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CRAIG FALLS, BRADFORD POWELL, AND JACK SNOEYINK

Abstract. Clusters of Orthologous Groups (COGs) are a popular tool for identifying groups of
genes in different genomes that may be derived from a common ancestor. In a graph whose edges
represent mutually best-fit genes, one forms COGs of stringency m by merging m-cliques that
overlap in (m − 1)-cliques, and reporting the resulting sets of vertices. The presence of paralogs
produces large, complete k-partite (Turán-type) graphs, which makes straightforward enumeration
of cliques infeasible—there are simply too many. By recognizing and exploiting these extremal
graphs, however, we obtain an algorithm to compute COGs that is orders of magnitude faster than
clique enumeration.

1. Introduction

Clusters of Orthologous Groups (COGs) were described by Tatusov et al. [18] as a technique
for comparing genomes of several species to identify groups of orthologs—genes in the different
species that are related by evolution. COGs have proven a popular tool for comparative genome
studies, including function prediction [19], phylogenetic classification [13, 18, 20], and ancestor
studies [7, 10]. The online COG database is a useful, and growing, resource [19, 20].

The original clustering procedure was based upon finding overlapping sets of three mutually
best-fit genes (BeTs), and was run on 7 genomes from 5 clades—families of related organisms.
Specifically, starting from a 7-partite graph whose nodes are genes and edges represent related
genes in different species, COGs were defined by finding all triangles (3-cliques), then merging
triangles into groups if they shared an edge (2-clique).

As more genomes are added—comparisons of 20 to 50 genomes are common, using tens of thou-
sands of genes—it is natural to ask for overlapping sets of m-cliques, for m > 3, and merging groups
that share an (m − 1)-clique to determine highly-conserved orthologs. Montague and Hutchin-
son [13] therefore gave this as a definition of COGs of stringency m; we say more about this
definition in the next section.

The difficulty of enumerating cliques in a graph of related genes grows exponentially as m
grows, making straightforward computation of COGs exponentially more difficult as the number
of genomes grows. The number of groups remains tractable, however. In fact, we observe that
the graphs created by genome search can be described by relatively few complete k-partite sub-
graphs, reminiscent of the Turán graphs [22] from extremal graph theory. By recognizing maximal
Turán-type subgraphs, we are able to compute COGs much more efficiently than by brute force.

2. Definitions and Preliminaries

We rephrase the computation of COGs [18] in the language of graph theory [5].
Given a set of sequenced genomes, tools such as BLAST [2] can measure the similarity between

pairs of genes. A gene g1 in species s1 will have some gene g2 as its “best-hit” in species s2—the
gene in s2 with the best similarity score. In the case of ties, it is possible for a gene to have more
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Figure 2.1. Increasing COG stringency number (CSN) forms a tree structure
of COG splits. The entire set of vertices (genes) to be a COG of stringency 1.
Isolated vertices (v11) drop out and connected components (v1, . . . , v10) form the
COGs of stringency 2. Each component splits into COGs of stringency 3 by finding
the clusters of triangles that share edges. Articulation points (v7) are repeated in
the split, and vertices (v10) in no triangles disappear. The tetrahedra {v1, v2, v4, v5}
and {v2, v3, v5, v6} are each COGs of stringency 4; they do not merge because they
do not share a triangle.

than one best hit. If this relationship is mutual—i.e., g1 is a best-hit for g2 and vice versa—then
g1and g2 are called BeTs [18].

We can form a graph whose nodes are genes and edges are mutual best-hit pairs. Because genes
aren’t compared within their own genomes, the graph formed from k genomes is k-partite—its
vertex set is a union of k pairwise-disjoint sets (the species) S1, . . . ,Sk such that each edge (u, v)
satisfies u ∈ Si and v ∈ Sj with i �= j. Tatusov et al. [18] use the mutual best-hit graph to define
COGs. One could imagine other types of graphs such as mutual-best-in-5 hits.

