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Abstract

We present compiler technology for synthesizing sparse ma-
trix code from (i) dense matrix code, and (ii) a description
of the index structure of a sparse matrix. Our approach is
to embed statement instances into a Cartesian product of
statement iteration and data spaces, and to produce efficient
sparse code by identifying common enumerations for mul-
tiple references to sparse matrices. The approach works for
imperfectly-nested codes with dependences, and produces
sparse code competitive with hand-written library code for
the Basic Linear Algebra Subroutines (BLAS).

1 Introduction

Many applications that require high-performance computing
perform computations on sparse matrices. For example, the
finite-element method for solving partial differential equa-
tions approximately requires the solution of large linear sys-
tems of the form Ax = b where A is a large sparse matrix.
Some web-search engines and data-mining codes compute
eigenvectors of large sparse matrices that represent how of-
ten certain words occur in documents of interest.

Sparse matrices are usually stored in compressed formats
in which zeros are not stored explicitly [18]. This reduces
storage requirements, and in many codes, also eliminates the
need to compute with zeros. Figure 1 shows a sparse matrix
and a number of commonly used compressed formats that
we will use as running examples in this paper.

The simplest format is Co-ordinate storage (COO) in
which three arrays are used to store non-zero elements and
their row and column positions. The non-zeros may be or-
dered arbitrarily. Compressed Sparse Row storage (CSR) is
a commonly used format that permits indexed access to rows
but not columns. Array values is used to store the non-
zeros of the matrix row by row, while another array colind
of the same size is used to store the column positions of these
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Figure 1: Sparse Storage Formats

entries. A third array rowptr has one entry for each row of
the matrix, and it stores the position in values of the first
non-zero element of each row of the matrix. Compressed
Sparse Column storage (CSC, not shown) is the transpose of
CSR in which the non-zeros are stored column-by-column,
and it offers indexed access to columns.

A more complex format is the Jagged Diagonal (JAD)
format.1 An instance of a JAD matrix is constructed by (i)
“compressing” the rows of the matrix so that zero elements
are eliminated (introducing an auxiliary array, colind,
to maintain the original column indices); (ii) sorting the
compressed rows by the number of non-zeros within each
row in decreasing order (introducing a permutation vector,
iperm); and (iii) storing the columns of the compressed
and sorted matrix, which are called the “diagonals”, in two
vectors, colind and values. Finally, Figure 2 illustrates
the Diagonal (DIA) storage format which is appropriate for
banded matrices. Only the diagonals containing non-zero
elements are stored, and elements are addressed by diagonal
and offset.

In this paper, we will focus on language and systems sup-

1See the Appendix for a detailed description of the JAD format.
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Figure 2: DIA Storage Format
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for i = 1, m

         for k = 1, n
             C[i][j] = C[i][j] + A[i][k]*B[k][j]

Triangular Solve (TS)

y[i] = 0
  for j = 1, n

for i = 1, m
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     y[i] = y[i] + A[i][j]*x[j]

n

m

C[i][j] = 0
     for j = 1,  t

t

x[i] = b[i]
for i = 1, m

   for j = 1, m
x[j] = x[j]/L[j][j]
for i = j+1, m
     x[i] = x[i] - L[i][j]*x[j]

Figure 3: Basic Linear Algebra Subroutines

port for iterative sparse matrix algorithms. There are at least
forty or fifty formats that are widely used, and it is com-
mon to use application-specific formats. Since each format
requires its own carefully tuned code, the problem of de-
signing libraries of iterative algorithms which can support all
these compressed formats and which can be easily extended
to new formats is a formidable one.

The approach taken by the numerical analysis commu-
nity (for example, in the PETSc library from Argonne [2]) is
to encapsulate the format-dependent code into a set of Basic
Linear Algebra Subroutines (BLAS), the most important of
which are shown in Figure 3. These routines are invoked
by format-independent implementations of iterative meth-
ods. Therefore, the high-level iterative codes have to be writ-
ten just once, but they must be linked with format-specific
BLAS. For dense matrices, highly tuned implementations of
BLAS are routinely provided by computer vendors [7]. For
sparse matrices, the software problem is much more diffi-
cult because of the need to support such a large number of
formats. Although a number of sparse BLAS libraries have
been written [8, 10, 20], they have had limited success be-
cause (i) they support only a small number of formats, and
(ii) they provide no leverage for people designing new for-
mats.

One solution, first proposed by Bik and Wijshoff [4, 5], is

to use restructuring compiler technology to synthesize sparse
matrix programs from dense matrix programs. Their com-
piler restructured input codes to match a Compressed Hyper-
plane Storage (CHS) format (CSR and CSC are special cases
of this format) whenever possible. More recently, Pugh and
Shpeisman [19] proposed an intermediate program represen-
tation for sparse codes that allows them to predict asymp-
totic program efficiency and make decisions about choosing
sparse matrix formats.

In our previous work [14], we argued that (i) sparse
matrices should be viewed as sequential-access data struc-
tures [22], and (ii) efficient sparse codes should be organized
if possible as data-centric computations that enumerate non-
zero elements of sparse matrices and perform computations
with these elements as they are enumerated. This view is
in contrast to the conventional view of arrays as random-
access data structures, a view that is useful only when the
array is dense. An important refinement to the sequential-
access view is that some sparse formats such as CSR and
CSC have an indexing structure, and should therefore be
viewed as indexed-sequential-access structures [22]. For ex-
ample, the CSR format permits indexing to rows (but not to
columns), and this indexing structure must be exploited in
some codes such as matrix multiplication.

