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Chapter 1

Introduction to Matrices

1.1 Definition of a Matrix

Definition 1.1.1 (Matrix). A rectangular array of numbers is called a matrix.

The horizontal arrays of a matrix are called its rows and the vertical arrays are called

its columns. A matrix is said to have the order m× n if it has m rows and n columns.

An m× n matrix A can be represented in either of the following forms:

A =









a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn









or A =









a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn









,

where aij is the entry at the intersection of the ith row and jth column. In a more concise

manner, we also write Am×n = [aij] or A = [aij ]m×n or A = [aij ]. We shall mostly

be concerned with matrices having real numbers, denoted R, as entries. For example, if

A =

[

1 3 7

4 5 6

]

then a11 = 1, a12 = 3, a13 = 7, a21 = 4, a22 = 5, and a23 = 6.

A matrix having only one column is called a column vector; and a matrix with

only one row is called a row vector. Whenever a vector is used, it should

be understood from the context whether it is a row vector or a column

vector. Also, all the vectors will be represented by bold letters.

Definition 1.1.2 (Equality of two Matrices). Two matrices A = [aij ] and B = [bij ] having

the same order m× n are equal if aij = bij for each i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

In other words, two matrices are said to be equal if they have the same order and their

corresponding entries are equal.

Example 1.1.3. The linear system of equations 2x + 3y = 5 and 3x + 2y = 5 can be

identified with the matrix

[

2 3 : 5

3 2 : 5

]

. Note that x and y are indeterminate and we can

think of x being associated with the first column and y being associated with the second

column.

5
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1.1.1 Special Matrices

Definition 1.1.4. 1. A matrix in which each entry is zero is called a zero-matrix, de-

noted by 0. For example,

02×2 =

[

0 0

0 0

]

and 02×3 =

[

0 0 0

0 0 0

]

.

2. A matrix that has the same number of rows as the number of columns, is called a

square matrix. A square matrix is said to have order n if it is an n× n matrix.

3. The entries a11, a22, . . . , ann of an n×n square matrix A = [aij] are called the diagonal

entries (the principal diagonal) of A.

4. A square matrix A = [aij ] is said to be a diagonal matrix if aij = 0 for i 6= j. In

other words, the non-zero entries appear only on the principal diagonal. For example,

the zero matrix 0n and

[

4 0

0 1

]

are a few diagonal matrices.

A diagonal matrix D of order n with the diagonal entries d1, d2, . . . , dn is denoted by

D = diag(d1, . . . , dn). If di = d for all i = 1, 2, . . . , n then the diagonal matrix D is

called a scalar matrix.

5. A scalar matrix A of order n is called an identity matrix if d = 1. This matrix is

denoted by In.

For example, I2 =

[

1 0

0 1

]

and I3 =






1 0 0

0 1 0

0 0 1




 . The subscript n is suppressed in

case the order is clear from the context or if no confusion arises.

6. A square matrix A = [aij ] is said to be an upper triangular matrix if aij = 0 for

i > j.

A square matrix A = [aij ] is said to be a lower triangular matrix if aij = 0 for

i < j.

A square matrix A is said to be triangular if it is an upper or a lower triangular

matrix.

For example,






0 1 4

0 3 −1

0 0 −2




 is upper triangular,






0 0 0

1 0 0

0 1 1




 is lower triangular.

Exercise 1.1.5. Are the following matrices upper triangular, lower triangular or both?

1.









a11 a12 · · · a1n
0 a22 · · · a2n
...

...
. . .

...

0 0 · · · ann
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2. The square matrices 0 and I or order n.

3. The matrix diag(1,−1, 0, 1).

1.2 Operations on Matrices

Definition 1.2.1 (Transpose of a Matrix). The transpose of an m×n matrix A = [aij ] is

defined as the n ×m matrix B = [bij ], with bij = aji for 1 ≤ i ≤ m and 1 ≤ j ≤ n. The

transpose of A is denoted by At.

That is, if A =

[

1 4 5

0 1 2

]

then At =






1 0

4 1

5 2




 . Thus, the transpose of a row vector is a

column vector and vice-versa.

Theorem 1.2.2. For any matrix A, (At)t = A.

Proof. Let A = [aij], A
t = [bij ] and (At)t = [cij ]. Then, the definition of transpose gives

cij = bji = aij for all i, j

and the result follows.

Definition 1.2.3 (Addition of Matrices). let A = [aij ] and B = [bij ] be two m×n matrices.

Then the sum A+B is defined to be the matrix C = [cij ] with cij = aij + bij .

Note that, we define the sum of two matrices only when the order of the two matrices

are same.

Definition 1.2.4 (Multiplying a Scalar to a Matrix). Let A = [aij ] be an m× n matrix.

Then for any element k ∈ R, we define kA = [kaij ].

For example, if A =

[

1 4 5

0 1 2

]

and k = 5, then 5A =

[

5 20 25

0 5 10

]

.

Theorem 1.2.5. Let A,B and C be matrices of order m× n, and let k, ℓ ∈ R. Then

1. A+B = B +A (commutativity).

2. (A+B) + C = A+ (B + C) (associativity).

3. k(ℓA) = (kℓ)A.

4. (k + ℓ)A = kA+ ℓA.

Proof. Part 1.

Let A = [aij ] and B = [bij]. Then

A+B = [aij] + [bij ] = [aij + bij ] = [bij + aij ] = [bij ] + [aij ] = B +A

as real numbers commute.

The reader is required to prove the other parts as all the results follow from the prop-

erties of real numbers.
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Definition 1.2.6 (Additive Inverse). Let A be an m× n matrix.

1. Then there exists a matrix B with A + B = 0. This matrix B is called the additive

inverse of A, and is denoted by −A = (−1)A.

2. Also, for the matrix 0m×n, A+0 = 0+A = A. Hence, the matrix 0m×n is called the

additive identity.

Exercise 1.2.7. 1. Find a 3× 3 non-zero matrix A satisfying A = At.

2. Find a 3× 3 non-zero matrix A such that At = −A.

3. Find the 3× 3 matrix A = [aij ] satisfying aij = 1 if i 6= j and 2 otherwise.

4. Find the 3× 3 matrix A = [aij ] satisfying aij = 1 if |i− j| ≤ 1 and 0 otherwise.

5. Find the 4× 4 matrix A = [aij ] satisfying aij = i+ j.

6. Find the 4× 4 matrix A = [aij ] satisfying aij = 2i+j .

7. Suppose A+B = A. Then show that B = 0.

8. Suppose A+B = 0. Then show that B = (−1)A = [−aij ].

9. Let A =






1 −1

2 3

0 1




 and B =

[

2 3 −1

1 1 2

]

. Compute A+Bt and B +At.

1.2.1 Multiplication of Matrices

Definition 1.2.8 (Matrix Multiplication / Product). Let A = [aij ] be an m × n matrix

and B = [bij ] be an n × r matrix. The product AB is a matrix C = [cij ] of order m × r,

with

cij =
n∑

k=1

aikbkj = ai1b1j + ai2b2j + · · ·+ ainbnj .

That is, if Am×n =










· · · · · · · · · · · ·
· · · · · · · · · · · ·
ai1 ai2 · · · ain
· · · · · · · · · · · ·
· · · · · · · · · · · ·










and Bn×r =











... b1j
...

... b2j
...

...
...

...
... bmj

...











then

AB = [(AB)ij ]m×r and (AB)ij = ai1b1j + ai2b2j + · · ·+ ainbnj.

Observe that the product AB is defined if and only if

the number of columns of A = the number of rows of B.
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For example, if A =

[

a b c

d e f

]

and B =






α β γ δ

x y z t

u v w s




 then

AB =

[

aα+ bx+ cu aβ + by + cv aγ + bz + cw aδ + bt+ cs

dα+ ex+ fu dβ + ey + fv dγ + ez + fw dδ + et+ fs

]

. (1.2.1)

Observe that in Equation (1.2.1), the first row of AB can be re-written as

a ·
[

α β γ δ
]

+ b ·
[

x y z t
]

+ c ·
[

u v w s
]

.

That is, if Rowi(B) denotes the i-th row of B for 1 ≤ i ≤ 3, then the matrix product AB

can be re-written as

AB =

[

a · Row1(B) + b · Row2(B) + c · Row3(B)

d · Row1(B) + e · Row2(B) + f · Row3(B)

]

. (1.2.2)

Similarly, observe that if Colj(A) denotes the j-th column of A for 1 ≤ j ≤ 3, then the

matrix product AB can be re-written as

AB =
[

Col1(A) · α+Col2(A) · x+Col3(A) · u,
Col1(A) · β +Col2(A) · y +Col3(A) · v,

Col1(A) · γ +Col2(A) · z +Col3(A) · w
Col1(A) · δ +Col2(A) · t+Col3(A) · s] . (1.2.3)

Remark 1.2.9. Observe the following:

1. In this example, while AB is defined, the product BA is not defined.

However, for square matrices A and B of the same order, both the product AB and

BA are defined.

2. The product AB corresponds to operating on the rows of the matrix B (see Equa-

tion (1.2.2)). This is row method for calculating the matrix product.

3. The product AB also corresponds to operating on the columns of the matrix A (see

Equation (1.2.3)). This is column method for calculating the matrix product.

4. Let A = [aij] and B = [bij ] be two matrices. Suppose a1, a2, . . . , an are the rows

of A and b1, b2, . . . , bp are the columns of B. If the product AB is defined, then

check that

AB = [Ab1, Ab2, . . . , Abp] =









a1B

a2B
...

anB









.
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Example 1.2.10. Let A =






1 2 0

1 0 1

0 −1 1




 and B =






1 0 −1

0 0 1

0 −1 1




. Use the row/column

method of matrix multiplication to

1. find the second row of the matrix AB.

Solution: Observe that the second row of AB is obtained by multiplying the second

row of A with B. Hence, the second row of AB is

1 · [1, 0,−1] + 0 · [0, 0, 1] + 1 · [0,−1, 1] = [1,−1, 0].

2. find the third column of the matrix AB.

Solution: Observe that the third column of AB is obtained by multiplying A with

the third column of B. Hence, the third column of AB is

−1 ·






1

1

0




+ 1 ·






2

0

−1




+ 1 ·






0

1

1




 =






1

0

0




 .

Definition 1.2.11 (Commutativity of Matrix Product). Two square matrices A and B

are said to commute if AB = BA.

Remark 1.2.12. Note that if A is a square matrix of order n and if B is a scalar matrix of

order n then AB = BA. In general, the matrix product is not commutative. For example,

consider A =

[

1 1

0 0

]

and B =

[

1 0

1 0

]

. Then check that the matrix product

AB =

[

2 0

0 0

]

6=
[

1 1

1 1

]

= BA.

Theorem 1.2.13. Suppose that the matrices A, B and C are so chosen that the matrix

multiplications are defined.

1. Then (AB)C = A(BC). That is, the matrix multiplication is associative.

2. For any k ∈ R, (kA)B = k(AB) = A(kB).

3. Then A(B + C) = AB +AC. That is, multiplication distributes over addition.

4. If A is an n× n matrix then AIn = InA = A.

5. For any square matrix A of order n and D = diag(d1, d2, . . . , dn), we have

• the first row of DA is d1 times the first row of A;

• for 1 ≤ i ≤ n, the ith row of DA is di times the ith row of A.

A similar statement holds for the columns of A when A is multiplied on the right by

D.
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Proof. Part 1. Let A = [aij]m×n, B = [bij ]n×p and C = [cij ]p×q. Then

(BC)kj =

p
∑

ℓ=1

bkℓcℓj and (AB)iℓ =
n∑

k=1

aikbkℓ.

Therefore,

(
A(BC)

)

ij
=

n∑

k=1

aik
(
BC

)

kj
=

n∑

k=1

aik
(

p
∑

ℓ=1

bkℓcℓj
)

=

n∑

k=1

p
∑

ℓ=1

aik
(
bkℓcℓj

)
=

n∑

k=1

p
∑

ℓ=1

(
aikbkℓ

)
cℓj

=

p
∑

ℓ=1

(
n∑

k=1

aikbkℓ
)
cℓj =

t∑

ℓ=1

(
AB
)

iℓ
cℓj

=
(
(AB)C

)

ij
.

Part 5. For all j = 1, 2, . . . , n, we have

(DA)ij =

n∑

k=1

dikakj = diaij

as dik = 0 whenever i 6= k. Hence, the required result follows.

The reader is required to prove the other parts.

Exercise 1.2.14. 1. Find a 2× 2 non-zero matrix A satisfying A2 = 0.

2. Find a 2× 2 non-zero matrix A satisfying A2 = A and A 6= I2.

3. Find 2× 2 non-zero matrices A,B and C satisfying AB = AC but B 6= C. That is,

the cancelation law doesn’t hold.

4. Let A =






0 1 0

0 0 1

1 0 0




 . Compute A+ 3A2 −A3 and aA3 + bA+ cA2.

5. Let A and B be two matrices. If the matrix addition A + B is defined, then prove

that (A + B)t = At + Bt. Also, if the matrix product AB is defined then prove that

(AB)t = BtAt.

6. Let A = [a1, a2, . . . , an] and Bt = [b1, b2, . . . , bn]. Then check that order of AB is

1× 1, whereas BA has order n× n. Determine the matrix products AB and BA.

7. Let A and B be two matrices such that the matrix product AB is defined.

(a) If the first row of A consists entirely of zeros, prove that the first row of AB

also consists entirely of zeros.

(b) If the first column of B consists entirely of zeros, prove that the first column of

AB also consists entirely of zeros.
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(c) If A has two identical rows then the corresponding rows of AB are also identical.

(d) If B has two identical columns then the corresponding columns of AB are also

identical.

8. Let A =






1 1 −2

1 −2 1

0 1 1




 and B =






1 0

0 1

−1 1




. Use the row/column method of matrix

multiplication to compute the

(a) first row of the matrix AB.

(b) third row of the matrix AB.

(c) first column of the matrix AB.

(d) second column of the matrix AB.

(e) first column of BtAt.

(f) third column of BtAt.

(g) first row of BtAt.

(h) second row of BtAt.

9. Let A and B be the matrices given in Exercise 1.2.14.8. Compute A−At, (3AB)t −
4BtA and 3A− 2At.

10. Let n be a positive integer. Compute An for the following matrices:

[

1 1

0 1

]

,






1 1 1

0 1 1

0 0 1




 ,






1 1 1

1 1 1

1 1 1




 .

Can you guess a formula for An and prove it by induction?

11. Construct the matrices A and B satisfying the following statements.

(a) The matrix product AB is defined but BA is not defined.

(b) The matrix products AB and BA are defined but they have different orders.

(c) The matrix products AB and BA are defined and they have the same order but

AB 6= BA.

12. Let A be a 3× 3 matrix satisfying A






a

b

c




 =






a+ b

b− c

0




 . Determine the matrix A.

13. Let A be a 2× 2 matrix satisfying A

[

a

b

]

=

[

a · b
a

]

. Can you construct the matrix A

satisfying the above? Why!
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1.2.2 Inverse of a Matrix

Definition 1.2.15 (Inverse of a Matrix). Let A be a square matrix of order n.

1. A square matrix B is said to be a left inverse of A if BA = In.

2. A square matrix C is called a right inverse of A, if AC = In.

3. A matrix A is said to be invertible (or is said to have an inverse) if there exists

a matrix B such that AB = BA = In.

Lemma 1.2.16. Let A be an n×n matrix. Suppose that there exist n×n matrices B and

C such that AB = In and CA = In, then B = C.

Proof. Note that

C = CIn = C(AB) = (CA)B = InB = B.

Remark 1.2.17. 1. From the above lemma, we observe that if a matrix A is invertible,

then the inverse is unique.

2. As the inverse of a matrix A is unique, we denote it by A−1. That is, AA−1 =

A−1A = I.

Example 1.2.18. 1. Let A =

[

a b

c d

]

.

(a) If ad− bc 6= 0. Then verify that A−1 = 1
ad−bc

[

d −b

−c a

]

.

(b) If ad−bc = 0 then prove that either [a b] = α[c d] for some α ∈ R or [a c] = β[b d]

for some β ∈ R. Hence, prove that A is not invertible.

(c) In particular, the inverse of

[

2 3

4 7

]

equals 1
2

[

7 −3

−4 2

]

. Also, the matrices

[

1 2

0 0

]

,

[

1 0

4 0

]

and

[

4 2

6 3

]

do not have inverses.

2. Let A =






1 2 3

2 3 4

3 4 6




 . Then A−1 =






−2 0 1

0 3 −2

1 −2 1




 .

Theorem 1.2.19. Let A and B be two matrices with inverses A−1 and B−1, respectively.

Then

1. (A−1)−1 = A.

2. (AB)−1 = B−1A−1.

3. (At)−1 = (A−1)t.
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Proof. Proof of Part 1.

By definition AA−1 = A−1A = I. Hence, if we denote A−1 byB, then we get AB = BA = I.

Thus, the definition, implies B−1 = A, or equivalently (A−1)−1 = A.

Proof of Part 2.

Verify that (AB)(B−1A−1) = I = (B−1A−1)(AB).

Proof of Part 3.

We know AA−1 = A−1A = I. Taking transpose, we get

(AA−1)t = (A−1A)t = It ⇐⇒ (A−1)tAt = At(A−1)t = I.

Hence, by definition (At)−1 = (A−1)t.

We will again come back to the study of invertible matrices in Sections 2.2 and 2.5.

Exercise 1.2.20. 1. Let A be an invertible matrix and let r be a positive integer. Prove

that (A−1)r = A−r.

2. Find the inverse of

[

− cos(θ) sin(θ)

sin(θ) cos(θ)

]

and

[

cos(θ) sin(θ)

− sin(θ) cos(θ)

]

.

3. Let A1, A2, . . . , Ar be invertible matrices. Prove that the product A1A2 · · ·Ar is also

an invertible matrix.

4. Let xt = [1, 2, 3] and yt = [2,−1, 4]. Prove that xyt is not invertible even though xty

is invertible.

5. Let A be an n× n invertible matrix. Then prove that

(a) A cannot have a row or column consisting entirely of zeros.

(b) any two rows of A cannot be equal.

(c) any two columns of A cannot be equal.

(d) the third row of A cannot be equal to the sum of the first two rows, whenever

n ≥ 3.

(e) the third column of A cannot be equal to the first column minus the second

column, whenever n ≥ 3.

6. Suppose A is a 2 × 2 matrix satisfying (I + 3A)−1 =

[

1 2

2 1

]

. Determine the matrix

A.

7. Let A be a 3×3 matrix such that (I−A)−1 =






−2 0 1

0 3 −2

1 −2 1




 . Determine the matrix

A [Hint: See Example 1.2.18.2 and Theorem 1.2.19.1].

8. Let A be a square matrix satisfying A3 +A− 2I = 0. Prove that A−1 = 1
2

(
A2 + I

)
.

9. Let A = [aij ] be an invertible matrix and let p be a nonzero real number. Then

determine the inverse of the matrix B = [pi−jaij].
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1.3 Some More Special Matrices

Definition 1.3.1. 1. A matrix A over R is called symmetric if At = A and skew-

symmetric if At = −A.

2. A matrix A is said to be orthogonal if AAt = AtA = I.

Example 1.3.2. 1. Let A =






1 2 3

2 4 −1

3 −1 4




 and B =






0 1 2

−1 0 −3

−2 3 0




 . Then A is a

symmetric matrix and B is a skew-symmetric matrix.

2. Let A =






1√
3

1√
3

1√
3

1√
2

− 1√
2

0
1√
6

1√
6

− 2√
6




 . Then A is an orthogonal matrix.

3. Let A = [aij ] be an n × n matrix with aij equal to 1 if i − j = 1 and 0, otherwise.

Then An = 0 and Aℓ 6= 0 for 1 ≤ ℓ ≤ n − 1. The matrices A for which a positive

integer k exists such that Ak = 0 are called nilpotent matrices. The least positive

integer k for which Ak = 0 is called the order of nilpotency.

4. Let A =

[
1
2

1
2

1
2

1
2

]

. Then A2 = A. The matrices that satisfy the condition that A2 = A

are called idempotent matrices.

Exercise 1.3.3. 1. Let A be a real square matrix. Then S = 1
2(A + At) is symmetric,

T = 1
2(A−At) is skew-symmetric, and A = S + T.

2. Show that the product of two lower triangular matrices is a lower triangular matrix.

A similar statement holds for upper triangular matrices.

3. Let A and B be symmetric matrices. Show that AB is symmetric if and only if

AB = BA.

4. Show that the diagonal entries of a skew-symmetric matrix are zero.

5. Let A,B be skew-symmetric matrices with AB = BA. Is the matrix AB symmetric

or skew-symmetric?

6. Let A be a symmetric matrix of order n with A2 = 0. Is it necessarily true that

A = 0?

7. Let A be a nilpotent matrix. Prove that there exists a matrix B such that B(I+A) =

I = (I +A)B [ Hint: If Ak = 0 then look at I −A+A2 − · · ·+ (−1)k−1Ak−1].
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1.3.1 Submatrix of a Matrix

Definition 1.3.4. A matrix obtained by deleting some of the rows and/or columns of a

matrix is said to be a submatrix of the given matrix.

For example, if A =

[

1 4 5

0 1 2

]

, a few submatrices of A are

[1], [2],

[

1

0

]

, [1 5],

[

1 5

0 2

]

, A.

But the matrices

[

1 4

1 0

]

and

[

1 4

0 2

]

are not submatrices of A. (The reader is advised

to give reasons.)

Let A be an n×m matrix and B be an m× p matrix. Suppose r < m. Then, we can

decompose the matrices A and B as A = [P Q] and B =

[

H

K

]

; where P has order n × r

and H has order r× p. That is, the matrices P and Q are submatrices of A and P consists

of the first r columns of A and Q consists of the last m − r columns of A. Similarly, H

and K are submatrices of B and H consists of the first r rows of B and K consists of the

last m− r rows of B. We now prove the following important theorem.

Theorem 1.3.5. Let A = [aij] = [P Q] and B = [bij ] =

[

H

K

]

be defined as above. Then

AB = PH +QK.

Proof. First note that the matrices PH and QK are each of order n × p. The matrix

products PH and QK are valid as the order of the matrices P,H,Q and K are respectively,

n × r, r × p, n × (m − r) and (m − r) × p. Let P = [Pij ], Q = [Qij], H = [Hij], and

K = [kij ]. Then, for 1 ≤ i ≤ n and 1 ≤ j ≤ p, we have

(AB)ij =

m∑

k=1

aikbkj =

r∑

k=1

aikbkj +

m∑

k=r+1

aikbkj

=
r∑

k=1

PikHkj +
m∑

k=r+1

QikKkj

= (PH)ij + (QK)ij = (PH +QK)ij .

Remark 1.3.6. Theorem 1.3.5 is very useful due to the following reasons:

1. The order of the matrices P,Q,H and K are smaller than that of A or B.

2. It may be possible to block the matrix in such a way that a few blocks are either

identity matrices or zero matrices. In this case, it may be easy to handle the matrix

product using the block form.
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3. Or when we want to prove results using induction, then we may assume the result for

r × r submatrices and then look for (r + 1)× (r + 1) submatrices, etc.

For example, if A =

[

1 2 0

2 5 0

]

and B =






a b

c d

e f




 , Then

AB =

[

1 2

2 5

][

a b

c d

]

+

[

0

0

]

[e f ] =

[

a+ 2c b+ 2d

2a+ 5c 2b+ 5d

]

.

If A =






0 −1 2

3 1 4

−2 5 −3




 , then A can be decomposed as follows:

A =






0 −1 2

3 1 4

−2 5 −3




 , or A =






0 −1 2

3 1 4

−2 5 −3




 , or

A =






0 −1 2

3 1 4

−2 5 −3




 and so on.

SupposeA =

m1 m2

n1

n2

[

P Q

R S

]

andB =

s1 s2

r1
r2

[

E F

G H

]

. Then the matrices P, Q, R, S

and E, F, G, H, are called the blocks of the matrices A and B, respectively.

Even if A+B is defined, the orders of P and E may not be same and hence, we may

not be able to add A and B in the block form. But, if A + B and P + E is defined then

A+B =

[

P + E Q+ F

R+G S +H

]

.

Similarly, if the product AB is defined, the product PE need not be defined. Therefore,

we can talk of matrix product AB as block product of matrices, if both the products AB

and PE are defined. And in this case, we have AB =

[

PE +QG PF +QH

RE + SG RF + SH

]

.

That is, once a partition of A is fixed, the partition of B has to be properly

chosen for purposes of block addition or multiplication.

Exercise 1.3.7. 1. Complete the proofs of Theorems 1.2.5 and 1.2.13.

2. Let A =






1/2 0 0

0 1 0

0 0 1




 , B =






1 0 0

−2 1 0

−3 0 1




 and C =






2 2 2 6

2 1 2 5

3 3 4 10




. Compute

(a) the first row of AC,

(b) the first row of B(AC),
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(c) the second row of B(AC), and

(d) the third row of B(AC).

(e) Let xt = [1, 1, 1,−1]. Compute the matrix product Cx.

3. Let x =

[

x1
x2

]

and y =

[

y1
y2

]

. Determine the 2× 2 matrix

(a) A such that the y = Ax gives rise to counter-clockwise rotation through an angle

α.

(b) B such that y = Bx gives rise to the reflection along the line y = (tan γ)x.

Now, let C and D be two 2× 2 matrices such that y = Cx gives rise to counter-

clockwise rotation through an angle β and y = Dx gives rise to the reflection

along the line y = (tan δ) x, respectively. Then prove that

(c) y = (AC)x or y = (CA)x give rise to counter-clockwise rotation through an

angle α+ β.

(d) y = (BD)x or y = (DB)x give rise to rotations. Which angles do they repre-

sent?

(e) What can you say about y = (AB)x or y = (BA)x ?

4. Let A =

[

1 0

0 −1

]

, B =

[

cosα − sinα

sinα cosα

]

and C =

[

cos θ − sin θ

sin θ cos θ

]

. If x =

[

x1
x2

]

and y =

[

y1
y2

]

then geometrically interpret the following:

(a) y = Ax, y = Bx and y = Cx.

(b) y = (BC)x, y = (CB)x, y = (BA)x and y = (AB)x.

5. Consider the two coordinate transformations
x1 = a11y1 + a12y2
x2 = a21y1 + a22y2

and
y1 = b11z1 + b12z2
y2 = b21z1 + b22z2

.

(a) Compose the two transformations to express x1, x2 in terms of z1, z2.

(b) If xt = [x1, x2], yt = [y1, y2] and zt = [z1, z2] then find matrices A,B and C

such that x = Ay, y = Bz and x = Cz.

(c) Is C = AB?

6. Let A be an n× n matrix. Then trace of A, denoted tr(A), is defined as

tr(A) = a11 + a22 + · · · ann.

(a) Let A =

[

3 2

2 2

]

and B =

[

4 −3

−5 1

]

. Compute tr(A) and tr(B).
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(b) Then for two square matrices, A and B of the same order, prove that

i. tr (A+B) = tr (A) + tr (B).

ii. tr (AB) = tr (BA).

(c) Prove that there do not exist matrices A and B such that AB − BA = cIn for

any c 6= 0.

7. Let A and B be two m× n matrices with real entries. Then prove that

(a) Ax = 0 for all n× 1 vector x with real entries implies A = 0, the zero matrix.

(b) Ax = Bx for all n× 1 vector x with real entries implies A = B.

8. Let A be an n × n matrix such that AB = BA for all n × n matrices B. Show that

A = αI for some α ∈ R.

9. Let A =

[

1 2 3

2 1 1

]

.

(a) Find a matrix B such that AB = I2.

(b) What can you say about the number of such matrices? Give reasons for your

answer.

(c) Does there exist a matrix C such that CA = I3? Give reasons for your answer.

10. Let A =








1 0 0 1

0 1 1 1

0 1 1 0

0 1 0 1








and B =








1 2 2 1

1 1 2 1

1 1 1 1

−1 1 −1 1







. Compute the matrix product

AB using the block matrix multiplication.

11. Let A =

[

P Q

R S

]

. If P,Q,R and S are symmetric, is the matrix A symmetric? If A

is symmetric, is it necessary that the matrices P,Q,R and S are symmetric?

12. Let A be an (n+1)× (n+1) matrix and let A =

[

A11 A12

A21 c

]

, where A11 is an n×n

invertible matrix and c is a real number.

(a) If p = c−A21A
−1
11 A12 is non-zero, prove that

B =

[

A−1
11 0

0 0

]

+
1

p

[

A−1
11 A12

−1

]
[

A21A
−1
11 −1

]

is the inverse of A.

(b) Find the inverse of the matrices






0 −1 2

1 1 4

−2 1 1




 and






0 −1 2

3 1 4

−2 5 −3




.
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13. Let x be an n× 1 matrix satisfying xtx = 1.

(a) Define A = In − 2xxt. Prove that A is symmetric and A2 = I. The matrix A

is commonly known as the Householder matrix.

(b) Let α 6= 1 be a real number and define A = In−αxxt. Prove that A is symmetric

and invertible [Hint: the inverse is also of the form In+βxxt for some value of

β].

14. Let A be an n × n invertible matrix and let x and y be two n × 1 matrices. Also,

let β be a real number such that α = 1 + βytA−1x 6= 0. Then prove the famous

Shermon-Morrison formula

(A+ βxyt)−1 = A−1 − β

α
A−1xytA−1.

This formula gives the information about the inverse when an invertible matrix is

modified by a rank one matrix.

15. Let J be an n× n matrix having each entry 1.

(a) Prove that J2 = nJ .

(b) Let α1, α2, β1, β2 ∈ R. Prove that there exist α3, β3 ∈ R such that

(α1In + β1J) · (α2In + β2J) = α3In + β3J.

(c) Let α, β ∈ R with α 6= 0 and α+ nβ 6= 0 and define A = αIn + βJ . Prove that

A is invertible.

16. Let A be an upper triangular matrix. If A∗A = AA∗ then prove that A is a diagonal

matrix. The same holds for lower triangular matrix.

1.4 Summary

In this chapter, we started with the definition of a matrix and came across lots of examples.

In particular, the following examples were important:

1. The zero matrix of size m× n, denoted 0m×n or 0.

2. The identity matrix of size n× n, denoted In or I.

3. Triangular matrices

4. Hermitian/Symmetric matrices

5. Skew-Hermitian/skew-symmetric matrices

6. Unitary/Orthogonal matrices

We also learnt product of two matrices. Even though it seemed complicated, it basically

tells the following:
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1. Multiplying by a matrix on the left to a matrix A is same as row operations.

2. Multiplying by a matrix on the right to a matrix A is same as column operations.
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Chapter 2

System of Linear Equations

2.1 Introduction

Let us look at some examples of linear systems.

1. Suppose a, b ∈ R. Consider the system ax = b.

(a) If a 6= 0 then the system has a unique solution x = b
a
.

(b) If a = 0 and

i. b 6= 0 then the system has no solution.

ii. b = 0 then the system has infinite number of solutions, namely all

x ∈ R.

2. Consider a system with 2 equations in 2 unknowns. The equation ax + by = c

represents a line in R
2 if either a 6= 0 or b 6= 0. Thus the solution set of the system

a1x+ b1y = c1, a2x+ b2y = c2

is given by the points of intersection of the two lines. The different cases are illustrated

by examples (see Figure 1).

(a) Unique Solution

x+ 2y = 1 and x+ 3y = 1. The unique solution is (x, y)t = (1, 0)t.

Observe that in this case, a1b2 − a2b1 6= 0.

(b) Infinite Number of Solutions

x + 2y = 1 and 2x + 4y = 2. The solution set is (x, y)t = (1 − 2y, y)t =

(1, 0)t + y(−2, 1)t with y arbitrary as both the equations represent the same

line. Observe the following:

i. Here, a1b2 − a2b1 = 0, a1c2 − a2c1 = 0 and b1c2 − b2c1 = 0.

ii. The vector (1, 0)t corresponds to the solution x = 1, y = 0 of the given

system whereas the vector (−2, 1)t corresponds to the solution x = −2, y = 1

of the system x+ 2y = 0, 2x+ 4y = 0.

23
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(c) No Solution

x+2y = 1 and 2x+4y = 3. The equations represent a pair of parallel lines and

hence there is no point of intersection. Observe that in this case, a1b2−a2b1 = 0

but a1c2 − a2c1 6= 0.

ℓ1
ℓ2

No Solution
Pair of Parallel lines

ℓ1 and ℓ2

Infinite Number of Solutions
Coincident Lines

ℓ1

ℓ2P

Unique Solution: Intersecting Lines
P : Point of Intersection

Figure 1 : Examples in 2 dimension.

3. As a last example, consider 3 equations in 3 unknowns.

A linear equation ax+by+cz = d represent a plane in R
3 provided (a, b, c) 6= (0, 0, 0).

Here, we have to look at the points of intersection of the three given planes.

(a) Unique Solution

Consider the system x+ y+ z = 3, x+4y+2z = 7 and 4x+10y− z = 13. The

unique solution to this system is (x, y, z)t = (1, 1, 1)t; i.e. the three planes

intersect at a point.

(b) Infinite Number of Solutions

Consider the system x+ y+ z = 3, x+2y+2z = 5 and 3x+4y+4z = 11. The

solution set is (x, y, z)t = (1, 2−z, z)t = (1, 2, 0)t+z(0,−1, 1)t, with z arbitrary.

Observe the following:

i. Here, the three planes intersect in a line.

ii. The vector (1, 2, 0)t corresponds to the solution x = 1, y = 2 and z = 0 of

the linear system x+y+z = 3, x+2y+2z = 5 and 3x+4y+4z = 11. Also,

the vector (0,−1, 1)t corresponds to the solution x = 0, y = −1 and z = 1

of the linear system x+ y + z = 0, x+ 2y + 2z = 0 and 3x+ 4y + 4z = 0.

(c) No Solution

The system x + y + z = 3, x + 2y + 2z = 5 and 3x + 4y + 4z = 13 has no

solution. In this case, we get three parallel lines as intersections of the above

planes, namely

i. a line passing through (1, 2, 0) with direction ratios (0,−1, 1),

ii. a line passing through (3, 1, 0) with direction ratios (0,−1, 1), and

iii. a line passing through (−1, 4, 0) with direction ratios (0,−1, 1).

The readers are advised to supply the proof.

Definition 2.1.1 (Linear System). A system of m linear equations in n unknowns x1, x2, . . . , xn
is a set of equations of the form
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a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

... (2.1.1)

am1x1 + am2x2 + · · ·+ amnxn = bm

where for 1 ≤ i ≤ n, and 1 ≤ j ≤ m; aij, bi ∈ R. Linear System (2.1.1) is called homoge-

neous if b1 = 0 = b2 = · · · = bm and non-homogeneous otherwise.

We rewrite the above equations in the form Ax = b, where

A =









a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn









, x =









x1
x2
...

xn









, and b =









b1
b2
...

bm









The matrix A is called the coefficient matrix and the block matrix [A b] , is called

the augmented matrix of the linear system (2.1.1).

Remark 2.1.2. 1. The first column of the augmented matrix corresponds to the coeffi-

cients of the variable x1.

2. In general, the jth column of the augmented matrix corresponds to the coefficients of

the variable xj , for j = 1, 2, . . . , n.

3. The (n+ 1)th column of the augmented matrix consists of the vector b.

4. The ith row of the augmented matrix represents the ith equation for i = 1, 2, . . . ,m.

That is, for i = 1, 2, . . . ,m and j = 1, 2, . . . , n, the entry aij of the coefficient matrix

A corresponds to the ith linear equation and the jth variable xj.

Definition 2.1.3. For a system of linear equations Ax = b, the system Ax = 0 is called

the associated homogeneous system.

Definition 2.1.4 (Solution of a Linear System). A solution of Ax = b is a column vector

y with entries y1, y2, . . . , yn such that the linear system (2.1.1) is satisfied by substituting

yi in place of xi. The collection of all solutions is called the solution set of the system.

That is, if yt = [y1, y2, . . . , yn] is a solution of the linear system Ax = b then Ay = b

holds. For example, from Example 3.3a, we see that the vector yt = [1, 1, 1] is a solution

of the system Ax = b, where A =






1 1 1

1 4 2

4 10 −1




 , xt = [x, y, z] and bt = [3, 7, 13].

We now state a theorem about the solution set of a homogeneous system. The readers

are advised to supply the proof.

Theorem 2.1.5. Consider the homogeneous linear system Ax = 0. Then
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1. The zero vector, 0 = (0, . . . , 0)t, is always a solution, called the trivial solution.

2. Suppose x1,x2 are two solutions of Ax = 0. Then k1x1 + k2x2 is also a solution of

Ax = 0 for any k1, k2 ∈ R.

Remark 2.1.6. 1. A non-zero solution of Ax = 0 is called a non-trivial solution.

2. If Ax = 0 has a non-trivial solution, say y 6= 0 then z = cy for every c ∈ R is also

a solution. Thus, the existence of a non-trivial solution of Ax = 0 is equivalent to

having an infinite number of solutions for the system Ax = 0.

3. If u,v are two distinct solutions of Ax = b then one has the following:

(a) u− v is a solution of the system Ax = 0.

(b) Define xh = u− v. Then xh is a solution of the homogeneous system Ax = 0.

(c) That is, any two solutions of Ax = b differ by a solution of the associated

homogeneous system Ax = 0.

(d) Or equivalently, the set of solutions of the system Ax = b is of the form, {x0 +

xh}; where x0 is a particular solution of Ax = b and xh is a solution of the

associated homogeneous system Ax = 0.

2.1.1 A Solution Method

Example 2.1.7. Solve the linear system y + z = 2, 2x+ 3z = 5, x+ y + z = 3.

Solution: In this case, the augmented matrix is






0 1 1 2

2 0 3 5

1 1 1 3




 and the solution method

proceeds along the following steps.

1. Interchange 1st and 2nd equation.

2x+ 3z = 5

y + z = 2

x+ y + z = 3






2 0 3 5

0 1 1 2

1 1 1 3




 .

2. Replace 1st equation by 1st equation times 1
2 .

x+ 3
2z = 5

2

y + z = 2

x+ y + z = 3






1 0 3
2

5
2

0 1 1 2

1 1 1 3




 .

3. Replace 3rd equation by 3rd equation minus the 1st equation.

x+ 3
2z = 5

2

y + z = 2

y − 1
2z = 1

2






1 0 3
2

5
2

0 1 1 2

0 1 −1
2

1
2




 .
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4. Replace 3rd equation by 3rd equation minus the 2nd equation.

x+ 3
2z = 5

2

y + z = 2

−3
2z = −3

2






1 0 3
2

5
2

0 1 1 2

0 0 −3
2 −3

2




 .

5. Replace 3rd equation by 3rd equation times −2
3 .

x+ 3
2z = 5

2

y + z = 2

z = 1






1 0 3
2

5
2

0 1 1 2

0 0 1 1




 .

The last equation gives z = 1. Using this, the second equation gives y = 1. Finally,

the first equation gives x = 1. Hence the solution set is {(x, y, z)t : (x, y, z) = (1, 1, 1)}, a
unique solution.

In Example 2.1.7, observe that certain operations on equations (rows of the augmented

matrix) helped us in getting a system in Item 5, which was easily solvable. We use this

idea to define elementary row operations and equivalence of two linear systems.

Definition 2.1.8 (Elementary Row Operations). Let A be an m × n matrix. Then the

elementary row operations are defined as follows:

1. Rij: Interchange of the ith and the jth row of A.

2. For c 6= 0, Rk(c): Multiply the kth row of A by c.

3. For c 6= 0, Rij(c): Replace the jth row of A by the jth row of A plus c times the ith

row of A.

Definition 2.1.9 (Equivalent Linear Systems). Let [A b] and [C d] be augmented ma-

trices of two linear systems. Then the two linear systems are said to be equivalent if [C d]

can be obtained from [A b] by application of a finite number of elementary row operations.

Definition 2.1.10 (Row Equivalent Matrices). Two matrices are said to be row-equivalent

if one can be obtained from the other by a finite number of elementary row operations.

Thus, note that linear systems at each step in Example 2.1.7 are equivalent to each

other. We also prove the following result that relates elementary row operations with the

solution set of a linear system.

Lemma 2.1.11. Let Cx = d be the linear system obtained from Ax = b by application of

a single elementary row operation. Then Ax = b and Cx = d have the same solution set.

Proof. We prove the result for the elementary row operation Rjk(c) with c 6= 0. The reader

is advised to prove the result for other elementary operations.
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In this case, the systems Ax = b and Cx = d vary only in the kth equation. Let

(α1, α2, . . . , αn) be a solution of the linear system Ax = b. Then substituting for αi’s in

place of xi’s in the kth and jth equations, we get

ak1α1 + ak2α2 + · · · aknαn = bk, and aj1α1 + aj2α2 + · · · ajnαn = bj .

Therefore,

(ak1 + caj1)α1 + (ak2 + caj2)α2 + · · · + (akn + cajn)αn = bk + cbj . (2.1.2)

But then the kth equation of the linear system Cx = d is

(ak1 + caj1)x1 + (ak2 + caj2)x2 + · · · + (akn + cajn)xn = bk + cbj. (2.1.3)

Therefore, using Equation (2.1.2), (α1, α2, . . . , αn) is also a solution for kth Equation

(2.1.3).

Use a similar argument to show that if (β1, β2, . . . , βn) is a solution of the linear system

Cx = d then it is also a solution of the linear system Ax = b. Hence, the required result

follows.

The readers are advised to use Lemma 2.1.11 as an induction step to prove the main

result of this subsection which is stated next.

Theorem 2.1.12. Two equivalent linear systems have the same solution set.

2.1.2 Gauss Elimination Method

We first define the Gauss elimination method and give a few examples to understand the

method.

Definition 2.1.13 (Forward/Gauss Elimination Method). The Gaussian elimination method

is a procedure for solving a linear system Ax = b (consisting of m equations in n unknowns)

by bringing the augmented matrix

[A b] =









a11 a12 · · · a1m · · · a1n b1
a21 a22 · · · a2m · · · a2n b2
...

...
. . .

...
...

...

am1 am2 · · · amm · · · amn bm









to an upper triangular form








c11 c12 · · · c1m · · · c1n d1
0 c22 · · · c2m · · · c2n d2
...

...
. . .

...
...

...

0 0 · · · cmm · · · cmn dm









by application of elementary row operations. This elimination process is also called the

forward elimination method.
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We have already seen an example before defining the notion of row equivalence. We

give two more examples to illustrate the Gauss elimination method.

Example 2.1.14. Solve the following linear system by Gauss elimination method.

x+ y + z = 3, x+ 2y + 2z = 5, 3x+ 4y + 4z = 11

Solution: Let A =






1 1 1

1 2 2

3 4 4




 and b =






3

5

11




. The Gauss Elimination method starts

with the augmented matrix [A b] and proceeds as follows:

1. Replace 2nd equation by 2nd equation minus the 1st equation.

x+ y + z = 3

y + z = 2

3x+ 4y + 4z = 11






1 1 1 3

0 1 1 2

3 4 4 11




 .

2. Replace 3rd equation by 3rd equation minus 3 times 1st equation.

x+ y + z = 3

y + z = 2

y + z = 2






1 1 1 3

0 1 1 2

0 1 1 2




 .

3. Replace 3rd equation by 3rd equation minus the 2nd equation.

x+ y + z = 3

y + z = 2






1 1 1 3

0 1 1 2

0 0 0 0




 .

Thus, the solution set is {(x, y, z)t : (x, y, z) = (1, 2 − z, z)} or equivalently {(x, y, z)t :

(x, y, z) = (1, 2, 0)+z(0,−1, 1)}, with z arbitrary. In other words, the system has infinite

number of solutions. Observe that the vector yt = (1, 2, 0) satisfies Ay = b and the

vector zt = (0,−1, 1) is a solution of the homogeneous system Ax = 0.

Example 2.1.15. Solve the following linear system by Gauss elimination method.

x+ y + z = 3, x+ 2y + 2z = 5, 3x+ 4y + 4z = 12

Solution: Let A =






1 1 1

1 2 2

3 4 4




 and b =






3

5

12




. The Gauss Elimination method starts

with the augmented matrix [A b] and proceeds as follows:

1. Replace 2nd equation by 2nd equation minus the 1st equation.

x+ y + z = 3

y + z = 2

3x+ 4y + 4z = 12






1 1 1 3

0 1 1 2

3 4 4 12




 .
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2. Replace 3rd equation by 3rd equation minus 3 times 1st equation.

x+ y + z = 3

y + z = 2

y + z = 3






1 1 1 3

0 1 1 2

0 1 1 3




 .

3. Replace 3rd equation by 3rd equation minus the 2nd equation.

x+ y + z = 3

y + z = 2

0 = 1






1 1 1 3

0 1 1 2

0 0 0 1




 .

The third equation in the last step is

0x+ 0y + 0z = 1.

This can never hold for any value of x, y, z. Hence, the system has no solution.

Remark 2.1.16. Note that to solve a linear system Ax = b, one needs to apply only the

row operations to the augmented matrix [A b].

Definition 2.1.17 (Row Echelon Form of a Matrix). A matrix C is said to be in the row

echelon form if

1. the rows consisting entirely of zeros appears after the non-zero rows,

2. the first non-zero entry in a non-zero row is 1. This term is called the leading term

or a leading 1. The column containing this term is called the leading column.

3. In any two successive non-zero rows, the leading 1 in the lower row occurs farther to

the right than the leading 1 in the higher row.

Example 2.1.18. The matrices






0 1 4 2

0 0 1 1

0 0 0 0




 and






1 1 0 2 3

0 0 0 1 4

0 0 0 0 1




 are in

row-echelon form. Whereas, the matrices






0 1 4 2

0 0 0 0

0 0 1 1




 ,






1 1 0 2 3

0 0 0 1 4

0 0 0 0 2




 and






1 1 0 2 3

0 0 0 0 1

0 0 0 1 4






are not in row-echelon form.

Definition 2.1.19 (Basic, Free Variables). Let Ax = b be a linear system consisting of

m equations in n unknowns. Suppose the application of Gauss elimination method to the

augmented matrix [A b] yields the matrix [C d].

1. Then the variables corresponding to the leading columns (in the first n columns of

[C d]) are called the basic variables.
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2. The variables which are not basic are called free variables.

The free variables are called so as they can be assigned arbitrary values. Also, the basic

variables can be written in terms of the free variables and hence the value of basic variables

in the solution set depend on the values of the free variables.

Remark 2.1.20. Observe the following:

1. In Example 2.1.14, the solution set was given by

(x, y, z) = (1, 2 − z, z) = (1, 2, 0) + z(0,−1, 1), with z arbitrary.

That is, we had x, y as two basic variables and z as a free variable.

2. Example 2.1.15 didn’t have any solution because the row-echelon form of the aug-

mented matrix had a row of the form [0, 0, 0, 1].

3. Suppose the application of row operations to [A b] yields the matrix [C d] which

is in row echelon form. If [C d] has r non-zero rows then [C d] will consist of r

leading terms or r leading columns. Therefore, the linear system Ax = b will

have r basic variables and n− r free variables.

Before proceeding further, we have the following definition.

Definition 2.1.21 (Consistent, Inconsistent). A linear system is called consistent if it

admits a solution and is called inconsistent if it admits no solution.

We are now ready to prove conditions under which the linear system Ax = b is consis-

tent or inconsistent.

Theorem 2.1.22. Consider the linear system Ax = b, where A is an m × n matrix

and xt = (x1, x2, . . . , xn). If one obtains [C d] as the row-echelon form of [A b] with

dt = (d1, d2, . . . , dm) then

1. Ax = b is inconsistent (has no solution) if [C d] has a row of the form [0t 1], where

0t = (0, . . . , 0).

2. Ax = b is consistent (has a solution) if [C d] has no row of the form [0t 1].

Furthermore,

(a) if the number of variables equals the number of leading terms then Ax = b has

a unique solution.

(b) if the number of variables is strictly greater than the number of leading terms

then Ax = b has infinite number of solutions.

Proof. Part 1: The linear equation corresponding to the row [0t 1] equals

0x1 + 0x2 + · · ·+ 0xn = 1.
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Obviously, this equation has no solution and hence the system Cx = d has no solution.

Thus, by Theorem 2.1.12, Ax = b has no solution. That is, Ax = b is inconsistent.

Part 2: Suppose [C d] has r non-zero rows. As [C d] is in row echelon form there

exist positive integers 1 ≤ i1 < i2 < . . . < ir ≤ n such that entries cℓiℓ for 1 ≤ ℓ ≤ r

are leading terms. This in turn implies that the variables xij , for 1 ≤ j ≤ r are the basic

variables and the remaining n − r variables, say xt1 , xt2 , . . . , xtn−r
, are free variables. So

for each ℓ, 1 ≤ ℓ ≤ r, one obtains xiℓ +
∑

k>iℓ

cℓkxk = dℓ (k > iℓ in the summation as [C d]

is a matrix in the row reduced echelon form). Or equivalently,

xiℓ = dℓ −
r∑

j=ℓ+1

cℓijxij −
n−r∑

s=1

cℓtsxts for 1 ≤ l ≤ r.

Hence, a solution of the system Cx = d is given by

xts = 0 for s = 1, . . . , n − r and xir = dr, xir−1
= dr−1 − dr, . . . , xi1 = d1 −

r∑

j=2

cℓijdj .

