Cordiality of a Star of the Complete Graph and a Cycle Graph $C\left(N \cdot K_{N}\right)$

V. J. Kaneria ${ }^{1}$, H. M. Makadia ${ }^{2}$ \& Meera Meghpara ${ }^{3}$
${ }^{1}$ Department of Mathematics, Saurashtra University, RAJKOT, India
${ }^{2}$ Govt. Engineering College, RAJKOT, India
${ }^{3}$ Om Engineering College, JUNAGADH, India
Correspondence: H. M. Makadia, Govt. Engineering College, RAJKOT 360005, India. E-mail: makadia.hardik@yahoo.com

Received: August 24, 2014 Accepted: September 19, 2014 Online Published: October 9, 2014
doi:10.5539/jmr.v6n4p18 URL: http://dx.doi.org/10.5539/jmr.v6n4p18

Abstract

In this paper we prove that a star of K_{n} and a cycle of n copies of K_{n} are cordial. We also get condition for maximum value of $e_{f}(1)-e_{f}(0)$ and highest negative value of $e_{f}(1)-e_{f}(0)$ in K_{n}, where f is the binary vertex labeling function on the vertex set of K_{n}.

Keywords: complete graph, binary vertex labeling, star of a graph and cycle of a graph
AMS subject classification number: 05C78

1. Introduction

Let $G=(V, E)$ be a simple, undirected finite graph with $|V|=p$ vertices and $|E|=q$ edges. For all basic terminology and standard notations we follow Harary (1972). Here are some of the definitions which are useful in this paper.
Definition 1.1 If the vertices of the graph are assigned values subject to certain conditions then it is known as graph labeling.
Definition 1.2 A function $f: V \rightarrow\{0,1\}$ is called binary vertex labeling of a graph G and $f(v)$ is called label of the vertex v of G under f.
For an edge $e=(u, v)$, the induced function $f^{*}: E \rightarrow\{0,1\}$ defined as $f^{*}(e)=|f(u)-f(v)|$. Let $v_{f}(0), v_{f}(1)$ be number of vertices of G having labels 0 and 1 respectively under f and let $e_{f}(0), e_{f}(1)$ be number of edges of G having labels 0 and 1 respectively under f^{*}.
A binary vertex labeling f of a graph G is called cordial labeling if $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$. A graph which admits cordial labeling is called cordial graph.
Definition 1.3 A graph obtained by replacing each vertex of star $K_{1, n}$ by a connected graph G of n vertices is called star of G and we shall denote it by G^{\star}. The graph G which replaced at the center of $K_{1, n}$ we call it as central copy of G^{\star}.
Above definition was introduced by Vaidya et al. (2008, p. 54-64).
Definition 1.4 For a cycle C_{n}, each vertex of C_{n} is replace by connected graphs $G_{1}, G_{2}, \ldots, G_{n}$ is known as cycle of graphs and we shall denote it by $C\left(G_{1}, G_{2}, \ldots, G_{n}\right)$. If we replace each vertices by a graph G i.e. $G_{1}=G, G_{2}=G$, $\ldots G_{n}=G$, such cycle of a graph G, we shall denote it by $C(n \cdot G)$.
Gallian (2013) survey provide vast amount of literature on different type of graph labeling. Labeled graph has many diversified applications. The cordial labeling introduced by Cahit (1987, p. 201-207) is a weaker version of graceful labeling,also he proved that K_{n} is cordial if and only if $n \leq 3$. After this, many researchers have studied cordial graphs.
Kaneria and Vaidya (2010, p. 38-46) discussed cordiality of graphs in different context. They introduced the index
of cordiality for a graph G and proved that the index of cordiality for $K_{t^{2}}(t \in N)$ is precisely 2 . They also raised the following conjecture.
Conjecture 1.5 For any $n \in N, K_{n}^{\star}$ is cordial.
Kaneria et al. (2014, p. 173-178, IJMR) introduced cycle of graphs and proved that cycle of cycles and cycle of complete bipartite graphs are cordial.
In this paper we prove that K_{n}^{\star} (the star of the complete graph), $C\left(n \cdot K_{n}\right)$ (cycle of n copies of the complete graph) are cordial.
1.6 Discussion on cordiality of K_{n} : Let f be a binary vertex labeling on K_{n}. We know that if $f^{-1}(0)=v_{f}(0)=l$ then $f^{-1}(1)=v_{f}(1)=n-l$ and in this case $e_{f}(0)={ }^{l} C_{2}+{ }^{n-l} C_{2}, e_{f}(1)=l(n-l)$ holds for K_{n}. If we take $v_{f}(1)=l$ then $v_{f}(0)=n-l$, while $e_{f}(0)={ }^{l} C_{2}+{ }^{n-l} C_{2}, e_{f}(1)=l(n-l)$ would remains same for K_{n}. Moreover we observe that $K_{n}, e_{f}(0)$ and $e_{f}(1)$ depends on the value of $v_{f}(0)$ and $v_{f}(1)$. Particularly these values are $e_{f}(1)=v_{f}(0) \cdot v_{f}(1)$ and $e_{f}(0)=\frac{n}{2}(n-1)-e_{f}(1)$. Using this fact Kaneria and Vaidya (2010, p. 38-46) proved that $K_{n} \cup K_{n}$ is a cordial graph, when $n=t^{2}$, for some $t \in N-\{1\}$. They also proved star of K_{n} is cordial, when $n=t^{2}+2$ or t^{2} or $t^{2}-2$, for some $t \in N-\{1\}$.