To avoid having to write different data-centric programs
for each sparse format, we exploit the idea of generic pro-
gramming [16]. The idea behind generic programming is to
program the algorithm abstractly in a data-structure-neutral
fashion just once, obtaining concrete, data-structure-specific
programs by instantiating the abstract code with different
data structure implementations. The most well-known ex-
ample of this approach is the Standard Template Library
(STL) in C++. Generic programming is also exploited in
the MTL matrix library [21].

Conventional generic programming uses a single API
which is (i) used by the algorithm designers and (ii) sup-
ported by all data structure implementors. To obtain effi-
cient code, we found that our system needed two API’s: a
high-level one used by the algorithm designers, and a low-
level one supported by data structure implementors. The
high-level API is the API of dense matrix programs, while
the low-level API permits sparse matrix format designers
to specify details such as the indexing structure of matri-
ces. The instantiation of generic programs into concrete pro-
grams requires restructuring compiler technology to trans-
late from the high-level API to the low-level API. This trans-
lation requires restructuring of the dense code at a deep level
to make it data-centric for the desired sparse format, so it is
considerably more complex than the C++ template instantia-
tion mechanism. For example, generic triangular solve (TS)
can be coded in our system as shown in Figure 4.2 The pro-
grammer writes code as though all matrices were dense, but

2To keep the examples simpler, we assume that the result is to be stored
in the right-hand side vector b.



#pragma instantiate with Bernoulli
template <class T, class BASE>
void ts(T L, BASE b[])
{

for (int j=0; j<L.columns(); j++) {
/*S1*/ b[j] = b[j]/L[j][j];

for (int i=j+1; i<L.columns(); i++)
/*S2*/ b[i] = b[i] - L[i][j]*b[j];

}
}

// Will be instantiated with the Bernoulli compiler.
template void ts(Jad<double> L, double b[]);

Figure 4: Generic Triangular Solve with Instantiation

specifies which classes must be used to implement sparse
matrices. Pragmas indicate which template definitions are to
be instantiated by the sparse compiler; the rest of the tem-
plate definitions are handled by the underlying C++ com-
piler.

Previously, we showed how this restructuring could be
done in the simpler case when the program is a perfectly-
nested loop nest in which iterations can be executed in any
order [11]. However, many codes of interest such as the tri-
angular solve in Figure 4 are not perfectly-nested and data
dependences do not allow executing statements in arbitrary
order. This paper develops the sparse code synthesis tech-
nology for a general class of codes consisting of imperfectly-
nested loops with dependences.

The rest of the paper is organized as follows. In Sec-
tion 2, we describe how the user can specify sparse matrix
formats in our generic programming system. In Section 3,
we describe a general restructuring compiler technology for
restructuring imperfectly-nested loops. In Section 4, we dis-
cuss how this technology can be used to synthesize sparse
matrix code from dense matrix code and sparse format de-
scriptions. Although our approach can be used to handle
codes in which sparse matrices suffer fill, we focus on codes
without fill in this paper since this is adequate for the BLAS
codes. In Section 5, we present experimental results demon-
strating that our approach produces code competitive with a
hand-optimized sparse BLAS library. Finally, we summa-
rize the paper in Section 6.

2 Generic Programming and Matrix Abstraction

For the purpose of this paper, the most important aspect of a
sparse format is its index structure.

To appreciate the importance of exploiting the index
structure in code restructuring, consider the triangular solve
code of Figure 4. Vector b is dense and the lower triangular
matrix L is sparse. The code is imperfectly-nested because
statement S1 is not nested in the i loop. Since matrix L
is traversed by columns and CSC permits random access to
columns, it is relatively straight-forward to generate data-
centric sparse code for CSC, shown in Figure 5, that enu-
merates the non-zero elements of the matrix and performs

for col = enumerate cols of L in increasing order
for row = enumerate L[*][col] in increasing order
val = L[row][col];

if (row == col) //diagonal element
b[row] = b[row]/val;

else if (row > col) //lower triangle
b[row] = b[row] - val*b[col];

else ; //upper triangle

Figure 5: Data-centric Pseudocode for Triangular Solve

E � Index � E

j mapfF �in� �� out � Eg

j permfP �in� �� out � Eg

j E � E

j E �E

j v

Index � attribute

j hattribute� � � � � attributei

j �attribute � � � � � attribute�

Figure 6: Sparse Matrix Abstraction

computations with each of these elements.
For CSR storage however, it is necessary to restructure

the code first so that it walks over rows of L, since CSR stor-
age provides random access only to rows of a matrix and not
to its columns. Therefore, we need a way of describing the
index structure of sparse formats, and we need technology
to restructure code to match this index structure.

The grammar in Figure 6 is used to describe the index
structure of a sparse matrix to our system [14]. The most im-
portant rule for specifying index structure is the Index � E

(nesting) production rule. For example, a CSR matrix is de-
scribed as r � c � v, indicating that rows must be ac-
cessed first, and within each row, elements within columns
can be enumerated. The mapfF �in� �� out � Eg and
permfP �in� �� out � Eg rules are used to describe linear
and permutation transformations on the matrix indices. For
example, a matrix in DIA storage format can be described
as mapfd � o �� r� o �� c � d � o � vg, while the
perm operator is useful for describing formats like JAD. The
E��E�� (aggregation) rule is used to describe a matrix that is
a collection of two formats, such as a format in which the di-
agonal elements are stored separately from the off-diagonal
ones. Enumerating the elements of such matrix requires enu-
merating bothE � and E��. Finally, the E��E�� (perspective)
rule means that the matrix can be accessed in different ways,
using either of the index structures E � or E��. As we will
see, JAD is an example of such a format.