Thus, by Theorem 2.1.12 the system Ax = b is consistent. In case of Part 2a, there are no

free variables and hence the unique solution is given by

xn = dn, xn−1 = dn−1 − dn, . . . , x1 = d1 −
n∑

j=2

cℓijdj .

In case of Part 2b, there is at least one free variable and hence Ax = b has infinite number

of solutions. Thus, the proof of the theorem is complete.

We omit the proof of the next result as it directly follows from Theorem 2.1.22.

Corollary 2.1.23. Consider the homogeneous system Ax = 0. Then

1. Ax = 0 is always consistent as 0 is a solution.

2. If m < n then n−m > 0 and there will be at least n−m free variables. Thus Ax = 0

has infinite number of solutions. Or equivalently, Ax = 0 has a non-trivial solution.

We end this subsection with some applications related to geometry.

Example 2.1.24. 1. Determine the equation of the line/circle that passes through the

points (−1, 4), (0, 1) and (1, 4).

Solution: The general equation of a line/circle in 2-dimensional plane is given by

a(x2 + y2) + bx+ cy + d = 0, where a, b, c and d are the unknowns. Since this curve

passes through the given points, we have

a((−1)2 + 42) + (−1)b+ 4c+ d = = 0

a((0)2 + 12) + (0)b + 1c+ d = = 0

a((1)2 + 42) + (1)b + 4c+ d = = 0.
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Solving this system, we get (a, b, c, d) = ( 3
13d, 0,−16

13d, d). Hence, taking d = 13, the

equation of the required circle is

3(x2 + y2)− 16y + 13 = 0.

2. Determine the equation of the plane that contains the points (1, 1, 1), (1, 3, 2) and

(2,−1, 2).

Solution: The general equation of a plane in 3-dimensional space is given by ax +

by+ cz+d = 0, where a, b, c and d are the unknowns. Since this plane passes through

the given points, we have

a+ b+ c+ d = = 0

a+ 3b+ 2c+ d = = 0

2a− b+ 2c+ d = = 0.

Solving this system, we get (a, b, c, d) = (−4
3d,−d

3 ,−2
3d, d). Hence, taking d = 3, the

equation of the required plane is −4x− y + 2z + 3 = 0.

3. Let A =






2 3 4

0 −1 0

0 −3 4




 .

(a) Find a non-zero xt ∈ R
3 such that Ax = 2x.

(b) Does there exist a non-zero vector yt ∈ R
3 such that Ay = 4y?

Solution of Part 3a: Solving for Ax = 2x is same as solving for (A − 2I)x = 0.

This leads to the augmented matrix






0 3 4 0

0 −3 0 0

0 4 2 0




 . Check that a non-zero solution

is given by xt = (1, 0, 0).

Solution of Part 3b: Solving for Ay = 4y is same as solving for (A − 4I)y = 0.

This leads to the augmented matrix






−2 3 4 0

0 −5 0 0

0 −3 0 0




 . Check that a non-zero solution

is given by yt = (2, 0, 1).

Exercise 2.1.25. 1. Determine the equation of the curve y = ax2 + bx+ c that passes

through the points (−1, 4), (0, 1) and (1, 4).

2. Solve the following linear system.

(a) x+ y + z + w = 0, x− y + z + w = 0 and −x+ y + 3z + 3w = 0.

(b) x+ 2y = 1, x+ y + z = 4 and 3y + 2z = 1.

(c) x+ y + z = 3, x+ y − z = 1 and x+ y + 7z = 6.

(d) x+ y + z = 3, x+ y − z = 1 and x+ y + 4z = 6.
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(e) x+ y + z = 3, x+ y − z = 1, x+ y + 4z = 6 and x+ y − 4z = −1.

3. For what values of c and k, the following systems have i) no solution, ii) a unique

solution and iii) infinite number of solutions.

(a) x+ y + z = 3, x+ 2y + cz = 4, 2x+ 3y + 2cz = k.

(b) x+ y + z = 3, x+ y + 2cz = 7, x+ 2y + 3cz = k.

(c) x+ y + 2z = 3, x+ 2y + cz = 5, x+ 2y + 4z = k.

(d) kx+ y + z = 1, x+ ky + z = 1, x+ y + kz = 1.

(e) x+ 2y − z = 1, 2x+ 3y + kz = 3, x+ ky + 3z = 2.

(f) x− 2y = 1, x− y + kz = 1, ky + 4z = 6.

4. For what values of a, does the following systems have i) no solution, ii) a unique

solution and iii) infinite number of solutions.

(a) x+ 2y + 3z = 4, 2x+ 5y + 5z = 6, 2x+ (a2 − 6)z = a+ 20.

(b) x+ y + z = 3, 2x+ 5y + 4z = a, 3x+ (a2 − 8)z = 12.

5. Find the condition(s) on x, y, z so that the system of linear equations given below (in

the unknowns a, b and c) is consistent?

(a) a+ 2b− 3c = x, 2a+ 6b− 11c = y, a− 2b+ 7c = z

(b) a+ b+ 5c = x, a+ 3c = y, 2a− b+ 4c = z

(c) a+ 2b+ 3c = x, 2a+ 4b+ 6c = y, 3a+ 6b+ 9c = z

6. Let A be an n×n matrix. If the system A2x = 0 has a non trivial solution then show

that Ax = 0 also has a non trivial solution.

7. Prove that we need to have 5 set of distinct points to specify a general conic in 2-

dimensional plane.

8. Let ut = (1, 1,−2) and vt = (−1, 2, 3). Find condition on x, y and z such that the

system cut + dvt = (x, y, z) in the unknowns c and d is consistent.

2.1.3 Gauss-Jordan Elimination

The Gauss-Jordan method consists of first applying the Gauss Elimination method to get

the row-echelon form of the matrix [A b] and then further applying the row operations

as follows. For example, consider Example 2.1.7. We start with Step 5 and apply row

operations once again. But this time, we start with the 3rd row.

I. Replace 2nd equation by 2nd equation minus the 3rd equation.

x+ 3
2z = 5

2

y = 2

z = 1






1 0 3
2

5
2

0 1 0 1

0 0 1 1




 .
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II. Replace 1st equation by 1st equation minus 3
2 times 3rd equation.

x = 1

y = 1

z = 1






1 0 0 1

0 1 0 1

0 0 1 1




 .

III. Thus, the solution set equals {(x, y, z)t : (x, y, z) = (1, 1, 1)}.

Definition 2.1.26 (Row-Reduced Echelon Form). A matrix C is said to be in the row-

reduced echelon form or reduced row echelon form if

1. C is already in the row echelon form;

2. the leading column containing the leading 1 has every other entry zero.

A matrix which is in the row-reduced echelon form is also called a row-reduced echelon

matrix.

Example 2.1.27. Let A =






0 1 4 2

0 0 1 1

0 0 0 0




 and B =






1 1 0 2 3

0 0 0 1 4

0 0 0 0 1




. Then A

and B are in row echelon form. If C and D are the row-reduced echelon forms of A and

B, respectively then C =






0 1 0 −2

0 0 1 1

0 0 0 0




 and D =






1 1 0 0 0

0 0 0 1 0

0 0 0 0 1




 .

Definition 2.1.28 (Back Substitution/Gauss-Jordan Method). The procedure to get The

row-reduced echelon matrix from the row-echelon matrix is called the back substitution.

The elimination process applied to obtain the row-reduced echelon form of the augmented

matrix is called the Gauss-Jordan elimination method.

That is, the Gauss-Jordan elimination method consists of both the forward elimination

and the backward substitution.

Remark 2.1.29. Note that the row reduction involves only row operations and proceeds

from left to right. Hence, if A is a matrix consisting of first s columns of a matrix C,

then the row-reduced form of A will consist of the first s columns of the row-reduced form

of C.

The proof of the following theorem is beyond the scope of this book and is omitted.

Theorem 2.1.30. The row-reduced echelon form of a matrix is unique.

Remark 2.1.31. Consider the linear system Ax = b. Then Theorem 2.1.30 implies the

following:

1. The application of the Gauss Elimination method to the augmented matrix may yield

different matrices even though it leads to the same solution set.



36 CHAPTER 2. SYSTEM OF LINEAR EQUATIONS

2. The application of the Gauss-Jordan method to the augmented matrix yields the same

matrix and also the same solution set even though we may have used different sequence

of row operations.

Example 2.1.32. Consider Ax = b, where A is a 3 × 3 matrix. Let [C d] be the row-

reduced echelon form of [A b]. Also, assume that the first column of A has a non-zero

entry. Then the possible choices for the matrix [C d] with respective solution sets are given

below:

1.






1 0 0 d1
0 1 0 d2
0 0 1 d3




. Ax = b has a unique solution, (x, y, z) = (d1, d2, d3).

2.






1 0 α d1
0 1 β d2
0 0 0 1




 ,






1 α 0 d1
0 0 1 d2
0 0 0 1




 or






1 α β d1
0 0 0 1

0 0 0 0




. Ax = b has no solution for

any choice of α, β.

3.






1 0 α d1
0 1 β d2
0 0 0 0




 ,






1 α 0 d1
0 0 1 d2
0 0 0 0




 ,






1 α β d1
0 0 0 0

0 0 0 0




. Ax = b has Infinite number

of solutions for every choice of α, β.

Exercise 2.1.33. 1. Let Ax = b be a linear system in 2 unknowns. What are the

possible choices for the row-reduced echelon form of the augmented matrix [A b]?

2. Find the row-reduced echelon form of the following matrices:






0 0 1

1 0 3

3 0 7




 ,






0 1 1 3

0 0 1 3

1 1 0 0




 ,






0 −1 1

−2 0 3

−5 1 0




 ,








−1 −1 −2 3

3 3 −3 −3

1 1 2 2

−1 −1 2 −2







.

3. Find all the solutions of the following system of equations using Gauss-Jordan method.

No other method will be accepted.

x + y – 2 u + v = 2

z + u + 2 v = 3

v + w = 3

v + 2 w = 5

2.2 Elementary Matrices

In the previous section, we solved a system of linear equations with the help of either the

Gauss Elimination method or the Gauss-Jordan method. These methods required us to

make row operations on the augmented matrix. Also, we know that (see Section 1.2.1 )
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the row-operations correspond to multiplying a matrix on the left. So, in this section, we

try to understand the matrices which helped us in performing the row-operations and also

use this understanding to get some important results in the theory of square matrices.

Definition 2.2.1. A square matrix E of order n is called an elementary matrix if it

is obtained by applying exactly one row operation to the identity matrix, In.

Remark 2.2.2. Fix a positive integer n. Then the elementary matrices of order n are of

three types and are as follows:

1. Eij corresponds to the interchange of the ith and the jth row of In.

2. For c 6= 0, Ek(c) is obtained by multiplying the kth row of In by c.

3. For c 6= 0, Eij(c) is obtained by replacing the jth row of In by the jth row of In plus

c times the ith row of In.

Example 2.2.3. 1. In particular, for n = 3 and a real number c 6= 0, one has

E23 =






1 0 0

0 0 1

0 1 0




 , E1(c) =






c 0 0

0 1 0

0 0 1




 , and E32(c) =






1 0 0

0 1 c

0 0 1




 .

2. Let A =






1 2 3 0

2 0 3 4

3 4 5 6




 and B =






1 2 3 0

3 4 5 6

2 0 3 4




 . Then B is obtained from A by the

interchange of 2nd and 3rd row. Verify that

E23A =






1 0 0

0 0 1

0 1 0











1 2 3 0

2 0 3 4

3 4 5 6




 =






1 2 3 0

3 4 5 6

2 0 3 4




 = B.

3. Let A =






0 1 1 2

2 0 3 5

1 1 1 3




 . Then B =






1 0 0 1

0 1 0 1

0 0 1 1




 is the row-reduced echelon form of

A. The readers are advised to verify that

B = E32(−1) · E21(−1) · E3(1/3) ·E23(2) · E23 ·E12(−2) · E13 ·A.
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Or equivalently, check that

E13A = A1 =






1 1 1 3

2 0 3 5

0 1 1 2




 , E12(−2)A1 = A2 =






1 1 1 3

0 −2 1 −1

0 1 1 2




 ,

E23A2 = A3 =






1 1 1 3

0 1 1 2

0 −2 1 −1




 , E23(2)A3 = A4 =






1 1 1 3

0 1 1 2

0 0 3 3




 ,

E3(1/3)A4 = A5 =






1 1 1 3

0 1 1 2

0 0 1 1




 , E21(−1)A5 = A6 =






1 0 0 1

0 1 1 2

0 0 1 1




 ,

E32(−1)A6 = B =






1 0 0 1

0 1 0 1

0 0 1 1




 .

Remark 2.2.4. Observe the following:

1. The inverse of the elementary matrix Eij is the matrix Eij itself. That is, EijEij =

I = EijEij .

2. Let c 6= 0. Then the inverse of the elementary matrix Ek(c) is the matrix Ek(1/c).

That is, Ek(c)Ek(1/c) = I = Ek(1/c)Ek(c).

3. Let c 6= 0. Then the inverse of the elementary matrix Eij(c) is the matrix Eij(−c).

That is, Eij(c)Eij(−c) = I = Eij(−c)Eij(c).

That is, all the elementary matrices are invertible and the inverses are also elemen-

tary matrices.

4. Suppose the row-reduced echelon form of the augmented matrix [A b] is the matrix

[C d]. As row operations correspond to multiplying on the left with elementary

matrices, we can find elementary matrices, say E1, E2, . . . , Ek, such that

Ek · Ek−1 · · ·E2 ·E1 · [A b] = [C d].

That is, the Gauss-Jordan method (or Gauss Elimination method) is equivalent to

multiplying by a finite number of elementary matrices on the left to [A b].

We are now ready to prove a equivalent statements in the study of invertible matrices.

Theorem 2.2.5. Let A be a square matrix of order n. Then the following statements are

equivalent.

1. A is invertible.

2. The homogeneous system Ax = 0 has only the trivial solution.

3. The row-reduced echelon form of A is In.
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4. A is a product of elementary matrices.

Proof. 1 =⇒ 2

As A is invertible, we have A−1A = In = AA−1. Let x0 be a solution of the homoge-

neous system Ax = 0. Then, Ax0 = 0 and Thus, we see that 0 is the only solution of the

homogeneous system Ax = 0.

2 =⇒ 3

Let xt = [x1, x2, . . . , xn]. As 0 is the only solution of the linear system Ax = 0, the

final equations are x1 = 0, x2 = 0, . . . , xn = 0. These equations can be rewritten as

1 · x1 + 0 · x2 + 0 · x3 + · · · + 0 · xn = 0

0 · x1 + 1 · x2 + 0 · x3 + · · · + 0 · xn = 0

0 · x1 + 0 · x2 + 1 · x3 + · · · + 0 · xn = 0
... =

...

0 · x1 + 0 · x2 + 0 · x3 + · · · + 1 · xn = 0.

That is, the final system of homogeneous system is given by In · x = 0. Or equivalently,

the row-reduced echelon form of the augmented matrix [A 0] is [In 0]. That is, the

row-reduced echelon form of A is In.

3 =⇒ 4

Suppose that the row-reduced echelon form of A is In. Then using Remark 2.2.4.4,

there exist elementary matrices E1, E2, . . . , Ek such that

E1E2 · · ·EkA = In. (2.2.4)

Now, using Remark 2.2.4, the matrix E−1
j is an elementary matrix and is the inverse of

Ej for 1 ≤ j ≤ k. Therefore, successively multiplying Equation (2.2.4) on the left by

E−1
1 , E−1

2 , . . . , E−1
k , we get

A = E−1
k E−1

k−1 · · ·E−1
2 E−1

1

and thus A is a product of elementary matrices.

4 =⇒ 1

Suppose A = E1E2 · · ·Ek; where the Ei’s are elementary matrices. As the elementary

matrices are invertible (see Remark 2.2.4) and the product of invertible matrices is also

invertible, we get the required result.

As an immediate consequence of Theorem 2.2.5, we have the following important result.

Theorem 2.2.6. Let A be a square matrix of order n.

1. Suppose there exists a matrix C such that CA = In. Then A−1 exists.

2. Suppose there exists a matrix B such that AB = In. Then A−1 exists.
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Proof. Suppose there exists a matrix C such that CA = In. Let x0 be a solution of the

homogeneous system Ax = 0. Then Ax0 = 0 and

x0 = In · x0 = (CA)x0 = C(Ax0) = C0 = 0.

That is, the homogeneous system Ax = 0 has only the trivial solution. Hence, using

Theorem 2.2.5, the matrix A is invertible.

Using the first part, it is clear that the matrix B in the second part, is invertible. Hence

AB = In = BA.

Thus, A is invertible as well.

Remark 2.2.7. Theorem 2.2.6 implies the following:

1. “if we want to show that a square matrix A of order n is invertible, it is enough to

show the existence of

(a) either a matrix B such that AB = In

(b) or a matrix C such that CA = In.

2. Let A be an invertible matrix of order n. Suppose there exist elementary matrices

E1, E2, . . . , Ek such that E1E2 · · ·EkA = In. Then A−1 = E1E2 · · ·Ek.

Remark 2.2.7 gives the following method of computing the inverse of a matrix.

Summary: Let A be an n × n matrix. Apply the Gauss-Jordan method to the matrix

[A In]. Suppose the row-reduced echelon form of the matrix [A In] is [B C]. If B = In,

then A−1 = C or else A is not invertible.

Example 2.2.8. Find the inverse of the matrix






0 0 1

0 1 1

1 1 1




 using the Gauss-Jordan method.

Solution: let us apply the Gauss-Jordan method to the matrix






0 0 1 1 0 0

0 1 1 0 1 0

1 1 1 0 0 1




 .

1.






0 0 1 1 0 0

0 1 1 0 1 0

1 1 1 0 0 1





−−→
R13






1 1 1 0 0 1

0 1 1 0 1 0

0 0 1 1 0 0






2.






1 1 1 0 0 1

0 1 1 0 1 0

0 0 1 1 0 0






−−−−−→
R31(−1)
−−−−−→
R32(−1)






1 1 0 −1 0 1

0 1 0 −1 1 0

0 0 1 1 0 0






3.






1 1 0 −1 0 1

0 1 0 −1 1 0

0 0 1 1 0 0






−−−−−→
R21(−1)






1 0 0 0 −1 1

0 1 0 −1 1 0

0 0 1 1 0 0




 .
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Thus, the inverse of the given matrix is






0 −1 1

−1 1 0

1 0 0




 .

Exercise 2.2.9. 1. Find the inverse of the following matrices using the Gauss-Jordan

method.

(i)






1 2 3

1 3 2

2 4 7




 , (ii)






1 3 3

2 3 2

2 4 7




 , (iii)






2 1 1

1 2 1

1 1 2




 , (iv)






0 0 2

0 2 1

2 1 1




.

2. Which of the following matrices are elementary?






2 0 1

0 1 0

0 0 1




 ,






1
2 0 0

0 1 0

0 0 1




 ,






1 −1 0

0 1 0

0 0 1




 ,






1 0 0

5 1 0

0 0 1




 ,






0 0 1

0 1 0

1 0 0




 ,






0 0 1

1 0 0

0 1 0




 .

3. Let A =

[

2 1

1 2

]

. Find the elementary matrices E1, E2, E3 and E4 such that E4 ·E3 ·

E2 · E1 ·A = I2.

4. Let B =






1 1 1

0 1 1

0 0 3




 . Determine elementary matrices E1, E2 and E3 such that E3 ·

E2 · E1 ·B = I3.

5. In Exercise 2.2.9.3, let C = E4 · E3 · E2 · E1. Then check that AC = I2.

6. In Exercise 2.2.9.4, let C = E3 · E2 · E1. Then check that BC = I3.

7. Find the inverse of the three matrices given in Example 2.2.3.3.

8. Let A be a 1 × 2 matrix and B be a 2 × 1 matrix having positive entries. Which of

BA or AB is invertible? Give reasons.

9. Let A be an n×m matrix and B be an m× n matrix. Prove that

(a) the matrix I − BA is invertible if and only if the matrix I − AB is invertible

[Hint: Use Theorem 2.2.5.2].

(b) (I −BA)−1 = I +B(I −AB)−1A whenever I −AB is invertible.

(c) (I −BA)−1B = B(I −AB)−1 whenever I −AB is invertible.

(d) (A−1 +B−1)−1 = A(A+B)−1B whenever A,B and A+B are all invertible.

We end this section by giving two more equivalent conditions for a matrix to be invert-

ible.

Theorem 2.2.10. The following statements are equivalent for an n× n matrix A.

1. A is invertible.
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2. The system Ax = b has a unique solution for every b.

3. The system Ax = b is consistent for every b.

Proof. 1 =⇒ 2

Observe that x0 = A−1b is the unique solution of the system Ax = b.

2 =⇒ 3

The system Ax = b has a solution and hence by definition, the system is consistent.

3 =⇒ 1

For 1 ≤ i ≤ n, define ei = (0, . . . , 0, 1
︸︷︷︸

ith position

, 0, . . . , 0)t, and consider the linear

system Ax = ei. By assumption, this system has a solution, say xi, for each i, 1 ≤ i ≤ n.

Define a matrix B = [x1,x2, . . . ,xn]. That is, the ith column of B is the solution of the

system Ax = ei. Then

AB = A[x1,x2 . . . ,xn] = [Ax1, Ax2 . . . , Axn] = [e1, e2 . . . , en] = In.

Therefore, by Theorem 2.2.6, the matrix A is invertible.

We now state another important result whose proof is immediate from Theorem 2.2.10

and Theorem 2.2.5 and hence the proof is omitted.

Theorem 2.2.11. Let A be an n×n matrix. Then the two statements given below cannot

hold together.

1. The system Ax = b has a unique solution for every b.

2. The system Ax = 0 has a non-trivial solution.

Exercise 2.2.12. 1. Let A and B be two square matrices of the same order such that

B = PA for some invertible matrix P . Then, prove that A is invertible if and only

if B is invertible.

2. Let A and B be two m × n matrices. Then prove that the two matrices A,B are

row-equivalent if and only if B = PA, where P is product of elementary matrices.

When is this P unique?

3. Let bt = [1, 2,−1,−2]. Suppose A is a 4 × 4 matrix such that the linear system

Ax = b has no solution. Mark each of the statements given below as true or false?

(a) The homogeneous system Ax = 0 has only the trivial solution.

(b) The matrix A is invertible.

(c) Let ct = [−1,−2, 1, 2]. Then the system Ax = c has no solution.

(d) Let B be the row-reduced echelon form of A. Then

i. the fourth row of B is [0, 0, 0, 0].

ii. the fourth row of B is [0, 0, 0, 1].
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iii. the third row of B is necessarily of the form [0, 0, 0, 0].

iv. the third row of B is necessarily of the form [0, 0, 0, 1].

v. the third row of B is necessarily of the form [0, 0, 1, α], where α is any real

number.

2.3 Rank of a Matrix

In the previous section, we gave a few equivalent conditions for a square matrix to be

invertible. We also used the Gauss-Jordan method and the elementary matrices to compute

the inverse of a square matrix A. In this section and the subsequent sections, we will mostly

be concerned with m× n matrices.

Let A by an m×n matrix. Suppose that C is the row-reduced echelon form of A. Then

the matrix C is unique (see Theorem 2.1.30). Hence, we use the matrix C to define the

rank of the matrix A.

Definition 2.3.1 (Row Rank of a Matrix). Let C be the row-reduced echelon form of a

matrix A. The number of non-zero rows in C is called the row-rank of A.

For a matrix A, we write ‘row-rank (A)’ to denote the row-rank of A. By the very

definition, it is clear that row-equivalent matrices have the same row-rank. Thus, the

number of non-zero rows in either the row echelon form or the row-reduced echelon form

of a matrix are equal. Therefore, we just need to get the row echelon form of the matrix

to know its rank.

Example 2.3.2. 1. Determine the row-rank of A =






1 2 1 1

2 3 1 2

1 1 2 1




 .

Solution: The row-reduced echelon form of A is obtained as follows:





1 2 1 1

2 3 1 2

1 1 2 1




 →






1 2 1 1

0 −1 −1 0

0 −1 1 0




 →






1 2 1 1

0 1 1 0

0 0 2 0




 →






1 0 0 1

0 1 0 0

0 0 1 0




 .

The final matrix has 3 non-zero rows. Thus row-rank(A) = 3. This also follows

from the third matrix.

2. Determine the row-rank of A =






1 2 1 1 1

2 3 1 2 2

1 1 0 1 1




 .

Solution: row-rank(A) = 2 as one has the following:





1 2 1 1 1

2 3 1 2 2

1 1 0 1 1




 →






1 2 1 1 1

0 −1 −1 0 0

0 −1 −1 0 0




 →






1 2 1 1 1

0 1 1 0 0

0 0 0 0 0




 .

The following remark related to the augmented matrix is immediate as computing the

rank only involves the row operations (also see Remark 2.1.29).
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Remark 2.3.3. Let Ax = b be a linear system with m equations in n unknowns. Then

the row-reduced echelon form of A agrees with the first n columns of [A b], and hence

row-rank(A) ≤ row-rank([A b]).

Now, consider an m × n matrix A and an elementary matrix E of order n. Then the

product AE corresponds to applying column transformation on the matrix A. Therefore,

for each elementary matrix, there is a corresponding column transformation as well. We

summarize these ideas as follows.

Definition 2.3.4. The column transformations obtained by right multiplication of elemen-

tary matrices are called column operations.

Example 2.3.5. Let A =






1 2 3 1

2 0 3 2

3 4 5 3




. Then

A








1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1







=






1 3 2 1

2 3 0 2

3 5 4 3




 and A








1 0 0 −1

0 1 0 0

0 0 1 0

0 0 0 1







=






1 2 3 0

2 0 3 0

3 4 5 0




 .

Remark 2.3.6. After application of a finite number of elementary column operations (see

Definition 2.3.4) to a matrix A, we can obtain a matrix B having the following properties:

1. The first nonzero entry in each column is 1, called the leading term.

2. Column(s) containing only 0’s comes after all columns with at least one non-zero

entry.

3. The first non-zero entry (the leading term) in each non-zero column moves down in

successive columns.

We define column-rank of A as the number of non-zero columns in B.

It will be proved later that row-rank(A) = column-rank(A). Thus we are led to the

following definition.

Definition 2.3.7. The number of non-zero rows in the row-reduced echelon form of a

matrix A is called the rank of A, denoted rank(A).

we are now ready to prove a few results associated with the rank of a matrix.

Theorem 2.3.8. Let A be a matrix of rank r. Then there exist a finite number of elemen-

tary matrices E1, E2, . . . , Es and F1, F2, . . . , Fℓ such that

E1E2 . . . Es A F1F2 . . . Fℓ =

[

Ir 0

0 0

]

.
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Proof. Let C be the row-reduced echelon matrix of A. As rank(A) = r, the first r rows of C

are non-zero rows. So by Theorem 2.1.22, C will have r leading columns, say i1, i2, . . . , ir.

Note that, for 1 ≤ s ≤ r, the iths column will have 1 in the sth row and zero, elsewhere.

We now apply column operations to the matrix C. Let D be the matrix obtained from

C by successively interchanging the sth and iths column of C for 1 ≤ s ≤ r. Then D has

the form

[

Ir B

0 0

]

, where B is a matrix of an appropriate size. As the (1, 1) block of D is

an identity matrix, the block (1, 2) can be made the zero matrix by application of column

operations to D. This gives the required result.

The next result is a corollary of Theorem 2.3.8. It gives the solution set of a homo-

geneous system Ax = 0. One can also obtain this result as a particular case of Corol-

lary 2.1.23.2 as by definition rank(A) ≤ m, the number of rows of A.

Corollary 2.3.9. Let A be an m×n matrix. Suppose rank(A) = r < n. Then Ax = 0 has

infinite number of solutions. In particular, Ax = 0 has a non-trivial solution.

Proof. By Theorem 2.3.8, there exist elementary matrices E1, . . . , Es and F1, . . . , Fℓ such

that E1E2 · · ·Es A F1F2 · · ·Fℓ =

[

Ir 0

0 0

]

. Define P = E1E2 · · ·Es and Q = F1F2 · · ·Fℓ.

Then the matrix PAQ =

[

Ir 0

0 0

]

. As Ei’s for 1 ≤ i ≤ s correspond only to row operations,

we get AQ =
[

C 0

]

, where C is a matrix of size m × r. Let Q1, Q2, . . . , Qn be the

columns of the matrix Q. Then check that AQi = 0 for i = r + 1, . . . , n. Hence, the

required results follows (use Theorem 2.1.5).

Exercise 2.3.10. 1. Determine ranks of the coefficient and the augmented matrices

that appear in Exercise 2.1.25.2.

2. Let P and Q be invertible matrices such that the matrix product PAQ is defined.

Prove that rank(PAQ) = rank(A).

3. Let A =

[

2 4 8

1 3 2

]

and B =

[

1 0 0

0 1 0

]

. Find P and Q such that B = PAQ.

4. Let A and B be two matrices. Prove that

(a) if A+B is defined, then rank(A+B) ≤ rank(A) + rank(B),

(b) if AB is defined, then rank(AB) ≤ rank(A) and rank(AB) ≤ rank(B).

5. Let A be a matrix of rank r. Then prove that there exists invertible matrices Bi, Ci

such that

B1A =

[

R1 R2

0 0

]

, AC1 =

[

S1 0

S3 0

]

, B2AC2 =

[

A1 0

0 0

]

and B3AC3 =

[

Ir 0

0 0

]

,

where the (1, 1) block of each matrix is of size r × r. Also, prove that A1 is an

invertible matrix.
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6. Let A be an m× n matrix of rank r. Then prove that A can be written as A = BC,

where both B and C have rank r and B is of size m× r and C is of size r × n.

7. Let A and B be two matrices such that AB is defined and rank(A) = rank(AB).

Then prove that A = ABX for some matrix X. Similarly, if BA is defined and

rank (A) = rank (BA), then A = Y BA for some matrix Y. [Hint: Choose invertible

matrices P,Q satisfying PAQ =

[
A1 0

0 0

]

, P (AB) = (PAQ)(Q−1B) =

[
A2 A3

0 0

]

. Now find

R an invertible matrix with P (AB)R =

[
C 0

0 0

]

. Define X = R

[
C−1A1 0

0 0

]

Q−1.]

8. Suppose the matrices B and C are invertible and the involved partitioned products

are defined, then prove that
[

A B

C 0

]−1

=

[

0 C−1

B−1 −B−1AC−1

]

.

9. Suppose A−1 = B with A =

[

A11 A12

A21 A22

]

and B =

[

B11 B12

B21 B22

]

. Also, assume that

A11 is invertible and define P = A22 −A21A
−1
11 A12. Then prove that

(a) A is row-equivalent to the matrix

[

A11 A12

0 A22 −A21A
−1
11 A12

]

,

(b) P is invertible and B =

[

A−1
11 + (A−1

11 A12)P
−1(A21A

−1
11 ) −(A−1

11 A12)P
−1

−P−1(A21A
−1
11 ) P−1

]

.

We end this section by giving another equivalent condition for a square matrix to be

invertible. To do so, we need the following definition.

Definition 2.3.11. A n× n matrix A is said to be of full rank if rank(A) = n.

Theorem 2.3.12. Let A be a square matrix of order n. Then the following statements are

equivalent.

1. A is invertible.

2. A has full rank.

3. The row-reduced form of A is In.

Proof. 1 =⇒ 2

Let if possible rank(A) = r < n. Then there exists an invertible matrix P (a product

of elementary matrices) such that PA =

[

B1 B2

0 0

]

, where B1 is an r× r matrix. Since A

is invertible, let A−1 =

[

C1

C2

]

, where C1 is an r × n matrix. Then

P = PIn = P (AA−1) = (PA)A−1 =

[

B1 B2

0 0

][

C1

C2

]

=

[

B1C1 +B2C2

0

]

.
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Thus, P has n − r rows consisting of only zeros. Hence, P cannot be invertible. A

contradiction. Thus, A is of full rank.

2 =⇒ 3

Suppose A is of full rank. This implies, the row-reduced echelon form of A has all

non-zero rows. But A has as many columns as rows and therefore, the last row of the

row-reduced echelon form of A is [0, 0, . . . , 0, 1]. Hence, the row-reduced echelon form of A

is In.

3 =⇒ 1

Using Theorem 2.2.5.3, the required result follows.

2.4 Existence of Solution of Ax = b

In Section 2.2, we studied the system of linear equations in which the matrix A was a square

matrix. We will now use the rank of a matrix to study the system of linear equations even

when A is not a square matrix. Before proceeding with our main result, we give an example

for motivation and observations. Based on these observations, we will arrive at a better

understanding, related to the existence and uniqueness results for the linear system Ax = b.

Consider a linear system Ax = b. Suppose the application of the Gauss-Jordan method

has reduced the augmented matrix [A b] to

[C d] =













1 0 2 −1 0 0 2 8

0 1 1 3 0 0 5 1

0 0 0 0 1 0 −1 2

0 0 0 0 0 1 1 4

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0













.

Then to get the solution set, we observe the following.

Observations:

1. The number of non-zero rows in C is 4. This number is also equal to the number of

non-zero rows in [C d]. So, there are 4 leading columns/basic variables.

2. The leading terms appear in columns 1, 2, 5 and 6. Thus, the respective variables

x1, x2, x5 and x6 are the basic variables.

3. The remaining variables, x3, x4 and x7 are free variables.

Hence, the solution set is given by














x1
x2
x3
x4
x5
x6
x7















=















8− 2x3 + x4 − 2x7
1− x3 − 3x4 − 5x7

x3
x4

2 + x7
4− x7
x7















=















8

1

0

0

2

4

0















+ x3















−2

−1

1

0

0

0

0















+ x4















1

−3

0

1

0

0

0















+ x7















−2

−5

0

0

1

−1

1















,
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where x3, x4 and x7 are arbitrary.

Let x0 =















8

1

0

0

2

4

0















, u1 =















−2

−1

1

0

0

0

0















, u2 =















1

−3

0

1

0

0

0















and u3 =















−2

−5

0

0

1

−1

1















.

Then it can easily be verified that Cx0 = d, and for 1 ≤ i ≤ 3, Cui = 0. Hence, it follows

that Ax0 = d, and for 1 ≤ i ≤ 3, Aui = 0.

A similar idea is used in the proof of the next theorem and is omitted. The proof

appears on page 87 as Theorem 3.3.26.

Theorem 2.4.1 (Existence/Non-Existence Result). Consider a linear system Ax = b,

where A is an m×n matrix, and x, b are vectors of orders n× 1, and m× 1, respectively.

Suppose rank (A) = r and rank([A b]) = ra. Then exactly one of the following statement

holds:

1. If r < ra, the linear system has no solution.

2. if ra = r, then the linear system is consistent. Furthermore,

(a) if r = n then the solution set contains a unique vector x0 satisfying Ax0 = b.

(b) if r < n then the solution set has the form

{x0 + k1u1 + k2u2 + · · ·+ kn−run−r : ki ∈ R, 1 ≤ i ≤ n− r},

where Ax0 = b and Aui = 0 for 1 ≤ i ≤ n− r.

Remark 2.4.2. Let A be an m× n matrix. Then Theorem 2.4.1 implies that

1. the linear system Ax = b is consistent if and only if rank(A) = rank([A b]).

2. the vectors ui, for 1 ≤ i ≤ n− r, correspond to each of the free variables.

Exercise 2.4.3. In the introduction, we gave 3 figures (see Figure 2) to show the cases

that arise in the Euclidean plane (2 equations in 2 unknowns). It is well known that in the

case of Euclidean space (3 equations in 3 unknowns), there

1. is a figure to indicate the system has a unique solution.

2. are 4 distinct figures to indicate the system has no solution.

3. are 3 distinct figures to indicate the system has infinite number of solutions.

Determine all the figures.
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2.5 Determinant

In this section, we associate a number with each square matrix. To do so, we start with the

following notation. Let A be an n×n matrix. Then for each positive integers αi’s 1 ≤ i ≤ k

and βj ’s for 1 ≤ j ≤ ℓ, we write A(α1, . . . , αk

∣
∣β1, . . . , βℓ) to mean that submatrix of A,

that is obtained by deleting the rows corresponding to αi’s and the columns corresponding

to βj’s of A.

Example 2.5.1. Let A =






1 2 3

1 3 2

2 4 7




 . Then A(1|2) =

[

1 2

2 7

]

, A(1|3) =

[

1 3

2 4

]

and

A(1, 2|1, 3) = [4].

With the notations as above, we have the following inductive definition of determinant

of a matrix. This definition is commonly known as the expansion of the determinant along

the first row. The students with a knowledge of symmetric groups/permutations can find

the definition of the determinant in Appendix 7.1.15. It is also proved in Appendix that

the definition given below does correspond to the expansion of determinant along the first

row.

Definition 2.5.2 (Determinant of a Square Matrix). Let A be a square matrix of order n.

The determinant of A, denoted det(A) (or |A|) is defined by

det(A) =







a, if A = [a] (n = 1),
n∑

j=1
(−1)1+ja1j det

(
A(1|j)

)
, otherwise.

Example 2.5.3. 1. Let A = [−2]. Then det(A) = |A| = −2.

2. Let A =

[

a b

c d

]

. Then, det(A) = |A| = a
∣
∣A(1|1)

∣
∣ − b

∣
∣A(1|2)

∣
∣ = ad − bc. For

example, if A =

[

1 2

3 5

]

then det(A) =

∣
∣
∣
∣
∣

1 2

3 5

∣
∣
∣
∣
∣
= 1 · 5− 2 · 3 = −1.

3. Let A =






a11 a12 a13
a21 a22 a23
a31 a32 a33




 . Then,

det(A) = |A| = a11 det(A(1|1))− a12 det(A(1|2)) + a13 det(A(1|3))

= a11

∣
∣
∣
∣
∣

a22 a23
a32 a33

∣
∣
∣
∣
∣
− a12

∣
∣
∣
∣
∣

a21 a23
a31 a33

∣
∣
∣
∣
∣
+ a13

∣
∣
∣
∣
∣

a21 a22
a31 a32

∣
∣
∣
∣
∣

= a11(a22a33 − a23a32)− a12(a21a33 − a31a23)

+a13(a21a32 − a31a22) (2.5.1)

Let A =






1 2 3

2 3 1

1 2 2




. Then |A| = 1 ·

∣
∣
∣
∣
∣

3 1

2 2

∣
∣
∣
∣
∣
−2 ·

∣
∣
∣
∣
∣

2 1

1 2

∣
∣
∣
∣
∣
+3 ·

∣
∣
∣
∣
∣

2 3

1 2

∣
∣
∣
∣
∣
= 4−2(3)+3(1) = 1.
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Exercise 2.5.4. Find the determinant of the following matrices.

i)








1 2 7 8

0 4 3 2

0 0 2 3

0 0 0 5







, ii)








3 0 0 1

0 2 0 5

6 −7 1 0

3 2 0 6







, iii)






1 a a2

1 b b2

1 c c2




 .

Definition 2.5.5 (Singular, Non-Singular). A matrix A is said to be a singular if

det(A) = 0. It is called non-singular if det(A) 6= 0.

We omit the proof of the next theorem that relates the determinant of a square matrix

with row operations. The interested reader is advised to go through Appendix 7.2.

Theorem 2.5.6. Let A be an n× n matrix. If

1. B is obtained from A by interchanging two rows then det(B) = − det(A),

2. B is obtained from A by multiplying a row by c then det(B) = cdet(A),

3. B is obtained from A by replacing the jth row by jth row plus c times the ith row,

where i 6= j then det(B) = det(A),

4. all the elements of one row or column of A are 0 then det(A) = 0,

5. two rows of A are equal then det(A) = 0.

6. A is a triangular matrix then det(A) is product of diagonal entries.

Since det(In) = 1, where In is the n×n identity matrix, the following remark gives the

determinant of the elementary matrices. The proof is omitted as it is a direct application

of Theorem 2.5.6.

Remark 2.5.7. Fix a positive integer n. Then

1. det(Eij) = −1, where Eij corresponds to the interchange of the ith and the jth row

of In.

2. For c 6= 0, det(Ek(c)) = c, where Ek(c) is obtained by multiplying the kth row of In
by c.

3. For c 6= 0, det(Eij(c)) = 1, where Eij(c) is obtained by replacing the jth row of In
by the jth row of In plus c times the ith row of In.

Remark 2.5.8. Theorem 2.5.6.1 implies that “one can also calculate the determinant by

expanding along any row.” Hence, the computation of determinant using the k-th row for

1 ≤ k ≤ n is given by

det(A) =

n∑

j=1

(−1)k+jakj det
(
A(k|j)

)
.
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Example 2.5.9. 1. Let A =






2 2 6

1 3 2

1 1 2




 . Determine det(A).

Solution: Check that

∣
∣
∣
∣
∣
∣
∣

2 2 6

1 3 2

1 1 2

∣
∣
∣
∣
∣
∣
∣

−−−→
R1(2)

∣
∣
∣
∣
∣
∣
∣

1 1 3

1 3 2

1 1 2

∣
∣
∣
∣
∣
∣
∣

−−−−−→
R21(−1)−−−−−→
R31(−1)

∣
∣
∣
∣
∣
∣
∣

1 1 3

0 2 −1

0 0 −1

∣
∣
∣
∣
∣
∣
∣

. Thus, using

Theorem 2.5.6, det(A) = 2 · 1 · 2 · (−1) = −4.

2. Let A =








2 2 6 8

1 1 2 4

1 3 2 6

3 3 5 8







. Determine det(A).

Solution: The successive application of row operations R1(2), R21(−1), R31(−1),

R41(−3), R23 and R34(−4) and the application of Theorem 2.5.6 implies

det(A) = 2 · (−1) ·

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 1 3 4

0 2 −1 2

0 0 −1 0

0 0 0 −4

∣
∣
∣
∣
∣
∣
∣
∣
∣

= −16.

Observe that the row operation R1(2) gives 2 as the first product and the row operation

R23 gives −1 as the second product.

Remark 2.5.10. 1. Let ut = (u1, u2) and vt = (v1, v2) be two vectors in R
2. Consider

the parallelogram on vertices P = (0, 0)t, Q = u, R = u+v and S = v (see Figure 3).

Then Area (PQRS) = |u1v2 − u2v1|, the absolute value of

∣
∣
∣
∣
∣

u1 u2
v1 v2

∣
∣
∣
∣
∣
.

P
Q

S

R

T

u
v

w

u× v

θ

γ

Figure 3: Parallelepiped with vertices P,Q,R and S as base

Recall the following: The dot product of ut = (u1, u2) and vt = (v1, v2), denoted

u • v, equals u • v = u1v1 + u2v2, and the length of a vector u, denoted ℓ(u) equals

ℓ(u) =
√

u21 + u22. Also, if θ is the angle between u and v then we know that cos(θ) =
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u•v
ℓ(u)ℓ(v) . Therefore

Area(PQRS) = ℓ(u)ℓ(v) sin(θ) = ℓ(u)ℓ(v)

√

1−
(

u • v
ℓ(u)ℓ(v)

)2

=
√

ℓ(u)2 + ℓ(v)2 − (u • v)2 =
√

(u1v2 − u2v1)2

= |u1v2 − u2v1|.

That is, in R
2, the determinant is ± times the area of the parallelogram.

2. Consider Figure 3 again. Let ut = (u1, u2, u3),v
t = (v1, v2, v3) and wt = (w1, w2, w3)

be three vectors in R
3. Then u • v = u1v1 + u2v2 + u3v3 and the cross product of u

and v, denoted u× v, equals

u× v = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1).

The vector u× v is perpendicular to the plane containing both u and v. Note that if

u3 = v3 = 0, then we can think of u and v as vectors in the XY -plane and in this

case ℓ(u × v) = |u1v2 − u2v1| = Area(PQRS). Hence, if γ is the angle between the

vector w and the vector u× v, then

volume (P ) = Area(PQRS) · height = |w • (u× v)| = ±

∣
∣
∣
∣
∣
∣
∣

w1 w2 w3

u1 u2 u3
v1 v2 v3

∣
∣
∣
∣
∣
∣
∣

.

In general, for any n×n matrix A, it can be proved that |det(A)| is indeed equal to the

volume of the n-dimensional parallelepiped. The actual proof is beyond the scope of this

book.

Exercise 2.5.11. In each of the questions given below, use Theorem 2.5.6 to arrive at

your answer.

1. Let A =






a b c

e f g

h j ℓ




 , B =






a b αc

e f αg

h j αℓ




 and C =






a b αa+ βb+ c

e f αe+ βf + g

h j αh+ βj + ℓ




 for some

complex numbers α and β. Prove that det(B) = αdet(A) and det(C) = det(A).

2. Let A =






1 3 2

2 3 1

1 5 3




 and B =






1 −1 0

1 0 −1

0 −1 1




. Prove that 3 divides det(A) and

det(B) = 0.

2.5.1 Adjoint of a Matrix

Definition 2.5.12 (Minor, Cofactor of a Matrix). The number det (A(i|j)) is called the

(i, j)th minor of A. We write Aij = det (A(i|j)) . The (i, j)th cofactor of A, denoted Cij ,

is the number (−1)i+jAij .
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Definition 2.5.13 (Adjoint of a Matrix). Let A be an n×n matrix. The matrix B = [bij ]

with bij = Cji, for 1 ≤ i, j ≤ n is called the Adjoint of A, denoted Adj(A).

Example 2.5.14. Let A =






1 2 3

2 3 1

1 2 2




 . Then Adj(A) =






4 2 −7

−3 −1 5

1 0 −1




 as

C11 = (−1)1+1A11 = 4, C21 = (−1)2+1A21 = 2, . . . , C33 = (−1)3+3A33 = −1.

Theorem 2.5.15. Let A be an n× n matrix. Then

1. for 1 ≤ i ≤ n,
n∑

j=1
aij Cij =

n∑

j=1
aij(−1)i+j Aij = det(A),

2. for i 6= ℓ,
n∑

j=1
aij Cℓj =

n∑

j=1
aij(−1)ℓ+j Aℓj = 0, and

3. A(Adj(A)) = det(A)In. Thus,

whenever det(A) 6= 0 one has A−1 =
1

det(A)
Adj(A). (2.5.2)

Proof. Part 1: It directly follows from Remark 2.5.8 and the definition of the cofactor.

Part 2: Fix positive integers i, ℓ with 1 ≤ i 6= ℓ ≤ n. And let B = [bij ] be a square

matrix whose ℓth row equals the ith row of A and the remaining rows of B are the same

as that of A.

Then by construction, the ith and ℓth rows of B are equal. Thus, by Theorem 2.5.6.5,

det(B) = 0. As A(ℓ|j) = B(ℓ|j) for 1 ≤ j ≤ n, using Remark 2.5.8, we have

0 = det(B) =

n∑

j=1

(−1)ℓ+jbℓj det
(
B(ℓ|j)

)
=

n∑

j=1

(−1)ℓ+jaij det
(
B(ℓ|j)

)

=

n∑

j=1

(−1)ℓ+jaij det
(
A(ℓ|j)

)
=

n∑

j=1

aijCℓj. (2.5.3)

This completes the proof of Part 2.

Part 3:, Using Equation (2.5.3) and Remark 2.5.8, observe that

[

A
(
Adj(A)

)
]

ij

=
n∑

k=1

aik
(
Adj(A)

)

kj
=

n∑

k=1

aikCjk =

{

0, if i 6= j,

det(A), if i = j.

Thus, A(Adj(A)) = det(A)In. Therefore, if det(A) 6= 0 then A
(

1
det(A)Adj(A)

)

= In.

Hence, by Theorem 2.2.6,

A−1 =
1

det(A)
Adj(A).
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Example 2.5.16. For A =






1 −1 0

0 1 1

1 2 1




 , Adj(A) =






−1 1 −1

1 1 −1

−1 −3 1




 and det(A) = −2.

Thus, by Theorem 2.5.15.3, A−1 =






1/2 −1/2 1/2

−1/2 −1/2 1/2

1/2 3/2 −1/2




 .

The next corollary is a direct consequence of Theorem 2.5.15.3 and hence the proof is

omitted.

Corollary 2.5.17. Let A be a non-singular matrix. Then

(
Adj(A)

)
A = det(A) In and

n∑

i=1

aij Cik =

{

det(A), if j = k,

0, if j 6= k.

The next result gives another equivalent condition for a square matrix to be invertible.

Theorem 2.5.18. A square matrix A is non-singular if and only if A is invertible.

Proof. Let A be non-singular. Then det(A) 6= 0 and hence A−1 = 1
det(A)Adj(A) as .

Now, let us assume that A is invertible. Then, using Theorem 2.2.5, A = E1E2 · · ·Ek, a

product of elementary matrices. Also, by Remark 2.5.7, det(Ei) 6= 0 for each i, 1 ≤ i ≤ k.

Thus, by a repeated application of the first three parts of Theorem 2.5.6 gives det(A) 6= 0.

Hence, the required result follows.

We are now ready to prove a very important result that related the determinant of

product of two matrices with their determinants.

Theorem 2.5.19. Let A and B be square matrices of order n. Then

det(AB) = det(A) det(B) = det(BA).

Proof. Step 1. Let A be non-singular. Then by Theorem 2.5.15.3, A is invertible. Hence,

using Theorem 2.2.5, A = E1E2 · · ·Ek, a product of elementary matrices. Then a repeated

application of the first three parts of Theorem 2.5.6 gives

det(AB) = det(E1E2 · · ·EkB) = det(E1) det(E2 · · ·EkB)

= det(E1) det(E2) det(E3 · · ·EkB)

= det(E1E2) det(E3) det(E4 · · ·EkB)

=
...