A COG of stringency m, defined by Montague and Hutchinson [13], is a maximal m-tree in graph
theory terminology [9]. In other words, all COGs of stringency m could be created by placing each
m-clique in its own group, then merging two groups whenever two m-cliques, one in each group,
intersect in a common (m − 1)-clique.

As the COG stringency number m increases, COGs will lose vertices and split, as illustrated in
Figure 2.1. Thus, COGs of decreasing stringency form a hierarchy that reveals the strength of
the relationship and justifies what was already observed in the original COG papers—that some
COGs computed at stringency 3 need to be split to separate functional groups. Figure 4.1 is an
example of some COG splits resulting from 20 bacterial genomes.

Examination of high-stringency COGs could have several biological applications. Increased strin-
gency implies a greater degree of conservation of a gene among organisms. Such genes may be more
likely to be essential than genes that are not in COGs or are only in less stringent COGs. Highly
conserved sets of genes may form a core of genes that are resistant to lateral gene transfer (LGT)
and thus may be useful for determining phylogeny [11].
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Figure 2.2. The subgraph K2,3,2 above could arise in a mutual best-hit graph if
three species each inherit either two or three paralogs from a common ancestor.
Vertices v∗,j represent genes that are orthologs, and vi,∗ represent paralogs. This
single Turán graph has 12 maximal cliques.

The straightforward way to compute COGs of stringency m is to enumerate all cliques up to
size 3, 4, . . ., m, since we can form m-cliques from (m − 1)-cliques. Then, a simple connected
components computation where vertices are cliques of size k and edges are cliques of size k − 1
shared between cliques of size k will build the COGs at level k. Unfortunately, large cliques contain
many smaller cliques, and even finding the largest clique in a graph is NP-hard [8].

An obvious improvement is to enumerate only the maximal cliques—those that are not a subset
of any other clique. The smaller internal cliques are redundant; the connected components can
be found without explicitly enumerating them. Unfortunately, even this is not sufficient in the
presence of paralogs—two or more genes in a single organism that share a common gene-ancestor
either through gene duplication within an organism or through lateral gene transfer between species.
Paralogs naturally cause ’ties’ in the best-hit graph, and lead to large multi-partite subgraphs, such
as Figure 2.2, which contain too many maximal cliques to enumerate. In one of our examples with
20 species, one complete 19-partite subgraph had more than 1010 maximal 19-cliques.

A complete k-partite graph Kn1,...,nk
is a graph with

∑
i ni vertices partitioned into k sets, and

all
∑

i<j ninj possible edges between sets. Figure 2.2 provides an example. Turán’s theorem [22]
characterizes graphs with no (k + 1)-clique in terms of such graphs. To avoid constant reference to
complete multi-partite subgraphs where each partition comes from a species, we call these Turán
graphs. Abusing the terminology slightly, we do not insist that the number of genes from each
species be nearly equal. A Turán graph is maximal if it is not a subset of any other Turán graph.

3. COG Algorithm

Once we recognize that maximal Turán graphs are an obstruction to enumerating maximal
cliques, we can use them to help find COGs—since an entire Turán graph is in a single COG, its
individual cliques need not be enumerated. Although a graph can have an exponential number of
Turán graphs, we have found that best-hit pairs tend to produce relatively few maximal Turán
graphs, as shown in Table 1.

The algorithm to compute COGs of stringency m runs in three phases. The first enumerates
all maximal Turán graphs in the mutual best-hit graph G. The second finds the largest cliques
connecting pairs of Turán graphs, which is just the number of species in which the two Turán graphs
share vertices. The third creates the graph GT defined by a vertex of weight m for each Turán
graph containing m-cliques and an edge of weight w between two vertices if their Turán graphs have
w-cliques in their common intersection. A depth-first search on the subgraph of GT defined by the
vertices of weight at least m and edges of weight at least m − 1 partitions the Turán graphs into
connected components. A COG of stringency m is simply the union of the vertices of the maximal
Turán graphs of G that lie in one connected component of GT . The rest of this section elaborates
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upon these phases. The pseudocode for the algorithm and proven bounds on complexity are in the
Appendix.

