and D∗ is R associative. Let a and b be fixed elements in A and B respectively. Let

RD,D∗ = {(AxB, AyB) : (ay)b = (z1x)z2 for some z1 ∈ ADA, z2 ∈ BD∗B} .

Then
(
G/[A, B],RD,D∗

)
is a graph.

Proof: To see that
(
G/[A, B],RD,D∗

)
is a graph, we need only show that RD,D∗ is well defined. Let x, x′, y and y′ be any

four elements of G with AxB = Ax′B and AyB = Ay′B. Then we have

(ax′)b = (a1x)b1, for some a1 ∈ A and b1 ∈ B (1)

and
(ay′)b = (a2y)b2 for some a2 ∈ A and b2 ∈ B. (2)

If (AxB, AyB) ∈ RD,D∗ , then
(ay)b = (z1x)z2 for some z1 ∈ ADA and z2 ∈ BD∗B. (3)

Let z1 = (a3d1)a4 and z2 = (b3d2)b4, where a3, a4 ∈ A, b3, b4 ∈ B, d1 ∈ D and d2 ∈ D∗. Since A and B are subquasigroups
of G there exist unique elements a5 ∈ A and b5 ∈ B such that a5a = a2 and bb5 = b2. Therefore, equation (2) can be
written as:

(ay′)b = ((a5a)y)(bb5)
= (a6(ay))(bb5) for some a6 ∈ A (∵ A is L associative)
= a7((ay)(bb5)) for some a7 ∈ A (∵ A is L associative)
= a7(((ay)b)b6) for some b6 ∈ A (∵ B is R associative)
= a7(((z1x)z2)b6)
= a7((z1x)(z2b7)) for some b7 ∈ B (∵ B is R associative)
= a7((z1x)(((b3d2)b4)b7))
= a7((z1x)((b3d2)(b4b8)) for some b8 ∈ B (∵ B is R associative). (4)
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Since B is a subquasigroup of G, there exist unique elements b9, b10 ∈ B such that b4b8 = b9 and b1b10 = b3. Hence
equation (4) can be written as:

(ay′)b = a7((z1x)((b3d2)b9)
= a7((z1x)(((b1b10))d2)b9))
= a7((z1x)((b1(b10d3))b9)) for some d3 ∈ D∗ (∵ D∗ is R associative)
= a7((z1x)(b1(b10d3)b11))) for some b11 ∈ B (∵ B is R associative)
= a7((z1x)(b1z3)) where z3 = (b10d3)b11 ∈ BD∗B.

= a7(((z1x)b1)z4) for some z4 ∈ BD∗B (∵ BD∗B is R associative)
= (a8((z1x)b1))z4 for some a8 ∈ A (∵ A is L associative)
= ((a9(z1x))b1)z4 for some a9 ∈ A (∵ A is L associative)
= (((a10z1)x)b1)z4 for some a10 ∈ A (∵ A is L associative)
= (((a10((a3d1)a4))x)b1)z4

= ((((a11(a3d1)a4))x)b1)z4 for some a11 ∈ A (∵ A is L associative)
= (((((a12a3)d1)a4)x)b1)z4 for some a12 ∈ A (∵ A is L associative)
= ((((a13d1)a4)x)b1)z4 for some a13 ∈ A (∵ A is a subquasigroup ).

Since A is a subquasigroup of G there exits a unique element a14 ∈ A such that a4 = a14a1. Hence the above equation can
be written as:

(ay′)b = ((((a13d1)(a14a1))x)b1)z4

= (((((a15d4)a14)a1)x)b1)z4 for some a15 ∈ A, d4 ∈ D (∵ AD is L associative)
= (((z5a1)x)b1)z4 where z5 = (a15d4)a14 ∈ ADA

= ((z6(a1x))b1)z4 for some z6 ∈ ADA (∵ ADA is L associative)
= (z7((a1x)b1))z4 for some z7 ∈ ADA (∵ ADA is L associative)
= (z7((ax′)b))z4

= ((z8(ax′))b)z4 for some z8 ∈ ADA (∵ ADA is L associative)
= (((z9a)x′)b)z4 for some z9 ∈ ADA (∵ ADA is L associative)
= (((((a16d5)a17)a)x′)b)z4 where z9 = (a16d5)a17 ∈ ADA

