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Abstract

In this paper we prove that a star of Kn and a cycle of n copies of Kn are cordial. We also get condition for

maximum value of e f (1) − e f (0) and highest negative value of e f (1) − e f (0) in Kn, where f is the binary vertex

labeling function on the vertex set of Kn.
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1. Introduction

Let G = (V, E) be a simple, undirected finite graph with |V | = p vertices and |E| = q edges. For all basic

terminology and standard notations we follow Harary (1972). Here are some of the definitions which are useful in

this paper.

Definition 1.1 If the vertices of the graph are assigned values subject to certain conditions then it is known as

graph labeling.

Definition 1.2 A function f : V → {0, 1} is called binary vertex labeling of a graph G and f (v) is called label of the
vertex v of G under f .

For an edge e = (u, v), the induced function f ∗: E → {0, 1} defined as f ∗(e) = | f (u) − f (v)|. Let v f (0), v f (1) be

number of vertices of G having labels 0 and 1 respectively under f and let e f (0), e f (1) be number of edges of G
having labels 0 and 1 respectively under f ∗.

A binary vertex labeling f of a graph G is called cordial labeling if |v f (0) − v f (1)| ≤ 1 and |e f (0) − e f (1)| ≤ 1. A

graph which admits cordial labeling is called cordial graph.

Definition 1.3 A graph obtained by replacing each vertex of star K1,n by a connected graph G of n vertices is called

star of G and we shall denote it by G�. The graph G which replaced at the center of K1,n we call it as central copy

of G�.

Above definition was introduced by Vaidya et al. (2008, p. 54-64).

Definition 1.4 For a cycle Cn, each vertex of Cn is replace by connected graphs G1,G2, . . . ,Gn is known as cycle of
graphs and we shall denote it by C(G1,G2, . . . ,Gn). If we replace each vertices by a graph G i.e. G1 = G, G2 = G,

. . . Gn = G, such cycle of a graph G, we shall denote it by C(n ·G).

Gallian (2013) survey provide vast amount of literature on different type of graph labeling. Labeled graph has

many diversified applications. The cordial labeling introduced by Cahit (1987, p. 201-207) is a weaker version of

graceful labeling,also he proved that Kn is cordial if and only if n ≤ 3. After this, many researchers have studied

cordial graphs.

Kaneria and Vaidya (2010, p. 38-46) discussed cordiality of graphs in different context. They introduced the index
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of cordiality for a graph G and proved that the index of cordiality for Kt2 (t ∈ N) is precisely 2. They also raised

the following conjecture.

Conjecture 1.5 For any n ∈ N, K�n is cordial.

Kaneria et al. (2014, p. 173-178, IJMR) introduced cycle of graphs and proved that cycle of cycles and cycle of

complete bipartite graphs are cordial.

In this paper we prove that K�n (the star of the complete graph), C(n · Kn) (cycle of n copies of the complete graph)

are cordial.

1.6 Discussion on cordiality of Kn: Let f be a binary vertex labeling on Kn. We know that if f −1(0) = v f (0) = l
then f −1(1) = v f (1) = n − l and in this case e f (0) = lC2 +

n−l C2, e f (1) = l(n − l) holds for Kn. If we take v f (1) = l
then v f (0) = n − l, while e f (0) = lC2 +

n−l C2, e f (1) = l(n − l) would remains same for Kn. Moreover we observe

that Kn, e f (0) and e f (1) depends on the value of v f (0) and v f (1). Particularly these values are e f (1) = v f (0) · v f (1)

and e f (0) = n
2
(n − 1) − e f (1). Using this fact Kaneria and Vaidya (2010, p. 38-46) proved that Kn ∪ Kn is a cordial

graph, when n = t2, for some t ∈ N − {1}. They also proved star of Kn is cordial, when n = t2 + 2 or t2 or t2 − 2, for

some t ∈ N − {1}.
2. Main Results

Theorem 2.1 Let n be an even positive integer and f be a binary vertex labeling on the vertex set of Kn. If
v f (0) = v f (1) in Kn then e f (1) − e f (0) has maximum value n

2
.

Proof. Let n = 2m, for some m ∈ N.

Take v f (0) = v f (1) = m. In this case e f (1) = v f (0)v f (1) = m2 and

e f (0) = |E(Kn)| − e f (1) =
n
2

(n − 1) − m2 = m(2m − 1) − m2 = m2 − m.