2. Main Results

Theorem 2.1 Let n be an even positive integer and f be a binary vertex labeling on the vertex set of K_{n}. If $v_{f}(0)=v_{f}(1)$ in K_{n} then $e_{f}(1)-e_{f}(0)$ has maximum value $\frac{n}{2}$.
Proof. Let $n=2 m$, for some $m \in N$.
Take $v_{f}(0)=v_{f}(1)=m$. In this case $e_{f}(1)=v_{f}(0) v_{f}(1)=m^{2}$ and

$$
\begin{aligned}
e_{f}(0)=\left|E\left(K_{n}\right)\right| & -e_{f}(1)=\frac{n}{2}(n-1)-m^{2}=m(2 m-1)-m^{2}=m^{2}-m \\
& \Rightarrow e_{f}(1)-e_{f}(0)=m^{2}-\left(m^{2}-m\right)=m
\end{aligned}
$$

If we take $v_{f}(0)=m+k, v_{f}(1)=m-k$ or $v_{f}(0)=m-k, v_{f}(1)=m+k$, for some $k(1 \leq k \leq m)$ then $e_{f}(1)=$ $m^{2}-k^{2}<m^{2}$ and

$$
\begin{aligned}
& e_{f}(0)=2 m^{2}-m-\left(m^{2}-k^{2}\right)=m^{2}-m+k^{2} \\
& \Rightarrow e_{f}(1)-e_{f}(0)=m-2 k^{2}<m, \text { as } k>0
\end{aligned}
$$

Thus $e_{f}(1)-e_{f}(0)$ has maximum value $m=\frac{n}{2}$ in K_{n}, when $v_{f}(1)=v_{f}(0)$.
Theorem 2.2 Let n be an odd positive integer and f be a binary vertex labeling on the vertex set of K_{n}. If $\left|v_{f}(0)-v_{f}(1)\right|=1$ in K_{n}, then $e_{f}(1)-e_{f}(0)$ has maximum value $\frac{n-1}{2}$.
Proof. Let $n=2 m-1$, for some $m \in N$.
Take $v_{f}(0)=m-1, v_{f}(1)=m$ or $v_{f}(0)=m, v_{f}(1)=m-1$. In this case

$$
\begin{gathered}
e_{f}(1)=m^{2}-m \text { and } e_{f}(0)=m^{2}-2 m+1 \\
\Rightarrow e_{f}(1)-e_{f}(0)=m-1=\frac{n-1}{2}
\end{gathered}
$$

If we take $\left\{v_{f}(1), v_{f}(0)\right\}=\{(m-1-k),(m+k)\}$, for some $k(1 \leq k \leq m-1)$, then

$$
\begin{gathered}
e_{f}(1)=m^{2}-m-\left(k^{2}+k\right)<m^{2}-m \text { as } k>0 \\
e_{f}(0)=m^{2}-2 m+\left(k^{2}+k+1\right) \\
\Rightarrow e_{f}(1)-e_{f}(0)=m-1-2\left(k^{2}+k\right)<m-1 \text { as } k>0
\end{gathered}
$$

Thus $e_{f}(1)-e_{f}(0)$ has maximum value $m-1=\frac{n-1}{2}$, when $\left|v_{f}(1)-v_{f}(0)\right|=1$.
Remark 2.3 Let f be a binary vertex labeling on the vertex set of K_{n}. Then in Theorem 2.1 and 2.2, we proved that $e_{f}(1)-e_{f}(0)$ has maximum value

$$
\begin{array}{ll}
\frac{n}{2}, & \text { when } n \text { is even and } v_{f}(1)=v_{f}(0) \\
\frac{n-1}{2}, & \text { when } n \text { is odd and }\left|v_{f}(1)-v_{f}(0)\right|=1
\end{array}
$$