= det(E1E2 · · ·Ek) det(B) = det(A) det(B).

Thus, if A is non-singular then det(AB) = det(A) det(B). This will be used in the second

step.
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Step 2. Let A be singular. Then using Theorem 2.5.18 A is not invertible. Hence,

there exists an invertible matrix P such that PA = C, where C =

[

C1

0

]

. So, A = P−1C

and therefore

det(AB) = det((P−1C)B) = det(P−1(CB)) = det

(

P−1

[

C1B

0

])

= det(P−1) · det
([

C1B

0

])

as P−1 is non-singular

= det(P ) · 0 = 0 = 0 · det(B) = det(A) det(B).

Thus, the proof of the theorem is complete.

The next result relates the determinant of a matrix with the determinant of its trans-

pose. As an application of this result, determinant can be computed by expanding along

any column as well.

Theorem 2.5.20. Let A be a square matrix. Then det(A) = det(At).

Proof. If A is a non-singular, Corollary 2.5.17 gives det(A) = det(At).

If A is singular, then by Theorem 2.5.18, A is not invertible. Therefore, At is also

not invertible (as At is invertible implies A−1 =
(
(At)−1

)t
)). Thus, using Theorem 2.5.18

again, det(At) = 0 = det(A). Hence the required result follows.

2.5.2 Cramer’s Rule

Let A be a square matrix. Then using Theorem 2.2.10 and Theorem 2.5.18, one has the

following result.

Theorem 2.5.21. Let A be a square matrix. Then the following statements are equivalent:

1. A is invertible.

2. The linear system Ax = b has a unique solution for every b.

3. det(A) 6= 0.

Thus, Ax = b has a unique solution for every b if and only if det(A) 6= 0. The next

theorem gives a direct method of finding the solution of the linear system Ax = b when

det(A) 6= 0.

Theorem 2.5.22 (Cramer’s Rule). Let A be an n × n matrix. If det(A) 6= 0 then the

unique solution of the linear system Ax = b is

xj =
det(Aj)

det(A)
, for j = 1, 2, . . . , n,

where Aj is the matrix obtained from A by replacing the jth column of A by the column

vector b.
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Proof. Since det(A) 6= 0, A is invertible and hence the row-reduced echelon form of A is

I. Thus, for some invertible matrix P ,

RREF[A|b] = P [A|b] = [PA|Pb] = [I|d],

where d = Ab. Hence, the system Ax = b has the unique solution xj = dj , for 1 ≤ j ≤ n.

Also,

[e1, e2, . . . , en] = I = PA = [PA[:, 1], PA[:, 2], . . . , PA[:, n]].

Thus,

PAj = P [A[:, 1], . . . , A[:, j − 1],b, A[:, j + 1], . . . , A[:, n]]

= [PA[:, 1], . . . , PA[:, j − 1], Pb, PA[:, j + 1], . . . , PA[:, n]]

= [e1, . . . , ej−1,d, ej+1, . . . , en]

and hence det(PAj) = dj , for 1 ≤ j ≤ n. Therefore,

det(Aj)

det(A)
=

det(P ) det(Aj)

det(P ) det(A)
=

det(PAj)

det(PA)
=

dj

1
= dj .

Hence, xj =
det(Aj)
det(A) and the required result follows.

In Theorem 2.5.22 A1 =









b1 a12 · · · a1n
b2 a22 · · · a2n
...

...
. . .

...

bn an2 · · · ann









, A2 =









a11 b1 a13 · · · a1n
a21 b2 a23 · · · a2n
...

...
...

. . .
...

an1 bn an3 · · · ann









and so

on till An =









a11 · · · a1n−1 b1
a12 · · · a2n−1 b2
...

. . .
...

...

a1n · · · ann−1 bn









.

Example 2.5.23. Solve Ax = b using Cramer’s rule, where A =






1 2 3

2 3 1

1 2 2




 and b =






1

1

1




.

Solution: Check that det(A) = 1 and xt = (−1, 1, 0) as

x1 =

∣
∣
∣
∣
∣
∣
∣

1 2 3

1 3 1

1 2 2

∣
∣
∣
∣
∣
∣
∣

= −1, x2 =

∣
∣
∣
∣
∣
∣
∣

1 1 3

2 1 1

1 1 2

∣
∣
∣
∣
∣
∣
∣

= 1, and x3 =

∣
∣
∣
∣
∣
∣
∣

1 2 1

2 3 1

1 2 1

∣
∣
∣
∣
∣
∣
∣

= 0.

2.6 Miscellaneous Exercises

Exercise 2.6.1. 1. Show that a triangular matrix A is invertible if and only if each

diagonal entry of A is non-zero.

2. Let A be an orthogonal matrix. Prove that detA = ±1.
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3. Prove that every 2 × 2 matrix A satisfying tr(A) = 0 and det(A) = 0 is a nilpotent

matrix.

4. Let A and B be two non-singular matrices. Are the matrices A + B and A − B

non-singular? Justify your answer.

5. Let A be an n× n matrix. Prove that the following statements are equivalent:

(a) A is not invertible.

(b) rank(A) 6= n.

(c) det(A) = 0.

(d) A is not row-equivalent to In.

(e) The homogeneous system Ax = 0 has a non-trivial solution.

(f) The system Ax = b is either inconsistent or it is consistent and in this case it

has an infinite number of solutions.

(g) A is not a product of elementary matrices.

6. For what value(s) of λ does the following systems have non-trivial solutions? Also,

for each value of λ, determine a non-trivial solution.

(a) (λ− 2)x+ y = 0, x+ (λ+ 2)y = 0.

(b) λx+ 3y = 0, (λ+ 6)y = 0.

7. Let x1, x2, . . . , xn be fixed reals numbers and define A = [aij ]n×n with aij = xj−1
i .

Prove that det(A) =
∏

1≤i<j≤n

(xj − xi). This matrix is usually called the Van-der

monde matrix.

8. Let A = [aij ]n×n with aij = max{i, j}. Prove that detA = (−1)n−1n.

9. Let A = [aij]n×n with aij =
1

i+j−1 . Using induction, prove that A is invertible. This

matrix is commonly known as the Hilbert matrix.

10. Solve the following system of equations by Cramer’s rule.

i) x+ y + z − w = 1, x+ y − z + w = 2, 2x+ y + z − w = 7, x+ y + z + w = 3.

ii) x− y + z − w = 1, x+ y − z + w = 2, 2x+ y − z − w = 7, x− y − z + w = 3.

11. Suppose A = [aij ] and B = [bij ] are two n × n matrices with bij = pi−jaij for

1 ≤ i, j ≤ n for some non-zero p ∈ R. Then compute det(B) in terms of det(A).

12. The position of an element aij of a determinant is called even or odd according as

i+ j is even or odd. Show that

(a) If all the entries in odd positions are multiplied with −1 then the value of the

determinant doesn’t change.

(b) If all entries in even positions are multiplied with −1 then the determinant
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i. does not change if the matrix is of even order.

ii. is multiplied by −1 if the matrix is of odd order.

13. Let A be a Hermitian (A∗ = At) matrix. Prove that detA is a real number.

14. Let A be an n× n matrix. Then A is invertible if and only if Adj(A) is invertible.

15. Let A and B be invertible matrices. Prove that Adj(AB) = Adj(B)Adj(A).

16. Let P =

[

A B

C D

]

be a rectangular matrix with A a square matrix of order n and

|A| 6= 0. Then show that rank (P ) = n if and only if D = CA−1B.

2.7 Summary

In this chapter, we started with a system of linear equations Ax = b and related it to the

augmented matrix [A |b]. We applied row operations to [A |b] to get its row echelon form

and the row-reduced echelon forms. Depending on the row echelon matrix, say [C |d], thus
obtained, we had the following result:

1. If [C |d] has a row of the form [0 |1] then the linear system Ax = b has not solution.

2. Suppose [C |d] does not have any row of the form [0 |1] then the linear system Ax = b

has at least one solution.

(a) If the number of leading terms equals the number of unknowns then the system

Ax = b has a unique solution.

(b) If the number of leading terms is less than the number of unknowns then the

system Ax = b has an infinite number of solutions.

The following conditions are equivalent for an n× n matrix A.

1. A is invertible.

2. The homogeneous system Ax = 0 has only the trivial solution.

3. The row reduced echelon form of A is I.

4. A is a product of elementary matrices.

5. The system Ax = b has a unique solution for every b.

6. The system Ax = b has a solution for every b.

7. rank(A) = n.

8. det(A) 6= 0.

Suppose the matrix A in the linear system Ax = b is of size m× n. Then exactly one

of the following statement holds:
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1. if rank(A) < rank([A |b]), then the system Ax = b has no solution.

2. if rank(A) = rank([A |b]), then the system Ax = b is consistent. Furthermore,

(a) if rank(A) = n then the system Ax = b has a unique solution.

(b) if rank(A) < n then the system Ax = b has an infinite number of solutions.

We also dealt with the following type of problems:

1. Solving the linear system Ax = b. In the next chapter, we will see that this leads us

to the question “is the vector b a linear combination of the columns of A”?

2. Solving the linear system Ax = 0. In the next chapter, we will see that this leads us

to the question “are the columns of A linearly independent/dependent”?

(a) If Ax = 0 has a unique solution, the trivial solution, then the columns of A are

linear independent.

(b) If Ax = 0 has an infinite number of solutions then the columns of A are linearly

dependent.

3. Let bt = [b1, b2, . . . , bm]. Find conditions of the bi’s such that the linear system

Ax = b always has a solution. Observe that for different choices of x the vector Ax

gives rise to vectors that are linear combination of the columns of A. This idea will

be used in the next chapter, to get the geometrical representation of the linear span

of the columns of A.
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Chapter 3

Finite Dimensional Vector Spaces

3.1 Finite Dimensional Vector Spaces

Recall that the set of real numbers were denoted by R and the set of complex numbers

were denoted by C. Also, we wrote F to denote either the set R or the set C.

Let A be an m×n complex matrix. Then using Theorem 2.1.5, we see that the solution

set of the homogeneous system Ax = 0, denoted V , satisfies the following properties:

1. The vector 0 ∈ V as A0 = 0.

2. If x ∈ V then A(αx) = α(Ax) = 0 for all α ∈ C. Hence, αx ∈ V for any complex

number α. In particular, −x ∈ V whenever x ∈ V .

3. Let x,y ∈ V . Then for any α, β ∈ C, αx, βy ∈ V and A(αx + βy) = 0+ 0 = 0. In

particular, x+ y ∈ V and x+ y = y + x. Also, (x+ y) + z = x+ (y + z).

That is, the solution set of a homogeneous linear system satisfies some nice properties. We

use these properties to define a set and devote this chapter to the study of the structure

of such sets. We will also see that the set of real numbers, R, the Euclidean plane, R2 and

the Euclidean space, R3, are examples of this set. We start with the following definition.

Definition 3.1.1 (Vector Space). A vector space over F, denoted V (F) or in short V (if

the field F is clear from the context), is a non-empty set, satisfying the following axioms:

1. Vector Addition: To every pair u,v ∈ V there corresponds a unique element

u⊕ v in V (called the addition of vectors) such that

(a) u⊕ v = v ⊕ u (Commutative law).

(b) (u⊕ v)⊕w = u⊕ (v ⊕w) (Associative law).

(c) There is a unique element 0 in V (the zero vector) such that u ⊕ 0 = u, for

every u ∈ V (called the additive identity).

(d) For every u ∈ V there is a unique element −u ∈ V such that u ⊕ (−u) = 0

(called the additive inverse).

61
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2. Scalar Multiplication: For each u ∈ V and α ∈ F, there corresponds a unique

element α⊙ u in V (called the scalar multiplication) such that

(a) α · (β ⊙ u) = (αβ)⊙ u for every α, β ∈ F and u ∈ V.

(b) 1⊙ u = u for every u ∈ V, where 1 ∈ R.

3. Distributive Laws: relating vector addition with scalar multiplication

For any α, β ∈ F and u,v ∈ V, the following distributive laws hold:

(a) α⊙ (u⊕ v) = (α ⊙ u) ⊕ (α ⊙ v).

(b) (α+ β)⊙ u = (α⊙ u) ⊕ (β ⊙ u).

Note: the number 0 is the element of F whereas 0 is the zero vector.

Remark 3.1.2. The elements of F are called scalars, and that of V are called vectors.

If F = R, the vector space is called a real vector space. If F = C, the vector space is

called a complex vector space.

Some interesting consequences of Definition 3.1.1 is the following useful result. Intu-

itively, these results seem to be obvious but for better understanding of the axioms it is

desirable to go through the proof.

Theorem 3.1.3. Let V be a vector space over F. Then

1. u⊕ v = u implies v = 0.

2. α⊙ u = 0 if and only if either u is the zero vector or α = 0.

3. (−1)⊙ u = −u for every u ∈ V.

Proof. Part 1: For each u ∈ V, by Axiom 3.1.1.1d there exists −u ∈ V such that −u⊕u =

0. Hence, u⊕ v = u is equivalent to

−u⊕ (u⊕ v) = −u⊕ u ⇐⇒ (−u⊕ u)⊕ v = 0 ⇐⇒ 0⊕ v = 0 ⇐⇒ v = 0.

Part 2: As 0 = 0⊕ 0, using Axiom 3.1.1.3, we have

α⊙ 0 = α⊙ (0⊕ 0) = (α⊙ 0) ⊕ (α⊙ 0).

Thus, for any α ∈ F, Axiom 3.1.1.3a gives α⊙ 0 = 0. In the same way,

0⊙ u = (0 + 0)⊙ u = (0⊙ u) ⊕ (0⊙ u).

Hence, using Axiom 3.1.1.3a, one has 0⊙ u = 0 for any u ∈ V.

Now suppose α⊙u = 0. If α = 0 then the proof is over. Therefore, let us assume α 6= 0

(note that α is a real or complex number, hence 1
α
exists and

0 =
1

α
⊙ 0 =

1

α
⊙ (α⊙ u) = (

1

α
α)⊙ u = 1⊙ u = u

as 1⊙ u = u for every vector u ∈ V. Thus, if α 6= 0 and α⊙ u = 0 then u = 0.

Part 3: As 0 = 0u = (1 + (−1))u = u+ (−1)u, one has (−1)u = −u.
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Example 3.1.4. The readers are advised to justify the statements made in the examples

given below.

1. Let A be an m × n matrix with complex entries and suppose rank(A) = r ≤ n. Let

V denote the solution set of Ax = 0. Then using Theorem 2.4.1, we know that V

contains at least the trivial solution, the 0 vector. Thus, check that the set V satisfies

all the axioms stated in Definition 3.1.1 (some of them were proved to motivate this

chapter).

2. The set R of real numbers, with the usual addition and multiplication of real numbers

(i.e., ⊕ ≡ + and ⊙ ≡ ·) forms a vector space over R.

3. Let R2 = {(x1, x2) : x1, x2 ∈ R}. Then for x1, x2, y1, y2 ∈ R and α ∈ R, define

(x1, x2)⊕ (y1, y2) = (x1 + y1, x2 + y2) and α⊙ (x1, x2) = (αx1, αx2).

Then R
2 is a real vector space.

4. Let Rn = {(a1, a2, . . . , an) : ai ∈ R, 1 ≤ i ≤ n} be the set of n-tuples of real numbers.

For u = (a1, . . . , an), v = (b1, . . . , bn) in V and α ∈ R, we define

u⊕ v = (a1 + b1, . . . , an + bn) and α⊙ u = (αa1, . . . , αan)

(called component wise operations). Then V is a real vector space. This vector space

R
n is called the real vector space of n-tuples.

Recall that the symbol i represents the complex number
√
−1.

5. Consider the set C = {x + iy : x, y ∈ R} of complex numbers and let z1 = x1 + iy1
and z2 = x2 + iy2. Define

z1 ⊕ z2 = (x1 + x2) + i(y1 + y2), and

(a) for any α ∈ R, define α⊙ z1 = (αx1) + i(αy1). Then C is a real vector space as

the scalars are the real numbers.

(b) (α + iβ) ⊙ (x1 + iy1) = (αx1 − βy1) + i(αy1 + βx1) for any α + iβ ∈ C. Here,

the scalars are complex numbers and hence C forms a complex vector space.

6. Let Cn = {(z1, z2, . . . , zn) : zi ∈ C, 1 ≤ i ≤ n}. For (z1, . . . , zn), (w1, . . . , wn) ∈ C
n

and α ∈ F, define

(z1, . . . , zn)⊕ (w1, . . . , wn) = (z1 + w1, . . . , zn + wn), and

α⊙ (z1, . . . , zn) = (αz1, . . . , αzn).

Then it can be verified that C
n forms a vector space over C (called complex vector

space) as well as over R (called real vector space). Whenever there is no mention of

scalars, it will always be assumed to be C, the complex numbers.
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Remark 3.1.5. If the scalars are C then i(1, 0) = (i, 0) is allowed. Whereas, if the

scalars are R then i(1, 0) 6= (i, 0).

7. Fix a positive integer n and let Pn(R) denote the set of all polynomials in x of degree

≤ n with coefficients from R. Algebraically,

Pn(R) = {a0 + a1x+ a2x
2 + · · · + anx

n : ai ∈ R, 0 ≤ i ≤ n}.

Let f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n, g(x) = b0 + b1x+ b2x
2 + · · ·+ bnx

n ∈ Pn(R)

for some ai, bi ∈ R, 0 ≤ i ≤ n. It can be verified that Pn(R) is a real vector space

with the addition and scalar multiplication defined by

f(x)⊕ g(x) = (a0 + b0) + (a1 + b1)x+ · · ·+ (an + bn)x
n, and

α⊙ f(x) = αa0 + αa1x+ · · ·+ αanx
n for α ∈ R.

8. Let P(R) be the set of all polynomials with real coefficients. As any polynomial

a0 + a1x + · · · + amxm also equals a0 + a1x + · · · + amxm + 0 · xm+1 + · · · + 0 · xp,
whenever p > m, let f(x) = a0+a1x+ · · ·+apx

p, g(x) = b0+ b1x+ · · ·+ bpx
p ∈ P(R)

for some ai, bi ∈ R, 0 ≤ i ≤ p. So, with vector addition and scalar multiplication is

defined below (called coefficient-wise), P(R) forms a real vector space.

f(x)⊕ g(x) = (a0 + b0) + (a1 + b1)x+ · · ·+ (ap + bp)x
p and

α⊙ f(x) = αa0 + αa1x+ · · · + αapx
p for α ∈ R.

9. Let P(C) be the set of all polynomials with complex coefficients. Then with respect to

vector addition and scalar multiplication defined coefficient-wise, the set P(C) forms

a vector space.

10. Let V = R
+ = {x ∈ R : x > 0}. This is not a vector space under usual operations

of addition and scalar multiplication (why?). But R+ is a real vector space with 1 as

the additive identity if we define vector addition and scalar multiplication by

u⊕ v = u · v and α⊙ u = uα for all u,v ∈ R
+ and α ∈ R.

11. Let V = {(x, y) : x, y ∈ R}. For any α ∈ R and x = (x1, x2),y = (y1, y2) ∈ V , let

x⊕ y = (x1 + y1 + 1, x2 + y2 − 3) and α⊙ x = (αx1 + α− 1, αx2 − 3α+ 3).

Then V is a real vector space with (−1, 3) as the additive identity.

12. Let M2(C) denote the set of all 2 × 2 matrices with complex entries. Then M2(C)

forms a vector space with vector addition and scalar multiplication defined by

A⊕B =

[

a1 a2
a3 a4

]

⊕
[

b1 b2
b3 b4

]

=

[

a1 + b1 a2 + b2
a3 + b3 a4 + b4

]

, α⊙A =

[

αa1 αa2
αa3 αa4

]

.
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13. Fix positive integers m and n and let Mm×n(C) denote the set of all m× n matrices

with complex entries. Then Mm×n(C) is a vector space with vector addition and

scalar multiplication defined by

A⊕B = [aij ]⊕ [bij ] = [aij + bij ], α⊙A = α⊙ [aij ] = [αaij ].

In case m = n, the vector space Mm×n(C) will be denoted by Mn(C).

14. Let C([−1, 1]) be the set of all real valued continuous functions on the interval [−1, 1].

Then C([−1, 1]) forms a real vector space if for all x ∈ [−1, 1], we define

(f ⊕ g)(x) = f(x) + g(x) for all f, g ∈ C([−1, 1]) and

(α⊙ f)(x) = αf(x) for all α ∈ R and f ∈ C([−1, 1]).

15. Let V and W be vector spaces over F, with operations (+, •) and (⊕,⊙), respectively.

Let V ×W = {(v,w) : v ∈ V,w ∈ W}. Then V ×W forms a vector space over F, if

for every (v1,w1), (v2,w2) ∈ V ×W and α ∈ R, we define

(v1,w1)⊕′ (v2,w2) = (v1 + v2,w1 ⊕w2), and

α ◦ (v1,w1) = (α • v1, α⊙w1).

v1 + v2 and w1 ⊕ w2 on the right hand side mean vector addition in V and W ,

respectively. Similarly, α • v1 and α ⊙ w1 correspond to scalar multiplication in V

and W, respectively.

From now on, we will use ‘u+ v’ for ‘u⊕ v’ and ‘α · u or αu’ for ‘α⊙ u’.

Exercise 3.1.6. 1. Verify all the axioms are satisfied in all the examples of vector

spaces considered in Example 3.1.4.

2. Prove that the set Mm×n(R) for fixed positive integers m and n forms a real vector

space with usual operations of matrix addition and scalar multiplication.

3. Let V = {(x, y) : x, y ∈ R
2}. For x = (x1, x2),y = (y1, y2) ∈ V , define

x+ y = (x1 + y1, x2 + y2) and αx = (αx1, 0)

for all α ∈ R. Is V a vector space? Give reasons for your answer.

4. Let a, b ∈ R with a < b. Then prove that C([a, b]), the set of all complex valued

continuous functions on [a, b] forms a vector space if for all x ∈ [a, b], we define

(f ⊕ g)(x) = f(x) + g(x) for all f, g ∈ C([a, b]) and

(α⊙ f)(x) = αf(x) for all α ∈ R and f ∈ C([a, b]).

5. Prove that C(R), the set of all real valued continuous functions on R forms a vector

space if for all x ∈ R, we define

(f ⊕ g)(x) = f(x) + g(x) for all f, g ∈ C(R) and

(α⊙ f)(x) = αf(x) for all α ∈ R and f ∈ C(R).
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3.1.1 Subspaces

Definition 3.1.7 (Vector Subspace). Let S be a non-empty subset of V. The set S over

F is said to be a subspace of V (F) if S in itself is a vector space, where the vector addition

and scalar multiplication are the same as that of V (F).

Example 3.1.8. 1. Let V (F) be a vector space. Then the sets given below are subspaces

of V. They are called trivial subspaces.

(a) S = {0}, consisting only of the zero vector 0 and

(b) S = V , the whole space.

2. Let S = {(x, y, z) ∈ R
3 : x + 2y − z = 0}. Then S is a subspace of R3 (S is a plane

in R
3 passing through the origin).

3. Let S = {(x, y, z) ∈ R
3 : x + y + z = 0, x − y − z = 0}. Then S is a subspace of R3

(S is a line in R
3 passing through the origin).

4. Let S = {(x, y, z) ∈ R
3 : z − 3x = 0}. Then S is a subspace of R3.

5. The vector space Pn(R) is a subspace of the vector space P(R).

6. Prove that S = {(x, y, z) ∈ R
3 : x + y + z = 3} is not a subspace of R3 (S is still a

plane in R
3 but it does not pass through the origin).

7. Prove that W = {(x, 0) ∈ R
2 : x ∈ R} is a subspace of R2.

8. Let W = {(x, 0) ∈ V : x ∈ R}, where V is the vector space of Example 3.1.4.11.

Then (x, 0) ⊕ (y, 0) = (x + y + 1,−3) 6∈ W. Hence W is not a subspace of V but

S = {(x, 3) : x ∈ R} is a subspace of V . Note that the zero vector (−1, 3) ∈ V .

9. Let W =

{[

a b

c d

]

∈ M2(C) : a = d

}

. Then the condition a = d forces us to have

α = α for any scalar α ∈ C. Hence,

(a) W is not a vector subspace of the complex vector space M2(C), but

(b) W is a vector subspace of the real vector space M2(C).

We are now ready to prove a very important result in the study of vector subspaces.

This result basically tells us that if we want to prove that a non-empty set W is a subspace

of a vector space V (F) then we just need to verify only one condition. That is, we don’t

have to prove all the axioms stated in Definition 3.1.1.

Theorem 3.1.9. Let V (F) be a vector space and let W be a non-empty subset of V . Then

W is a subspace of V if and only if αu+ βv ∈ W whenever α, β ∈ F and u,v ∈ W .

Proof. Let W be a subspace of V and let u,v ∈ W . Then for every α, β ∈ F, αu, βv ∈ W

and hence αu+ βv ∈ W .

Now, let us assume that αu+βv ∈ W whenever α, β ∈ F and u,v ∈ W . Need to show,

W is a subspace of V . To do so, observe the following:
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1. Taking α = 1 and β = 1, we see that u+ v ∈ W for every u,v ∈ W .

2. Taking α = 0 and β = 0, we see that 0 ∈ W .

3. Taking β = 0, we see that αu ∈ W for every α ∈ F and u ∈ W and hence using

Theorem 3.1.3.3, −u = (−1)u ∈ W as well.

4. The commutative and associative laws of vector addition hold as they hold in V .

5. The axioms related with scalar multiplication and the distributive laws also hold as

they hold in V .

Thus, we have the required result.

Exercise 3.1.10. 1. Determine all the subspaces of R,R2 and R
3.

2. Prove that a line in R
2 is a subspace if and only if it passes through (0, 0) ∈ R

2.

3. Let V = {(a, b) : a, b ∈ R}. Is V a vector space over R if (a, b) ⊕ (c, d) = (a + c, 0)

and α⊙ (a, b) = (αa, 0)? Give reasons for your answer.

4. Let V = R. Define x⊕ y = x− y and α⊙ x = −αx. Which vector space axioms are

not satisfied here?

5. Which of the following are correct statements (why!)?

(a) S = {(x, y, z) ∈ R
3 : z = x2} is a subspace of R3.

(b) S = {αx : α ∈ F} forms a vector subspace of V (F) for each fixed x ∈ V .

(c) S = {α(1, 1, 1) + β(1,−1, 0) : α, β ∈ R} is a vector subspace of R3.

(d) All the sets given below are subspaces of C([−1, 1]) (see Example 3.1.4.14).

i. W = {f ∈ C([−1, 1]) : f(1/2) = 0}.
ii. W = {f ∈ C([−1, 1]) : f(0) = 0, f(1/2) = 0}.
iii. W = {f ∈ C([−1, 1]) : f(−1/2) = 0, f(1/2) = 0}.
iv. W = {f ∈ C([−1, 1]) : f ′(14 )exists }.

(e) All the sets given below are subspaces of P(R)?

i. W = {f(x) ∈ P(R) : deg(f(x)) = 3}.
ii. W = {f(x) ∈ P(R) : deg(f(x)) = 0}.
iii. W = {f(x) ∈ P(R) : f(1) = 0}.
iv. W = {f(x) ∈ P(R) : f(0) = 0, f(1) = 0}.

(f) Let A =

[

1 2 1

2 1 1

]

and b =

[

1

−1

]

. Then {x : Ax = b} is a subspace of R3.

(g) Let A =

[

1 2 1

2 1 1

]

. Then {x : Ax = 0} is a subspace of R3.

6. Which of the following are subspaces of Rn(R)?
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(a) {(x1, x2, . . . , xn) : x1 ≥ 0}.
(b) {(x1, x2, . . . , xn) : x1 + 2x2 = 4x3}.
(c) {(x1, x2, . . . , xn) : x1 is rational }.
(d) {(x1, x2, . . . , xn) : x1 = x23}.
(e) {(x1, x2, . . . , xn) : either x1 or x2 or both are 0}.
(f) {(x1, x2, . . . , xn) : |x1| ≤ 1}.

7. Which of the following are subspaces of i)Cn(R) ii)Cn(C)?

(a) {(z1, z2, . . . , zn) : z1 is real }.
(b) {(z1, z2, . . . , zn) : z1 + z2 = z3}.
(c) {(z1, z2, . . . , zn) :| z1 |=| z2 |}.

8. Let A =






1 1 1

2 0 1

1 −1 0




 . Are the sets given below subspaces of R3?

(a) W = {xt ∈ R
3 : Ax = 0}.

(b) W = {bt ∈ R
3 : there exists xt ∈ R

3 with Ax = b}.
(c) W = {xt ∈ R

3 : xtA = 0}.
(d) W = {bt ∈ R

3 : there exists xt ∈ R
3 with xtA = bt}.

9. Fix a positive integer n. Then Mn(R) is a real vector space with usual operations

of matrix addition and scalar multiplication. Prove that the sets W ⊂ Mn(R), given

below, are subspaces of Mn(R).

(a) W = {A : At = A}, the set of symmetric matrices.

(b) W = {A : At = −A}, the set of skew-symmetric matrices.

(c) W = {A : A is an upper triangular matrix}.
(d) W = {A : A is a lower triangular matrix}.
(e) W = {A : A is a diagonal matrix}.
(f) W = {A : trace(A) = 0}.
(g) W = {A = (aij) : a11 + a22 = 0}.
(h) W = {A = (aij) : a21 + a22 + · · · + a2n = 0}.

10. Fix a positive integer n. Then Mn(C) is a complex vector space with usual operations

of matrix addition and scalar multiplication. Are the sets W ⊂ Mn(C), given below,

subspaces of Mn(C)? Give reasons.

(a) W = {A : A∗ = A}, the set of Hermitian matrices.

(b) W = {A : A∗ = −A}, the set of skew-Hermitian matrices.
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(c) W = {A : A is an upper triangular matrix}.
(d) W = {A : A is a lower triangular matrix}.
(e) W = {A : A is a diagonal matrix}.
(f) W = {A : trace(A) = 0}.
(g) W = {A = (aij) : a11 + a22 = 0}.
(h) W = {A = (aij) : a21 + a22 + · · ·+ a2n = 0}.

What happens if Mn(C) is a real vector space?

11. Prove that the following sets are not subspaces of Mn(R).

(a) G = {A ∈ Mn(R) : det(A) = 0}.
(b) G = {A ∈ Mn(R) : det(A) 6= 0}.
(c) G = {A ∈ Mn(R) : det(A) = 1}.

3.1.2 Linear Span

Definition 3.1.11 (Linear Combination). Let u1,u2, . . . ,un be a collection of vectors

from a vector space V (F). A vector u ∈ V is said to be a linear combination of the vectors

u1, . . . ,un if we can find scalars α1, . . . , αn ∈ F such that u = α1u1 + α2u2 + · · ·+ αnun.

Example 3.1.12. 1. Is (4, 5, 5) a linear combination of (1, 0, 0), (2, 1, 0), and (3, 3, 1)?

Solution: The vector (4, 5, 5) is a linear combination if the linear system

a(1, 0, 0) + b(2, 1, 0) + c(3, 3, 1) = (4, 5, 5) (3.1.1)

in the unknowns a, b, c ∈ R has a solution. The augmented matrix of Equation (3.1.1)

equals






1 2 3 4

0 1 3 5

0 0 1 5




 and it has the solution α1 = 4, α2 = −10 and α3 = 5.

2. Is (4, 5, 5) a linear combination of the vectors (1, 2, 3), (−1, 1, 4) and (3, 3, 2)?

Solution: The vector (4, 5, 5) is a linear combination if the linear system

a(1, 2, 3) + b(−1, 1, 4) + c(3, 3, 2) = (4, 5, 5) (3.1.2)

in the unknowns a, b, c ∈ R has a solution. The row reduced echelon form of the

augmented matrix of Equation (3.1.2) equals






1 0 2 3

0 1 −1 −1

0 0 0 0




 . Thus, one has an

infinite number of solutions. For example, (4, 5, 5) = 3(1, 2, 3) − (−1, 1, 4).

3. Is (4, 5, 5) a linear combination of the vectors (1, 2, 1), (1, 0,−1) and (1, 1, 0).

Solution: The vector (4, 5, 5) is a linear combination if the linear system

a(1, 2, 1) + b(1, 0,−1) + c(1, 1, 0) = (4, 5, 5) (3.1.3)



70 CHAPTER 3. FINITE DIMENSIONAL VECTOR SPACES

in the unknowns a, b, c ∈ R has a solution. An application of Gauss elimination

method to Equation (3.1.3) gives






1 1 1 4

0 1 1
2

3
2

0 0 0 1




 . Thus, Equation (3.1.3) has no so-

lution and hence (4, 5, 5) is not a linear combination of the given vectors.

Exercise 3.1.13. 1. Prove that every x ∈ R
3 is a unique linear combination of the

vectors (1, 0, 0), (2, 1, 0), and (3, 3, 1).

2. Find condition(s) on x, y and z such that (x, y, z) is a linear combination of (1, 2, 3), (−1, 1, 4)

and (3, 3, 2)?

3. Find condition(s) on x, y and z such that (x, y, z) is a linear combination of the

vectors (1, 2, 1), (1, 0,−1) and (1, 1, 0).

Definition 3.1.14 (Linear Span). Let S = {u1,u2, . . . ,un} be a non-empty subset of a

vector space V (F). The linear span of S is the set defined by

L(S) = {α1u1 + α2u2 + · · ·+ αnun : αi ∈ F, 1 ≤ i ≤ n}

If S is an empty set we define L(S) = {0}.

Example 3.1.15. 1. Let S = {(1, 0), (0, 1)} ⊂ R
2. Determine L(S).

Solution: By definition, the required linear span is

L(S) = {a(1, 0) + b(0, 1) : a, b ∈ R} = {(a, b) : a, b ∈ R} = R
2. (3.1.4)

2. For each S ⊂ R
3, determine the geometrical representation of L(S).

(a) S = {(1, 1, 1), (2, 1, 3)}.
Solution: By definition, the required linear span is

L(S) = {a(1, 1, 1) + b(2, 1, 3) : a, b ∈ R} = {(a+ 2b, a+ b, a+ 3b) : a, b ∈ R}.(3.1.5)

Note that finding all vectors of the form (a + 2b, a + b, a + 3b) is equivalent to

finding conditions on x, y and z such that (a + 2b, a + b, a + 3b) = (x, y, z), or

equivalently, the system

a+ 2b = x, a+ b = y, a+ 3b = z

always has a solution. Check that the row reduced form of the augmented matrix

equals






1 0 2y − x

0 1 x− y

0 0 z + y − 2x




 . Thus, we need 2x− y − z = 0 and hence

L(S) = {a(1, 1, 1) + b(2, 1, 3) : a, b ∈ R} = {(x, y, z) ∈ R
3 : 2x− y − z = 0}.(3.1.6)

Equation (3.1.5) is called an algebraic representation of L(S) whereas Equa-

tion (3.1.6) gives its geometrical representation as a subspace of R3.
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(b) S = {(1, 2, 1), (1, 0,−1), (1, 1, 0)}.
Solution: As in Example 3.1.15.2, we need to find condition(s) on x, y, z such

that the linear system

a(1, 2, 1) + b(1, 0,−1) + c(1, 1, 0) = (x, y, z) (3.1.7)

in the unknowns a, b, c is always consistent. An application of Gauss elimination

method to Equation (3.1.7) gives






1 1 1 x

0 1 1
2

2x−y
3

0 0 0 x− y + z




 . Thus,

L(S) = {(x, y, z) : x− y + z = 0}.

(c) S = {(1, 2, 3), (−1, 1, 4), (3, 3, 2)}.
Solution: We need to find condition(s) on x, y, z such that the linear system

a(1, 2, 3) + b(−1, 1, 4) + c(3, 3, 2) = (x, y, z)

in the unknowns a, b, c is always consistent. An application of Gauss elimination

method gives 5x− 7y + 3z = 0 as the required condition. Thus,

L(S) = {(x, y, z) : 5x− 7y + 3z = 0}.

3. S = {(1, 2, 3, 4), (−1, 1, 4, 5), (3, 3, 2, 3)} ⊂ R
4. Determine L(S).

Solution: The readers are advised to show that

L(S) = {(x, y, z, w) : 2x− 3y + w = 0, 5x− 7y + 3z = 0}.

Exercise 3.1.16. For each of the sets S, determine the geometric representation of L(S).

1. S = {−1} ⊂ R.

2. S = { 1
104

} ⊂ R.

3. S = {
√
15} ⊂ R.

4. S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} ⊂ R
3.

5. S = {(1, 0, 1), (0, 1, 0), (3, 0, 3)} ⊂ R
3.

6. S = {(1, 0, 1), (1, 1, 0), (3,−4, 3)} ⊂ R
3.

7. S = {(1, 2, 1), (2, 0, 1), (1, 1, 1)} ⊂ R
3.

8. S = {(1, 0, 1, 1), (0, 1, 0, 1), (3, 0, 3, 1)} ⊂ R
4.

Definition 3.1.17 (Finite Dimensional Vector Space). A vector space V (F) is said to be

finite dimensional if we can find a subset S of V , having finite number of elements, such

that V = L(S). If such a subset does not exist then V is called an infinite dimensional

vector space.
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Example 3.1.18. 1. The set {(1, 2), (2, 1)} spans R
2 and hence R

2 is a finite dimen-

sional vector space.

2. The set {1, 1 + x, 1 − x + x2, x3, x4, x5} spans P5(C) and hence P5(C) is a finite

dimensional vector space.

3. Fix a positive integer n and consider the vector space Pn(R). Then Pn(C) is a finite

dimensional vector space as Pn(C) = L({1, x, x2, . . . , xn}).

4. Recall P(C), the vector space of all polynomials with complex coefficients. Since degree

of a polynomial can be any large positive integer, P(C) cannot be a finite dimensional

vector space. Indeed, checked that P(C) = L({1, x, x2, . . . , xn, . . .}).

Lemma 3.1.19 (Linear Span is a Subspace). Let S be a non-empty subset of a vector

space V (F). Then L(S) is a subspace of V (F).

Proof. By definition, S ⊂ L(S) and hence L(S) is non-empty subset of V. Let u,v ∈ L(S).

Then, there exist a positive integer n, vectors wi ∈ S and scalars αi, βi ∈ F such that

u = α1w1 + α2w2 + · · · + αnwn and v = β1w1 + β2w2 + · · ·+ βnwn. Hence,

au+ bv = (aα1 + bβ1)w1 + · · ·+ (aαn + bβn)wn ∈ L(S)

for every a, b ∈ F as aαi + bβi ∈ F for i = 1, . . . , n. Thus using Theorem 3.1.9, L(S) is a

vector subspace of V (F).

Remark 3.1.20. Let W be a subspace of a vector space V (F). If S ⊂ W then L(S) is a

subspace of W as W is a vector space in its own right.

Theorem 3.1.21. Let S be a non-empty subset of a vector space V. Then L(S) is the

smallest subspace of V containing S.

Proof. For every u ∈ S, u = 1.u ∈ L(S) and hence S ⊆ L(S). To show L(S) is the

smallest subspace of V containing S, consider any subspace W of V containing S. Then by

Remark 3.1.20, L(S) ⊆ W and hence the result follows.

Exercise 3.1.22. 1. Find all the vector subspaces of R2 and R
3.

2. Prove that {(x, y, z) ∈ R
3 : ax+ by+ cz = d} is a subspace of R3 if and only if d = 0.

3. Let W be a set that consists of all polynomials of degree 5. Prove that W is not a

subspace P(R).

4. Determine all vector subspaces of V , the vector space in Example 3.1.4.11.

5. Let P and Q be two subspaces of a vector space V.

(a) Prove that P ∩Q is a subspace of V .

(b) Give examples of P and Q such that P ∪Q is not a subspace of V.

(c) Determine conditions on P and Q such that P ∪Q a subspace of V ?
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(d) Define P +Q = {u+ v : u ∈ P,v ∈ Q}. Prove that P +Q is a subspace of V .

(e) Prove that L(P ∪Q) = P +Q.

6. Let x1 = (1, 0, 0), x2 = (1, 1, 0), x3 = (1, 2, 0), x4 = (1, 1, 1) and let S = {x1, x2, x3, x4}.
Determine all xi such that L(S) = L(S \ {xi}).

7. Let P = L{(1, 0, 0), (1, 1, 0)} and Q = L{(1, 1, 1)} be subspaces of R
3. Show that

P +Q = R
3 and P ∩Q = {0}. If u ∈ R

3, determine uP ,uQ such that u = uP + uQ

where uP ∈ P and uQ ∈ Q. Is it necessary that uP and uQ are unique?

8. Let P = L{(1,−1, 0), (1, 1, 0)} and Q = L{(1, 1, 1), (1, 2, 1)} be subspaces of R3. Show

that P +Q = R
3 and P ∩Q 6= {0}. Also, find a vector u ∈ R

3 such that u cannot be

written uniquely in the form u = uP + uQ where uP ∈ P and uQ ∈ Q.

In this section, we saw that a vector space has infinite number of vectors. Hence, one

can start with any finite collection of vectors and obtain their span. It means that any

vector space contains infinite number of other vector subspaces. Therefore, the following

questions arise:

1. What are the conditions under which, the linear span of two distinct sets are the

same?

2. Is it possible to find/choose vectors so that the linear span of the chosen vectors is

the whole vector space itself?

3. Suppose we are able to choose certain vectors whose linear span is the whole space.

Can we find the minimum number of such vectors?

We try to answer these questions in the subsequent sections.

3.2 Linear Independence

Definition 3.2.1 (Linear Independence and Dependence). Let S = {u1,u2, . . . ,um} be a

non-empty subset of a vector space V (F). The set S is said to be linearly independent if the

system of equations

α1u1 + α2u2 + · · ·+ αmum = 0, (3.2.1)

in the unknowns αi’s 1 ≤ i ≤ m, has only the trivial solution. If the system (3.2.1) has a

non-trivial solution then the set S is said to be linearly dependent.

Example 3.2.2. Is the set S a linear independent set? Give reasons.

1. Let S = {(1, 2, 1), (2, 1, 4), (3, 3, 5)}.
Solution: Consider the linear system a(1, 2, 1) + b(2, 1, 4) + c(3, 3, 5) = (0, 0, 0) in

the unknowns a, b and c. It can be checked that this system has infinite number of

solutions. Hence S is a linearly dependent subset of R3.
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2. Let S = {(1, 1, 1), (1, 1, 0), (1, 0, 1)}.
Solution: Consider the system a(1, 1, 1) + b(1, 1, 0) + c(1, 0, 1) = (0, 0, 0) in the

unknowns a, b and c. Check that this system has only the trivial solution. Hence S

is a linearly independent subset of R3.

In other words, if S = {u1, . . . ,um} is a non-empty subset of a vector space V, then

one needs to solve the linear system of equations

α1u1 + α2u2 + · · ·+ αmum = 0 (3.2.2)

in the unknowns α1, . . . , αn. If α1 = α2 = · · · = αm = 0 is the only solution of (3.2.2),

then S is a linearly independent subset of V. Otherwise, the set S is a linearly dependent

subset of V. We are now ready to state the following important results. The proof of only

the first part is given. The reader is required to supply the proof of other parts.

Proposition 3.2.3. Let V (F) be a vector space.

1. Then the zero-vector cannot belong to a linearly independent set.

2. A non-empty subset of a linearly independent set of V is also linearly independent.

3. Every set containing a linearly dependent set of V is also linearly dependent.

Proof. Let S = {0 = u1,u2, . . . ,un} be a set consisting of the zero vector. Then for any

γ 6= o, γu1+ou2+· · ·+0un = 0. Hence, the system α1u1+α2u2+· · ·+αmum = 0, has a non-

trivial solution (α1, α2, . . . , αn) = (γ, 0 . . . , 0). Thus, the set S is linearly dependent.

Theorem 3.2.4. Let {v1,v2, . . . ,vp} be a linearly independent subset of a vector space

V (F). If for some v ∈ V , the set {v1,v2, . . . ,vp,v} is a linearly dependent, then v is a

linear combination of v1,v2, . . . ,vp.

Proof. Since {v1, . . . ,vp,v} is linearly dependent, there exist scalars c1, . . . , cp+1, not all

zero, such that

c1v1 + c2v2 + · · ·+ cpvp + cp+1v = 0. (3.2.3)

Claim: cp+1 6= 0.

Let if possible cp+1 = 0. As the scalars in Equation (3.2.3) are not all zero, the linear system

α1v1+· · ·+αpvp = 0 in the unknowns α1, . . . , αp has a non-trivial solution (c1, . . . , cp). This

by definition of linear independence implies that the set {v1, . . . ,vp} is linearly dependent,

a contradiction to our hypothesis. Thus, cp+1 6= 0 and we get

v = − 1

cp+1
(c1v1 + · · · + cpvp) ∈ L(v1,v2, . . . ,vp)

as − ci
cp+1

∈ F for 1 ≤ i ≤ p. Thus, the result follows.

We now state a very important corollary of Theorem 3.2.4 without proof. The readers

are advised to supply the proof for themselves.
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Corollary 3.2.5. Let S = {u1, . . . ,un} be a subset of a vector space V (F). If S is linearly

1. dependent then there exists a k, 2 ≤ k ≤ n with L(u1, . . . ,uk) = L(u1, . . . ,uk−1).

2. independent and there is a vector v ∈ V with v 6∈ L(S) then {u1, . . . ,un,v} is also

a linearly independent subset of V.

Exercise 3.2.6. 1. Consider the vector space R
2. Let u1 = (1, 0). Find all choices for

the vector u2 such that {u1,u2} is linearly independent subset of R2. Does there exist

vectors u2 and u3 such that {u1,u2,u3} is linearly independent subset of R2?

2. Let S = {(1, 1, 1, 1), (1,−1, 1, 2), (1, 1,−1, 1)} ⊂ R
4. Does (1, 1, 2, 1) ∈ L(S)? Further-

more, determine conditions on x, y, z and u such that (x, y, z, u) ∈ L(S).

3. Show that S = {(1, 2, 3), (−2, 1, 1), (8, 6, 10)} ⊂ R
3 is linearly dependent.

4. Show that S = {(1, 0, 0), (1, 1, 0), (1, 1, 1)} ⊂ R
3 is linearly independent.

5. Prove that {u1,u2, . . . ,un} is a linearly independent subset of V (F) if and only if

{u1,u1 + u2, . . . ,u1 + · · ·+ un} is linearly independent subset of V (F).

6. Find 3 vectors u,v and w in R
4 such that {u,v,w} is linearly dependent whereas

{u,v}, {u,w} and {v,w} are linearly independent.

7. What is the maximum number of linearly independent vectors in R
3?

8. Show that any set of k vectors in R
3 is linearly dependent if k ≥ 4.

9. Is {(1, 0), (i, 0)} a linearly independent subset of C2 (R)?

10. Suppose V is a collection of vectors such that V (C) as well as V (R) are vector spaces.

Prove that the set {u1, . . . ,uk, iu1, . . . , iuk} is a linearly independent subset of V (R)

if and only if {u1, . . . ,uk} is a linear independent subset of V (C).

11. Let M be a subspace of V and let u,v ∈ V . Define K = L(M,u) and H = L(M,v).

If v ∈ K and v 6∈ M prove that u ∈ H.

12. Let A ∈ Mn(R) and let x and y be two non-zero vectors such that Ax = 3x and

Ay = 2y. Prove that x and y are linearly independent.

13. Let A =






2 1 3

4 −1 3

3 −2 5




 . Determine non-zero vectors x,y and z such that Ax = 6x,

Ay = 2y and Az = −2z. Use the vectors x,y and z obtained here to prove the

following.

(a) A2v = 4v, where v = cy + dz for any real numbers c and d.

(b) The set {x,y, z} is linearly independent.

(c) Let P = [x, y, z] be a 3× 3 matrix. Then P is invertible.
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(d) Let D =






6 0 0

0 2 0

0 0 −2




 . Then AP = PD.

14. Let P and Q be subspaces of Rn such that P +Q = R
n and P ∩Q = {0}. Prove that

each u ∈ R
n is uniquely expressible as u = uP + uQ, where uP ∈ P and uQ ∈ Q.

3.3 Bases

Definition 3.3.1 (Basis of a Vector Space). A basis of a vector space V is a subset B of

V such that B is a linearly independent set in V and the linear span of B is V . Also, any

element of B is called a basis vector.

Remark 3.3.2. Let B be a basis of a vector space V (F). Then for each v ∈ V , there

exist vectors u1,u2, . . . ,un ∈ B such that v =
n∑

i=1
αiui, where αi ∈ F, for 1 ≤ i ≤ n. By

convention, the linear span of an empty set is {0}. Hence, the empty set is a basis of the

vector space {0}.

Lemma 3.3.3. Let B be a basis of a vector space V (F). Then each v ∈ V is a unique

linear combination of the basis vectors.

Proof. On the contrary, assume that there exists v ∈ V that is can be expressed in at least

two ways as linear combination of basis vectors. That means, there exists a positive integer

p, scalars αi, βi ∈ F and vi ∈ B such that

v = α1v1 + α2v2 + · · ·+ αpvp and v = β1v1 + β2v2 + · · ·+ βpvp.