3.1. Phase 1: Find all maximal Turán graphs. This phase enumerates all the maximal Turán
graphs in a mutual best-hit pair graph G on the species S. Specifically, when Phase 1 completes,
M [v] will store, for each vertex v ∈ V [G], all the maximal Turán graphs containing v.

Phase 1 can be implemented by adapting maximal clique enumeration algorithms (section 3.1.1)
or by a new branch-and-bound heuristic (section 3.1.2). The former has the advantage of output-
sensitive bounds on complexity, but the disadvantage of requiring more space and time. The latter
performs well in practice, as shown in Results, but lacks good bounds on worst-case behavior.

For either method of enumerating the maximal Turán graphs, it helps to filter the input graph
some first. In particular, since we are only interested in COGs of stringency 3 and higher, any
vertices and edges that do not participate in a 3-clique can be removed. More substantially, some
paralogs can be removed. If two vertices v1 and v2 have the same set of neighbors, they will be
in the same COG at all stringencies. The vertex v2 can be removed and then placed back into
any COGs containing v1 in the output. These simple preprocessing steps remove 10%–20% of the
vertices in our best-hit graphs and reduce the runtime by over an order of magnitude by diminishing
the large Turán graphs.

3.1.1. Using maximal clique enumeration to enumerate maximal Turán graphs. Finding maximal
Turán graphs is equivalent to finding maximal cliques in a graph in which an edge has been added
between every pair of vertices in the same species. This makes all maximal Turán graphs into
maximal cliques and adds only the maximal cliques within each species. Unfortunately, it also adds
n2/s edges to the graph G, where there were typically O (n) edges, with a small constant.

After adding edges, any algorithm for enumerating maximal cliques [1, 3, 4, 6, 12, 16, 17, 21]
can then be used. The algorithms of Bierstone (noted by Augstson-Minker [3] and corrected by
Mulligan-Corneil [15]) and Tsukiyama [21] run in O

(
µ2

)
and O (nmµ) time, where n = |V |,

m = |E|, and µ is the number of maximal cliques.
The Bron-Kerbosch [6] algorithm is empirically efficient but lacks a theoretical estimation of

complexity. We experimented with the Bron-Kerbosch algorithm, but the Θ
(
n2

)
storage for edges

quickly becomes impractical for large genomes, even after eliminating low degree vertices and
partitioning G into connected components to reduce n.

3.1.2. Branch and bound to enumerate maximal Turán graphs. Maximal-Turans is a branch and
bound algorithm that finds maximal Turán graphs directly. In the pseudo-code for Algorithm 1,
vertex is the vertex currently being added, cur -turan is the set of vertices that are currently being
considered, and feasible is the set of vertices that can be added to cur -turan, maintaining the
property that cur -turan is a Turán graph. Specifically, for every vertex vc ∈ cur -turan and vertex
vf ∈ feasible, either (vc, vf ) ∈ E or species [vc] = species [vf ]. Vertices, species, and maximal Turán
graphs are assigned unique integer representations. Sets of vertices are stored in Patricia trees [14]
so that overlapping sets may share address space.

Finding all maximal Turán graphs is the most computationally expensive phase of the algorithm.
We use three methods to bound the search space. First, we consider only sets of vertices that form
Turán graphs. This is easily accomplished by adding to cur -turan only vertices from the set feasible
(Branch line 3).