⇒ e f (1) − e f (0) = m2 − (m2 − m) = m.

If we take v f (0) = m + k, v f (1) = m − k or v f (0) = m − k, v f (1) = m + k, for some k (1 ≤ k ≤ m) then e f (1) =

m2 − k2 < m2 and

e f (0) = 2m2 − m − (m2 − k2) = m2 − m + k2

⇒ e f (1) − e f (0) = m − 2k2 < m, as k > 0.

Thus e f (1) − e f (0) has maximum value m = n
2

in Kn, when v f (1) = v f (0). �
Theorem 2.2 Let n be an odd positive integer and f be a binary vertex labeling on the vertex set of Kn. If
|v f (0) − v f (1)| = 1 in Kn, then e f (1) − e f (0) has maximum value n−1

2
.

Proof. Let n = 2m − 1, for some m ∈ N.

Take v f (0) = m − 1, v f (1) = m or v f (0) = m, v f (1) = m − 1. In this case

e f (1) = m2 − m and e f (0) = m2 − 2m + 1

⇒ e f (1) − e f (0) = m − 1 =
n − 1

2
.

If we take {v f (1), v f (0)} = {(m − 1 − k), (m + k)}, for some k (1 ≤ k ≤ m − 1), then

e f (1) = m2 − m − (k2 + k) < m2 − m as k > 0

e f (0) = m2 − 2m + (k2 + k + 1)

⇒ e f (1) − e f (0) = m − 1 − 2(k2 + k) < m − 1 as k > 0.

Thus e f (1) − e f (0) has maximum value m − 1 = n−1
2

, when |v f (1) − v f (0)| = 1. �
Remark 2.3 Let f be a binary vertex labeling on the vertex set of Kn. Then in Theorem 2.1 and 2.2, we proved that

e f (1) − e f (0) has maximum value

n
2
, when n is even and v f (1) = v f (0);

n−1
2

, when n is odd and |v f (1) − v f (0)| = 1.

19



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 6, No. 4; 2014

We shall denote this maximum value for e f (1) − e f (0) by d1. i.e.

d1 =
n
2
, when n is even and v f (1) = v f (0);

= n−1
2

, when n is odd and |v f (1) − v f (0)| = 1.

We also see that in Theorem 2.1, if we take {v f (1), v f (0)} = { n
2
− k, n

2
+ k} in Kn, for some k (1 ≤ k ≤ n

2
), we shall

have e f (1)− e f (0) = n
2
− 2k2, when n is even as well as in Theorem 2.2, if we take {v f (1), v f (0)} = { n−1

2
− k, n+1

2
+ k}

in Kn, for some k, we shall have e f (1) − e f (0) = n−1
2
− 2(k2 + k), when n is odd.

This is a decreasing sequence and it stops at −|E(Kn)| by taking {v f (1), v f (0)} = {0, n}. What will be the first

negative(highest negative) value? when the above sequence e f (1) − e f (0) comes. The difference we call as d−1. �
Theorem 2.4 If n = 4t2 + 2r, for some t, r ∈ N and 1 ≤ r ≤ 4t + 1, then in Kn, d−1 = −(4t + 2) + r, where d−1 is the
first negative value of e f (1) − e f (0).

Proof. When n is an even positive integer, then ∃ t, r ∈ N such that n = 4t2 + 2r and 1 ≤ r ≤ 4t+ 1 (See more detail

in proof of Theorem 2.6).

By taking {v f (1), v f (0)} = {(2t2 + r − t), (2t2 + r + t)}, we shall have

e f (1) = (2t2 + r)2 − t2 and e f (0) = 4t4 + 4t2r + r2 − r − t2.

⇒ e f (1) − e f (0) = r > 0.

Next we take {v f (1), v f (0)} = {(2t2 + r − t − 1), (2t2 + r + t + 1)}, we shall have

e f (1) = (2t2 + r)2 − (t + 1)2 and e f (0) = (2t2 + r)2 + (t + 1)2 − (2t2 + r).

⇒ e f (1) − e f (0) = −(4t + 2) + r < 0 as r ≤ 4t + 1.