The hattribute� � � � � attributei notation describes an index



obtained from multiple co-ordinates enumerated together,
as in the COO format (hr� ci � v). On the other hand,
�attribute� � � � � attribute� denotes independent indices, as
in a dense matrix (�r � c� � v).

Each term E is optionally annotated with the following
enumeration properties.

� Enumeration order: a description of the order in which
coordinate values can be enumerated efficiently. For
the CSR format above, r is random-access, and within
each row, c can be enumerated efficiently in increasing
order.

� Enumeration bounds: a description of the coordinate
values that actually occur in the enumeration. A lower
triangular matrix, for example, could be annotated � �
c � r � N.

In addition to specifying this index structure, the sparse
format designer must write the actual code to perform these
enumerations. Each production in the view grammar given
in Figure 6 has an associated interface, which we have im-
plemented in C++ as a small number of abstract classes [14].
The programmer conveys views of a storage format to the
sparse compiler by writing a set of classes that inherit from
the appropriate interfaces. Enumeration order is incorpo-
rated into the class hierarchy by specifying different classes
for enumerations that are unordered/increasing/decreasing
etc. The bounds on the stored indices are conveyed to the
compiler using a pragma.

In the running example of Figure 4, we will assume
that the sparse lower triangular matrix L is stored in JAD
format. Even though JAD is designed for fast enumera-
tion along the long “diagonals”, it is also possible to ac-
cess the matrix rows through the indirection iperm. In our
notation, this structure can be described by the expression
permfiperm�r�� �� r � �r� � c � v� � �hr�� ci � v�g.
Enumeration properties are used to tell the compiler that
r� r� � c and that when the r� � c � v perspective is used,
r� is random-access and c can be enumerated in increasing
order. As shown in the Appendix, the JAD format can be im-
plemented by the following classes, each implementing one
fragment of the index structure expression.

� Jad: permfiperm�r�� �� r � � � �g
� JadPers: � � �� � � �

� JadFlat: hr�� ci � v

� JadHier: r� � � � �

� JadRow: c� v

Since L can be efficiently accessed either by “diagonal”
or by row, and the code in Figure 4 accesses it by column,
it is necessary to restructure this code to make it match JAD
storage. The technology described in the rest of this paper
accomplishes this.

3 Framework for Data-centric Restructuring

In this section, we sketch a data-centric framework for re-
structuring imperfectly-nested dense matrix codes with de-
pendences. It extends the framework we developed in [1]
for locality enhancement of dense matrix codes. For lack of
space, we only sketch the ideas here; full details are available
in [12].

Our framework makes the usual assumptions about pro-
grams: (i) programs are sequences of statements nested
within loops, (ii) all memory accesses are through array
references, and there is no array aliasing, and (iii) all loop
bounds and array indices are affine functions of surrounding
loop indices and symbolic constants.

We will use S1, S2, . . . , Sn to name the statements in the
program in syntactic order. An instance��k of a statement Sk
is the execution of statement Sk at iteration ��k of the sur-
rounding loops. Flow-, anti-, and output-dependences from
statement instances ��s to statement instances ��d can be ex-
pressed as matrix inequalities of the form D � D���s���d�

T �
d � � which we call dependence classes [1].

For our running example in Figure 4, it is easy to show
that there are two relevant dependence classes.3 The first de-
pendence class D� � f� � j� � N� � � j� � i� � N� j� �
j�g arises because statement S1 writes to a location b[j]
which is then read by statement S2; similarly, the second
dependence class D� � f� � j� � N� � � j� � i� �
N� j� � i�g arises because statement S2 writes to location
b[i] which is then read by reference b[j] in statement
S1.

3.1 Modeling Program Transformations

We model program transformations as follows. We map dy-
namic instances of statements to points in a Cartesian space
P . We then enumerate the points in P in lexicographic or-
der, and execute all statements mapped to a point when we
enumerate that point. If there are more than one statement
instances mapped to a point, we execute these statement
instances in original program order. Intuitively, the Carte-
sian space P models a perfectly-nested loop, and the maps
model transformations that embed individual statements into
this perfectly nested loop. It should be understood that this
perfectly-nested loop is merely a logical device—the code
generation phase produces an imperfectly-nested loop from
the space and the maps.

For example, if we chose P � j � i, we can embed the
code in Figure 4 into P using the maps F� � �j� j� for state-
ment S1, and F� � �j� i� for statement S2. This embedding
preserves the original program order.

Clearly, not all spaces and maps correspond to legal
transformations. However, if the execution order of the
transformed program respects all dependences (i.e. for each

3There are other dependences, but they are redundant.



dependence, the source statement instance is enumerated
and executed before the destination statement instance), then
the resulting program is semantically equivalent to the orig-
inal program. We must therefore address three problems.

1. What is the Cartesian space P for the transformed pro-
gram?

Each statement has an iteration space and a data space.
The iteration space is a Cartesian space whose dimen-
sion is equal to the number of loops surrounding that
statement. The data space is a Cartesian space whose
dimensions are the dimensions of all references to ar-
rays on which we might want to be data-centric. In
our context, these are the references in the statement
to sparse arrays. The statement space of a statement is
the product of its iteration space and data space. We
denote the statement space of statement Sk by Sk. If
we need to distinguish between the iteration space and
data space dimensions of a statement instance ��k, we
will denote the iteration space coordinates by �itk, and
the data coordinates by �dtk, i.e. ��k � ��itk� �dtk�. A
product space P for a program is the Cartesian prod-
uct of its individual statement iteration spaces. For the
purposes of this paper, the order in which individual di-
mensions appear in this product is left unspecified, and
each order corresponds to a different product space.

Data-centric code can be obtained by enumerating the
data dimensions first.

