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Abstract—An important aim of research on the blind image
quality assessment (IQA) problem is to devise perceptual models
that can predict the quality of distorted images with as little
prior knowledge of the images or their distortions as possible.
Current state-of-the-art ‘general purpose’ no reference (NR) IQA
algorithms require knowledge about anticipated distortions in the
form of training examples and corresponding human opinion
scores. However we have recently derived a blind IQA model
that only makes use of measurable deviations from statistical
regularities observed in natural images, without training on
human-rated distorted images, and, indeed without any expo-
sure to distorted images. Thus, it is ‘completely blind.’ The
new IQA model, which we call the Natural Image Quality
Evaluator (NIQE) is based on the construction of a ‘quality
aware’ collection of statistical features based on a simple and
successful space domain natural scene statistic (NSS) model.
These features are derived from a corpus of natural, undis-
torted images. Experimental results show that the new index
delivers performance comparable to top performing NR IQA
models that require training on large databases of human
opinions of distorted images. A software release is available
at:http://live.ece.utexas.edu/research/quality/niqe release.zip.

Index Terms—Completely blind, distortion free, no reference,
image quality assessment

I. INTRODUCTION

Americans captured 80 billion digital photographs in 2011
and this number is increasing annually [1]. More than 250
million photographs are being posted daily on facebook. Con-

sumers are drowning in digital visual content and finding ways

to review and control of the quality of digital photographs is

becoming quite challenging.

At the same time, camera manufacturers continue to provide

improvements in photographic quality and resolution. The raw

captured images pass through multiple post processing steps

in the camera pipeline, each requiring parameter tuning. A

problem of great interest is to find ways to automatically

evaluate and control the perceptual quality of the visual content

as a function of these multiple parameters.

Objective image quality assessment refers to automatically

predict the quality of distorted images as would be perceived

by an average human. If a naturalistic reference image is

supplied against which the quality of the distorted image can

be compared, the model is called full reference (FR) [2].
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Conversely, NR IQA models assume that only the distorted

image whose quality is being assessed is available. Existing

general purpose NR IQA algorithms are based on models that

can learn to predict human judgments of image quality from

databases of human-rated distorted images [3], [4], [5], [6],

[7]. These kinds of IQA models are necessarily limited, since

they can only assess quality degradations arising from the

distortion types that they have been trained on.

However, it is also possible to contemplate subcategories

of general-purpose NR IQA models having tighter conditions.

A model is ‘opinion-aware’ (OA) if it has been trained on

a database(s) of human rated distorted images and associated

subjective opinion scores. Thus algorithms like DIIVINE [4],

CBIQ [6], LBIQ [7], BLIINDS [5] and BRISQUE [3] are OA

IQA models. Given the impracticality of obtaining collections

of distorted images with co-registered human scores, models

that do not require training on databases of human judgments

of distorted images, and hence are ‘opinion unaware’ (OU), are

of great interest. One such effort was made in this direction by

the authors of [8]. However, their model requires knowledge

of the expected image distortions.

Likewise, among algorithms derived from OU models, dis-

torted images may or may not be available during IQA model

creation or training. For example, in highly unconstrained

environments, such as a photograph upload site, the a priori

nature of distortions may be very difficult to know. Thus

a model may be formulated as ‘distortion aware’ (DA) by

training on (and hence tuning to) specific distortions, or it

may be ‘distortion unaware’ (DU), relying instead only on

exposure to naturalistic source images or image models to

guide the QA process. While this may seem as an extreme

paucity of information to guide design, it is worth observing

that very successful FR IQA models (such as the structural

similarity index (SSIM) [9]) are DU.

Our contribution in this direction is the development of a

NSS-based modeling framework for OU-DU NR IQA design,

resulting in a first of a kind NSS-driven blind OU-DU IQA

model which does not require exposure to distorted images

a priori, nor any training on human opinion scores. The

new NR OU-DU IQA quality index performs better than the

popular FR peak signal-to-noise-ratio (PSNR) and structural

similarity (SSIM) index and delivers performance at par with

top performing NR OA-DA IQA approaches.

II. NO REFERENCE OPINION-UNAWARE

DISTORTION-UNAWARE IQA MODEL

Our new NR OU-DU IQA model is based on constructing

a collection of ‘quality aware’ features and fitting them to
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Fig. 1. The marked blocks in the images (a) and (b) depict instances of
natural image patches selected using a local sharpness measure.

a multivariate Gaussian (MVG) model. The quality aware

features are derived from a simple but highly regular natural

scene statistic (NSS) model.The quality of a given test image is

then expressed as the distance between a multivariate Gaussian

(MVG) fit of the NSS features extracted from the test image,

and a MVG model of the quality aware features extracted from

the corpus of natural images.