We shall denote this maximum value for $e_{f}(1)-e_{f}(0)$ by d_{1}. i.e.

$$
\begin{aligned}
d_{1} & =\frac{n}{2}, & & \text { when } n \text { is even and } v_{f}(1)=v_{f}(0) ; \\
& =\frac{n-1}{2}, & & \text { when } n \text { is odd and }\left|v_{f}(1)-v_{f}(0)\right|=1 .
\end{aligned}
$$

We also see that in Theorem 2.1, if we take $\left\{v_{f}(1), v_{f}(0)\right\}=\left\{\frac{n}{2}-k, \frac{n}{2}+k\right\}$ in K_{n}, for some $k\left(1 \leq k \leq \frac{n}{2}\right)$, we shall have $e_{f}(1)-e_{f}(0)=\frac{n}{2}-2 k^{2}$, when n is even as well as in Theorem 2.2, if we take $\left\{v_{f}(1), v_{f}(0)\right\}=\left\{\frac{n-1}{2}-k, \frac{n+1}{2}+k\right\}$ in K_{n}, for some k, we shall have $e_{f}(1)-e_{f}(0)=\frac{n-1}{2}-2\left(k^{2}+k\right)$, when n is odd.
This is a decreasing sequence and it stops at $-\left|E\left(K_{n}\right)\right|$ by taking $\left\{v_{f}(1), v_{f}(0)\right\}=\{0, n\}$. What will be the first negative(highest negative) value? when the above sequence $e_{f}(1)-e_{f}(0)$ comes. The difference we call as d_{-1}.
Theorem 2.4 If $n=4 t^{2}+2 r$, for some $t, r \in N$ and $1 \leq r \leq 4 t+1$, then in $K_{n}, d_{-1}=-(4 t+2)+r$, where d_{-1} is the first negative value of $e_{f}(1)-e_{f}(0)$.
Proof. When n is an even positive integer, then $\exists t, r \in N$ such that $n=4 t^{2}+2 r$ and $1 \leq r \leq 4 t+1$ (See more detail in proof of Theorem 2.6).
By taking $\left\{v_{f}(1), v_{f}(0)\right\}=\left\{\left(2 t^{2}+r-t\right),\left(2 t^{2}+r+t\right)\right\}$, we shall have

$$
\begin{gathered}
e_{f}(1)=\left(2 t^{2}+r\right)^{2}-t^{2} \text { and } e_{f}(0)=4 t^{4}+4 t^{2} r+r^{2}-r-t^{2} . \\
\Rightarrow e_{f}(1)-e_{f}(0)=r>0 .
\end{gathered}
$$

Next we take $\left\{v_{f}(1), v_{f}(0)\right\}=\left\{\left(2 t^{2}+r-t-1\right),\left(2 t^{2}+r+t+1\right)\right\}$, we shall have

$$
\begin{gathered}
e_{f}(1)=\left(2 t^{2}+r\right)^{2}-(t+1)^{2} \text { and } e_{f}(0)=\left(2 t^{2}+r\right)^{2}+(t+1)^{2}-\left(2 t^{2}+r\right) \\
\Rightarrow e_{f}(1)-e_{f}(0)=-(4 t+2)+r<0 \text { as } r \leq 4 t+1
\end{gathered}
$$

Therefore $d_{-1}=-(4 t+2)+r$ in K_{n}, when $n=4 t^{2}+2 r$ and $1 \leq r \leq 4 t+1$.
Theorem 2.5 If $n=(2 t-1)^{2}+2 r$, for some $t, r \in N$ and $1 \leq r \leq 4 t-1$, then in $K_{n}, d_{-1}=-4 t+r$, where d_{-1} is the first negative value of $e_{f}(1)-e_{f}(0)$.
Proof. When n is an odd positive integer, then $\exists t, r \in N$ such that $n=(2 t-1)^{2}+2 r$ and $1 \leq r \leq 4 t$. (See more detail in proof of Theorem 2.6).
By taking $\left\{v_{f}(1), v_{f}(0)\right\}=\left\{\left(2 t^{2}+r-3 t+1\right),\left(2 t^{2}+r-t\right)\right\}$, we shall have

$$
\begin{aligned}
e_{f}(1) & =\left[\left(2 t^{2}+r\right)-3 t+1\right]\left[\left(2 t^{2}+r\right)-t\right] \\
& =4 t^{4}+4 t^{2} r-8 t^{3}+r^{2}-4 t r+5 t^{2}+r-t
\end{aligned}
$$

and

$$
\begin{gathered}
e_{f}(0)=4 t^{4}+4 t^{2} r-8 t^{3}+r^{2}-4 t r+5 t^{2}-t \\
\Rightarrow e_{f}(1)-e_{f}(0)=r>0
\end{gathered}
$$