= ((((a18(d5a17))a)x′)b)z4 for some a18 ∈ A (∵ A is L associative)
= (((a19((d5a17)a))x′)b)z4 for some a19 ∈ A (∵ A is L associative)
= ((a19(d6(a17a))x′)b)z4 for some d6 ∈ D (∵ D is L associative)
= (((a19(d6a20)x′)b)z4 where a20 = a17a ∈ A Since A is a subquasigroup
= (((a21d6)a20)x′)b)z4 for some a21 ∈ A (∵ A is L associative)
= ((z10x′)b)z4 where z10 = (a21d6)a20

= (z10x′)(bz11) for some z11 ∈ BD∗B (∵ BD∗B is R associative)
= (z10x′)(b((b12d7)b13)) where z11 = (b12d7)b13 ∈ BD∗B

= (z10x′)((b(b12d7))b14) for some b14 ∈ B (∵ B is R associative)
= (z10x′)(((bb12)d8)b14) for some d8 ∈ D∗ (∵ D∗ is R associative)
= (z10x′)((b15d8)b14) where b15 = bb12 (∵ B is a quasisubgroup)
= (z10x′)z12 where z12 = (b15d8)b14.

The above equation tells us that (Ax′B, Ay′B) ∈ RD,D∗ .

Similarly, if (Ax′B, Ay′B) ∈ RD,D∗ , then one can prove that (AxB, AyB) ∈ RD,D∗ . Hence
(
G/[A, B],RD,D∗

)
is a graph.

We are now ready to define double coset cayley di-graphs induced by quasigroups.

Definition 2.2 The graph defined in theorem 2.1 is called the double coset cayley graphs induced by quasigroups.

3. Examples

In this section, we give some interesting examples of double coset cayley graphs induced by quasigroups.
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Let G = {0, 1, 2, 3, 4, 5, 6, 7}. Define a binary operation in G as follows:

* 0 1 2 3 4 5 6 7
0 1 0 3 2 4 5 7 6
1 0 1 2 3 5 4 6 7
2 2 3 0 1 6 7 5 4
3 3 2 1 0 7 6 4 5
4 5 4 7 6 1 0 3 2
5 4 5 6 7 0 1 2 3
6 7 6 4 5 3 2 0 1
7 6 7 5 4 2 3 1 0

Under this operation G is a quasigroup.

1. Let A = {0, 1}, B = {0, 1, 2, 3}, D = {4, 5}, and D∗ = {6, 7}. We find that A and B are respectively L associative and
R associative subquasigroups of G. Furthermore, D and D∗ are respectively L associative and R associative subsets
of G. Take a = 0 in A and b = 2 in B. On examination we find that

G/[A, B] = {A0B, A4B} and RD,D∗ = {(A0B, A0B), (A4B, A4B)}.

The graphical representation of
(
G/[A, B],RD,D∗

)
is shown in figure 1(a).

2. Let A = {0, 1}, B = {0, 1, 2, 3}, D = {4, 5, 6, 7} and D∗ = {2, 3}. One can easily verify that A and B are respectively
L associative and R associative subquasigroups of G. Moreover, D and D∗ are respectively L associative and R
associative subsets of G. Take a = 0 in A and b = 2 in B. One can easily verify that

G/[A, B] = {A0B, A4B}, and RD,D∗ = {(A0B, A4B), (A4B, A0B)}.

The double coset cayley graph
(
G/[A, B],RD,D∗

)
is shown in figure 1(b).

3. Let A = B = {0, 1}, D = {4, 5, 6, 7} and D∗ = {2, 3}. It is not difficult to verify that A and B are both L and R
associative subquasigroups of G. Also D and D∗ are respectively L associative and R associative subsets of G.
Take a = 0 in A and b = 2 in B. We find that

G/[A, B] = {A0B, A2B, A4B, A6B},
RD,D∗ = {(A0B, A4B), (A0B, A6B), (A2B, A4B), (A2B, A6B),

(A4B, A0B), (A6B, A0B), (A4B, A2B), (A6B, A2B)}.

The corresponding double coset cayley graph is shown in figure 1(c).

4. Take the following subsets of G:

A = B = D = {0, 1} and D∗ = {2, 3, 4, 5, 6, 7}.