Therefore d−1 = −(4t + 2) + r in Kn, when n = 4t2 + 2r and 1 ≤ r ≤ 4t + 1. �
Theorem 2.5 If n = (2t − 1)2 + 2r, for some t, r ∈ N and 1 ≤ r ≤ 4t − 1, then in Kn, d−1 = −4t + r, where d−1 is the
first negative value of e f (1) − e f (0).

Proof. When n is an odd positive integer, then ∃ t, r ∈ N such that n = (2t − 1)2 + 2r and 1 ≤ r ≤ 4t. (See more

detail in proof of Theorem 2.6).

By taking {v f (1), v f (0)} = {(2t2 + r − 3t + 1), (2t2 + r − t)}, we shall have

e f (1) = [(2t2 + r) − 3t + 1][(2t2 + r) − t]

= 4t4 + 4t2r − 8t3 + r2 − 4tr + 5t2 + r − t

and

e f (0) = 4t4 + 4t2r − 8t3 + r2 − 4tr + 5t2 − t.

⇒ e f (1) − e f (0) = r > 0.

Next we take {v f (1), v f (0)} = {(2t2 + r) − 3t, (2t2 + r) − t + 1}, we shall have

e f (1) = 4t4 + 4t2r − 8t3 + r2 − 4tr + 5t2 + r − 3t

and

e f (0) = 4t4 + 4t2r − 8t3 + r2 − 4tr + 5t2 + t.

⇒ e f (1) − e f (0) = −4t + r < 0 as r ≤ 4t − 1.

Therefore d−1 = −4t + r in Kn, when n = (2t − 1)2 + 2r and 1 ≤ r ≤ 4t − 1. �
Theorem 2.6 K�n is cordial, ∀ n ∈ N.

Proof. We know that K�
1
= K2, K�

2
= Path on six vertices, which both are cordial graphs. K�

3
and its cordial

labeling shown in Figure 1. �
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Figure 1. K�
3

and its cordial labeling (v f (1) = 6 = v f (0), e f (1) = 7, e f (0) = 8)

Also Kaneria and Vaidya (2010, p. 38-46) proved that K�t2 (t ∈ N) is a cordial graph.

So we assume that n ≥ 5 and n � t2, for some t ∈ N. At this stage we shall consider following two cases for n.

Case I n is even

⇒ ∃ t ∈ N such that (2t)2 < n < (2t + 2)2.

⇒ 4t2 < n < 4t2 + 8t + 4.

⇒ 0 < n − 4t2 < 8t + 4.

⇒ n = 4t2 + 2r, for some r ∈ N (1 ≤ r ≤ 4t + 1).

⇒ d1 =
n
2
= 2t2 + r and d−1 = −(4t + 2) + r.

⇒ d1 + |d−1| = 2t2 + r − r + (4t + 2) = 2(t + 1)2 ≤ n = 4t2 + 2r.

We know that K�n contains n + 1 copies of Kn. If we take r1 copies of Kn, which produces d1 and r2 copies of

Kn, which produces d−1, then union of n + 1 copies of Kn contains e f (1) − e f (0) = r1d1 + r2d−1. Also to preserv

|v f (1) − v f (0)| ≤ 1 in union of n + 1 copies of Kn, we would take r2 even. If r1 = −d−1, r2 = d1 then union of

n + 1 copies of Kn satisfies v f (0) = v f (1), e f (0) = e f (1). Since n is even we shall take central copy of K�n with

v f (0) = v f (1) = n
2

and we shall join each vertices of central copy with other copies of K�n whose vertex label is 1

by an edge such edge get 1 edge label if vertex of the central copy has vertex label 0, otherwise the edge get 0 edge

label. This produce e f (0) = e f (1) for K�n and it becomes a cordial graph.

When r1 � d−1 or r2 � d1 in which case we choose d1 copies of Kn which produce d−1 and |d−1| copies of Kn which

produce d1. Then remaining copies of Kn is

Rcopy = n + 1 − (d1 + |d−1|)
= n + 1 − 2(t + 1)2

= 4t2 + 2r + 1 − 2t2 − 4t − 2

= 2t2 − 4t − 1 + 2r

i.e. Rcopy = 2(t − 1)2 + 2r − 3 = x (say).

Now this x = Rcopy we have to make two parts say y and x − y, so that

y
x − y

≈ d1

|d−1| ⇒ y ≈ (2t2 + r)(2(t − 1)2 + 2r − 3)

2(t + 1)2
=

d1x
d1 − d−1

.