A. Spatial Domain NSS

Our ‘completely blind’ IQA model is founded on percep-

tually relevant spatial domain NSS features extracted from

local image patches that effectively capture the essential low-

order statistics of natural images. The classical spatial NSS

model [10] that we use begins by preprocessing the image by

processes of local mean removal and divisive normalization:

Î(i, j) =
I(i, j)− µ(i, j)

σ(i, j) + 1
(1)

where i ∈ {1, 2 . . .M}, j ∈ {1, 2 . . . N} are spatial indices,

M and N are the image dimensions, and

µ(i, j) =

K
∑

k=−K

L
∑

l=−L

wk,lI(i+ k, j + l) (2)

σ(i, j) =

√

√

√

√

K
∑

k=−K

L
∑

l=−L

wk,l[I(i+ k, j + l)− µ(i, j)]2 (3)

estimate the local mean and contrast, respectively, where

w = {wk,l|k = −K, . . . ,K, l = −L, . . . L} is a 2D circularly-

symmetric Gaussian weighting function sampled out to 3
standard deviations (K = L = 3) and rescaled to unit volume.

The coefficients (1) have been observed to reliably follow a

Gaussian distribution when computed from natural images that

have suffered little or no apparent distortion [10]. This ideal

model, however, is violated when the images do not derive

from a natural source (e.g. computer graphics) or when natural

images are subjected to unnatural distortions. The degree of

modification can be indicative of perceptual distortion severity.

The NSS features used in the NIQE index are similar to

those used in a prior OA-DA IQA model called BRISQUE

[3]. However, NIQE only uses the NSS features from a corpus

of natural images while BRISQUE is trained on features

obtained from both natural and distorted images and also on

human judgments of the quality of these images. Therefore,

BRISQUE is limited to the types of distortions it has been

tuned to. By comparison, the NIQE Index is not tied to

any specific distortion type, yet, as will be shown, delivers

nearly comparable predictive power on the same distortions

the BRISQUE index has been trained on, with a similar low

complexity.

B. Patch Selection

Once the image coefficients (1) are computed, the image is

partitioned into P ×P patches. Specific NSS features are then

computed from the coefficients of each patch. However, only

a subset of the patches are used for the following reason.

Every image is subject to some kind of limiting distortion

[11]. For instance, there is a loss of resolution due to defocus

blur in parts of most images due to the limited depth of field

(DOF) of any single-lens camera. Since humans appear to

more heavily weight their judgments of image quality from the

sharp image regions [12], more salient quality measurements

can be made from sharp patches. Setting aside the question of

the aesthetic appeal of having some parts of an image sharper

than others, any defocus blur represents a potential loss of

visual information.

We use a simple device to preferentially select from amongst

a collection of natural patches those that are richest in infor-

mation and less likely to have been subjected to a limiting

distortion. This subset of patches is then used to construct a

model of the statistics of natural image patches.

The variance field (3) has been largely ignored in the past in

NSS based image analysis, but it is a rich source of structural

image information that can be used to quantify local image

sharpness. Letting the P × P sized patches be indexed b =
1, 2, .., B, a direct approach is to compute the average local

deviation field of each patch indexed b:

δ(b) =
∑∑

(i,j)∈patchb
σ(i, j) (4)

where δ denotes local activity/sharpness.

Once the sharpness of each patch is found, those having a

suprathreshold sharpness δ > T are selected. The threshold T
is picked to be a fraction p of the peak patch sharpness over

the image. In our experiments, we used the nominal value p
= 0.75. Examples of this kind of patch selection are shown in

Fig. 1. We have observed only small variations in performance

when p is varied in the range [0.6, 0.9].

C. Characterizing Image Patches

Given a collection of natural image patches selected as

above, their statistics are characterized by ‘quality aware’ NSS

features computed from each selected patch [3]. Prior studies

of NSS based image quality have shown that the generalized

Gaussian distribution effectively captures the behavior of the

coefficients (1) of natural and distorted versions of them [13].

The generalized Gaussian distribution (GGD) with zero

mean is given by:

f(x;α, β) =
α

2βΓ(1/α)
exp

(

−

(

|x|

β

)α)

(5)
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where Γ(·) is the gamma function:

Γ(a) =

∫

∞

0

ta−1e−tdt a > 0. (6)

The parameters of the GGD (α, β), can be reliably estimated

using the moment-matching based approach proposed in [14].