Observe that A, B and D are L as well as R associative subquasigroups of G and D∗ is a right associative subset of
G. We note that the set of all distinct double cosets of G relative to A and B is

G/[A, B] = {A0B, A2B, A4B, A6B}

If we take a = 0 in A and b = 0 in B, it is easy to verify that

RD,D∗ = {(A0B, A2B), (A0B, A4B), (A0B, A6B), (A2B, A0B),
(A2B, A4B), (A2B, A6B), (A4B, A0B), (A4B, A2B)
(A4B, A6B), (A6B, A0B), (A6B, A2B), (A6B, A4B)}.

A graphical representation of
(
G/[A, B],RD,D∗

)
is shown in figure 1(d).
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4. Corollaries

In this section, we prove some interesting relationship between the properties of
(
G/[A, B],RD,D∗

)
and those of quasi-

groups. Throughout we will suppose that G is a quasigroup, A is a L associative subquasigroup of G, B is a R associative
subquasigroup of G, D is a L associative subset of G, D∗ is a R associative subset of G, a is a fixed element in A and b is
a fixed element in B. We begin with the following lemma:

Lemma 4.1 If z ∈ ADA, t ∈ BD∗B, and x ∈ G then we have

(i) z = z1a for some z1 ∈ ADA, az ∈ ADA and za ∈ ADA for all a ∈ A.

(ii) t = bz2 for some z2 ∈ BD∗B, bt ∈ BD∗D and tb ∈ BD∗B for all b ∈ B.

(iii) (zx)t = (z∗((ax)b))t∗ for some z∗ ∈ ADA and t∗ ∈ BD∗B.

(iv) (z(ab))t = z∗t∗ for some z∗ ∈ ADA and t∗ ∈ BD∗B and zt = (u(ab))v for some u ∈ ADA, v ∈ BD∗B.

Proof: (i) Let z = (a1d1)a2 where a1, a2 ∈ A and d1 ∈ D. Since A is a subquasigroup, the equation xa = a2 has a unique
solution in A, say x = a3. Then z can be re-written as

z = (a1d1)(a3a)
= ((a4d2)a3)a for some a4 ∈ A, d2 ∈ D Since AD is L associative
= z1a, where z1 = ((a4d2)a3) ∈ ADA.

Proofs of the remaining results in (i) are trivial.

(ii) Proof is trivial.

(iii) Observe that, the element (zx)t can be written as:

(zx)t = ((z1a)x)t for some z1 ∈ ADA

= (z2(ax))t for some z2 ∈ ADA

= (z2(ax))(bt1) for some t1 ∈ BD∗B

= z3(((ax)b)t2) for some t2 ∈ BD∗B

= (z4((ax)b))t2 for some z4 ∈ ADA.

(iv) Proof is exactly similar to preceding one.

Let M and N be subsets of a quasigroup G and let a and b be fixed elements in G. We will use the following notations:

(1) [M|N]b
a = {x ∈ G : (ax)b = (z1x)z2 for some z1 ∈ M, z2 ∈ N}.

(2) MaNb = {x ∈ G : (a(ab))b = (z1x)z2 for some z1 ∈ M, z2 ∈ N}.

(3) [Ma|Nb] = {x ∈ G : (ax)b = z1z2 for some z1 ∈ M, z2 ∈ N}.

(4) [[M|N][b
a= {x ∈ G : (ax)b = (z1(z2 . . . (zn−1(zntn)tn−1)tn−1 . . .)t1 for some zi ∈ M, ti ∈ N}.

(5) [[MaNb]] = {x ∈ G : (a(ab))b = (z1(z2 . . . (zn−1(znxtn))tn−1 . . .)t1 for some zi ∈ M, ti ∈ N}.

(6) [M|N] = {z1(z2 · · · ((zn−1(zntn))tn−1) · · · t2)t1 : zi ∈ M, ti ∈ N, n = 1, 2, 3, . . .}.

Corollary 4.2 The graph
(
G/[A, B],RD,D∗

)
is an empty if and only if D = ∅ or D∗ = ∅.

Proof: Observe that
(
G/[A, B],RD,D∗

)
is trivial if and only if RD,D∗ = ∅. Since A and B are nonempty subquasigroups of

G, D = ∅ or D∗ = ∅.
Corollary 4.3 The graph

(
G/[A, B],RD,D∗

)
is a reflexive if and only if G = [(ADA)|(BD∗B)]b

a. Proof: Suppose that(
G/[A, B],RD,D∗

)
is a reflexive and let x ∈ G. Then (AxB, AxB) ∈ RD,D∗ . This implies that

(ax)b = (z1x)z2 for some z1 ∈ ADA and z2 ∈ BD∗B.