Equating the two expressions of v leads to the expression

(α1 − β1)v1 + (α2 − β2)v2 + · · ·+ (αp − βp)vp = 0. (3.3.1)

Since the vectors are from B, by definition (see Definition 3.3.1) the set S = {v1,v2, . . . ,vp}
is a linearly independent subset of V . This implies that the linear system c1v1 + c2v2 +

· · · + cpvp = 0 in the unknowns c1, c2, . . . , cp has only the trivial solution. Thus, each of

the scalars αi − βi appearing in Equation (3.3.1) must be equal to 0. That is, αi − βi = 0

for 1 ≤ i ≤ p. Thus, for 1 ≤ i ≤ p, αi = βi and the result follows.

Example 3.3.4. 1. The set {1} is a basis of the vector space R(R).

2. The set {(1, 1), (1,−1)} is a basis of the vector space R
2(R).

3. Fix a positive integer n and let ei = (0, . . . , 0, 1
︸︷︷︸

ith place

, 0, . . . , 0) ∈ R
n for 1 ≤ i ≤ n.

Then B = {e1, e2, . . . , en} is called the standard basis of Rn.

(a) B = {e1} = {1} is a standard basis of R(R).

(b) B = {e1, e2} with e1 = (1, 0) and e2 = (0, 1) is the standard basis of R2.
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(c) B = {e1, e2, e3} with e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1) is the standard

basis of R3.

(d) B = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)} is the standard basis of R4.

4. Let V = {(x, y, 0) : x, y ∈ R} ⊂ R
3. Then B = {(2, 0, 0), (1, 3, 0)} is a basis of V.

5. Let V = {(x, y, z) ∈ R
3 : x+ y − z = 0} be a vector subspace of R3. As each element

(x, y, z) ∈ V satisfies x+ y − z = 0. Or equivalently z = x+ y and hence

(x, y, z) = (x, y, x+ y) = (x, 0, x) + (0, y, y) = x(1, 0, 1) + y(0, 1, 1).

Hence {(1, 0, 1), (0, 1, 1)} forms a basis of V.

6. Let V = {a+ ib : a, b ∈ R} be a complex vector space. Then any element a+ ib ∈ V

equals a+ ib = (a+ ib) · 1. Hence a basis of V is {1}.

7. Let V = {a + ib : a, b ∈ R} be a real vector space. Then {1, i} is a basis of V (R) as

a+ ib = a · 1 + b · i for a, b ∈ R and {1, i} is a linearly independent subset of V (R).

8. In C
2, (a+ ib, c + id) = (a+ ib)(1, 0) + (c+ id)(0, 1). So, {(1, 0), (0, 1)} is a basis of

the complex vector space C
2.

9. In case of the real vector space C
2, (a+ ib, c+ id) = a(1, 0)+ b(i, 0)+ c(0, 1)+ d(0, i).

Hence {(1, 0), (i, 0), (0, 1), (0, i)} is a basis.

10. B = {e1, e2, . . . , en} is the standard basis of C
n. But B is not a basis of the real

vector space C
n.

Before coming to the end of this section, we give an algorithm to obtain a basis of

any finite dimensional vector space V . This will be done by a repeated application of

Corollary 3.2.5. The algorithm proceeds as follows:

Step 1: Let v1 ∈ V with v1 6= 0. Then {v1} is linearly independent.

Step 2: If V = L(v1), we have got a basis of V. Else, pick v2 ∈ V such that v2 6∈ L(v1).

Then by Corollary 3.2.5.2, {v1,v2} is linearly independent.

Step i: Either V = L(v1,v2, . . . ,vi) or L(v1,v2, . . . ,vi) 6= V.

In the first case, {v1,v2, . . . ,vi} is a basis of V. In the second case, pick vi+1 ∈ V

with vi+1 6∈ L(v1,v2, . . . ,vi). Then, by Corollary 3.2.5.2, the set {v1,v2, . . . ,vi+1}
is linearly independent.

This process will finally end as V is a finite dimensional vector space.

Exercise 3.3.5. 1. Let u1,u2, . . . ,un be basis vectors of a vector space V . Then prove

that whenever
n∑

i=1
αiui = 0, we must have αi = 0 for each i = 1, . . . , n.

2. Find a basis of R3 containing the vector (1, 1,−2).
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3. Find a basis of R3 containing the vector (1, 1,−2) and (1, 2,−1).

4. Is it possible to find a basis of R4 containing the vectors (1, 1, 1,−2), (1, 2,−1, 1) and

(1,−2, 7,−11)?

5. Let S = {v1,v2, . . . ,vp} be a subset of a vector space V (F). Suppose L(S) = V but S

is not a linearly independent set. Then prove that each vector in V can be expressed

in more than one way as a linear combination of vectors from S.

6. Show that the set {(1, 0, 1), (1, i, 0), (1, 1, 1 − i)} is a basis of C3.

7. Find a basis of the real vector space C
n containing the basis B given in Example 10.

8. Find a basis of V = {(x, y, z, u) ∈ R
4 : x− y − z = 0, x+ z − u = 0}.

9. Let A =






1 0 1 1 0

0 1 2 3 0

0 0 0 0 1




 . Find a basis of V = {xt ∈ R

5 : Ax = 0}.

10. Prove that {1, x, x2, . . . , xn, . . .} is a basis of the vector space P(R). This basis has

an infinite number of vectors. This is also called the standard basis of P(R).

11. Let ut = (1, 1,−2),vt = (−1, 2, 3) and wt = (1, 10, 1). Find a basis of L(u,v,w).

Determine a geometrical representation of L(u,v,w)?

12. Prove that {(1, 0, 0), (1, 1, 0), (1, 1, 1)} is a basis of C3. Is it a basis of C3(R)?

3.3.1 Dimension of a Finite Dimensional Vector Space

We first prove a result which helps us in associating a non-negative integer to every finite

dimensional vector space.

Theorem 3.3.6. Let V be a vector space with basis {v1,v2, . . . ,vn}. Let m be a positive

integer with m > n. Then the set S = {w1,w2, . . . ,wm} ⊂ V is linearly dependent.

Proof. We need to show that the linear system

α1w1 + α2w2 + · · ·+ αmwm = 0 (3.3.2)

in the unknowns α1, α2, . . . , αm has a non-trivial solution. We start by expressing the

vectors wi in terms of the basis vectors vj ’s.

As {v1,v2, . . . ,vn} is a basis of V , for each wi ∈ V, 1 ≤ i ≤ m, there exist unique

scalars aij , 1 ≤ i ≤ n, 1 ≤ j ≤ m, such that

w1 = a11v1 + a21v2 + · · ·+ an1vn,

w2 = a12v1 + a22v2 + · · ·+ an2vn,
... =

...

wm = a1mv1 + a2mv2 + · · ·+ anmvn.
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Hence, Equation (3.3.2) can be rewritten as

α1





n∑

j=1

aj1vj



+ α2





n∑

j=1

aj2vj



+ · · · + αm





n∑

j=1

ajmvj



 = 0.

Or equivalently,

(
m∑

i=1

αia1i

)

v1 +

(
m∑

i=1

αia2i

)

v2 + · · ·+
(

m∑

i=1

αiani

)

vn = 0. (3.3.3)

Since {v1, . . . ,vn} is a basis, using Exercise 3.3.5.1, we get

m∑

i=1

αia1i =

m∑

i=1

αia2i = · · · =
m∑

i=1

αiani = 0.

Therefore, finding αi’s satisfying Equation (3.3.2) reduces to solving the homogeneous

system Aα = 0 where α =









α1

α2
...

αm









and A =









a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
. . .

...

an1 an2 · · · anm









.

Since n < m, Corollary 2.1.23.2 (here the matrix A is m × n) implies that Aα = 0

has a non-trivial solution. hence Equation (3.3.2) has a non-trivial solution and thus

{w1,w2, . . . ,wm} is a linearly dependent set.

Corollary 3.3.7. Let B1 = {u1, . . . ,un} and B2 = {v1, . . . ,vm} be two bases of a finite

dimensional vector space V . Then m = n.

Proof. Let if possible, m > n. Then by Theorem 3.3.6, {v1, . . . ,vm} is a linearly dependent

subset of V , contradicting the assumption that B2 is a basis of V . Hence we must have

m ≤ n. A similar argument implies n ≤ m and hence m = n.

Let V be a finite dimensional vector space. Then Corollary 3.3.7 implies that the

number of elements in any basis of V is the same. This number is used to define the

dimension of any finite dimensional vector space.

Definition 3.3.8 (Dimension of a Finite Dimensional Vector Space). Let V be a finite

dimensional vector space. Then the dimension of V , denoted dim(V ), is the number of

elements in a basis of V .

Note that Corollary 3.2.5.2 can be used to generate a basis of any non-trivial finite

dimensional vector space.

Example 3.3.9. The dimension of vector spaces in Example 3.3.4 are as follows:

1. dim(R) = 1 in Example 3.3.4.1.

2. dim(R2) = 2 in Example 3.3.4.2.
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3. dim(V ) = 2 in Example 3.3.4.4.

4. dim(V ) = 2 in Example 3.3.4.5.

5. dim(V ) = 1 in Example 3.3.4.6.

6. dim(V ) = 2 in Example 3.3.4.7.

7. dim(C2) = 2 in Example 3.3.4.8.

8. dim(C2(R)) = 4 in Example 3.3.4.9.

9. For fixed positive integer n, dim(Rn) = n in Example 3.3.4.3 and in Example 3.3.4.10,

one has dim(Cn) = n and dim(Cn(R)) = 2n.

Thus, we see that the dimension of a vector space dependents on the set of scalars.

Example 3.3.10. Let V be the set of all functions f : Rn−→R with the property that

f(x+y) = f(x)+ f(y) and f(αx) = αf(x) for all x,y ∈ R
n and α ∈ R. For any f, g ∈ V,

and t ∈ R, define

(f ⊕ g)(x) = f(x) + g(x) and (t⊙ f)(x) = f(tx).

Then it can be easily verified that V is a real vector space. Also, for 1 ≤ i ≤ n, define

the functions ei(x) = ei
(
(x1, x2, . . . , xn)

)
= xi. Then it can be easily verified that the set

{e1, e2, . . . , en} is a basis of V and hence dim(V ) = n.

The next theorem follows directly from Corollary 3.2.5.2 and Theorem 3.3.6. Hence,

the proof is omitted.

Theorem 3.3.11. Let S be a linearly independent subset of a finite dimensional vector

space V. Then the set S can be extended to form a basis of V.

Theorem 3.3.11 is equivalent to the following statement:

Let V be a vector space of dimension n. Suppose, we have found a linearly independent

subset {v1, . . . ,vr} of V with r < n. Then it is possible to find vectors vr+1, . . . ,vn in V

such that {v1,v2, . . . ,vn} is a basis of V. Thus, one has the following important corollary.

Corollary 3.3.12. Let V be a vector space of dimension n. Then

1. any set consisting of n linearly independent vectors forms a basis of V.

2. any subset S of V having n vectors with L(S) = V forms a basis of V .

Exercise 3.3.13. 1. Determine dim(Pn(R)). Is dim(P(R)) finite?

2. Let W1 and W2 be two subspaces of a vector space V such that W1 ⊂ W2. Show that

W1 = W2 if and only if dim(W1) = dim(W2).
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3. Consider the vector space C([−π, π]). For each integer n, define en(x) = sin(nx).
Prove that {en : n = 1, 2, . . .} is a linearly independent set.
[Hint: For any positive integer ℓ, consider the set {ek1

, . . . , ekℓ
} and the linear system

α1 sin(k1x) + α2 sin(k2x) + · · ·+ αℓ sin(kℓx) = 0 for all x ∈ [−π, π]

in the unknowns α1, . . . , αn. Now for suitable values of m, consider the integral
∫

π

−π

sin(mx) (α1 sin(k1x) + α2 sin(k2x) + · · ·+ αℓ sin(kℓx)) dx

to get the required result.]

4. Determine a basis and dimension of W = {(x, y, z, w) ∈ R
4 : x+ y − z + w = 0}.

5. Let W1 be a subspace of a vector space V . If dim(V ) = n and dim(W1) = k with

k ≥ 1 then prove that there exists a subspace W2 of V such that W1 ∩ W2 = {0},
W1 + W2 = V and dim(W2) = n − k. Also, prove that for each v ∈ V there exist

unique vectors w1 ∈ W1 and w2 ∈ W2 such that v = w1 +w2. The subspace W2 is

called the complementary subspace of W1 in V.

6. Is the set, W = {p(x) ∈ P4(R) : p(−1) = p(1) = 0} a subspace of P4(R)? If yes,

find its dimension.

3.3.2 Application to the study of Cn

In this subsection, we will study results that are intrinsic to the understanding of linear

algebra, especially results associated with matrices. We start with a few exercises that

should have appeared in previous sections of this chapter.

Exercise 3.3.14. 1. Let V = {A ∈ M2(C) : tr(A) = 0}, where tr(A) stands for the

trace of the matrix A. Show that V is a real vector space and find its basis. Is

W =

{[

a b

c −a

]

: c = −b

}

a subspace of V ?

2. In each of the questions given below, determine whether the given set is a vector space

or not? If it is a vector space, find the dimension and a basis.

(a) sln(R) = {A ∈ Mn(R) : tr(A) = 0}.
(b) Sn(R) = {A ∈ Mn(R) : A = At}.
(c) An(R) = {A ∈ Mn(R) : A+At = 0}.
(d) sln(C) = {A ∈ Mn(C) : tr(A) = 0}.
(e) Sn(C) = {A ∈ Mn(C) : A = A∗}.
(f) An(C) = {A ∈ Mn(C) : A+A∗ = 0}.

3. Does there exist an A ∈ M2(C) satisfying A2 6= 0 but A3 = 0.

4. Prove that there does not exist an A ∈ Mn(C) satisfying An 6= 0 but An+1 = 0. That

is, if A is an n× n nilpotent matrix then the order of nilpotency ≤ n.
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5. Let A ∈ Mn(C) be a triangular matrix. Then the rows/columns of A are linearly

independent subset of Cn if and only if aii 6= 0 for 1 ≤ i ≤ n.

6. Prove that the rows/columns of A ∈ Mn(C) are linearly independent if and only if

det(A) 6= 0.

7. Prove that the rows/columns of A ∈ Mn(C) span C
n if and only if A is an invertible

matrix.

8. Let A be a skew-symmetric matrix of odd order. Prove that the rows/columns of A

are linearly dependent. Hint: What is det(A)?

We now define subspaces that are associated with matrices.

Definition 3.3.15. Let A ∈ Mm×n(C) and let R1, R2, . . . , Rm ∈ C
n be the rows of A and

a1,a2, . . . ,an ∈ C
m be its columns. We define

1. Column Space(A), denoted Col(A), as Col(A) = L(a1,a2, . . . ,an) = {Ax : x ∈
C
n} ⊂ C

m,

2. Column Space(A∗), as Col(A∗) = {A∗x : x ∈ C
m} ⊂ C

n,

3. Null Space(A), denoted N (A), as N (A) = {x ∈ C
n : Ax = 0}.

4. Range(A), denoted R(A), as Im(A) = R(A) = {y : Ax = y for some x ∈ C
n}.

Note that the “column space” of A consists of all b such that Ax = b has a solution.

Hence, Col(A) = Im(A). We illustrate the above definitions with the help of an example

and then ask the readers to solve the exercises that appear after the example.

Example 3.3.16. Compute the above mentioned subspaces for A =






1 1 1 −2

1 2 −1 1

1 −2 7 −11




.

Solution: Verify the following

1. R(A) = L(R1, R2, R3) = {(x, y, z, u) ∈ C
4 : 3x− 2y = z, 5x− 3y + u = 0} = C(A∗)

2. C(A) = L(a1,a2,a3,a4) = {(x, y, z) ∈ C
3 : 4x− 3y − z = 0} = R(A∗)

3. N (A) = {(x, y, z, u) ∈ C
4 : x+ 3z − 5u = 0, y − 2z + 3u = 0}.

4. N (A∗) = {(x, y, z) ∈ C
3 : x+ 4z = 0, y − 3z = 0}.

Exercise 3.3.17. 1. Let A ∈ Mm×n(C). Then prove that

(a) R(A) is a subspace of Cn,

(b) C(A) is a subspace of Cm,

(c) N (A) is a subspace of Cn,

(d) N (At) is a subspace of Cm,
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(e) R(A) = C(At) and C(A) = R(At).

2. Let A =








1 2 1 3 2

0 2 2 2 4

2 −2 4 0 8

4 2 5 6 10








and B =








2 4 0 6

−1 0 −2 5

−3 −5 1 −4

−1 −1 1 2







.

(a) Find the row-reduced echelon forms of A and B.

(b) Find P1 and P2 such that P1A and P2B are in row-reduced echelon form.

(c) Find a basis each for the row spaces of A and B.

(d) Find a basis each for the range spaces of A and B.

(e) Find bases of the null spaces of A and B.

(f) Find the dimensions of all the vector subspaces so obtained.

Lemma 3.3.18. Let A ∈ Mm×n(C) and let B = EA for some elementary matrix E. Then

R(A) = R(B) and dim(R(A)) = dim(R(B)).

Proof. We prove the result for the elementary matrix Eij(c), where c 6= 0 and 1 ≤ i <

j ≤ m. The readers are advised to prove the results for other elementary matrices. Let

R1, R2, . . . , Rm be the rows of A. Then B = Eij(c)A implies

R(B) = L(R1, . . . , Ri−1, Ri + cRj, Ri+1, . . . , Rm)

= {α1R1 + · · · + αi−1Ri−1 + αi(Ri + cRj) + · · ·
+αmRm : αℓ ∈ R, 1 ≤ ℓ ≤ m}

=

{
m∑

ℓ=1

αℓRℓ + αi(cRj) : αℓ ∈ R, 1 ≤ ℓ ≤ m

}

=

{
m∑

ℓ=1

βℓRℓ : βℓ ∈ R, 1 ≤ ℓ ≤ m

}

= L(R1, . . . , Rm) = R(A)

Hence, the proof of the lemma is complete.

We omit the proof of the next result as the proof is similar to the proof of Lemma 3.3.18.

Lemma 3.3.19. Let A ∈ Mm×n(C) and let C = AE for some elementary matrix E. Then

C(A) = C(C) and dim(C(A)) = dim(C(C)).

The first and second part of the next result are a repeated application of Lemma 3.3.18

and Lemma 3.3.19, respectively. Hence the proof is omitted. This result is also helpful in

finding a basis of a subspace of Cn.

Corollary 3.3.20. Let A ∈ Mm×n(C). If

1. B is in row-reduced echelon form of A then R(A) = R(B). In particular, the non-zero

rows of B form a basis of R(A) and dim(R(A)) = dim(R(B)) = Row rank(A).
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2. the application of column operations gives a matrix C that has the form given in

Remark 2.3.6, then dim(C(A)) = dim(C(C)) = Column rank(A) and the non-zero

columns of C form a basis of C(A).
Before proceeding with applications of Corollary 3.3.20, we first prove that for any

A ∈ Mm×n(C), Row rank(A) = Column rank(A).

Theorem 3.3.21. Let A ∈ Mm×n(C). Then Row rank(A) = Column rank(A).

Proof. Let R1, R2, . . . , Rm be the rows of A and C1, C2, . . . , Cn be the columns of A. Let

Row rank(A) = r. Then by Corollary 3.3.20.1, dim
(
L(R1, R2, . . . , Rm)

)
= r. Hence, there

exists vectors

ut
1 = (u11, . . . , u1n),u

t
2 = (u21, . . . , u2n), . . . ,u

t
r = (ur1, . . . , urn) ∈ R

n

with

Ri ∈ L(ut
1,u

t
2, . . . ,u

t
r) ∈ R

n, for all i, 1 ≤ i ≤ m.

Therefore, there exist real numbers αij , 1 ≤ i ≤ m, 1 ≤ j ≤ r such that

R1 = α11u
t
1 + · · ·+ α1ru

t
r =

(
r∑

i=1

α1iui1,

r∑

i=1

α1iui2, . . . ,

r∑

i=1

α1iuin

)

,

R2 = α21u
t
1 + · · ·+ α2ru

t
r =

(
r∑

i=1

α2iui1,

r∑

i=1

α2iui2, . . . ,

r∑

i=1

α2iuin

)

,

and so on, till

Rm = αm1u
t
1 + · · ·+ αmru

t
r =

(
r∑

i=1

αmiui1,

r∑

i=1

αmiui2, . . . ,

r∑

i=1

αmiuin

)

.

So,

C1 =










r∑

i=1
α1iui1

...
r∑

i=1
αmiui1










= u11









α11

α21
...

αm1









+ u21









α12

α22
...

αm2









+ · · ·+ ur1









α1r

α2r
...

αmr









.

In general, for 1 ≤ j ≤ n, we have

Cj =










r∑

i=1
α1iuij

...
r∑

i=1
αmiuij










= u1j









α11

α21
...

αm1









+ u2j









α12

α22
...

αm2









+ · · ·+ urj









α1r

α2r
...

αmr









.

Therefore, C1, C2, . . . , Cn are linear combination of the r vectors

(α11, α21, . . . , αm1)
t, (α12, α22, . . . , αm2)

t, . . . , (α1r , α2r, . . . , αmr)
t.

Thus, by Corollary 3.3.20.2, Column rank(A) = dim
(
C(A)

)
≤ r = Row rank(A). A similar

argument gives Row rank(A) ≤ Column rank(A). Hence, we have the required result.
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Let M and N be two subspaces a vector space V (F). Then recall that (see Exer-

cise 3.1.22.5d) M +N = {u+v : u ∈ M, v ∈ N} is the smallest subspace of V containing

both M and N . We now state a very important result that relates the dimensions of the

three subspaces M,N and M +N (for a proof, see Appendix 7.3.1).

Theorem 3.3.22. Let M and N be two subspaces of a finite dimensional vector space

V (F). Then

dim(M) + dim(N) = dim(M +N) + dim(M ∩N). (3.3.4)

Let S be a subset of Rn and let V = L(S). Then Theorem 3.3.6 and Corollary 3.3.20.1

to obtain a basis of V . The algorithm proceeds as follows:

1. Construct a matrix A whose rows are the vectors in S.

2. Apply row operations on A to get B, a matrix in row echelon form.

3. Let B be the set of non-zero rows of B. Then B is a basis of L(S) = V.

Example 3.3.23. 1. Let S = {(1, 1, 1, 1), (1, 1,−1, 1), (1, 1, 0, 1), (1,−1, 1, 1)} ⊂ R
4.

Find a basis of L(S).

Solution: Here A =








1 1 1 1

1 1 −1 1

1 1 0 1

1 −1 1 1







. Then B =








1 1 1 1

0 1 0 0

0 0 1 0

0 0 0 0








is the row echelon

form of A and hence B = {(1, 1, 1, 1), (0, 1, 0, 0), (0, 0, 1, 0)} is a basis of L(S). Ob-

serve that the non-zero rows of B can be obtained, using the first, second and fourth or

the first, third and fourth rows of A. Hence the subsets {(1, 1, 1, 1), (1, 1, 0, 1), (1,−1, 1, 1)}
and {(1, 1, 1, 1), (1, 1,−1, 1), (1,−1, 1, 1)} of S are also bases of L(S).

2. Let V = {(v,w, x, y, z) ∈ R
5 : v + x + z = 3y} and W = {(v,w, x, y, z) ∈ R

5 :

w− x = z, v = y} be two subspaces of R5. Find bases of V and W containing a basis

of V ∩W.

Solution: Let us find a basis of V ∩W. The solution set of the linear equations

v + x− 3y + z = 0, w − x− z = 0 and v = y

is

(v,w, x, y, z)t = (y, 2y, x, y, 2y − x)t = y(1, 2, 0, 1, 2)t + x(0, 0, 1, 0,−1)t .

Thus, a basis of V ∩ W is B = {(1, 2, 0, 1, 2), (0, 0, 1, 0,−1)}. Similarly, a basis of

V is B1 = {(−1, 0, 1, 0, 0), (0, 1, 0, 0, 0), (3, 0, 0, 1, 0), (−1, 0, 0, 0, 1)} and that of W is

B2 = {(1, 0, 0, 1, 0), (0, 1, 1, 0, 0), (0, 1, 0, 0, 1)}. To find a basis of V containing a basis

of V ∩W , form a matrix whose rows are the vectors in B and B1 (see the first matrix

in Equation(3.3.5)) and apply row operations without disturbing the first two rows
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that have come from B. Then after a few row operations, we get












1 2 0 1 2

0 0 1 0 −1

−1 0 1 0 0

0 1 0 0 0

3 0 0 1 0

−1 0 0 0 1












−→












1 2 0 1 2

0 0 1 0 −1

0 1 0 0 0

0 0 0 1 3

0 0 0 0 0

0 0 0 0 0












. (3.3.5)

Thus, a required basis of V is {(1, 2, 0, 1, 2), (0, 0, 1, 0,−1), (0, 1, 0, 0, 0), (0, 0, 0, 1, 3)}.
Similarly, a required basis of W is {(1, 2, 0, 1, 2), (0, 0, 1, 0,−1), (0, 0,−1, 0, 1)}.

Exercise 3.3.24. 1. If M and N are 4-dimensional subspaces of a vector space V of

dimension 7 then show that M and N have at least one vector in common other than

the zero vector.

2. Let V = {(x, y, z, w) ∈ R
4 : x + y − z + w = 0, x + y + z + w = 0, x + 2y = 0} and

W = {(x, y, z, w) ∈ R
4 : x− y − z + w = 0, x + 2y − w = 0} be two subspaces of R4.

Find bases and dimensions of V, W, V ∩W and V +W.

3. Let W1 and W2 be two subspaces of a vector space V . If dim(W1) + dim(W2) >

dim(V ), then prove that W1 ∩W2 contains a non-zero vector.

4. Give examples to show that the Column Space of two row-equivalent matrices need

not be same.

5. Let A ∈ Mm×n(C) with m < n. Prove that the columns of A are linearly dependent.

6. Suppose a sequence of matrices A = B0 −→ B1 −→ · · · −→ Bk−1 −→ Bk = B

satisfies R(Bl) ⊂ R(Bl−1) for 1 ≤ l ≤ k. Then prove that R(B) ⊂ R(A).

Before going to the next section, we prove the rank-nullity theorem and the main

theorem of system of linear equations (see Theorem 2.4.1).

Theorem 3.3.25 (Rank-Nullity Theorem). For any matrix A ∈ Mm×n(C),

dim(C(A)) + dim(N (A)) = n.

Proof. Let dim(N (A)) = r < n and let {u1,u2, . . . ,ur} be a basis ofN (A). Since {u1, . . . ,ur}
is a linearly independent subset in R

n, there exist vectors ur+1, . . . ,un ∈ R
n (see Corol-

lary 3.2.5.2) such that {u1, . . . ,un} is a basis of Rn. Then by definition,

C(A) = L(Au1, Au2, . . . , Aun)

= L(0, . . . ,0, Aur+1, Aur+2, . . . , Aun) = L(Aur+1, . . . , Aun).

We need to prove that {Aur+1, . . . , Aun} is a linearly independent set. Consider the linear

system

α1Aur+1 + α2Aur+2 + · · · + αn−rAun = 0. (3.3.6)
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in the unknowns α1, . . . , αn−r. This linear system is equivalent to

A(α1ur+1 + α2ur+2 + · · ·+ αn−run) = 0.

Hence, by definition of N (A), α1ur+1 + · · ·+ αn−run ∈ N (A) = L(u1, . . . ,ur). Therefore,

there exists scalars βi, 1 ≤ i ≤ r such that

α1ur+1 + α2ur+2 + · · · + αn−run = β1u1 + β2u2 + · · ·+ βrur.

Or equivalently,

β1u1 + · · · + βrur − α1ur+1 − · · · − αn−run = 0. (3.3.7)

As {u1, . . . ,un} is a linearly independent set, the only solution of Equation (3.3.7) is

αi = 0 for 1 ≤ i ≤ n− r and βj = 0 for 1 ≤ j ≤ r.

In other words, we have shown that the only solution of Equation (3.3.6) is the trivial

solution (αi = 0 for all i, 1 ≤ i ≤ n − r). Hence, the set {Aur+1, . . . , Aun} is a linearly

independent and is a basis of C(A). Thus

dim(C(A)) + dim(N (A)) = (n− r) + r = n

and the proof of the theorem is complete.

Theorem 3.3.25 is part of what is known as the fundamental theorem of linear algebra

(see Theorem 5.2.15). As the final result in this direction, We now prove the main theorem

on linear systems stated on page 48 (see Theorem 2.4.1) whose proof was omitted.

Theorem 3.3.26. Consider a linear system Ax = b, where A is an m × n matrix, and

x, b are vectors of orders n × 1, and m × 1, respectively. Suppose rank (A) = r and

rank([A b]) = ra. Then exactly one of the following statement holds:

1. If r < ra, the linear system has no solution.

2. if ra = r, then the linear system is consistent. Furthermore,

(a) if r = n, then the solution set of the linear system has a unique n× 1 vector x0

satisfying Ax0 = b.

(b) if r < n, then the set of solutions of the linear system is an infinite set and has

the form

{x0 + k1u1 + k2u2 + · · ·+ kn−run−r : ki ∈ R, 1 ≤ i ≤ n− r},

where x0,u1, . . . ,un−r are n × 1 vectors satisfying Ax0 = b and Aui = 0 for

1 ≤ i ≤ n− r.
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Proof. Proof of Part 1. As r < ra, the (r + 1)-th row of the row-reduced echelon form of

[A b] has the form [0, 1]. Thus, by Theorem 1, the system Ax = b is inconsistent.

Proof of Part 2a and Part 2b. As r = ra, using Corollary 3.3.20, C(A) = C([A, b]).

Hence, the vector b ∈ C(A) and therefore there exist scalars c1, c2, . . . , cn such that b =

c1a1+ c2a2+ · · · cnan, where a1,a2, . . . ,an are the columns of A. That is, we have a vector

xt
0 = [c1, c2, . . . , cn] that satisfies Ax = b.

If in addition r = n, then the system Ax = b has no free variables in its solution set

and thus we have a unique solution (see Theorem 2.1.22.2a).

Whereas the condition r < n implies that the system Ax = b has n− r free variables in

its solution set and thus we have an infinite number of solutions (see Theorem 2.1.22.2b).

To complete the proof of the theorem, we just need to show that the solution set in this

case has the form {x0 + k1u1 + k2u2 + · · · + kn−run−r : ki ∈ R, 1 ≤ i ≤ n − r}, where
Ax0 = b and Aui = 0 for 1 ≤ i ≤ n− r.

To get this, note that using the rank-nullity theorem (see Theorem 3.3.25) rank(A) = r

implies that dim(N (A)) = n − r. Let {u1,u2, . . . ,un−r} be a basis of N (A). Then by

definition Aui = 0 for 1 ≤ i ≤ n− r and hence

A(x0 + k1u1 + k2u2 + · · ·+ kn−run−r) = Ax0 + k10+ · · ·+ kn−r0 = b.

Thus, the required result follows.

Example 3.3.27. Let A =






1 1 0 1 1 0 −1

0 0 1 2 3 0 −2

0 0 0 0 0 1 1




 and V = {xt ∈ R

7 : Ax = 0}. Find

a basis and dimension of V .

Solution: Observe that x1, x3 and x6 are the basic variables and the rest are the free

variables. Writing the basic variables in terms of free variables, we get

x1 = x7 − x2 − x4 − x5, x3 = 2x7 − 2x4 − 3x5 and x6 = −x7.

Hence,















x1
x2
x3
x4
x5
x6
x7















=















x7 − x2 − x4 − x5
x2

2x7 − 2x4 − 3x5
x4
x5
−x7
x7















= x2















−1

1

0

0

0

0

0















+ x4















−1

0

−2

1

0

0

0















+ x5















−1

0

−3

0

1

0

0















+ x7















1

0

2

0

0

−1

1















. (3.3.8)

Therefore, if we let ut
1 =

[

−1, 1, 0, 0, 0, 0, 0
]

, ut
2 =

[

−1, 0,−2, 1, 0, 0, 0
]

, ut
3 =

[

−1, 0,−3, 0, 1, 0, 0
]

and ut
4 =

[

1, 0, 2, 0, 0,−1, 1
]

then S = {u1,u2,u3,u4} is the basis of V . The reasons are

as follows:
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1. For Linear independence, we consider the homogeneous system

c1u1 + c2u2 + c3u3 + c4u4 = 0 (3.3.9)

in the unknowns c1, c2, c3 and c4. Then relating the unknowns with the free variables

x2, x4, x5 and x7 and then comparing Equations (3.3.8) and (3.3.9), we get

(a) c1 = 0 as the 2-nd coordinate consists only of c1.

(b) c2 = 0 as the 4-th coordinate consists only of c2.

(c) c3 = 0 as the 5-th coordinate consists only of c3.

(d) c4 = 0 as the 7-th coordinate consists only of c4.

Hence, the set S is linearly independent.

2. L(S) = V is obvious as any vector of V has the form mentioned as the first equality

in Equation (3.3.8).

The understanding built in Example 3.3.27 gives us the following remark.

Remark 3.3.28. The vectors u1,u2, . . . ,un−r in Theorem 3.3.26.2b correspond to express-

ing the solution set with the help of the free variables. This is done by writing the basic

variables in terms of the free variables and then writing the solution set in such a way that

each ui corresponds to a specific free variable.

The following are some of the consequences of the rank-nullity theorem. The proof is

left as an exercise for the reader.

Exercise 3.3.29. 1. Let A be an m× n real matrix. Then

(a) if n > m, then the system Ax = 0 has infinitely many solutions,

(b) if n < m, then there exists a non-zero vector b = (b1, b2, . . . , bm)t such that the

system Ax = b does not have any solution.

2. The following statements are equivalent for an m× n matrix A.

(a) Rank (A) = k.

(b) There exist a set of k rows of A that are linearly independent.

(c) There exist a set of k columns of A that are linearly independent.

(d) dim(C(A)) = k.

(e) There exists a k×k submatrix B of A with det(B) 6= 0 and determinant of every

(k + 1)× (k + 1) submatrix of A is zero.

(f) There exists a linearly independent subset {b1,b2, . . . ,bk} of Rm such that the

system Ax = bi for 1 ≤ i ≤ k is consistent.

(g) dim(N (A)) = n− k.
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3.4 Ordered Bases

Let B = {u1,u2, . . . ,un} be a basis of a vector space V . As B is a set, there is no ordering

of its elements. In this section, we want to associate an order among the vectors in any

basis of V as this helps in getting a better understanding about finite dimensional vector

spaces and its relationship with matrices.

Definition 3.4.1 (Ordered Basis). Let V be a vector space of dimension n. Then an

ordered basis for V is a basis {u1,u2, . . . ,un} together with a one-to-one correspondence

between the sets {u1,u2, . . . ,un} and {1, 2, 3, . . . , n}.

If the ordered basis has u1 as the first vector, u2 as the second vector and so on, then

we denote this by writing the ordered basis as (u1,u2, . . . ,un).

Example 3.4.2. 1. Consider the vector space P2(R) with basis {1−x, 1+x, x2}. Then
one can take either B1 =

(
1−x, 1+x, x2

)
or B2 =

(
1+x, 1−x, x2

)
as ordered bases.

Also for any element a0 + a1x+ a2x
2 ∈ P2(R), one has

a0 + a1x+ a2x
2 =

a0 − a1
2

(1− x) +
a0 + a1

2
(1 + x) + a2x

2.

Thus, a0 + a1x+ a2x
2 in the ordered basis

(a) B1, has
a0−a1

2 as the coefficient of the first element, a0+a1
2 as the coefficient of

the second element and a2 as the coefficient the third element of B1.

(b) B2, has
a0+a1

2 as the coefficient of the first element, a0−a1
2 as the coefficient of

the second element and a2 as the coefficient the third element of B2.

2. Let V = {(x, y, z) : x+y = z} and let B = {(−1, 1, 0), (1, 0, 1)} be a basis of V . Then

check that (3, 4, 7) = 4(−1, 1, 0) + 7(1, 0, 1) ∈ V.

That is, as ordered bases (u1,u2, . . . ,un), (u2,u3, . . . ,un,u1) and (un,un−1, . . . ,u2,u1)

are different even though they have the same set of vectors as elements. To proceed further,

we now define the notion of coordinates of a vector depending on the chosen ordered basis.

Definition 3.4.3 (Coordinates of a Vector). Let B = (v1,v2, . . . ,vn) be an ordered basis

of a vector space V and let v ∈ V . Suppose

v = β1v1 + β2v2 + · · · + βnvn for some scalars β1, β2, . . . , βn.

Then the tuple (β1, β2, . . . , βn)
t is called the coordinate of the vector v with respect to the

ordered basis B and is denoted by [v]B = (β1, . . . , βn)
t, a column vector.

Example 3.4.4. 1. In Example 3.4.2.1, let p(x) = a0 + a1x+ a2x
2. Then

[p(x)]B1
=






a0−a1
2

a0+a1
2

a2




 , [p(x)]B2

=






a0+a1
2

a0−a1
2

a2




 and [p(x)]B3

=






a2
a0−a1

2
a0+a1

2




 .
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2. In Example 3.4.2.2,
[
(3, 4, 7)

]

B =

[

4

7

]

and
[
(x, y, z)

]

B =
[
(z − y, y, z)

]

B =

[

y

z

]

.

3. Let the ordered bases of R3 be B1 =
(
(1, 0, 0), (0, 1, 0), (0, 0, 1)

)
, B2 =

(
(1, 0, 0), (1, 1, 0), (1, 1, 1)

)

and B3 =
(
(1, 1, 1), (1, 1, 0), (1, 0, 0)

)
. Then

(1,−1, 1) = 1 · (1, 0, 0) + (−1) · (0, 1, 0) + 1 · (0, 0, 1).
= 2 · (1, 0, 0) + (−2) · (1, 1, 0) + 1 · (1, 1, 1).
= 1 · (1, 1, 1) + (−2) · (1, 1, 0) + 2 · (1, 0, 0).

Therefore, if we write u = (1,−1, 1), then

[u]B1
= (1,−1, 1)t, [u]B2

= (2,−2, 1)t, [u]B3
= (1,−2, 2)t.

In general, let V be an n-dimensional vector space with B1 = (u1,u2, . . . ,un) and

B2 = (v1,v2, . . . ,vn). Since B1 is a basis of V, there exist unique scalars aij, 1 ≤ i, j ≤ n,

such that

vi =

n∑

l=1

aliul, or equivalently, [vi]B1
= (a1i, a2i, . . . , ani)

t for 1 ≤ i ≤ n.

Suppose v ∈ V with [v]B2
= (α1, α2, . . . , αn)

t. Then

v =
n∑

i=1

αivi =
n∑

i=1

αi





n∑

j=1

ajiuj



 =
n∑

j=1

(
n∑

i=1

ajiαi

)

uj.

Since B1 is a basis this representation of v in terms of ui’s is unique. So,

[v]B1
=

(
n∑

i=1

a1iαi,

n∑

i=1

a2iαi, . . . ,

n∑

i=1

aniαi

)t

=









a11 · · · a1n
a21 · · · a2n
...

. . .
...

an1 · · · ann

















α1

α2
...

αn









= A[v]B2
,

where A =

[

[v1]B1
, [v2]B1

, . . . , [vn]B1

]

. Hence, we have proved the following theorem.

Theorem 3.4.5. Let V be an n-dimensional vector space with bases B1 = (u1,u2, . . . ,un)

and B2 = (v1,v2, . . . ,vn). Define an n × n matrix A by A =

[

[v1]B1
, [v2]B1

, . . . , [vn]B1

]

.

Then, A is an invertible matrix (see Exercise 3.3.14.7) and

[v]B1
= A[v]B2

for all v ∈ V.

Theorem 3.4.5 states that the coordinates of a vector with respect to different bases

are related via an invertible matrix A.

Example 3.4.6. Let B1 =
(
(1, 0, 0), (1, 1, 0), (1, 1, 1)

)
and B2 =

(
(1, 1, 1), (1,−1, 1), (1, 1, 0)

)

be two bases of R3.
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1. Then [(x, y, z)]B1
= (x− y, y − z, z)t and [(x, y, z)]B2

= (y−x
2 + z, x−y

2 , x− z)t.

2. Check that A =

[

[(1, 1, 1)]B1
, [(1,−1, 1)]B1

, [(1, 1, 0)]B1

]

=






0 2 0

0 −2 1

1 1 0




 as

[(1, 1, 1)]B1
= 0 · (1, 0, 0) + 0 · (1, 1, 0) + 1 · (1, 1, 1) = (0, 0, 1)t,

[(1,−1, 1)]B1
= 2 · (1, 0, 0) + (−2) · (1, 1, 0) + 1 · (1, 1, 1) = (2,−2, 1)t and

[(1, 1, 0)]B1
= 0 · (1, 0, 0) + 1 · (1, 1, 0) + 0 · (1, 1, 1) = (0, 1, 0)t.

3. Thus, for any (x, y, z) ∈ R
3,

[(x, y, z)]B1
=






x− y

y − z

z




 =






0 2 0

0 −2 1

1 1 0











y−x
2 + z
x−y
2

x− z




 = A [(x, y, z)]B2

.

4. Observe that the matrix A is invertible and hence [(x, y, z)]B2
= A−1 [(x, y, z)]B1

.

In the next chapter, we try to understand Theorem 3.4.5 again using the ideas of ‘linear

transformations/functions’.

Exercise 3.4.7. 1. Consider the vector space P3(R).

(a) Prove that B1 = (1−x, 1+x2, 1−x3, 3+x2−x3) and B2 = (1, 1−x, 1+x2, 1−x3)

are bases of P3(R).

(b) Find the coordinates of u = 1 + x+ x2 + x3 with respect to B1 and B2.

(c) Find the matrix A such that [u]B2
= A[u]B1

.

(d) Let v = a0 + a1x+ a2x
2 + a3x

3. Then verify that

[v]B1
=








−a1
−a0 − a1 + 2a2 − a3
−a0 − a1 + a2 − 2a3
a0 + a1 − a2 + a3







=








0 1 0 0

−1 0 1 0

−1 0 0 1

1 0 0 0















a0 + a1 − a2 + a3
−a1
a2
−a3







= [v]B2

.

2. Let B =
(
(2, 1, 0), (2, 1, 1), (2, 2, 1)

)
be an ordered basis of R3. Determine the coordi-

nates of (1, 2, 1) and (4,−2, 2) with respect B.

3.5 Summary

In this chapter, we started with the definition of vector spaces over F, the set of scalars.

The set F was either R, the set of real numbers or C, the set of complex numbers.

It was important to note that given a non-empty set V of vectors with a set F of scalars,

we need to do the following:

1. first define vector addition and scalar multiplication and
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2. then verify the axioms in Definition 3.1.1.

If all the axioms are satisfied then V is a vector space over F. To check whether a non-

empty subset W of a vector space V over F is a subspace of V , we only need to check

whether u+ v ∈ W for all u,v ∈ W and αu ∈ W for all α ∈ F and u ∈ W .

We then came across the definition of linear combination of vectors and the linear span

of vectors. It was also shown that the linear span of a subset S of a vector space V is the

smallest subspace of V containing S. Also, to check whether a given vector v is a linear

combination of the vectors u1,u2, . . . ,un, we need to solve the linear system

c1u1 + c2u2 + · · ·+ cnun = v

in the unknowns c1, . . . , cn. This corresponds to solving the linear system Ax = b. It was

also shown that the geometrical representation of the linear span of S = {u1,u2, . . . ,un}
is equivalent to finding conditions on the coordinates of the vector b such that the linear

system Ax = b is consistent, where the matrix A is formed with the coordinates of the

vector ui as the i-th column of the matrix A.

By definition, S = {u1,u2, . . . ,un} is linearly independent subset in V (F) if the ho-

mogeneous system Ax = 0 has only the trivial solution in F, else S is linearly dependent,

where the matrix A is formed with the coordinates of the vector ui as the i-th column of

the matrix A.

We then had the notion of the basis of a finite dimensional vector space V and the

following results were proved.

1. A linearly independent set can be extended to form a basis of V .

2. Any two bases of V have the same number of elements.

This number was defined as the dimension of V and we denoted it by dim(V ).

The following conditions are equivalent for an n× n matrix A.

1. A is invertible.

2. The homogeneous system Ax = 0 has only the trivial solution.

3. The row reduced echelon form of A is I.

4. A is a product of elementary matrices.

5. The system Ax = b has a unique solution for every b.

6. The system Ax = b has a solution for every b.

7. rank(A) = n.

8. det(A) 6= 0.

9. The row space of A is Rn.

10. The column space of A is Rn.
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11. The rows of A form a basis of Rn.

12. The columns of A form a basis of Rn.

13. The null space of A is {0}.

Let A be an m×n matrix. Then we proved the rank-nullity theorem which states that

rank(A) + nullity(A) = n, the number of columns. This implied that if rank(A) = r then

the solution set of the linear system Ax = b is of the form x0 + c1u1 + · · · + cn−run−r,

where Ax0 = b and Aui = 0 for 1 ≤ i ≤ n − r. Also, the vectors u1,u2, . . . ,un−r are

linearly independent.

Let V be a vector space of Rn for some positive integer n with dim(V ) = k. Then V

may not have a standard basis. Even if V may have a basis that looks like an standard

basis, our problem may force us to look for some other basis. In such a case, it is always

helpful to fix an ordered basis B and then express each vector in V as a linear combination

of elements from B. This idea helps us in writing each element of V as a column vector

of size k. We will also see its use in the study of linear transformations and the study of

eigenvalues and eigenvectors.



Chapter 4

Linear Transformations

4.1 Definitions and Basic Properties

In this chapter, it will be shown that if V is a real vector space with dim(V ) = n then V

looks like Rn. On similar lines a complex vector space of dimension n has all the properties

that are satisfied by C
n. To do so, we start with the definition of functions over vector

spaces that commute with the operations of vector addition and scalar multiplication.

Definition 4.1.1 (Linear Transformation, Linear Operator). Let V and W be vector spaces

over the same scalar set F. A function (map) T : V−→W is called a linear transformation

if for all α ∈ F and u,v ∈ V the function T satisfies

T (α · u) = α⊙ T (u) and T (u+ v) = T (u)⊕ T (v),

where +, · are binary operations in V and ⊕,⊙ are the binary operations in W . In partic-

ular, if W = V then the linear transformation T is called a linear operator.

We now give a few examples of linear transformations.

Example 4.1.2. 1. Define T : R−→R
2 by T (x) = (x, 3x) for all x ∈ R. Then T is a

linear transformation as

T (αx) = (αx, 3αx) = α(x, 3x) = αT (x) and

T (x+ y) = (x+ y, 3(x+ y) = (x, 3x) + (y, 3y) = T (x) + T (y).

2. Let V,W and Z be vector spaces over F. Also, let T : V−→W and S : W−→Z be

linear transformations. Then, for each v ∈ V , the composition of T and S is defined

by S ◦ T (v) = S
(
T (v)

)
. It is easy to verify that S ◦ T is a linear transformation. In

particular, if V = W , one writes T 2 in place of T ◦ T .

3. Let xt = (x1, x2, . . . , xn) ∈ R
n. Then for a fixed vector at = (a1, a2, . . . , an) ∈ R

n,

define T : R
n −→ R by T (xt) =

n∑

i=1
aixi for all xt ∈ R

n. Then T is a linear

transformation. In particular,

95
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(a) T (xt) =
n∑

i=1
xi for all xt ∈ R

n if ai = 1, for 1 ≤ i ≤ n.

(b) if a = ei for a fixed i, 1 ≤ i ≤ n, one can define Ti(x
t) = xi for all xt ∈ R

n.

4. Define T : R2−→R
3 by T (x, y) = (x + y, 2x − y, x + 3y). Then T is a linear trans-

formation with T (1, 0) = (1, 2, 1) and T (0, 1) = (1,−1, 3).

5. Let A ∈ Mm×n(C). Define a map TA : Cn−→C
m by TA(x

t) = Ax for every xt =

(x1, x2, . . . , xn) ∈ Cn. Then TA is a linear transformation. That is, every m × n

complex matrix defines a linear transformation from C
n to C

m.

6. Define T : R
n+1−→Pn(R) by T (a1, a2, . . . , an+1) = a1 + a2x + · · · + an+1x

n for

(a1, a2, . . . , an+1) ∈ R
n+1. Then T is a linear transformation.

7. Fix A ∈ Mn(C). Then TA : Mn(C)−→Mn(C) and SA : Mn(C)−→C are both linear

transformations, where

TA(B) = BA∗ and SA(B) = tr(BA∗) for every B ∈ Mn(C).

Before proceeding further with some more definitions and results associated with linear

transformations, we prove that any linear transformation sends the zero vector to a zero

vector.

Proposition 4.1.3. Let T : V−→W be a linear transformation. Suppose that 0V is the

zero vector in V and 0W is the zero vector of W. Then T (0V ) = 0W .

Proof. Since 0V = 0V + 0V , we have

T (0V ) = T (0V + 0V ) = T (0V ) + T (0V ).

So T (0V ) = 0W as T (0V ) ∈ W.

From now on, we write 0 for both the zero vector of the domain and codomain.

Definition 4.1.4 (Zero Transformation). Let V and W be two vector spaces over F and

define T : V−→W by T (v) = 0 for every v ∈ V. Then T is a linear transformation and is

usually called the zero transformation, denoted 0.

