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Summary

Constructing a model in a hierarchical fashion is a natural approach to managing model
complexity, and offers additional opportunities such as the potential to re-use model com-
ponents. The SBML Level 3 Version 1 Core specification does not directly provide a mech-
anism for defining hierarchical models, but it does provide a mechanism for SBML pack-
ages to extend the Core specification and add additional syntactical constructs. The SBML
Hierarchical Model Composition package for SBML Level 3 adds the necessary features
to SBML to support hierarchical modeling. The package enables a modeler to include
submodels within an enclosing SBML model, delete unneeded or redundant elements of
that submodel, replace elements of that submodel with element of the containing model,
and replace elements of the containing model with elements of the submodel. In addi-
tion, the package defines an optional “port” construct, allowing a model to be defined with
suggested interfaces between hierarchical components; modelers can chose to use these
interfaces, but they are not required to do so and can still interact directly with model el-
ements if they so chose. Finally, the SBML Hierarchical Model Composition package is
defined in such a way that a hierarchical model can be “flattened” to an equivalent, non-
hierarchical version that uses only plain SBML constructs, thus enabling software tools
that do not yet support hierarchy to nevertheless work with SBML hierarchical models.
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1 Introduction

In the context of SBML, “hierarchical model composition” refers to the ability to include models as submodels inside

another model. The goal is to support the ability of modelers and software tools to do such things as (1) decompose

larger models into smaller ones, as a way to manage complexity; (2) incorporate multiple instances of a given model

within one or more enclosing models, to avoid literal duplication of repeated elements; and (3) create libraries of

reusable, tested models, much as is done in software development and other engineering fields.

SBML Level 3 Version 1 Core (Hucka et al., 2010), by itself, has no direct support for allowing a model to include other

models as submodels. Software tools either have to implement their own schemes outside of SBML, or (in principle)

could use annotations to augment a plain SBML Level 3 model with the necessary information to allow a software

tool to compose a model out of submodels. However, such solutions would be proprietary and tool-specific, and

not conducive to interoperability. There is a clear need for an official SBML language facility for hierarchical model

composition.

This document describes a specification for an SBML Level 3 package that provides exactly such a facility. Figure 1

illustrates some of the scenarios targeted by this package.

<sbml>!

<model>!

model definition A!

Pointer to!
model definition A!

Pointer to!
model definition A!

Pointer to!
model definition A!

<sbml>!

<model>!

model definition B!

Pointer to!
model definition A!

model definition C!

model definition A!

Pointer to!
model definition C!

Pointer to!
model definition B!

<sbml>!

<model>!

Pointer to!
model definition A!

Pointer to!
model definition B!

external model 
definition A!

model definition B!

file2.xml!

<model>!

Figure 1: Three different examples of model composition scenarios. From left to right: (1) a model composed of multiple
instances of a single, internally-defined submodel definition; (2) a model composed of a submodel that is itself composed of
submodels; and (3) a model composed of submodels, one of which is defined in an external file.

The effort to create a hierarchical model composition mechanism in SBML has a long history, which we summarize

in Section 2 on page 5. It has also been known by different names. In the beginning, it was called modularity because

it allows a model to be divided into structural and conceptual modules. It was renamed model composition when

it became apparent that the name “modularity” was easily confused with other notions modularity, particularly

XHTML 1.1 (Pemberton et al., 2002) modularity, which concerns decomposition into separate files. To make clear

that the purpose is structural model composition, regardless of whether the components are stored in separate files,

the SBML community adopted the name SBML Hierarchical Model Composition.

To support a variety of composition scenarios, this package provides for optional black-box encapsulation by means

of defined data communication interfaces (here called ports). In addition, it also separates model definitions (i.e.,

blueprints, or templates) from instances of those definitions, it supports optional external file storage, and it allows

recursive model decomposition with arbitrary submodel nesting.

Section 1 Introduction Page 3 of 56
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Section 1.1 Proposal corresponding to this package specification

1.1 Proposal corresponding to this package specification

This specification for Hierarchical Model Composition in SBML is based on the proposal by the same authors,

located at the following URL:

https://sbml.svn.sf.net/svnroot/sbml/trunk/specifications/sbml-level-3/version-1/comp/proposal

This specification is based on the August, 2011, version of the proposal. The tracking number in the SBML issue

tracking system (SBML Team, 2010) for Hierarchical Model Composition package activities is 2404771.

1.2 Package dependencies

The Hierarchical Model Composition package has no dependencies on other SBML Level 3 packages. It is also

designed to work seamlessly with other SBML Level 3 packages. For example, one can create a set of hierarchical

models that also use Groups or Spatial Processes features. (If you find incompatibilities with other packages, please

contact the Package Working Group for the Hierarchical Model Composition effort. Contact information is shown

on the front page of this document.)

1.3 Document conventions

Following the precedent set by the SBML Level 3 Core specification document, we use UML 1.0 (Unified Modeling

Language; Eriksson and Penker 1998; Oestereich 1999) class diagram notation to define the constructs provided by

this package. We also use color in the diagrams to carry additional information for the benefit of those viewing the

document on media that can display color. The following are the colors we use and what they represent:

Black: Items colored black in the UML diagrams are components taken unchanged from their definition in

the SBML Level 3 Core specification document.

Green: Items colored green are components that exist in SBML Level 3 Core, but are extended by this package.

Class boxes are also drawn with dashed lines to further distinguish them.

Blue: Items colored blue are new components introduced in this package specification. They have no

equivalent in the SBML Level 3 Core specification.

We also use the following typographical conventions to distinguish the names of objects and data types from other

entities; these conventions are identical to the conventions used in the SBML Level 3 Core specification document:

AbstractClass: Abstract classes are never instantiated directly, but rather serve as parents of other classes. Their

names begin with a capital letter and they are printed in a slanted, bold, sans-serif typeface. In electronic

document formats, the class names defined within this document are also hyperlinked to their definitions;

clicking on these items will, given appropriate software, switch the view to the section in this document

containing the definition of that class. (However, for classes that are unchanged from their definitions in

SBML Level 3 Core, the class names are not hyperlinked because they are not defined within this document.)

Class: Names of ordinary (concrete) classes begin with a capital letter and are printed in an upright, bold, sans-serif

typeface. In electronic document formats, the class names are also hyperlinked to their definitions in this

specification document. (However, as in the previous case, class names are not hyperlinked if they are for

classes that are unchanged from their definitions in the SBML Level 3 Core specification.)

SomeThing, otherThing: Attributes of classes, data type names, literal XML, and tokens other than SBML class

names, are printed in an upright typewriter typeface. Primitive types defined by SBML begin with a capital

letter; SBML also makes use of primitive types defined by XML Schema 1.0 (Biron and Malhotra, 2000; Fallside,

2000; Thompson et al., 2000), but unfortunately, XML Schema does not follow any capitalization convention

and primitive types drawn from the XML Schema language may or may not start with a capital letter.

For other matters involving the use of UML and XML, we follow the conventions used in the SBML Level 3 Core

specification document.
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2 Background and context

The focus of this section is prior work on the topic of model composition in SBML. We also explain how the current

specification relates to that prior work.

2.1 Prior work on model composition in SBML

The SBML community has discussed the need for model composition since SBML’s very beginning, in 2000. The

approach to composition contained in the present document draws substantially on prior work. Before we turn

to a narrative of the history that led to this specification, we want to highlight a number of individuals for their

inspirations and past work in the development of precursors to this package. These individuals are listed in Table 1.

Contributor Affiliation City and Country

Frank Bergmann California Institute of Technology Pasadena, CA, US
Michael Blinov University of Connecticut Health Center Farmington, CT, US
Nicolas Le Novère EMBL European Bioinformatics Institute Hinxton, Cambridge, UK
Ranjit Randhawa Department of Computer Science, Virginia Tech. Blacksburg, VA, US
Jörg Stelling Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg, DE
Jonathan Webb BBN Technologies Cambridge, MA, US

Table 1: Individuals who made significant contributions that influenced this Hierarchical Model Composition specification.

The first known written proposal for composition in SBML appeared in an internal discussion document titled

Possible extensions to the Systems Biology Markup Language (Finney, 2000) principally authored by Andrew Finney

(and, notably, written even before SBML Level 1 Version 1 was finalized in March of 2001). The first of the four

titular possible extensions in that document concerns “submodels”: the main model in a file can contain a list

of submodels, each of which are model definitions only, and a list of submodel instantiations, each of which are

references to model definitions. Finney’s proposal also extends the syntax of SBML identifiers (the SId data type)

to allow entity references using a dotted notation, in which X.y signifies element y of submodel instance X; the

proposal also defines a form of linking model elements through “substitutions”. In addition, the proposal also

introduces the concept of validation through what it called the “expanded” version of the model (now commonly

referred to as the “flattened” form, meaning translation to a plain SBML format that does not use composition

features): if the flat version of the model is valid, then the model as a whole must also be valid.

In June of 2001, at the Third Workshop on Software Platforms for Systems Biology, Martin Ginkel and Jörg Stelling

presented their proposal titled XML Notation for Modularity (Ginkel and Stelling, 2001), complete with a sample

XML file. Their efforts were in response to deficiencies or missing elements they believed existed in the proposal by

Finney. In their proposal, Ginkel and Stelling present a “classic view” of modularity, where models are packaged

as black boxes with interfaces. One of their design goals is to support the substitution of one module for another

with the same defined interface, thereby supporting the simplification or elaboration of models as needed. Their

proposal emphasizes the reuse of models and with the possibility of developing libraries of models.

Martin Ginkel presented an expanded version of that proposal (Ginkel, 2002) at in the July 2002 Fifth Workshop on

Software Platforms for Systems Biology, in the hope that it could be incorporated into the definition of SBML Level 2

that was being developed at the time. This proposal clarified the need to separate model definitions from model

instantiations, and, further, the need to designate one model per document as the “main” model.

In March of 2003, Jonathan Webb produced an independent proposal (Webb, 2003) and circulated it on the

mailing list sbml-discuss@caltech.edu. This proposal included a unified, generic approach to making links

and references to elements in submodels using XML XPath (Clark and DeRose, 1999). Previous proposals used

separate mechanisms for species, parameters, compartments, and reactions. Webb also raised the issue of how to
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Section 2.1 Prior work on model composition in SBML

successfully resolve conflicting attributes of linked elements, debated whether formal interfaces were necessary

or even preferable to directly access model elements, discussed type-checking for linkages, and discussed issues

with unit incompatibilities. Around this time, Martin Ginkel formed the Model Composition Special Interest

Group (Ginkel, 2003), a group that eventually reached 18 members (including Webb).

Model composition did not make it into SBML Level 2 when that specification was released in June of 2003, because

the changes between SBML Level 1 and Level 2 were already substantial enough that software developers at the

time expressed a desire to delay the introduction of composition to a later revision of SBML. Andrew Finney (now

the co-chair of the Model Composition SIG) presented yet another proposal (Finney, 2003b) in May of 2003, even

before SBML Level 2 Version 1 was finalized, that aimed to add model composition to SBML Level 3. With only

two years having passed between SBML Level 1 and Level 2, the feeling at the time was that Level 3 was likely to be

released in 2005 or 2006, and the model composition proposal would be ready when it was. However, Level 2 ended

up occupying the SBML community longer than expected, with four versions of Level 2 produced to adjust features

in response to user feedback and developers’ experiences.

In the interim, the desire to develop model composition features for SBML continued unabated. Finney revised his

2003 proposal in October 2003 (Finney, 2003c); this new version represented an attempt to synthesize the earlier

proposals by Ginkel and Webb, supplemented with his own original submodel ideas, and was envisioned to exist

in parallel with another proposal by Finney, for arrays and sets of SBML elements (including submodels) (Finney,

2003a). Finney attempted to resolve the differences in the two basic philosophies (essentially, black-box versus

white-box encapsulation) by introducing optional “ports” as interfaces between a submodel and its containing

model, as well as including an XPath-based method to allow referencing model entities. The intention was that a

modeler who wanted to follow the classic modularity (black-box) approach could do so, but other modelers could

still use models in ways not envisioned by the original modeler simply by accessing a model’s elements directly via

XPath-based references. In both schemes, elements in the submodels were replaced by corresponding elements of

the containing model. Finney’s proposal also provided a direct link facility that allows a containing model to refer

directly to submodel elements without providing placeholder elements in the containing model. For example, a

containing model could have a reaction that converts a species in one submodel to a species in a different submodel,

and in the direct-link approach, it would only need to define the reaction, with the reactant and product being

expressed as links directly to the species defined in the submodels.

After Finney’s last effort, activities in the SBML community focused on updates to SBML Level 2, and since model

composition was slated for Level 3, not much progress was made for several years, apart from Finney including a

summary of his 2003 proposal and of some of the unresolved issues in a poster (Finney, 2004) at the 2004 Intelligent

Systems for Molecular Biology (ISMB) conference held in Glasgow.

Finally, in June, 2007, unplanned discussions at the Fifth SBML Hackathon (SBML Team, 2007) prompted the

convening of a workshop to revitalize the model composition package, and in September of 2007, the SBML

Composition Workshop (Multiple authors, 2007c) was held at the University of Connecticut Health Center, hosted

by the Virtual Cell group and organized by Ion Moraru and Michael Blinov. The event produced several artifacts:

1. Martin Ginkel provided a list of goals for model composition (Ginkel, 2007), including use cases, and sum-

marized many of the issues described above, including the notion of definition versus instantiation, linking,

referencing elements that lack SBML identifiers, and the creation of optional interfaces. The list of goals also

mentioned the need of allowing parameterization of instances (i.e., setting new numerical values that override

the defaults), and the need to be able to “delete” or elide elements out of submodels. (He also provided a

summary of ProMoT’s model composition approach and a summary of other approaches.)

2. Andrew Finney created a list of issues and comments, recorded on the meeting’s wiki page (Finney, 2007); the

list included some old issues as well as some new ones:

■ There should perhaps be a flag for ports to indicate whether a given port must be overloaded.

■ There should be support for N-to-M links, when a set of elements in one model are replaced as a group,

conceptually, with one or more elements from a different model.

■ The proposal should be generic enough to accommodate future updates and other Level 3 packages.
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Section 2.1 Prior work on model composition in SBML

3. Wolfram Liebermeister presented his group’s experience with SBMLMerge (Leibermeister, 2007), dealing with

the pragmatics of merging multiple models. He also noted that the annotations in a composed model need to

be considered, particularly since they can be crucial to successfully merging models in the first place.

4. On behalf of Ranjit Randhawa, Cliff Shaffer summarized Ranjit’s work in the JigCell group on model fusion,

aggregation, and composition (Randhawa, 2007). Highlights included the following:

■ A description of different methods which all need some form of model composition, along with the

realization that model fusion and model composition, though philosophically different, entail exactly

the same processes and require the same information.

■ A software application (the JigCell Composition Wizard) that can perform conversion between types.

The application can, for example, promote a parameter to a species, a concept which had been assumed

to be impossible and undesirable in previous proposals.

■ The discovery that merging of SBML models should be done in the order Compartments → Species

→ Function Definitions → Rules → Events → Units → Reactions → Parameters. If done in this order,

potential conflicts are resolved incrementally along the way.

5. Nicolas Le Novère created a proposal for SBML modularity in Core (Novère, 2007). This is actually unrelated to

the efforts described above; it is an attempt to modularize a “normal” SBML model in the sense of divvying up

the information into modules or blocks stored in separate files, rather than composing a model from different

chunks. It was agreed at the workshop that this is a completely separate idea, and while it has merits, should

be handled separately.

6. The group produced an “Issues to Address” document (Multiple authors, 2007a), with several conclusions:

■ It should be possible to “flatten” a composed model to produce a valid SBML Level 3 Core model, and all

questions of validity can then be simply applied to the flattened model. If the Core-only version is valid,

the composed model is valid.

■ The model composition proposal should cover both designed-ahead-of-time as well as ad-hoc composi-

tion. (The latter refers to composing models out of components that were not originally developed with

the use of ports or the expectation of being incorporated into other models.)

■ The approach probably needs a mechanism for deleting SBML model elements. The deletion syntax

should be explicit, instead of being implied by (e.g.) using a generic replacement construct and omitting

the target of the replacement.

■ It should be possible to link any part of a model, not just (e.g.) compartments, species and parameters.

■ The approach should support item “object overloading” (Multiple authors, 2007b) and be generally

applicable to all SBML objects. However, contrary to what is provided in the JigCell Composition Wizard,

changing SBML component types is not supported in object overloading.

■ A proposition made during the workshop is that elements in the outer model always override elements

in the submodels, and perhaps that sibling linking be disallowed. This idea was hotly debated.

■ Interfaces (ports) are considered helpful, but optional. They do not need to be directional as in the

electrical engineering “input” and “output” sense; the outer element always overrides the inner element,

but apart from that, biology does not tend to work in the directional way that electrical components do.

■ The ability to refer to or import external files may need a mechanism to allow an application to check

whether what is being imported is the same as it was when the modeler created the model. The

mechanism offered in this context was the use of MD5 hashes.

■ A model composition approach should probably only allow whole-model imports, not importing of

individual SBML elements such as species or reactions. Model components are invariably defined within

a larger context, and attempting to pull a single piece out of a model is unlikely to be safe or desirable.

■ The approach must provide a means for handling unit conversions, so that the units of entities defined

in a submodel can be made congruent with those of entities that refer to them in the enclosing model.
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Section 2.1 Prior work on model composition in SBML

During the workshop, the attendees worked on a draft proposal. Stefan Hoops acted as principal editor. The

proposal for the SBML package (which was renamed Hierarchical Model Composition (Hoops, 2007)), was issued

one day after the end of the workshop. It represented an attempt to summarize the workshop as a whole, and

provide a coherent whole, suitable as a Level 3 package. It provided a brief overview of the history and goals of the

proposal, as well as several UML diagrams of the proposed data structures. Hoops presented (Hoops, 2008) the

proposal in August, 2008, at the 13th SBML Forum, and again at the 7th SBML Hackathon in March of 2009 as well

as the 14th SBML Forum in September of 2009, in a continuing effort to raise interest.

Roughly concurrently, Herbert Sauro, one of the original developers of SBML, received a grant to develop a modular

human-readable model definition language, and hired Lucian Smith in November of 2007 to work on the project.