Therefore, we have G = [ADA|BD∗B]b
a. The converse is trivial.
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Corollary 4.4 If
(
G/[A, B],RD,D∗

)
is a symmetric graph , then [(ADA)a|(BD∗B)b] = (ADA)a(BD∗B)b.

Proof: First, assume that
(
G/[A, B],RD,D∗

)
is symmetric. Observe that

x ∈ [(ADA)a|(BD∗B)b]⇔ (ax)b = z1z2, for some z1 ∈ ADA, z2 ∈ BD∗B

⇔ (ax)b = (z∗1(ab))z∗2 for some z∗1 ∈ ADA, z∗2 ∈ BD∗B (by Lemma 4.1)
⇔ (AabB, AxB) ∈ RD,D∗

⇔ (AxB, AabB) ∈ RD,D∗( since RD,D∗ is symmetric)
⇔ (a(ab))b = (t1x)t2 for some t1 ∈ ADA, t2 ∈ BD∗B

⇔ x ∈ (ADA)a(BD∗B)b.

This implies that [(ADA)a|(BD∗B)b] = (ADA)a(BDB)b.

Corollary 4.5
(
G/[A, B],RD,D∗

)
is a transitive graph, then (ADADA)(BD∗BD∗B) ⊆ (ADA)(BD∗B).

Proof: Assume that
(
G/[A, B],RD,D∗

)
is a transitive graph. Then for all z1, z2 ∈ ADA, z3, z4 ∈ BD∗B, we have

(a(z1z3))b = ((a1z1))z3)b for some a1 ∈ A (∵ A is L associative)
= (z5z3)b for some z5 ∈ B (is by Lemma 4.1)
= z5(z3b1) for some b1 ∈ B (∵ B is R associative)
= z5z6 for some z6 ∈ B (by Lemma 4.1)
= (z7(ab))z8 for some z7 ∈ ADA, z8 ∈ BD∗B (by Lemma 4.1).

This implies that (A(ab)B, Az1z3B) ∈ RD,D∗ . Let t = z1z3. Then

(a((z2t1)z4))b = ((a2(z2t1))z4)b for some a2 ∈ A (∵ A is L associative)
= (((a3z2)t1)z4)b for some a3 ∈ A (∵ A is L associative)
= ((z9t1)z4)b for some z9 ∈ B (by Lemma 4.1)
= (z9t1)(z4b2) for some b2 ∈ B (∵ B is R associative)
= (z9t1)z10 for some z10 ∈ BD∗B (by Lemma 4.1).

This implies that (At1B, A((z2t1)z4B)) ∈ RD,D∗ . Since
(
G/[A, B],RD,D∗

)
is transitive, we have (AabB, A((z2t1)z4)B) ∈ RD,D∗ .

This means that
(a(z2t1)z4)b = (t3(ab))t4 for some t3 ∈ ADA, t4 ∈ BD∗B.

That is,
(z11t1)z12 = (t3(ab))t4 for some z11 ∈ ADA, z12 ∈ BD∗B.

Equivalently,
(ADADA)(BD∗BD∗B) ⊆ (ADA)(BD∗B).

Corollary 4.6 If ADADA ⊆ ADA and BD∗BD∗B ⊆ BD∗B, then
(
G/[A, B],RD,D∗

)
is a transitive graph.

Proof: Let AxB, AyB and AzB ∈ G/[A, B] such that (AxB, AyB) ∈ RD,D∗ and (AyB, AzB) ∈ RD,D∗ . Then by the definition
of RD,D∗ , we have

(ay)b = (z1x)z2 for some z1 ∈ ADA, z2 ∈ BD∗B (5)

(az)b = (z3y)z4 for some z3 ∈ ADA, z4 ∈ BD∗B. (6)

Equation (6) can be written as:

(az)b = ((z5a)y)(bz6) for some z5 ∈ ADA, z6 ∈ BD∗B (by Lemma 4.1)
= ((z6(ay))b)z7 for some z7 ∈ BD∗B (∵ BD∗B is R associative)
= (z8((ay)b))z7 for some z8 ∈ ADA (∵ ADA is L associative). (7)
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Using equation (5) in equation (7), we get