For the example of Figure 4, L is sparse, so the data
space for S2 will have two dimensions corresponding
to the row and column of L. The statement spaces for
the two statements are S� � j� � lr

�
� lc

�
and S� �

j�� i�� lr
�
� lc

�
, where the name of each dimension has

been chosen to reflect its pedigree. A product space has
	 dimensions, and there are a total of 	
 product spaces.

Embedding the code in the product spaceP � lr
�
� lr

�
�

lc
�
� lc

�
� j�� j�� i� would result in data-centric code,

as the data dimensions would be enumerated before the
iteration space dimensions.

2. How do we determine maps Fk to obtain a legal pro-
gram?

We embed statement spaces into a product space using
affine embedding functions Fk � Sk � P . For each de-
pendence with source ��s and destination ��d, the source
of the dependence is mapped to Fs���s�, and the desti-
nation is mapped to Fd���d�. If Fd���d� is enumerated
after Fs���s�, the restructured program preserves the
execution order between the dependent statement in-
stances��s and��d. To guarantee that lexicographic enu-
meration of the points in the product space preserves
the original program execution order, we require that
Fd���d� 	 Fs���s� 
 �� for all dependence pairs ���s���d�

in all dependence classes D � D���s���d�
T � d � �. As

dependence classes are described by systems of linear
inequalities, we can use Farkas’ Lemma [9] to compute
the set of all legal embedding functions, as we have
demonstrated in [1].

For our example, one possible pair of embedding func-
tions is F��j�� l

r
�
� lc
�
� � �lr

�
� lr
�
� lc
�
� lc
�
� j�� j�� j��

T and
F��j�� i�� l

r
�
� lc
�
� � �lr

�
� lr
�
� lc
�
� lc
�
� j�� j�� i��

T , which em-
bed statements S1 and S2 into product space P �
lr
�
� lr

�
� lc

�
� lc

�
� j� � j� � i�. For all depen-

dence pairs ���s���d� in dependence class D�, we have
F����d�	F����s� � ����� �� �� �� ����T . This vector is
lexicographically positive, therefore lexicographic enu-
meration of the points in the product space will enu-
merate the sources of dependences before the destina-
tions of dependences, and program semantics will be
preserved. Similarly, for all dependence pairs ���s���d�
in dependence class D�, we have F����d� 	 F����s� �
��� ���������� ��T 
 ��, therefore all dependences
are preserved.

3. How do we evaluate the efficiency of each transformed
program?

In the context of sparse matrix code generation, we an-
swer this question in Section 4.2.

4 Accounting for Sparse Matrices

Data-centric code for sparse matrices must enumerate the
co-ordinates appropriate to the sparse matrix format (e.g.,
the diagonal d and offset o for the DIA storage format in
Figure 2) rather than the dimensions of the enveloping dense
matrix. Therefore, we define the sparse data space of a state-
ment, and use that instead of the (dense) data space described
in Section 3 to define statement and product spaces.

The sparse data space of a statement is defined by starting
with its dense data space and recursing over the index struc-
ture of sparse matrices referenced in that statement. When-
ever a production rule mapfF �in� �� out � Eg is encoun-
tered, we remove the dimensions out from the data space
and add dimensions in to it. For example, for the DIA com-
pressed format, that means replacing the r and c dimensions
with the d and o dimensions. The permfP �in� �� out � Eg
rule does not change the dimensions of the data space.4 If no
sparse matrix in the program contains a production E � �E��

or E� � E��, this defines the statement sparse data space
uniquely.

The aggregation and perspective structures modify the
product spaces of a program. Intuitively, if statement Sk
references a matrix described by E � � E�� rule, we split Sk

4Permutations however change the order of enumeration of a dimen-
sion, that order may be important for legality and is handled by the code
generation phase.
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Figure 7: Redundant Dimensions

for row = enumerate rows of L in increasing order
for col = enumerate L[row][*] in increasing order
val = L[row][col];
if (row == col)

b[col] = b[col]/val;
if (col < row)

b[row] = b[row] - val*b[col];

Figure 8: Row Data-centric Pseudocode for TS

into two copies: Sk’ accessing the matrix through struc-
tures E�, and Sk" accessing it through E ��. The aggre-
gation rule requires the statement to be executed for both
structures E� and E��, so the resulting product spaces have
dimensions P � S� � � � � � S �

k � S ��

k � � � � � Sn. On
the other hand, the perspective rule E � � E�� presents a
choice of access structure, which gives rise to two groups
of product spaces, the first group with dimensions P � �
S� � � � � � S �

k � � � � � Sn, and the second group with di-
mensions P �� � S� � � � � � S ��

k � � � � � Sn.
In our running example, the perspectiveE ��E�� produc-

tion rule in the structure of the sparse matrix L tells the com-
piler that L can be accessed either by row, using E � � �r� �
c � v�, or along “diagonals”, using E �� � �hr�� ci � v�.
Since both statements S1 and S2 reference L, and there are
two choices for each reference, the code in Figure 4 has four
groups (of 	
 each) of product spaces. All product spaces
have the same set of dimensions fj�� lr�� l

c
�
� j�� i�� l

r
�
� lc
�
g al-

though the order of dimensions and enumeration properties
are different for different product spaces.

4.1 Generating Data-centric Code

We can think of a product space and embeddings as repre-
senting a perfectly-nested loop nest with guarded statements
where we enumerate the values of all dimensions, and exe-
cute statement Sk when the values being enumerated match
the embedding Fk���k�. However, this code will have very
poor performance. To improve performance, it is necessary
to (i) identify and eliminate redundant dimensions, (ii) allow
different directions of enumeration, and (iii) use common
enumerations for related dimensions.