Now r2 = d1 + y, which we take even to maintain v f (0) = v f (1) in K�n . So we shall take y1 =
d1 x

d1−d−1
and

y = �y1 + 1, when �y1 + d1 is odd;

= �y1, when �y1 + d1 is even.

Take r2 = d1 + y and r1 = (n + 1) − r2.
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By choosing r1, r2 copies of Kn in K�n , we shall have e f (1) − e f (0) = r1d1 + r2d−1, if its absolute value is less than

or equal to n + 1, we can maintain |e f (1) − e f (0)| ≤ 1 in K�n , when n is even as shown in Table 1.

Table 1. Shows for even n to produce d1 and d−1 in Kn and to compute r1, r2 in K�n

Where n = 4t2 + 2r, d1 = 2t2 + r, d−1 = −(4t + 2) + r, y taken as computation of the case, r2 = d1 + y and

r1 = (n + 1) − r2.

Case II n is odd

⇒ ∃ t ∈ N such that (2t − 1)2 < n < (2t + 1)2.

⇒ 0 < n − 4t2 + 4t − 1 < 8t.

⇒ 2 ≤ n − (2t − 1)2 ≤ 8t − 2.

⇒ n = (2t − 1)2 + 2r, for some r ∈ N (1 ≤ r ≤ 4t − 1).

22



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 6, No. 4; 2014

⇒ d1 =
n−1

2
= 2t(t − 1) + r and d−1 = −4t + r.

⇒ d1 + |d−1| = 2t(t + 1).

If we take Rcopy = n + 1 − (d1 + |d−1|) like Case I, we must have Rcopy = 2t2 − 6t + 2r + 2 = x (say).

Now here we have to make two parts say y and x − y, so that

y
x − y

≈ d1

|d−1| ⇒ y ≈ d1(2t2 − 6t + 2r + 2)

2t2 + 2t
=

d1x
d1 − d−1

.

Here r2 = d1 + y, we shall take even to maintain v f (0) = v f (1) in K�n . For this we shall take y2 =
d1 x

d1−d−1
and

y = �y2 + 1, when �y2 + d1 is odd;

= �y2, when �y2 + d1 is even.

By choosing r2 = d1 + y, r1 = (n + 1) − r2 copies of Kn in K�n , we shall have e f (1) − e f (0) = r1d1 + r2d−1. If its

absolute value is less than or equal to n + 1, we can maintain |e f (1) − e f (0)| ≤ 1 in K�n , when n is odd as shown in

Table 2.

Table 2. Shows for odd n to produce d1 and d−1 in Kn and to compute r1, r2 in K�n

Where n = (2t−1)2+2r, d1 =
n−1

2
, d−1 = −4t+r, y taken as computation of the case, r2 = d1+y and r1 = (n+1)−r2.
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Tables 1 and 2 show that r1d1 + r2d−1 is too small when n becomes large. Also |r1d1 + r2d−1| ≤ n, ∀ n ∈ N. Thus

K�n can be made a cordial graph according to Tables 1 and 2.

Illustrative example 2.7 K�
5

and cordial labeling is shown in Figure 2. According to Table 2, we have following

data.

n = 5, d1 = 2, d−1 = −2, y2 = 1, y = 2, r2 = 4, r1 = 2 and r1d1 + r2d−1 = −4.

Figure 2. K�
5

and its cordial labeling (v f (1) = 15 = v f (0), e f (1) = 32, e f (0) = 33)

Let u0,i (1 ≤ i ≤ 5) be vertices of the central copy K5 of K�
5

and ul,i (1 ≤ i, l ≤ 5) be vertices of other copies of K�
5

.

According to above data we shall define f : V(K�
5

) −→ {0, 1} as follows:

f (u0,i) = 1, when i = 1, 2

= 0, when i = 3, 4, 5;

f (u1,i) = 0, when i = 1, 2

= 1, when i = 3, 4, 5;

f (ul,i) = 0, when i = 1 and l = 2 or l = 5

= 1, when i = 2, 3, 4, 5 and l = 2 or l = 5;

f (ul,i) = 1, when i = 1 and l = 3 or l = 4

= 0, when i = 2, 3, 4, 5 and l = 3 or l = 4.

To join each copies K5 with the central copy in K�
5

, we have to produce four more 1 edge labels. So we can join

u0,i with ui,1, ∀ i = 1, 2, 3, 4, 5.