Definition 4.1.5 (Identity Operator). Let V be a vector space over F and define T :

V−→V by T (v) = v for every v ∈ V. Then T is a linear transformation and is usually

called the Identity transformation, denoted I.

Definition 4.1.6 (Equality of two Linear Operators). Let V be a vector space and let

T, S : V−→V be a linear operators. The operators T and S are said to be equal if T (x) =

S(x) for all x ∈ V .

We now prove a result that relates a linear transformation T with its value on a basis

of the domain space.
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Theorem 4.1.7. Let V and W be two vector spaces over F and let T : V−→W be a

linear transformation. If B =
(
u1, . . . ,un

)
is an ordered basis of V then for each v ∈ V ,

the vector T (v) is a linear combination of T (u1), . . . , T (un) ∈ W. That is, we have full

information of T if we know T (u1), . . . , T (un) ∈ W , the image of basis vectors in W .

Proof. As B is a basis of V, for every v ∈ V, we can find c1, . . . , cn ∈ F such that v =

c1u1 + · · ·+ cnun, or equivalently [v]B = (α1, . . . , αn)
t. Hence, by definition

T (v) = T (c1u1 + · · ·+ cnun) = c1T (u1) + · · ·+ cnT (un).

That is, we just need to know the vectors T (u1), T (u2), . . . , T (un) in W to get T (v) as

[v]B = (α1, . . . , αn)
t is known in V . Hence, the required result follows.

Exercise 4.1.8. 1. Are the maps T : V−→W given below, linear transformations?

(a) Let V = R
2 and W = R

3 with T (x, y) = (x+ y + 1, 2x − y, x+ 3y).

(b) Let V = W = R
2 with T (x, y) = (x− y, x2 − y2).

(c) Let V = W = R
2 with T (x, y) = (x− y, |x|).

(d) Let V = R
2 and W = R

4 with T (x, y) = (x+ y, x− y, 2x+ y, 3x− 4y).

(e) Let V = W = R
4 with T (x, y, z, w) = (z, x,w, y).

2. Which of the following maps T : M2(R)−→M2(R) are linear operators?

(a) T (A) = At (b) T (A) = I +A (c) T (A) = A2

(d) T (A) = BAB−1, where B is a fixed 2× 2 matrix.

3. Prove that a map T : R −→ R is a linear transformation if and only if there exists a

unique c ∈ R such that T (x) = cx for every x ∈ R.

4. Let A ∈ Mn(C) and define TA : Cn−→C
n by TA(x

t) = Ax for every xt ∈ C
n. Prove

that for any positive integer k, T k
A(x

t) = Akx.

5. Use matrices to give examples of linear operators T, S : R3−→R
3 that satisfy:

(a) T 6= 0, T 2 6= 0, T 3 = 0.

(b) T 6= 0, S 6= 0, S ◦ T 6= 0, T ◦ S = 0.

(c) S2 = T 2, S 6= T.

(d) T 2 = I, T 6= I.

6. Let T : Rn −→ R
n be a linear operator with T 6= 0 and T 2 = 0. Prove that there

exists a vector x ∈ R
n such that the set {x, T (x)} is linearly independent.

7. Fix a positive integer p and let T : Rn −→ R
n be a linear operator with T k 6= 0 for

1 ≤ k ≤ p and T p+1 = 0. Then prove that there exists a vector x ∈ R
n such that the

set {x, T (x), . . . , T p(x)} is linearly independent.
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8. Let T : Rn −→ R
m be a linear transformation with T (x0) = y0 for some x0 ∈ R

n

and y0 ∈ R
m. Define T−1(y0) = {x ∈ R

n : T (x) = y0}. Then prove that for every

x ∈ T−1(y0) there exists z ∈ T−1(0) such that x = x0 + z. Also, prove that T−1(y0)

is a subspace of Rn if and only if 0 ∈ T−1(y0).

9. Define a map T : C −→ C by T (z) = z, the complex conjugate of z. Is T a linear

transformation over C(R)?

10. Prove that there exists infinitely many linear transformations T : R3 −→ R
2 such

that T (1,−1, 1) = (1, 2) and T (−1, 1, 2) = (1, 0)?

11. Does there exist a linear transformation T : R3 −→ R
2 such that T (1, 0, 1) = (1, 2),

T (0, 1, 1) = (1, 0) and T (1, 1, 1) = (2, 3)?

12. Does there exist a linear transformation T : R3 −→ R
2 such that T (1, 0, 1) = (1, 2),

T (0, 1, 1) = (1, 0) and T (1, 1, 2) = (2, 3)?

13. Let T : R3 −→ R
3 be defined by T (x, y, z) = (2x+3y+4z, x+ y+ z, x+ y+3z). Find

the value of k for which there exists a vector xt ∈ R
3 such that T (xt) = (9, 3, k).

14. Let T : R3 −→ R
3 be defined by T (x, y, z) = (2x−2y+2z,−2x+5y+2z, 8x+y+4z).

Find a vector xt ∈ R
3 such that T (xt) = (1, 1,−1).

15. Let T : R3 −→ R
3 be defined by T (x, y, z) = (2x+ y + 3z, 4x− y + 3z, 3x− 2y + 5z).

Determine non-zero vectors xt,yt, zt ∈ R
3 such that T (xt) = 6x, T (yt) = 2y and

T (zt) = −2z. Is the set {x,y, z} linearly independent?

16. Let T : R3 −→ R
3 be defined by T (x, y, z) = (2x+3y+4z,−y,−3y+4z). Determine

non-zero vectors xt,yt, zt ∈ R
3 such that T (xt) = 2x, T (yt) = 4y and T (zt) = −z.

Is the set {x,y, z} linearly independent?

17. Let n be any positive integer. Prove that there does not exist a linear transformation

T : R3 −→ R
n such that T (1, 1,−2) = xt, T (−1, 2, 3) = yt and T (1, 10, 1) = zt where

z = x+ y. Does there exist real numbers c, d such that z = cx+ dy and T is indeed

a linear transformation?

18. Find all functions f : R2 −→ R
2 that fixes the line y = x and sends (x1, y1) for

x1 6= y1 to its mirror image along the line y = x. Or equivalently, f satisfies

(a) f(x, x) = (x, x) and

(b) f(x, y) = (y, x) for all (x, y) ∈ R
2.

19. Consider the complex vector space C
3 and let f : C3−→C

3 be a linear transformation.

Suppose there exist non-zero vectors x,y, z ∈ C
3 such that f(x) = x, f(y) = (1 + i)y

and f(z) = (2 + 3i)z. Then prove that

(a) the vectors {x,y, z} are linearly independent subset of C3.

(b) the set {x,y, z} form a basis of C3.
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4.2 Matrix of a linear transformation

In the previous section, we learnt the definition of a linear transformation. We also saw

in Example 4.1.2.5 that for each A ∈ Mm×n(C), there exists a linear transformation TA :

C
n−→C

m given by TA(x
t) = Ax for each xt ∈ C

n. In this section, we prove that every

linear transformation over finite dimensional vector spaces corresponds to a matrix. Before

proceeding further, we advise the reader to recall the results on ordered basis, studied in

Section 3.4.

Let V and W be finite dimensional vector spaces over F with dimensions n and m,

respectively. Also, let B1 = (v1, . . . ,vn) and B2 = (w1, . . . ,wm) be ordered bases of V

and W , respectively. If T : V−→W is a linear transformation then Theorem 4.1.7 implies

that T (v) ∈ W is a linear combination of the vectors T (v1), . . . , T (vn). So, let us find the

coordinate vectors [T (vj)]B2
for each j = 1, 2, . . . , n. Let us assume that

[T (v1)]B2
= (a11, . . . , am1)

t, [T (v2)]B2
= (a12, . . . , am2)

t, . . . , [T (vn)]B2
= (a1n, . . . , amn)

t.

Or equivalently,

T (vj) = a1jw1 + a2jw2 + · · ·+ amjwm =
m∑

i=1

aijwi for j = 1, 2, . . . , n. (4.2.1)

Therefore, for a fixed x ∈ V , if [x]B1
= (x1, x2, . . . , xn)

t then

T (x) = T





n∑

j=1

xjvj



 =

n∑

j=1

xjT (vj) =

n∑

j=1

xj

(
m∑

i=1

aijwi

)

=

m∑

i=1





n∑

j=1

aijxj



wi.

(4.2.2)

Hence, using Equation (4.2.2), the coordinates of T (x) with respect to the basis B2 equals

[T (x)]B2
=










n∑

j=1
a1jxj

...
n∑

j=1
amjxj










=









a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn

















x1
x2
...

xn









= A [x]B1
,

where

A =









a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn









=
[
[T (v1)]B2

, [T (v2)]B2
, . . . , [T (vn)]B2

]
. (4.2.3)

The above observations lead to the following theorem and the subsequent definition.

Theorem 4.2.1. Let V and W be finite dimensional vector spaces over F with dimensions

n and m, respectively. Let T : V−→W be a linear transformation. Also, let B1 and B2 be

ordered bases of V and W, respectively. Then there exists a matrix A ∈ Mm×n(F), denoted

A = T [B1,B2], with A =
[
[T (v1)]B2

, [T (v2)]B2
, . . . , [T (vn)]B2

]
such that

[T (x)]B2
= A [x]B1

.
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Definition 4.2.2 (Matrix of a Linear Transformation). Let V and W be finite dimensional

vector spaces over F with dimensions n and m, respectively. Let T : V−→W be a linear

transformation. Then the matrix T [B1,B2] is called the matrix of the linear transformation

with respect to the ordered bases B1 and B2.

Remark 4.2.3. Let B1 = (v1, . . . ,vn) and B2 = (w1, . . . ,wm) be ordered bases of V and

W , respectively. Also, let T : V −→ W be a linear transformation. Then writing T [B1,B2]

in place of the matrix A, Equation (4.2.1) can be rewritten as

T (vj) =

m∑

i=1

T [B1,B2]ijwi, for 1 ≤ j ≤ n. (4.2.4)

We now give a few examples to understand the above discussion and Theorem 4.2.1.

Q = (0, 1)

P = (1, 0)θ

θ

Q′ = (− sin θ, cos θ)

P ′ = (cos θ, sin θ)
θ

α
P = (x, y)

P ′ = (x′, y′)

Figure 4.1: Counter-clockwise Rotation by an angle θ

Example 4.2.4. 1. Let T : R2−→R
2 be a function that counterclockwise rotates every

point in R
2 by an angle θ, 0 ≤ θ < 2π. Then using Figure 4.1 it can be checked that

x′ = OP ′ cos(α + θ) = OP
(
cosα cos θ − sinα sin θ

)
= x cos θ − y sin θ and similarly

y′ = x sin θ + y cos θ. Or equivalently, if B = (e1, e2) is the standard ordered basis of

R
2, then using T (1, 0) = (cos θ, sin θ) and T (0, 1) = (− sin θ, cos θ), we get

T [B,B] =
[

[T (1, 0)]B , [T (0, 1)]B
]

=

[

cos θ − sin θ

sin θ cos θ

]

. (4.2.5)

2. Let B1 =
(
(1, 0), (0, 1)

)
and B2 =

(
(1, 1), (1,−1)

)
be two ordered bases of R2. Then

Compute T [B1,B1] and T [B2,B2] for the linear transformation T : R2−→R
2 defined

by T (x, y) = (x+ y, x− 2y).

Solution: Observe that for (x, y) ∈ R
2, [(x, y)]B1

=

[

x

y

]

and [(x, y)]B2
=

[
x+y
2

x−y
2

]

.

Also, T (1, 0) = (1, 1), T (0, 1) = (1,−2), T (1, 1) = (2,−1) and T (1,−1) = (0, 3).

Thus, we have

T [B1,B1] =
[
[T
(
1, 0)

)
]B1

, [T
(
0, 1)

)
]B1

]
=
[
[(1, 1)]B1

, [(1,−2)]B1

]
=

[

1 1

1 −2

]

and

T [B2,B2] =
[
[T
(
1, 1)

)
]B2

, [T
(
1,−1)

)
]B2

]
=
[
[(2,−1)]B2

, [(0, 3)]B2

]
=

[
1
2

3
2

3
2 −3

2

]

.
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Hence, we see that

[T (x, y)]B1
=
[
(x+ y, x− 2y)

]

B1
=

[

x+ y

x− 2y

]

=

[

1 1

1 −2

] [

x

y

]

and

[T (x, y)]B2
=
[
(x+ y, x− 2y)

]

B2
=

[
2x−y
2
3y
2

]

=

[
1
2

3
2

3
2 −3

2

] [
x+y
2

x−y
2

]

3. Let B1 =
(
(1, 0, 0), (0, 1, 0), (0, 0, 1)

)
and B2 =

(
(1, 0), (0, 1)

)
be ordered bases of R3

and R
2, respectively. Define T : R3−→R

2 by T (x, y, z) = (x+ y − z, x+ z). Then

T [B1,B2] =

[

[(1, 0, 0)]B2
, [(0, 1, 0)]B2

, [(0, 0, 1)]B2

]

=

[

1 1 −1

1 0 1

]

.

Check that [T (x, y, z)]B2
= (x+ y − z, x+ z)t = T [B1,B2] [(x, y, z)]B1

.

4. Let B1 =
(
(1, 0, 0), (0, 1, 0), (0, 0, 1)

)
, B2 =

(
(1, 0, 0), (1, 1, 0), (1, 1, 1)

)
be two ordered

bases of R3. Define T : R3−→R
3 by T (xt) = x for all xt ∈ R

3. Then

[T (1, 0, 0)]B2
= 1 · (1, 0, 0) + 0 · (1, 1, 0) + 0 · (1, 1, 1) = (1, 0, 0)t,

[T (0, 1, 0)]B2
= −1 · (1, 0, 0) + 1 · (1, 1, 0) + 0 · (1, 1, 1) = (−1, 1, 0)t, and

[T (0, 0, 1)]B2
= 0 · (1, 0, 0) + (−1) · (1, 1, 0) + 1 · (1, 1, 1) = (0,−1, 1)t .

Thus, check that

T [B1,B2] = [[T (1, 0, 0)]B2
, [T (0, 1, 0)]B2

, [T (0, 0, 1)]B2
]

= [(1, 0, 0)t , (−1, 1, 0)t, (0,−1, 1)t] =






1 −1 0

0 1 −1

0 0 1




 ,

T [B2,B1] = [[T (1, 0, 0)]B1
, [T (1, 1, 0)]B1

, [T (1, 1, 1)]B1
] =






1 1 1

0 1 1

0 0 1




 ,

T [B1,B1] = I3 = T [B2,B2] and T [B2,B1]
−1 = T [B1,B2].

Remark 4.2.5. 1. Let V and W be finite dimensional vector spaces over F with order

bases B1 = (v1, . . . ,vn) and B2 of V and W , respectively. If T : V−→W is a linear

transformation then

(a) T [B1,B2] =
[
[T (v1)]B2

, [T (v2)]B2
, . . . , [T (vn)]B2

]
.

(b) [T (x)]B2
= T [B1,B2] [x]B1

for all x ∈ V . That is, the coordinate vector of

T (x) ∈ W is obtained by multiplying the matrix of the linear transformation

with the coordinate vector of x ∈ V .

2. Let A ∈ Mm×n(R). Then A induces a linear transformation TA : Rn−→R
m defined

by TA(x
t) = Ax for all xt ∈ R

n. Let B1 and B2 be the standard ordered bases of Rn

and R
m, respectively. Then it can be easily verified that TA[B1,B2] = A.
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Exercise 4.2.6. 1. Let T : R2−→R
2 be a linear transformation that reflects every point

in R
2 about the line y = mx. Find its matrix with respect to the standard ordered

basis of R2.

2. Let T : R3−→R
3 be a linear transformation that reflects every point in R

3 about the

X-axis. Find its matrix with respect to the standard ordered basis of R3.

3. Let T : R3−→R
3 be a linear transformation that counterclockwise rotates every point

in R
3 around the positive Z-axis by an angle θ, 0 ≤ θ < 2π. Prove that T is a linear

operator and find its matrix with respect to the standard ordered basis of R3.[Hint: Is





cos θ − sin θ 0

sin θ cos θ 0

0 0 1




 the required matrix?]

4. Define a function D : Pn(R)−→Pn(R) by

D(a0 + a1x+ a2x
2 + · · ·+ anx

n) = a1 + 2a2x+ · · ·+ nanx
n−1.

Prove that D is a linear operator and find the matrix of D with respect to the standard

ordered basis of Pn(R). Observe that the image of D is contained in Pn−1(R).

5. Let T be a linear operator in R
2 satisfying T (3, 4) = (0, 1) and T (−1, 1) = (2, 3). Let

B =
(
(1, 0), (1, 1)

)
be an ordered basis of R2. Compute T [B,B].

6. For each linear transformation given in Example 4.1.2, find its matrix of the linear

transform with respect to standard ordered bases.

4.3 Rank-Nullity Theorem

We are now ready to related the rank-nullity theorem (see Theorem 3.3.25 on 86) with the

rank-nullity theorem for linear transformation. To do so, we first define the range space

and the null space of any linear transformation.

Definition 4.3.1 (Range Space and Null Space). Let V be finite dimensional vector space

over F and let W be any vector space over F. Then for a linear transformation T : V−→W ,

we define

1. C(T ) = {T (x) : x ∈ V } as the range space of T and

2. N (T ) = {x ∈ V : T (x) = 0} as the null space of T .

We now prove some results associated with the above definitions.

Proposition 4.3.2. Let V be a vector space over F with basis {v1, . . . ,vn}. Also, let W

be a vector spaces over F. Then for any linear transformation T : V−→W ,

1. C(T ) = L(T (v1), . . . , T (vn)) is a subspace of W and dim(C(T ) ≤ dim(W ).

2. N (T ) is a subspace of V and dim(N (T ) ≤ dim(V ).
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3. The following statements are equivalent.

(a) T is one-one.

(b) N (T ) = {0}.
(c) {T (ui) : 1 ≤ i ≤ n} is a basis of C(T ).

4. dim(C(T ) = dim(V ) if and only if N (T ) = {0}.

Proof. Parts 1 and 2 The results about C(T ) and N (T ) can be easily proved. We thus

leave the proof for the readers.

We now assume that T is one-one. We need to show that N (T ) = {0}.
Let u ∈ N (T ). Then by definition, T (u) = 0. Also for any linear transformation (see

Proposition 4.1.3), T (0) = 0. Thus T (u) = T (0). So, T is one-one implies u = 0. That is,

N (T ) = {0}.
Let N (T ) = {0}. We need to show that T is one-one. So, let us assume that for

some u,v ∈ V, T (u) = T (v). Then, by linearity of T, T (u − v) = 0. This implies,

u− v ∈ N (T ) = {0}. This in turn implies u = v. Hence, T is one-one.

The other parts can be similarly proved.

Remark 4.3.3. 1. C(T ) is called the range space and N (T ) the null space of T.

2. dim(C(T ) is denoted by ρ(T ) and is called the rank of T .

3. dim(N (T ) is denoted by ν(T ) and is called the nullity of T.

Example 4.3.4. Determine the range and null space of the linear transformation

T : R3−→R
4 with T (x, y, z) = (x− y + z, y − z, x, 2x− 5y + 5z).

Solution: By Definition

R(T ) = L
(
(1, 0, 1, 2), (−1, 1, 0,−5), (1,−1, 0, 5)

)

= L
(
(1, 0, 1, 2), (1,−1, 0, 5)

)

= {α(1, 0, 1, 2) + β(1,−1, 0, 5) : α, β ∈ R}
= {(α + β,−β, α, 2α + 5β) : α, β ∈ R}
= {(x, y, z, w) ∈ R

4 : x+ y − z = 0, 5y − 2z + w = 0}

and

N (T ) = {(x, y, z) ∈ R
3 : T (x, y, z) = 0}

= {(x, y, z) ∈ R
3 : (x− y + z, y − z, x, 2x− 5y + 5z) = 0}

= {(x, y, z) ∈ R
3 : x− y + z = 0, y − z = 0,

x = 0, 2x− 5y + 5z = 0}
= {(x, y, z) ∈ R

3 : y − z = 0, x = 0}
= {(0, y, y) ∈ R

3 : y ∈ R} = L((0, 1, 1))
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Exercise 4.3.5. 1. Define a linear operator D : Pn(R)−→Pn(R) by

D(a0 + a1x+ a2x
2 + · · ·+ anx

n) = a1 + 2a2x+ · · ·+ nanx
n−1.

Describe N (D) and C(D). Note that C(D) ⊂ Pn−1(R).

2. Let T : V−→W be a linear transformation. If {T (v1), . . . , T (vn)} is linearly inde-

pendent subset in C(T ) then prove that {v1, . . . ,vn} ⊂ V is linearly independent.

3. Define a linear operator T : R3 −→ R
3 by T (1, 0, 0) = (0, 0, 1), T (1, 1, 0) = (1, 1, 1)

and T (1, 1, 1) = (1, 1, 0). Then

(a) determine T (x, y, z) for x, y, z ∈ R.

(b) determine C(T ) and N (T ). Also calculate ρ(T ) and ν(T ).

(c) prove that T 3 = T and find the matrix of T with respect to the standard basis.

4. Find a linear operator T : R3 −→ R
3 for which C(T ) = L

(
(1, 2, 0), (0, 1, 1), (1, 3, 1)

)
?

5. Let {v1,v2, . . . ,vn} be a basis of a vector space V (F). If W (F) is a vector space

and w1,w2, . . . ,wn ∈ W then prove that there exists a unique linear transformation

T : V−→W such that T (vi) = wi for all i = 1, 2, . . . , n.

We now state the rank-nullity theorem for linear transformation. The proof of this

result is similar to the proof of Theorem 3.3.25 and it also follows from Proposition 4.3.2.

Hence, we omit the proof.

Theorem 4.3.6 (Rank Nullity Theorem). Let V be a finite dimensional vector space and

let T : V−→W be a linear transformation. Then ρ(T ) + ν(T ) = dim(V ). That is,

dim(R(T )) + dim(N (T )) = dim(V ).

Theorem 4.3.7. Let V and W be finite dimensional vector spaces over F and let T :

V−→W be a linear transformation. Also assume that T is one-one and onto. Then

1. for each w ∈ W, the set T−1(w) is a set consisting of a single element.

2. the map T−1 : W−→V defined by T−1(w) = v whenever T (v) = w is a linear

transformation.

Proof. Since T is onto, for each w ∈ W there exists v ∈ V such that T (v) = w. So, the

set T−1(w) is non-empty.

Suppose there exist vectors v1,v2 ∈ V such that T (v1) = T (v2). Then the assumption,

T is one-one implies v1 = v2. This completes the proof of Part 1.

We are now ready to prove that T−1, as defined in Part 2, is a linear transformation. Let

w1,w2 ∈ W. Then by Part 1, there exist unique vectors v1,v2 ∈ V such that T−1(w1) = v1

and T−1(w2) = v2. Or equivalently, T (v1) = w1 and T (v2) = w2. So, for any α1, α2 ∈ F,

T (α1v1 + α2v2) = α1w1 + α2w2. Hence, by definition, for any α1, α2 ∈ F, T−1(α1w1 +

α2w2) = α1v1 + α2v2 = α1T
−1(w1) + α2T

−1(w2). Thus the proof of Part 2 is over.
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Definition 4.3.8 (Inverse Linear Transformation). Let V and W be finite dimensional

vector spaces over F and let T : V−→W be a linear transformation. If the map T is

one-one and onto, then the map T−1 : W−→V defined by

T−1(w) = v whenever T (v) = w

is called the inverse of the linear transformation T.

Example 4.3.9. 1. Let T : R
2−→R

2 be defined by T (x, y) = (x + y, x − y). Then

T−1 : R2−→R
2 is defined by T−1(x, y) = (x+y

2 , x−y
2 ). One can see that

T ◦ T−1(x, y) = T (T−1(x, y)) = T (
x+ y

2
,
x− y

2
)

= (
x+ y

2
+

x− y

2
,
x+ y

2
− x− y

2
) = (x, y) = I(x, y),

where I is the identity operator. Hence, T ◦ T−1 = I. Verify that T−1 ◦ T = I. Thus,

the map T−1 is indeed the inverse of T.

2. For (a1, . . . , an+1) ∈ R
n+1, define the linear transformation T : Rn+1−→Pn(R) by

T (a1, a2, . . . , an+1) = a1 + a2x+ · · · + an+1x
n.

Then it can be checked that T−1 : Pn(R)−→R
n+1 is defined by T−1(a1 + a2x+ · · ·+

an+1x
n) = (a1, a2, . . . , an+1) for all a1 + a2x+ · · ·+ an+1x

n ∈ Pn(R).

Using the Rank-nullity theorem, we give a short proof of the following result.

Corollary 4.3.10. Let V be a finite dimensional vector space and let T : V−→V be a

linear operator. Then the following statements are equivalent.

1. T is one-one.

2. T is onto.

3. T is invertible.

Proof. By Proposition 4.3.2, T is one-one if and only if N (T ) = {0}. By Theorem 4.3.6

N (T ) = {0} implies dim(C(T )) = dim(V ). Or equivalently, T is onto.

Now, we know that T is invertible if T is one-one and onto. But we have just shown

that T is one-one if and only if T is onto. Thus, we have the required result.

Remark 4.3.11. Let V be a finite dimensional vector space and let T : V−→V be a linear

operator. If either T is one-one or T is onto then T is invertible.

Exercise 4.3.12. 1. Let V be a finite dimensional vector space and let T : V−→W be

a linear transformation. Then prove that

(a) N (T ) and C(T ) are also finite dimensional.

(b) i. if dim(V ) < dim(W ) then T cannot be onto.
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ii. if dim(V ) > dim(W ) then T cannot be one-one.

2. Let V be a vector space of dimension n and let B = (v1, . . . ,vn) be an ordered basis of

V . For i = 1, . . . , n, let wi ∈ V with [wi]B = [a1i, a2i, . . . , ani ]
t. Also, let A = [aij ].

Then prove that w1, . . . ,wn is a basis of V if and only if A is invertible.

3. Let T, S : V−→V be linear transformations with dim(V ) = n.

(a) Show that C(T + S) ⊂ C(T ) + C(S). Deduce that ρ(T + S) ≤ ρ(T ) + ρ(S).

(b) Now, use Theorem 4.3.6 to prove ν(T + S) ≥ ν(T ) + ν(S)− n.

4. Let z1, z2, . . . , zk be k distinct complex numbers and define a linear transformation T :

Pn(C) −→ C
k by T

(
P (z)

)
=
(
P (z1), P (z2), . . . , P (zk)

)
. For each k ≥ 1, determine

dim(C(T )).

5. Fix A ∈ Mn(R) satisfying A2 = A and define TA : Rn −→ R
n by TA(v

t) = Av, for

all vt ∈ R
n. Then prove that

(a) TA ◦ TA = TA. Equivalently, TA ◦ (I − TA) = 0, where I : Rn −→ R
n is the

identity map and 0 : Rn −→ R
n is the zero map.

(b) N (TA) ∩ C(TA) = {0}.
(c) R

n = C(TA) +N (TA). [Hint: x = TA(x) + (I − TA)(x)]

4.4 Similarity of Matrices

Let V be a finite dimensional vector space with ordered basis B. Then we saw that any

linear operator T : V−→V corresponds to a square matrix of order dim(V ) and this matrix

was denoted by T [B,B]. In this section, we will try to understand the relationship between

T [B1,B1] and T [B2,B2], where B1 and B2 are distinct ordered bases of V . This will enable

us to understand the reason for defining the matrix product somewhat differently.

Theorem 4.4.1 (Composition of Linear Transformations). Let V, W and Z be finite

dimensional vector spaces with ordered bases B1,B2 and B3, respectively. Also, let T :

V−→W and S : W−→Z be linear transformations. Then the composition map S ◦ T :

V−→Z (see Figure 4.2) is a linear transformation and

(V,B1, n) (W,B2,m) (Z,B3, p)

T [B1,B2]m×n S[B2,B3]p×m

(S ◦ T )[B1,B3]p×n = S[B2,B3] · T [B1,B2]

Figure 4.2: Composition of Linear Transformations

(S ◦ T ) [B1,B3] = S[B2,B3] · T [B1,B2].
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Proof. Let B1 = (u1, . . . ,un), B2 = (v1, . . . ,vm) and B3 = (w1, . . . ,wp) be ordered bases

of V,W and Z, respectively. Then using Equation (4.2.4), we have

(S ◦ T ) (ut) = S(T (ut)) = S

( m∑

j=1

(T [B1,B2])jtvj

)

=

m∑

j=1

(T [B1,B2])jtS(vj)

=

m∑

j=1

(T [B1,B2])jt

p
∑

k=1

(S[B2,B3])kjwk =

p
∑

k=1

(

m∑

j=1

(S[B2,B3])kj(T [B1,B2])jt)wk

=

p
∑

k=1

(S[B2,B3] T [B1,B2])ktwk.

Thus, using matrix multiplication, the t-th column of (S ◦ T ) [B1,B3] is given by

[(S ◦ T ) (ut)]B3
=









(
S[B2,B3] T [B1,B2]

)

1t(
S[B2,B3] T [B1,B2]

)

2t
...

(
S[B2,B3] T [B1,B2]

)

pt









= S[B2,B3]









T [B1,B2]1t
T [B1,B2]2t

...

T [B1,B2]pt









.

Hence, (S ◦ T )[B1,B3] =
[
[(S ◦ T )(u1)]B3

, . . . , [(S ◦ T )(un)]B3

]
= S[B2,B3] · T [B1,B2] and

the proof of the theorem is over.

Proposition 4.4.2. Let V be a finite dimensional vector space and let T, S : V−→V be

two linear operators. Then ν(T ) + ν(S) ≥ ν(T ◦ S) ≥ max{ν(T ), ν(S)}.
Proof. We first prove the second inequality.

Suppose v ∈ N (S). Then (T ◦ S)(v) = T (S(v) = T (0) = 0 gives N (S) ⊂ N (T ◦ S).

Therefore, ν(S) ≤ ν(T ◦ S).
We now use Theorem 4.3.6 to see that the inequality ν(T ) ≤ ν(T ◦ S) is equivalent to

showing C(T ◦ S) ⊂ C(T ). But this holds true as C(S) ⊂ V and hence T (C(S)) ⊂ T (V ).

Thus, the proof of the second inequality is over.

For the proof of the first inequality, assume that k = ν(S) and {v1, . . . ,vk} is a basis

of N (S). Then {v1, . . . ,vk} ⊂ N (T ◦ S) as T (0) = 0. So, let us extend it to get a basis

{v1, . . . ,vk,u1, . . . ,uℓ} of N (T ◦ S).
Claim: {S(u1), S(u2), . . . , S(uℓ)} is a linearly independent subset of N (T ).

It is easily seen that {S(u1), . . . , S(uℓ)} is a subset of N (T ). So, let us solve the linear

system c1S(u1) + c2S(u2) + · · · + cℓS(uℓ) = 0 in the unknowns c1, c2, . . . , cℓ. This system

is equivalent to S(c1u1 + c2u2 + · · ·+ cℓuℓ) = 0. That is,
ℓ∑

i=1
ciui ∈ N (S). Hence,

ℓ∑

i=1
ciui

is a unique linear combination of the vectors v1, . . . ,vk. Thus,

c1u1 + c2u2 + · · ·+ cℓuℓ = α1v1 + α2v2 + · · ·+ αkvk (4.4.1)

for some scalars α1, α2, . . . , αk. But by assumption, {v1, . . . ,vk,u1, . . . ,uℓ} is a basis of

N (T ◦S) and hence linearly independent. Therefore, the only solution of Equation (4.4.1)

is given by ci = 0 for 1 ≤ i ≤ ℓ and αj = 0 for 1 ≤ j ≤ k.

Thus, {S(u1), S(u2), . . . , S(uℓ)} is a linearly independent subset of N (T ) and so ν(T ) ≥
ℓ. Hence, ν(T ◦ S) = k + ℓ ≤ ν(S) + ν(T ).
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Remark 4.4.3. Using Theorem 4.3.6 and Proposition 4.4.2, we see that if A and B are

two n× n matrices then

min{ρ(A), ρ(B)} ≥ ρ(AB) ≥ n− ρ(A)− ρ(B).

Let V be a finite dimensional vector space and let T : V−→V be an invertible linear

operator. Then using Theorem 4.3.7, the map T−1 : V−→V is a linear operator defined

by T−1(u) = v whenever T (v) = u. The next result relates the matrix of T and T−1. The

reader is required to supply the proof (use Theorem 4.4.1).

Theorem 4.4.4 (Inverse of a Linear Transformation). Let V be a finite dimensional vector

space with ordered bases B1 and B2. Also let T : V−→V be an invertible linear operator.

Then the matrix of T and T−1 are related by T [B1,B2]
−1 = T−1[B2,B1].

Exercise 4.4.5. Find the matrix of the linear transformations given below.

1. Define T : R3−→R
3 by T (1, 1, 1) = (1,−1, 1), T (1,−1, 1) = (1, 1,−1) and T (1, 1,−1) =

(1, 1, 1). Find T [B,B], where B =
(
(1, 1, 1), (1,−1, 1), (1, 1,−1)

)
. Is T an invertible

linear operator?

2. Let B =
(
1, x, x2, x3

)
be an ordered basis of P3(R). Define T : P3(R)−→P3(R) by

T (1) = 1, T (x) = 1 + x, T (x2) = (1 + x)2 and T (x3) = (1 + x)3.

Prove that T is an invertible linear operator. Also, find T [B,B] and T−1[B,B].

We end this section with definition, results and examples related with the notion of

isomorphism. The result states that for each fixed positive integer n, every real vector

space of dimension n is isomorphic to R
n and every complex vector space of dimension n

is isomorphic to C
n.

Definition 4.4.6 (Isomorphism). Let V and W be two vector spaces over F. Then V

is said to be isomorphic to W if there exists a linear transformation T : V−→W that is

one-one, onto and invertible. We also denote it by V ∼= W .

Theorem 4.4.7. Let V be a vector space over R. If dim(V ) = n then V ∼= R
n.

Proof. Let B be the standard ordered basis of Rn and let B1 =
(
v1, . . . ,vn

)
be an ordered

basis of V . Define a map T : V−→R
n by T (vi) = ei for 1 ≤ i ≤ n. Then it can be easily

verified that T is a linear transformation that is one-one, onto and invertible (the image of

a basis vector is a basis vector). Hence, the result follows.

A similar idea leads to the following result and hence we omit the proof.

Theorem 4.4.8. Let V be a vector space over C. If dim(V ) = n then V ∼= C
n.

Example 4.4.9. 1. The standard ordered basis of Pn(C) is given by
(
1, x, x2, . . . , xn

)
.

Hence, define T : Pn(C)−→C
n+1 by T (xi) = ei+1 for 0 ≤ i ≤ n. In general, verify

that T (a0+ a1x+ · · ·+ anx
n) = (a0, a1, . . . , an) and T is linear transformation which

is one-one, onto and invertible. Thus, the vector space Pn(C) ∼= C
n+1.
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2. Let V = {(x, y, z, w) ∈ R
4 : x − y + z − w = 0}. Suppose that B is the standard

ordered basis of R3 and B1 =
(
(1, 1, 0, 0), (−1, 0, 1, 0), (1, 0, 0, 1)

)
is the ordered basis

of V . Then T : V−→R
3 defined by T (v) = T (y− z+w, y, z, w) = (y, z, w) is a linear

transformation and T [B1,B] = I3. Thus, T is one-one, onto and invertible.

4.5 Change of Basis

Let V be a vector space with ordered bases B1 = (u1, . . . ,un) and B2 = (v1, . . . ,vn}. Also,
recall that the identity linear operator I : V−→V is defined by I(x) = x for every x ∈ V.

If

I[B2,B1] =
[
[I(v1)]B1

, [I(v2)]B1
, . . . , [I(vn)]B1

]
=









a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann









then by definition of I[B2,B1], we see that vi = I(vi) =
n∑

j=1
ajiuj for all i, 1 ≤ i ≤ n. Thus,

we have proved the following result which also appeared in another form in Theorem 3.4.5.

Theorem 4.5.1 (Change of Basis Theorem). Let V be a finite dimensional vector space

with ordered bases B1 = (u1,u2, . . . ,un} and B2 = (v1,v2, . . . ,vn}. Suppose x ∈ V with

[x]B1
= (α1, α2, . . . , αn)

t and [x]B2
= (β1, β2, . . . , βn)

t. Then [x]B1
= I[B2,B1] [x]B2

. Or

equivalently, 







α1

α2
...

αn









=









a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann

















β1
β2
...

βn









.

Remark 4.5.2. Observe that the identity linear operator I : V−→V is invertible and

hence by Theorem 4.4.4 I[B2,B1]
−1 = I−1[B1,B2] = I[B1,B2]. Therefore, we also have

[x]B2
= I[B1,B2] [x]B1

.

Let V be a finite dimensional vector space with ordered bases B1 and B2. Then for any

linear operator T : V−→V the next result relates T [B1,B1] and T [B2,B2].

Theorem 4.5.3. Let B1 = (u1, . . . ,un) and B2 = (v1, . . . ,vn) be two ordered bases of a

vector space V . Also, let A = [aij] = I[B2,B1] be the matrix of the identity linear operator.

Then for any linear operator T : V−→V

T [B2,B2] = A−1 · T [B1,B1] ·A = I[B1,B2] · T [B1,B1] · I[B2,B1]. (4.5.2)

Proof. The proof uses Theorem 4.4.1 by representing T [B1,B2] as (I ◦ T )[B1,B2] and (T ◦
I)[B1,B2], where I is the identity operator on V (see Figure 4.3). By Theorem 4.4.1, we

have

T [B1,B2] = (I ◦ T )[B1,B2] = I[B1,B2] · T [B1,B1]

= (T ◦ I)[B1,B2] = T [B2,B2] · I[B1,B2].
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(V,B1) (V,B1)

(V,B2) (V,B2)

T [B1,B1]

T [B2,B2]

I[B1,B2] I[B1,B2]

T ◦ I

I ◦ T

Figure 4.3: Commutative Diagram for Similarity of Matrices

Thus, using I[B2,B1] = I[B1,B2]
−1, we get I[B1,B2] T [B1,B1] I[B2,B1] = T [B2,B2] and

the result follows.

Let T : V−→V be a linear operator on V . If dim(V ) = n then each ordered basis B of

V gives rise to an n× n matrix T [B,B]. Also, we know that for any vector space we have

infinite number of choices for an ordered basis. So, as we change an ordered basis, the

matrix of the linear transformation changes. Theorem 4.5.3 tells us that all these matrices

are related by an invertible matrix (see Remark 4.5.2). Thus we are led to the following

remark and the definition.

Remark 4.5.4. The Equation (4.5.2) shows that T [B2,B2] = I[B1,B2]·T [B1,B1]·I[B2,B1].

Hence, the matrix I[B1,B2] is called the B1 : B2 change of basis matrix.

Definition 4.5.5 (Similar Matrices). Two square matrices B and C of the same order

are said to be similar if there exists a non-singular matrix P such that P−1BP = C or

equivalently BP = PC.

Example 4.5.6. 1. Let B1 =
(
1+ x, 1 + 2x+ x2, 2 + x

)
and B2 =

(
1, 1 + x, 1 + x+ x2

)

be ordered bases of P2(R). Then I(a+ bx+ cx2) = a+ bx+ cx2. Thus,

I[B2,B1] = [[1]B1
, [1 + x]B1

, [1 + x+ x2]B1
] =






−1 1 −2

0 0 1

1 0 1




 and

I[B1,B2] = [[1 + x]B2
, [1 + 2x+ x2]B2

, [2 + x]B2
] =






0 −1 1

1 1 1

0 1 0




 .

Also, verify that I[B1,B2]
−1 = I[B2,B1].

2. Let B1 =
(
(1, 0, 0), (1, 1, 0), (1, 1, 1)

)
and B2 =

(
1, 1,−1), (1, 2, 1), (2, 1, 1)

)
be two

ordered bases of R3. Define T : R3−→R
3 by T (x, y, z) = (x + y, x + y + 2z, y − z).

Then T [B1,B1] =






0 0 −2

1 1 4

0 1 0




 and T [B2,B2] =






−4/5 1 8/5

−2/5 2 9/5

8/5 0 −1/5




. Also, check that
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I[B2,B1] =






0 −1 1

2 1 0

−1 1 1




 and

T [B1,B1] I[B2,B1] = I[B2,B1] T [B2,B2] =






2 −2 −2

−2 4 5

2 1 0




 .

Exercise 4.5.7. 1. Let V be an n-dimensional vector space and let T : V−→V be a

linear operator. Suppose T has the property that T n−1 6= 0 but T n = 0.

(a) Prove that there exists u ∈ V with {u, T (u), . . . , T n−1(u)}, a basis of V.

(b) For B =
(
u, T (u), . . . , T n−1(u)

)
prove that T [B,B] =











0 0 0 · · · 0

1 0 0 · · · 0

0 1 0 · · · 0
...

. . .
. . .

...

0 0 · · · 1 0











.

(c) Let A be an n × n matrix satisfying An−1 6= 0 but An = 0. Then prove that A

is similar to the matrix given in Part 1b.

2. Define T : R3−→R
3 by T (x, y, z) = (x+ y+2z, x− y− 3z, 2x+3y+ z). Let B be the

standard basis and B1 =
(
(1, 1, 1), (1,−1, 1), (1, 1, 2)

)
be another ordered basis of R3.

Then find the

(a) matrices T [B,B] and T [B1,B1].

(b) matrix P such that P−1T [B,B] P = T [B1,B1].

3. Define T : R3−→R
3 by T (x, y, z) = (x, x+ y, x+ y + z). Let B be the standard basis

and B1 =
(
(1, 0, 0), (1, 1, 0), (1, 1, 1)

)
be another ordered basis of R3. Then find the

(a) matrices T [B,B] and T [B1,B1].

(b) matrix P such that P−1T [B,B] P = T [B1,B1].

4. Let B1 =
(
(1, 2, 0), (1, 3, 2), (0, 1, 3)

)
and B2 =

(
(1, 2, 1), (0, 1, 2), (1, 4, 6)

)
be two or-

dered bases of R3. Find the change of basis matrix

(a) P from B1 to B2.

(b) Q from B2 to B1.

(c) from the standard basis of R3 to B1. What do you notice?

Is it true that PQ = I = QP? Give reasons for your answer.

4.6 Summary
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Chapter 5

Inner Product Spaces

5.1 Introduction

In the previous chapters, we learnt about vector spaces and linear transformations that are

maps (functions) between vector spaces. In this chapter, we will start with the definition

of inner product that helps us to view vector spaces geometrically.

5.2 Definition and Basic Properties

In R
2 and R

3, we had a notion of dot product between two vectors. In particular, if

xt = (x1, x2, x3), y
t = (y1, y2, y3) are two vectors in R

3 then their dot product was defined

by

x · y = x1y1 + x2y2 + x3y3.

Note that for any xt,yt, zt ∈ R
3 and α ∈ R, the dot product satisfied the following

conditions:

x · (y + αz) = x · y + αx · z, x · y = y · x, and x · x ≥ 0.

Also, x·x = 0 if and only if x = 0. So, in this chapter, we generalize the idea of dot product

for arbitrary vector spaces. This generalization is commonly known as inner product which

is our starting point for this chapter.

Definition 5.2.1 (Inner Product). Let V be a vector space over F. An inner product over

V, denoted by 〈 , 〉, is a map from V × V to F satisfying

1. 〈au+ bv,w〉 = a〈u,w〉+ b〈v,w〉, for all u,v,w ∈ V and a, b ∈ F,

2. 〈u,v〉 = 〈v,u〉, the complex conjugate of 〈u,v〉, for all u,v ∈ V and

3. 〈u,u〉 ≥ 0 for all u ∈ V and equality holds if and only if u = 0.

Definition 5.2.2 (Inner Product Space). Let V be a vector space with an inner product

〈 , 〉. Then (V, 〈 , 〉) is called an inner product space (in short, ips).

113
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Example 5.2.3. The first two examples given below are called the standard inner prod-

uct or the dot product on R
n and C

n, respectively. From now on, whenever an inner

product is not mentioned, it will be assumed to be the standard inner product.

1. Let V = R
n. Define 〈u, v〉 = u1v1 + · · · + unvn = utv for all ut = (u1, . . . , un),v

t =

(v1, . . . , vn) ∈ V . Then it can be easily verified that 〈 , 〉 satisfies all the three

conditions of Definition 5.2.1. Hence,
(
R
n, 〈 , 〉

)
is an inner product space.

2. Let ut = (u1, . . . , un),v
t = (v1, . . . , vn) be two vectors in C

n(C). Define 〈u, v〉 =

u1v1 + u2v2 + · · · + unvn = u∗v. Then it can be easily verified that
(
C
n, 〈 , 〉

)
is an

inner product space.

3. Let V = R
2 and let A =

[

4 −1

−1 2

]

. Define 〈x,y〉 = xtAy for xt,yt ∈ R
2. Then

prove that 〈 , 〉 is an inner product. Hint: 〈x,y〉 = 4x1y1 − x1y2 − x2y1 + 2x2y2 and

〈x,x〉 = (x1 − x2)
2 + 3x21 + x22.

4. Prove that 〈x,y〉 = 10x1y1 + 3x1y2 + 3x2y1 + 2x2y2 + x2y3 + x3y2 + x3y3 defines an

inner product in R
3, where xt = (x1, x2, x3) and yt = (y1, y2, y3) ∈ R

3.

5. For xt = (x1, x2),y
t = (y1, y2) ∈ R

2, we define three maps that satisfy at least one

condition out of the three conditions for an inner product. Determine the condition

which is not satisfied. Give reasons for your answer.

(a) 〈x,y〉 = x1y1.

(b) 〈x,y〉 = x21 + y21 + x22 + y22.

(c) 〈x,y〉 = x1y
3
1 + x2y

3
2 .

6. For A,B ∈ Mn(R), define 〈A,B〉 = tr(ABt). Then

〈A+B,C〉 = tr
(
(A+B)Ct

)
= tr(ACt) + tr(BCt) = 〈A,C〉+ 〈B,C〉.

〈A,B〉 = tr(ABt) = tr( (ABt)t ) = tr(BAt) = 〈B,A〉.

If A = (aij), then 〈A,A〉 = tr(AAt) =
n∑

i=1
(AAt)ii =

n∑

i,j=1
aijaij =

n∑

i,j=1
a2ij and

therefore, 〈A,A〉 > 0 for all non-zero matrix A.

Exercise 5.2.4. 1. Verify that inner products defined in Examples 3 and 4, are indeed

inner products.

2. Let 〈x,y〉 = 0 for every vector y of an inner product space V . prove that x = 0.

Definition 5.2.5 (Length/Norm of a Vector). Let V be a vector space. Then for any

vector u ∈ V, we define the length (norm) of u, denoted ‖u‖, by ‖u‖ =
√

〈u,u〉, the

positive square root. A vector of norm 1 is called a unit vector.

Example 5.2.6. 1. Let V be an inner product space and u ∈ V . Then for any scalar

α, it is easy to verify that ‖αu‖ =
∣
∣α
∣
∣ · ‖u‖.
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2. Let ut = (1,−1, 2,−3) ∈ R
4. Then ‖u‖ =

√
1 + 1 + 4 + 9 =

√
15. Thus, 1√

15
u and

− 1√
15
u are vectors of norm 1 in the vector subspace L(u) of R4. Or equivalently,

1√
15
u is a unit vector in the direction of u.

Exercise 5.2.7. 1. Let ut = (−1, 1, 2, 3, 7) ∈ R
5. Find all α ∈ R such that ‖αu‖ = 1.

2. Let ut = (−1, 1, 2, 3, 7) ∈ C
5. Find all α ∈ C such that ‖αu‖ = 1.

3. Prove that ‖x + y‖2 + ‖x − y‖2 = 2
(
‖x‖2 + ‖y‖2

)
, for all x,y ∈ R

n. This equality

is commonly known as the Parallelogram Law as in a parallelogram the sum of

square of the lengths of the diagonals equals twice the sum of squares of the lengths

of the sides.

4. Prove that for any two continuous functions f(x), g(x) ∈ C([−1, 1]), the map 〈f(x), g(x)〉 =
∫ 1
−1 f(x) · g(x)dx defines an inner product in C([−1, 1]).

5. Fix an ordered basis B = (u1, . . . ,un) of a complex vector space V . Prove that 〈 , 〉
defined by 〈u,v〉 =

n∑

i=1
aibi, whenever [u]B = (a1, . . . , an)

t and [v]B = (b1, . . . , bn)
t is

indeed an inner product in V .

A very useful and a fundamental inequality concerning the inner product is due to

Cauchy and Schwarz. The next theorem gives the statement and a proof of this inequality.

Theorem 5.2.8 (Cauchy-Bunyakovskii-Schwartz inequality). Let V (F) be an inner product

space. Then for any u,v ∈ V

|〈u,v〉| ≤ ‖u‖ ‖v‖. (5.2.1)

Equality holds in Equation (5.2.1) if and only if the vectors u and v are linearly dependent.

Furthermore, if u 6= 0, then in this case v = 〈v, u

‖u‖〉
u

‖u‖ .