Redundant dimensions To give ourselves more flex-
ibility to restructure the code, we introduced many di-
mensions in the product space. Now, after we have

determined the embeddings, we can identify the dimen-
sions we do not need and eliminate them. For our
example, consider the (ordered) product space P �
lr
�
� lr

�
� lc

�
� lc

�
� j� � j� � i�, and the embed-

ding functions F��j�� l
r
�
� lc
�
� � �lr

�
� lr
�
� lc
�
� lc
�
� j�� j�� j��

T and
F��j�� i�� l

r
�
� lc
�
� � �lr

�
� lr
�
� lc
�
� lc
�
� j�� j�� i��

T . As lr
�
� lc

�
�

j�, lr
�
� i� and lc

�
� j�, the values of dimensions lr

�
, lc

�
, j�,

i� and j� of the product space are determined by the values
of the preceding dimensions lr

�
and lc

�
. More generally, we

identify redundant dimensions as follows.
Embedding functions are affine, and for each statement

instance ��k � ��itk� �dtk�, the data coordinates �dtk are affine
functions of the loop indices �itk. We can therefore represent
the embedding functions as Fk���k� � Gk

�itk��gk, where the
matrix Gk defines the linear part of Fk, and the vector �gk is
the affine part. We can use the matrix G � �G�G� � � � Gn� to
identify redundant dimensions in the product space. We use
Gk to refer to the kth row of the matrix G. For our example,
this matrix is shown in Figure 7.

If a row of theGmatrix is a linear combination of preced-
ing rows, the corresponding dimension of the product space
is said to be redundant. In our example, only dimensions lr

�

and lc
�

are not redundant. It is not necessary to enumerate re-
dundant dimensions since code is executed only for a single
value in that dimension, and that value is determined by val-
ues of preceding dimensions, so we generate code to search
for this value.

Enumeration Directions In Section 3 we said that the
points in the product space are enumerated in lexicographic
order. That requirement is reasonable for dense matrix
codes, where we have random access to the matrix elements.
Sparse matrices, however, may not support efficient enu-
meration along particular data dimension in increasing or-
der. For example, enumerating a COO matrix in order of in-
creasing row number would require a linear search for each
element. As lexicographic enumeration of sparse data di-
mensions can be prohibitively expensive, we require it only
when it is necessary for preserving dependences.

In our example, in order to not violate dependence class
D�, the enumeration of dimension lr

�
must be in increas-

ing order. However, the order in which we enumerate the
remaining dimensions of the product space is irrelevant to
the dependences in classD�—these dependences are already
satisfied because of the lexicographic enumeration of dimen-
sion lr

�
. Similarly, dimension lc

�
must be enumerated in in-

creasing order in order to satisfy dependence class D�. All
other dimensions of the product space can be enumerated in
arbitrary order.

In general, only some of the dimensions of the product
space need to be enumerated in a particular direction in or-
der to ensure legality. If the kth dimension of the difference
Fd���d�	 Fs���s� for some dependence class D is the first di-
mension with non-zero (i.e. positive) value, then dimension



template <>
void ts(Jad<double> &L, double b[])
{

int m = L.columns();
JadPers<double> LPers = L.subterm();
JadHier<double> LHier = LPers.subterm2();

for (int r=0; r<m; r++){
JadHier<double>::iterator_type it_rr =

search(LHier.begin(), LHier.end(), L.unmap(r));
JadRow<double> Lrow = LHier.subterm(it_rr);
for (JadRow<double>::iterator_type

it_c = Lrow.begin();
it_c != Lrow.end(); it_c++) {
int c = *it_c;
double v = Lrow.subterm(it_c);
if (r > c) {

b[r] -= b[c] * v;
} else {

b[r] = b[r] / v;
}

}
}

}

Figure 9: Compiler-instantiated Code for TS

k of the product space must be enumerated in increasing or-
der to satisfy dependence class D.

Common enumerations An important optimization is
recognizing groups of dimensions that could be enumerated
together. In previous work [11], we developed technology
for common enumeration of dimensions which are related
through a single parametric variable (we called these join-
able dimensions). We use common enumerations for groups
of dimensions consisting of a non-redundant dimension, and
redundant dimensions that immediately follow it and are lin-
early dependent on it. There are a number of ways of per-
forming common enumerations which are closely related to
join strategies in database systems such as merge-join and
hash-join [11].

In the example, dimensions lr
�

and lr
�

are enumerated to-
gether, as are dimensions lc

�
and lc

�
. These common enumera-

tions are trivial because they enumerate the same dimension
of the same matrix. All iteration space dimensions are re-
dundant and do not even need searches, as their values could
be accessed directly.

The resulting data-centric pseudocode is shown in Fig-
ure 8. The important transformation that has happened is
that matrix L is accessed by row to match the JAD format,
while the original code in Figure 4 accessed it by column.
This pseudocode is instantiated into the C++ code in Fig-
ure 9 in a straight-forward way.

4.2 Search Space and Cost Estimation

In theory, we can enumerate all legal enumeration-based
codes as illustrated in Figure 10, then estimate the cost of
each code, and select the best one. For the running exam-
ple, that would involve (i) selecting one of the four groups
of product spaces arising from the different ways to access

Perspective Order of
Dimensions

Embeddings

Code

Implementation
Common Enumeration

Choices Choices

Figure 10: Search Space

L; (ii) selecting 1 of the possible 7! orders of the dimen-
sions of the product space; (iii) chosing one set of embed-
ding functions among the legal ones; and (iv) deciding how
to combine the enumerations of L for the two accesses to it.