(az)b = (z8(z1x)z2)z7

= ((z9(z1x))z2)z7 for some z9 ∈ ADA (∵ ADA is L associative)
= (((z10z1)x)z2)z7 for some z10 ∈ ADA (∵ ADA is L associative)
= ((t1x)z2)z7 where t1 = z10z1 ∈ (ADA)(ADA)
= (t1x)(z2z11) for some z12 ∈ BD∗B (∵ BD∗B is R associative)
= (t1x)t2 where t2 = z2z11 ∈ (BD∗B)(BD∗B). (8)

Since (ADA)(ADA) = ADADA ⊆ ADA and (BD∗B)(BD∗B) = BD∗BD∗B ⊆ BD∗B, equation (8) implies that (AxB, AzB) ∈
RD,D∗ . Hence

(
G/[A, B],RD,D∗

)
is a transitive graph.

Corollary 4.7 If
(
G/[A, B],RD,D∗

)
is a complete graph, then G = [(ADA)a|(BD∗B)b].

Proof: Assume that
(
G/[A, B],RD,D∗

)
is a complete graph and let x ∈ G. Then (A(ab)B, AxB) ∈ RD,D∗ . This implies that

(ax)b = (z1(ab))z2, for some z1 ∈ ADA and z2 ∈ BD∗B. That is, (ax)b = z∗1z∗2, for some z∗1 ∈ ADA and z∗2 ∈ BD∗B.
Equivalently, x ∈ [(ADA)a|(BD∗B)b]. Since x is an arbitrary element of G,

G = [(ADA)a|(BD∗B)b]

Corollary 4.8 If
(
G/[A, B],RD,D∗

)
is connected, then G = [[ADA|BD∗B]]b

a.

Proof:Suppose that
(
G/[A, B],RD,D∗

)
is connected and let x ∈ G. Then there is a path from AB to AxB, say:

(A(ab)B, Ax1B, Ax2B, · · · , AxnB, AxB)

Then we have the following:

(ax1)b = (z1(ab))t1 for some z1 ∈ ADA and t1 ∈ BD∗B

= z∗1t∗1 for some z∗1 ∈ ADA and t∗1 ∈ BD∗B (by Lemma 4.1), (9)

(ax2)b = (z2x1)t2 for some z2 ∈ ADA and t2 ∈ BD∗B

= (((z3a)x1)(bt3)) for some z3 ∈ ADA and t3 ∈ BD∗B

= (z4((ax1)b))t4 for some z4 ∈ ADA and t4 ∈ BD∗B

= (z4(z∗1t∗1))t4 (by equation (9) ),

If we continue, we obtain

(ax)b = (zn+1xn)tn+1

= (z∗n+1((axn)b))t∗n+1for some z∗n+1 ∈ ADA, t∗n+1 ∈ BD∗B).
= (z∗n+1((znxn−1)tn))t∗n+1 = · · · = (z∗n+1(· · · (z∗2(z∗1t∗1))t∗2 · · · ))t∗n+1.

Equivalently,
G = [[ADA|BD∗B]]b

a.

Corollary 4.9 If
(
G/[A, B],RD,D∗

)
is locally connected, then [ADA|BD∗B] = [[(ADA)a(BD∗B)b]].

Proof: Assume that
(
G/[A, B],RD,D∗

)
is locally connected. Let x ∈ [ADA|BD∗B]. Then

x = (z1(z2 . . . (zn−1(zntn))tn−1 . . . t2)t1

for some zi ∈ ADA and ti ∈ BD∗B. Let

x1 = zntn, x2 = (zn−1x1)tn−1, . . . , xn = (z1xn−1)t1

Using Lemma 4.1, the above equation can be re-written as:

(ax1)b = (z∗n(ab))t∗n, (ax2)b = (z∗n−1(ab)x∗1)t∗n−1, . . . , (ax∗n)b = (z∗1(ab)x∗n−1)t∗1.
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for some z∗i ∈ ADA and t∗i ∈ BD∗B. Then (A(ab)B, Ax1B, . . . , AxnB, AxnB) is a path from AB to AxB. Since(
G/[A, B],RD,D∗

)
is locally connected, there exits a path from AxB to AB, say:

(AxB, Ay1B, . . . , AymB, AabB)

This implies that x ∈ [[(ADA)a(BD∗B)b]]. Hence [ADA|BD∗B] ⊆ [[(ADA)a(BD∗B)b]]. Similarly, [[(ADA)a(BD∗B)b]] ⊆
[ADA|BD∗B].