Next we take $\left\{v_{f}(1), v_{f}(0)\right\}=\left\{\left(2 t^{2}+r\right)-3 t,\left(2 t^{2}+r\right)-t+1\right\}$, we shall have

$$
e_{f}(1)=4 t^{4}+4 t^{2} r-8 t^{3}+r^{2}-4 t r+5 t^{2}+r-3 t
$$

and

$$
\begin{aligned}
& e_{f}(0)=4 t^{4}+4 t^{2} r-8 t^{3}+r^{2}-4 t r+5 t^{2}+t \\
& \Rightarrow e_{f}(1)-e_{f}(0)=-4 t+r<0 \text { as } r \leq 4 t-1
\end{aligned}
$$

Therefore $d_{-1}=-4 t+r$ in K_{n}, when $n=(2 t-1)^{2}+2 r$ and $1 \leq r \leq 4 t-1$.
Theorem $2.6 K_{n}^{\star}$ is cordial, $\forall n \in N$.
Proof. We know that $K_{1}^{\star}=K_{2}, K_{2}^{\star}=$ Path on six vertices, which both are cordial graphs. K_{3}^{\star} and its cordial labeling shown in Figure 1.

Figure 1. K_{3}^{\star} and its cordial labeling $\left(v_{f}(1)=6=v_{f}(0), e_{f}(1)=7, e_{f}(0)=8\right)$
Also Kaneria and Vaidya (2010, p. 38-46) proved that $K_{t^{2}}^{\star}(t \in N)$ is a cordial graph.
So we assume that $n \geq 5$ and $n \neq t^{2}$, for some $t \in N$. At this stage we shall consider following two cases for n.

Case $\mathbf{I} n$ is even

$$
\begin{aligned}
& \Rightarrow \exists t \in N \text { such that }(2 t)^{2}<n<(2 t+2)^{2} . \\
& \Rightarrow 4 t^{2}<n<4 t^{2}+8 t+4 . \\
& \Rightarrow 0<n-4 t^{2}<8 t+4 . \\
& \Rightarrow n=4 t^{2}+2 r, \text { for some } r \in N(1 \leq r \leq 4 t+1) . \\
& \Rightarrow d_{1}=\frac{n}{2}=2 t^{2}+r \text { and } d_{-1}=-(4 t+2)+r . \\
& \Rightarrow d_{1}+\left|d_{-1}\right|=2 t^{2}+r-r+(4 t+2)=2(t+1)^{2} \leq n=4 t^{2}+2 r .
\end{aligned}
$$

We know that K_{n}^{\star} contains $n+1$ copies of K_{n}. If we take r_{1} copies of K_{n}, which produces d_{1} and r_{2} copies of K_{n}, which produces d_{-1}, then union of $n+1$ copies of K_{n} contains $e_{f}(1)-e_{f}(0)=r_{1} d_{1}+r_{2} d_{-1}$. Also to preserv $\left|v_{f}(1)-v_{f}(0)\right| \leq 1$ in union of $n+1$ copies of K_{n}, we would take r_{2} even. If $r_{1}=-d_{-1}, r_{2}=d_{1}$ then union of $n+1$ copies of K_{n} satisfies $v_{f}(0)=v_{f}(1), e_{f}(0)=e_{f}(1)$. Since n is even we shall take central copy of K_{n}^{\star} with $v_{f}(0)=v_{f}(1)=\frac{n}{2}$ and we shall join each vertices of central copy with other copies of K_{n}^{\star} whose vertex label is 1 by an edge such edge get 1 edge label if vertex of the central copy has vertex label 0 , otherwise the edge get 0 edge label. This produce $e_{f}(0)=e_{f}(1)$ for K_{n}^{\star} and it becomes a cordial graph.
When $r_{1} \neq d_{-1}$ or $r_{2} \neq d_{1}$ in which case we choose d_{1} copies of K_{n} which produce d_{-1} and $\left|d_{-1}\right|$ copies of K_{n} which produce d_{1}. Then remaining copies of K_{n} is

$$
\begin{aligned}
\text { Rcopy } & =n+1-\left(d_{1}+\left|d_{-1}\right|\right) \\
& =n+1-2(t+1)^{2} \\
& =4 t^{2}+2 r+1-2 t^{2}-4 t-2 \\
& =2 t^{2}-4 t-1+2 r
\end{aligned}
$$

i.e. Rcopy $=2(t-1)^{2}+2 r-3=x$ (say).