Figure 11 describes how we evaluate the cost of
enumeration-based pseudocodes.5 Each syntax rule is anno-
tated with its associated cost. EnumCost depends on whether
we are enumerating the dimension in a direction supported
by the format, or whether dependences force us to enumer-
ate in a different direction. SearchCost depends on the type
of enumeration method available for that dimension (e.g.,
whether it is an interval, or whether the values are sorted).
CommonEnumCost depends on what common enumeration
implementations are available for the corresponding data di-
mensions.

4.3 Heuristics to Limit the Search Space

Searching the full space of enumeration-based codes is im-
practical, but the following heuristics make the search space
manageable.

Data-centric Execution Order: We only consider data-
centric orders of dimensions of the product space (i.e., or-
ders in which all data dimensions come before any iteration
space dimensions). In the running example for instance, we
consider the product spaceP � lr

�
�lr

�
�lc

�
�lc

�
�j��j��i�

because all data dimensions are ordered before any iteration
space dimensions, but we do not consider the product space
P � lr

�
� lr

�
� lc

�
� j� � lc

�
� j� � i� because an iteration

space dimension (j� in this case) is ordered before a data
space dimension (lc

�
in this case).

The indexing structure of sparse matrices puts further re-
strictions on the dimensions orderings we need to consider.
For example, if L is accessed through the abstract structure
r� � c� v in statement S1, our compiler does not consider
product spaces in which lc

�
is enumerated before lr

�
.

Common Enumerations: Efficient sparse code enumer-
ates the data as few times as possible, so our goal is to
use a single enumeration of a sparse matrix, and execute all
statements which reference that matrix. That restricts our
choice of embedding functions to just three per dimension: a
common enumeration with a matching dimension of another
statement, or, if that is not legal, embedding the statement

5The guard conditionals arise because of loop bounds.



S � for i � enum�iterator� do S

j for i � enum�itr�� itr�� do S

j if �i � search�iterator�� then S

j if �guard� then x � y

j S��S�

� EnumCost�iterator� � Cost�S�
� CommonEnumCost�itr�� itr�� � Cost�S�
� SearchCost�iterator� � Cost�S�
� �
� Cost�S�� � Cost�S��

Figure 11: Cost Estimation
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Figure 12: TS on SGI R12K
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Figure 13: TS on Intel PII

before or after the enumeration of the matching dimension.

5 Experimental Results

We are implementing the algorithm presented in this paper
in the Bernoulli Sparse Compiler. The generic programming
system that we have implemented does not use virtual
methods, as do the examples in this paper. Instead, we use
the approach of Barton and Nackman [23] to ensure that all
method invocations can be resolved to method definitions at
compile time. See [13] for a more detailed discussion of the
performance issues involved in implementing our system.

Here we present performance measurements for the run-
ning example (TS) for the CSR, CSC, and JAD formats, on

an SGI Octane6 and an Intel Pentium II7 machines. We com-
pared the NIST Sparse BLAS [10] library with code pro-
duced according to our algorithm with no further optimiza-
tions. The library provides Fortran and C implementations
and supports 13 compressed formats. The more complicated
formats such as JAD are not supported in the better opti-
mized C implementation.

Our code is structurally equivalent to the one in the NIST
C library. There are only minor syntactic differences, which
result in small differences in performance between our code
and the NIST C code on the SGI Octane. The NIST Fortran
codes are less specialized (e.g, there is single code for a sin-
gle or multiple right-hand sides), so they perform worse than
both our code and the NIST C code.

Figures 12 and 13 present the performance on the matrix
can 1072 from the Harwell-Boeing collection [15]. The
relative differences between the NIST codes and our code
are representative for other inputs and benchmarks. These
results indicate that the generic programming approach can
successfully compete with hand-written library code.

6 Conclusions

We have presented a general framework that can be used for
synthesizing sparse matrix codes from imperfectly-nested
dense matrix codes and specifications of compressed for-
mats. The compressed formats specification language is
general enough to capture all sparse formats that we are
aware of, and it also permits users to define new formats.
Our code synthesis algorithm is able to exploit the index
structure of sparse matrix formats and generate code com-
petitive with hand-written library codes for the BLAS rou-
tines.

Automatic selection of sparse formats [3] for particular
applications is an interesting extension to the work described
here. One possibility is to make the compiler responsible
for making this selection using cost estimation rules like the
ones described in Section 4. Another possibility is to use
an empirical optimization approach similar to that used in
the ATLAS system [24] — the system generates code for a
variety of promising formats, and determines experimentally

6300MHz R12K processor, 2MB L2 cache, MIPSpro v.7.2 compiler,
flags: -O3 -n32 -mips4.

7300MHz, 512KB L2 cache, 256MB RAM, egcs-2.91.66 compiler,
flags: -O3 -funroll-loops.



which one gives the best performance for the data sets of
interest.

Synthesizing code competitive with handwritten code for
matrix factorizations such as Cholesky or LU with pivoting
remains an open problem. Handwritten codes for these rou-
tines [17, 6] use many special-purpose optimizations, and it
is not clear how or even whether such optimizations should
be incorporated into a general-purpose restructuring com-
piler system such as the one described in this paper.
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Figure 14: Building JAD Storage

A Jagged Diagonal Compressed Format

In this appendix, we present details of the Jagged Diagonal
(JAD) format that was used as an example in this paper.

An instance of a JAD matrix may be constructed as fol-
lows. First, the rows of the matrix, as in Figure 14(a), are
“compressed” so that zero elements are eliminated. This re-
quires introducing an auxiliary array, colind, to maintain
the original column indices. This is shown in Figure 14(b).
Next, the rows of the compressed matrix are sorted by the
number of non-zeros within each row in decreasing order.
This requires introducing a permutation vector, iperm, as
shown in Figure 14(c). Finally, the columns of the com-
pressed and sorted matrix, which are called the “diago-
nals”, are stored contiguously in two vectors, colind and
values. The vector dptr is used to record the first index
of the entries of each diagonal within colind andvalues.
The final storage is shown in Figure 14(d).