Sauro and Frank Bergmann, then a graduate student with Herbert, had previously written a proposal (Bergmann and

Sauro, 2006) for a human-readable language that provided composition features, and this was the design document

Smith initially used to create a software system that was eventually called Antimony. Through a few iterations, the

design eventually settled on was very similar in concept (largely by coincidence) to that developed by the group

at the 2007 Connecticut workshop: namely, with model definitions placed separately from their instantiations in

other models, and with the ability to link (or “synchronize”, in Antimony terminology) elements of models with each

other. Because Antimony was designed to be “quick and dirty”, it allowed type conversions much like the JigCell

Composition Wizard, whereby a parameter could become a species, compartment, or even reaction. Synchronized

elements could end up with aspects of both parent elements in their final definitions: if one element defined a

starting condition and the other how it changed in time, the final element would have both. If both elements defined

the same aspect (like a starting condition), the one designated the “default” would be used in the final version.

Smith developed methods to import other Antimony files and even SBML models, which could then be used as

submodels of other models and exported as flattened SBML.

At the SBML-BioModels.net Hackathon in 2010, in response to popular demand from people who attended the

workshop, Smith put together a short presentation (Smith, 2010a) about model composition and some of the

limitations he found with the 2007 proposal. He proposed separating the replacement concept (where old ref-

erences to replaced values are still valid) from the deletion concept (where old references to replaced values are

no longer valid). Smith wrote a summary of that discussion, added some more of thoughts, and posted it to the

sbml-discuss@caltech.edu mailing list (Smith, 2010b). In this posting, he proposed and/or reported several

possible modifications to the Hoops et al. 2007 proposal, including the following:

■ Separation of replacement from deletion.

■ Separation of model definition from instantiation.

■ Elimination of ports, and the use of annotations instead.

■ Annotation for identifying N-to-M replacements, instead of giving them their own construct.

The message to sbml-discuss@caltech.eduwas met with limited discussion. However, it turns out that several

of the issues raised by Smith were brought up at the 2007 meeting, and had simply been missed in the generation

of the (incomplete) proposal after the workshop. The meeting attendees had, for example, originally preferred to

differentiate deletions from replacements more strongly than by simply having an empty list of replacements, but

omitted this feature because no better method could be found. Similarly, the separation of definitions from instanti-

ations had been in every proposal up until 2007, and was mentioned in the notes for that meeting. The decision to

merge the two was a last-minute design decision brought about when the group noted that if the XInclude (Marsch

et al., 206) construct was used, the separation was not strictly necessary from a technical standpoint.

Smith joined the SBML Team in September of 2010, and was tasked with going through the old proposals and

synthesizing from them a new version that would work with the final incarnation of SBML Level 3. He presented

that work at COMBINE in October 2010 (Smith and Hucka, 2010), and further discussed it on the mailing list

sbml-discuss@caltech.edu. At HARMONY in April of 2011, consensus was reached on a way forward for resolving

the remaining controversies surrounding the specification, resulting in the first draft of this document.
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Section 2.2 Genesis of the current formulation of this specification

2.2 Genesis of the current formulation of this specification

The present specification for Hierarchical Model Composition is an attempt to blend features of previous efforts

into a concrete, Level 3-compatible syntax. The specification has been written from scratch, but draws strongly on

the Hoops 2007 and Finney 2003 proposals, as well as, to some degree, every one of the sources mentioned above.

Some practical decisions are new to this proposal, sometimes due to additional design constraints resulting from

the final incarnation of SBML Level 3, but all of them draw from a wealth of history and experimentation by many

different people over the last decade. Where this proposal differs from the historical consensus, the reasoning is

explained, but for the most part, the proposal follows the road most traveled, and focuses on being clear, simple,

only as complex as necessary, and applicable to the largest number of situations.

The first draft of this specification was discussed at COMBINE 2011, during which time several concerns were

raised by Chris Myers and Frank Bergmann. These included the following: (1) the semantics of a Boolean attribute,

identical, on ReplacedElement; (2) the high complexity of conversion factors as they were defined at the time; (3)

the inelegance of recursive chains of SBaseRef objects; and (4) the need for MD5 checksums. Those discussions

resulted in the following conclusions:

1. The Boolean attribute identical could be removed from the definition of ReplacedElement, and in its place

a new construct added, ReplacedBy.

2. The conversion factor scheme in the original first draft was indeed dauntingly complex.

3. There was general agrement that recursive chains of SBaseRef objects is an inelegant approach, but a workable

and relatively simple one. Some mechanism of that sort is necessary if we accept that one of the use cases for

Hierarchical Model Composition involves externally-referenced models that a modeler does not own and

cannot change.

4. For the same use case reasons, MD5 checksums are sufficiently important to leave in. If a referenced external

model ever changes without a modeler’s knowledge, checksums can allow a software system to detect and

report the situation.

To address issue (2), Smith set out to develop a revised and much simplified version that reduced the number of

conversions factors considerably. This scheme was incorporated into a revised version of a revised draft specification

issued in 2012. Smith then worked on implementating this draft specification in libSBML and integrating it into

Antimony, and Chris Myers worked on integrating it into iBioSim. As a result of these experiences, additional

issues became apparent and were discussed during HARMONY 2012. Those dicussions produced the following

conclusions and changes:

1. The use of ports is not required and is a relatively foreign concept to many biologists; thus, their use is more

of a best-practices matter, and a requirement to use ports cannot be imposed.

2. The previous formulation of ReplacedElement and ReplacedBy, which allowed replacement of any objects

without restriction, led to complex and awkward software interfaces, and made it easy to create invalid models.

On the other hand, restricting replacements to only involve the same classes of objects (“like-with-like”

replacements) was deemed too restrictive. The compromise solution was to only allow parameters to replace

other classes of SBML objects that had a mathematical meaning. In all other cases, objects can only be

replaced (or act as replacements for) objects of the same class or subclasses of that class.

2.3 Design goals for the Hierarchical Model Composition package

The following are the basic design goals followed in this package:

■ Allow modelers to build models by aggregation, composition, or modularity. These methods are so similar

to one another, and the process of creating an SBML Level 3 package is so involved, that we believe it is not

advantageous to create one SBML package for aggregation and composition, and a separate package for

modularity. Users of the hierarchical model composition package should be able to use and create models in
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Section 2.3 Design goals for the Hierarchical Model Composition package

the style that is best suited for their individual tasks, using any of these mechanisms, and to exchange and

reuse models from other groups simply and straightforwardly.

■ Interoperate cleanly with other packages. The rules of composition should be such that they could apply to

any SBML element, even unanticipated elements not defined in SBML Level 3 Core and introduced by some

future Level 3 package.

■ Allow models produced with these constructs to be valid SBML if the constructs are ignored. As proposed by

Novère (2003) and affirmed by the SBML Editors (The SBML Editors, 2010), whenever possible, ignoring

elements defined in a Level 3 package namespace should result in syntactically-correct SBML models that can

still be interpreted to some degree, even if it cannot produce the intended simulation results of the full (i.e.,

interpreting the package constructs) model. For example, inspection and visualization of the Core model

should still be possible.

■ Ignore verbosity of models. We assume that software will deal with the “nuts and bolts” of reading and writing

SBML. If there are two approaches to designing a mechanism for this hierarchical composition package,

where one approach is clear but verbose and the other approach is concise but complex or unobvious, we

prefer the clear and verbose approach. We assume that software tools can abstract away the verbosity for the

user. (However, tempering this goal is the next point.)

■ Avoid over-complicating the specification. Apart from the base constructs defined by this specification, any

new element or attribute introduced should have a clear use case that cannot be achieved in any other way.

■ Allow modular access to files outside the modeler’s control. In order to encourage direct referencing of models

(e.g., to models hosted online on sites such as BioModels Database (http://biomodels.net/database),

whenever possible, we will require referenced submodels only to be in SBML Level 3 format (with or without

other package information), and not require that they include constructs from this specification.

■ Incorporate most, if not all, of the desirable features of past proposals. The names may change, but the aims of

past efforts at SBML model composition should still be achievable with the present specification.
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3 Package syntax and semantics

In this section, we define the syntax and semantics of the Hierarchical Model Composition package for SBML Level 3

Version 1 Core. We expound on the various data types and constructs defined in this package, then in Section 4 on

page 33, we provide complete examples of using the constructs in example SBML models.

3.1 Namespace URI and other declarations necessary for using this package

Every SBML Level 3 package is identified uniquely by an XML namespace URI. For an SBML document to be able

to use a given Level 3 package, it must declare the use of that package by referencing its URI. The following is the

namespace URI for this version of the Hierarchical Model Composition package for SBML Level 3 Version 1 Core:

“http://www.sbml.org/sbml/level3/version1/comp/version1”

In addition, SBML documents using a given package must indicate whether the package can be used to change the

mathematical interpretation of a model. This is done using the attribute required on the <sbml> element in the

SBML document. For the Hierarchical Model Composition package, the value of this attribute must be set to “true”,

because the elements defined here can change the mathematical interpretation of several core elements. Note that

this attribute must be set to “true” whether or not the particular model is changed by these package constructs.

The following fragment illustrates the beginning of a typical SBML model using SBML Level 3 Version 1 Core and

this version of the Hierarchical Model Composition package:



<?xml version="1.0" encoding="UTF-8"?>

<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core" level="3" version="1"

xmlns:comp="http://www.sbml.org/sbml/level3/version1/comp/version1" comp:required="true">


3.2 Primitive data types

Section 3.1 of the SBML Level 3 Version 1 Core specification defines a number of primitive data types and also uses

a number of XML Schema 1.0 data types (Biron and Malhotra, 2000). We assume and use some of them in the rest

of this specification, specifically boolean, ID, SId, SIdRef, UnitSId, UnitSIdRef, and string. The Hierarchical

Model Composition package also makes use of or defines other primitive types; they are described below.

3.2.1 Type IDREF

Type IDREF is defined by XML Schema 1.0. It is a character string data type whose value is identical to an ID defined

elsewhere in a referenced document, and has identical syntax.

3.2.2 Type anyURI

Type anyURI is defined by XML Schema 1.0. It is a character string data type whose values are interpretable as

URIs (Universal Resource Identifiers; Harold and Means 2001; W3C 2000) as described by the W3C document

RFC 3986 (Berners-Lee et al., 2005).

3.2.3 Type PortSId

The type PortSId is derived from SId (SBML Level 3 Version 1 Core specification Section 3.1.7) and has identical

syntax. The PortSId type is used as the data type for the identifiers of Port objects (see Section 3.4.3 on page 16)

in the Hierarchical Model Composition package. The purpose of having a separate type for such identifiers is to

enable the space of possible port identifier values to be separated from the space of all other identifier values in

SBML. The equality of PortSId values is determined by an exact character sequence match; i.e., comparisons of

these identifiers must be performed in a case-sensitive manner.
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Section 3.3 The extended SBML class

3.2.4 Type PortSIdRef

Type PortSIdRef is used for all attributes that refer to identifiers of type PortSId. This type is derived from PortSId,

but with the restriction that the value of an attribute having type PortSIdRefmust match the value of a PortSId

attribute in the relevant model; in other words, the value of the attribute must be an existing port identifier in the

referenced model. As with PortSId, the equality of PortSIdRef values is determined by exact character sequence

match; i.e., comparisons of these identifiers must be performed in a case-sensitive manner.

3.3 The extended SBML class

The top level of an “SBML document” is a container whose structure is defined by the object class SBML in the

SBML Level 3 Version 1 Core specification. In Level 3 Core, this container can contain only one model, an object

of class Model. The Hierarchical Model Composition package allows SBML documents to contain more than one

model.

To explain how this is accomplished, we first need to introduce some terminology. In the approach taken here, we

make a distinction between (a) the definition of a model, before it is actually used anywhere, and (b) its actual use:

■ The term model definition refers to the former case; that is, the definition of a model, before it is used. A model

definition is akin to a Platonic ideal: it may be a complete model in and of itself, but until it is instantiated, it

exists only as a concept.

■ The term submodel refers to actual use of a model definition. A submodel is an instantiation or instance of a

previously-defined model: it is the realization of that model inside another model. From the perspective of the

model that contains this submodel, the model definition has come into being, and now exists as something

that can be used (and possibly modified and adapted).

It may be helpful to contrast these terms with those in other approaches to model composition. Some approaches

call the model definitions themselves the “submodels”. We avoid that usage because, in the present formulation,

model definitions must be valid Model objects in and of themselves, and might never appear inside other models in

the SBML document where they are defined. (This might be the situation, for example, if the document defines

multiple models purely to serve as a sort of component library used by other files.) We reserve the term “submodel”

specifically for the instance of a model inside a containing model. Another term used in other schemes is “model

template”, which is close to what is intended by “model definition” here, but “template” implies something that is

incomplete and needs to be filled in. While this is possible in the approach described here, it is not required; for

example, in model aggregation, several complete working models may be integrated to form a larger whole. We

therefore eschew the term “model template” in favor of model definition.

Figure 2 on the next page gives the definition of the extended SBML class. It ties these different components

together and also provides the definition of ExternalModelDefinition. Readers familiar with the SBML class in

SBML Level 3 Version 1 Core will notice that the Hierarchical Model Composition package adds two new lists

to SBML: listOfModelDefinitions of class ListOfModelDefinitions and listOfExternalModelDefinitions of

class ListOfExternalModelDefinitions. The class diagram also makes concrete the notions described above, that

model definition objects are not “owned” by any other model (they can be instantiated anywhere, even by models in

other files) and that they exist outside the Model class entirely.

Figure 2 also makes clear how model definitions are Model objects. At the same time, the scheme preserves the aspect

of SBML Level 3 Version 1 Core in which a single Model object appears at the top level of an SBML document. As will

become clear when we define Model, submodels appear inside Model objects. This is a crucial feature of the design

described above; namely, when the top-level model references submodels, the submodels are instantiated, whereas

when a model definition references submodels, the submodels are simply part of that model definition—they are

not instantiated until the model definitions themselves are instantiated.

Finally, to give a more intuitive sense for how the pieces fit together, Figure 3 on the following page shows a template

structure of an SBML document with both a listOfModelDefinitions and listOfExternalModelDefinitions,

as well as a list of Submodel objects inside the Model object.
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Section 3.3 The extended SBML class

3.3.1 The lists of internal and external model definitions

As shown in Figure 2, listOfModelDefinitions and listOfExternalModelDefinitions are children of an ex-

tended SBML object. Like other ListOf classes in SBML, the ListOfModelDefinitions and ListOfExternalModelDef-

initions are derived from SBase (more specifically, the extended SBase class defined in Section 3.6 on page 20).

They inherit SBase’s attributes metaid and sboTerm, as well as the subcomponents for Annotation and Notes, but

they do not add any attributes of their own.

If a model from an external SBML document is needed, it can be referenced with an ExternalModelDefinition object

(Section 3.3.2 on the next page). The ListOfExternalModelDefinitions container gathers all such references. It is

derived from SBase but adds no attributes of its own. Like the other ListOf classes, it inherits the attributes

metaid and sboTerm, as well as the subcomponents for Annotation and Notes, that most SBML components have.

id: SId
name: string {use="optional"}
source: anyURI
modelRef: SIdRef  { use="optional" }
md5: string {use="optional"}

SBase (extended)

SBML (extended)

ListOfExternalModelDefinitions

ExternalModelDefinition

listOfModelDefinitions 0,1

modelDefinition

externalModelDefinition

model

1..*

Model (extended)
1..*

ListOfModelDefinitions

listOfExternalModelDefinitions 0,1

Figure 2: The definitions of the extended SBML class as well as the new classes ListOfModelDefinitions, ListOfExter-
nalModelDefinitions, and ExternalModelDefinition. The extended Model class is defined in Section 3.4 on page 15.

<?xml version="1.0" encoding="UTF-8"?>
<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core" level="3" version="1"

xmlns:comp="http://www.sbml.org/sbml/level3/version1/comp/version1" comp:required="true">

<model id="My_Model">
<comp:listOfSubmodels>

one or more <comp:submodel> ... </comp:submodel> elements
}

optional
</comp:listOfSubmodels>

</model>

<comp:listOfModelDefinitions>
one or more <comp:modelDefinition> ... </comp:modelDefinition> elements

}
optional

</comp:listOfModelDefinitions>

<comp:listOfExternalModelDefinitions>
one or more <comp:externalModelDefinition> ... </comp:externalModelDefinition> elements

}
optional

</comp:listOfExternalModelDefinitions>

</sbml>

Figure 3: Skeleton document containing the possible top-level constructs of the Hierarchical Model Composition package.
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Section 3.3 The extended SBML class

3.3.2 The ExternalModelDefinition class

To describe model definitions contained in external documents, the Hierarchical Model Composition package uses

the object class ExternalModelDefinition, defined in Figure 2 on the preceding page. In the sense being used here,

ExternalModelDefinition objects are model definitions—in and of themselves, they are definitions of models but not

uses of those models. The class provides a way to declare and identify them so that Model objects in the present

SBML document can use them in Submodel objects.

ExternalModelDefinition contains two required attributes (source and id) and three optional attributes (modelRef,

md5 and name). These attributes are explained below.

The id and name attributes

The id attribute serves to provide a handle for the external model reference so that Submodel objects can refer to it.

Crucially, it is not the identifier of the model being referenced; rather, it is an identifier for this ExternalModelDefini-

tion object within the current SBML document. The id attribute takes a required value of type SId, and must be

used as described in Section 3.9 on page 32.

ExternalModelDefinition also has an optional name attribute, of type string. The name attribute may be used in the

same manner as other name attributes on SBML Level 3 Version 1 Core objects; see Section 3.3.2 of the SBML Level 3

Version 1 Core specification for more information.

The source attribute

The required attribute source is used to locate the SBML document containing an external model definition. The

value of this attribute must be of type anyURI (see Section 3.2.2 on page 11). Since URIs may be either URLs, URNs,

or relative or absolute file locations, this offers flexibility in referencing SBML documents. In all cases, the source

attribute value must refer specifically to an SBML Level 3 Version 1 document; prior Levels/Versions of SBML are

not supported by this package. The entire file at the given location is referenced. The source attribute must have a

value for every ExternalModelDefinition instance.

The modelRef attribute

ExternalModelDefinition’s optional attribute modelRef, of type SIdRef, is used to identify a Model or ExternalMod-

elDefinition object within the SBML document located at source. The object referenced may be the main model

in the document, or it may be a model definition contained in the SBML document’s listOfModelDefinitions

or listOfExternalModelDefinitions lists. Loops are not allowed: it must be possible to follow a chain of Exter-

nalModelDefinition objects to its end in a Model object.

In core SBML, the id on Model is an optional attribute, and therefore, it is possible that the Model object in

a given SBML document does not have an identifier. In that case, there is no value to give to the modelRef

attribute in ExternalModelDefinition. If modelRef does not have a value, then the main model (i.e., the <model>

element within the <sbml> element) in the referenced file is interpreted as being the model referenced by this

ExternalModelDefinition instance.