Now this $x=$ Rcopy we have to make two parts say y and $x-y$, so that

$$
\frac{y}{x-y} \approx \frac{d_{1}}{\left|d_{-1}\right|} \Rightarrow y \approx \frac{\left(2 t^{2}+r\right)\left(2(t-1)^{2}+2 r-3\right)}{2(t+1)^{2}}=\frac{d_{1} x}{d_{1}-d_{-1}} .
$$

Now $r_{2}=d_{1}+y$, which we take even to maintain $v_{f}(0)=v_{f}(1)$ in K_{n}^{\star}. So we shall take $y_{1}=\frac{d_{1} x}{d_{1}-d_{-1}}$ and

$$
\begin{aligned}
y & =\left\lfloor y_{1}\right\rfloor+1, & & \text { when }\left\lfloor y_{1}\right\rfloor+d_{1} \text { is odd; } \\
& =\left\lfloor y_{1}\right\rfloor, & & \text { when }\left\lfloor y_{1}\right\rfloor+d_{1} \text { is even. }
\end{aligned}
$$

Take $r_{2}=d_{1}+y$ and $r_{1}=(n+1)-r_{2}$.

By choosing r_{1}, r_{2} copies of K_{n} in K_{n}^{\star}, we shall have $e_{f}(1)-e_{f}(0)=r_{1} d_{1}+r_{2} d_{-1}$, if its absolute value is less than or equal to $n+1$, we can maintain $\left|e_{f}(1)-e_{f}(0)\right| \leq 1$ in K_{n}^{\star}, when n is even as shown in Table 1 .

Table 1. Shows for even n to produce d_{1} and d_{-1} in K_{n} and to compute r_{1}, r_{2} in K_{n}^{\star}

t	r	n	d_{1}	d_{-1}	y_{1}	y	r_{2}	r_{1}	$\mathrm{r}_{1} \mathrm{~d}_{1}+\mathrm{r}_{2} \mathrm{~d}_{2}$
1	1	6	3	-5	-0.4	-1	2	5	5
1	2	8	4	-4	0.5	0	4	5	4
1	3	10	5	-3	1.9	1	6	5	7
1	4	12	6	-2	3.8	4	10	3	-2
1	5	14	7	-1	6.1	7	14	1	-7
2	1	18	9	-9	0.5	1	10	9	-9
2	2	20	10	-8	1.7	2	12	9	-6
2	3	22	11	-7	3.1	3	14	9	1
2	4	24	12	-6	4.7	4	16	9	12
2	5	26	13	-5	6.5	7	20	7	-9
2	6	28	14	-4	8.6	8	22	7	10
2	7	30	15	-3	10.8	11	26	5	-3
2	8	32	16	-2	13.3	14	30	3	-12
2	9	34	17	-1	16.1	17	34	1	-17
3	1	38	19	-13	4.2	5	24	15	-27
3	2	40	20	-12	5.6	6	26	15	-12
3	3	42	21	-11	7.2	7	28	15	7
3	4	44	22	-10	8.9	8	30	15	30
3	5	46	23	-9	10.8	11	34	13	-7
3	6	48	24	-8	12.8	12	36	13	24
3	7	50	25	-7	14.8	15	40	11	-5
3	8	52	26	-6	17.1	18	44	9	-30
3	9	54	27	-5	19.4	19	46	9	13
3	10	56	28	-4	21.9	22	50	7	-4
3	11	58	29	-3	24.5	25	54	5	-17
3	12	60	30	-2	27.2	28	58	3	-26
3	13	62	31	-1	30	31	62	1	-31
4	1	66	33	-17	11.2	11	44	23	11
4	2	68	34	-16	12.9	12	46	23	46
4	3	70	35	-15	14.7	15	50	21	-15
4	4	72	36	-14	16.6	16	52	21	28
4	5	74	37	-13	18.5	19	56	19	-25
4	6	76	38	-12	20.5	20	58	19	26
4	7	78	39	-11	22.6	23	62	17	19
4	8	80	40	-10	24.8	24	64	17	40
7	27	250	125	-3	120.1	121	246	5	-113
7	28	252	126	-2	123	124	250	3	-122
7	29	254	127	-1	126	127	254	1	-127
8	1	258	129	-33	77.2	77	206	53	39
8	2	260	130	-32	79.4	80	210	51	-90
8	25	306	153	-9	136.9	137	290	17	-9
8	33	322	161	-1	160	161	322	1	-161