The non-zero entries of a matrix in JAD format can be
enumerated quickly and efficiently by enumerating the val-
ues of colind and values. In addition, if the program
can be restructured to work with the permuted row indices
instead of the row indices, then efficient row-oriented access
can be provide as well. This is necessary for such computa-
tions as triangular solve, which place certain constraints on
the order in which elements may be enumerated.

A.1 High-level API for JAD

The high-level API presents a dense-matrix view of the
sparse matrix and is used by the algorithm designer.

The structure JadStorage is used to hold all of the
components of the JAD storage within a single object. For
each matrix in the JAD format there will be a single instance
of this class which maintains the storage for that matrix. All
other classes in the JAD implementation keep a reference to
this instance.

/////////////////////////////////////////////////////////
// JadStorage //
/////////////////////////////////////////////////////////

template<class BASE>
struct JadStorage {
public:

vector<int> *iperm;
vector<int> *dptr;
vector<int> *colind;
vector<BASE> *values;
const int n;
const int nd;
const int nz;

JadStorage(vector<int> *_iperm, vector<int> *_dptr,
vector<int> *_colind,
vector<BASE> *_values)

: iperm(_iperm), dptr(_dptr), colind(_colind),
values(_values), n(iperm->size()),
nd(dptr->size()-1), nz(colind->size()) {

}
};



The JadRandom class inherits from the matrix ab-
stract class and implements the random access interface for
the matrix by implementing the get and set abstract meth-
ods. The method ref within this class is responsible for
finding a particular �r� c� entry within the matrix. It does this
by first finding the corresponding row within the permuted
index space, and then performing a linear search within the
row for the given column index. A binary search could be
used, if it were assumed that entries within a row were al-
ways sorted by column index.

/////////////////////////////////////////////////////////
// JadRandom //
/////////////////////////////////////////////////////////

template <class BASE>
class JadRandom : public matrix<BASE> {
protected:

JadStorage<BASE> *A;

public:
JadRandom(int m, int n, JadStorage<BASE> *A)

: matrix<BASE>(m,n), A(A) { }

virtual ˜JadRandom() { }

BASE *ref (int r, int c) {
int rr = -1;
for (rr=0; rr<A->n; rr++)

if ((*A->iperm)[rr] == r) break;
assert(rr != A->n);

for (int d=0; d<A->nd; d++) {
int jj_lo = (*A->dptr)[d];
int jj_hi = (*A->dptr)[d+1];
int jj = jj_lo + rr;
if (jj >= jj_hi) break;
if ((*A->colind)[jj] == c)

return &(*A->values)[jj];
}
return 0;

}
virtual BASE get(int r, int c) {

BASE *p = ref(r,c);
if (p) { return *p; }
else { return 0; }

}
virtual void set(int r, int c, BASE v) {

BASE *p = ref(r,c);
assert(p);
*p = v;

}
};

A.2 Low-level API for JAD

The low-level API presents the index structure of the format
to the restructuring compiler.

Using the grammar presented in Section 2, the following
view can be used to describe the index structure of the JAD
format.

mapfiperm�rr� �� r � ��� rr� c �� v���rr � c� v��g

The following classes implement the different pieces of
the view.

� Jad: mapfiperm�rr� �� r � � � �g

� JadPers: � � �� � � �

� JadFlat: � rr� c �� v

� JadHier: rr � � � �

� JadRow: c� v

We present the classes “inside-out”.
The classes JadFlat and JadFlatIterator imple-

ment the view of the JAD format that is appropriate for fast
enumeration. As its view suggests, this implementation is
very similar to the implementation of co-ordinate storage
presented earlier in the paper. The difference is that, with
the JAD format, the row index is not stored with each entry,
and must be computed on the fly. This is done in method
JadFlatIterator::operator *.

/////////////////////////////////////////////////////////
// JadFlat //
/////////////////////////////////////////////////////////

template<class BASE> class JadFlatIterator;

template<class BASE>
class JadFlat

: public term_nesting< JadFlatIterator<BASE>,
term_scalar<BASE> >

{
protected:

JadStorage<BASE> *A;
public:

JadFlat(JadStorage<BASE> *A) : A(A) { }
virtual iterator_type begin()

{ return JadFlatIterator<BASE>(A,0); }
virtual iterator_type end()

{ return JadFlatIterator<BASE>(A,A->nz); }
virtual subterm_type subterm(iterator_type it) {

return (*A->values)[it.jj]; }
};

/////////////////////////////////////////////////////////
// JadFlatIterator //
/////////////////////////////////////////////////////////

template<class BASE>
class JadFlatIterator :

public increasing_iterator<pair<int,int> > {
friend class JadFlat<BASE>;

protected:
JadStorage<BASE> *A; int jj; int d;
void frob_d() { if (jj == (*A->dptr)[d+1]) d++; }

public:
JadFlatIterator(JadStorage<BASE> *A, int jj)

: A(A), jj(jj), d(0) { }
virtual void operator ++(int) { jj++; frob_d(); }
virtual key_type operator *() {

return
make_pair(jj-(*A->dptr)[d],(*A->colind)[jj]);

}
virtual bool equal(

const proto_iterator<pair<int,int> > &y) const
{ return jj ==

dynamic_cast<const JadFlatIterator &>(y).jj;}
};

The JadHier, JadRow and JadRowIterator
classes provide row-oriented access to the JAD format.
The JadHier class provides access to the rows within
the permuted row index space. The JadRow and
JadRowIterator classes provide access to the non-zero
elements within each row accessed via JadHier.