The signs of the transformed image coefficients (1) have

been observed to follow a fairly regular structure. However,

distortions disturb this correlation structure [3]. This deviation

can be captured by analyzing the sample distribution of the

products of pairs of adjacent coefficients computed along

horizontal, vertical and diagonal orientations: Î(i, j)Î(i, j+1),
Î(i, j)Î(i+1, j), Î(i, j)Î(i+1, j+1) and Î(i, j)Î(i+1, j−1)
for i ∈ {1, 2 . . .M} and j ∈ {1, 2 . . . N} [3].

The products of neighboring coefficients are well-modeled

as following a zero mode asymmetric generalized Gaussian

distribution (AGGD) [15]:

f(x; γ, βl, βr) =











γ

(βl+βr)Γ( 1

γ )
exp

(

−
(

−x
βl

)γ)

∀x ≤ 0

γ

(βl+βr)Γ( 1

γ )
exp

(

−
(

x
βr

)γ)

∀x ≥ 0.

(7)

The parameters of the AGGD (γ, βl, βr) can be efficiently

estimated using the moment-matching based approach in [15].

The mean of the distribution is also useful:

η = (βr − βl)
Γ( 2γ )

Γ( 1γ )
. (8)

By extracting estimates along the four orientations, 16 pa-

rameters are arrived at yielding 18 overall. All features are

computed at two scales to capture multiscale behavior, by low

pass filtering and downsampling by a factor of 2, yielding a

set of 36 features.

D. Multivariate Gaussian Model

A simple model of the NSS features computed from natural

image patches can be obtained by fitting them with an MVG

density, providing a rich representation of them:

fX(x1, . . . , xk) =
1

(2π)k/2|Σ|1/2
exp(−

1

2
(x−ν)TΣ−1(x−ν))

(9)

where (x1, . . . , xk) are the NSS features computed in (5)-

(8), and ν and Σ denote the mean and covariance matrix

of the MVG model, which are estimated using a stan-

dard maximum likelihood estimation procedure [16]. We se-

lected a varied set of 125 natural images with sizes rang-

ing from 480 × 320 to 1280 × 720 to obtain the multi-

variate Gaussian model. Images were selected from copy-

right free Flickr data and from the Berkeley image seg-

mentation database [17] making sure that no overlap occurs

with the test image content. The images may be viewed at

http://live.ece.utexas.edu/research/quality/pristinedata.zip.

TABLE I
MEDIAN SPEARMAN RANK ORDERED CORRELATION COEFFICIENT

(SROCC) ACROSS 1000 TRAIN-TEST COMBINATIONS ON THE LIVE IQA
DATABASE. Italics INDICATE (OA/OU)-DA NO-REFERENCE ALGORITHMS

AND bold face INDICATES THE NEW OU-DU MODEL ALGORITHM.

JP2K JPEG WN Blur FF All

PSNR 0.8646 0.8831 0.9410 0.7515 0.8736 0.8636

SSIM 0.9389 0.9466 0.9635 0.9046 0.9393 0.9129

MS-SSIM 0.9627 0.9785 0.9773 0.9542 0.9386 0.9535

CBIQ 0.8935 0.9418 0.9582 0.9324 0.8727 0.8954

LBIQ 0.9040 0.9291 0.9702 0.8983 0.8222 0.9063

BLIINDS-II 0.9323 0.9331 0.9463 0.8912 0.8519 0.9124

DIIVINE 0.9123 0.9208 0.9818 0.9373 0.8694 0.9250

BRISQUE 0.9139 0.9647 0.9786 0.9511 0.8768 0.9395

TMIQ 0.8412 0.8734 0.8445 0.8712 0.7656 0.8010

NIQE 0.9172 0.9382 0.9662 0.9341 0.8594 0.9135

E. NIQE Index

The new OU-DU IQA index, called NIQE, is applied by

computing the 36 identical NSS features from patches of the

same size P×P from the image to be quality analyzed, fitting

them with the MVG model (9), then comparing its MVG fit

to the natural MVG model. The sharpness criterion (4) is not

applied to these patches because loss of sharpness in distorted

images is indicative of distortion and neglecting them would

lead to incorrect evaluation of the distortion severity. The patch

size was set to 96 × 96 in our implementation. However, we

observed stable performance across patch sizes ranging from

32× 32 to 160× 160.

Finally, the quality of the distorted image is expressed as

the distance between the quality aware NSS feature model and

the MVG fit to the features extracted from the distorted image:

D(ν1, ν2,Σ1,Σ2) =

√

√

√

√

(

(ν1 − ν2)
T

(

Σ1 +Σ2

2

)−1

(ν1 − ν2)

)

(10)

where ν1, ν2 and Σ1, Σ2 are the mean vectors and covariance

matrices of the natural MVG model and the distorted image’s

MVG model.