Here are some examples of different source and modelRef attribute values for different cases. Suppose we have a

model with the identifier “glau” located in a file named “firefly.xml”. The following fragment defines an external

model definition and gives it the identifier “m1”, the latter being valid for use within the containing SBML document:



<comp:listOfExternalModelDefinitions>

<comp:externalModelDefinition comp:source="firefly.xml" comp:modelRef="glau" comp:id="m1"/>

</comp:listOfExternalModelDefinitions>


(In the above, we assume the XML namespace prefix “comp” has been assigned to the correct XML namespace

URI for the Hierarchical Model Composition package, but we do not show that part of the SBML document here.

Section 3.1 on page 11 explains this in more detail.) On the other hand, suppose that we wanted to reference

the model defined as model “BIOMD0000000002” in BioModels Database. Looking inside the text of that SBML
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Section 3.4 The extended Model class

document, it becomes evident that the model identifier (its id value) is set to “mod”. Thus, using a URN to reference

that model, we can write the following:



<comp:listOfExternalModelDefinitions>

<comp:externalModelDefinition comp:id="m2" comp:modelRef="mod"

comp:source="urn:miriam:biomodels.db:BIOMD0000000002"/>

</comp:listOfExternalModelDefinitions>


Finally, we can imagine the situation where a model is made accessible from a location on the Internet, say via the

HTTP protocol, but which has no defined id attribute for its <model> element. The following is a (fake) example:



<comp:listOfExternalModelDefinitions>

<comp:externalModelDefinition comp:id="m3"

comp:source="http://www.cds.caltech.edu/˜mhucka/sbmlmodel.xml"/>

</comp:listOfExternalModelDefinitions>


The md5 attribute

The optional md5 attribute takes a string value. If set, it must be an MD5 checksum value computed over the

document referenced by source. This checksum can serve as a data integrity check over the contents of the source.

Applications may use this to verify that the contents have not changed since the time that the ExternalModelDefini-

tion reference was constructed. The procedure for using the md5 attribute is described in Table 2.

Case Procedure

Creating and writing 1. Compute the MD5 hash for the document located at source.
an SBML document 2. Store the hash value as the value of the md5 attribute.

Reading an SBML 1. Read the value of the md5 attribute.
document 2. Read the document at the location indicated by the source attribute value.
3. Compute the MD5 hash for the document.
4. Compare the computed MD5 value to the value in the md5 attribute. If they are identical, assume the

document has not changed since the time the ExternalModelDefinition object was defined; if the values
are different, assume that the document indicated by source has changed.

Table 2: Procedures for using the md5 attribute on ExternalModelDefinition.

Software tools encountering a difference in the MD5 checksums should warn their users that a discrepancy exists,

because a difference in the documents may imply a difference in the mathematical interpretation of the models.

Note that the MD5 approach is not without limitations. An MD5 hash is typically expressed as a 32-digit hexadecimal

number. If a difference arises in the checksum values, there is no way to determine the cause of the difference

without an component-by-component comparison of the models. (Even a difference in annotations, which cannot

affect a models’ mathematical interpretations, will result in a difference in the MD5 checksum values.) On the other

hand, it is also not impossible that two different documents yield the same MD5 hash value (due to hash collision),

although it is extremely unlikely in practice. In any event, the MD5 approach is intended as an optional, simple and

fast data integrity check, and not a final answer.

3.4 The extended Model class

The extension of SBML Level 3 Version 1 Core’s Model class is relatively straightforward: the Hierarchical Composi-

tion Package adds two lists, one for holding submodels (listOfSubmodels, of class ListOfSubmodels), and the other

for holding ports (listOfPorts, of class ListOfPorts). Figure 4 on the next page provides the UML diagram. The rest

of this section defines the extended Model class and the Port class; the class Submodel is defined in Section 3.5 on

page 17.
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Section 3.4 The extended Model class

SBase (extended)

Model (extended)

ListOfSubmodels

listOfPorts 0,1

port

submodel 1..*

1..*

ListOfPorts

listOfSubmodels 0,1

id: PortSId
name: string {use="optional"}

SBaseRef

Submodel

Port

Section 3.5

Section 3.7

Figure 4: The extensions of the Model class and the definitions of the classes Port, ListOfPorts, and ListOfSubmodels.
Submodel is defined in Section 3.5 on the next page and SBaseRef is defined in Section 3.7 on page 26. In other
respects, Model remains defined as in the SBML Level 3 Version 1 Core specification.

3.4.1 The list of submodels

The optional listOfSubmodels subcomponent in Model holds a ListOfSubmodels container object. If present, it

must contain one or more Submodel objects (see Section 3.5 on the next page).

3.4.2 The list of ports

The optional listOfPorts subcomponent in Model holds a ListOfPorts container object. If present, it must contain

one or more Port objects. Ports are described below.

3.4.3 The Port class

In Hierarchical Model Composition, the port concept allows a modeler to design a submodel such that other models

interact with the submodel through designated interfaces. The intention is that a modeler can indicate explicitly

the intended points of interaction between a given model and other models that include or otherwise interact

with it. The Port class is defined in Figure 4. It is derived from SBaseRef, a class whose definition we leave to

Section 3.7 on page 26; for now, it is worth mentioning that SBaseRef provides attributes portRef, idRef, unitRef

and metaIdRef, and a recursive subcomponent, sBaseRef.

We say that a Port object instance defines a port for a component in a model. As will become clear in Section 3.7 on

page 26, the facilities of the SBaseRef parent class from which Port is derived are what provides the means for the

component to be identified. For example, a port could be created by using the metaIdRef attribute to identify the

object for which a given Port instance is the port; then the question “what does this port correspond to?” would be

answered by the value of the metaIdRef attribute.

In the present formulation of the Hierarchical Model Composition package, the use of ports is not enforced, nor is

there any mechanism to restrict which ports may be used in what ways—they are only an advisory construct. Future

versions of this SBML package may provide additional functionality to support explicit restrictions on port use.

For the present definition of Hierarchical Model Composition, users of models containing ports are encouraged to
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Section 3.5 The Submodel class

respect the modeler’s intention in defining ports, and use the port definitions to interact with components through

their ports (when they have ports defined) rather than interact directly with the components.

If a port references an object from a namespace that is not understood by the interpreter, the interpreter must

consider the port to be not understood as well. If an interpreter cannot tell whether the referenced object does not

exist or if exists in an unparsed XML or SBML namespace, it may choose to display a warning to the user.

The id attribute

The required attribute id is used to give an identifier to a Port object so that other objects can refer to it. The attribute

has type PortSId and is essentially identical to the SBML primitive type SId, except that its namespace is limited to

the identifiers of Port objects defined within a Model object. In parallel, the PortSId type has a companion type,

PortSIdRef, that corresponds to the SBML primitive type SIdRef; the value space of PortSIdRef is limited to

PortSId values. (See also Figure 7 on page 26.)

Note the implication of the separate namespaces of port identifiers (values of type PortSId) and other identifiers

(values of SId or UnitSId): since PortSId values are in their own namespace within the parent Model, it is possible

for a PortSId value to be the same as some SId value in the model, without causing an identifier collision.

The name attribute

The optional name attribute is provided on Port so that port definitions may be given human-readable names. Such

names may be useful in situations where port names need to be displayed to modelers.

Additional restrictions on Port objects

Several additional restrictions exist on the use of ports. It will immediately become apparent that these restrictions

are common-sense rules, but they are worth making explicit:

1. The model referenced by a Port object’s SBaseRef constructs must be the Model object containing that Port

object.

2. Each port in a model must refer to a unique component of that model; that is, no two Port objects in a Model

object may both refer to the same model component.

3. No port in a model may refer to an element in a Submodel that has been deleted or replaced; that is, no

single element in an instantiated submodel may be referenced by more than one Port, ReplacedElement, or

Deletion.

4. A port cannot refer to any other port of the same Model object (including itself).

3.5 The Submodel class

Submodels are instantiations of models contained within other models. Submodel instances are expressed using

objects of class Submodel, defined in Figure 5 on the following page. Objects of this class represent submodels

contained within Model objects, as depicted in Figure 4 on the previous page.

A Submodel object must say which Model object it instantiates, and may additionally define how the Model object is

to be modified before it is instantiated in the enclosing model. With respect to the latter capability, the Hierarchical

Model Composition Package provides two possible types of direct modifications: conversion factors, and deletions.

We describe these two mechanisms in more detail in the subsections below, but the following informal summary

may serve as a useful guide to get a general sense for how they work:

■ If numerical values in the referenced model must be changed in order to fit them into their new context as

part of the submodel, the changes can be handled through conversion factors.

■ If one or more structural features in the referenced model are undesirable and should be removed, the changes

can be handled through deletions. (For example, an initial assignment or reaction may not be relevant in its

new context and should be removed.)
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Section 3.5 The Submodel class

SBase (extended)

id: SId
name: string { use="optional" }
modelRef: SIdRef
timeConversionFactor: SIdRef  { use="optional" }
extentConversionFactor: SIdRef  { use="optional" }

Submodel SBaseRef

ListOfDeletions

Deletiondeletion 1..*

listOfDeletions 0,1

id: SId  { use="optional" }
name: string { use="optional" }

Section 3.7

Figure 5: The definition of the Submodel, Deletion and ListOfDeletions classes.

3.5.1 The attributes of Submodel

Figure 5 shows that Submodel has several attributes, as well as a single subcomponent, listOfDeletions. We

describe the attributes below, then turn to listOfDeletions in Section 3.5.2 and Section 3.5.3.

The id attribute

The id is a required attribute of type SId that gives an identifier to the Submodel instance. It is required so that

other references may always have a means through which a parent model may refer to this submodel instance’s

elements (e.g., to link and replace them). The identifier has no mathematical meaning.

This identifier must follow the normal restrictions on SBML SId values for uniqueness within Model objects. In

addition, the id value may not be referenced by SBML Level 3 Version 1 Core components in a model. For example,

the identifier may not appear as the <ci> value in a mathematical formula of a component defined by SBML Level 3

Version 1 Core (e.g., rules, initial assignments, etc.). This restriction is necessary so that if a software package does

not have support for the Hierarchical Model Composition package, it can ignore the package constructs and still

end up with a syntactically valid (though perhaps diminished) SBML document.

The name attribute

The optional name attribute is provided on Submodel so that submodel definitions may be given human-readable

names. Such names may be useful in situations when submodel names are displayed to modelers.

The modelRef attribute

The whole purpose of a Submodel object is to instantiate a model definition, which is to say, either a Model object

defined in the same enclosing SBML document, or a model defined in an external SBML document. The modelRef

attribute is the means by which that model is identified. This required attribute of type SIdRef, must refer to the

identifier of a Model or ExternalModelDefinition object within the enclosing SBML document (i.e., in the model

namespace of the document).
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Section 3.5 The Submodel class

It is perfectly legitimate for the model referenced by modelRef to have its own submodels. The composite model

defined in that case is simply the composed model that results from following the chain of inclusions. However,

there is one restriction: loops are not allowed. In other words, a referenced model may not refer to its parent model,

nor may it refer to a model which in turn instantiates its parent model, etc.

It is legal for the model referenced by modelRef to refer to the <model> child of the enclosing SBML document,

i.e., the main Model object in the SBML object where it is itself located. In that situation, the document contains

a model definition that itself contains (and perhaps modifies) the model it presents to the world as the main or

top-level model in the document. A possible use for this might be to define a common scenario in the main model,

then create alternate scenarios with different initial conditions or parameter sets using the list of model definitions

(Figure 2 on page 13) in the SBML object.

Because the model namespace is defined per SBML document, it is possible to define and include a new model

namespace by creating a new document and then importing one or more of those models using the ExternalMod-

elDefinition class. Section 3.9 on page 32 discusses the important topic of identifier scoping.

The timeConversionFactor attribute

The optional timeConversionFactor attribute is provided to allow references and assumptions about the scale of

time in the Submodel to be converted to the scale of time in the containing model. It has the type SIdRef, and, if

set, must be the identifier of a Parameter object in the parent Model object. The units of that Parameter object, if

present, should reduce to being dimensionless, and the Parameter must be constant.

The value of the time conversion factor should be defined such that a single unit of time in the Submodel multiplied

by the time conversion factor should equal a single unit of time in the parent model. All references to time in the

Submodel should be modified accordingly before being used mathematically in conjunction with the parent Model.

The entire list of such SBML Level 3 Version 1 Core conversions is listed in Table 4 on page 30, and includes the

csymbol elements for time and delay defined in SBML, as well as Delay, RateRule, and KineticLaw elements. See

Section 3.8 on page 29 for more details.

If the Submodel itself references a Model with its own Submodel element, references to time within the second

Submodel must also be modified according to the timeConversionFactor attribute. The effect is multiplicative: if

the second Submodel had its own timeConversionFactor, references to time within the second Submodel would

then be converted according to the two timeConversionFactor elements multiplied together.

The extentConversionFactor attribute

The optional extentConversionFactor attribute is provided to allow references and assumptions about the scale

of a model’s reaction extent to be converted to the scale of the containing model. It has the type SIdRef, and, if

set, must be the identifier of a Parameter object in the parent Model object. The units of that Parameter object, if

present, should reduce to being dimensionless, and the Parameter must be constant.

The value of the reaction extent conversion factor should be defined such that a single unit of extent in the Submodel

multiplied by the extent conversion factor should equal a single unit of extent in the parent model. In SBML Level 3

Version 1 Core, this only includes KineticLaw elements, but would also apply to any mathematical reference to

extent in a package. See Section 3.8 on page 29 for more details.

If the Submodel itself references a Model with its own Submodel element, references to reaction extent within

the second Submodel must also be modified according to the extentConversionFactor attribute. The effect

is multiplicative: if the second Submodel has its own extentConversionFactor, references to extent within the

second Submodel must be converted according to the two extentConversionFactor elements multiplied together.

3.5.2 The list of deletions

The listOfDeletions subcomponent on Submodel holds an optional ListOfDeletions container which, if present,

must contain one or more Deletion objects. This list specifies objects to be removed from the submodel when

composing the overall model. (The “removal” is mathematical and conceptual, not physical.)

Section 3 Package syntax and semantics Page 19 of 56

C
op

yr
ig

ht
20

15
T

he
A

ut
ho

r(
s)

.P
ub

lis
he

d
by

Jo
ur

na
lo

fI
nt

eg
ra

tiv
e

B
io

in
fo

rm
at

ic
s.

T
hi

s
ar

tic
le

is
lic

en
se

d
un

de
ra

C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s
3.

0
U

np
or

te
d

L
ic

en
se

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/)

.

Journal of Integrative Bioinformatics, 12(2):268, 2015 http://journal.imbio.de

doi:10.2390/biecoll-jib-2015-268



Section 3.6 Replacements

3.5.3 The Deletion class

The Deletion object class is used to define a deletion operation to be applied when a submodel instantiates a model

definition. Deletions may be useful in hierarchical model composition scenarios for various reasons. For example,

some components in a submodel may be redundant in the composed model, perhaps because the same features

are implemented in a different way in the new model.

Deletions function as follows. When the Model to which the Submodel object refers (via the modelRef attribute) is

read and processed for inclusion into the composed model, each Deletion object identifies an object to “remove”

from that Model instance. The resulting submodel instance consists of everything in the Model object instance

minus the entities referenced by the list of Deletion objects. We discuss the implications of deletions further below.

The definition of the Deletion object class is shown in Figure 5 on page 18. It is subclassed from SBaseRef, described

in detail in Section 3.7 on page 26, and reuses all the machinery provided by SBaseRef. In addition, it defines two

optional attributes, id and name.

The id and name attributes

The optional attribute id on Deletion can be used to give an identifier to a given deletion operation. The identifier

has no mathematical meaning, but it may be useful for creating submodels that can be manipulated more directly

by other submodels. (Indeed, it is legitimate for an enclosing model definition to delete a deletion!)

The optional name attribute is provided on Deletion for the same reason it is provided on other elements that have

identifiers; viz., to provide for the possibility of giving a human-readable name to the object. The name may be

useful in situations when deletions are displayed to modelers.

Implications of a deletion

As might be expected, deletions can have wide-ranging implications, especially when the object deleted has

substantial substructure, as in the case of reactions. The following are rules regarding deletions and their effects.

1. An object that has been “deleted” is considered inaccessible. Any element that has been deleted (or replaced,

as discussed in Section 3.6) may not be referenced by an SBaseRef object.

2. If the deleted object has child objects and other structures, the child objects and substructure are also

considered to be deleted.

3. It is not an error to delete explicitly an object that is already deleted by implication (for example as a result of

point number 2 above). The resulting model is the same.

4. If the deleted object is from an SBML namespace that is not understood by the interpreter, the deletion must

be ignored–the object will not need to be deleted, as the interpreter could not understand the package. If an

interpreter cannot tell whether a referenced object does not exist or if exists in an unparsed namespace it may

produce a warning.

3.6 Replacements

The model definition, submodel and port constructs defined so far allow a modeler to identify and aggregate models,

as well as to delete features from model definitions before the definitions are used to create a final, composed model.

In this section, we turn to two final capabilities needed for effective model composition: linking and substituting

components. Both are implemented as replacements, which are the glue used to connect submodels together with

each other and with a containing model.

Replacements are implemented by extending the SBML Level 3 Version 1 Core SBase class as shown in Figure 6 on

the next page. This extension provides the means to define replacements in two directions: either the current object

replaces one or more others, or the current object is itself replaced by another. These two possibilities are captured

by the listOfReplacedElements and replacedBy subcomponents shown in Figure 6.
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Section 3.6 Replacements

SBase (extended)

replacedElement 1..*

SBaseRef
listOfReplacedElements 0,1

ReplacedElement

submodelRef: SIdRef
deletion: SIdRef  { use="optional" }
conversionFactor: SIdRef  { use="optional" }

replacedBy 0,1
ReplacedBy

submodelRef: SIdRef

ListOfReplacedElements

Section 3.7

Figure 6: The extension of SBase and the definition of the ListOfReplacedElements and ReplacedElement classes.
The SBaseRef class is defined in Section 3.7 on page 26.

SBase in SBML is the abstract base class of all other SBML object classes; consequently, the extension of SBase

means all SBML objects gain the ability to define how they replace (or are replaced by) components in submodels.

Replacements are a general mechanism that serve multiple purposes. At their most basic, they allow a model builder

to make a statement of the form “entity W in this model replaces entity X in submodel Y ”. In the final composed

model, all references to X in Y are replaced with references to W. The same approach is used as the mechanism

for linking or gluing entities from different models together. Thus, to connect entity X and some other entity Z

located in another submodel, a model could create an entity W in the containing model, replacing both X and Z.