Above labeling function give rises to |v f (1) − v f (0)| ≤ 1 and |e f (1) − e f (0)| ≤ 1, as e f (0) = 33, e f (1) = 32, v f (0) =

15, v f (1) = 15 in K�
5

. Thus K�
5

is a cordial graph.

Illustrative example 2.8 For K�
22

and its cordial labeling, according to Table 1, we have following data.

n = 22, d1 = 11, d−1 = −7, y1 = 3.1, y = 3, r2 = 14, r1 = 9 and r1d1 + r2d−1 = 1.

Table 3. Shows binary vertex labeling for K�
22
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Let vi (1 ≤ i ≤ 22) be vertices of the central copy of K�
22

and ui, j (1 ≤ i, j ≤ 22) be vertices of other copies of K�
22

.

We shall join vi of the central copy with ui,i the vertex of ith copy of K�
22

, ∀ i = 1, 2, . . . , 22.

To define required labeling function f : V(K�
22

) −→ {0, 1}, we use Table 3 and vertex labels which are given below:

f (vi) = 0, ∀i = 1, 2, . . . , 11;

f (v j) = 1, ∀ j = 12, 13, . . . , 22;

f (ui, j) = 1, ∀i = 1, 2, . . . , 8, ∀ j = 1, 2, . . . , 11;

f (ui, j) = 0, ∀i = 1, 2, . . . , 8, ∀ j = 12, 13, . . . , 22;

f (ui, j) = 1, ∀i = 9, 10, . . . , 15, ∀ j = 1, 2, . . . , 14;

f (ui, j) = 0, ∀i = 9, 10, . . . , 15, ∀ j = 15, 16, . . . , 22;

f (ui, j) = 1, ∀i = 16, 17, . . . , 22, ∀ j = 1, 2, . . . , 8;

f (ui, j) = 0, ∀i = 16, 17, . . . , 22, ∀ j = 9, 10, . . . , 22.

So above labeling pattern give rises to |v f (1) − v f (0)| ≤ 1 and |e f (1) − e f (0)| ≤ 1, as e f (0) = 2667, e f (1) =

2668, v f (0) = 253, v f (1) = 253 in K�
22

. Thus K�
22

is a cordial graph.

Theorem 2.9 C(n · Kn) is cordial, ∀ n ∈ N − {1}.
Proof. We know that C(2 · K2) = C4, which is a cordial graph.

Case I n is even

⇒ ∃ t ∈ N such that (2t)2 < n ≤ (2t + 2)2

⇒ n = 4t2 + 2r, for some r (1 ≤ r ≤ 4t + 2) and d1 = 2t2 + r, d−1 = −(4t + 2) + r with d1 + |d−1| = 2(t + 1)2.

Since C(n · Kn) contain n copies of Kn, take r1 copies of Kn, which produces d1 and r2 copies of Kn, which

produces d−1. In this case C(n · Kn) contains e f (1) − e f (0) = r1d1 + r2d−1 and we shall take r2 even to preserve

|v f (1) − v f (0)| ≤ 1.

First we shall choose d1 copies of Kn, which produces d−1 and |d−1| copies of Kn, which produce d1. Then (the

remaining copy of Kn)

Rcopy = n − (d1 − d−1) = 2(t − 1)2 + 2r − 4 = x (say)

Here we have to make x = Rcopy as two parts say y and x − y, so that

y
x − y

≈ d1

|d−1| ⇒ y ≈ (2t2 + r)(2(t − 1)2 + 2r − 4)

2(t + 1)2
=

d1x
d1 − d−1

.

Now r2 = d1 + y, which we take even to maintain v f (0) = v f (1) in C(n · Kn). So we shall take y3 =
d1 x

d1−d−1
and

y = �y3, when �y3 + d1 is even

= �y3 + 1, when �y3 + d1 is odd.

By choosing r2 = d1 + y, r1 = n − r2 copies of Kn in C(n · Kn), we shall have e f (1) − e f (0) = r1d1 + r2d−1, if

|r1d1 + r2d−1| ≤ n, we can maintain e f (1) = e f (0) in C(n · Kn), when n is even, as shown in Table 4.