Proof. If u = 0, then the inequality (5.2.1) holds trivially. Hence, let u 6= 0. Also, by

the third property of inner product, 〈λu+ v, λu + v〉 ≥ 0 for all λ ∈ F. In particular, for

λ = −〈v,u〉
‖u‖2 ,

0 ≤ 〈λu+ v, λu+ v〉 = λλ‖u‖2 + λ〈u,v〉 + λ〈v,u〉 + ‖v‖2

=
〈v,u〉
‖u‖2

〈v,u〉
‖u‖2 ‖u‖2 − 〈v,u〉

‖u‖2 〈u,v〉 − 〈v,u〉
‖u‖2 〈v,u〉 + ‖v‖2

= ‖v‖2 − |〈v,u〉|2
‖u‖2 .

Or, in other words |〈v,u〉|2 ≤ ‖u‖2‖v‖2 and the proof of the inequality is over.

If u 6= 0 then 〈λu + v, λu + v〉 = 0 if and only of λu + v = 0. Hence, equality holds

in (5.2.1) if and only if λ = −〈v,u〉
‖u‖2 . That is, u and v are linearly dependent and in this

case v =
〈

v, u

‖u‖

〉
u

‖u‖ .
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Let V be a real vector space. Then for every u,v ∈ V, the Cauchy-Schwarz inequality

(see (5.2.1)) implies that −1 ≤ 〈u,v〉
‖u‖ ‖v‖ ≤ 1. Also, we know that cos : [0, π] −→ [−1, 1]

is an one-one and onto function. We use this idea, to relate inner product with the angle

between two vectors in an inner product space V .

Definition 5.2.9 (Angle between two vectors). Let V be a real vector space and let u,v ∈
V . Suppose θ is the angle between u,v. We define

cos θ =
〈u,v〉

‖u‖ ‖v‖ .

1. The real number θ, with 0 ≤ θ ≤ π, and satisfying cos θ =
〈u,v〉

‖u‖ ‖v‖ is called the angle

between the two vectors u and v in V.

Definition 5.2.10 (Orthogonal Vectors). Let V be a vector space.

1. The vectors u and v in V are said to be orthogonal if 〈u,v〉 = 0. Orthogonality

corresponds to perpendicularity.

2. A set of vectors {u1,u2, . . . ,un} in V is called mutually orthogonal if 〈ui,uj〉 = 0

for all 1 ≤ i 6= j ≤ n.

a
b

c
A B

C

Figure 2: Triangle with vertices A,B and C

Before proceeding further with one more definition, recall that if ABC are vertices of

a triangle (see Figure 5.2) then cos(A) = b2+c2−a2

2bc . We prove this as our next result.

Lemma 5.2.11. Let A,B and C be the sides of a triangle in a real inner product space V

then

cos(A) =
b2 + c2 − a2

2bc
.

Proof. Let the coordinates of the vertices A,B and C be 0, u and v, respectively. Then
~AB = u, ~AC = v and ~BC = v − u. Thus, we need to prove that

cos(A) =
‖v‖2 + ‖u‖2 − ‖v − u‖2

2‖v‖‖u‖ .

Now, using the properties of an inner product and Definition 5.2.9, it follows that

‖v‖2 + ‖u‖2 − ‖v − u‖2 = 2 〈u,v〉 = 2 ‖v‖‖u‖ cos(A).

Thus, the required result follows.
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Definition 5.2.12 (Orthogonal Complement). Let W be a subset of a vector space V with

inner product 〈 , 〉. Then the orthogonal complement of W in V , denoted W⊥, is defined

by

W⊥ = {v ∈ V : 〈v,w〉 = 0, for all w ∈ W}.

Exercise 5.2.13. Let W be a subset of a vector space V . Then prove that W⊥ is a subspace

of V .

Example 5.2.14. 1. Let R4 be endowed with the standard inner product. Fix two vec-

tors ut = (1, 1, 1, 1),vt = (1, 1,−1, 0) ∈ R
4. Determine two vectors z and w such

that u = z+w, z is parallel to v and w is orthogonal to v.

Solution: Let zt = kvt = (k, k,−k, 0), for some k ∈ R and let wt = (a, b, c, d). As

w is orthogonal to v, 〈w,v〉 = 0 and hence a+ b− c = 0. Thus, c = a+ b and

(1, 1, 1, 1) = ut = zt +wt = (k, k,−k, 0) + (a, b, a + b, d).

Comparing the corresponding coordinates, we get

d = 1, a+ k = 1, b+ k = 1 and a+ b− k = 1.

Solving for a, b and k gives a = b = 2
3 and k = 1

3 . Thus, zt = 1
3(1, 1,−1, 0) and

wt = 1
3 (2, 2, 4, 3).

2. Let R3 be endowed with the standard inner product and let P = (1, 1, 1), Q = (2, 1, 3)

and R = (−1, 1, 2) be three vertices of a triangle in R
3. Compute the angle between

the sides PQ and PR.

Solution: Method 1: The sides are represented by the vectors

~PQ = (2, 1, 3) − (1, 1, 1) = (1, 0, 2), ~PR = (−2, 0, 1) and ~RQ = (−3, 0,−1).

As 〈 ~PQ, ~PR〉 = 0, the angle between the sides PQ and PR is
π

2
.

Method 2: ‖PQ‖ =
√
5, ‖PR‖ =

√
5 and ‖QR‖ =

√
10. As

‖QR‖2 = ‖PQ‖2 + ‖PR‖2,

by Pythagoras theorem, the angle between the sides PQ and PR is
π

2
.

We end this section by stating and proving the fundamental theorem of linear algebra.

To do this, recall that for a matrix A ∈ Mn(C), A
∗ denotes the conjugate transpose of

A, N (A) = {v ∈ C
n : Av = 0} denotes the null space of A and R(A) = {Av : v ∈ C

n}
denotes the range space of A. The readers are also advised to go through Theorem 3.3.25

(the rank-nullity theorem for matrices) before proceeding further as the first part is stated

and proved there.

Theorem 5.2.15 (Fundamental Theorem of Linear Algebra). Let A be an n × n matrix

with complex entries and let N (A) and R(A) be defined as above. Then
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1. dim(N (A)) + dim(R(A)) = n.

2. N (A) =
(
R(A∗)

)⊥
and N (A∗) =

(
R(A)

)⊥
.

3. dim(R(A)) = dim(R(A∗)).

Proof. Part 1: Proved in Theorem 3.3.25.

Part 2: We first prove that N (A) ⊂ R(A∗)⊥. Let x ∈ N (A). Then Ax = 0 and

0 = 〈Ax,u〉 = u∗Ax = (A∗u)∗x = 〈x, A∗u〉

for all u ∈ C
n. Thus, x ∈ R(A∗)⊥ and hence N (A) ⊂ R(A∗)⊥.

We now prove that R(A∗)⊥ ⊂ N (A). Let x ∈ R(A∗)⊥. Then for every y ∈ C
n,

0 = 〈x, A∗y〉 = (A∗y)∗x = y∗(A∗)∗x = y∗Ax = 〈Ax,y〉.

In particular, for y = Ax, we get ‖Ax‖2 = 0 and hence Ax = 0. That is, x ∈ N (A). Thus,

the proof of the first equality in Part 2 is over. We omit the second equality as it proceeds

on the same lines as above.

Part 3: Use the first two parts to get the result.

Hence the proof of the fundamental theorem is complete.

For more information related with the fundamental theorem of linear algebra the inter-

ested readers are advised to see the article “The Fundamental Theorem of Linear Algebra,

Gilbert Strang, The American Mathematical Monthly, Vol. 100, No. 9, Nov., 1993, pp.

848 - 855.”

Exercise 5.2.16. 1. Answer the following questions when R
3 is endowed with the stan-

dard inner product.

(a) Let ut = (1, 1, 1). Find vectors v,w ∈ R
3 that are orthogonal to u and to each

other.

(b) Find the equation of the line that passes through the point (1, 1,−1) and is

parallel to the vector (a, b, c) 6= (0, 0, 0).

(c) Find the equation of the plane that contains the point (1, 1 − 1) and the vector

(a, b, c) 6= (0, 0, 0) is a normal vector to the plane.

(d) Find area of the parallelogram with vertices (0, 0, 0), (1, 2,−2), (2, 3, 0) and

(3, 5,−2).

(e) Find the equation of the plane that contains the point (2,−2, 1) and is perpen-

dicular to the line with parametric equations x = t− 1, y = 3t+ 2, z = t+ 1.

(f) Let P = (3, 0, 2), Q = (1, 2,−1) and R = (2,−1, 1) be three points in R
3.

i. Find the area of the triangle with vertices P,Q and R.

ii. Find the area of the parallelogram built on vectors ~PQ and ~QR.

iii. Find a nonzero vector orthogonal to the triangle with vertices P,Q and R.

iv. Find all vectors x orthogonal to ~PQ and ~QR with ‖x‖ =
√
2.
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v. Choose one of the vectors x found in part 1(f)iv. Find the volume of the

parallelepiped built on vectors ~PQ and ~QR and x. Do you think the volume

would be different if you choose the other vector x?

(g) Find the equation of the plane that contains the lines (x, y, z) = (1, 2,−2) +

t(1, 1, 0) and (x, y, z) = (1, 2,−2) + t(0, 1, 2).

(h) Let ut = (1,−1, 1) and vt = (1, k, 1). Find k such that the angle between u and

v is π/3.

(i) Let p1 be a plane that passes through the point A = (1, 2, 3) and has ň = (2,−1, 1)

as its normal vector. Then

i. find the equation of the plane p2 which is parallel to p1 and passes through

the point (−1, 2,−3).

ii. calculate the distance between the planes p1 and p2.

(j) In the parallelogram ABCD, AB‖DC and AD‖BC and A = (−2, 1, 3), B =

(−1, 2, 2), C = (−3, 1, 5). Find

i. the coordinates of the point D,

ii. the cosine of the angle BCD.

iii. the area of the triangle ABC

iv. the volume of the parallelepiped determined by the vectors AB,AD and the

vector (0, 0,−7).

(k) Find the equation of a plane that contains the point (1, 1, 2) and is orthogonal

to the line with parametric equation x = 2 + t, y = 3 and z = 1− t.

(l) Find a parametric equation of a line that passes through the point (1,−2, 1) and

is orthogonal to the plane x+ 3y + 2z = 1.

2. Let {et1, et2, . . . , etn} be the standard basis of Rn. Then prove that with respect to the

standard inner product on R
n, the vectors ei satisfy the following:

(a) ‖ei‖ = 1 for 1 ≤ i ≤ n.

(b) 〈ei, ej〉 = 0 for 1 ≤ i 6= j ≤ n.

3. Let xt = (x1, x2), yt = (y1, y2) ∈ R
2. Then 〈x,y〉 = 4x1y1 − x1y2 − x2y1 + 2x2y2

defines an inner product. Use this inner product to find

(a) the angle between et1 = (1, 0) and et2 = (0, 1).

(b) v ∈ R
2 such that 〈v, (1, 0)t〉 = 0.

(c) vectors xt,yt ∈ R
2 such that ‖x‖ = ‖y‖ = 1 and 〈x,y〉 = 0.

4. Does there exist an inner product in R
2 such that

‖(1, 2)‖ = ‖(2,−1)‖ = 1 and 〈(1, 2), (2,−1)〉 = 0?
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[Hint: Consider a symmetric matrix A =

[

a b

b c

]

. Define 〈x,y〉 = ytAx. Use the

given conditions to get a linear system of 3 equations in the unknowns a, b, c. Solve

this system.]

5. Let W = {(x, y, z) ∈ R
3 : x+ y + z = 0}. Find a basis of W⊥.

6. Let W be a subspace of a finite dimensional inner product space V . Prove that

(W⊥)⊥ = W.

7. Let xt = (x1, x2, x3), y
t = (y1, y2, y3) ∈ R

3. Show that

〈x,y〉 = 10x1y1 + 3x1y2 + 3x2y1 + 4x2y2 + x2y3 + x3y2 + 3x3y3

is an inner product in R
3(R). With respect to this inner product, find the angle between

the vectors (1, 1, 1) and (2,−5, 2).

8. Recall the inner product space Mn×n(R) (see Example 5.2.3.6). Determine W⊥ for

the subspace W = {A ∈ Mn×n(R) : At = A}.

9. Prove that 〈f(x), g(x)〉 =
π∫

−π

f(x) · g(x)dx defines an inner product in C[−π, π].

Define 1(x) = 1 for all x ∈ [−π, π]. Prove that

S = {1} ∪ {cos(mx) : m ≥ 1} ∪ {sin(nx) : n ≥ 1}

is a linearly independent subset of C[−π, π].

10. Let V be an inner product space. Prove the triangle inequality

‖u+ v‖ ≤ ‖u‖+ ‖v‖ for every u,v ∈ V.

11. Let z1, z2, . . . , zn ∈ C. Use the Cauchy-Schwarz inequality to prove that

|z1 + z2 + · · ·+ zn| ≤
√

n(|z1|2 + |z2|2 + · · ·+ |zn|2).

When does the equality hold?

12. Let x,y ∈ R
n. Prove the following:

(a) 〈x,y〉 = 0 ⇐⇒ ‖x− y‖2 = ‖x‖2 + ‖y‖2 (Pythagoras Theorem).

(b) ‖x‖ = ‖y‖ ⇐⇒ 〈x + y,x − y〉 = 0 (x and y form adjacent sides of a rhombus

as the diagonals x+ y and x− y are orthogonal).

(c) 4〈x,y〉 = ‖x+ y‖2 − ‖x− y‖2 (polarization identity).

Are the above results true if x,y ∈ C
n(C)?

13. Let x,y ∈ C
n(C). Prove that

(a) 4〈x,y〉 = ‖x+ y‖2 − ‖x− y‖2 + i‖x + iy‖2 − i‖x − iy‖2.
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(b) If x 6= 0 then ‖x+ ix‖2 = ‖x‖2 + ‖ix‖2, even though 〈x, ix〉 6= 0.

(c) 〈x,y〉 = 0 whenever ‖x+ y‖2 = ‖x‖2 + ‖y‖2 and ‖x+ iy‖2 = ‖x‖2 + ‖iy‖2.

14. Let 〈 , 〉 denote the standard inner product on C
n(C) and let A ∈ Mn(C). That is,

〈x,y〉 = x∗y for all xt,yt ∈ C
n. Prove that 〈Ax,y〉 = 〈x, A∗y〉 for all x,y ∈ C

n.

15. Let (V, 〈 , 〉) be an n-dimensional inner product space and let u ∈ V be a fixed vector

with ‖u‖ = 1. Then give reasons for the following statements.

(a) Let S⊥ = {v ∈ V : 〈v,u〉 = 0}. Then dim(S⊥) = n− 1.

(b) Let 0 6= α ∈ F. Then S = {v ∈ V : 〈v,u〉 = α} is not a subspace of V.

(c) Let v ∈ V . Then v = v0 + αu for a vector v0 ∈ S⊥ and a scalar α. That is,

V = L(u, S⊥).

5.2.1 Basic Results on Orthogonal Vectors

We start this subsection with the definition of an orthonormal set. Then a theorem is

proved that implies that the coordinates of a vector with respect to an orthonormal basis

are just the inner products with the basis vectors.

Definition 5.2.17 (Orthonormal Set). Let S = {v1,v2, . . . ,vn} be a set of non-zero,

mutually orthogonal vectors in an inner product space V . Then S is called an orthonormal

set if ‖vi‖ = 1 for 1 ≤ i ≤ n. If S is also a basis of V then S is called an orthonormal

basis of V.

Example 5.2.18. 1. Consider R
2 with the standard inner product. Then a few or-

thonormal sets in R
2 are

{
(1, 0), (0, 1)

}
,
{

1√
2
(1, 1), 1√

2
(1,−1)

}
and

{
1√
5
(2, 1), 1√

5
(1,−2)

}
.

2. Let Rn be endowed with the standard inner product. Then by Exercise 5.2.16.2, the

standard ordered basis (et1, e
t
2, . . . , e

t
n) is an orthonormal set.

Theorem 5.2.19. Let V be an inner product space and let {u1,u2, . . . ,un} be a set of

non-zero, mutually orthogonal vectors of V.

1. Then the set {u1,u2, . . . ,un} is linearly independent.

2. Let v =
n∑

i=1
αiui ∈ V . Then ‖v‖2 = ‖

n∑

i=1
αiui‖2 =

n∑

i=1
|αi|2‖ui‖2;

3. Let v =
n∑

i=1
αiui. If ‖ui‖ = 1 for 1 ≤ i ≤ n then αi = 〈v,ui〉 for 1 ≤ i ≤ n. That is,

v =

n∑

i=1

〈v,ui〉ui and ‖v‖2 =

n∑

i=1

|〈v,ui〉|2.

4. Let dim(V ) = n. Then 〈v,ui〉 = 0 for all i = 1, 2, . . . , n if and only if v = 0.
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Proof. Consider the linear system

c1u1 + c2u2 + · · ·+ cnun = 0 (5.2.2)

in the unknowns c1, c2, . . . , cn. As 〈0,u〉 = 0 for each u ∈ V and 〈uj ,ui〉 = 0 for all j 6= i,

we have

0 = 〈0,ui〉 = 〈c1u1 + c2u2 + · · ·+ cnun,ui〉 =
n∑

j=1

cj〈uj ,ui〉 = ci〈ui,ui〉.

As ui 6= 0, 〈ui,ui〉 6= 0 and therefore ci = 0 for 1 ≤ i ≤ n. Thus, the linear system (5.2.2)

has only the trivial solution. Hence, the proof of Part 1 is complete.

For Part 2, we use a similar argument to get

‖
n∑

i=1

αiui‖2 =

〈
n∑

i=1

αiui,

n∑

i=1

αiui

〉

=

n∑

i=1

αi

〈

ui,

n∑

j=1

αjuj

〉

=
n∑

i=1

αi

n∑

j=1

αj 〈ui,uj〉 =
n∑

i=1

αiαi 〈ui,ui〉 =
n∑

i=1

|αi|2‖ui‖2.

Note that 〈v,ui〉 =
〈
∑n

j=1 αjuj ,ui

〉

=
∑n

j=1 αj〈uj ,ui〉 = αj. Thus, the proof of Part 3

is complete.

Part 4 directly follows using Part 3 as the set {u1,u2, . . . ,un} is a basis of V. Therefore,

we have obtained the required result.

In view of Theorem 5.2.19, we inquire into the question of extracting an orthonormal

basis from a given basis. In the next section, we describe a process (called the Gram-

Schmidt Orthogonalization process) that generates an orthonormal set from a given set

containing finitely many vectors.

Remark 5.2.20. The last two parts of Theorem 5.2.19 can be rephrased as follows:

Let B =
(
v1, . . . ,vn

)
be an ordered orthonormal basis of an inner product space V and let

u ∈ V . Then

[u]B = (〈u,v1〉, 〈u,v2〉, . . . , 〈u,vn〉)t .

Exercise 5.2.21. 1. Let B =
(

1√
2
(1, 1), 1√

2
(1,−1)

)
be an ordered basis of R2. Deter-

mine [(2, 3)]B. Also, compute [(x, y)]B.

2. Let B =
(

1√
3
(1, 1, 1), 1√

2
(1,−1, 0), 1√

6
(1, 1,−2),

)
be an ordered basis of R3. Determine

[(2, 3, 1)]B . Also, compute [(x, y, z)]B.

3. Let ut = (u1, u2, u3), vt = (v1, v2, v3) be two vectors in R
3. Then recall that their

cross product, denoted u× v, equals

ut × vt = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1).

Use this to find an orthonormal basis of R3 containing the vector 1√
6
(1, 2, 1).
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4. Let ut = (1,−1,−2). Find vectors vt,wt ∈ R
3 such that v and w are orthogonal to

u and to each other as well.

5. Let A be an n × n orthogonal matrix. Prove that the rows/columns of A form an

orthonormal basis of Rn.

6. Let A be an n × n unitary matrix. Prove that the rows/columns of A form an or-

thonormal basis of Cn.

7. Let {ut
1,u

t
2, . . . ,u

t
n} be an orthonormal basis of R

n. Prove that the n × n matrix

A = [u1,u2, . . . ,un] is an orthogonal matrix.

5.3 Gram-Schmidt Orthogonalization Process

Suppose we are given two non-zero vectors u and v in a plane. Then in many instances, we

need to decompose the vector v into two components, say y and z, such that y is a vector

parallel to u and z is a vector perpendicular (orthogonal) to u. We do this as follows (see

Figure 5.3):

Let û =
u

‖u‖ . Then û is a unit vector in the direction of u. Also, using trigonometry, we

know that cos(θ) = ‖ ~OQ‖
‖ ~OP‖ and hence ‖ ~OQ‖ = ‖ ~OP‖ cos(θ). Or using Definition 5.2.9,

‖ ~OQ‖ = ‖v‖ 〈v,u〉
‖v‖ ‖u‖ =

〈v,u〉
‖u‖ ,

where we need to take the absolute value of the right hand side expression as the length

of a vector is always a positive quantity. Thus, we get

~OQ = ‖ ~OQ‖ û = 〈v, u

‖u‖〉
u

‖u‖ .

Thus, we see that y = ~OQ = 〈v, u

‖u‖ 〉 u

‖u‖ and z = v−〈v, u

‖u‖〉 u

‖u‖ . It is easy to verify that

v = y + z, y is parallel to u and z is orthogonal to u. In literature, the vector y = ~OQ

is often called the orthogonal projection of the vector v on u and is denoted by Proj
u
(v).

Thus,

Proj
u
(v) = 〈v, u

‖u‖〉
u

‖u‖ and ‖Proj
u
(v)‖ = ‖ ~OQ‖ =

∣
∣
∣
∣

〈v,u〉
‖u‖

∣
∣
∣
∣
. (5.3.1)

Moreover, the distance of the vector u from the point P equals ‖ ~OR‖ = ‖ ~PQ‖ =

‖v − 〈v, u

‖u‖ 〉 u

‖u‖‖.

~OR = v − 〈v,u〉
‖u‖2 u

~OQ = 〈v,u〉
‖u‖2 u

R

θO
Q

P

u

v

Figure 3: Decomposition of vector v
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Also, note that û is a unit vector in the direction of u and ẑ = z

‖z‖ is a unit vector

orthogonal to û. This idea is generalized to study the Gram-Schmidt Orthogonalization

process which is given as the next result. Before stating this result, we look at the following

example to understand the process.

Example 5.3.1. 1. In Example 5.2.14.1, we note that Proj
v
(u) = (u · v) v

‖v‖2 is par-

allel to v and u− Proj
v
(u) is orthogonal to v. Thus,

~z = Proj
v
(u) =

1

3
(1, 1,−1, 0)t and ~w = (1, 1, 1, 1)t − ~z =

1

3
(2, 2, 4, 3)t .

2. Let ut = (1, 1, 1, 1),vt = (1, 1,−1, 0) and wt = (1, 1, 0,−1) be three vectors in R
4.

Write v = v1 + v2 where v1 is parallel to u and v2 is orthogonal to u. Also, write

w = w1 + w2 + w3 such that w1 is parallel to u, w2 is parallel to v2 and w3 is

orthogonal to both u and v2.

Solution : Note that

(a) v1 = Proj
u
(v) = 〈v,u〉 u

‖u‖2 = 1
4u = 1

4 (1, 1, 1, 1)
t is parallel to u and

(b) v2 = v − 1
4u = 1

4(3, 3,−5,−1)t is orthogonal to u.

Note that Proj
u
(w) is parallel to u and Proj

v2
(w) is parallel to v2. Hence, we have

(a) w1 = Proj
u
(w) = 〈w,u〉 u

‖u‖2 = 1
4u = 1

4 (1, 1, 1, 1)
t is parallel to u,

(b) w2 = Proj
v2
(w) = 〈w,v2〉 v2

‖v2‖2 = 7
44 (3, 3,−5,−1)t is parallel to v2 and

(c) w3 = w −w1 −w2 =
3
11(1, 1, 2,−4)t is orthogonal to both u and v2.

That is, from the given vector subtract all the orthogonal components that are obtained

as orthogonal projections. If this new vector is non-zero then this vector is orthogonal

to the previous ones.

Theorem 5.3.2 (Gram-Schmidt Orthogonalization Process). Let V be an inner product

space. Suppose {u1,u2, . . . ,un} is a set of linearly independent vectors in V. Then there

exists a set {v1,v2, . . . ,vn} of vectors in V satisfying the following:

1. ‖vi‖ = 1 for 1 ≤ i ≤ n,

2. 〈vi,vj〉 = 0 for 1 ≤ i 6= j ≤ n and

3. L(v1,v2, . . . ,vi) = L(u1,u2, . . . ,ui) for 1 ≤ i ≤ n.

Proof. We successively define the vectors v1,v2, . . . ,vn as follows.

Step 1: v1 =
u1

‖u1‖
.

Step 2: Calculate w2 = u2 − 〈u2,v1〉v1, and let v2 =
w2

‖w2‖
.

Step 3: Obtain w3 = u3 − 〈u3,v1〉v1 − 〈u3,v2〉v2, and let v3 =
w3

‖w3‖
.
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Step i: In general, if v1,v2, . . . ,vi−1 are already obtained, we compute

wi = ui − 〈ui,v1〉v1 − 〈ui,v2〉v2 − · · · − 〈ui,vi−1〉vi−1. (5.3.2)

As the set {u1,u2, . . . ,un} is linearly independent, it can be verified that ‖wi‖ 6= 0

and hence we define vi =
wi

‖wi‖ .

We prove this by induction on n, the number of linearly independent vectors. For n = 1,

v1 =
u1

‖u1‖ . As u is an element of a linearly independent set, u1 6= 0 and thus v1 6= 0 and

‖v1‖2 = 〈v1,v1〉 = 〈 u1

‖u1‖
,

u1

‖u1‖
〉 = 〈u1,u1〉

‖u1‖2
= 1.

Hence, the result holds for n = 1.

Let the result hold for all k ≤ n−1. That is, suppose we are given any set of k, 1 ≤ k ≤
n−1 linearly independent vectors {u1,u2, . . . ,uk} of V. Then by the inductive assumption,

there exists a set {v1,v2, . . . ,vk} of vectors satisfying the following:

1. ‖vi‖ = 1 for 1 ≤ i ≤ k,

2. 〈vi,vj〉 = 0 for 1 ≤ i 6= j ≤ k, and

3. L(v1,v2, . . . ,vi) = L(u1,u2, . . . ,ui) for 1 ≤ i ≤ k.

Now, let us assume that {u1,u2, . . . ,un} is a linearly independent subset of V . Then

by the inductive assumption, we already have vectors v1,v2, . . . ,vn−1 satisfying

1. ‖vi‖ = 1 for 1 ≤ i ≤ n− 1,

2. 〈vi,vj〉 = 0 for 1 ≤ i 6= j ≤ n− 1, and

3. L(v1,v2, . . . ,vi) = L(u1,u2, . . . ,ui) for 1 ≤ i ≤ n− 1.

Using (5.3.2), we define

wn = un − 〈un,v1〉v1 − 〈un,v2〉v2 − · · · − 〈un,vn−1〉vn−1. (5.3.3)

We first show that wn 6∈ L(v1,v2, . . . ,vn−1). This will imply that wn 6= 0 and hence

vn = wn

‖wn‖ is well defined. Also, ‖vn‖ = 1.

On the contrary, assume that wn ∈ L(v1,v2, . . . ,vn−1). Then, by definition, there exist

scalars α1, α2, . . . , αn−1, not all zero, such that

wn = α1v1 + α2v2 + · · ·+ αn−1vn−1.

So, substituting α1v1 + α2v2 + · · ·+ αn−1vn−1 for wn in (5.3.3), we get

un =
(
α1 + 〈un,v1〉

)
v1 +

(
α2 + 〈un,v2〉

)
v2 + · · ·+ (

(
αn−1 + 〈un,vn−1〉

)
vn−1.

That is, un ∈ L(v1,v2, . . . ,vn−1). But L(v1, . . . ,vn−1) = L(u1, . . . ,un−1) using the third

induction assumption. Hence un ∈ L(u1, . . . ,un−1). A contradiction to the given assump-

tion that the set of vectors {u1, . . . ,un} is linearly independent.

Also, it can be easily verified that 〈vn,vi〉 = 0 for 1 ≤ i ≤ n−1. Hence, by the principle

of mathematical induction, the proof of the theorem is complete.
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We illustrate the Gram-Schmidt process by the following example.

Example 5.3.3. 1. Let {(1,−1, 1, 1), (1, 0, 1, 0), (0, 1, 0, 1)} ⊂ R
4. Find a set {v1,v2,v3}

that is orthonormal and L( (1,−1, 1, 1), (1, 0, 1, 0), (0, 1, 0, 1) ) = L(vt
1,v

t
2,v

t
3).

Solution: Let ut
1 = (1, 0, 1, 0),ut

2 = (0, 1, 0, 1) and ut
3 = (1,−1, 1, 1). Then vt

1 =
1√
2
(1, 0, 1, 0). Also, 〈u2,v1〉 = 0 and hence w2 = u2. Thus, v

t
2 =

1√
2
(0, 1, 0, 1) and

w3 = u3 − 〈u3,v1〉v1 − 〈u3,v2〉v2 = (0,−1, 0, 1)t .

Therefore, vt
3 =

1√
2
(0,−1, 0, 1).

2. Find an orthonormal set in R
3 containing (1, 2, 1).

Solution: Let (x, y, z) ∈ R
3 with

〈
(1, 2, 1), (x, y, z)

〉
= 0. Then x + 2y + z = 0 or

equivalently, x = −2y − z. Thus,

(x, y, z) = (−2y − z, y, z) = y(−2, 1, 0) + z(−1, 0, 1).

Observe that the vectors (−2, 1, 0) and (−1, 0, 1) are both orthogonal to (1, 2, 1) but

are not orthogonal to each other.

Method 1: Consider { 1√
6
(1, 2, 1), (−2, 1, 0), (−1, 0, 1)} ⊂ R

3 and apply the Gram-

Schmidt process to get the result.

Method 2: This method can be used only if the vectors are from R
3. Recall that

in R
3, the cross product of two vectors u and v, denoted u × v, is a vector that is

orthogonal to both the vectors u and v. Hence, the vector

(1, 2, 1) × (−2, 1, 0) = (0− 1,−2 − 0, 1 + 4) = (−1,−2, 5)

is orthogonal to the vectors (1, 2, 1) and (−2, 1, 0) and hence the required orthonormal

set is { 1√
6
(1, 2, 1), −1√

5
(2,−1, 0), −1√

30
(1, 2,−5)}.

Remark 5.3.4. 1. Let V be a vector space. Then the following holds.

(a) Let {u1,u2, . . . ,uk} be a linearly independent subset of V. Then Gram-Schmidt

orthogonalization process gives an orthonormal set {v1,v2, . . . ,vk} of V with

L(v1,v2, . . . ,vi) = L(u1,u2, . . . ,ui) for 1 ≤ i ≤ k.

(b) Let W be a subspace of V with a basis {u1,u2, . . . ,uk}. Then {v1,v2, . . . ,vk}
is also a basis of W .

(c) Suppose {u1,u2, . . . ,un} is a linearly dependent subset of V . Then there exists

a smallest k, 2 ≤ k ≤ n such that wk = 0.

Idea of the proof: Linear dependence (see Corollary 3.2.5) implies that there

exists a smallest k, 2 ≤ k ≤ n such that

L(u1,u2, . . . ,uk) = L(u1,u2, . . . ,uk−1).
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Also, by Gram-Schmidt orthogonalization process

L(u1,u2, . . . ,uk−1) = L(v1,v2, . . . ,vk−1).

Thus, uk ∈ L(v1,v2, . . . ,vk−1) and hence by Remark 5.2.20

uk = 〈uk,v1〉v1 + 〈uk,v2〉v2 + · · ·+ 〈uk,vk−1〉vk−1.

So, by definition wk = 0.

2. Let S be a countably infinite set of linearly independent vectors. Then one can apply

the Gram-Schmidt process to get a countably infinite orthonormal set.

3. Consider Rn with the standard inner product and let {v1,v2, . . . ,vn} be an orthonor-

mal set. Then, we see that

(a) ‖vi‖ = 1 is equivalent to vt
ivi = 1, for 1 ≤ i ≤ n,

(b) 〈vi,vj〉 = 0 is equivalent to vt
ivj = 0, for 1 ≤ i 6= j ≤ n.

Hence, we see that

AtA =









vt
1

vt
2
...

vt
n









[v1,v2, . . . ,vn]

=









vt
1v1 vt

1v2 · · · vt
1vn

vt
2v1 vt

2v2 · · · vt
2vn

...
...

. . .
...

vt
nv1 vt

nv2〉 · · · vt
nvn









=









1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1









= In.

Since AtA = In, it follows that AAt = In. But,

AAt = [v1,v2, . . . ,vn]









vt
1

vt
2
...

vt
n









= v1v
t
1 + v2v

t
2 + · · · + vnv

t
n.

Now, for each i, 1 ≤ i ≤ n, the matrix viv
t
i has the following properties:

(a) it is symmetric;

(b) it is idempotent; and

(c) it has rank one.

4. The first two properties imply that the matrix viv
t
i, for each i, 1 ≤ i ≤ n is a projection

operator. That is, the identity matrix is the sum of projection operators, each of rank

1.

5. Now define a linear transformation T : Rn−→R
n by T (x) = (viv

t
i)x = (vt

ix)vi is a

projection operator on the subspace L(vi).
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6. Now, let us fix k, 1 ≤ k ≤ n. Then, it can be observed that the linear transformation

T : Rn−→R
n defined by T (x) = (

∑k
i=1 viv

t
i)x =

∑k
i=1(v

t
ix)vi is a projection operator

on the subspace L(v1, . . . ,vk). We will use this idea in Subsection 5.4.1 .

Definition 5.2.12 started with a subspace of an inner product space V and looked at its

complement. We now look at the orthogonal complement of a subset of an inner product

space V and the results associated with it.

Definition 5.3.5 (Orthogonal Subspace of a Set). Let V be an inner product space. Let

S be a non-empty subset of V . We define

S⊥ = {v ∈ V : 〈v, s〉 = 0 for all s ∈ S}.

Example 5.3.6. Let V = R.

1. S = {0}. Then S⊥ = R.

2. S = R, Then S⊥ = {0}.

3. Let S be any subset of R containing a non-zero real number. Then S⊥ = {0}.

4. Let S = {(1, 2, 1)} ⊂ R
3. Then using Example 5.3.3.2, S⊥ = L({(−2, 1, 0), (−1, 0, 1)}).

We now state the result which gives the existence of an orthogonal subspace of a finite

dimensional inner product space.

Theorem 5.3.7. Let S be a subset of a finite dimensional inner product space V, with

inner product 〈 , 〉. Then

1. S⊥ is a subspace of V.

2. Let W = L(S). Then the subspaces W and S⊥ = W⊥ are complementary. That is,

V = W + S⊥ = W +W⊥.

3. Moreover, 〈u,w〉 = 0 for all w ∈ W and u ∈ S⊥.

Proof. We leave the prove of the first part to the reader. The prove of the second part is

as follows:

Let dim(V ) = n and dim(W ) = k. Let {w1,w2, . . . ,wk} be a basis of W. By Gram-Schmidt

orthogonalization process, we get an orthonormal basis, say {v1,v2, . . . ,vk} of W. Then,

for any v ∈ V,

v −
k∑

i=1

〈v,vi〉vi ∈ S⊥.

So, V ⊂ W + S⊥. Hence, V = W + S⊥. We now need to show that W ∩ S⊥ = {0}.
To do this, let v ∈ W ∩S⊥. Then v ∈ W and v ∈ S⊥. Hence, be definition, 〈v,v〉 = 0.

That is, ‖v‖2 = 〈v,v〉 = 0 implying v = 0 and hence W ∩ S⊥ = {0}.
The third part is a direct consequence of the definition of S⊥.
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Exercise 5.3.8. 1. Let A be an n× n orthogonal matrix. Then prove that

(a) the rows of A form an orthonormal basis of Rn.

(b) the columns of A form an orthonormal basis of Rn.

(c) for any two vectors x,y ∈ R
n×1, 〈Ax, Ay〉 = 〈x,y〉.

(d) for any vector x ∈ R
n×1, ‖Ax‖ = ‖x‖.

2. Let A be an n× n unitary matrix. Then prove that

(a) the rows/columns of A form an orthonormal basis of the complex vector space

C
n.

(b) for any two vectors x,y ∈ C
n×1, 〈Ax, Ay〉 = 〈x,y〉.

(c) for any vector x ∈ C
n×1, ‖Ax‖ = ‖x‖.

3. Let A and B be two n × n orthogonal matrices. Then prove that AB and BA are

both orthogonal matrices. Prove a similar result for unitary matrices.

4. Prove the statements made in Remark 5.3.4.3 about orthogonal matrices. State and

prove a similar result for unitary matrices.

5. Let A be an n× n upper triangular matrix. If A is also an orthogonal matrix then A

is a diagonal matrix with diagonal entries ±1.

6. Determine an orthonormal basis of R4 containing the vectors (1,−2, 1, 3) and (2, 1,−3, 1).

7. Consider the real inner product space C[−1, 1] with 〈f, g〉 =
1∫

−1

f(t)g(t)dt. Prove that

the polynomials 1, x, 32x
2 − 1

2 ,
5
2x

3 − 3
2x form an orthogonal set in C[−1, 1]. Find the

corresponding functions f(x) with ‖f(x)‖ = 1.

8. Consider the real inner product space C[−π, π] with 〈f, g〉 =
π∫

−π

f(t)g(t)dt. Find an

orthonormal basis for L (x, sinx, sin(x+ 1)) .

9. Let M be a subspace of Rn and dimM = m. A vector x ∈ R
n is said to be orthogonal

to M if 〈x, y〉 = 0 for every y ∈ M.

(a) How many linearly independent vectors can be orthogonal to M?

(b) If M = {(x1, x2, x3) ∈ R
3 : x1 + x2 + x3 = 0}, determine a maximal set of

linearly independent vectors orthogonal to M in R
3.

10. Determine an orthogonal basis of L ({(1, 1, 0, 1), (−1, 1, 1,−1), (0, 2, 1, 0), (1, 0, 0, 0)})
in R

4.

11. Let Rn be endowed with the standard inner product. Suppose we have a vector xt =

(x1, x2, . . . , xn) ∈ R
n with ‖x‖ = 1.
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(a) Then prove that the set {x} can always be extended to form an orthonormal

basis of Rn.

(b) Let this basis be {x,x2, . . . ,xn}. Suppose B = (e1, e2, . . . , en) is the standard

basis of R
n and let A =

[

[x]B, [x2]B, . . . , [xn]B

]

. Then prove that A is an

orthogonal matrix.

12. Let v,w ∈ R
n, n ≥ 1 with ‖u‖ = ‖w‖ = 1. Prove that there exists an orthogonal

matrix A such that Av = w. Prove also that A can be chosen such that det(A) = 1.

5.4 Orthogonal Projections and Applications

Recall that given a k-dimensional vector subspace of a vector space V of dimension n, one

can always find an (n − k)-dimensional vector subspace W0 of V (see Exercise 3.3.13.5)

satisfying

W +W0 = V and W ∩W0 = {0}.

The subspace W0 is called the complementary subspace of W in V. We first use Theo-

rem 5.3.7 to get the complementary subspace in such a way that the vectors in different

subspaces are orthogonal. That is, 〈w,v〉 = 0 for all w ∈ W and v ∈ W0. We then use this

to define an important class of linear transformations on an inner product space, called

orthogonal projections.

Definition 5.4.1 (Orthogonal Complement and Orthogonal Projection). Let W be a sub-

space of a finite dimensional inner product space V .

1. Then W⊥ is called the orthogonal complement of W in V. We represent it by writing

V = W ⊕W⊥ in place of V = W +W⊥.

2. Also, for each v ∈ V there exist unique vectors w ∈ W and u ∈ W⊥ such that

v = w + u. We use this to define

PW : V −→ V by PW (v) = w.

Then PW is called the orthogonal projection of V onto W .

Exercise 5.4.2. Let W be a subspace of a finite dimensional inner product space V . Use

V = W ⊕ W⊥ to define the orthogonal projection operator PW⊥ of V onto W⊥. Prove

that the maps PW and PW⊥ are indeed linear transformations. What can you say about

PW + PW⊥?

Example 5.4.3. 1. Let V = R
3 and W = {(x, y, z) ∈ R

3 : x+ y − z = 0}. Then it can

be easily verified that {(1, 1,−1)} is a basis of W⊥ as for each (x, y, z) ∈ W , we have

x+ y − z = 0 and hence

〈(x, y, z), (1, 1,−1)〉 = x+ y − z = 0 for each (x, y, z) ∈ W.
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Also, using Equation (5.3.1), for every xt = (x, y, z) ∈ R
3, we have u = x+y−z

3 (1, 1,−1),

w = (2x−y+z
3 , −x+2y+z

3 , x+y+2z
3 ) and x = w + u. Let

A =
1

3






2 −1 1

−1 2 1

1 1 2




 and B =

1

3






1 1 −1

1 1 −1

−1 −1 1




 .

Then by definition, PW (x) = w = Ax and PW⊥(x) = u = Bx. Observe that

A2 = A,B2 = B, At = A, Bt = B, A · B = 03, B · A = 03 and A + B = I3, where

03 is the zero matrix of size 3× 3 and I3 is the identity matrix of size 3. Also, verify

that rank(A) = 2 and rank(B) = 1.

2. Let W = L( (1, 2, 1) ) ⊂ R
3. Then using Example 5.3.3.2, and Equation (5.3.1), we

get

W⊥ = L({(−2, 1, 0), (−1, 0, 1)}) = L({(−2, 1, 0), (1, 2,−5)}),

u = (5x−2y−z
6 , −2x+2y−2z

6 , −x−2y+5z
6 ) and w = x+2y+z

6 (1, 2, 1) with (x, y, z) = w + u.

Hence, for

A =
1

6






1 2 1

2 4 2

1 2 1




 and B =

1

6






5 −2 −1

−2 2 −2

−1 −2 5




 ,

we have PW (x) = w = Ax and PW⊥(x) = u = Bx. Observe that A2 = A,B2 = B,

At = A and Bt = B, A · B = 03, B · A = 03 and A + B = I3, where 03 is the

zero matrix of size 3 × 3 and I3 is the identity matrix of size 3. Also, verify that

rank(A) = 1 and rank(B) = 2.

We now prove some basic properties related to orthogonal projections. We also need

the following definition.

Definition 5.4.4 (Self-Adjoint Transformation/Operator). Let V be an inner product

space with inner product 〈 , 〉. A linear transformation T : V −→ V is called a self-adjoint

operator if 〈T (v),u〉 = 〈v, T (u)〉 for every u,v ∈ V.

The example below gives an indication that the self-adjoint operators and Hermitian

matrices are related. It also shows that the vector spaces Cn and R
n can be decomposed in

terms of the null space and range space of Hermitian matrices. These examples also follow

directly from the fundamental theorem of linear algebra.

Example 5.4.5. 1. Let A be an n×n real symmetric matrix and define TA : Rn −→ R
n

by TA(x) = Ax for every xt ∈ R
n.

(a) TA is a self adjoint operator.

As A = At, for every xt,yt ∈ R
n,

〈TA(x),y〉 = (yt)Ax = (yt)Atx = (Ay)tx = 〈x, Ay〉 = 〈x, TA(y)〉.
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(b) N (TA) = R(TA)
⊥ follows from Theorem 5.2.15 as A = At. But we do give a

proof for completeness.

Let x ∈ N (TA). Then TA(x) = 0 and 〈x, TA(u)〉 = 〈TA(x),u〉 = 0. Thus,

x ∈ R(TA)
⊥ and hence N (TA) ⊂ R(TA)

⊥.

Let x ∈ R(TA)
⊥. Then 0 = 〈x, TA(y)〉 = 〈TA(x),y〉 for every y ∈ R

n. Hence,

by Exercise 2 TA(x) = 0. That is, x ∈ N (A) and hence R(TA)
⊥ ⊂ N (TA).

(c) R
n = N (TA)⊕R(TA) as N (TA) = R(TA)

⊥.

(d) Thus N (A) = Im(A)⊥, or equivalently, Rn = N (A)⊕ Im(A).

2. Let A be an n× n Hermitian matrix. Define TA : Cn −→ C
n defined by TA(z) = Az

for all zt ∈ C
n. Then using arguments similar to the arguments in Example 5.4.5.1,

prove the following:

(a) TA is a self-adjoint operator.

(b) N (TA) = R(TA)
⊥ and C

n = N (TA)⊕R(TA).

(c) N (A) = Im(A)⊥ and C
n = N (A) ⊕ Im(A).

We now state and prove the main result related with orthogonal projection operators.

Theorem 5.4.6. Let W be a vector subspace of a finite dimensional inner product space

V and let PW : V −→ V be the orthogonal projection operator of V onto W .

1. Then N (PW ) = {v ∈ V : PW (v) = 0} = W⊥ = R(PW⊥).

2. Then R(PW ) = {PW (v) : v ∈ V } = W = N (PW⊥).

3. Then PW ◦ PW = PW , PW⊥ ◦ PW⊥ = PW⊥ .

4. Let 0V denote the zero operator on V defined by 0V (v) = 0 for all v ∈ V . Then

PW⊥ ◦ PW = 0V and PW ◦ PW⊥ = 0V .

5. Let IV denote the identity operator on V defined by IV (v) = v for all v ∈ V . Then

IV = PW ⊕ PW⊥, where we have written ⊕ instead of + to indicate the relationship

PW⊥ ◦ PW = 0V and PW ◦ PW⊥ = 0V .

6. The operators PW and PW⊥ are self-adjoint.

Proof. Part 1: Let u ∈ W⊥. As V = W ⊕ W⊥, we have u = 0 + u for 0 ∈ W and

u ∈ W⊥. Hence by definition, PW (u) = 0 and PW⊥(u) = u. Thus, W⊥ ⊂ N (PW ) and

W⊥ ⊂ R(PW⊥).

Also, suppose that v ∈ N (PW ) for some v ∈ V . As v has a unique expression as

v = w+ u for some w ∈ W and some u ∈ W⊥, by definition of PW , we have PW (v) = w.

As v ∈ N (PW ), by definition, PW (v) = 0 and hence w = 0. That is, v = u ∈ W⊥. Thus,
N (PW ) ⊂ W⊥.

One can similarly show that R(PW⊥) ⊂ W⊥. Thus, the proof of the first part is

complete.
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Part 2: Similar argument as in the proof of Part 1.

Part 3, Part 4 and Part 5: Let v ∈ V and let v = w + u for some w ∈ W and

u ∈ W⊥. Then by definition,

(PW ◦ PW )(v) = PW

(
PW (v)

)
= PW (w) = w & PW (v) = w, (5.4.1)

(PW⊥ ◦ PW )(v) = PW⊥

(
PW (v)

)
= PW⊥(w) = 0 and (5.4.2)

(PW ⊕ PW⊥)(v) = PW (v) + PW⊥(v) = w + u = v = IV (v). (5.4.3)

Hence, applying Exercise 2 to Equations (5.4.1), (5.4.2) and (5.4.3), respectively, we get

PW ◦ PW = PW , PW⊥ ◦ PW = 0V and IV = PW ⊕ PW⊥ .

Part 6: Let u = w1 + x1 and v = w2 + x2, where w1,w2 ∈ W and x1,x2 ∈ W⊥.
Then, by definition 〈wi,xj〉 = 0 for 1 ≤ i, j ≤ 2. Thus,

〈PW (u),v〉 = 〈w1,v〉 = 〈w1,w2〉 = 〈u,w2〉 = 〈u, PW (v)〉

and the proof of the theorem is complete.

The next theorem is a generalization of Theorem 5.4.6 when a finite dimensional inner

product space V can be written as V = W1⊕W2⊕· · ·⊕Wk, whereWi’s are vector subspaces

of V . That is, for each v ∈ V there exist unique vectors v1,v2, . . . ,vk such that

1. vi ∈ Wi for 1 ≤ i ≤ k,

2. 〈vi,vj〉 = 0 for each vi ∈ Wi,vj ∈ Wj , 1 ≤ i 6= j ≤ k and

3. v = v1 + v2 + · · ·+ vk.

We omit the proof as it basically uses arguments that are similar to the arguments used in

the proof of Theorem 5.4.6.

Theorem 5.4.7. Let V be a finite dimensional inner product space and let W1,W2, . . . ,Wk

be vector subspaces of V such that V = W1 ⊕W2 ⊕ · · · ⊕Wk. Then for each i, j, 1 ≤ i 6=
j ≤ k, there exist orthogonal projection operators PWi

: V −→ V of V onto Wi satisfying

the following:

1. N (PWi
) = W⊥

i = W1 ⊕W2 ⊕ · · · ⊕Wi−1 ⊕Wi+1 ⊕ · · · ⊕Wk.

2. R(PWi
) = Wi.

3. PWi
◦ PWi

= PWi
.

4. PWi
◦ PWj

= 0V .

5. PWi
is a self-adjoint operator, and

6. IV = PW1
⊕ PW2

⊕ · · · ⊕ PWk
.

Remark 5.4.8. 1. By Exercise 5.4.2, PW is a linear transformation.

2. By Theorem 5.4.6, we observe the following:
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(a) The orthogonal projection operators PW and PW⊥ are idempotent operators.

(b) The orthogonal projection operators PW and PW⊥ are also self-adjoint operators.