Entity W will then act as an intermediary at the level of the containing model, and all references to both X and Z

would now point to W. Alternatively, to designate X as the replacement for Z, entity W could be created with a child

ReplacedElement element pointing to Z, and a child ReplacedBy element pointing to X. In this case, all references

to W and Z would now point to X.

3.6.1 The list of replaced elements

Figure 6 shows that the extension of SBase by the Hierarchical Model Composition package adds an optional

listOfReplacedElements subcomponent for holding a ListOfReplacedElements container object. If present, it

must contain at least one ReplacedElement object (Section 3.6.2).

3.6.2 The ReplacedElement class

A ReplacedElement object is essentially a pointer to a submodel object that should be considered “replaced”.

The object holding the ReplacedElement instance is the one doing the replacing; the object pointed to by the

ReplacedElement object is the object being replaced.

A replacement implies that dependencies involving the replaced object must be updated: all references to the

replaced object elsewhere in the model are taken to refer to the replacement object instead. For example, if one

species replaces another, then any reference to the original species in mathematical formulas, or lists of reactants

or products or modifiers in reactions, or initial assignments, or any other SBML construct, are taken to refer to

the replacement species (with its value possibly modified by either this object’s conversionFactor attribute or

the relevant submodel’s conversion factors—see Section 3.8 on page 29). Moreover, any annotations that refer to

the replaced species’ metaid value must be made to refer to the replacement species’ metaid value instead; and

anything else that referred either to an object identifier (i.e., attributes such as the id attribute whose types inherit

from the SId primitive data type) or the meta identifier (i.e., the metaid attribute or any other attribute that inherits

from the ID primitive data type) must be made to refer to the replacement species object instead.
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Section 3.6 Replacements

In summary, in a SBML Level 3 Version 1 Core model making use of Hierarchical Model Composition, defining a

ReplacedElement object has the following effects:

1. The replaced element is considered to be removed from the model.

2. Attributes having values of type SIdRef that refer to the replaced element are considered to refer to the

replacement element instead.

3. Attributes having values of type UnitSIdRef that refer to the replaced unit are considered to refer to the

replacement element instead.

4. Within mathematical formulas, MathML <cn> elements that refer to a replaced element are considered to

refer to the replacement element instead.

5. Annotations with attributes having values of type IDREF that refer to the meta identifier of replaced elements

are considered to refer to the replacement element. In particular, this rule applies to the rdf:about attribute.

For other SBML Level 3 packages that extend SBML Level 3 Version 1 Core, similar rules apply:

1. New attributes having values of type SIdRef, UnitSIdRef or IDREF that refer to the replaced element are now

considered to point to the replacement element.

2. New attributes having values of a type defined in the package specification as being derived from the SIdRef

or IDREF primitive data type, and that referred to the replaced element, are now considered to refer to the

replacement element. This includes, for example, attributes of type SpIdRef, defined in the proposed Spatial

Processes specification (April 2011).

It is worth noting that local parameters (inside Reaction objects) pose an interesting edge case for these rules. In

order to determine which element is pointed to by a <cn> element within the <math> element of a KineticLaw

object, it is necessary to examine the local parameters of that kinetic law’s parent Reaction object. Whether the <cn>

element is considered to point to something new, then, depends on whether it pointed to the local parameter and

whether that local parameter was replaced, even if the text of the element matched the SId value of another element

in the model. Note that local parameters may only effectively be replaced by global parameters, since references to

its SId are only valid from within the Reaction element to which it belongs.

If a ReplacedElement object references an object from a namespace that is not understood by the interpreter, the

replaced element must be ignored—the object will not exist to need to be replaced, as the interpreter could not

understand the package. If an interpreter cannot tell whether a referenced object does not exist or if exists in an

unparsed namespace, it may choose to produce a warning.

The ReplacedElement object class inherits from SBaseRef and adds three attributes: one required (submodelRef)

and two optional (deletion and conversionFactor), as described below.

Attributes inherited from SBaseRef

The ReplacedElement class, being derived from SBaseRef, inherits all of that class’s attributes and its one subele-

ment. This means that ReplacedElement has the portRef, idRef, unitRef and metaIdRef attributes, as well as the

subcomponent sBaseRef and the recursive structure that it implies.

It is the properties of SBaseRef that allow a ReplacedElement object to refer to what is being replaced. For example,

if the object being replaced has a port identifying it, the instance of ReplacedElement would have its portRef

attribute value set to the identifier of the Port pointing to the object being replaced. If there is no corresponding

port for the object being replaced, but the object has a regular identifier (typically an attribute named id), then

the ReplacedElement object would set idRef instead. If there is no identifier, the replacement would use the next

available option defined by SBaseRef, and so on. Section 3.7 on page 26 describes the alternatives in more detail.

Section 3 Package syntax and semantics Page 22 of 56

C
op

yr
ig

ht
20

15
T

he
A

ut
ho

r(
s)

.P
ub

lis
he

d
by

Jo
ur

na
lo

fI
nt

eg
ra

tiv
e

B
io

in
fo

rm
at

ic
s.

T
hi

s
ar

tic
le

is
lic

en
se

d
un

de
ra

C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s
3.

0
U

np
or

te
d

L
ic

en
se

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/)

.

Journal of Integrative Bioinformatics, 12(2):268, 2015 http://journal.imbio.de

doi:10.2390/biecoll-jib-2015-268



Section 3.6 Replacements

The submodelRef attribute

The required attribute submodelRef takes a value of type SIdRef. This value must be the identifier of a Submodel

object in the containing model. The Model object referenced by the Submodel object establishes the object names-

paces for the portRef, idRef, unitRef and metaIdRef attributes: only objects within the Model object may be

referenced by those attributes.

The deletion attribute

The optional attribute deletion takes a value of type SIdRef. The value must be the identifier of a Deletion object

in the parent Model of the ReplacedElement (i.e., the value of some Deletion object’s id attribute). When deletion

is set, it means the ReplacedElement object is actually an annotation to indicate that the replacement object

replaces something deleted from a submodel. The use of the deletion attribute overrides the use of the attributes

inherited from SBaseRef: instead of using, e.g., portRef or idRef, the ReplacedElement instance sets deletion to

the identifier of the Deletion object. In addition, the referenced Deletion must be a child of the Submodel referenced

by the submodelRef attribute.

The use of ReplacedElement objects to refer to deletions has no effect on the composition of models or the mathe-

matical properties of the result. It serves instead to help record the decision-making process that lead to a given

model. It can be particularly useful for visualization purposes, as well as to serve as scaffolding where other types of

annotations can be added using the normal Annotation subcomponents available on all SBase objects in SBML.

The conversionFactor attribute

The ReplacedElement class’s conversionFactor attribute, if present, defines how to transform or rescale the

replaced object’s value so that it is appropriate for the new contexts in which the object appears. This attribute

takes a value of type SIdRef, and the value must refer to a Parameter object instance defined in the model. This

parameter then acts as a conversion factor.

The value of the conversion factor should be defined such that a single unit of the replaced element multiplied by

the conversion factor should equal a single unit of the replacement element, and the units of the conversion factor

should be commensurate with that transformation. The referenced Parameter may be non-constant, particularly if

a Species is replaced by a Species with a different hasOnlySubstanceUnits attribute value, thus changing amount

to concentration, or visa versa.

It is invalid to use a conversionFactor attribute and a deletion attribute at the same time: if something is being

deleted, there is no way to convert it, since references to it are no longer valid.

It is likewise only legal to use a conversionFactor attribute on a ReplacedElement that points to an element with

mathematical meaning. For SBML Level 3 Version 1 Core, this means Compartment, Parameter, Reaction, Species,

and SpeciesReference elements. Elements defined in other packages may or may not have mathematical meaning,

depending on their specifications.

If the referenced element itself contains a ReplacedElement or ReplacedBy child, references to the elements to

which they refer must also be modified according to the conversionFactor attribute. The effect is multiplicative: if

the inner ReplacedElement had its own conversionFactor, references to those doubly-replaced elements would

then be converted according to the two conversionFactor elements multiplied together.

3.6.3 The replacedBy subcomponent

The extension of SBase defined in Figure 6 on page 21 introduces a new optional subcomponent, replacedBy. Its

value, if present on a given SBase-derived object, must be a single object of the ReplacedBy class, described below.

3.6.4 The ReplacedBy class

Whereas a ReplacedElement object indicates that the containing object replaces another, a ReplacedBy object

indicates the converse: the parent object is to be replaced by another object. As is the case with ReplacedElement,
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Section 3.6 Replacements

the ReplacedBy class inherits from SBaseRef. It adds one required attribute (submodelRef).

The ReplacedBy class is the only SBaseRef-derived class with a restriction on references to elements from other

namespaces, because the referenced element must be discoverable by an interpreter that only knows enough about

packages to read this element. This means that a core element may not have a ReplacedBy child that points to an

element in a package namespace, because an interpreter might not understand that namespace, and attempt to

read and manipulate this file. Similarly, an element defined in one package’s namespace may not have a ReplacedBy

child that points to an element defined in an unrelated package’s namespace. It is fine for an element defined in one

package’s namespace to have a ReplacedBy child which points to an SBML Level 3 Version 1 Core element, since to

understand the package, one must understand SBML Level 3 Core.

Note that the ReplacedBy class does not have a conversionFactor attribute. This is because the modeler already

knows the units and scale of the object being pointed to, and can write the model such that references to that

object are scaled appropriately. Note that if the target of a ReplacedBy element is a Reaction, it may be scaled

by the timeConversionFactor and extentConversionFactor attributes on the Submodel it is a member of, so

references to the object in the containing model should take that into account.

Overall, the same things apply to elements referenced in a ReplacedBy construct as happen to the elements

referenced in a ReplacedElement construct. The same things are true as are listed in Section 3.6.2 on page 21, with

the difference that the ’replaced element’ is the parent of the ReplacedBy element, and the ’replacement element’ is

the element referenced by the ReplacedBy element.

Attributes inherited from SBaseRef

The ReplacedBy class, being derived from SBaseRef, inherits the latter class’s attributes portRef, idRef, unitRef

and metaIdRef, as well as the subcomponent sBaseRef and the recursive structure that it implies.

The submodelRef attribute

The required attribute submodelRef takes a value of type SIdRef, which must be the identifier of a Submodel object

in the containing model. This attribute is analogous to the corresponding attribute on ReplacedElement; that is, the

model referenced by the Submodel object establishes the object namespaces for the portRef, idRef, unitRef and

metaIdRef attributes: only objects within the Model object may be referenced by those attributes.

3.6.5 Additional requirements and implications

Replacements are a powerful mechanism and carry significant implications. We list some crucial ones below:

1. Types must be maintained. With only one exception, replacements must be defined such that the class of the

replacement element is the same as the class of the replaced element. This means that a Species may only be

replaced by Species, a Reaction with a Reaction, etc. An element of a derived class may replace an object of

its base class, but not the reverse. No such elements exist in SBML Level 3 Version 1 Core, but the possibility

exists for this to happen in a package definition. The sole exception to this rule for Core elements is that

Parameter objects may be replaced by an element with mathematical meaning: a Compartment, Reaction,

Species, or SpeciesReference in Core, or any class defined as having mathematical meaning in a package

definition. The reverse is not true: Compartment, Reaction, Species, or SpeciesReference elements may not

be replaced by a Parameter. A package that wishes to define a new exception to this rule may do so in its own

specification if it explicitly lists what element may replace an element of a different class, and whether the

reverse is legal.

2. Identifiers must be conserved. If a replaced element defines one or more attributes of type SId or XML ID (or

their derivatives, such as UnitSId), the replacement element must also define those attributes. This ensures

that any reference to the replaced element can be updated with a reference to the replacement element.

3. Replacements must be unique. Any single SBML object may only appear in exactly one ReplacedElement, Port,

or Deletion object; one set of ReplacedBy objects, or be the parent of a ReplacedBy object. In other words,

a single object may be directly replaced, deleted, turned into a port, or replace one or more other objects,
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Section 3.6 Replacements

but may not do more than one of those things at a time. Otherwise, it would lead to ambiguities (e.g., in

old references to the entities being replaced). A ReplacedElement object referring to a Deletion is the only

exception to this rule, and may be listed in more than one ListOfReplacedElements.

4. Units should stay the same. Any element with defined units should only be replaced by elements with the

same defined units if no conversionFactor is defined. If a conversionFactor is defined, a single unit of the

replaced element multiplied by the conversion factor should equal a single unit of the replacement element.

5. Subcomponents of replaced and deleted objects become inaccessible. An important and far-reaching conse-

quence of replacements is that if the object being replaced contains other objects, then those other objects

are considered deleted. For example, replacing a Reaction or an Event object means all of the substructure

of those entities in a model are deleted, and references to the identifiers of those deleted entities are made

invalid. (This has implications for such things as SpeciesReference identifiers that may be used in a model

outside of the Reaction objects where they are defined.)

This scheme does not provide for direct “horizontal replacements” involving only subelements. An example of this is

when a species in one submodel is the conceptual replacement for a second species in a second submodel. Despite

the lack of a direct mechanism for horizontal replacements, they can still be achieved by creating an intermediate

object in the containing model and linking it to the other objects via replacements.

Note that the only functional difference between an element being replaced vs. that element being deleted is that

in the former case, references to it are redirected, and in the latter case, references to it are considered invalid.

Therefore, an element that has no identifiers or no references may be replaced or deleted, with no functional

difference between the two approaches.

3.6.6 Implications for replacements and deletions of subobjects

Replacing and deleting objects is fairly intuitive for ’top-level’ SBML objects: if a Species is replaced, you now have

the new species instead; if a Reaction is deleted, it no longer affects the Species it used to affect.

However, for elements such as a KineticLaw or SpeciesReference that exist as children of other SBML objects, while

the rules are identical to the rules for replacing and deleting anything else, the implications are slightly different:

when an element is replaced or deleted, it is considered to have been removed from the model entirely, and its

parent therefore no longer contains it. Its former parent has no explicit relationship (except through IdRefs) with

any replacement object that may have been defined.

If the parent is: And the child is: The result is:



Deleted Deleted Both the parent and child are removed from the model. Any references to either object
are invalid and must be removed.



Deleted Replaced Both the parent and child are removed from the model. Any references to the child
object are now considered to refer to its replacement object. Any references to the
parent object are invalid and must be removed.



Replaced Deleted Both the parent and child are removed from the model. Any references to the parent
object are now considered to refer to its replacement object. Any references to the child
object are invalid and must be removed.



Replaced Replaced Both the parent and child are removed from the model. References to the parent object
are now considered to refer to the parent’s replacement, and any references to the child
object are now considered to refer to the child’s replacement.

Table 3: The effects of deletions and replacements on nested objects.
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Section 3.7 The SBaseRef class

It would be unusual, but possible, for this to represent an actual modeling scenario. For example, a SpeciesReference

that referred to a ubiquitous small molecule could be removed if the new model was a simplified version that no

longer needed the explicit reference. A Reaction’s KineticLaw might be removed if the model was going to be newly

used in a Flux Balance context, where kinetic laws are inferred instead of being explicit.

It is perhaps a more likely scenario that if something is replaced, a subcomponent of the replaced item also be

replaced by a parallel subcomponent of the replacement item. In this case, both the parent and the child are

considered to be removed from the original model, and any references to the replaced parent are now considered to

point to the replacement parent, and any references to the replaced child are considered to point to the replacement

child. This can have an actual effect in the case where the stoichiometry of a reaction (the mathematical meaning of

a SpeciesReference) is being set or being used by some other construct such as an InitialAssignment. The full list of

implications for replacing nested objects is listed in Section 3.6.5 on the preceding page.

3.7 The SBaseRef class

Defining ports, deletions, and replacements requires a way to refer to specific components within enclosed models

or even within external models located in other files. The machinery for constructing such references is embodied

in the SBaseRef class. This class is the parent class of the Port, Deletion, ReplacedElement and ReplacedBy classes

described in previous sections.

Figure 7 shows the definition of SBaseRef. This class includes several attributes used to implement alternative

approaches to referencing a particular component, and it also has a recursive structure, providing the ability to refer

to elements buried within (say) a sub-submodel configuration.

SBase (extended)

sBaseRef 0,1

portRef: PortSIdRef  { use="optional" }
idRef: SIdRef  { use="optional" }
unitRef: UnitSIdRef  { use="optional" }
metaIdRef: IDREF  { use="optional" }

SBaseRef

Figure 7: The extensions of the SBaseRef class. The four attributes portRef, idRef, unitRef and metaIdRef are
mutually exclusive; only one can have a value in a given object instance. The recursive structure also allows referencing
entities in submodels of submodels, to arbitrary depths, as described in the text.

3.7.1 The attributes of SBaseRef

The four different attributes on SBaseRef are mutually exclusive: only one of the attributes can have a value at any

given time, and exactly one must have a value in a given SBaseRef object instance. (Note that this is true of the

basic SBaseRef class; however, derived classes such as ReplacedElement may add additional attributes and extend

or override the basic attributes and mechanisms.)

All of the attributes face the following common namespace issue. As discussed in more detail in Section 3.9 on

page 32, attributes of type SId, UnitSId, and PortSId need only be unique on a per-Model basis. This means that

an interpreter of the SBML document must be able to determine the model to which idRef, unitRef, and portRef

attributes refer. In addition, even though ID values are unique on per-document level, the same SBML element

may be instantiated in multiple submodels, in any number of Model objects, and therefore the metaIdRef attribute

must also know to which Model instantiation it is referring. Just exactly how this is done is something that is left up
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Section 3.7 The SBaseRef class

to the classes that subclass SBaseRef. The sections that describe Port, Deletion, ReplacedElement and ReplacedBy

describe the approach taken in each case.

Separately, readers may wonder why so many different alternatives are necessary. The reason is that in a given

scenario, the referenced model may be located in an external file beyond the direct control of the modeler, and so

the preferred methods of referencing the subobjects may not be available. SBaseRef provides multiple alternatives

so that a variety of modeling scenarios can be supported.

It is also worth noting that classes derived from SBaseRef may point to elements from other SBML Level 3 packages.

For example, a package may define a new SBase-derived class which will inherit the metaId attribute. These

metaIds may be referenced by the SBaseRef metaIdRef attribute. Another possibility is that the Level 3 package

defines a class having an attribute of the type SId or UnitSId. In that case, those elements may be referenced with

the idRef or unitRef attributes, respectively. A final possibility is that the package defines a class with a child

element from the SBML Level 3 Version 1 Core specification (as the Hierarchical Model Composition package does

with Core Model objects that are children of the ListOfModelDefinitions class). In that case, that child element may

be referenced by any of its identifiers as if it was in its normal location in SBML Level 3 Version 1 Core.