III. PERFORMANCE EVALUATION

A. Correlation with Human Judgments of Visual Quality

To test the performance of the NIQE index, we used the

LIVE IQA database [2] of 29 reference images and 779
distorted images spanning five different distortion categories

– JPEG and JPEG2000 (JP2K) compression, additive white

Gaussian noise (WN), Gaussian blur (blur) and a Rayleigh

fast fading channel distortion (FF). A difference mean opinion

score (DMOS) associated with each image represents its

subjective quality.

Since all of the OA IQA approaches that we compare

NIQE to require a training procedure to calibrate the regressor

module, we divided the LIVE database randomly into chosen

subsets for training and testing. Although our blind approach

and the FR approaches do not require this procedure, to

ensure a fair comparison across methods, the correlations of

predicted scores with human judgments of visual quality are

only reported on the test set. The dataset was divided into 80%

training and 20% testing – taking care that no overlap occurs

between train and test content. This train-test procedure was
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Fig. 2. Variation of performance with the number of natural images K. Error
schmears around each point indicate the standard deviation in performance
across 100 iterations for 5 < K < 125.

TABLE II
MEDIAN LINEAR CORRELATION COEFFICIENT ACROSS 1000 TRAIN-TEST

COMBINATIONS ON THE LIVE IQA DATABASE. Italics INDICATE

(OA/OU)-DA NO-REFERENCE ALGORITHMS AND bold face INDICATES

THE NEW OU-DU MODEL ALGORITHM.

JP2K JPEG WN Blur FF All

PSNR 0.8762 0.9029 0.9173 0.7801 0.8795 0.8592

SSIM 0.9405 0.9462 0.9824 0.9004 0.9514 0.9066

MS-SSIM 0.9746 0.9793 0.9883 0.9645 0.9488 0.9511

CBIQ 0.8898 0.9454 0.9533 0.9338 0.8951 0.8955

LBIQ 0.9103 0.9345 0.9761 0.9104 0.8382 0.9087

BLIINDS-II 0.9386 0.9426 0.9635 0.8994 0.8790 0.9164

DIIVINE 0.9233 0.9347 0.9867 0.9370 0.8916 0.9270

BRISQUE 0.9229 0.9734 0.9851 0.9506 0.9030 0.9424

TMIQ 0.8730 0.8941 0.8816 0.8530 0.8234 0.7856

NIQE 0.9370 0.9564 0.9773 0.9525 0.9128 0.9147

repeated 1000 times to ensure that there was no bias due to

the spatial content used for training. We report the median

performance across all iterations.

We use Spearman’s rank ordered correlation coefficient

(SROCC), and Pearson’s (linear) correlation coefficient (LCC)

to test the model. The NIQE scores are passed through a

logistic non-linearity [2] before computing LCC for mapping

to DMOS space. We compared NIQE with three FR indices:

PSNR, SSIM [9] and multiscale SSIM (MS-SSIM) [18], five

general purpose OA-DA algorithms - CBIQ [6], LBIQ [7],

BLIINDS-II [5], DIIVINE [4], BRISQUE [3] and the DA-OU

approach TMIQ [8].

As can be seen from Tables I and II, NIQE performs better

than the FR PSNR and SSIM and competes well with all of

the top performing OA-DA NR IQA algorithms. This is a

fairly remarkable demonstration of the relationship between

quantified image naturalness and perceptual image quality.

B. Number of Natural Images

We addressed the question: ‘How many natural images are

needed to obtain a stable model that can correctly predict

image quality?’ Such an analysis provides an idea of the

quality prediction power of the NSS features and how well

they generalize with respect to image content.

To undertake this evaluation, we varied the number of

natural images K from which patches are selected and used

for model fitting. Figure 2 shows the performance against the

number of images. An error band is drawn around each point

to indicate the standard deviation in performance across 100
iterations of different sample sets of K images. It may be

observed that a stable natural model can be obtained using a

small set of images.

IV. CONCLUSION

We have created a first of a kind blind IQA model that as-

sesses image quality without knowledge of anticipated distor-

tions or human opinions of them. The quality of the distorted

image is expressed as a simple distance metric between the

model statistics and those of the distorted image. The new

model outperforms FR IQA models and competes with top

performing NR IQA trained on human judgments of known

distorted images. Such a model has great potential to be

applied in unconstained environments.
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