Where $n=4 t^{2}+2 r, d_{1}=2 t^{2}+r, d_{-1}=-(4 t+2)+r, y$ taken as computation of the case, $r_{2}=d_{1}+y$ and $r_{1}=(n+1)-r_{2}$.

Case II n is odd

$$
\begin{aligned}
& \Rightarrow \exists t \in N \text { such that }(2 t-1)^{2}<n<(2 t+1)^{2} . \\
& \Rightarrow 0<n-4 t^{2}+4 t-1<8 t \\
& \Rightarrow 2 \leq n-(2 t-1)^{2} \leq 8 t-2 \\
& \Rightarrow n=(2 t-1)^{2}+2 r, \text { for some } r \in N(1 \leq r \leq 4 t-1) .
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow d_{1}=\frac{n-1}{2}=2 t(t-1)+r \text { and } d_{-1}=-4 t+r \\
& \Rightarrow d_{1}+\left|d_{-1}\right|=2 t(t+1)
\end{aligned}
$$

If we take Rcopy $=n+1-\left(d_{1}+\left|d_{-1}\right|\right)$ like Case I, we must have Rcopy $=2 t^{2}-6 t+2 r+2=x$ (say).
Now here we have to make two parts say y and $x-y$, so that

$$
\frac{y}{x-y} \approx \frac{d_{1}}{\left|d_{-1}\right|} \Rightarrow y \approx \frac{d_{1}\left(2 t^{2}-6 t+2 r+2\right)}{2 t^{2}+2 t}=\frac{d_{1} x}{d_{1}-d_{-1}}
$$

Here $r_{2}=d_{1}+y$, we shall take even to maintain $v_{f}(0)=v_{f}(1)$ in K_{n}^{\star}. For this we shall take $y_{2}=\frac{d_{1} x}{d_{1}-d_{-1}}$ and

$$
\begin{aligned}
y & =\left\lfloor y_{2}\right\rfloor+1, & & \text { when }\left\lfloor y_{2}\right\rfloor+d_{1} \text { is odd; } \\
& =\left\lfloor y_{2}\right\rfloor, & & \text { when }\left\lfloor y_{2}\right\rfloor+d_{1} \text { is even. }
\end{aligned}
$$

By choosing $r_{2}=d_{1}+y, r_{1}=(n+1)-r_{2}$ copies of K_{n} in K_{n}^{\star}, we shall have $e_{f}(1)-e_{f}(0)=r_{1} d_{1}+r_{2} d_{-1}$. If its absolute value is less than or equal to $n+1$, we can maintain $\left|e_{f}(1)-e_{f}(0)\right| \leq 1$ in K_{n}^{\star}, when n is odd as shown in Table 2.

Table 2. Shows for odd n to produce d_{1} and d_{-1} in K_{n} and to compute r_{1}, r_{2} in K_{n}^{\star}

t	r	n	d_{1}	d_{-1}	y_{2}	y	r_{2}	r_{1}	$\mathrm{r}_{1} \mathrm{~d}_{1}+\mathrm{r}_{2} \mathrm{~d}_{2}$
1	1	3	1	-3	0	1	2	2	-4
1	2	5	2	-2	1	2	4	2	-4
1	3	7	3	-1	3	3	6	2	0
2	1	11	5	-7	0	1	6	6	-12
2	2	13	6	-6	1	2	8	6	-12
2	3	15	7	-5	2.33	3	10	6	-8
2	4	17	8	-4	4	4	12	6	0
2	5	19	9	-3	6	7	16	4	-12
2	6	21	10	-2	8.33	8	18	4	4
2	7	23	11	-1	11	11	22	2	0
3	1	27	13	-11	2.17	3	16	12	-20
3	2	29	14	-10	3.5	4	18	12	-12
3	3	31	15	-9	5	5	20	12	0
3	4	33	16	-8	6.67	6	22	12	16
3	5	35	17	-7	8.5	9	26	10	-12
3	6	37	18	-6	10.5	10	28	10	12
3	7	39	19	-5	12.7	13	32	8	-8
3	8	41	20	-4	17	16	36	6	-24
3	9	43	21	-3	17.5	17	38	6	12
3	10	45	22	-2	20.17	20	42	4	4
3	11	47	23	-1	23	23	46	2	0
4	1	51	25	-15	7.5	7	32	20	20
4	2	53	26	-14	9.1	10	36	18	-36
4	3	55	27	-13	10.8	11	38	18	-8
4	4	57	28	-12	12.6	12	40	18	24
4	5	59	29	-11	14.5	15	44	16	-20
4	6	61	30	-10	23	16	46	16	20
5	17	115	57	-3	53.2	53	110	6	12
5	18	117	58	-2	56.1	56	114	4	4
5	19	119	59	-1	59	59	118	2	0
6	1	123	61	-23	29.1	29	90	34	4
6	2	125	62	-22	31	32	94	32	-84
6	14	149	74	-10	58.1	58	132	18	12
6	23	167	83	-1	83	83	166	2	0