Because referencing elements in other namespaces is allowed, all classes that inherit from SBaseRef must declare

what to do when the referenced element is part of a namespace that the current interpreter does not understand,

and if there are any additional restrictions on referencing other namespaces. Any SBaseRef objects that are not

derived classes defer to their SBaseRef-derived parent for any such restrictions and rules.

The portRef attribute

The optional attribute portRef takes a value of type PortSIdRef. As its name implies, this attribute is used to refer

to a port identifier, in the case when the reference being constructed with the SBaseRef is intended to refer to a

port on a submodel. The namespace of the PortSIdRef value is the set of identifiers of type PortSId defined in the

submodel, not the parent model.

The idRef attribute

The optional attribute idRef takes a value of type SIdRef. As its name implies, this attribute is used to refer to

a regular identifier (i.e., the value of an id attribute on some other object), in the case when the reference being

constructed with the SBaseRef is intended to refer to an object that does not have a port identifier. The namespace

of the SIdRef value is the set of identifiers of type SId defined in the submodel, not the parent model.

The unitRef attribute

The optional attribute unitRef takes a value of type UnitSIdRef. This attribute is used to refer to the identifier of a

UnitDefinition object. The namespace of the UnitSIdRef value is the set of unit identifiers defined in the submodel,

not the parent model.

Note that even though this attribute is of type UnitSIdRef, the reserved unit identifiers that are defined by SBML

Level 3 (see Section 3.1.10 of the SBML Level 3 Version 1 Core specification) are not permitted as values of unitRef.

Reserved unit identifiers may not be replaced or deleted.

The metaIdRef attribute

The optional attribute metaIdRef takes a value of type IDREF. This attribute is used to refer to a metaid attribute

value on some other object, in the case when the reference being constructed with the SBaseRef is intended to refer

to an object that does not have a port identifier. The namespace of the metaIdRef value is the entire document in

which the referenced model resides, but must refer to a subelement of the referenced model. Since meta identifiers

are optional attributes of SBase, all SBML objects have the potential to have a meta identifier value.
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Section 3.7 The SBaseRef class

3.7.2 Recursive SBaseRef structures

An SBaseRef object may have up to one subcomponent named sBaseRef, of type SBaseRef (see Figure 7 on

page 26). This permits recursive structures to be constructed so that objects inside submodels can be referenced.

The form of such recursive references must be as follows. The highest-level SBaseRef object of such a chain

(which will necessarily be an object of class Port, Deletion, ReplacedElement or ReplacedBy, because they are the

only classes derived from the class SBaseRef) must refer to a Submodel object in the containing model. All child

SBaseRef objects in the chain must refer to components inside the Model instance to which the Submodel refers.

The following example may help clarify this. Suppose that we want to delete an object with the identifier “p1” inside

the Submodel object identified as “sub_m1”. Figure 5 on page 18 shows that Deletion objects are placed inside a

ListOfDeletions within a Submodel. The following XML fragment illustrates how the constructs will look:



<submodel id="sub_m1" modelRef="m1">

<listOfDeletions>

<deletion idRef="p1" />

</listOfDeletions>

</submodel>


Suppose instead that the submodel “m1” from the previous example is actually nested inside another submodel

“m2”. Then, we would have the following:



<listOfModelDefinitions>

<modelDefinition id="m1">

<listOfParameters>

<parameter id="p1" value="3"/>

</listOfParameters>

</modelDefinition>

<modelDefinition id="m2">

<listOfSubmodels>

<submodel id="sub_m1" modelRef="m1"/>

</listOfSubmodels>

</modelDefinition>

<modelDefinition id="m3">

<listOfSubmodels>

<submodel id="sub_m2" modelRef="m2">

<listOfDeletions>

<deletion idRef="sub_m1">

<sBaseRef idRef="p1" />

</deletion>

</listOfDeletions>

</submodel>

</listOfSubmodels>

</listOfModelDefinitions>


Finally, what if we needed to go further down into nested submodels? The following example illustrates this:



<listOfModelDefinitions>

<modelDefinition id="m1" name="m1">

<listOfParameters>

<parameter id="p1" value="3" constant="true"/>

</listOfParameters>

</modelDefinition>

<modelDefinition id="m2" name="m2">

<listOfSubmodels>

<submodel id="sub_m1" modelRef="m1"/>

</listOfSubmodels>

</modelDefinition>

<modelDefinition id="m3" name="m3">

<listOfSubmodels>

<submodel id="sub_m2" modelRef="m2"/>
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Section 3.8 Conversion factors

</listOfSubmodels>

</modelDefinition>

<modelDefinition id="m4" name="m4">

<listOfSubmodels>

<submodel id="sub_m3" modelRef="m3">

<listOfDeletions>

<deletion idRef="sub_m2">

<sBaseRef idRef="sub_m1">

<sBaseRef idRef="p1"/>

</sBaseRef>

</deletion>

</listOfDeletions>

</submodel>

</listOfSubmodels>

</modelDefinition>

</listOfModelDefinitions>


Although this use of nested SBaseRef objects allows a model to refer to components buried inside submodels, it is

considered inelegant model design. It is better to promote any element in a submodel to a local element if it can be

predicted that containing models may need to reference it. However, if the submodel is fixed (e.g., if is in an external

file), then no other option may be available except to use nested references.

Alternate spelling of ’sBaseRef’

Because of an error in the UML diagram of a previous version of this specification, a valid spelling of the child

SBaseRef object is the differently-capitalized ’sbaseRef’ instead of ’sBaseRef’. However, this spelling is considered

deprecated, and should not be used. It is expected that future versions of this specification will only allow ’sBaseRef’

as the xml name of this object.

3.8 Conversion factors

In SBML Level 3 Version 1 Core, units of measurement are optional information. Modelers are required to write

their models in such a way that all conversions between units are explicitly incorporated into the quantities, so that

nowhere do units need to be understood and values implicitly converted before use. Given the Hierarchical Model

Composition package’s design goal of compatibility with existing models and files that may not be changeable,

it is not an option to require that all included models must be written in such a way that they are numerically

compatible with each other. For example, if one submodel defines how a species amount changes in time, and a

second submodel defines an initial assignment for that same species in terms of concentration, something must be

done to make the model as a whole coherent without editing the submodels directly. That is the purpose of the

conversion factor attributes on the ReplacedElement and Submodel classes.

3.8.1 Conversion factors involving ReplacedElement

When an element in a submodel has been replaced by an element in a containing model, old references to the

replaced element are replaced by references to the replacement element. However, the mathematical formulas

associated with that replaced element may assume different scales than the ones used for the replacement element.

Correcting this is the purpose of the conversionFactor attribute on ReplacedElement objects.

There are two types of mathematical references possible in SBML: assignments to a variable, and the use of a variable

in calculations. In the former case, when an assignment (an InitialAssignment, EventAssignment, AssignmentRule,

or RateRule) targets a replaced element, that formula should be multiplied by the conversion factor before being

used. In the latter case, when a MathML <cn> element references the replaced element’s identifier, that reference

should be considered to be divided by the conversion factor.

For example, if a species has an initial assignment of 4x +3, and has been replaced and given a conversion factor

of c, the initial assignment formula becomes c(4x +3). Conversely, if the x itself has been replaced by y and given

a conversion factor of cx , that initial assignment formula would become 4((y/cx )+ 3). This holds true for any
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Section 3.8 Conversion factors

mathematical equation in the model, including algebraic rules. This also means that if a value appears on the right

and left-hand sides of an equation, you must apply the conversion factor twice: if the rate rule of x is 4x +3, the rate

rule for y becomes cx (4(y/cx )+3). (This simplifies to 4y +3cx , as you would expect—the y is already in the correct

scale; it is only the 3 that must be converted.)

3.8.2 Conversion factors involving Submodel

Most of the math in an SBML model may have arbitrary units, but there are two exceptions to this rule: time, and

reaction extent. While both of these mathematical concepts may be scaled to arbitrary units, multiple such scales in

a single document are not allowed: all references to time assume a single scale, and all reactions are assumed to

process their reactants and products in the same way. The timeConversionFactor and extentConversionFactor

attributes on Submodel dictate how time and reaction extent are to be converted to match the scale of the containing

model. As described in Section 3.5.1 on page 19, this includes the MathML csymbols time and delay, as well as any

Delay, KineticLaw, or RateRule objects that are not replaced in the Submodel.

The conversionFactor attributes on Species and Model objects defined in SBML Level 3 Version 1 Core are

unrelated to the conversion factors discussed above. The factors in Level 3 Core allow multiple substance scales to

be converted to the (single) scale of reaction extent in a model, so that different Species objects may each each have

different units if desired. Because different Species objects already have this mechanism for converting units, there

is no need for an additional substanceConversionFactor attribute on Submodel.

To understand the rules, the entire list of classes and MathML elements that are converted by these three factors

(time, extent, and replaced) in the SBML Level 3 Version 1 Core specification are provided in Table 4. Similar rules

may be derived from other packages that require any particular mathematics to be universal over a given Model.

Component Automatic conversion factor

AlgebraicRule 1

AssignmentRule Conversion factor for referenced object

Compartment 1

Constraint (Boolean value; no conversion factor needed)

Delay timeConversionFactor

EventAssignment Conversion factor for referenced object

FunctionDefinition 1

InitialAssignment Conversion factor for referenced object


KineticLaw

extentConversionFactor

timeConversionFactor


MathML <cn> element

1

Conversion factor for referenced object


MathML <csymbol> for time
1

timeConversionFactor

The time argument to a MathML
csymbol delay function

timeConversionFactor

Parameter 1

Priority 1


RateRule

Conversion factor for referenced object

timeConversionFactor

Species 1

SpeciesReference 1

Trigger (Boolean value; no conversion factor needed)

Table 4: Conversion factors used for the different components defined by SBML Level 3 Version 1 Core.
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Section 3.8 Conversion factors

In Table 4 on the previous page, an automatic conversion factor of “1” simply means that the given component

does not need to be converted. Similarly, if a conversion factor is not defined, it defaults to “1” as well. For example,

if the conversion factor extentConversionFactor is defined but timeConversionFactor is not, kinetic laws are

converted according to the extentConversionFactor, divided by 1.

Note that for the MathML <cn> element conversion, the SId of a Reaction references its KineticLaw, meaning that if

the KineticLaw was converted as per Table 4 on the preceding page, its appearance in MathML will also need to be

converted by its inverse. The identifiers of AssignmentRule and RateRule objects cannot appear in any MathML,

and thus do not need to be checked in the same way.

Converting the formula of a RateRule may involve using a combination of conversion factors. If the target of

the RateRule has been replaced and given a conversionFactor attribute value, and its Submodel has a defined

timeConversionFactor value, the formula must be multiplied by the conversionFactor and divided by the

timeConversionFactor before being used.

There is only one example of math that is assumed to be in the same scale across a single SBML model but that

cannot be converted according to these conversion factors: the math associated with the Priority subcomponent

of Event objects. When comparing priority expressions across submodels, they are all assumed to be on the same

scale relative to each other. Thus, if one submodel had priorities set on a scale of 0 to 10 and another had priorities

set on a scale of −100 to 100, the only way to reconcile the two would be to replace all events that had priorities on

one scale with events with priorities on the new scale. The same would be true of math defined in any other Level 3

package without the unit type of extent or time, but which was assumed to be universally consistent across multiple

objects in the SBML model. To correctly compose models with different scales of such objects using this package,

every nonconformant object would need to be replaced and given an explicit conversion factor, or that package

would have to extend this Hierarchical Model Composition package to define a new attribute on the Submodel class

that could be used to automatically convert all such elements in the submodel with that unit type.
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Section 3.9 Namespace scoping rules for identifiers

3.9 Namespace scoping rules for identifiers

In the Hierarchical Model Composition package, as in SBML Level 3 Version 1 Core, the Model object contains the

main components of an SBML model, such as the species, compartments and reactions. The package adds the

ability to put multiple models inside an SBML document, and therefore must define the scope of identifiers in such

a way that identifier collisions are prevented. In this section, we describe the scoping rules for all of the types and

classes defined in Section 3.2 to Section 3.7 on pages 11–26.

1. A shared namespace exists for SId values defined at the level of the SBML document. This namespace is

known as the model namespace of the document. It contains the identifiers (i.e., values of id attributes)

of all Model and ExternalModelDefinition objects within the SBML document. (An ExternalModelDefinition

object references a model elsewhere, so in this sense, both Model and ExternalModelDefinition are types

of models.) The namespace is limited to that SBML document, and is not shared with any other SBML

document, even if that document is referenced via an ExternalModelDefinition. The identifier of every Model

and ExternalModelDefinition object must be unique across the set of all such identifiers in the document.

2. The namespace for SId identifiers defined within a Model object used in Hierarchical Model Composition

follows the same rules as those defined in SBML Level 3 Version 1 Core for plain Model objects. This namespace

is known as the object namespace of the model. The scope of the identifiers is limited to the enclosing Model

object. This means that two or more Model objects in the same document may reuse the same object

identifiers inside of them; the identifiers do not need to be unique at the level of the SBML document. (For

example, two model definitions could use the same SId value for Parameter objects within their respective

contents. Note, however, that this does not imply that the two objects are equated with each other!) An

implication of this rule is that to fully locate an object, one must know not only the object’s identifier, but also

the identifier of the model in which it is located.

3. The identifier of every UnitDefinition object must be unique across the set of all such identifiers in the Model

to which they belong. (This is the same as in SBML Level 3 Version 1 Core.) This namespace is referred to as

the unit namespace of the model. Similar to the case above, an implication of this rule is that to fully locate a

user-defined unit definition when there are multiple models in an SBML document, one must know not only

the unit definition’s identifier, but also the identifier of the model in which it is located.

4. The Hierarchical Model Composition package defines a new kind of component: the port, represented by Port

objects. The identifier of every Port object must be unique across the set of all such identifiers in the Model

object to which they belong. This namespace is referred to as the port namespace of the model. Again, an

implication of this rule is that to fully locate a port when there are multiple models in an SBML document,

one must know not only the port’s identifier, but also the identifier of the model in which it is located.

5. Reaction objects introduce a local namespace for LocalParameter objects. This namespace is referred to as

the local namespace of the reaction. Local parameter objects cannot be referenced from outside a given

reaction definition. For the Hierarchical Model Composition package, the implication is that the the SBaseRef

class (Section 3.7 on page 26) cannot reference reaction local parameters simply by their identifiers (i.e., the

value of their id attribute). However, the LocalParameter objects can be given meta identifiers (a value for

their SBase-derived metaid attribute), and be referenced using those.

The following example may clarify some of these rules. Suppose a given SBML document contains a Model object

having the identifier “mod1”. This Model cannot contain another object with the same identifier (e.g., it could not

have a Parameter object with the identifier “mod1”), nor can there be any other Model or ExternalModelDefinition

object identified as “mod1” within the same SBML document. The first restriction is simply the regular SBML rule

about uniqueness of identifiers throughout a Model object; the second restriction is due to point (1) above. On the

other hand, there could be a second Model object in the same document containing a component (e.g., a Parameter)

with the identifier “mod1”. This would not conflict with the first Model identifier (because the Parameter would be

effectively hidden at a lower level within the second Model).
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4 Examples

This section contains a variety of examples employing the Hierarchical Model Composition package.

4.1 Simple aggregate model

The following is a simple aggregate model, with one defined model being instantiated twice:



<?xml version="1.0" encoding="UTF-8"?>

<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core" level="3" version="1"

xmlns:comp="http://www.sbml.org/sbml/level3/version1/comp/version1" comp:required="true">



<model id="aggregate">

<comp:listOfSubmodels>

<comp:submodel comp:id="submod1" comp:modelRef="enzyme"/>

<comp:submodel comp:id="submod2" comp:modelRef="enzyme"/>

</comp:listOfSubmodels>

</model>

<comp:listOfModelDefinitions>

<comp:modelDefinition id="enzyme" name="enzyme">

<listOfCompartments>

<compartment id="compartment" spatialDimensions="3" size="1" constant="true"/>

</listOfCompartments>

<listOfSpecies>

<species id="S" compartment="compartment" hasOnlySubstanceUnits="false"

boundaryCondition="false" constant="false"/>

<species id="E" compartment="compartment" hasOnlySubstanceUnits="false"

boundaryCondition="false" constant="false"/>

<species id="D" compartment="compartment" hasOnlySubstanceUnits="false"

boundaryCondition="false" constant="false"/>

<species id="ES" compartment="compartment" hasOnlySubstanceUnits="false"

boundaryCondition="false" constant="false"/>

</listOfSpecies>

<listOfReactions>

<reaction id="J0" reversible="true" fast="false">

<listOfReactants>

<speciesReference species="S" stoichiometry="1" constant="true"/>

<speciesReference species="E" stoichiometry="1" constant="true"/>

</listOfReactants>

<listOfProducts>

<speciesReference species="ES" stoichiometry="1" constant="true"/>

</listOfProducts>

</reaction>

<reaction id="J1" reversible="true" fast="false">

<listOfReactants>

<speciesReference species="ES" stoichiometry="1" constant="true"/>

</listOfReactants>

<listOfProducts>

<speciesReference species="E" stoichiometry="1" constant="true"/>

<speciesReference species="D" stoichiometry="1" constant="true"/>

</listOfProducts>

</reaction>

</listOfReactions>

</comp:modelDefinition>

</comp:listOfModelDefinitions>

</sbml>


In the model above, we defined a two-step enzymatic process, with species “S” and “E” forming a complex, then

dissociating to “E” and “D”. The aggregate model instantiates it twice, so the resulting model (the one with the

identifier “aggregate”) has two parallel processes in two parallel compartments performing the same reaction. The

compartments and processes are independent, because there is nothing in the model that links them together.
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Section 4.2 Example of importing definitions from external files

4.2 Example of importing definitions from external files

Now suppose that we have saved the above SBML content to a file named “enzyme_model.xml”. The following

example imports the model “enzyme” from that file into a new model:



<?xml version="1.0" encoding="UTF-8"?>

<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core" level="3" version="1"

xmlns:comp="http://www.sbml.org/sbml/level3/version1/comp/version1" comp:required="true">

<model>

<listOfCompartments>

<compartment id="compartment" spatialDimensions="3" size="1" constant="true">

<comp:listOfReplacedElements>

<comp:replacedElement comp:idRef="compartment" comp:submodelRef="A"/>

<comp:replacedElement comp:idRef="compartment" comp:submodelRef="B"/>

</comp:listOfReplacedElements>

</compartment>

</listOfCompartments>

<listOfSpecies>

<species id="S" compartment="compartment" hasOnlySubstanceUnits="false"

boundaryCondition="false" constant="false">

<comp:listOfReplacedElements>

<comp:replacedElement comp:idRef="S" comp:submodelRef="A"/>

<comp:replacedElement comp:idRef="S" comp:submodelRef="B"/>

</comp:listOfReplacedElements>

</species>

</listOfSpecies>

<comp:listOfSubmodels>

<comp:submodel comp:id="A" comp:modelRef="ExtMod1"/>

<comp:submodel comp:id="B" comp:modelRef="ExtMod1"/>

</comp:listOfSubmodels>

</model>

<comp:listOfExternalModelDefinitions>

<comp:externalModelDefinition comp:id="ExtMod1" comp:source="enzyme_model.xml"

comp:modelRef="enzyme"/>

</comp:listOfExternalModelDefinitions>

</sbml>


In the model above, we import “enzyme” twice to create submodels “A” and “B”. We then create a compartment

and species local to the parent model, but use that compartment and species to replace “compartment” and “S”,

respectively, from the two instantiations of “enzyme”. The result is a model with a single compartment and two

reactions; the species “S” can either bind with enzyme “E” (from submodel “A”) to form “D” (from submodel “A”), or

with enzyme “E” (from submodel “B”) to form “D” (from submodel “B”).