(c) Let v ∈ V . Then v − PW (v) = (IV − PW )(v) = PW⊥(v) ∈ W⊥. Thus,

〈v − PW (v),w〉 = 0 for every v ∈ V and w ∈ W.

(d) Using Remark 5.4.8.2c, PW (v)−w ∈ W for each v ∈ V and w ∈ W . Thus,

‖v −w‖2 = ‖v − PW (v) + PW (v) −w‖2

= ‖v − PW (v)‖2 + ‖PW (v) −w‖2

+2〈v − PW (v), PW (v) −w〉
= ‖v − PW (v)‖2 + ‖PW (v) −w‖2.

Therefore,

‖v −w‖ ≥ ‖v − PW (v)‖

and equality holds if and only if w = PW (v). Since PW (v) ∈ W, we see that

d(v,W ) = inf {‖v −w‖ : w ∈ W} = ‖v − PW (v)‖.

That is, PW (v) is the vector nearest to v ∈ W. This can also be stated as: the

vector PW (v) solves the following minimization problem:

inf
w∈W

‖v −w‖ = ‖v − PW (v)‖.

Exercise 5.4.9. 1. Let A ∈ Mn(R) be an idempotent matrix and define TA : Rn −→ R
n

by TA(v) = Av for all vt ∈ R
n. Recall the following results from Exercise 4.3.12.5.

(a) TA ◦ TA = TA

(b) N (TA) ∩R(TA) = {0}.
(c) R

n = R(TA) +N (TA).

The linear map TA need not be an orthogonal projection operator as R(TA)
⊥

need not be equal to N (TA). Here TA is called a projection operator of Rn onto

R(TA) along N (TA).

(d) If A is also symmetric then prove that TA is an orthogonal projection operator.

(e) Which of the above results can be generalized to an n × n complex idempotent

matrix A? Give reasons for your answer.

2. Find all 2 × 2 real matrices A such that A2 = A. Hence or otherwise, determine all

projection operators of R2.
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5.4.1 Matrix of the Orthogonal Projection

The minimization problem stated above arises in lot of applications. So, it is very helpful

if the matrix of the orthogonal projection can be obtained under a given basis.

To this end, let W be a k-dimensional subspace of R
n with W⊥ as its orthogonal

complement. Let PW : Rn −→ R
n be the orthogonal projection of Rn onto W . Then

Remark 5.3.4.6 implies that we just need to know an orthonormal basis of W . So, let B =

(v1,v2, . . . ,vk) be an orthonormal basis of W. Thus, the matrix of PW equals
∑k

i=1 viv
t
i.

Hence, we have proved the following theorem.

Theorem 5.4.10. Let W be a k-dimensional subspace of R
n and let PW be the corre-

sponding orthogonal projection of Rn onto W . Also assume that B = (v1,v2, . . . ,vk) is

an orthonormal ordered basis of W. Define A = [v1,v2, . . . ,vk], an n × k matrix. Then

the matrix of PW in the standard ordered basis of Rn is AAt =
∑k

i=1 viv
t
i (a symmetric

matrix).

We illustrate the above theorem with the help of an example. One can also see Exam-

ple 5.4.3.

Example 5.4.11. Let W = {(x, y, z, w) ∈ R
4 : x = y, z = w} be a subspace of W.

Then an orthonormal ordered basis of W and W⊥ is
(

1√
2
(1, 1, 0, 0), 1√

2
(0, 0, 1, 1)

)
and

(
1√
2
(1,−1, 0, 0), 1√

2
(0, 0, 1,−1)

)
, respectively. Let PW : R4 −→ R

4 be an orthogonal projec-

tion of R4 onto W . Then

A =









1√
2

0
1√
2

0

0 1√
2

0 1√
2









and PW [B,B] = AAt =








1
2

1
2 0 0

1
2

1
2 0 0

0 0 1
2

1
2

0 0 1
2

1
2







,

where B =
(

1√
2
(1, 1, 0, 0), 1√

2
(0, 0, 1, 1), 1√

2
(1,−1, 0, 0), 1√

2
(0, 0, 1,−1)

)

. Verify that

1. PW [B,B] is symmetric,

2. (PW [B,B])2 = PW [B,B] and

3.
(
I4 − PW [B,B]

)
PW [B,B] = 0 = PW [B,B]

(
I4 − PW [B,B]

)
.

Also, [(x, y, z, w)]B =
(
x+y√

2
, z+w√

2
, x−y√

2
, z−w√

2

)t

and hence

PW

(
(x, y, z, w)

)
=

x+ y

2
(1, 1, 0, 0) +

z + w

2
(0, 0, 1, 1)

is the closest vector to the subspace W for any vector (x, y, z, w) ∈ R
4.

Exercise 5.4.12. 1. Show that for any non-zero vector vt ∈ R
n, rank(vvt) = 1.

2. Let W be a subspace of an inner product space V and let P : V −→ V be the

orthogonal projection of V onto W . Let B be an orthonormal ordered basis of V.

Then prove that (P [B,B])t = P [B,B].
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3. Let W1 = {(x, 0) : x ∈ R} and W2 = {(x, x) : x ∈ R} be two subspaces of R2. Let

PW1
and PW2

be the corresponding orthogonal projection operators of R
2 onto W1

and W2, respectively. Compute PW1
◦ PW2

and conclude that the composition of two

orthogonal projections need not be an orthogonal projection?

4. Let W be an (n−1)-dimensional subspace of Rn. Suppose B is an orthogonal ordered

basis of Rn obtained by extending an orthogonal ordered basis of W. Define

T : Rn −→ R
n by T (v) = w0 −w

whenever v = w +w0 for some w ∈ W and w0 ∈ W⊥. Then

(a) prove that T is a linear transformation,

(b) find T [B,B] and
(c) prove that T [B,B] is an orthogonal matrix.

T is called the reflection operator along W⊥.

5.5 QR Decomposition∗

The next result gives the proof of the QR decomposition for real matrices. A similar

result holds for matrices with complex entries. The readers are advised to prove that

for themselves. This decomposition and its generalizations are helpful in the numerical

calculations related with eigenvalue problems (see Chapter 6).

Theorem 5.5.1 (QR Decomposition). Let A be a square matrix of order n with real

entries. Then there exist matrices Q and R such that Q is orthogonal and R is upper

triangular with A = QR.

In case, A is non-singular, the diagonal entries of R can be chosen to be positive. Also,

in this case, the decomposition is unique.

Proof. We prove the theorem when A is non-singular. The proof for the singular case is

left as an exercise.

Let the columns of A be x1,x2, . . . ,xn. Then {x1,x2, . . . ,xn} is a basis of Rn and hence

the Gram-Schmidt orthogonalization process gives an ordered basis (see Remark 5.3.4), say

B = (v1,v2, . . . ,vn) of R
n satisfying

L(v1,v2, . . . ,vi) = L(x1,x2, . . . ,xi),

‖vi‖ = 1, 〈vi,vj〉 = 0,

}

for 1 ≤ i 6= j ≤ n. (5.5.4)

As xi ∈ R
n and xi ∈ L(v1,v2, . . . ,vi), we can find αji, 1 ≤ j ≤ i such that

xi = α1iv1 + α2iv2 + · · ·+ αiivi =
[
(α1i, . . . , αii, 0 . . . , 0)

t
]

B. (5.5.5)
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Now define Q = [v1,v2, . . . ,vn] and R =









α11 α12 · · · α1n

0 α22 · · · α2n
...

...
. . .

...

0 0 · · · αnn









. Then by Exercise 5.3.8.4,

Q is an orthogonal matrix and using (5.5.5), we get

QR = [v1,v2, . . . ,vn]









α11 α12 · · · α1n

0 α22 · · · α2n
...

...
. . .

...

0 0 · · · αnn









=

[

α11v1, α12v1 + α22v2, . . . ,

n∑

i=1

αinvi

]

= [x1,x2, . . . ,xn] = A.

Thus, we see that A = QR, where Q is an orthogonal matrix (see Remark 5.3.4.1) and R

is an upper triangular matrix.

The proof doesn’t guarantee that for 1 ≤ i ≤ n, αii is positive. But this can be achieved

by replacing the vector vi by −vi whenever αii is negative.

Uniqueness: suppose Q1R1 = Q2R2 then Q−1
2 Q1 = R2R

−1
1 . Observe the following

properties of upper triangular matrices.

1. The inverse of an upper triangular matrix is also an upper triangular matrix, and

2. product of upper triangular matrices is also upper triangular.

Thus the matrix R2R
−1
1 is an upper triangular matrix. Also, by Exercise 5.3.8.3, the matrix

Q−1
2 Q1 is an orthogonal matrix. Hence, by Exercise 5.3.8.5, R2R

−1
1 = In. So, R2 = R1 and

therefore Q2 = Q1.

Let A = [x1,x2, . . . ,xk] be an n × k matrix with rank (A) = r. Then by Remark

5.3.4.1c , the Gram-Schmidt orthogonalization process applied to {x1,x2, . . . ,xk} yields a

set {v1,v2, . . . ,vr} of orthonormal vectors of Rn and for each i, 1 ≤ i ≤ r, we have

L(v1,v2, . . . ,vi) = L(x1,x2, . . . ,xj), for some j, i ≤ j ≤ k.

Hence, proceeding on the lines of the above theorem, we have the following result.

Theorem 5.5.2 (Generalized QR Decomposition). Let A be an n × k matrix of rank r.

Then A = QR, where

1. Q = [v1,v2, . . . ,vr] is an n× r matrix with QtQ = Ir,

2. L(v1,v2, . . . ,vr) = L(x1,x2, . . . ,xk), and

3. R is an r × k matrix with rank (R) = r.
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Example 5.5.3. 1. Let A =








1 0 1 2

0 1 −1 1

1 0 1 1

0 1 1 1







. Find an orthogonal matrix Q and an

upper triangular matrix R such that A = QR.

Solution: From Example 5.3.3, we know that

v1 =
1√
2
(1, 0, 1, 0), v2 =

1√
2
(0, 1, 0, 1) and v3 =

1√
2
(0,−1, 0, 1). (5.5.6)

We now compute w4. If we denote u4 = (2, 1, 1, 1)t then

w4 = u4 − 〈u4,v1〉v1 − 〈u4,v2〉v2 − 〈u4,v3〉v3 =
1

2
(1, 0,−1, 0)t . (5.5.7)

Thus, using Equations (5.5.6), (5.5.7) and Q =
[
v1,v2,v3,v4

]
, we get

Q =









1√
2

0 0 1√
2

0 1√
2

−1√
2

0
1√
2

0 0 −1√
2

0 1√
2

1√
2

0









and R =








√
2 0

√
2 3√

2

0
√
2 0

√
2

0 0
√
2 0

0 0 0 −1√
2







. The readers are advised

to check that A = QR is indeed correct.

2. Let A =








1 1 1 0

−1 0 −2 1

1 1 1 0

1 0 2 1







. Find a 4× 3 matrix Q satisfying QtQ = I3 and an upper

triangular matrix R such that A = QR.

Solution: Let us apply the Gram Schmidt orthogonalization process to the columns of

A. That is, apply the process to the subset {(1,−1, 1, 1), (1, 0, 1, 0), (1,−2, 1, 2), (0, 1, 0, 1)}
of R4.

Let u1 = (1,−1, 1, 1). Define v1 =
1
2u1. Let u2 = (1, 0, 1, 0). Then

w2 = (1, 0, 1, 0) − 〈u2,v1〉v1 = (1, 0, 1, 0) − v1 =
1

2
(1, 1, 1,−1).

Hence, v2 =
1
2(1, 1, 1,−1). Let u3 = (1,−2, 1, 2). Then

w3 = u3 − 〈u3,v1〉v1 − 〈u3,v2〉v2 = u3 − 3v1 + v2 = 0.

So, we again take u3 = (0, 1, 0, 1). Then

w3 = u3 − 〈u3,v1〉v1 − 〈u3,v2〉v2 = u3 − 0v1 − 0v2 = u3.

So, v3 =
1√
2
(0, 1, 0, 1). Hence,

Q = [v1,v2,v3] =








1
2

1
2 0

−1
2

1
2

1√
2

1
2

1
2 0

1
2

−1
2

1√
2







, and R =






2 1 3 0

0 1 −1 0

0 0 0
√
2




 .

The readers are advised to check the following:



5.6. SUMMARY 139

(a) rank (A) = 3,

(b) A = QR with QtQ = I3, and

(c) R a 3× 4 upper triangular matrix with rank (R) = 3.

5.6 Summary
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Chapter 6

Eigenvalues, Eigenvectors and

Diagonalization

6.1 Introduction and Definitions

In this chapter, the linear transformations are from the complex vector space C
n to itself.

Observe that in this case, the matrix of the linear transformation is an n×n matrix. So, in

this chapter, all the matrices are square matrices and a vector x means x = (x1, x2, . . . , xn)
t

for some positive integer n.

Example 6.1.1. Let A be a real symmetric matrix. Consider the following problem:

Maximize (Minimize) xtAx such that x ∈ R
n and xtx = 1.

To solve this, consider the Lagrangian

L(x, λ) = xtAx− λ(xtx− 1) =

n∑

i=1

n∑

j=1

aijxixj − λ(

n∑

i=1

x2i − 1).

Partially differentiating L(x, λ) with respect to xi for 1 ≤ i ≤ n, we get

∂L

∂x1
= 2a11x1 + 2a12x2 + · · ·+ 2a1nxn − 2λx1,

∂L

∂x2
= 2a21x1 + 2a22x2 + · · ·+ 2a2nxn − 2λx2,

and so on, till
∂L

∂xn
= 2an1x1 + 2an2x2 + · · ·+ 2annxn − 2λxn.

Therefore, to get the points of extremum, we solve for

(0, 0, . . . , 0)t = (
∂L

∂x1
,
∂L

∂x2
, . . . ,

∂L

∂xn
)t =

∂L

∂x
= 2(Ax − λx).

We therefore need to find a λ ∈ R and 0 6= x ∈ R
n such that Ax = λx for the extremal

problem.

141
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Let A be a matrix of order n. In general, we ask the question:

For what values of λ ∈ F, there exist a non-zero vector x ∈ F
n such that

Ax = λx? (6.1.1)

Here, Fn stands for either the vector space R
n over R or C

n over C. Equation (6.1.1) is

equivalent to the equation

(A− λI)x = 0.

By Theorem 2.4.1, this system of linear equations has a non-zero solution, if

rank (A− λI) < n, or equivalently det(A− λI) = 0.

So, to solve (6.1.1), we are forced to choose those values of λ ∈ F for which det(A−λI) = 0.

Observe that det(A − λI) is a polynomial in λ of degree n. We are therefore lead to the

following definition.

Definition 6.1.2 (Characteristic Polynomial, Characteristic Equation). Let A be a square

matrix of order n. The polynomial det(A− λI) is called the characteristic polynomial of A

and is denoted by pA(λ) (in short, p(λ), if the matrix A is clear from the context). The

equation p(λ) = 0 is called the characteristic equation of A. If λ ∈ F is a solution of the

characteristic equation p(λ) = 0, then λ is called a characteristic value of A.

Some books use the term eigenvalue in place of characteristic value.

Theorem 6.1.3. Let A ∈ Mn(F). Suppose λ = λ0 ∈ F is a root of the characteristic

equation. Then there exists a non-zero v ∈ F
n such that Av = λ0v.

Proof. Since λ0 is a root of the characteristic equation, det(A− λ0I) = 0. This shows that

the matrix A− λ0I is singular and therefore by Theorem 2.4.1 the linear system

(A− λ0In)x = 0

has a non-zero solution.

Remark 6.1.4. Observe that the linear system Ax = λx has a solution x = 0 for every

λ ∈ F. So, we consider only those x ∈ F
n that are non-zero and are also solutions of the

linear system Ax = λx.

Definition 6.1.5 (Eigenvalue and Eigenvector). Let A ∈ Mn(F) and let the linear system

Ax = λx has a non-zero solution x ∈ F
n for some λ ∈ F. Then

1. λ ∈ F is called an eigenvalue of A,

2. x ∈ F
n is called an eigenvector corresponding to the eigenvalue λ of A, and

3. the tuple (λ,x) is called an eigen-pair.
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Remark 6.1.6. To understand the difference between a characteristic value and an eigen-

value, we give the following example.

Let A =

[

0 1

−1 0

]

. Then pA(λ) = λ2 +1. Also, define the linear operator TA : F2−→F
2

by TA(x) = Ax for every x ∈ F
2.

1. Suppose F = C, i.e., A ∈ M2(C). Then the roots of p(λ) = 0 in C are ±i. So, A has

(i, (1, i)t) and (−i, (i, 1)t) as eigen-pairs.

2. If A ∈ M2(R), then p(λ) = 0 has no solution in R. Therefore, if F = R, then A has

no eigenvalue but it has ±i as characteristic values.

Remark 6.1.7. 1. Let A ∈ Mn(F). Suppose (λ,x) is an eigen-pair of A. Then for

any c ∈ F, c 6= 0, (λ, cx) is also an eigen-pair for A. Similarly, if x1,x2, . . . ,xr are

linearly independent eigenvectors of A corresponding to the eigenvalue λ, then
r∑

i=1
cixi

is also an eigenvector of A corresponding to λ if at least one ci 6= 0. Hence, if S

is a collection of eigenvectors, it is implicitly understood that the set S is linearly

independent.

2. Suppose pA(λ0) = 0 for some λ0 ∈ F. Then A−λ0I is singular. If rank (A−λ0I) = r

then r < n. Hence, by Theorem 2.4.1 on page 48, the system (A−λ0I)x = 0 has n−r

linearly independent solutions. That is, A has n−r linearly independent eigenvectors

corresponding to λ0 whenever rank (A− λ0I) = r.

Example 6.1.8. 1. Let A = diag(d1, d2, . . . , dn) with di ∈ R for 1 ≤ i ≤ n. Then

p(λ) =
n∏

i=1
(λ− di) and the eigen-pairs are (d1, e1), (d2, e2), . . . , (dn, en).

2. Let A =

[

1 1

0 1

]

. Then p(λ) = (1 − λ)2. Hence, the characteristic equation has roots

1, 1. That is, 1 is a repeated eigenvalue. But the system (A−I2)x = 0 for x = (x1, x2)
t

implies that x2 = 0. Thus, x = (x1, 0)
t is a solution of (A − I2)x = 0. Hence using

Remark 6.1.7.1, (1, 0)t is an eigenvector. Therefore, note that 1 is a repeated

eigenvalue whereas there is only one eigenvector.

3. Let A =

[

1 0

0 1

]

. Then p(λ) = (1 − λ)2. Again, 1 is a repeated root of p(λ) = 0.

But in this case, the system (A− I2)x = 0 has a solution for every xt ∈ R
2. Hence,

we can choose any two linearly independent vectors xt,yt from R
2 to get

(1,x) and (1,y) as the two eigen-pairs. In general, if x1,x2, . . . ,xn ∈ R
n are linearly

independent vectors then (1,x1), (1,x2), . . . , (1,xn) are eigen-pairs of the identity

matrix, In.

4. Let A =

[

1 2

2 1

]

. Then p(λ) = (λ − 3)(λ + 1) and its roots are 3,−1. Verify that

the eigen-pairs are (3, (1, 1)t) and (−1, (1,−1)t). The readers are advised to prove the

linear independence of the two eigenvectors.
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5. Let A =

[

1 −1

1 1

]

. Then p(λ) = λ2− 2λ+2 and its roots are 1+ i, 1− i. Hence, over

R, the matrix A has no eigenvalue. Over C, the reader is required to show that the

eigen-pairs are (1 + i, (i, 1)t) and (1− i, (1, i)t).

Exercise 6.1.9. 1. Find the eigenvalues of a triangular matrix.

2. Find eigen-pairs over C, for each of the following matrices:[

1 1 + i

1− i 1

]

,

[

i 1 + i

−1 + i i

]

,

[

cos θ − sin θ

sin θ cos θ

]

and

[

cos θ sin θ

sin θ − cos θ

]

.

3. Let A and B be similar matrices.

(a) Then prove that A and B have the same set of eigenvalues.

(b) If B = PAP−1 for some invertible matrix P then prove that Px is an eigenvector

of B if and only if x is an eigenvector of A.

4. Let A = (aij) be an n × n matrix. Suppose that for all i, 1 ≤ i ≤ n,
n∑

j=1
aij = a.

Then prove that a is an eigenvalue of A. What is the corresponding eigenvector?

5. Prove that the matrices A and At have the same set of eigenvalues. Construct a 2×2

matrix A such that the eigenvectors of A and At are different.

6. Let A be a matrix such that A2 = A (A is called an idempotent matrix). Then prove

that its eigenvalues are either 0 or 1 or both.

7. Let A be a matrix such that Ak = 0 (A is called a nilpotent matrix) for some positive

integer k ≥ 1. Then prove that its eigenvalues are all 0.

8. Compute the eigen-pairs of the matrices

[

2 1

−1 0

]

and

[

2 i

i 0

]

.

Theorem 6.1.10. Let A = [aij ] be an n × n matrix with eigenvalues λ1, λ2, . . . , λn, not

necessarily distinct. Then det(A) =
n∏

i=1
λi and tr(A) =

n∑

i=1
aii =

n∑

i=1
λi.

Proof. Since λ1, λ2, . . . , λn are the n eigenvalues of A, by definition,

det(A− λIn) = p(λ) = (−1)n(λ− λ1)(λ− λ2) · · · (λ− λn). (6.1.2)

(6.1.2) is an identity in λ as polynomials. Therefore, by substituting λ = 0 in (6.1.2), we

get

det(A) = (−1)n(−1)n
n∏

i=1

λi =

n∏

i=1

λi.
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Also,

det(A− λIn) =









a11 − λ a12 · · · a1n
a21 a22 − λ · · · a2n
...

...
. . .

...

an1 an2 · · · ann − λ









(6.1.3)

= a0 − λa1 + λ2a2 + · · ·
+(−1)n−1λn−1an−1 + (−1)nλn (6.1.4)

for some a0, a1, . . . , an−1 ∈ F. Note that an−1, the coefficient of (−1)n−1λn−1, comes from

the product

(a11 − λ)(a22 − λ) · · · (ann − λ).

So, an−1 =
n∑

i=1
aii = tr(A) by definition of trace.

But , from (6.1.2) and (6.1.4), we get

a0 − λa1 + λ2a2 + · · ·+ (−1)n−1λn−1an−1 + (−1)nλn

= (−1)n(λ− λ1)(λ− λ2) · · · (λ− λn). (6.1.5)

Therefore, comparing the coefficient of (−1)n−1λn−1, we have

tr(A) = an−1 = (−1){(−1)

n∑

i=1

λi} =

n∑

i=1

λi.

Hence, we get the required result.

Exercise 6.1.11. 1. Let A be a skew symmetric matrix of order 2n + 1. Then prove

that 0 is an eigenvalue of A.

2. Let A be a 3 × 3 orthogonal matrix (AAt = I). If det(A) = 1, then prove that there

exists a non-zero vector v ∈ R
3 such that Av = v.

Let A be an n × n matrix. Then in the proof of the above theorem, we observed that

the characteristic equation det(A−λI) = 0 is a polynomial equation of degree n in λ. Also,

for some numbers a0, a1, . . . , an−1 ∈ F, it has the form

λn + an−1λ
n−1 + an−2λ

2 + · · · a1λ+ a0 = 0.

Note that, in the expression det(A − λI) = 0, λ is an element of F. Thus, we can only

substitute λ by elements of F.

It turns out that the expression

An + an−1A
n−1 + an−2A

2 + · · · a1A+ a0I = 0

holds true as a matrix identity. This is a celebrated theorem called the Cayley Hamilton

Theorem. We state this theorem without proof and give some implications.
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Theorem 6.1.12 (Cayley Hamilton Theorem). Let A be a square matrix of order n. Then

A satisfies its characteristic equation. That is,

An + an−1A
n−1 + an−2A

2 + · · · a1A+ a0I = 0

holds true as a matrix identity.

Some of the implications of Cayley Hamilton Theorem are as follows.

Remark 6.1.13. 1. Let A =

[

0 1

0 0

]

. Then its characteristic polynomial is p(λ) =

λ2. Also, for the function, f(x) = x, f(0) = 0, and f(A) = A 6= 0. This shows that

the condition f(λ) = 0 for each eigenvalue λ of A does not imply that f(A) = 0.

2. let A be a square matrix of order n with characteristic polynomial p(λ) = λn +

an−1λ
n−1 + an−2λ

2 + · · · a1λ+ a0.

(a) Then for any positive integer ℓ, we can use the division algorithm to find numbers

α0, α1, . . . , αn−1 and a polynomial f(λ) such that

λℓ = f(λ)
(
λn + an−1λ

n−1 + an−2λ
2 + · · · a1λ+ a0

)

+α0 + λα1 + · · ·+ λn−1αn−1.

Hence, by the Cayley Hamilton Theorem,

Aℓ = α0I + α1A+ · · · + αn−1A
n−1.

That is, we just need to compute the powers of A till n− 1.

In the language of graph theory, it says the following:

“Let G be a graph on n vertices. Suppose there is no path of length n− 1 or less from

a vertex v to a vertex u of G. Then there is no path from v to u of any length. That is,

the graph G is disconnected and v and u are in different components.”

(b) If A is non-singular then an = det(A) 6= 0 and hence

A−1 =
−1

an
[An−1 + an−1A

n−2 + · · ·+ a1I].

This matrix identity can be used to calculate the inverse.

Note that the vector A−1 (as an element of the vector space of all n× n matrices) is a

linear combination of the vectors I, A, . . . , An−1.

Exercise 6.1.14. Find inverse of the following matrices by using the Cayley Hamilton

Theorem

i)






2 3 4

5 6 7

1 1 2




 ii)






−1 −1 1

1 −1 1

0 1 1




 iii)






1 −2 −1

−2 1 −1

0 −1 2




 .

Theorem 6.1.15. If λ1, λ2, . . . , λk are distinct eigenvalues of a matrix A with correspond-

ing eigenvectors x1,x2, . . . ,xk, then the set {x1,x2, . . . ,xk} is linearly independent.
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Proof. The proof is by induction on the number m of eigenvalues. The result is obviously

true if m = 1 as the corresponding eigenvector is non-zero and we know that any set

containing exactly one non-zero vector is linearly independent.

Let the result be true for m, 1 ≤ m < k. We prove the result for m+ 1. We consider

the equation

c1x1 + c2x2 + · · ·+ cm+1xm+1 = 0 (6.1.6)

for the unknowns c1, c2, . . . , cm+1. We have

0 = A0 = A(c1x1 + c2x2 + · · ·+ cm+1xm+1)

= c1Ax1 + c2Ax2 + · · · + cm+1Axm+1

= c1λ1x1 + c2λ2x2 + · · ·+ cm+1λm+1xm+1. (6.1.7)

From Equations (6.1.6) and (6.1.7), we get

c2(λ2 − λ1)x2 + c3(λ3 − λ1)x3 + · · ·+ cm+1(λm+1 − λ1)xm+1 = 0.

This is an equation in m eigenvectors. So, by the induction hypothesis, we have

ci(λi − λ1) = 0 for 2 ≤ i ≤ m+ 1.

But the eigenvalues are distinct implies λi − λ1 6= 0 for 2 ≤ i ≤ m + 1. We therefore get

ci = 0 for 2 ≤ i ≤ m+ 1. Also, x1 6= 0 and therefore (6.1.6) gives c1 = 0.

Thus, we have the required result.

We are thus lead to the following important corollary.

Corollary 6.1.16. The eigenvectors corresponding to distinct eigenvalues are linearly in-

dependent.

Exercise 6.1.17. 1. Let A,B ∈ Mn(R). Prove that

(a) if λ is an eigenvalue of A then λk is an eigenvalue of Ak for all k ∈ Z
+.

(b) if A is invertible and λ is an eigenvalue of A then
1

λ
is an eigenvalue of A−1.

(c) if A is nonsingular then BA−1 and A−1B have the same set of eigenvalues.

(d) AB and BA have the same non-zero eigenvalues.

In each case, what can you say about the eigenvectors?

2. Let A ∈ Mn(R) be an invertible matrix and let xt,yt ∈ R
n with x 6= 0 and ytA−1x 6=

0. Define B = xytA−1. Then prove that

(a) λ0 = ytA−1x is an eigenvalue of B of multiplicity 1.

(b) 0 is an eigenvalue of B of multiplicity n− 1 [Hint: Use Exercise 6.1.17.1d].

(c) 1 + αλ0 is an eigenvalue of I + αB of multiplicity 1, for any α ∈ R, α 6= 0.

(d) 1 is an eigenvalue of I + αB of multiplicity n− 1, for any α ∈ R.
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(e) det(A + αxyt) equals (1 + αλ0) det(A) for any α ∈ R. This result is known as

the Shermon-Morrison formula for determinant.

3. Let A,B ∈ M2(R) such that det(A) = det(B) and tr(A) = tr(B).

(a) Do A and B have the same set of eigenvalues?

(b) Give examples to show that the matrices A and B need not be similar.

4. Let A,B ∈ Mn(R). Also, let (λ1,u) be an eigen-pair for A and (λ2,v) be an eigen-

pair for B.

(a) If u = αv for some α ∈ R then (λ1 + λ2,u) is an eigen-pair for A+B.

(b) Give an example to show that if u and v are linearly independent then λ1 + λ2

need not be an eigenvalue of A+B.

5. Let A ∈ Mn(R) be an invertible matrix with eigen-pairs (λ1,u1), (λ2,u2), . . . , (λn,un).

Then prove that B = {u1,u2, . . . ,un} forms a basis of Rn(R). If [b]B = (c1, c2, . . . , cn)
t

then the system Ax = b has the unique solution

x =
c1
λ1

u1 +
c2
λ2

u2 + · · ·+ cn
λn

un.

6.2 Diagonalization

Let A ∈ Mn(F) and let TA : Fn−→F
n be the corresponding linear operator. In this section,

we ask the question “does there exist a basis B of Fn such that TA[B,B], the matrix of the

linear operator TA with respect to the ordered basis B, is a diagonal matrix.” it will be

shown that for a certain class of matrices, the answer to the above question is in affirmative.

To start with, we have the following definition.

Definition 6.2.1 (Matrix Digitalization). A matrix A is said to be diagonalizable if there

exists a non-singular matrix P such that P−1AP is a diagonal matrix.

Remark 6.2.2. Let A ∈ Mn(F) be a diagonalizable matrix with eigenvalues λ1, λ2, . . . , λn.

By definition, A is similar to a diagonal matrix D = diag(λ1, λ2, . . . , λn) as similar matrices

have the same set of eigenvalues and the eigenvalues of a diagonal matrix are its diagonal

entries.

Example 6.2.3. Let A =

[

0 1

−1 0

]

. Then we have the following:

1. Let V = R
2. Then A has no real eigenvalue (see Example 6.1.7 and hence A doesn’t

have eigenvectors that are vectors in R
2. Hence, there does not exist any non-singular

2× 2 real matrix P such that P−1AP is a diagonal matrix.



6.2. DIAGONALIZATION 149

2. In case, V = C
2(C), the two complex eigenvalues of A are −i, i and the corresponding

eigenvectors are (i, 1)t and (−i, 1)t, respectively. Also, (i, 1)t and (−i, 1)t can be taken

as a basis of C2(C). Define U = 1√
2

[

i −i

1 1

]

. Then

U∗AU =

[

−i 0

0 i

]

.

Theorem 6.2.4. Let A ∈ Mn(R). Then A is diagonalizable if and only if A has n linearly

independent eigenvectors.

Proof. Let A be diagonalizable. Then there exist matrices P and D such that

P−1AP = D = diag(λ1, λ2, . . . , λn).

Or equivalently, AP = PD. Let P = [u1,u2, . . . ,un]. Then AP = PD implies that

Aui = diui for 1 ≤ i ≤ n.

Since ui’s are the columns of a non-singular matrix P, using Corollary 4.3.10, they form

a linearly independent set. Thus, we have shown that if A is diagonalizable then A has n

linearly independent eigenvectors.

Conversely, suppose A has n linearly independent eigenvectors ui, 1 ≤ i ≤ n with

eigenvalues λi. Then Aui = λiui. Let P = [u1,u2, . . . ,un]. Since u1,u2, . . . ,un are linearly

independent, by Corollary 4.3.10, P is non-singular. Also,

AP = [Au1, Au2, . . . , Aun] = [λ1u1, λ2u2, . . . , λnun]

= [u1,u2, . . . ,un]









λ1 0 0

0 λ2 0
...

. . .
...

0 0 λn









= PD.

Therefore, the matrix A is diagonalizable.

Corollary 6.2.5. If the eigenvalues of a A ∈ Mn(R) are distinct then A is diagonalizable.

Proof. As A ∈ Mn(R), it has n eigenvalues. Since all the eigenvalues of A are distinct, by

Corollary 6.1.16, the n eigenvectors are linearly independent. Hence, by Theorem 6.2.4, A

is diagonalizable.

Corollary 6.2.6. Let λ1, λ2, . . . , λk be distinct eigenvalues of A ∈ Mn(R) and let p(λ) be

its characteristic polynomial. Suppose that for each i, 1 ≤ i ≤ k, (x − λi)
mi divides p(λ)

but (x− λi)
mi+1 does not divides p(λ) for some positive integers mi. Then prove that A is

diagonalizable if and only if dim
(
ker(A− λiI)

)
= mi for each i, 1 ≤ i ≤ k. Or equivalently

A is diagonalizable if and only if rank(A− λiI) = n−mi for each i, 1 ≤ i ≤ k.
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Proof. As A is diagonalizable, by Theorem 6.2.4, A has n linearly independent eigenvalues.

Also, by assumption,
k∑

i=1
mi = n as deg(p(λ)) = n. Hence, for each eigenvalue λi, 1 ≤ i ≤ k,

A has exactly mi linearly independent eigenvectors. Thus, for each i, 1 ≤ i ≤ k, the

homogeneous linear system (A− λiI)x = 0 has exactly mi linearly independent vectors in

its solution set. Therefore, dim
(
ker(A − λiI)

)
≥ mi. Indeed dim

(
ker(A − λiI)

)
= mi for

1 ≤ i ≤ k follows from a simple counting argument.

Now suppose that for each i, 1 ≤ i ≤ k, dim
(
ker(A−λiI)

)
= mi. Then for each i, 1 ≤

i ≤ k, we can choose mi linearly independent eigenvectors. Also by Corollary 6.1.16, the

eigenvectors corresponding to distinct eigenvalues are linearly independent. Hence A has

n =
k∑

i=1
mi linearly independent eigenvectors. Hence by Theorem 6.2.4, A is diagonalizable.

Example 6.2.7. 1. Let A =






2 1 1

1 2 1

0 −1 1




 . Then pA(λ) = (2 − λ)2(1 − λ). Hence,

the eigenvalues of A are 1, 2, 2. Verify that
(
1, (1, 0,−1)t

)
and (

(
2, (1, 1,−1)t

)
are the

only eigen-pairs. That is, the matrix A has exactly one eigenvector corresponding to

the repeated eigenvalue 2. Hence, by Theorem 6.2.4, A is not diagonalizable.

2. Let A =






2 1 1

1 2 1

1 1 2




 . Then pA(λ) = (4−λ)(1−λ)2. Hence, A has eigenvalues 1, 1, 4.

Verify that u1 = (1,−1, 0)t and u2 = (1, 0,−1)t are eigenvectors corresponding to 1

and u3 = (1, 1, 1)t is an eigenvector corresponding to the eigenvalue 4. As u1,u2,u3

are linearly independent, by Theorem 6.2.4, A is diagonalizable.

Note that the vectors u1 and u2 (corresponding to the eigenvalue 1) are not orthogo-

nal. So, in place of u1,u2, we will take the orthogonal vectors u2 and w = 2u1 − u2

as eigenvectors. Now define U = [ 1√
3
u3,

1√
2
u2,

1√
6
w] =






1√
3

1√
2

1√
6

1√
3

0 −2√
6

1√
3

− 1√
2

1√
6




 . Then U

is an orthogonal matrix and U∗AU = diag(4, 1, 1).

Observe that A is a symmetric matrix. In this case, we chose our eigenvectors to be

mutually orthogonal. This result is true for any real symmetric matrix A. This result

will be proved later.

Exercise 6.2.8. 1. Are the matrices A =

[

cos θ sin θ

− sin θ cos θ

]

and B =

[

cos θ sin θ

sin θ − cos θ

]

for some θ, 0 ≤ θ ≤ 2π, diagonalizable?

2. Find the eigen-pairs of A = [aij ]n×n, where aij = a if i = j and b, otherwise.

3. Let A ∈ Mn(R) and B ∈ Mm(R). Suppose C =

[

A 0

0 B

]

. Then prove that C is

diagonalizable if and only if both A and B are diagonalizable.
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4. Let T : R5 −→ R
5 be a linear operator with rank (T − I) = 3 and

N (T ) = {(x1, x2, x3, x4, x5) ∈ R
5 | x1 + x4 + x5 = 0, x2 + x3 = 0}.

(a) Determine the eigenvalues of T ?

(b) Find the number of linearly independent eigenvectors corresponding to each

eigenvalue?

(c) Is T diagonalizable? Justify your answer.

5. Let A be a non-zero square matrix such that A2 = 0. Prove that A cannot be diago-

nalized. [Hint: Use Remark 6.2.2.]

6. Are the following matrices diagonalizable?

i)








1 3 2 1

0 2 3 1

0 0 −1 1

0 0 0 4







, ii)






1 0 −1

0 0 1

0 2 0




 , iii)






1 −3 3

0 −5 6

0 −3 4




 and iv)

[

2 i

i 0

]

.

6.3 Diagonalizable Matrices

In this section, we will look at some special classes of square matrices that are diagonal-

izable. Recall that for a matrix A = [aij ], A
∗ = [aji] = At = A

t
, is called the conjugate

transpose of A. We also recall the following definitions.

Definition 6.3.1 (Special Matrices). 1. A matrix A ∈ Mn(C) is called

(a) a Hermitian matrix if A∗ = A.

(b) a unitary matrix if A A∗ = A∗A = In.

(c) a skew-Hermitian matrix if A∗ = −A.

(d) a normal matrix if A∗A = AA∗.

2. A matrix A ∈ Mn(R) is called

(a) a symmetric matrix if At = A.

(b) an orthogonal matrix if A At = AtA = In.

(c) a skew-symmetric matrix if At = −A.

Note that a symmetric matrix is always Hermitian, a skew-symmetric matrix is always

skew-Hermitian and an orthogonal matrix is always unitary. Each of these matrices are

normal. If A is a unitary matrix then A∗ = A−1.

Example 6.3.2. 1. Let B =

[

i 1

−1 i

]

. Then B is skew-Hermitian.

2. Let A = 1√
2

[

1 i

i 1

]

and B =

[

1 1

−1 1

]

. Then A is a unitary matrix and B is a

normal matrix. Note that
√
2A is also a normal matrix.
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Definition 6.3.3 (Unitary Equivalence). Let A,B ∈ Mn(C). They are called unitarily

equivalent if there exists a unitary matrix U such that A = U∗BU. As U is a unitary

matrix, U∗ = U−1. Hence, A is also unitarily similar to B.

Exercise 6.3.4. 1. Let A be a square matrix such that UAU∗ is a diagonal matrix for

some unitary matrix U . Prove that A is a normal matrix.

2. Let A ∈ Mn(C). Then A = 1
2(A+A∗)+ 1

2(A−A∗), where 1
2(A+A∗) is the Hermitian

part of A and 1
2(A−A∗) is the skew-Hermitian part of A. Recall that a similar result

was given in Exercise 1.3.3.1.

3. Let A ∈ Mn(C). Prove that A−A∗ is always skew-Hermitian.

4. Every square matrix can be uniquely expressed as A = S + iT , where both S and T

are Hermitian matrices.

5. Does there exist a unitary matrix U such that U−1AU = B where

A =






1 1 4

0 2 2

0 0 3




 and B =






2 −1 3
√
2

0 1
√
2

0 0 3




 .

Theorem 6.3.5. Let A ∈ Mn(C) be a Hermitian matrix. Then

1. the eigenvalues, λi, 1 ≤ i ≤ n, of A are real.

2. A is unitarily diagonalizable. That is, there exists a unitary matrix U such that

U∗AU = D; where D = diag(λ1, . . . , λn). In other words, the eigenvectors of A

form an orthonormal basis of Cn.

Proof. For the proof of Part 1, let (λ,x) be an eigen-pair. Then Ax = λx and A∗ = A

implies that x∗A = x∗A∗ = (Ax)∗ = (λx)∗ = λx∗. Hence,

λx∗x = x∗(λx) = x∗(Ax) = (x∗A)x = (λx∗)x = λx∗x.

As x is an eigenvector, x 6= 0 and therefore ‖x‖2 = x∗x 6= 0. Thus λ = λ. That is, λ is a

real number.

For the proof of Part 2, we use induction on n, the size of the matrix. The result is

clearly true for n = 1. Let the result be true for n = k − 1. we need to prove the result for

n = k.

Let (λ1,x) be an eigen-pair of a k × k matrix A with ‖x‖ = 1. Then by Part 1,

λ1 ∈ R. As {x} is a linearly independent set, by Theorem 3.3.11 and the Gram-Schmidt

Orthogonalization process, we get an orthonormal basis {x,u2, . . . ,uk} of Ck. Let U1 =

[x,u2, . . . ,uk] (the vectors x,u2, . . . ,uk are columns of the matrix U1). Then U1 is a

unitary matrix. In particular, u∗
ix = 0, for 2 ≤ i ≤ k. Therefore, for 2 ≤ i ≤ k,

x∗(Aui) = (Aui)
∗x = (u∗

iA
∗)x = u∗

i (A
∗x) = u∗

i (Ax) = u∗
i (λ1x) = λ1(u

∗
ix) = 0 and
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U∗
1AU1 = U∗

1 [Ax, Au2, · · · , Auk] =









x∗

u∗
2
...

u∗
k









[λ1x, Au2, · · · , Auk]

=









λ1x
∗x · · · x∗Auk

u∗
2(λ1x) · · · u∗

2(Auk)
...

. . .
...

u∗
k(λ1x) · · · u∗

k(Auk)









=









λ1 0

0
... B

0









,

where B is a (k− 1)× (k− 1) matrix. As (U∗
1AU1)

∗ = U∗
1AU1 and λ1 ∈ R, the matrix B is

also Hermitian. Therefore, by induction hypothesis there exists a (k− 1)× (k− 1) unitary

matrix U2 such that U∗
2BU2 = D2 = diag(λ2, . . . , λk), where λi ∈ R, for 2 ≤ i ≤ k are the

eigenvalues of B. Define U = U1

[

1 0

0 U2

]

. Then U is a unitary matrix and

U∗AU =

(

U1

[

1 0

0 U2

])∗

A

(

U1

[

1 0

0 U2

])

=

([

1 0

0 U∗
2

]

U∗
1

)

A

(

U1

[

1 0

0 U2

])

=

[

1 0

0 U∗
2

]

(
U∗
1AU1

)

[

1 0

0 U2

]

=

[

1 0

0 U∗
2

] [

λ1 0

0 B

][

1 0

0 U2

]

=

[

λ1 0

0 U∗
2BU2

]

=

[

λ1 0

0 D2

]

.

Observe that λ2, . . . , λn are also the eigenvalues of A. Thus, U∗AU is a diagonal matrix

with diagonal entries λ1, λ2, . . . , λk, the eigenvalues of A. Hence, the result follows.

Corollary 6.3.6. Let A ∈ Mn(R) be a symmetric matrix. Then

1. the eigenvalues of A are all real,

2. the eigenvectors can be chosen to have real entries and

3. the eigenvectors also form an orthonormal basis of Rn.

Proof. As A is symmetric, A is also a Hermitian matrix. Hence, by Theorem 6.3.5, the

eigenvalues of A are all real. Let (λ, x) be an eigen-pair of A. Suppose xt ∈ C
n. Then

there exist yt, zt ∈ R
n such that x = y + iz. So,

Ax = λx =⇒ A(y + iz) = λ(y + iz).

Comparing the real and imaginary parts, we get Ay = λy and Az = λz. Thus, we can

choose the eigenvectors to have real entries.

The readers are advised to prove the orthonormality of the eigenvectors (see the proof

of Theorem 6.3.5).
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Exercise 6.3.7. 1. Let A be a skew-Hermitian matrix. Then the eigenvalues of A are

either zero or purely imaginary. Also, the eigenvectors corresponding to distinct

eigenvalues are mutually orthogonal. [Hint: Carefully see the proof of Theorem 6.3.5.]

2. Let A be a normal matrix with (λ,x) as an eigen-pair. Then

(a) (A∗)kx for k ∈ Z
+ is also an eigenvector corresponding to λ.

(b) (λ,x) is an eigen-pair for A∗. [Hint: Verify ‖A∗x− λx‖2 = ‖Ax− λx‖2.]

3. Let A be an n× n unitary matrix. Then

(a) the rows of A form an orthonormal basis of Cn.

(b) the columns of A form an orthonormal basis of Cn.

(c) for any two vectors x,y ∈ C
n×1, 〈Ax, Ay〉 = 〈x,y〉.

(d) for any vector x ∈ C
n×1, ‖Ax‖ = ‖x‖.

(e) |λ| = 1 for any eigenvalue λ of A.

(f) the eigenvectors x,y corresponding to distinct eigenvalues λ and µ satisfy 〈x,y〉 =
0. That is, if (λ,x) and (µ,y) are eigen-pairs with λ 6= µ, then x and y are mu-

tually orthogonal.

4. Show that the matrices A =

[

4 4

0 4

]

and B =

[

10 9

−4 −2

]

are similar. Is it possible to

find a unitary matrix U such that A = U∗BU?

5. Let A be a 2× 2 orthogonal matrix. Then prove the following:

(a) if det(A) = 1, then A =

[

cos θ − sin θ

sin θ cos θ

]

for some θ, 0 ≤ θ < 2π. That is, A

counterclockwise rotates every point in R
2 by an angle θ.

(b) if detA = −1, then A =

[

cos θ sin θ

sin θ − cos θ

]

for some θ, 0 ≤ θ < 2π. That is, A

reflects every point in R
2 about a line passing through origin. Determine this

line. Or equivalently, there exists a non-singular matrix P such that P−1AP =[

1 0

0 −1

]

.

6. Let A be a 3× 3 orthogonal matrix. Then prove the following:

(a) if det(A) = 1, then A is a rotation about a fixed axis, in the sense that A

has an eigen-pair (1,x) such that the restriction of A to the plane x⊥ is a two

dimensional rotation in x⊥.

(b) if detA = −1, then A corresponds to a reflection through a plane P, followed by

a rotation about the line through origin that is orthogonal to P.
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7. Let A =






2 1 1

1 2 1

1 1 2




 . Find a non-singular matrix P such that P−1AP = diag (4, 1, 1).

Use this to compute A301.

8. Let A be a Hermitian matrix. Then prove that rank(A) equals the number of non-zero

eigenvalues of A.

Remark 6.3.8. Let A and B be the 2 × 2 matrices in Exercise 6.3.7.4. Then A and B

were similar matrices but they were not unitarily equivalent. In numerical calculations,

unitary transformations are preferred as compared to similarity transformations due to the

following main reasons:

1. Exercise 6.3.7.3d implies that an orthonormal change of basis does not alter the sum

of squares of the absolute values of the entries. This need not be true under a non-

singularity change of basis.

2. For a unitary matrix U, U−1 = U∗ and hence unitary equivalence is computationally

simpler.

3. Also there is no round-off error in the operation of “conjugate transpose”.

We next prove the Schur’s Lemma and use it to show that normal matrices are unitarily

diagonalizable. The proof is similar to the proof of Theorem 6.3.5. We give it again so

that the readers have a better understanding of unitary transformations.

Lemma 6.3.9. (Schur’s Lemma) Let A ∈ Mn(C). Then A is unitarily similar to an upper

triangular matrix.

Proof. We will prove the result by induction on n. The result is clearly true for n = 1. Let

the result be true for n = k − 1. we need to prove the result for n = k.

Let (λ1,x) be an eigen-pair of a k × k matrix A with ‖x‖ = 1. Let us extend the set

{x}, a linearly independent set, to form an orthonormal basis {x,u2,u3, . . . ,uk} (using

Gram-Schmidt Orthogonalization) of Ck. Then U1 = [x u2 · · ·uk] is a unitary matrix and

U∗
1AU1 = U∗

1 [Ax Au2 · · ·Auk] =









x∗

u∗
2
...

u∗
k









[λ1x Au2 · · ·Auk] =









λ1 ∗
0
... B

0









,

where B is a (k−1)×(k−1) matrix. By induction hypothesis there exists a (k−1)×(k−1)

unitary matrix U2 such that U∗
2BU2 is an upper triangular matrix with diagonal entries

λ2, . . . , λk, the eigenvalues of B. Define U = U1

[

1 0

0 U2

]

. Then check that U is a unitary

matrix and U∗AU is an upper triangular matrix with diagonal entries λ1, λ2, . . . , λk, the

eigenvalues of the matrix A. Hence, the result follows.
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In Lemma 6.3.9, it can be observed that whenever A is a normal matrix then the matrix

B is also a normal matrix. It is also known that if T is an upper triangular matrix that

satisfies TT ∗ = T ∗T then T is a diagonal matrix (see Exercise 16). Thus, it follows that

normal matrices are diagonalizable. We state it as a remark.