Second, we ensure that the algorithm never visits the same set of vertices more than once. One
easy way to ensure this would be to consider vertices ordered and edges directed; we prefer a more
involved way of reducing the feasible set of vertices. Each node of the recursion subtracts visited
vertices (Branch line 13) from the feasible set and passes this reduced feasible set to its children.
By not considering edges directed, we have more flexibility in the order we visit vertices, which is
exploited by our third method of reducing the search space.
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Third, we avoid searching subsets of maximal Turán graphs that have already been found
(Branch line 5). If cur -turan is a subset of some known maximal Turán graph T , then we may
safely consider only vertices from outside of T at the current level of recursion. To accomplish this,
we maintain the set max -turans of known maximal Turán graphs that contain cur -turan. Since
max -turans =

⋂
v∈cur -turan M [v] and only one vertex v is added to cur -turan at a time, the set

max -turans can be maintained at a cost of one set intersection per branch-and-bound node (Bound

line 2).
The properties of the best-hit graphs make this an effective algorithm. In a best-hit graph,

a vertex connects to at most one other vertex per species, unless there are ties (usually caused
by paralogs). Since each new vertex is chosen to break out of a known maximal Turán graph,
the only way to explore unproductive branches of the tree is for several large Turán graphs to
overlap significantly. We can cause such overlaps by deleting j independent edges from a large
Turán graph—this creates 2j maximal Turán graphs, by chosing one of the two endpoints of each
of the j deleted edges. These choices are not made independently when computing best-hit graphs,
however, so the overlap remains small. We would like to give a non-trivial analysis of time and space
requirements for the algorithm on a model that reflects the best-hit graphs observed in practice,
but have not been able to do so.

3.2. Phase 2: Find largest clique shared between maximal Turán graphs. Our algorithm
named Shared-Species-Build-Hashtable finds the largest cliques connecting pairs of Turán
graphs, which is just the number of species in which the two Turán graphs share vertices. Note
that the number of species in which two Turán graphs share vertices is the size of the largest
clique shared between them, which is also the level at which all their vertices will be merged into
a common COG. The remainder of the algorithm hinges on this observation.

The Shared-Species-Build-Graph algorithm replaces bit vectors that mark species with ap-
propriately weighted edges. The weight of each edge is exactly the size of the largest clique shared
between the two maximal Turán graphs, which is determined by counting the number of species in
which the Turán graphs share a vertex.

3.3. Phase 3: Find connected components. Output-Maximal-Turans performs a depth-
first search through the maximal Turán graphs to create the connected components. A COG is
then simply the union of the vertices of all maximal Turán graphs in one connected component.
The function Depth-First-Search (GT , i, j) performs a depth-first search of the vertex of weight
at least i and edges of weight at least j in the graph GT and reports the connected components.
The vertices of one connected component of GT correspond to the maximal Turán graphs of G that
are in one COG. The time spent in Phase 3 is a negligible proportion of COG computation.

4. Experimental Results

We formed the mutual best-hit graph Small from all of the annotated gene products (53,210) in
20 bacterial genomes. The species included members of Gram positive, mollicute, Gram negative
and spirochete groups. Each of the gene products were compared to each other using BLASTP
with a blosum62 similarity matrix. The comparisons resulted in 159,081 mutual best-hit pairs,
representing a total of 46,619 gene products. Figure 4.1 shows a sampling of eight COGs at
stringency 3 that split at least twice; Figure 4.2 maps these eight COGs onto a phylogenetic tree
of these genomes.

Computing the COGs of stringency 3 through 20 in the mutual best-hit graph Small required
3 hours and 58 minutes by straightforward clique enumeration, but only 6 seconds by Turán graph
enumeration. We were unwillling to wait for clique enumeration to complete any of the larger
examples, which are graphs created from open reading frames (ORFs) of the same species. Time
for Turán graph enumeration remains small, as listed in Table 1. Our collaborators have asked us
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Figure 4.1. A sampling of the richness of COG structure as stringency varies for
dataset Small, containing all annotated gene products in 20 bacterial genomes.
Each box records the number of COGs of the indicated stringency. Each oval is a
COG at its greatest stringency, labeled with hierarchy numbers used in Figure 4.2

and number of genes present. Edges indicate merges. Note that a COG at stringency
k is within a COG of all smaller stringencies, and that two COGs that merge at k
share at least k − 1 genes. The trees below show all COGs that split at stringency
greater than 4; each tree appears as only a single COG at stringency 3.

not to release the identity of the ORFs until the paper is published. All results were obtained on
an AMD Athlon XP 2400 with 512MB RAM running Linux with the Maximal-Turans heuristic.