4.3 Example of using ports

In the following, we define one model (“simple”) with a single reaction involving species “S” and “D”, and ports,

and we again import model “enzyme”:



<?xml version="1.0" encoding="UTF-8"?>

<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core" level="3" version="1"

xmlns:comp="http://www.sbml.org/sbml/level3/version1/comp/version1" comp:required="true">

<model id="complexified">

<listOfCompartments>

<compartment id="compartment" spatialDimensions="3" size="1" constant="true">

<comp:listOfReplacedElements>

<comp:replacedElement comp:idRef="compartment" comp:submodelRef="A"/>

<comp:replacedElement comp:portRef="compartment_port" comp:submodelRef="B"/>

</comp:listOfReplacedElements>

</compartment>

</listOfCompartments>

<listOfSpecies>

<species id="S" compartment="compartment" hasOnlySubstanceUnits="false"
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Section 4.3 Example of using ports

boundaryCondition="false" constant="false">

<comp:listOfReplacedElements>

<comp:replacedElement comp:idRef="S" comp:submodelRef="A"/>

</comp:listOfReplacedElements>

<comp:replacedBy comp:portRef="S_port" comp:submodelRef="B"/>

</species>

<species id="D" compartment="compartment" hasOnlySubstanceUnits="false"

boundaryCondition="false" constant="false">

<comp:listOfReplacedElements>

<comp:replacedElement comp:idRef="D" comp:submodelRef="A"/>

</comp:listOfReplacedElements>

<comp:replacedBy comp:portRef="D_port" comp:submodelRef="B"/>

</species>

</listOfSpecies>

<comp:listOfSubmodels>

<comp:submodel comp:id="A" comp:modelRef="ExtMod1"/>

<comp:submodel comp:id="B" comp:modelRef="simple">

<comp:listOfDeletions>

<comp:deletion comp:portRef="J0_port"/>

</comp:listOfDeletions>

</comp:submodel>

</comp:listOfSubmodels>

</model>

<comp:listOfModelDefinitions>

<comp:modelDefinition id="simple">

<listOfCompartments>

<compartment id="compartment" spatialDimensions="3" size="1" constant="true"/>

</listOfCompartments>

<listOfSpecies>

<species id="S" compartment="compartment" initialConcentration="5"

hasOnlySubstanceUnits="false" boundaryCondition="false" constant="false"/>

<species id="D" compartment="compartment" initialConcentration="10"

hasOnlySubstanceUnits="false" boundaryCondition="false" constant="false"/>

</listOfSpecies>

<listOfReactions>

<reaction id="J0" reversible="true" fast="false">

<listOfReactants>

<speciesReference species="S" stoichiometry="1" constant="true"/>

</listOfReactants>

<listOfProducts>

<speciesReference species="D" stoichiometry="1" constant="true"/>

</listOfProducts>

</reaction>

</listOfReactions>

<comp:listOfPorts>

<comp:port comp:idRef="S" comp:id="S_port"/>

<comp:port comp:idRef="D" comp:id="D_port"/>

<comp:port comp:idRef="compartment" comp:id="compartment_port"/>

<comp:port comp:idRef="J0" comp:id="J0_port"/>

</comp:listOfPorts>

</comp:modelDefinition>

</comp:listOfModelDefinitions>

<comp:listOfExternalModelDefinitions>

<comp:externalModelDefinition comp:id="ExtMod1" comp:source="enzyme_model.xml"

comp:modelRef="enzyme"/>

</comp:listOfExternalModelDefinitions>

</sbml>


In model “simple” above, we give ports to the compartment, the two species, and the reaction. Then, in model

“complexified”, we import both “simple” and the model “enzyme” from the file “enzyme_model.xml”, and replace

the simple reaction with the more complex two-step reaction by deleting reaction “J0” from model “simple” and

replacing “S” and “D” from both models with local replacements. Note that it is model “simple” that defines the

initial concentrations of “S” and “D”, so our modeler set the version in the containing model to be replaced by those

elements, instead of having the external version replacing those elements. Also note that since “simple” defines
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Section 4.4 Example of deletion replacement

ports, the port attribute is used for the subelements that referenced “simple” model elements, but “idRef” still

had to be used for subelements referencing “enzyme”.

In the resulting model, “S” is converted to “D” by a two-step enzymatic reaction defined wholly in model “enzyme”,

with the initial concentrations of “S” and “D” set in “simple”. If “simple” had other reactions that created “S” and

destroyed “D”, “S” would be created, would bind with “E” to form “D”, and “D” would then be destroyed, even though

those reaction steps were defined in separate models.

4.4 Example of deletion replacement

In reference to the previous example, what if we would like to annotate that the deleted reaction had been replaced

by the two-step enzymatic process? To do that, we must include those reactions as references in the parent model.

However, because we want to leave the complexity of the “E” and “ES” species to the “complexified” model, the

two reactions in the containing model will contain almost no information and serve only as placeholders for the

express purpose of being replaced by the fuller version in the “complexified” submodel: The first (“J0”) has only

“S” as a reactant, and is set to be replaced by “J0” from “complexified”, while the second (“J1”) has only “D” as a

product, and is set to be replaced by “J1” from “complexified”.

The following SBML fragment demonstrates one way of doing that.



<?xml version="1.0" encoding="UTF-8"?>

<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core" level="3" version="1"

xmlns:comp="http://www.sbml.org/sbml/level3/version1/comp/version1" comp:required="true">

<model id="complexified">

<listOfCompartments>

<compartment id="compartment" spatialDimensions="3" size="1" constant="true">

<comp:listOfReplacedElements>

<comp:replacedElement comp:idRef="compartment" comp:submodelRef="A"/>

<comp:replacedElement comp:portRef="compartment_port" comp:submodelRef="B"/>

</comp:listOfReplacedElements>

</compartment>

</listOfCompartments>

<listOfSpecies>

<species id="S" compartment="compartment" hasOnlySubstanceUnits="false"

boundaryCondition="false" constant="false">

<comp:listOfReplacedElements>

<comp:replacedElement comp:idRef="S" comp:submodelRef="A"/>

</comp:listOfReplacedElements>

<comp:replacedBy comp:portRef="S_port" comp:submodelRef="B"/>

</species>

<species id="D" compartment="compartment" hasOnlySubstanceUnits="false"

boundaryCondition="false" constant="false">

<comp:listOfReplacedElements>

<comp:replacedElement comp:idRef="D" comp:submodelRef="A"/>

</comp:listOfReplacedElements>

<comp:replacedBy comp:portRef="D_port" comp:submodelRef="B"/>

</species>

</listOfSpecies>

<listOfReactions>

<reaction id="J0" reversible="true" fast="false">

<listOfReactants>

<speciesReference species="S" stoichiometry="1" constant="true"/>

</listOfReactants>

<comp:listOfReplacedElements>

<comp:replacedElement comp:submodelRef="B" comp:deletion="oldrxn"/>

</comp:listOfReplacedElements>

<comp:replacedBy comp:portRef="J0_port" comp:submodelRef="A"/>

</reaction>

<reaction id="J1" reversible="true" fast="false">

<listOfProducts>

<speciesReference species="D" stoichiometry="1" constant="true"/>

</listOfProducts>
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Section 4.4 Example of deletion replacement

<comp:listOfReplacedElements>

<comp:replacedElement comp:submodelRef="B" comp:deletion="oldrxn"/>

</comp:listOfReplacedElements>

<comp:replacedBy comp:portRef="J1_port" comp:submodelRef="A"/>

</reaction>

</listOfReactions>

<comp:listOfSubmodels>

<comp:submodel comp:id="A" comp:modelRef="enzyme"/>

<comp:submodel comp:id="B" comp:modelRef="simple">

<comp:listOfDeletions>

<comp:deletion comp:portRef="J0_port" comp:id="oldrxn"/>

</comp:listOfDeletions>

</comp:submodel>

</comp:listOfSubmodels>

</model>

<comp:listOfModelDefinitions>

<comp:modelDefinition id="enzyme" name="enzyme">

<listOfCompartments>

<compartment id="compartment" spatialDimensions="3" size="1" constant="true"/>

</listOfCompartments>

<listOfSpecies>

<species id="S" compartment="compartment" hasOnlySubstanceUnits="false"

boundaryCondition="false" constant="false"/>

<species id="E" compartment="compartment" hasOnlySubstanceUnits="false"

boundaryCondition="false" constant="false"/>

<species id="D" compartment="compartment" hasOnlySubstanceUnits="false"

boundaryCondition="false" constant="false"/>

<species id="ES" compartment="compartment" hasOnlySubstanceUnits="false"

boundaryCondition="false" constant="false"/>

</listOfSpecies>

<listOfReactions>

<reaction id="J0" reversible="true" fast="false">

<listOfReactants>

<speciesReference species="S" stoichiometry="1" constant="true"/>

<speciesReference species="E" stoichiometry="1" constant="true"/>

</listOfReactants>

<listOfProducts>

<speciesReference species="ES" stoichiometry="1" constant="true"/>

</listOfProducts>

</reaction>

<reaction id="J1" reversible="true" fast="false">

<listOfReactants>

<speciesReference species="ES" stoichiometry="1" constant="true"/>

</listOfReactants>

<listOfProducts>

<speciesReference species="E" stoichiometry="1" constant="true"/>

<speciesReference species="D" stoichiometry="1" constant="true"/>

</listOfProducts>

</reaction>

</listOfReactions>

<comp:listOfPorts>

<comp:port comp:idRef="compartment" comp:id="compartment_port"/>

<comp:port comp:idRef="S" comp:id="S_port"/>

<comp:port comp:idRef="E" comp:id="E_port"/>

<comp:port comp:idRef="D" comp:id="D_port"/>

<comp:port comp:idRef="ES" comp:id="ES_port"/>

<comp:port comp:idRef="J0" comp:id="J0_port"/>

<comp:port comp:idRef="J1" comp:id="J1_port"/>

</comp:listOfPorts>

</comp:modelDefinition>

<comp:modelDefinition id="simple">

<listOfCompartments>

<compartment id="compartment" spatialDimensions="3" size="1" constant="true"/>

</listOfCompartments>

<listOfSpecies>

<species id="S" compartment="compartment" initialConcentration="5"
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Section 4.4 Example of deletion replacement

hasOnlySubstanceUnits="false" boundaryCondition="false" constant="false"/>

<species id="D" compartment="compartment" initialConcentration="10"

hasOnlySubstanceUnits="false" boundaryCondition="false" constant="false"/>

</listOfSpecies>

<listOfReactions>

<reaction id="J0" reversible="true" fast="false">

<listOfReactants>

<speciesReference species="S" stoichiometry="1" constant="true"/>

</listOfReactants>

<listOfProducts>

<speciesReference species="D" stoichiometry="1" constant="true"/>

</listOfProducts>

</reaction>

</listOfReactions>

<comp:listOfPorts>

<comp:port comp:idRef="S" comp:id="S_port"/>

<comp:port comp:idRef="D" comp:id="D_port"/>

<comp:port comp:idRef="compartment" comp:id="compartment_port"/>

<comp:port comp:idRef="J0" comp:id="J0_port"/>

</comp:listOfPorts>

</comp:modelDefinition>

</comp:listOfModelDefinitions>

</sbml>


In the example above, we recreated “enzyme” so as to provide it with ports, then created dummy versions of the

reactions from “complexified” so we can reference the deleted “oldrxn” in the replacements lists. Note that we

list the deletion of “oldrxn” for both of the two new reactions, since the full reactions still live in “complexified”.

The net result is a model where “complexified” supplies the mechanism for the conversion of “S” to “D”, while the

initial conditions of both species is set in “simple”.
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5 Best practices

In this section, we recommend a number of practices for using and interpreting various constructs in the SBML

Level 3 Hierarchical Model Composition package. These recommendations are non-normative, but we advocate

them strongly; ignoring them will not render a model invalid, but may reduce interoperability between software

and models.

5.1 Best practices for using SBaseRef for references

As is clear from its description in Section 3.7 on page 26, there are multiple approaches for using SBaseRef objects

to refer to SBML components. To help increase interoperability of models that use Hierarchical Model Composition,

we recommend the following order of preference in choosing between the approaches:

1. By port. Using ports, a modeler can make clear their intentions about how other models are intended to

interact with a particular component. The best-designed models intended for reuse and composition will

provide port definitions; similarly, models being interfaced to port-containing models should use those ports

and not bypass them.

2. By SId value. Most components that are desirable to replace during composition of models have an attribute

named id, with a value type of SId. If a model does not have ports, the next-most preferable approach to

referencing component in the model is using regular identifiers. Note that the SIdRef namespace is the

namespace of the submodel, not the parent model, and refers to the component namespace in that submodel

(see Section 3.9 on page 32).

3. By UnitSId value. The identifier of a UnitDefinition is defined in the core specification to exist in its own

namespace. Therefore, unit definitions in a submodel can be replaced by referencing a UnitDefinition identifier.

(See Section 3.9 on page 32 on identifier scoping.) Note that the space of values of UnitSId is defined by

the SBML Level 3 Core specification to contain reserved values that may not be replaced or deleted; these

values are unit names such as “second”, “kilogram”, etc., and are defined in Section 4.4 of the Level 3 Core

specification. (These reserved identifiers are only reserved for UnitDefinition values, and not for other SBML

model components, so no such restriction exists for the identifiers of other components.)

4. By meta-identifier. Some SBML components have no SId-valued attribute, and for some other components,

giving them a value is optional. Another option for referencing components is to use their meta-identifier if it

is defined, since meta identifiers are optional attributes of SBase (via the metaid attribute) and therefore all

SBML components have the potential to have one. Of course, a given model may or may not have given a

meta identifier value to a given component, but if one is present and the component has no port or regular

identifier, model composition may reference the meta identifier instead.

5. By a component of a submodel. The above four options all give access to components in a submodel, but

cannot provide access to component in the submodel’s submodels. If the object referred to by one of the

above methods is itself a submodel, adding an SBaseRef child to the SBaseRef allows you to find components

further down inside the hierarchy. This can, in turn, refer to a deeper submodel, allowing access to any

component of any arbitrary depth using this construct. However, this is considered inelegant design; it is

better to promote a component in a submodel to a local element in the referencing model if that component

needs to be referenced. Unfortunately, if the submodel is fixed and unmodifiable, no other option may be

available.

These approaches do not allow access to components that have none of these options available. If you do not have

control over the model in question (for example, because it is in a third-party database), and you want to reference a

component that is not a unit definition, has no port, no regular identifier, no meta identifier, and is not a component

in a submodel, then the only option left is to create a copy of the original model and add (for example) a metaid

value to the component that you wish to reference.
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Section 5.2 Best practices for using ports

5.2 Best practices for using ports

Ports provide a mechanism for the definition of interfaces to a model; these interfaces can indicate the elements

that are expected to be modified when the model is used as a submodel. As mentioned above, ports are the preferred

means of referring to components for replacements and deletions. If a modeler is able to modify a given model, then

it is possible to accomplish all replacements and deletions via ports, without using other kinds of references, and it

is possible to avoid using recursive SBaseRef structures (by defining ports for all components that need them).

The use of ports has notable advantages for model composition. First, it facilitates modular design of models,

both by advertising to other modelers how a model is expected to be used and by allowing different modelers to

compose separate submodels in a more regular fashion. By indicating the interface points that modelers should

use, it reduces the chances of unexpected side-effects when a modeler uses modular models designed by other

people. Second, it can simplify software user interfaces, by allowing software to decide what to show users insofar

as the locations for potential replacements and deletions during model composition. Third, it can simplify the

maintenance of models with a software tool, since all replacements and deletions on a given submodel will remain

valid as long as the ports on the submodel remain unchanged. Also, using ports to (in a sense) forward connectivity

to nested submodels, rather than need to use recursive SBaseRef objects, makes it possible for software to check

only the ports on one level of hierarchy.

Most modeling situations involve models that a modeler controls physically (e.g., as files in their local file store).

Thus, using ports does not limit the options for modeling. If a given model lacks ports on components that, over

time, are discovered to be useful targets for replacements or deletions, then a user can usually modify the model

physically to define the necessary ports. Only in exceptional situations would a modeler be unable to make a copy

of a model to make suitable modifications.

5.3 Best practices for deletions and replacements

If you replace or delete an element that itself has children, those children are considered to be deleted unless

replaced. This can have repercussions on other aspects of a model; for example, if you replace a KineticLaw object,

any annotations that referred to the meta identifiers of its local parameters will become invalid. One approach

to dealing with this, in the case of annotations, is to explicitly delete the no-longer-valid annotations or replace

them by new ones. It is legal to delete explicitly a component that is deleted by implication, if you need to refer to it

elsewhere—the resulting model is exactly the same.
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A Validation of SBML documents

An important concern is being able to determine the validity of a given SBML document that uses constructs from

the Hierarchical Model Composition package. This section describes operational rules for assessing validity.