Where $n=(2 t-1)^{2}+2 r, d_{1}=\frac{n-1}{2}, d_{-1}=-4 t+r, y$ taken as computation of the case, $r_{2}=d_{1}+y$ and $r_{1}=(n+1)-r_{2}$.

Tables 1 and 2 show that $r_{1} d_{1}+r_{2} d_{-1}$ is too small when n becomes large. Also $\left|r_{1} d_{1}+r_{2} d_{-1}\right| \leq n, \forall n \in N$. Thus K_{n}^{\star} can be made a cordial graph according to Tables 1 and 2.

Illustrative example $2.7 K_{5}^{\star}$ and cordial labeling is shown in Figure 2. According to Table 2, we have following data.

$$
n=5, d_{1}=2, d_{-1}=-2, y_{2}=1, y=2, r_{2}=4, r_{1}=2 \text { and } r_{1} d_{1}+r_{2} d_{-1}=-4
$$

Figure 2. K_{5}^{\star} and its cordial labeling $\left(v_{f}(1)=15=v_{f}(0), e_{f}(1)=32, e_{f}(0)=33\right)$
Let $u_{0, i}(1 \leq i \leq 5)$ be vertices of the central copy K_{5} of K_{5}^{\star} and $u_{l, i}(1 \leq i, l \leq 5)$ be vertices of other copies of K_{5}^{\star}. According to above data we shall define $f: V\left(K_{5}^{\star}\right) \longrightarrow\{0,1\}$ as follows:

$$
\begin{aligned}
f\left(u_{0, i}\right) & =1, \quad \text { when } i=1,2 \\
& =0, \quad \text { when } i=3,4,5 \\
f\left(u_{1, i}\right) & =0, \quad \text { when } i=1,2 \\
& =1, \quad \text { when } i=3,4,5 \\
f\left(u_{l, i}\right) & =0, \quad \text { when } i=1 \text { and } l=2 \text { or } l=5 \\
& =1, \quad \text { when } i=2,3,4,5 \text { and } l=2 \text { or } l=5 ; \\
f\left(u_{l, i}\right) & =1, \quad \text { when } i=1 \text { and } l=3 \text { or } l=4 \\
& =0, \quad \text { when } i=2,3,4,5 \text { and } l=3 \text { or } l=4 .
\end{aligned}
$$

To join each copies K_{5} with the central copy in K_{5}^{\star}, we have to produce four more 1 edge labels. So we can join $u_{0, i}$ with $u_{i, 1}, \forall i=1,2,3,4,5$.
Above labeling function give rises to $\left|v_{f}(1)-v_{f}(0)\right| \leq 1$ and $\left|e_{f}(1)-e_{f}(0)\right| \leq 1$, as $e_{f}(0)=33, e_{f}(1)=32, v_{f}(0)=$ $15, v_{f}(1)=15$ in K_{5}^{\star}. Thus K_{5}^{\star} is a cordial graph.
Illustrative example 2.8 For K_{22}^{\star} and its cordial labeling, according to Table 1, we have following data.

$$
n=22, d_{1}=11, d_{-1}=-7, y_{1}=3.1, y=3, r_{2}=14, r_{1}=9 \text { and } r_{1} d_{1}+r_{2} d_{-1}=1
$$