We attempted to apply the Bron-Kerbosch [6] maximal clique enumeration algorithm to obtain
timing on larger examples by adding intra-species edges, as described in section 3.1.1. Doing so
directly fails on even moderate data sets because the adjacency matrix already takes quadratic
space. We iteratively removed all vertices of degree 3 or less, then separated the graph into con-
nected components. Within each component, an edge was added between every pair of vertices in
the same species, as described in section 3.1.1, if the number of maximal cliques far exceeded the
number of maximal Turán graphs. Finally, the Bron-Kerbosch algorithm was run on each compo-
nent individually. Unfortunately, one of the resulting 517 connected components of Small still had
28,620 vertices, which would require 781MB of RAM and lead to thrashing on our test machine.
Thus, memory consumption remained a barrier for all mutual best-hit graphs except Tiny, whose
Turán graphs can be enumerated in under 1 second by the Bron-Kerbosch algorithm since Tiny

can be divided into 1,320 connected components, the largest of which has only 43 vertices and
requires only 1.8kb to store.
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Figure 4.2. Two of the COGs hierarchies from Figure 4.1 imposed on a phylo-
genetic tree of the 20 genomes of Small.
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Figure 4.3. This logarithmic plot of the number of COGs at stringency (CSN)
levels 3 through 20 in 4 mutual best-hit graphs shows that, while some COGs of
lower stringencies split to form multiple COGs of higher stringencies, most simply
drop out as the stringency is raised; both phenomena can be seen in Figure 4.1. All
the data sets except Small stay in the same relative order as the CSN is increased.
Small is unique because it contains only annotated gene products, while the other
data sets contain a type of proto-gene called open reading frames (ORFs). Biologists
are more likely to study highly conserved orthologos, so the genes involved in high
stringency COGs are more likely to be annotated.

Maximal-Turans depends on the presence of relatively few maximal Turán graphs in mutual
best-hit graphs. To test the robustness of this algorithm, we modified the mutual best-hit graph
Small by adding or removing 2.5%, 5%, or 10% of the edges at random. The number of Turán
graphs increases, as expected, but the running times are acceptable.
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Vertices Edges Cliques Turáns Runtime
Tiny 035, 354 0,036, 183 4.08× 103 003, 495 01 sec

Small 046, 619 0,159, 081 1.77× 104 015, 877 06 sec
Medium 182, 676 0,297, 551 7.64× 106 020, 666 07 sec
Large 561, 249 0,900, 056 1.43× 105 125, 052 29 sec
Huge 575, 435 1, 171, 655 3.59× 1011 132, 144 42 sec
Giant 752, 688 1, 729, 907 3.59× 1011 200, 107 61 sec

Table 1. By varying the settings for BLAST on 20 bacterial genomes, we produced
6 mutual best-hit graphs with varying numbers of edges (pairs of best-fit genes) and
vertices (gene products represented in a best-fit pair). We list the number of maximal
cliques and maximal Turán graphs for comparison. For the larger mutual best-hit
graphs, there are 5 orders of magnitude fewer maximal Turán graphs than maximal
cliques—in fact, there are fewer maximal Turán graphs than edges.

Edges Cliques Turáns Runtime
Original (Small) 159, 081 17, 736 15, 877 06 sec

+ 2.5% 24, 060 20, 312 10 sec
Edges Added + 5.0% 28, 951 23, 400 11 sec

+10.0% 39, 077 29, 643 14 sec
− 2.5% 23, 856 21, 592 11 sec

Edges Removed − 5.0% 31, 444 28, 745 18 sec
−10.0% 43, 141 40, 620 41 sec

Table 2. Testing robustness under adding or deleting edges from the mutual
best-hit graph Small.

5. Conclusions

We have described an algorithm for computing COGs of stringency m, as defined by Montague
and Hutchinson [13]: namely that m-cliques of potential orthologs are identified, and merged as
long as they overlap in m − 1 vertices. They did this to find highly-conserved orthologs in the
herpesvirus, and also to avoid the merger of COGs through chance sequence similarity, which is
important in comparing several small genomes.