A.1 Validation procedure

The validation rules below only apply to models defined in the SBML document being validated. Models defined in

external files are not required to be valid in and of themselves; the only requirement is that the model containing

the instantiation of an externally-defined model must be the one that is valid. That may seem counterintuitive, but

the reason is that replacements and deletions can be used to render valid what might otherwise be invalid. For

example, an external model that omits required attributes on some objects (which would be invalid according to

SBML Level 3 Version 1 Core) may become valid if those objects are replaced by objects that are valid, or if they are

deleted entirely. Similarly, references to nonexistent objects may themselves be deleted, or illegal combinations of

objects may be rectified, etc.

A.1.1 The two-phase validation approach

To understand the validation procedure for models that use Hierarchical Model Composition, it is helpful to think

in terms of an analogy to baking. To make a cake, one first assembles specific ingredients in a certain way, and then

one bakes the result to produce the final product—the cake. An SBML document using the Hierarchical Model

Composition package constructs is analogous to only a recipe: it is a description of how to assemble ingredients in a

certain way to create a “cake”, but it is not the cake itself. The cake is only produced after following the instructions,

which here involves traversing the various model, submodel, deletion, and replacement descriptions.

We decompose validation of such a composite model into two phases:

1. Validate the “recipe”. The submodel, deletion, and replacement constructs themselves must be valid.

2. Validate the “cake”. The model produced by interpreting the various constructs must be valid SBML.

The first phase involves checking the aggregation, deletion and linkage instructions defined by the Hierarchi-

cal Model Composition constructs in an SBML document. The Submodel, Port, Deletion, ReplacedElement, Re-

placedBy and other constructs defined in this specification must be valid according to the rules defined in Sec-

tion A.2 on the next page. Passing this phase means that the constructs are well-formed, referenced files and models

and other entities exist, ports have identifiers in the relevant namespaces, and so on.

The second validation phase takes place after interpreting the Hierarchical Model Composition constructs. The

result of this phase must be a valid SBML model. This verification can in principle be performed in various ways. In

this specification, we describe one approach below that involves interpreting the Hierarchical Model Composition

constructs to produce a kind of “flattened” version of the model devoid of the Hierarchical Model Composition

package constructs. The “flattened” version of the model only exists in memory: the referenced files are not actually

modified, but rather, the interpretation of the package constructs leads to an in-memory representation of a final,

composite model implied by following the recipe. This generated model can then be tested against the rules for

SBML validity defined in the SBML Level 3 Version 1 Core specification. Performing this “flattening” allows for

the most straightforward way of testing the validity of the resulting SBML model; however, it is not part of the

requirements for this package. The requirements are only that the model implied by the package constructs is valid.

A.1.2 Example algorithm for producing a “flattened” model

Figure 8 on the following page presents a possible algorithm for interpreting the Hierarchical Model Composition

constructs and creating a “flattened” SBML document. As explained above, this procedure can be used as part of a

process to test the validity of an SBML document that uses Hierarchical Model Composition. After performing the

steps of the flattening algorithm, the result should be evaluated for validity according to the normal rules of SBML

Level 3 Version 1 Core and (if applicable) the rules defined by any other Level 3 packages used in the model.
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Section A.2 Validation and consistency rules

Step Procedure

1. Examine all submodels of the model being validated. For any submodel that itself contains submodels, perform this algorithm in
its entirety on each of those inner submodels before proceeding to the next step.

2. Let “M” be the identifier of a given submodel. Verify that no object identifier or meta identifier of objects in that submodel (i.e.,
the id or metaid attribute values) begin with the character sequence “M__”; if there is an existing identifier or meta identifier
beginning with “M__”, add an underscore to “M__” (i.e., to produce “M___”) and again check that the sequence is unique.
Continue adding underscores until you find a unique prefix. Let “P” stand for this final prefix.

3. Remove all objects that have been replaced or deleted in the submodel.

4. Transform the remaining objects in the submodel as follows:

a) Change every identifier (id attribute) to a new value obtained by prepending “P” to the original identifier.

b) Change every meta identifier (metaid attribute) to a new value obtained by prepending “P” to the original identifier.

5. Transform every SIdRef and IDREF type value in the remaining objects of the submodel as follows:

a) If the referenced object has been replaced by the application of a ReplacedBy or ReplacedElement construct, change the
SIdRef value (respectively, IDREF value) to the SId value (respectively, ID value) of the object replacing it.

b) If the referenced object has not been replaced, change the SIdRef and IDREF value by prepending “P” to the original value.

6. After performing the tasks above for all remaining objects, merge the objects of the remaining submodels into a single model.
Merge the various lists (list of species, list of compartments, etc.) in this step, and preserve notes and annotations as well as
constructs from other SBML Level 3 packages.

Figure 8: Example algorithm for “flattening” a model to remove Hierarchical Model Composition package constructs.

A.1.3 Additional remarks about the validation procedure

When instantiating a model, it is not necessary to first test the validity of that model. If it is in the same file as the+

containing model, it will be tested anyway when the result of the “flattening” algorithm is checked for validity in the

second phase. If it is in a different file, that file’s validity (or lack thereof) should not affect the validity of the file

being tested, though a validator may warn the user of this situation if it desires.

A.2 Validation and consistency rules

This section summarizes all the conditions that must (or in some cases, at least should) be true of an SBML Level 3

Version 1 model that uses the Hierarchical Model Composition package. We use the same conventions as are used in

the SBML Level 3 Version 1 Core specification document. In particular, there are different degrees of rule strictness.

Formally, the differences are expressed in the statement of a rule: either a rule states that a condition must be true,

or a rule states that it should be true. Rules of the former kind are strict SBML validation rules—a model encoded in

SBML must conform to all of them in order to be considered valid. Rules of the latter kind are consistency rules. To

help highlight these differences, we use the following three symbols next to the rule numbers:

2X A checked box indicates a requirement for SBML conformance. If a model does not follow this rule, it does not

conform to the Hierarchical Model Composition specification. (Mnemonic intention behind the choice of

symbol: “This must be checked.”)

s A triangle indicates a recommendation for model consistency. If a model does not follow this rule, it is not

considered strictly invalid as far as the Hierarchical Model Composition specification is concerned; however,

it indicates that the model contains a physical or conceptual inconsistency. (Mnemonic intention behind the

choice of symbol: “This is a cause for warning.”)

F A star indicates a strong recommendation for good modeling practice. This rule is not strictly a matter of

SBML encoding, but the recommendation comes from logical reasoning. As in the previous case, if a model

does not follow this rule, it is not considered an invalid SBML encoding. (Mnemonic intention behind the

choice of symbol: “You’re a star if you heed this.”)
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Section A.2 Validation and consistency rules

The validation rules listed in the following subsections are all stated or implied in the rest of this specification

document. They are enumerated here for convenience. Unless explicitly stated, all validation rules concern objects

and attributes specifically defined in the Hierarchical Model Composition package.

For convenience and brievity, we use the shorthand “comp:x” to stand for an attribute or element name x in the+

namespace for the Hierarchical Model Composition package, using the namespace prefix comp. In reality, the prefix

string may be different from the literal “comp” used here (and indeed, it can be any valid XML namespace prefix that

the modeler or software chooses). We use “comp:x” because it is shorter than to write a full explanation everywhere

we refer to an attribute or element in the Hierarchical Model Composition package namespace.

General rules about this package

comp-10101 2X To conform to Version 1 of the Hierarchical Model Composition package specification for

SBML Level 3, an SBML document must declare the use of the following XML Namespace:

“http://www.sbml.org/sbml/level3/version1/comp/version1”. (References: SBML Level 3

Package Specification for Hierarchical Model Composition, Version 1, Section 3.1 on page 11.)

comp-10102 2X Wherever they appear in an SBML document, elements and attributes from the Hierarchi-

cal Model Composition package must be declared either implicitly or explicitly to be in the

XML namespace “http://www.sbml.org/sbml/level3/version1/comp/version1”. (Ref-

erences: SBML Level 3 Package Specification for Hierarchical Model Composition, Version 1,

Section 3.1 on page 11.)

General rules about identifiers

comp-10301 2X (Extends validation rule #10301 in the SBML Level 3 Version 1 Core specification.) Within a

Model object, the values of the attributes id and comp:id on every instance of the following

classes of objects must be unique across the set of all id and comp:id attribute values of all

such objects in a model: the Model itself, plus all contained FunctionDefinition, Compartment,

Species, Reaction, SpeciesReference, ModifierSpeciesReference, Event, and Parameter ob-

jects, plus the Submodel and Deletion objects defined by the Hierarchical Model Composition

package, plus any objects defined by any other package with package:id attributes defined

as falling in the ’SId’ namespace. (References: SBML Level 3 Package Specification for Hierar-

chical Model Composition, Version 1, Section 3.9 on page 32.)

comp-10302 2X The values of the attributes id and comp:id on every instance of all Model and ExternalMod-

elDefinition objects must be unique across the set of all id and comp:id attribute values of

such objects in the SBML document to which they belong. (References: SBML Level 3 Package

Specification for Hierarchical Model Composition, Version 1, Section 3.9 on page 32.)

comp-10303 2X Within a Model object inside an SBML document, the value of the attribute comp:id on every

instance of a Port object must be unique across the set of all comp:id attribute values of all

such objects in the model. (References: SBML Level 3 Package Specification for Hierarchical

Model Composition, Version 1, Section 3.9 on page 32.)

comp-10304 2X The value of a comp:id attribute must always conform to the syntax of the SBML data type

SId. (References: SBML Level 3 Version 1 Core, Section 3.1.7.)

comp-10308 2X The value of a comp:submodelRef attribute on ReplacedElement and ReplacedBy objects

must always conform to the syntax of the SBML data type SId. (References: SBML Level 3

Package Specification for Hierarchical Model Composition, Version 1, Section 3.6.2 on page 23.)

comp-10309 2X The value of a comp:deletion attribute on a ReplacedElement object must always conform

to the syntax of the SBML data type SId. (References: SBML Level 3 Package Specification for

Hierarchical Model Composition, Version 1, Section 3.6.2 on page 23.)
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Section A.2 Validation and consistency rules

comp-10310 2X The value of a comp:conversionFactor attribute on a ReplacedElement object must always

conform to the syntax of the SBML data type SId. (References: SBML Level 3 Package Specifi-

cation for Hierarchical Model Composition, Version 1, Section 3.6.2 on page 23.)

comp-10311 2X The value of a comp:name attribute must always conform to the syntax of type string. (Refer-

ences: SBML Level 3 Version 1 Core, Section 3.1.1.)

General Rules for Units

comp-10501 s If one element replaces another, whether it is the target of a ReplacedBy element, or whether

it has a child ReplacedElement, the units of the replaced element, multiplied by the units of

any applicable conversion factor, should equal the units of the replacement element. (Refer-

ences: SBML Level 3 Package Specification for Hierarchical Model Composition, Version 1,

Section 3.6.5 on page 24.)

Rules for the extended SBase abstract class

comp-20101 2X Any object derived from the extended SBase class (defined in the Hierarchical Model Com-

position package) may contain at most one instance of a ListOfReplacedElements subobject.

(References: SBML Level 3 Package Specification for Hierarchical Model Composition, Ver-

sion 1, Section 3.6 on page 20.)

comp-20102 2X Apart from the general notes and annotation subobjects permitted on all SBML objects, a

ListOfReplacedElements container object may only contain ReplacedElement objects. (Refer-

ences: SBML Level 3 Package Specification for Hierarchical Model Composition, Version 1,

Section 3.6 on page 20.)

comp-20103 2X A ListOfReplacedElements object may have the optional attributes metaid and sboTerm de-

fined by SBML Level 3 Core. No other attributes from the SBML Level 3 Core namespace or

the Hierarchical Model Composition namespace are permitted on a ListOfReplacedElements

object. (References: SBML Level 3 Package Specification for Hierarchical Model Composition,

Version 1, Section 3.6 on page 20.)

comp-20104 2X The ListOfReplacedElements in an SBase object is optional, but if present, must not be empty.

(References: SBML Level 3 Package Specification for Hierarchical Model Composition, Ver-

sion 1, Section 3.6 on page 20.)

comp-20105 2X Any object derived from the extended SBase class (defined in the Hierarchical Model Composi-

tion package) may contain at most one instance of a ReplacedBy subobject. (References: SBML

Level 3 Package Specification for Hierarchical Model Composition, Version 1, Section 3.6 on

page 20.)

Rules for the extended SBML class

comp-20201 2X In all SBML documents using the Hierarchical Model Composition package, the SBML object

must include a value for the attribute comp:required attribute. (References: SBML Level 3

Version 1 Core, Section 4.1.2.)

comp-20202 2X The value of attribute comp:required on the SBML object must be of the data type boolean.

(References: SBML Level 3 Version 1 Core, Section 4.1.2.)

comp-20203 2X (Rule removed because of a change in the interpretation of the required attribute by the

SBML Editors.)

comp-20204 2X (Rule removed because of a change in the interpretation of the required attribute by the

SBML Editors.)
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Section A.2 Validation and consistency rules

comp-20205 2X There may be at most one instance of the ListOfModelDefinitions within an SBML object that

uses the SBML Level 3 Hierarchical Model Composition package. (References: SBML Level 3

Package Specification for Hierarchical Model Composition, Version 1, Section 3.3 on page 12.)

comp-20206 2X The various ListOf subobjects within an SBML object are optional, but if present, these

container objects must not be empty. Specifically, if any of the following classes of objects is

present within the SBML object, it must not be empty: ListOfModelDefinitions and ListOfEx-

ternalModelDefinitions. (References: SBML Level 3 Package Specification for Hierarchical

Model Composition, Version 1, Section 3.3 on page 12.)

comp-20207 2X Apart from the general notes and annotation subobjects permitted on all SBML objects, a

ListOfModelDefinitions container may only contain extended Model class objects. (Refer-

ences: SBML Level 3 Package Specification for Hierarchical Model Composition, Version 1,

Section 3.3 on page 12.)

comp-20208 2X Apart from the general notes and annotation subobjects permitted on all SBML objects, a

ListOfExternalModelDefinitions container may only contain ExternalModelDefinition objects.

(References: SBML Level 3 Package Specification for Hierarchical Model Composition, Ver-

sion 1, Section 3.3 on page 12.)

comp-20209 2X A ListOfModelDefinitions object may have the optional attributes metaid and sboTerm. No

other attributes from the SBML Level 3 Core namespace or the Hierarchical Model Composi-

tion namespace are permitted on a ListOfModelDefinitions object. (References: SBML Level 3

Package Specification for Hierarchical Model Composition, Version 1, Section 3.3 on page 12.)

comp-20210 2X A ListOfExternalModelDefinitions object may have the optional SBML core attributes metaid

and sboTerm. No other attributes from the SBML Level 3 Core namespace or the Hierar-

chical Model Composition namespace are permitted on a ListOfExternalModelDefinitions

object. (References: SBML Level 3 Package Specification for Hierarchical Model Composition,

Version 1, Section 3.3 on page 12.)

comp-20211 2X There may be at most one instance of the ListOfExternalModelDefinitions within an SBML

object that uses the Hierarchical Model Composition package. (References: SBML Level 3

Package Specification for Hierarchical Model Composition, Version 1, Section 3.3 on page 12.)

comp-20212 2X The value of attribute comp:required on the SBML object must be set to “true”. (Refer-

ences: SBML Level 3 Package Specification for Hierarchical Model Composition, Version 1,

Section 3.1 on page 11.)

Rules for ExternalModelDefinition objects

comp-20301 2X An ExternalModelDefinition object may have the optional SBML Level 3 Core attributes metaid

and sboTerm. No other attributes from the SBML Level 3 Core namespace are permitted on an

ExternalModelDefinition. (References: SBML Level 3 Version 1 Core, Section 3.2.)

comp-20302 2X An ExternalModelDefinition object may have the optional SBML Level 3 Core subobjects for

notes and annotation. No other subobjects from the SBML Level 3 Core namespace or the

Hierarchical Model Composition namespace are permitted in an ExternalModelDefinition.

(References: SBML Level 3 Version 1 Core, Section 3.2.)

comp-20303 2X An ExternalModelDefinition object must have the attributes comp:id and comp:source be-

cause they are required, and may have the optional attributes comp:name, comp:modelRef,

and comp:md5. No other attributes from the Hierarchical Model Composition namespace are

permitted on an ExternalModelDefinition object. (References: SBML Level 3 Package Specifi-

cation for Hierarchical Model Composition, Version 1, Section 3.3.2 on page 14.)
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Section A.2 Validation and consistency rules

comp-20304 2X The value of the comp:source attribute on an ExternalModelDefinition object must reference

an SBML Level 3 Version 1 document. (References: SBML Level 3 Package Specification for

Hierarchical Model Composition, Version 1, Section 3.3.2 on page 14.)

comp-20305 2X The value of the comp:modelRef attribute on an ExternalModelDefinition object must be the

value of an id attribute on a Model or ExternalModelDefinition object in the SBML document

referenced by the comp:source attribute. (References: SBML Level 3 Package Specification for

Hierarchical Model Composition, Version 1, Section 3.3.2 on page 14.)

comp-20306 s The value of the comp:md5 attribute, if present on an ExternalModelDefinition object, should

match the calculated MD5 checksum of the SBML document referenced by the comp:source

attribute. (References: SBML Level 3 Package Specification for Hierarchical Model Composi-

tion, Version 1, Section 3.3.2 on page 14.)

comp-20307 2X The value of a comp:source attribute on an ExternalModelDefinition object must always con-

form to the syntax of the XML Schema 1.0 data type anyURI. (References: SBML Level 3 Package

Specification for Hierarchical Model Composition, Version 1, Section 3.3.2 on page 14.)

comp-20308 2X The value of a comp:modelRef attribute on an ExternalModelDefinition object must always

conform to the syntax of the SBML data type SId. (References: SBML Level 3 Package Specifi-

cation for Hierarchical Model Composition, Version 1, Section 3.3.2 on page 14.)

comp-20309 2X The value of a comp:md5 attribute on an ExternalModelDefinition object must always conform

to the syntax of type string. (References: SBML Level 3 Package Specification for Hierarchical

Model Composition Package Version 1 Section 3.3.2 on page 14.)

comp-20310 2X An ExternalModelDefinition object must not reference an ExternalModelDefinition in a differ-

ent SBML document that, in turn, refers back to the original ExternalModelDefinition object,

whether directly or indirectly through a chain of ExternalModelDefinition objects. (Refer-

ences: SBML Level 3 Package Specification for Hierarchical Model Composition, Version 1,

Section 3.3.2 on page 14.)