Case II n is odd

⇒ ∃ t ∈ N such that (2t − 1)2 < n ≤ (2t + 1)2

⇒ n = (2t − 1)2 + 2r, for some r (1 ≤ r ≤ 4t − 1) and d1 = 2t(t − 1) + r, d−1 = −4t + r with d1 + |d−1| = 2t(t + 1).

If we take Rcopy = n − (d1 − d−1) like Case−I, we must have Rcopy = 2t2 − 6t + 2r + 1 = x (say).

Now this x = Rcopy we have to make two parts say y and x − y, so that

y
x − y

≈ d1

|d−1| .⇒ y ≈ d1(2t2 − 6t + 2r + 1)

d1 − d−1

We shall take r2 = d1 + y even to preserve |v f (1) − v f (0)| ≤ 1 in C(n · Kn). For this we shall take y4 =
d1 x

d1−d−1
and

y = �y4 + 1, when �y4 + d1 is odd

= �y4, when �y4 + d1 is even.
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We shall see that n = t2, for some t ∈ N, d1 = 0 and in this case we shall choose r2 = n, r1 = 0 an exceptional case

due to n is odd and we can preserve |v f (1) − v f (0)| = 1.

By choosing r2 = d1 + y, r1 = n − r2 copies of Kn in C(n · Kn), we shall have e f (1) − e f (0) = r1d1 + r2d−1. If its

absolute value is less than or equal to n, we can maintain e f (1) − e f (0) ≤ 1 in C(n · Kn), when n is odd, as shown

in Table 5.

Table 4. Shows for even n to produce d1 and d−1 in Kn and to compute r1, r2 in C(n · Kn)

Where n = 4t2 + 2r, d1 =
n
2
, d−1 = −(4t + 2) + r, y taken as computation of the case, r2 = d1 + y and r1 = n − r2.

Table 5. Shows for odd n to produce d1 and d−1 in Kn and to compute r1, r2 in C(n · Kn)

Where n = (2t − 1)2 + 2r, d1 =
n−1

2
, d−1 = −4t + r, y taken as computation of the case, r2 = d1 + y and r1 = n − r2.

Above Tables 4 and 5 shows that r1d1 + r2d−1 is too small, when n is becoming large. Thus C(n · Kn) can be made

a cordial graph, according to Tables 4 and 5.
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Illustrative example 2.10 For C(12 · K12) and its cordial labeling, according to Table 4, we have following data.

n = 12, d1 = 6, d−1 = −2, y3 = 3, y = 4, r2 = 10, r1 = 2 and r1d1 + r2d−1 = −8.

Let ui, j (1 ≤ i, j ≤ 12) be vertices of C(12 · K12). We shall define require labeling f : V(C(12 · K12)) −→ {0, 1} by

taking help of Table 6 as follows.

f (ui, j) = 0, ∀ j = 1, 2, . . . , 6, ∀i = 1, 2;

f (ui, j) = 1, ∀ j = 7, 8, . . . , 12, ∀i = 1, 2;

f (ui, j) = 0, ∀ j = 1, 2, 3, 4,

∀i = 3, 5, 7, 9, 11;

f (ui, j) = 1, ∀ j = 5, 6, . . . , 12,

∀i = 3, 5, 7, 9, 11;

f (ui, j) = 1, ∀ j = 1, 2, 3, 4,

∀i = 4, 6, 8, 10, 12;

f (ui, j) = 0, ∀ j = 5, 6, . . . , 12,

∀i = 4, 6, 8, 10, 12.

Also we shall join ui,2 with ui+1,1, ∀ i = 1, 2, . . . , 11 and u12,2 with u1,1 by an edge to form the cycle graph C(12·K12).

Above labeling pattern give rises to |v f (1) − v f (0)| = 0, |e f (1) − e f (0)| = 0 for C(12 · K12), as shown in Table 6 and

Figure 3 and so C(12 · K12) is a cordial graph.

Table 6. Shows binary vertex labeling for C(12 · K12)

Figure 3. C(12 · K12) and its cordial labeling (v f (1) = 72 = v f (0), e f (1) = 402 = e f (0))

3. Concluding Remarks

In the present work cordial labeling for K�n and C(n · Kn) are discussed. This work rule out the impression of

cordial labeling being a weak labeling. The labeling pattern is demonstrated by means of illustrations, which
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provide better understanding of derived results. The combination of Number Theory and Graph Labeling is a real

beauty of this investigations.
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