The problem of finding stringent COGs is NP-hard, so one cannot expect an efficient algorithm
for finding COGs in the general case. By exploiting the nature of the data sets we are interested
in, however, we obtain an algorithm which is fast enough in practice. Specifically, the feature of
mutual best-hit graphs our algorithm relies on is the presence of relatively few Turán graphs. The
result is an algorithm that is several orders of magnitude faster than a brute-force approach.

Since the time- and memory-consuming phase of our algorithm is enumerating the maximal Turán
graphs, we can support any specified overlap number between 2 and m − 1, inclusive. Increasing
clique size reduces the set of COGs to those that are highly conserved orthologs. Increasing the
overlap number makes it harder for COGs to merge accidentally. Further research is needed to
explore the best combination of these values.

The source code, mutual best-hit graphs, and COG output for our algorithm are available at
http://www.cs.unc.edu/~cfalls/cogs.html.
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Appendix

In this appendix, we include the pseudo-code for our procedures, and a sketch of the running
time analysis.

Theorem 5.1. Given a graph G = (V, E) containing the set of maximal Turán graphs Γ, phase 2
runs in O

(
nµ + µ2

)
time, where n = |V | and µ = |Γ|.

Proof. We first analyze Shared-Species-Build-Hashtable, then Shared-Species-Build-Graph.
Lines 4 through 9 of Shared-Species-Build-Hashtable execute in constant time, assuming

the hashtable is properly implemented and that bit vectors can be initialized in constant time. The
loops on lines 2 and 3 will cause an execution of the body of the loop for every pair (v ∈ V, m ∈ Γ)
such that v ∈ m. There cannot be more than O (nµ) such pairs.

Lines 2, 4, and 5 of Shared-Species-Build-Graph execute in constant time, but line 3 takes
O (s) time, where s = |S|—the length of the bit vector. The loop on line 1 will cause an execution
of the body of the loop for every pair (m1 ∈ Γ, m2 ∈ Γ) such that some vertex v ∈ m1

⋂
m2. There

are O
(
µ2

)
such pairs. �

Theorem 5.2. If G has n vertices in s = |S| species and µ maximal Turán graphs, phase 3 executes
in O

(
s ·

(
µ2 + nµ

))
time.

Proof. Line 1 of Output-Maximal-Turans loops s times. Since G has µ maximal Turán graphs,
GT has µ vertices. Therefore, the call to Depth-First-Search on line 2 searches a graph with
µ vertices and at most

(
µ
2

)
< µ2 edges, and will run in O

(
µ2 + µ

)
⊆ O

(
µ2

)
time. Lines 3 and 4

report the COGs, which requires time proportional to the sum of the sizes of the COGs. At any
one stringency level, there are at most µ COGs, since each maximal Turán graph is in at most one
COG. Each COG consists of at most n vertices, so lines 3 and 4 run in O (nµ) time. All together,
Output-Maximal-Turans runs in O

(
s ·

(
µ2 + nµ

))
time. �

We can summarize the worst-case complexity in terms of the numbers of vertices n, species s,
and maximal Turán graphs µ, but the practical results of the next section are more important.

Conclusion 5.3. COGs of all stringencies can be computed in O
(
n3µ + µ2

)
or O

(
s · (n + µ)2

)

time.
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Algorithm 1 Maximal-Turans

Input: An undirected graph G = (V, E) in which vertices represent genes and edges represent
best-hit pairs and the species species [v] ∈ S of each gene v ∈ V .

Output: When Maximal-Turans completes, M [v] will store, for each vertex v ∈ V [G], all
the maximal Turán graphs containing v.