Remark 6.3.10 (The Spectral Theorem for Normal Matrices). Let A be an n×n normal

matrix. Then there exists an orthonormal basis {x1,x2, . . . ,xn} of Cn(C) such that Axi =

λixi for 1 ≤ i ≤ n. In particular, if U − [x1,x2, . . . ,xn] then U∗AU is a diagonal matrix.

Exercise 6.3.11. 1. Let A ∈ Mn(R) be an invertible matrix. Prove that AAt = PDP t,

where P is an orthogonal and D is a diagonal matrix with positive diagonal entries.

2. Let A =






1 1 1

0 2 1

0 0 3




, B =






2 −1
√
2

0 1 0

0 0 3




 and U = 1√

2






1 1 0

1 −1 0

0 0
√
2




 . Prove that A

and B are unitarily equivalent via the unitary matrix U . Hence, conclude that the

upper triangular matrix obtained in the ”Schur’s Lemma” need not be unique.

3. Prove Remark 6.3.10.

4. Let A be a normal matrix. If all the eigenvalues of A are 0 then prove that A = 0.

What happens if all the eigenvalues of A are 1?

5. Let A be an n× n matrix. Prove that if A is

(a) Hermitian and xAx∗ = 0 for all x ∈ C
n then A = 0.

(b) a real, symmetric matrix and xAxt = 0 for all x ∈ R
n then A = 0.

Do these results hold for arbitrary matrices?

We end this chapter with an application of the theory of diagonalization to the study

of conic sections in analytic geometry and the study of maxima and minima in analysis.

6.4 Sylvester’s Law of Inertia and Applications

Definition 6.4.1 (Bilinear Form). Let A be an n × n real symmetric matrix. A bilinear

form in x = (x1, x2, . . . , xn)
t, y = (y1, y2, . . . , yn)

t is an expression of the type

Q(x,y) = ytAx =
n∑

i,j=1

aijxiyj.

Definition 6.4.2 (Sesquilinear Form). Let A be an n×n Hermitian matrix. A sesquilinear

form in x = (x1, x2, . . . , xn)
∗, y = (y1, y2, . . . , yn)

∗ is given by

H(x,y) = y∗Ax =

n∑

i,j=1

aijxiyj.
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Observe that if A = In then the bilinear (sesquilinear) form reduces to the standard

real (complex) inner product. Also, it can be easily seen that H(x,y) is ‘linear’ in x, the

first component and ‘conjugate linear’ in y, the second component. The expression Q(x,x)

is called the quadratic form and H(x,x) the Hermitian form. We generally write Q(x) and

H(x) in place of Q(x,x) and H(x,x), respectively. It can be easily shown that for any

choice of x, the Hermitian form H(x) is a real number. Hence, for any real number α, the

equation H(x) = α, represents a conic in C
n.

Example 6.4.3. Let A =

[

1 2− i

2 + i 2

]

. Then A∗ = A and for x = (x1, x2)
∗,

H(x) = x∗Ax = (x1, x2)

[

1 2− i

2 + i 2

](

x1
x2

)

= x1x1 + 2x2x2 + (2− i)x1x2 + (2 + i)x2x1

= |x1|2 + 2|x2|2 + 2Re[(2− i)x1x2]

where ‘Re’ denotes the real part of a complex number. This shows that for every choice of

x the Hermitian form is always real. Why?

The main idea of this section is to express H(x) as sum of squares and hence determine

the possible values that it can take. Note that if we replace x by cx, where c is any complex

number, then H(x) simply gets multiplied by |c|2 and hence one needs to study only those

x for which ‖x‖ = 1, i.e., x is a normalized vector.

Let A∗ = A ∈ Mn(C). Then by Theorem 6.3.5, the eigenvalues λi, 1 ≤ i ≤ n, of A

are real and there exists a unitary matrix U such that U∗AU = D ≡ diag(λ1, λ2, . . . , λn).

Now define, z = (z1, z2, . . . , zn)
∗ = U∗x. Then ‖z‖ = 1, x = Uz and

H(x) = z∗U∗AUz = z∗Dz =

n∑

i=1

λi|zi|2 =
p
∑

i=1

∣
∣
∣

√

|λi| zi
∣
∣
∣

2
−

r∑

i=p+1

∣
∣
∣

√

|λi| zi
∣
∣
∣

2
. (6.4.1)

Thus, the possible values of H(x) depend only on the eigenvalues of A. Since U is an invert-

ible matrix, the components zi’s of z = U∗x are commonly known as linearly independent

linear forms. Also, note that in Equation (6.4.1), the number p (respectively r − p) seems

to be related to the number of eigenvalues of A that are positive (respectively negative).

This is indeed true. That is, in any expression of H(x) as a sum of n absolute squares of

linearly independent linear forms, the number p (respectively r − p) gives the number of

positive (respectively negative) eigenvalues of A. This is stated as the next lemma and it

popularly known as the ‘Sylvester’s law of inertia’.

Lemma 6.4.4. Let A ∈ Mn(C) be a Hermitian matrix and let x = (x1, x2, . . . , xn)
∗. Then

every Hermitian form H(x) = x∗Ax, in n variables can be written as

H(x) = |y1|2 + |y2|2 + · · ·+ |yp|2 − |yp+1|2 − · · · − |yr|2

where y1, y2, . . . , yr are linearly independent linear forms in x1, x2, . . . , xn, and the integers

p and r satisfying 0 ≤ p ≤ r ≤ n, depend only on A.
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Proof. From Equation (6.4.1) it is easily seen that H(x) has the required form. We only

need to show that p and r are uniquely determined by A. Hence, let us assume on the

contrary that there exist positive integers p, q, r, s with p > q such that

H(x) = |y1|2 + |y2|2 + · · ·+ |yp|2 − |yp+1|2 − · · · − |yr|2

= |z1|2 + |z2|2 + · · ·+ |zq|2 − |zq+1|2 − · · · − |zs|2,

where y = (y1, y2, . . . , yn)
∗ = Mx and z = (z1, z2, . . . , zn)

∗ = Nx for some invertible

matrices M and N . Hence, z = By for some invertible matrix B. Let us write Y1 =

(y1, . . . , yp)
∗, Z1 = (z1, . . . , zq)

∗ and B =

[

B1 B2

B3 B4

]

, where B1 is a q× p matrix. As p > q,

the homogeneous linear system B1Y1 = 0 has a non-zero solution. Let Ỹ1 = (ỹ1, . . . , ỹp)
∗

be a non-zero solution and let ỹ∗ = (Ỹ1
∗
,0∗). Then

H(ỹ) = |ỹ1|2 + |ỹ2|2 + · · ·+ |ỹp|2 = −(|zq+1|2 + · · · + |zs|2).

Now, this can hold only if ỹ1 = ỹ2 = · · · = ỹp = 0, which gives a contradiction. Hence

p = q. Similarly, the case r > s can be resolved. Thus, the proof of the lemma is over.

Remark 6.4.5. The integer r is the rank of the matrix A and the number r − 2p is

sometimes called the inertial degree of A.

We complete this chapter by understanding the graph of

ax2 + 2hxy + by2 + 2fx+ 2gy + c = 0

for a, b, c, f, g, h ∈ R. We first look at the following example.

Example 6.4.6. Sketch the graph of 3x2 + 4xy + 3y2 = 5.

Solution: Note that 3x2 + 4xy + 3y2 = [x, y]

[

3 2

2 3

][

x

y

]

and the eigen-pairs of the

matrix

[

3 2

2 3

]

are (5, (1, 1)t), (1, (1,−1)t). Thus,

[

3 2

2 3

]

=

[
1√
2

1√
2

1√
2

− 1√
2

][

5 0

0 1

][
1√
2

1√
2

1√
2

− 1√
2

]

.

Now, let u = x+y√
2

and v = x−y√
2
. Then

3x2 + 4xy + 3y2 = [x, y]

[

3 2

2 3

][

x

y

]

= [x, y]

[
1√
2

1√
2

1√
2

− 1√
2

][

5 0

0 1

][
1√
2

1√
2

1√
2

− 1√
2

][

x

y

]

=
[
u, v

]

[

5 0

0 1

][

u

v

]

= 5u2 + v2.
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Thus, the given graph reduces to 5u2+v2 = 5 or equivalently to u2+ v2

5 = 1. Therefore, the

given graph represents an ellipse with the principal axes u = 0 and v = 0 (correspinding to

the line x+ y = 0 and x− y = 0, respectively). See Figure 6.4.6.

y = x
y = −x

Figure 1: The ellipse 3x2 + 4xy + 3y2 = 5.

We now consider the general conic. We obtain conditions on the eigenvalues of the

associated quadratic form, defined below, to characterize conic sections in R
2 (endowed

with the standard inner product).

Definition 6.4.7 (Quadratic Form). Let ax2 + 2hxy + by2 + 2gx + 2fy + c = 0 be the

equation of a general conic. The quadratic expression

ax2 + 2hxy + by2 =
[
x, y

]

[

a h

h b

][

x

y

]

is called the quadratic form associated with the given conic.

Proposition 6.4.8. For fixed real numbers a, b, c, g, f and h, consider the general conic

ax2 + 2hxy + by2 + 2gx+ 2fy + c = 0.

Then prove that this conic represents

1. an ellipse if ab− h2 > 0,

2. a parabola if ab− h2 = 0, and

3. a hyperbola if ab− h2 < 0.

Proof. Let A =

[

a h

h b

]

. Then ax2 +2hxy+ by2 =
[
x y

]
A

[

x

y

]

is the associated quadratic

form. As A is a symmetric matrix, by Corollary 6.3.6, the eigenvalues λ1, λ2 of A are both

real, the corresponding eigenvectors u1,u2 are orthonormal and A is unitarily diagonaliz-

able with A =
[
u1 u2

]

[

λ1 0

0 λ2

] [

ut
1

ut
2

]

. Let

[

u

v

]

=

[

ut
1

ut
2

][

x

y

]

. Then ax2 + 2hxy + by2 =

λ1u
2 + λ2v

2 and the equation of the conic section in the (u, v)-plane, reduces to

λ1u
2 + λ2v

2 + 2g1u+ 2f1v + c = 0. (6.4.2)

Now, depending on the eigenvalues λ1, λ2, we consider different cases:
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1. λ1 = 0 = λ2. Substituting λ1 = λ2 = 0 in Equation (6.4.2) gives the straight line

2g1u+ 2f1v + c = 0 in the (u, v)-plane.

2. λ1 = 0, λ2 > 0. As λ1 = 0, det(A) = 0. That is, ab − h2 = det(A) = 0. Also, in this

case, Equation (6.4.2) reduces to

λ2(v + d1)
2 = d2u+ d3 for some d1, d2, d3 ∈ R.

To understand this case, we need to consider the following subcases:

(a) Let d2 = d3 = 0. Then v + d1 = 0 is a pair of coincident lines.

(b) Let d2 = 0, d3 6= 0.

i. If d3 > 0, then we get a pair of parallel lines given by v = −d1 ±
√

d3
λ2
.

ii. If d3 < 0, the solution set of the corresponding conic is an empty set.

(c) If d2 6= 0. Then the given equation is of the form Y 2 = 4aX for some translates

X = x+ α and Y = y + β and thus represents a parabola.

3. λ1 > 0 and λ2 < 0. In this case, ab − h2 = det(A) = λ1λ2 < 0. Let λ2 = −α2 with

α2 > 0. Then Equation (6.4.2) can be rewritten as

λ1(u+ d1)
2 − α2(v + d2)

2 = d3 for some d1, d2, d3 ∈ R (6.4.3)

whose understanding requires the following subcases:

(a) Let d3 = 0. Then Equation (6.4.3) reduces to

(√

λ1(u+ d1) +
√
α2(v + d2)

)

·
(√

λ1(u+ d1)−
√
α2(v + d2)

)

= 0

or equivalently, a pair of intersecting straight lines in the (u, v)-plane.

(b) Let d3 6= 0. In particular, let d3 > 0. Then Equation (6.4.3) reduces to

λ1(u+ d1)
2

d3
− α2(v + d2)

2

d3
= 1

or equivalently, a hyperbola in the (u, v)-plane, with principal axes u+ d1 = 0

and v + d2 = 0.

4. λ1, λ2 > 0. In this case, ab − h2 = det(A) = λ1λ2 > 0 and Equation (6.4.2) can be

rewritten as

λ1(u+ d1)
2 + λ2(v + d2)

2 = d3 for some d1, d2, d3 ∈ R. (6.4.4)

We consider the following three subcases to understand this.

(a) Let d3 = 0. Then Equation (6.4.4) reduces to a pair of perpendicular lines

u+ d1 = 0 and v + d2 = 0 in the (u, v)-plane.

(b) Let d3 < 0. Then the solution set of Equation (6.4.4) is an empty set.
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(c) Let d3 > 0. Then Equation (6.4.4) reduces to the ellipse

λ1(u+ d1)
2

d3
+

α2(v + d2)
2

d3
= 1

whose principal axes are u+ d1 = 0 and v + d2 = 0.

Remark 6.4.9. Observe that the condition

[

x

y

]

=
[
u1 u2

]

[

u

v

]

implies that the principal

axes of the conic are functions of the eigenvectors u1 and u2.

Exercise 6.4.10. Sketch the graph of the following surfaces:

1. x2 + 2xy + y2 − 6x− 10y = 3.

2. 2x2 + 6xy + 3y2 − 12x− 6y = 5.

3. 4x2 − 4xy + 2y2 + 12x− 8y = 10.

4. 2x2 − 6xy + 5y2 − 10x+ 4y = 7.

As a last application, we consider the following problem that helps us in understanding

the quadrics. Let

ax2 + by2 + cz2 + 2dxy + 2exz + 2fyz + 2lx+ 2my + 2nz + q = 0 (6.4.5)

be a general quadric. Then to get the geometrical idea of this quadric, do the following:

1. Define A =






a d e

d b f

e f c




 , b =






2l

2m

2n




 and x =






x

y

z




. Note that Equation (6.4.5) can

be rewritten as xtAx+ btx+ q = 0.

2. As A is symmetric, find an orthogonal matrix P such that P tAP = diag(λ1, λ2, λ3).

3. Let y = P tx = (y1, y2, y3)
t. Then Equation (6.4.5) reduces to

λ1y
2
1 + λ2y

2
2 + λ3y

2
3 + 2l1y1 + 2l2y2 + 2l3y3 + q′ = 0. (6.4.6)

4. Depending on which λi 6= 0, rewrite Equation (6.4.6). That is, if λ1 6= 0 then rewrite

λ1y
2
1 + 2l1y1 as λ1

(

y1 +
l1
λ1

)2
−
(

l1
λ1

)2
.

5. Use the condition x = Py to determine the center and the planes of symmetry of the

quadric in terms of the original system.

Example 6.4.11. Determine the following quadrics

1. 2x2 + 2y2 + 2z2 + 2xy + 2xz + 2yz + 4x+ 2y + 4z + 2 = 0.
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2. 3x2 − y2 + z2 + 10 = 0.

Solution: For Part 1, observe that A =






2 1 1

1 2 1

1 1 2




, b =






4

2

4




 and q = 2. Also, the

orthonormal matrix P =






1√
3

1√
2

1√
6

1√
3

−1√
2

1√
6

1√
3

0 −2√
6




 and P tAP =






4 0 0

0 1 0

0 0 1




 . Hence, the quadric

reduces to 4y21 + y22 + y23 +
10√
3
y1 +

2√
2
y2 − 2√

6
y3 + 2 = 0. Or equivalently to

4(y1 +
5

4
√
3
)2 + (y2 +

1√
2
)2 + (y3 −

1√
6
)2 =

9

12
.

So, the standard form of the quadric is 4z21 + z22 + z23 = 9
12 , where the center is given by

(x, y, z)t = P ( −5
4
√
3
, −1√

2
, 1√

6
)t = (−3

4 , 14 ,
−3
4 )t.

For Part 2, observe that A =






3 0 0

0 −1 0

0 0 1




, b = 0 and q = 10. In this case, we can

rewrite the quadric as
y2

10
− 3x2

10
− z2

10
= 1

which is the equation of a hyperboloid consisting of two sheets.

The calculation of the planes of symmetry is left as an exercise to the reader.



Chapter 7

Appendix

7.1 Permutation/Symmetric Groups

In this section, S denotes the set {1, 2, . . . , n}.

Definition 7.1.1. 1. A function σ : S−→S is called a permutation on n elements if σ

is both one to one and onto.

2. The set of all functions σ : S−→S that are both one to one and onto will be denoted

by Sn. That is, Sn is the set of all permutations of the set {1, 2, . . . , n}.

Example 7.1.2. 1. In general, we represent a permutation σ by σ =

(

1 2 · · · n

σ(1) σ(2) · · · σ(n)

)

.

This representation of a permutation is called a two row notation for σ.

2. For each positive integer n, Sn has a special permutation called the identity per-

mutation, denoted Idn, such that Idn(i) = i for 1 ≤ i ≤ n. That is, Idn =
(

1 2 · · · n

1 2 · · · n

)

.

3. Let n = 3. Then

S3 =

{

τ1 =

(

1 2 3

1 2 3

)

, τ2 =

(

1 2 3

1 3 2

)

, τ3 =

(

1 2 3

2 1 3

)

,

τ4 =

(

1 2 3

2 3 1

)

, τ5 =

(

1 2 3

3 1 2

)

, τ6 =

(

1 2 3

3 2 1

)}

(7.1.1)

Remark 7.1.3. 1. Let σ ∈ Sn. Then σ is determined if σ(i) is known for i = 1, 2, . . . , n.

As σ is both one to one and onto, {σ(1), σ(2), . . . , σ(n)} = S. So, there are n choices

for σ(1) (any element of S), n− 1 choices for σ(2) (any element of S different from

σ(1)), and so on. Hence, there are n(n−1)(n−2) · · · 3·2·1 = n! possible permutations.

Thus, the number of elements in Sn is n!. That is, |Sn| = n!.
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2. Suppose that σ, τ ∈ Sn. Then both σ and τ are one to one and onto. So, their

composition map σ ◦ τ , defined by (σ ◦ τ)(i) = σ
(
τ(i)

)
, is also both one to one and

onto. Hence, σ ◦ τ is also a permutation. That is, σ ◦ τ ∈ Sn.

3. Suppose σ ∈ Sn. Then σ is both one to one and onto. Hence, the function σ−1 :

S−→S defined by σ−1(m) = ℓ if and only if σ(ℓ) = m for 1 ≤ m ≤ n, is well

defined and indeed σ−1 is also both one to one and onto. Hence, for every element

σ ∈ Sn, σ
−1 ∈ Sn and is the inverse of σ.

4. Observe that for any σ ∈ Sn, the compositions σ ◦ σ−1 = σ−1 ◦ σ = Idn.

Proposition 7.1.4. Consider the set of all permutations Sn. Then the following holds:

1. Fix an element τ ∈ Sn. Then the sets {σ ◦ τ : σ ∈ Sn} and {τ ◦ σ : σ ∈ Sn} have

exactly n! elements. Or equivalently,

Sn = {τ ◦ σ : σ ∈ Sn} = {σ ◦ τ : σ ∈ Sn}.

2. Sn = {σ−1 : σ ∈ Sn}.

Proof. For the first part, we need to show that given any element α ∈ Sn, there exists

elements β, γ ∈ Sn such that α = τ ◦ β = γ ◦ τ . It can easily be verified that β = τ−1 ◦ α
and γ = α ◦ τ−1.

For the second part, note that for any σ ∈ Sn, (σ
−1)−1 = σ. Hence the result holds.

Definition 7.1.5. Let σ ∈ Sn. Then the number of inversions of σ, denoted n(σ), equals

|{(i, j) : i < j, σ(i) > σ(j) }|.

Note that, for any σ ∈ Sn, n(σ) also equals

n∑

i=1

|{σ(j) < σ(i), for j = i+ 1, i+ 2, . . . , n}|.

Definition 7.1.6. A permutation σ ∈ Sn is called a transposition if there exists two positive

integers m, r ∈ {1, 2, . . . , n} such that σ(m) = r, σ(r) = m and σ(i) = i for 1 ≤ i 6= m, r ≤
n.

For the sake of convenience, a transposition σ for which σ(m) = r, σ(r) = m and

σ(i) = i for 1 ≤ i 6= m, r ≤ n will be denoted simply by σ = (m r) or (r m). Also, note

that for any transposition σ ∈ Sn, σ
−1 = σ. That is, σ ◦ σ = Idn.

Example 7.1.7. 1. The permutation τ =

(

1 2 3 4

3 2 1 4

)

is a transposition as τ(1) =

3, τ(3) = 1, τ(2) = 2 and τ(4) = 4. Here note that τ = (1 3) = (3 1). Also, check

that

n(τ) = |{(1, 2), (1, 3), (2, 3)}| = 3.
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2. Let τ =

(

1 2 3 4 5 6 7 8 9

4 2 3 5 1 9 8 7 6

)

. Then check that

n(τ) = 3 + 1 + 1 + 1 + 0 + 3 + 2 + 1 = 12.

3. Let ℓ,m and r be distinct element from {1, 2, . . . , n}. Suppose τ = (m r) and σ =

(m ℓ). Then

(τ ◦ σ)(ℓ) = τ
(
σ(ℓ)

)
= τ(m) = r, (τ ◦ σ)(m) = τ

(
σ(m)

)
= τ(ℓ) = ℓ

(τ ◦ σ)(r) = τ
(
σ(r)

)
= τ(r) = m, and (τ ◦ σ)(i) = τ

(
σ(i)

)
= τ(i) = i if i 6= ℓ,m, r.

Therefore,

τ ◦ σ = (m r) ◦ (m ℓ) =

(

1 2 · · · ℓ · · · m · · · r · · · n

1 2 · · · r · · · ℓ · · · m · · · n

)

= (r l) ◦ (r m).

Similarly check that σ ◦ τ =

(

1 2 · · · ℓ · · · m · · · r · · · n

1 2 · · · m · · · r · · · ℓ · · · n

)

.

With the above definitions, we state and prove two important results.

Theorem 7.1.8. For any σ ∈ Sn, σ can be written as composition (product) of transposi-

tions.

Proof. We will prove the result by induction on n(σ), the number of inversions of σ. If

n(σ) = 0, then σ = Idn = (1 2) ◦ (1 2). So, let the result be true for all σ ∈ Sn with

n(σ) ≤ k.

For the next step of the induction, suppose that τ ∈ Sn with n(τ) = k+1. Choose the

smallest positive number, say ℓ, such that

τ(i) = i, for i = 1, 2, . . . , ℓ− 1 and τ(ℓ) 6= ℓ.

As τ is a permutation, there exists a positive number, say m, such that τ(ℓ) = m. Also,

note that m > ℓ. Define a transposition σ by σ = (ℓ m). Then note that

(σ ◦ τ)(i) = i, for i = 1, 2, . . . , ℓ.
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So, the definition of “number of inversions” and m > ℓ implies that

n(σ ◦ τ) =
n∑

i=1

|{(σ ◦ τ)(j) < (σ ◦ τ)(i), for j = i+ 1, i+ 2, . . . , n}|

=
ℓ∑

i=1

|{(σ ◦ τ)(j) < (σ ◦ τ)(i), for j = i+ 1, i+ 2, . . . , n}|

+

n∑

i=ℓ+1

|{(σ ◦ τ)(j) < (σ ◦ τ)(i), for j = i+ 1, i+ 2, . . . , n}|

=

n∑

i=ℓ+1

|{(σ ◦ τ)(j) < (σ ◦ τ)(i), for j = i+ 1, i + 2, . . . , n}|

≤
n∑

i=ℓ+1

|{τ(j) < τ(i), for j = i+ 1, i+ 2, . . . , n}| as m > ℓ,

< (m− ℓ) +

n∑

i=ℓ+1

|{τ(j) < τ(i), for j = i+ 1, i + 2, . . . , n}|

= n(τ).

Thus, n(σ ◦ τ) < k + 1. Hence, by the induction hypothesis, the permutation σ ◦ τ is a

composition of transpositions. That is, there exist transpositions, say αi, 1 ≤ i ≤ t such

that

σ ◦ τ = α1 ◦ α2 ◦ · · · ◦ αt.

Hence, τ = σ ◦α1 ◦ α2 ◦ · · · ◦ αt as σ ◦ σ = Idn for any transposition σ ∈ Sn. Therefore, by

mathematical induction, the proof of the theorem is complete.

Before coming to our next important result, we state and prove the following lemma.

Lemma 7.1.9. Suppose there exist transpositions αi, 1 ≤ i ≤ t such that

Idn = α1 ◦ α2 ◦ · · · ◦ αt,

then t is even.

Proof. Observe that t 6= 1 as the identity permutation is not a transposition. Hence, t ≥ 2.

If t = 2, we are done. So, let us assume that t ≥ 3. We will prove the result by the method

of mathematical induction. The result clearly holds for t = 2. Let the result be true for all

expressions in which the number of transpositions t ≤ k. Now, let t = k + 1.

Suppose α1 = (m r). Note that the possible choices for the composition α1 ◦ α2 are

(m r) ◦ (m r) = Idn, (m r) ◦ (m ℓ) = (r ℓ) ◦ (r m), (m r) ◦ (r ℓ) = (ℓ r) ◦ (ℓ m) and (m r) ◦
(ℓ s) = (ℓ s) ◦ (m r), where ℓ and s are distinct elements of {1, 2, . . . , n} and are different

from m, r. In the first case, we can remove α1 ◦ α2 and obtain Idn = α3 ◦ α4 ◦ · · · ◦ αt.

In this expression for identity, the number of transpositions is t − 2 = k − 1 < k. So, by

mathematical induction, t− 2 is even and hence t is also even.

In the other three cases, we replace the original expression for α1 ◦ α2 by their coun-

terparts on the right to obtain another expression for identity in terms of t = k + 1
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transpositions. But note that in the new expression for identity, the positive integer m

doesn’t appear in the first transposition, but appears in the second transposition. We can

continue the above process with the second and third transpositions. At this step, either

the number of transpositions will reduce by 2 (giving us the result by mathematical induc-

tion) or the positive number m will get shifted to the third transposition. The continuation

of this process will at some stage lead to an expression for identity in which the number

of transpositions is t − 2 = k − 1 (which will give us the desired result by mathematical

induction), or else we will have an expression in which the positive number m will get

shifted to the right most transposition. In the later case, the positive integer m appears

exactly once in the expression for identity and hence this expression does not fix m whereas

for the identity permutation Idn(m) = m. So the later case leads us to a contradiction.

Hence, the process will surely lead to an expression in which the number of transposi-

tions at some stage is t − 2 = k − 1. Therefore, by mathematical induction, the proof of

the lemma is complete.

Theorem 7.1.10. Let α ∈ Sn. Suppose there exist transpositions τ1, τ2, . . . , τk and σ1, σ2, . . . , σℓ
such that

α = τ1 ◦ τ2 ◦ · · · ◦ τk = σ1 ◦ σ2 ◦ · · · ◦ σℓ
then either k and ℓ are both even or both odd.

Proof. Observe that the condition τ1 ◦ τ2 ◦ · · · ◦ τk = σ1 ◦ σ2 ◦ · · · ◦ σℓ and σ ◦ σ = Idn for

any transposition σ ∈ Sn, implies that

Idn = τ1 ◦ τ2 ◦ · · · ◦ τk ◦ σℓ ◦ σℓ−1 ◦ · · · ◦ σ1.

Hence by Lemma 7.1.9, k + ℓ is even. Hence, either k and ℓ are both even or both odd.

Thus the result follows.

Definition 7.1.11. A permutation σ ∈ Sn is called an even permutation if σ can be written

as a composition (product) of an even number of transpositions. A permutation σ ∈ Sn is

called an odd permutation if σ can be written as a composition (product) of an odd number

of transpositions.

Remark 7.1.12. Observe that if σ and τ are both even or both odd permutations, then the

permutations σ ◦ τ and τ ◦ σ are both even. Whereas if one of them is odd and the other

even then the permutations σ ◦ τ and τ ◦ σ are both odd. We use this to define a function

on Sn, called the sign of a permutation, as follows:

Definition 7.1.13. Let sgn : Sn−→{1,−1} be a function defined by

sgn(σ) =

{

1 if σ is an even permutation

−1 if σ is an odd permutation
.

Example 7.1.14. 1. The identity permutation, Idn is an even permutation whereas

every transposition is an odd permutation. Thus, sgn(Idn) = 1 and for any transpo-

sition σ ∈ Sn, sgn(σ) = −1.
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2. Using Remark 7.1.12, sgn(σ◦τ) = sgn(σ) ·sgn(τ) for any two permutations σ, τ ∈ Sn.

We are now ready to define determinant of a square matrix A.

Definition 7.1.15. Let A = [aij ] be an n×n matrix with entries from F. The determinant

of A, denoted det(A), is defined as

det(A) =
∑

σ∈Sn

sgn(σ)a1σ(1)a2σ(2) . . . anσ(n) =
∑

σ∈Sn

sgn(σ)

n∏

i=1

aiσ(i).

Remark 7.1.16. 1. Observe that det(A) is a scalar quantity. The expression for det(A)

seems complicated at the first glance. But this expression is very helpful in proving

the results related with “properties of determinant”.

2. If A = [aij ] is a 3× 3 matrix, then using (7.1.1),

det(A) =
∑

σ∈Sn

sgn(σ)

3∏

i=1

aiσ(i)

= sgn(τ1)
3∏

i=1

aiτ1(i) + sgn(τ2)
3∏

i=1

aiτ2(i) + sgn(τ3)
3∏

i=1

aiτ3(i) +

sgn(τ4)
3∏

i=1

aiτ4(i) + sgn(τ5)
3∏

i=1

aiτ5(i) + sgn(τ6)
3∏

i=1

aiτ6(i)

= a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31 + a13a21a32 − a13a22a31.

Observe that this expression for det(A) for a 3× 3 matrix A is same as that given in

(2.5.1).

7.2 Properties of Determinant

Theorem 7.2.1 (Properties of Determinant). Let A = [aij ] be an n× n matrix. Then

1. if B is obtained from A by interchanging two rows, then

det(B) = − det(A).

2. if B is obtained from A by multiplying a row by c then

det(B) = cdet(A).

3. if all the elements of one row is 0 then det(A) = 0.

4. if A is a square matrix having two rows equal then det(A) = 0.

5. Let B = [bij ] and C = [cij ] be two matrices which differ from the matrix A = [aij ]

only in the mth row for some m. If cmj = amj + bmj for 1 ≤ j ≤ n then det(C) =

det(A) + det(B).

6. if B is obtained from A by replacing the ℓth row by itself plus k times the mth row,

for ℓ 6= m then det(B) = det(A).
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7. if A is a triangular matrix then det(A) = a11a22 · · · ann, the product of the diagonal

elements.

8. If E is an elementary matrix of order n then det(EA) = det(E) det(A).

9. A is invertible if and only if det(A) 6= 0.

10. If B is an n× n matrix then det(AB) = det(A) det(B).

11. det(A) = det(At), where recall that At is the transpose of the matrix A.

Proof. Proof of Part 1. Suppose B = [bij ] is obtained from A = [aij ] by the interchange

of the ℓth and mth row. Then bℓj = amj , bmj = aℓj for 1 ≤ j ≤ n and bij = aij for

1 ≤ i 6= ℓ,m ≤ n, 1 ≤ j ≤ n.

Let τ = (ℓ m) be a transposition. Then by Proposition 7.1.4, Sn = {σ ◦ τ : σ ∈ Sn}.
Hence by the definition of determinant and Example 7.1.14.2, we have

det(B) =
∑

σ∈Sn

sgn(σ)
n∏

i=1

biσ(i) =
∑

σ◦τ∈Sn

sgn(σ ◦ τ)
n∏

i=1

bi(σ◦τ)(i)

=
∑

σ◦τ∈Sn

sgn(τ) · sgn(σ) b1(σ◦τ)(1)b2(σ◦τ)(2) · · · bℓ(σ◦τ)(ℓ) · · · bm(σ◦τ)(m) · · · bn(σ◦τ)(n)

= sgn(τ)
∑

σ∈Sn

sgn(σ) b1σ(1) · b2σ(2) · · · bℓσ(m) · · · bmσ(ℓ) · · · bnσ(n)

= −
(
∑

σ∈Sn

sgn(σ) a1σ(1) · a2σ(2) · · · amσ(m) · · · aℓσ(ℓ) · · · anσ(n)
)

as sgn(τ) = −1

= − det(A).

Proof of Part 2. Suppose that B = [bij] is obtained by multiplying the mth row of A

by c 6= 0. Then bmj = c amj and bij = aij for 1 ≤ i 6= m ≤ n, 1 ≤ j ≤ n. Then

det(B) =
∑

σ∈Sn

sgn(σ)b1σ(1)b2σ(2) · · · bmσ(m) · · · bnσ(n)

=
∑

σ∈Sn

sgn(σ)a1σ(1)a2σ(2) · · · camσ(m) · · · anσ(n)

= c
∑

σ∈Sn

sgn(σ)a1σ(1)a2σ(2) · · · amσ(m) · · · anσ(n)

= cdet(A).

Proof of Part 3. Note that det(A) =
∑

σ∈Sn

sgn(σ)a1σ(1)a2σ(2) . . . anσ(n). So, each term

in the expression for determinant, contains one entry from each row. Hence, from the

condition that A has a row consisting of all zeros, the value of each term is 0. Thus,

det(A) = 0.

Proof of Part 4. Suppose that the ℓth and mth row of A are equal. Let B be the

matrix obtained from A by interchanging the ℓth and mth rows. Then by the first part,
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det(B) = − det(A). But the assumption implies that B = A. Hence, det(B) = det(A). So,

we have det(B) = − det(A) = det(A). Hence, det(A) = 0.

Proof of Part 5. By definition and the given assumption, we have

det(C) =
∑

σ∈Sn

sgn(σ)c1σ(1)c2σ(2) · · · cmσ(m) · · · cnσ(n)

=
∑

σ∈Sn

sgn(σ)c1σ(1)c2σ(2) · · · (bmσ(m) + amσ(m)) · · · cnσ(n)

=
∑

σ∈Sn

sgn(σ)b1σ(1)b2σ(2) · · · bmσ(m) · · · bnσ(n)

+
∑

σ∈Sn

sgn(σ)a1σ(1)a2σ(2) · · · amσ(m) · · · anσ(n)

= det(B) + det(A).

Proof of Part 6. Suppose that B = [bij] is obtained from A by replacing the ℓth row

by itself plus k times the mth row, for ℓ 6= m. Then bℓj = aℓj + k amj and bij = aij for

1 ≤ i 6= m ≤ n, 1 ≤ j ≤ n. Then

det(B) =
∑

σ∈Sn

sgn(σ)b1σ(1)b2σ(2) · · · bℓσ(ℓ) · · · bmσ(m) · · · bnσ(n)

=
∑

σ∈Sn

sgn(σ)a1σ(1)a2σ(2) · · · (aℓσ(ℓ) + kamσ(m)) · · · amσ(m) · · · anσ(n)

=
∑

σ∈Sn

sgn(σ)a1σ(1)a2σ(2) · · · aℓσ(ℓ) · · · amσ(m) · · · anσ(n)

+k
∑

σ∈Sn

sgn(σ)a1σ(1)a2σ(2) · · · amσ(m) · · · amσ(m) · · · anσ(n)

=
∑

σ∈Sn

sgn(σ)a1σ(1)a2σ(2) · · · aℓσ(ℓ) · · · amσ(m) · · · anσ(n) use Part 4

= det(A).

Proof of Part 7. First let us assume that A is an upper triangular matrix. Observe

that if σ ∈ Sn is different from the identity permutation then n(σ) ≥ 1. So, for every

σ 6= Idn ∈ Sn, there exists a positive integer m, 1 ≤ m ≤ n − 1 (depending on σ) such

that m > σ(m). As A is an upper triangular matrix, amσ(m) = 0 for each σ(6= Idn) ∈ Sn.

Hence the result follows.

A similar reasoning holds true, in case A is a lower triangular matrix.

Proof of Part 8. Let In be the identity matrix of order n. Then using Part 7, det(In) = 1.

Also, recalling the notations for the elementary matrices given in Remark 2.2.2, we have

det(Eij) = −1, (using Part 1) det(Ei(c)) = c (using Part 2) and det(Eij(k) = 1 (using

Part 6). Again using Parts 1, 2 and 6, we get det(EA) = det(E) det(A).

Proof of Part 9. Suppose A is invertible. Then by Theorem 2.2.5, A is a product

of elementary matrices. That is, there exist elementary matrices E1, E2, . . . , Ek such

that A = E1E2 · · ·Ek. Now a repeated application of Part 8 implies that det(A) =

det(E1) det(E2) · · · det(Ek). But det(Ei) 6= 0 for 1 ≤ i ≤ k. Hence, det(A) 6= 0.
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Now assume that det(A) 6= 0. We show that A is invertible. On the contrary, assume

that A is not invertible. Then by Theorem 2.2.5, the matrix A is not of full rank. That

is there exists a positive integer r < n such that rank(A) = r. So, there exist elementary

matrices E1, E2, . . . , Ek such that E1E2 · · ·EkA =

[

B

0

]

. Therefore, by Part 3 and a

repeated application of Part 8,

det(E1) det(E2) · · · det(Ek) det(A) = det(E1E2 · · ·EkA) = det

([

B

0

])

= 0.

But det(Ei) 6= 0 for 1 ≤ i ≤ k. Hence, det(A) = 0. This contradicts our assumption that

det(A) 6= 0. Hence our assumption is false and therefore A is invertible.

Proof of Part 10. Suppose A is not invertible. Then by Part 9, det(A) = 0. Also,

the product matrix AB is also not invertible. So, again by Part 9, det(AB) = 0. Thus,

det(AB) = det(A) det(B).

Now suppose that A is invertible. Then by Theorem 2.2.5, A is a product of el-

ementary matrices. That is, there exist elementary matrices E1, E2, . . . , Ek such that

A = E1E2 · · ·Ek. Now a repeated application of Part 8 implies that

det(AB) = det(E1E2 · · ·EkB) = det(E1) det(E2) · · · det(Ek) det(B)

= det(E1E2 · · ·Ek) det(B) = det(A) det(B).

Proof of Part 11. Let B = [bij ] = At. Then bij = aji for 1 ≤ i, j ≤ n. By Proposi-

tion 7.1.4, we know that Sn = {σ−1 : σ ∈ Sn}. Also sgn(σ) = sgn(σ−1). Hence,

det(B) =
∑

σ∈Sn

sgn(σ)b1σ(1)b2σ(2) · · · bnσ(n)

=
∑

σ∈Sn

sgn(σ−1)bσ−1(1) 1 bσ−1(2) 2 · · · bσ−1(n) n

=
∑

σ∈Sn

sgn(σ−1)a1σ−1(1)b2σ−1(2) · · · bnσ−1(n)

= det(A).

Remark 7.2.2. 1. The result that det(A) = det(At) implies that in the statements

made in Theorem 7.2.1, where ever the word “row” appears it can be replaced by

“column”.

2. Let A = [aij ] be a matrix satisfying a11 = 1 and a1j = 0 for 2 ≤ j ≤ n. Let B be the

submatrix of A obtained by removing the first row and the first column. Then it can

be easily shown that det(A) = det(B). The reason being is as follows:

for every σ ∈ Sn with σ(1) = 1 is equivalent to saying that σ is a permutation of the
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elements {2, 3, . . . , n}. That is, σ ∈ Sn−1. Hence,

det(A) =
∑

σ∈Sn

sgn(σ)a1σ(1)a2σ(2) · · · anσ(n) =
∑

σ∈Sn,σ(1)=1

sgn(σ)a2σ(2) · · · anσ(n)

=
∑

σ∈Sn−1

sgn(σ)b1σ(1) · · · bnσ(n) = det(B).

We are now ready to relate this definition of determinant with the one given in Defini-

tion 2.5.2.

Theorem 7.2.3. Let A be an n × n matrix. Then det(A) =
n∑

j=1
(−1)1+ja1j det

(
A(1|j)

)
,

where recall that A(1|j) is the submatrix of A obtained by removing the 1st row and the

jth column.

Proof. For 1 ≤ j ≤ n, define two matrices

Bj =









0 0 · · · a1j · · · 0

a21 a22 · · · a2j · · · a2n
...

...
. . .

...
...

an1 an2 · · · anj · · · ann









n×n

and Cj =









a1j 0 0 · · · 0

a2j a21 a22 · · · a2n
...

...
...

. . .
...

anj an1 an2 · · · ann









n×n

.

Then by Theorem 7.2.1.5,

det(A) =
n∑

j=1

det(Bj). (7.2.2)

We now compute det(Bj) for 1 ≤ j ≤ n. Note that the matrix Bj can be transformed into

Cj by j − 1 interchanges of columns done in the following manner:

first interchange the 1st and 2nd column, then interchange the 2nd and 3rd column and

so on (the last process consists of interchanging the (j − 1)th column with the jth col-

umn. Then by Remark 7.2.2 and Parts 1 and 2 of Theorem 7.2.1, we have det(Bj) =

a1j(−1)j−1 det(Cj). Therefore by (7.2.2),

det(A) =
n∑

j=1

(−1)j−1a1j det
(
A(1|j)

)
=

n∑

j=1

(−1)j+1a1j det
(
A(1|j)

)
.

7.3 Dimension of M +N

Theorem 7.3.1. Let V (F) be a finite dimensional vector space and let M and N be two

subspaces of V. Then

dim(M) + dim(N) = dim(M +N) + dim(M ∩N). (7.3.3)
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Proof. Since M ∩ N is a vector subspace of V, consider a basis B1 = {u1,u2, . . . ,uk}
of M ∩ N. As, M ∩ N is a subspace of the vector spaces M and N, we extend the ba-

sis B1 to form a basis BM = {u1,u2, . . . ,uk,v1, . . . ,vr} of M and also a basis BN =

{u1,u2, . . . ,uk,w1, . . . ,ws} of N.

We now proceed to prove that the set B2 = {u1,u2, . . . ,uk,w1, . . . ,ws,v1,v2, . . . ,vr}
is a basis of M +N.

To do this, we show that

1. the set B2 is linearly independent subset of V, and

2. L(B2) = M +N.

The second part can be easily verified. To prove the first part, we consider the linear

system of equations

α1u1 + · · ·+ αkuk + β1w1 + · · ·+ βsws + γ1v1 + · · ·+ γrvr = 0. (7.3.4)

This system can be rewritten as

α1u1 + · · ·+ αkuk + β1w1 + · · · + βsws = −(γ1v1 + · · ·+ γrvr).

The vector v = −(γ1v1+· · ·+γrvr) ∈ M, as v1, . . . ,vr ∈ BM . But we also have v = α1u1+

· · ·+αkuk +β1w1+ · · ·+βsws ∈ N as the vectors u1,u2, . . . ,uk,w1, . . . ,ws ∈ BN . Hence,

v ∈ M∩N and therefore, there exists scalars δ1, . . . , δk such that v = δ1u1+δ2u2+· · ·+δkuk.

Substituting this representation of v in Equation (7.3.4), we get

(α1 − δ1)u1 + · · · + (αk − δk)uk + β1w1 + · · ·+ βsws = 0.

But then, the vectors u1,u2, . . . ,uk,w1, . . . ,ws are linearly independent as they form a

basis. Therefore, by the definition of linear independence, we get

αi − δi = 0, for 1 ≤ i ≤ k and βj = 0 for 1 ≤ j ≤ s.

Thus the linear system of Equations (7.3.4) reduces to

α1u1 + · · · + αkuk + γ1v1 + · · ·+ γrvr = 0.

The only solution for this linear system is

αi = 0, for 1 ≤ i ≤ k and γj = 0 for 1 ≤ j ≤ r.

Thus we see that the linear system of Equations (7.3.4) has no non-zero solution. And

therefore, the vectors are linearly independent.

Hence, the set B2 is a basis of M +N. We now count the vectors in the sets B1,B2,BM

and BN to get the required result.



Index

Adjoint of a Matrix, 53

Back Substitution, 35

Basic Variables, 30

Basis of a Vector Space, 76

Bilinear Form, 156

Cauchy-Schwarz Inequality, 115

Cayley Hamilton Theorem, 146

Change of Basis Theorem, 109

Characteristic Equation, 142

Characteristic Polynomial, 142

Cofactor Matrix, 52

Column Operations, 44

Column Rank of a Matrix, 44

Complex Vector Space, 62

Coordinates of a Vector, 90

Definition

Diagonal Matrix, 6

Equality of two Matrices, 5

Identity Matrix, 6

Lower Triangular Matrix, 6

Matrix, 5

Principal Diagonal, 6

Square Matrix, 6

Transpose of a Matrix, 7

Triangular Matrix, 6

Upper Triangular Matrix, 6

Zero Matrix, 6

Determinant

Properties, 168

Determinant of a Square Matrix, 49, 168

Dimension

Finite Dimensional Vector Space, 79

Eigen-pair, 142

Eigenvalue, 142

Eigenvector, 142

Elementary Matrices, 37

Elementary Row Operations, 27

Elimination

Gauss, 28

Gauss-Jordan, 35

Equality of Linear Operators, 96

Forward Elimination, 28

Free Variables, 30

Fundamental Theorem of Linear Algebra, 117

Gauss Elimination Method, 28

Gauss-Jordan Elimination Method, 35

Gram-Schmidt Orthogonalization Process, 124

Idempotent Matrix, 15

Identity Operator, 96

Inner Product, 113

Inner Product Space, 113

Inverse of a Linear Transformation, 105

Inverse of a Matrix, 13

Leading Term, 30

Linear Algebra

Fundamental Theorem, 117

Linear Combination of Vectors, 69

Linear Dependence, 73

linear Independence, 73

Linear Operator, 95

Equality, 96

Linear Span of Vectors, 70

Linear System, 24

Associated Homogeneous System, 25

Augmented Matrix, 25

Coefficient Matrix, 25

174



INDEX 175

Equivalent Systems, 27

Homogeneous, 25

Non-Homogeneous, 25

Non-trivial Solution, 25

Solution, 25

Solution Set, 25

Trivial Solution, 25

Consistent, 31

Inconsistent, 31

Linear Transformation, 95

Matrix, 100

Matrix Product, 106

Null Space, 102

Range Space, 102

Composition, 106

Inverse, 105, 108

Nullity, 102

Rank, 102

Matrix, 5

Adjoint, 53

Cofactor, 52

Column Rank, 44

Determinant, 49

Eigen-pair, 142

Eigenvalue, 142

Eigenvector, 142

Elementary, 37

Full Rank, 46

Hermitian, 151

Non-Singular, 50

Quadratic Form, 159

Rank, 44

Row Equivalence, 27

Row-Reduced Echelon Form, 35

Scalar Multiplication, 7

Singular, 50

Skew-Hermitian, 151

Addition, 7

Diagonalisation, 148

Idempotent, 15

Inverse, 13

Minor, 52

Nilpotent, 15

Normal, 151

Orthogonal, 15

Product of Matrices, 8

Row Echelon Form, 30

Row Rank, 43

Skew-Symmetric, 15

Submatrix, 16

Symmetric, 15

Trace, 18

Unitary, 151

Matrix Equality, 5

Matrix Multiplication, 8

Matrix of a Linear Transformation, 100

Minor of a Matrix, 52

Nilpotent Matrix, 15

Non-Singular Matrix, 50

Normal Matrix

Spectral Theorem, 156

Operations

Column, 44

Operator

Identity, 96

Self-Adjoint, 131

Order of Nilpotency, 15

Ordered Basis, 90

Orthogonal Complement, 130

Orthogonal Projection, 130

Orthogonal Subspace of a Set, 128

Orthogonal Vectors, 116

Orthonormal Basis, 121

Orthonormal Set, 121

Orthonormal Vectors, 121

Properties of Determinant, 168

QR Decomposition, 136

Generalized, 137

Quadratic Form, 159

Rank Nullity Theorem, 104

Rank of a Matrix, 44



176 INDEX

Real Vector Space, 62

Row Equivalent Matrices, 27

Row Operations

Elementary, 27

Row Rank of a Matrix, 43

Row-Reduced Echelon Form, 35

Self-Adjoint Operator, 131

Sesquilinear Form, 156

Similar Matrices, 110

Singular Matrix, 50

Solution Set of a Linear System, 25

Spectral Theorem for Normal Matrices, 156

Square Matrix

Bilinear Form, 156

Determinant, 168

Sesquilinear Form, 156

Submatrix of a Matrix, 16

Subspace

Linear Span, 72

Orthogonal Complement, 117, 128

Sum of two Matrices, 7

System of Linear Equations, 24

Trace of a Matrix, 18

Transformation

Zero, 96

Unit Vector, 114

Unitary Equivalence, 152

Vector Space, 61

C
n: Complex n-tuple, 63

R
n: Real n-tuple, 63

Basis, 76

Dimension, 79

Dimension of M +N , 172

Inner Product, 113

Isomorphism, 108

Real, 62

Subspace, 66

Complex, 62

Finite Dimensional, 71

Infinite Dimensional, 71

Vector Subspace, 66

Vectors

Angle, 116

Coordinates, 90

Length, 114

Linear Combination, 69

Linear Independence, 73

Linear Span, 70

Norm, 114

Orthogonal, 116

Orthonormal, 121

Linear Dependence, 73

Zero Transformation, 96