/////////////////////////////////////////////////////////
// JadHier //
/////////////////////////////////////////////////////////

template<class BASE> class JadRow;
template<class BASE> class JadRowIterator;

template<class BASE>
class JadHier

: public term_nesting< interval_iterator<int>,
JadRow<BASE> >

{
protected:

JadStorage<BASE> *A;
public:

JadHier(JadStorage<BASE> *A) : A(A) { }
virtual iterator_type begin()

{ return interval_iterator<int>(0); }
virtual iterator_type end()

{ return interval_iterator<int>(A->n); }
virtual subterm_type subterm(iterator_type it) {

return JadRow<BASE>(A,*it); }
};

/////////////////////////////////////////////////////////
// JadRow //
/////////////////////////////////////////////////////////

template<class BASE>
class JadRow

: public term_nesting< JadRowIterator<BASE>,
term_scalar<BASE> >

{

protected:
JadStorage<BASE> *A; int r; int dmax;

public:
JadRow(JadStorage<BASE> *A, int r) : A(A), r(r) {

for (dmax = 0;
dmax < A->nd-1 &&

r < (*A->dptr)[dmax+1]-(*A->dptr)[dmax];
dmax++)
;

}
virtual iterator_type begin() {

return JadRowIterator<BASE>(A,r,0); }
virtual iterator_type end() {

return JadRowIterator<BASE>(A,r,dmax); }
virtual subterm_type subterm(iterator_type it) {

return (*A->values)[(*A->dptr)[it.d]+r]; }
};

/////////////////////////////////////////////////////////
// JadRowIterator //
/////////////////////////////////////////////////////////

template<class BASE>
class JadRowIterator :

public increasing_iterator<int> {
friend class JadRow<BASE>;

protected:
JadStorage<BASE> *A; int r; int d;

public:
JadRowIterator(JadStorage<BASE> *A, int r, int d)

: A(A), r(r), d(d) { }
virtual void operator ++(int) { d++; }
virtual key_type operator*() {

return (*A->colind)[(*A->dptr)[d]+r]; }
virtual bool equal(const

proto_iterator<int> &y) const
{ return

r == dynamic_cast<const
JadRowIterator &>(y).r

&& d == dynamic_cast<const
JadRowIterator &>(y).d; }

};

The class JadPers simply wraps the JadFlat and
JadHier classes together with �, the perspective operator.

/////////////////////////////////////////////////////////
// JadPers //
/////////////////////////////////////////////////////////

template<class BASE>
class JadPers

: public term_perspective2< JadFlat<BASE>,
JadHier<BASE> >

{
protected:

JadStorage<BASE> *A;
public:

JadPers(JadStorage<BASE> *A) : A(A) { }
virtual subterm1_type subterm1() {

return JadFlat<BASE>(A); }
virtual subterm2_type subterm2() {

return JadHier<BASE>(A); }
};

The top-most level of the JAD’s view is the map op-
erator that describes the permutation. The interface class
term_perm2 refines the generalterm_map class. It takes
two template parameters, Pr and Pc, which are the permu-
tations used on the row and column indices, respectively.

/////////////////////////////////////////////////////////
// term_perm2 //
/////////////////////////////////////////////////////////

template<class Pr, class Pc, class E>
class term_perm2

: public term_map< pair<int,int>, E >
{
public:

Pr pr; Pc pc;
term_perm2() { }
term_perm2(const Pr &pr, const Pc &pc)

: pr(pr), pc(pc) { }
virtual pair<int,int> map(pair<int,int> x) {

return make_pair(pr.apply(x.first),
pc.apply(x.second));

}
virtual pair<int,int> unmap(pair<int,int> x) {

return make_pair(pr.unapply(x.first),
pc.unapply(x.second));

}
};

The classes term_perm_ident (representing identity
permutation) and term_perm_vector (permutation vec-
tor) are used as the Pr and Pc arguments to term_perm2.

/////////////////////////////////////////////////////////
// term_perm_ident //
/////////////////////////////////////////////////////////

class term_perm_ident {
public:

term_perm_ident() { }
int apply(int x) { return x; }
int unapply(int x) { return x; }

};

/////////////////////////////////////////////////////////
// term_perm_vector //
/////////////////////////////////////////////////////////
class term_perm_vector {
public:

vector<int> *perm;
term_perm_vector() : perm(0) { }
term_perm_vector(vector<int> *perm) : perm(perm) { }
int apply(int ii) { return (*perm)[ii]; }
int unapply(int ii) {

for (int i=0; i<(*perm).size(); i++)
if ((*perm)[i] == ii) return i;

assert(false);
}

};



The top class of the JAD format is Jad, and it provides
the implementation of the row permutation. This is indi-
cated by inheriting from the term_perm2 interface class,
instantiated for the row index with term_perm_vector,
and with term_perm_ident for the column index.
The vector iperm is used to initialize the instance of
term_perm_vector.

/////////////////////////////////////////////////////////
// Jad //
/////////////////////////////////////////////////////////

template<class BASE>
class Jad

: public JadRandom<BASE>,
public term_perm2< term_perm_vector,

term_perm_ident,
JadPers<BASE> >

{
public:

Jad(int m,int n, JadStorage<BASE> *A)
: JadRandom<BASE>(m,n,A),

term_perm2< term_perm_vector, term_perm_ident,
JadPers<BASE> >(

term_perm_vector(A->iperm),
term_perm_ident()) {}

virtual subterm_type subterm() {
return JadPers<BASE>(A); }

};