Maximal-Turans(G)
1 for each edge (v1, v2) ∈ E[G] ✄ Grow Turán graphs from each edge.
2 do max -turans ← turans-of -vertex [v1]

⋂
turans-of -vertex [v2]

3 feasible ← Adj [v1]
⋂

Adj [v2]
4 cur -turan ← (v1, v2)
5 Branch(feasible, max -turans, cur -turan)

Branch(feasible, max -turans, cur -turan)
1 vertices-to-avoid ← choose a vertex set (Turán graph) from max -turans
2 new -feasible ← feasible
3 for each v ∈ feasible ✄ Try all feasible vertices.
4 do if v ∈ vertices-to-avoid
5 then continue ✄ Skip vertices in turan-to-exit .
6 results ← Bound(v,new -feasible,max -turans, cur -turan)
7 if results �= ∅ and vertices-to-avoid = ∅
8 then vertices-to-avoid ← choose a vertex set from results
9 max -turans ← max -turans

⋂
results

10 new -feasible ← new -feasible −v ✄ v is no longer feasible.
11 return max -turans

Bound(vertex , feasible, max -turans, cur -turan)
1 max -turans ← max -turans

⋂
M[vertex ]

2 cur -turan ← vertex
⋃

cur -turan
3 feasible ← feasible

⋂
Adj [vertex ]

4 if feasible = ∅ ✄ Is this a dead-end?
5 then if max -turans = ∅ ✄ Is this a maximal dead-end?
6 then for each vertex ∈ cur -turan ✄ Store maximal Turán graph
7 do M[vertex ] ← M[vertex ]

⋃
cur -turan

8 return max -turan
9 else return ∅ ✄ Non-maximal dead-end—just backtrack
10 else Branch(feasible, max -turans, cur -turan)
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Algorithm 2 Shared-Species-Build-Hashtable

Input: For each vertex v ∈ V [G], the set of maximal Turán graphs M [v] that contain v.
Output: Reports, for each pair of maximal Turán graphs, the species in which they share

vertices.
Data Structures: A hashtable whose keys are pairs of maximal Turán graphs and values are

bit vectors with bits corresponding to species.

Shared-Species-Build-Hashtable(M)
1 hashtable ← Hashtable-Create()
2 for each vertex v ∈ V [G]
3 do for each pair (mt1 ,mt2 ) of maximal Turán graphs ∈ M[v]
4 do key ← (mt1 ,mt2 )
5 if Hashtable-Haskey(hashtable,key)
6 then bitv ← Hashtable-Get(hashtable,key)
7 else bitv ← bit vector of length |S| with all 0s
8 bitv [Species(v)] ← 1
9 Hashtable-Replace(hashtable,key ,bitv)
10 return hashtable

Algorithm 3 Shared-Species-Build-Graph

Input: A hashtable storing, for each pair of maximal Turán graphs, the set of species in which
they share vertices.

Output: An undirected graph GT with weighted vertices and edges. A vertex of weight w
corresponds to a maximal Turán graph spanning w species (i.e. the Turán graph consists
of maximal w-cliques). An edge with weight w indicates that the two Turán graphs share
vertices in w species (i.e. their intersection consists of w-cliques).

Data Structures: The graph is stored as an adjacency list.

Shared-Species-Build-Graph(hashtable)
1 for each ((mt1 ,mt2 ) �→ bitv) ∈ hashtable ✄ meaning: <key> �→ <value>
2 do edge ← (mt1 ,mt2 )
3 edge-weight ← number of 1s in bitv
4 E ← (edge, edge-weight)

⋃
E

5 V ← {mt1 ,mt2}
⋃

V
6 return GT = (V, E)

Algorithm 4 Output-Maximal-Turans

Input: An undirected graph with weighted vertices and edges—the output of
Shared-Species-Build-Graph.

Output: Let S be the set of species and s = |S|. For each level, 3 < m < s, the collection of
sets of vertices that represent the COGs at level m.

Output-Maximal-Turans(GT )
1 for each stringency m ∈ 3 . . . s
2 do connected -components ← Depth-First-Search(GT ,m,m −1)
3 for each component ∈ connected -components
4 do Report component as a COG of stringency m
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