Corollary 4.10 If
(
G/[A, B],RD,D∗

)
is semi connected, then G = [[ADA|BD∗B]]b

a ∪ [[(ADA)a(BD∗B)b]].

Proof: Assume that
(
G/[A, B],RD,D∗

)
is semi connected and let x ∈ G. Then there exits a path from AB to AxB, say

(A(ab)B, Ax1B, . . . , AxnB, AxB)

or a path from AxB to AabB, say
(AxB, Ay1B, . . . , AymB, A(ab)B)

This implies that
x ∈ [[ADA|BD∗B][b

a∪[[(ADA)a(BD∗B)b]].

Since x is arbitrary, it follows that
G = [[ADA|BD∗B][b

a∪[[(ADA)a(BD∗B)b]].

Corollary 4.11
(
G/[A, B],RD,D∗

)
is a hasse- diagram, if and only if (ADA)n∩(ADA) = ∅ or (BD∗B)n∩(BD∗B) = ∅, n ≥ 2.

Proof: First, assume that
(
G/[A, B],RD,D∗

)
is a hasse- diagram. Then for any vertices Ax0B, Ax1B, . . . , AxnB ∈ G/[A, B]

with (AxiB, Axi+1B) ∈ RD,D∗ for all i = 0, 1, 2, . . . , n− 1 implies that (Ax0B, AxnB) < RD,D∗ . Observe that (AxiB, Axi+1B) ∈
RD,D∗ for all i = 0, 1, 2, . . . , n − 1 implies that

(axi+1)b = (zix0)ti for some zi ∈ ADA and ti ∈ BD∗B for i = 0, 1, 2, . . . , n − 1. (10)

Putting n = 0, 1, 2, . . . (n − 1) successively in equation (10), we get

(ax1)b = (z1x0)t1 (11)
(ax2)b = (z2x1)t2 (12)
(ax3)b = (z3x2)t3 (13)

...

(axn)b = (znxn−1)tn (14)

Using Lemma 4.1, above equations can be re-written as:

(ax2)b = (u1((ax1)b))v1 for some u1 ∈ ADA and v1 ∈ BD∗B

= (u1((z1x0)t1))v1

= ((u2(z1x0))t1)v1 for some u2 ∈ ADA and v1 ∈ BD∗B

= ((u3z1)x0)t1)v1 for some z1inADA and v1 ∈ BD∗B

= ((u3z1)x0)(t1v2)

= (r1x0)s1 where r1 = u3z1 ∈ (ADA)2 and s1 = t1v1 ∈ (BD∗B)2.

Similarly, (ax3)b = (r2x0)s2 where r2 ∈ (ADA)3 and s2 ∈ (BD∗B)3 Proceeding like this, we get (axn)b =
rnx0sn for some rn ∈ (ADA)n and sn ∈ (BD∗B)n Since (Ax0B, AxnB) < RD,D∗ , therefore

(ADA)n ∩ (ADA) = ∅ or (BD∗B)n ∩ (BD∗B) = ∅.

Conversely, assume that
(ADA)n ∩ (ADA) = ∅ or (BD∗B)n ∩ (BD∗B) = ∅, n ≥ 2.

We will show that
(
G/[A, B],RD,D∗

)
is a hasse-diagram. Let

Ax0B, Ax1B, . . . , AxnB
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be any (n + 1) elements of G/[A, B] with n ≥ 2, and (AxiB, Axi+1B) ∈ RD,D∗ for all i = 0, 1, 2, . . . , n − 1. Then we have

(axn)b = (zx0)t for some z ∈ (ADA)n and t ∈ (BD∗B)n

Since (ADA)n∩(ADA) = ∅ or (BD∗B)n∩(BD∗B) = ∅, (Ax0B, AxnB) < RD,D∗ . Hence
(
G/[A, B],RD,D∗

)
is a hasse-diagram.

5. Open Problem

In this paper we have proved that a class of double coset cayley graphs could be induced by quasigroups. It is well known
that all cayley graphs induced by groups are vertex transitive graphs. One can naturally ask the question: are the double
coset cayley graphs induced by quasigroups vertex transitive? So we conclude this section with the following problem:

Prove or disprove that
(
G/[A, B],RD,D∗

)
is vertex transitive.
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Figure 1. The Double Coset Cayley di-graphs
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