Rules for extended Model objects

comp-20501 2X There may be at most one instance of each of the following kinds of objects within a Model

object using Hierarchical Model Composition: ListOfSubmodels and ListOfPorts. (Refer-

ences: SBML Level 3 Package Specification for Hierarchical Model Composition, Version 1,

Section 3.4 on page 15.)

comp-20502 2X The various ListOf subobjects with an Model object are optional, but if present, these

container object must not be empty. Specifically, if any of the following classes of objects

are present on the Model, it must not be empty: ListOfSubmodels and ListOfPorts. (Refer-

ences: SBML Level 3 Package Specification for Hierarchical Model Composition, Version 1,

Section 3.4 on page 15.)

comp-20503 2X Apart from the general notes and annotation subobjects permitted on all SBML objects, a

ListOfSubmodels container object may only contain Submodel objects. (References: SBML

Level 3 Package Specification for Hierarchical Model Composition, Version 1, Section 3.4 on

page 15.)

comp-20504 2X Apart from the general notes and annotation subobjects permitted on all SBML objects, a

ListOfPorts container object may only contain Port objects. (References: SBML Level 3 Package

Specification for Hierarchical Model Composition, Version 1, Section 3.4 on page 15.)

comp-20505 2X A ListOfSubmodels object may have the optional attributes metaid and sboTerm defined

by SBML Level 3 Core. No other attributes from the SBML Level 3 Core namespace or the
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Section A.2 Validation and consistency rules

Hierarchical Model Composition namespace are permitted on a ListOfSubmodels object. (Ref-

erences: SBML Level 3 Package Specification for Hierarchical Model Composition, Version 1,

Section 3.4 on page 15.)

comp-20506 2X A ListOfPorts object may have the optional attributes metaid and sboTerm defined by SBML

Level 3 Core. No other attributes from the SBML Level 3 Core namespace or the Hierarchical

Model Composition namespace are permitted on a ListOfPorts object. (References: SBML

Level 3 Package Specification for Hierarchical Model Composition, Version 1, Section 3.4 on

page 15.)

Rules for Submodel objects

comp-20601 2X A Submodel object may have the optional SBML Level 3 Core attributes metaid and sboTerm.

No other attributes from the SBML Level 3 Core namespace are permitted on an Submodel

object. (References: SBML Level 3 Version 1 Core, Section 3.2.)

comp-20602 2X An Submodel object may have the optional SBML Level 3 Core subobjects for notes and

annotation. No other elements from the SBML Level 3 Core namespace are permitted on an

Submodel object. (References: SBML Level 3 Version 1 Core, Section 3.2.)

comp-20603 2X There may be at most one ListOfDeletions container object within a Submodel object. (Refer-

ences: SBML Level 3 Package Specification for Hierarchical Model Composition, Version 1,

Section 3.5 on page 17.)

comp-20604 2X A ListOfDeletions container object within a Submodel object is optional, but if present, must

not be empty. (References: SBML Level 3 Package Specification for Hierarchical Model Com-

position, Version 1, Section 3.5 on page 17.)

comp-20605 2X Apart from the general notes and annotation subobjects permitted on all SBML objects, a

ListOfDeletions container object may only contain Deletion objects. (References: SBML Level 3

Package Specification for Hierarchical Model Composition, Version 1, Section 3.5 on page 17.)

comp-20606 2X A ListOfDeletions object may have the optional SBML core attributes metaid and sboTerm. No

other attributes from the SBML Level 3 Core namespace or the comp namespace are permitted

on a ListOfDeletions object. (References: SBML Level 3 Package Specification for Hierarchical

Model Composition, Version 1, Section 3.5 on page 17.)

comp-20607 2X A Submodel object must have the attributes comp:id and comp:modelRef because they are re-

quired, and may also have the optional attributes comp:name, comp:timeConversionFactor,

and/or comp:extentConversionFactor. No other attributes from the Hierarchical Model

Composition namespace are permitted on a Submodel object. (References: SBML Level 3

Package Specification for Hierarchical Model Composition, Version 1, Section 3.5 on page 17.)

comp-20608 2X The value of a comp:modelRef attribute on a Submodel object must always conform to the

syntax of the SBML data type SId. (References: SBML Level 3 Package Specification for

Hierarchical Model Composition, Version 1, Section 3.5.1 on page 18.)

comp-20613 2X The value of a comp:timeConversionFactor attribute on a Submodel object must always con-

form to the syntax of the SBML data type SId. (References: SBML Level 3 Package Specification

for Hierarchical Model Composition, Version 1, Section 3.5.1 on page 19.)

comp-20614 2X The value of a comp:extentConversionFactor attribute on a Submodel object must always

conform to the syntax of the SBML data type SId. (References: SBML Level 3 Package Specifi-

cation for Hierarchical Model Composition, Version 1, Section 3.5.1 on page 19.)
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Section A.2 Validation and consistency rules

comp-20615 2X The value of a comp:modelRef attribute on a Submodel must be the identifier of a Model or

ExternalModelDefinition object in the same SBML object as the Submodel. (References: SBML

Level 3 Package Specification for Hierarchical Model Composition, Version 1, Section 3.5.1 on

page 18.)

comp-20616 2X A Model object must not contain a Submodel which references that Model object itself. That

is, the value of a comp:modelRef attribute on a Submodel must not be the value of the parent

Model object’s id attribute. (References: SBML Level 3 Package Specification for Hierarchical

Model Composition, Version 1, Section 3.5.1 on page 18.)

comp-20617 2X A Model object must not contain a Submodel which references that Model indirectly. That is,

the comp:modelRef attribute of a Submodel may not point to the id of a Model containing

a Submodel object that references the original Model directly or indirectly through a chain

of Model/Submodel pairs. (References: SBML Level 3 Package Specification for Hierarchical

Model Composition, Version 1, Section 3.5.1 on page 18.)

comp-20622 2X The value of a comp:timeConversionFactor attribute on a given Submodel object must be

the identifier of a Parameter object defined in the same Model containing the Submodel. (Ref-

erences: SBML Level 3 Package Specification for Hierarchical Model Composition, Version 1,

Section 3.5.1 on page 19.)

comp-20623 2X The value of a comp:extentConversionFactor attribute on a given Submodel object must be

the identifier of a Parameter object defined in the same Model containing the Submodel. (Ref-

erences: SBML Level 3 Package Specification for Hierarchical Model Composition, Version 1,

Section 3.5.1 on page 19.)

Rules for the SBaseRef object

comp-20701 2X The value of a comp:portRef attribute on an SBaseRef object must be the identifier of a

Port object in the Model referenced by that SBaseRef. (References: SBML Level 3 Package

Specification for Hierarchical Model Composition, Version 1, Section 3.7.1 on page 27.)

comp-20702 2X The value of a comp:idRef attribute on an SBaseRef object must be the identifier of an

object contained in (that is, within the SId namespace of) the Model referenced by that

SBaseRef. This includes objects with id attributes defined in packages other than SBML

Level 3 Core or the Hierarchical Model Composition package. (References: SBML Level 3

Package Specification for Hierarchical Model Composition, Version 1, Section 3.7.1 on page 27.)

comp-20703 2X The value of a comp:unitRef attribute on an SBaseRef object must be the identifier of a

UnitDefinition object contained in the Model referenced by that SBaseRef. (References: SBML

Level 3 Package Specification for Hierarchical Model Composition, Version 1, Section 3.7.1 on

page 27.)

comp-20704 2X The value of a comp:metaIdRef attribute on an SBaseRef object must be the value of a

comp:metaid attribute on an element contained in the Model referenced by that SBaseRef.

This includes elements with metaid attributes defined in packages other than SBML Level 3

Core or the Hierarchical Model Composition package. (References: SBML Level 3 Package

Specification for Hierarchical Model Composition, Version 1, Section 3.7.1 on page 27.)

comp-20705 2X If an SBaseRef object contains an SBaseRef child, the parent SBaseRef must point to a

Submodel object, or a Port that itself points to a Submodel object. (References: SBML Level 3

Package Specification for Hierarchical Model Composition, Version 1, Section 3.7.2 on page 28.)

comp-20706 2X The value of a comp:portRef attribute on an SBaseRef object must always conform to the

syntax of the SBML data type SId. (References: SBML Level 3 Package Specification for

Hierarchical Model Composition, Version 1, Section 3.7.1 on page 27.)
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Section A.2 Validation and consistency rules

comp-20707 2X The value of a comp:idRef attribute on an SBaseRef object must always conform to the syntax

of the SBML data type SId. (References: SBML Level 3 Package Specification for Hierarchical

Model Composition, Version 1, Section 3.7.1 on page 27.)

comp-20708 2X The value of a comp:unitRef attribute on an SBaseRef object must always conform to the

syntax of the SBML data type UnitSId. (References: SBML Level 3 Package Specification for

Hierarchical Model Composition, Version 1, Section 3.7.1 on page 27.)

comp-20709 2X The value of a comp:metaIdRef attribute on an SBaseRef object must always conform to

the syntax of the XML data type ID. (References: SBML Level 3 Package Specification for

Hierarchical Model Composition, Version 1, Section 3.7.1 on page 27.)

comp-20710 2X Apart from the general notes and annotation subobjects permitted on all SBML objects, an

SBaseRef object may only contain a single SBaseRef child. (References: SBML Level 3 Package

Specification for Hierarchical Model Composition, Version 1, Section 3.7.2 on page 28.)

comp-20711 s The ’sbaseRef’ spelling of an SBaseRef child of an SBaseRef object is considered deprecated,

and ’sBaseRef’ should be used instead. (References: SBML Level 3 Package Specification for

Hierarchical Model Composition, Version 1, Section 3.7.2 on page 29.)

comp-20712 2X An SBaseRef object must point to another object; that is, a SBaseRef object must always have a

value for one of the attributes comp:portRef, comp:idRef, comp:unitRef, or comp:metaIdRef.

(References: SBML Level 3 Package Specification for Hierarchical Model Composition, Ver-

sion 1, Section 3.7 on page 26.)

comp-20713 2X An SBaseRef object can only point to one other object; that is, a given SBaseRef object can

only have a value for one of the attributes comp:portRef, comp:idRef, comp:unitRef, or

comp:metaIdRef. No other attributes from the Hierarchical Model Composition namespace

are permitted on an SBaseRef object. (References: SBML Level 3 Package Specification for

Hierarchical Model Composition, Version 1, Section 3.4.3 on page 16.)

comp-20714 2X Any one SBML object may only be referenced in one of the following ways: referenced by a sin-

gle Port object; referenced by a single Deletion object; referenced by a single ReplacedElement;

be the parent of a single ReplacedBy child; be referenced by one or more ReplacedBy objects;

or be referenced by one or more ReplacedElement objects all using the deletion attribute.

Essentially, once an object has been referenced in one of these ways it cannot be referenced

again. (References: SBML Level 3 Package Specification for Hierarchical Model Composition,

Version 1, Section 3.6.5 on page 24.)

Rules for Port objects

comp-20801 2X A Port object must point to another object; that is, a Port object must always have a value for

one of the attributes comp:idRef, comp:unitRef, or comp:metaIdRef. (References: SBML

Level 3 Package Specification for Hierarchical Model Composition, Version 1, Section 3.4.3 on

page 16.)

comp-20802 2X A Port object can only point to one other object; that is, a given Port object can only have a value

for one of the attributes comp:idRef, comp:unitRef, or comp:metaIdRef. (References: SBML

Level 3 Package Specification for Hierarchical Model Composition, Version 1, Section 3.4.3 on

page 16.)

comp-20803 2X A Port object must have a value for the required attribute comp:id, and one, and only one,

of the attributes comp:idRef, comp:unitRef, or comp:metaIdRef. It may also have the op-

tional attribute comp:name. No other attributes from the Hierarchical Model Composition

namespace are permitted on a Port object. (References: SBML Level 3 Package Specification

for Hierarchical Model Composition, Version 1, Section 3.4.3 on page 16.)
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Section A.2 Validation and consistency rules

comp-20804 2X Port definitions must be unique; that is, no two Port objects in a given Model may reference the

same object in that Model. (References: SBML Level 3 Package Specification for Hierarchical

Model Composition, Version 1, Section 3.4.3 on page 16.)

Rules for Deletion objects

comp-20901 2X A Deletion object must point to another object; that is, a Deletion object must have a value for

one of the attributes comp:portRef, comp:idRef, comp:unitRef, or comp:metaIdRef. (Ref-

erences: SBML Level 3 Package Specification for Hierarchical Model Composition, Version 1,

Section 3.5.3 on page 20.)

comp-20902 2X A Deletion object can only point to one other object; that is, a given Deletion object can

only have a value for one of the attributes comp:portRef, comp:idRef, comp:unitRef, or

comp:metaIdRef. (References: SBML Level 3 Package Specification for Hierarchical Model

Composition, Version 1, Section 3.5.3 on page 20.)

comp-20903 2X A Deletion object must have a value for one, and only one, of the attributes comp:portRef,

comp:idRef, comp:unitRef, or comp:metaIdRef. It may also have the optional attributes

comp:id and comp:name. No other attributes from the Hierarchical Model Composition

namespace are permitted on a Deletion object. (References: SBML Level 3 Package Specifica-

tion for Hierarchical Model Composition, Version 1, Section 3.5.3 on page 20.)

Rules for ReplacedElement objects

comp-21001 2X A ReplacedElement object must point to another object; that is, a given ReplacedElement

object must have a value for one of the following attributes: comp:portRef, comp:idRef,

comp:unitRef, comp:metaIdRef, or comp:deletion. (References: SBML Level 3 Package

Specification for Hierarchical Model Composition, Version 1, Section 3.6.2 on page 21.)

comp-21002 2X A ReplacedElement object can only point to one target object; that is, a given ReplacedEle-

ment can only have a value for one of the following attributes: comp:portRef, comp:idRef,

comp:unitRef, comp:metaIdRef, or comp:deletion. (References: SBML Level 3 Package

Specification for Hierarchical Model Composition, Version 1, Section 3.6.2 on page 21.)

comp-21003 2X A ReplacedElement object must have a value for the required attribute comp:submodelRef,

and a value for one, and only one, of the following attributes: comp:portRef, comp:idRef,

comp:unitRef, comp:metaIdRef, or comp:deletion. It may also have a value for the op-

tional attribute comp:conversionFactor. No other attributes from the Hierarchical Model

Composition namespace are permitted on a ReplacedElement object. (References: SBML

Level 3 Package Specification for Hierarchical Model Composition, Version 1, Section 3.6.2 on

page 21.)

comp-21004 2X The value of a comp:submodelRef attribute on a ReplacedElement object must be the identi-

fier of a Submodel present in the ReplacedElement object’s parent Model. (References: SBML

Level 3 Package Specification for Hierarchical Model Composition, Version 1, Section 3.6.2 on

page 23.)

comp-21005 2X The value of a comp:deletion attribute on a ReplacedElement object must be the identifier of

a Deletion present in the ReplacedElement object’s parent Model. (References: SBML Level 3

Package Specification for Hierarchical Model Composition, Version 1, Section 3.6.2 on page 23.)

comp-21006 2X The value of a comp:conversionFactor attribute on a ReplacedElement object must be the

identifier of a Parameter present in the ReplacedElement object’s parent Model. (References:

SBML Level 3 Package Specification for Hierarchical Model Composition, Version 1, Sec-

tion 3.6.2 on page 23.)
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comp-21007 2X (Rule removed because it was a duplicate of 10308.)

comp-21008 2X (Rule removed because it was a duplicate of 10309.)

comp-21009 2X (Rule removed because it was a duplicate of 10310.)

comp-21010 2X No two ReplacedElement objects in the same Model may reference the same object unless that

object is a Deletion. (References: SBML Level 3 Package Specification for Hierarchical Model

Composition, Version 1, Section 3.6.2 on page 21.)

Rules for ReplacedBy objects

comp-21101 2X A ReplacedBy object must point to another object; that is, a given ReplacedBy object must

have a value for one of the following attributes: comp:portRef, comp:idRef, comp:unitRef,

or comp:metaIdRef. (References: SBML Level 3 Package Specification for Hierarchical Model

Composition, Version 1, Section 3.6.4 on page 23.)

comp-21102 2X A ReplacedBy object can only point to one target object; that is, a given ReplacedBy can only

have a value for one of the following attributes: comp:portRef, comp:idRef, comp:unitRef,

or comp:metaIdRef. (References: SBML Level 3 Package Specification for Hierarchical Model

Composition, Version 1, Section 3.6.4 on page 23.)

comp-21103 2X A ReplacedBy object must have a value for the required attribute comp:submodelRef, and a

value for one, and only one, of the following other attributes: comp:portRef, comp:idRef,

comp:unitRef, or comp:metaIdRef. No other attributes from the Hierarchical Model Compo-

sition namespace are permitted on a ReplacedBy object. (References: SBML Level 3 Package

Specification for Hierarchical Model Composition, Version 1, Section 3.6.4 on page 23.)

comp-21104 2X The value of a comp:submodelRef attribute on a ReplacedBy object must be the identifier of

a Submodel present in ReplacedBy object’s parent Model. (References: SBML Level 3 Package

Specification for Hierarchical Model Composition, Version 1, Section 3.6.4 on page 24.)

comp-21105 2X (Rule removed because it was a duplicate of 10308.)

General Rules for Replacements

comp-21201 2X If one element replaces another, whether it is the target of a ReplacedBy element, or whether

it has a child ReplacedElement, the SBML class of the replacement element must match the

SBML class of the replaced element, with two exceptions: an element of a derived class may

replace an object of its base class (for base classes other than SBase), and any SBML class with

mathematical meaning may replace a Parameter. A base class may not replace a derived class,

however, nor may a Parameter replace some other SBML element with mathematical mean-

ing. (References: SBML Level 3 Package Specification for Hierarchical Model Composition,

Version 1, Section 3.6.5 on page 24.)

comp-21202 2X If one element replaces another, whether it is the target of a ReplacedBy element, or whether it

has a child ReplacedElement, if the replaced element has the id attribute set, the replacement

element must also have the id attribute set. (References: SBML Level 3 Package Specification

for Hierarchical Model Composition, Version 1, Section 3.6.5 on page 24.)

comp-21203 2X If one element replaces another, whether it is the target of a ReplacedBy element, or whether

it has a child ReplacedElement, if the replaced element has the metaid attribute set, the

replacement element must also have the metaid attribute set. (References: SBML Level 3

Package Specification for Hierarchical Model Composition, Version 1, Section 3.6.5 on page 24.)

comp-21204 2X If one element replaces another, whether it is the target of a ReplacedBy element, or whether

it has a child ReplacedElement, if the replaced element has an identifier attribute from some
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other SBML package set, the replacement element must also have that same identifier attribute

set. (References: SBML Level 3 Package Specification for Hierarchical Model Composition,

Version 1, Section 3.6.5 on page 24.)
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