Table 3. Shows binary vertex labeling for K_{22}^{\star}

Order of copy	$\mathrm{vf}(0)$	$\mathrm{vf}(1)$	$\mathrm{ef}(1)$	$\mathrm{ef}(0)$	$\mathrm{ef}(1)-\mathrm{ef}(0)$
Central copy	$11 \times 1=11$	$11 \times 1=11$	121	110	11
1 to 8	$11 \times 8=88$	$11 \times 8=88$	121×8	110×8	$11 \times 8=88$
9 to 15	$7 \times 8=56$	$14 \times 7=98$	112×7	119×7	$-7 \times 7=-49$
16 to 22	$14 \times 7=98$	$7 \times 8=56$	112×7	119×7	$-7 \times 7=-49$
Other outer edges	0	0	11	11	0
Total	253	253	2668	2667	1

Let $v_{i}(1 \leq i \leq 22)$ be vertices of the central copy of K_{22}^{\star} and $u_{i, j}(1 \leq i, j \leq 22)$ be vertices of other copies of K_{22}^{\star}. We shall join v_{i} of the central copy with $u_{i, i}$ the vertex of $i^{\text {th }}$ copy of $K_{22}^{\star}, \forall i=1,2, \ldots, 22$.
To define required labeling function $f: V\left(K_{22}^{\star}\right) \longrightarrow\{0,1\}$, we use Table 3 and vertex labels which are given below:

$$
\begin{array}{lll}
f\left(v_{i}\right)=0, \quad \forall i=1,2, \ldots, 11 ; & \\
f\left(v_{j}\right)=1, \quad \forall j=12,13, \ldots, 22 ; & \\
f\left(u_{i, j}\right)=1, \quad \forall i=1,2, \ldots, 8, & \forall j=1,2, \ldots, 11 ; \\
f\left(u_{i, j}\right)=0, \quad \forall i=1,2, \ldots, 8, & \forall j=12,13, \ldots, 22 ; \\
f\left(u_{i, j}\right)=1, \quad \forall i=9,10, \ldots, 15, & \forall j=1,2, \ldots, 14 ; \\
f\left(u_{i, j}\right)=0, \quad \forall i=9,10, \ldots, 15, & \forall j=15,16, \ldots, 22 ; \\
f\left(u_{i, j}\right)=1, \quad \forall i=16,17, \ldots, 22, & \forall j=1,2, \ldots, 8 ; \\
f\left(u_{i, j}\right)=0, \quad \forall i=16,17, \ldots, 22, & \forall j=9,10, \ldots, 22 .
\end{array}
$$

So above labeling pattern give rises to $\left|v_{f}(1)-v_{f}(0)\right| \leq 1$ and $\left|e_{f}(1)-e_{f}(0)\right| \leq 1$, as $e_{f}(0)=2667, e_{f}(1)=$ 2668, $v_{f}(0)=253, v_{f}(1)=253$ in K_{22}^{\star}. Thus K_{22}^{\star} is a cordial graph.
Theorem 2.9 $C\left(n \cdot K_{n}\right)$ is cordial, $\forall n \in N-\{1\}$.
Proof. We know that $C\left(2 \cdot K_{2}\right)=C_{4}$, which is a cordial graph.
Case $\mathbf{I} n$ is even
$\Rightarrow \exists t \in N$ such that $(2 t)^{2}<n \leq(2 t+2)^{2}$
$\Rightarrow n=4 t^{2}+2 r$, for some $r(1 \leq r \leq 4 t+2)$ and $d_{1}=2 t^{2}+r, d_{-1}=-(4 t+2)+r$ with $d_{1}+\left|d_{-1}\right|=2(t+1)^{2}$.
Since $C\left(n \cdot K_{n}\right)$ contain n copies of K_{n}, take r_{1} copies of K_{n}, which produces d_{1} and r_{2} copies of K_{n}, which produces d_{-1}. In this case $C\left(n \cdot K_{n}\right)$ contains $e_{f}(1)-e_{f}(0)=r_{1} d_{1}+r_{2} d_{-1}$ and we shall take r_{2} even to preserve $\left|v_{f}(1)-v_{f}(0)\right| \leq 1$.
First we shall choose d_{1} copies of K_{n}, which produces d_{-1} and $\left|d_{-1}\right|$ copies of K_{n}, which produce d_{1}. Then (the remaining copy of K_{n})

$$
\text { Rcopy }=n-\left(d_{1}-d_{-1}\right)=2(t-1)^{2}+2 r-4=x \text { (say) }
$$

Here we have to make $x=$ Rcopy as two parts say y and $x-y$, so that

$$
\frac{y}{x-y} \approx \frac{d_{1}}{\left|d_{-1}\right|} \Rightarrow y \approx \frac{\left(2 t^{2}+r\right)\left(2(t-1)^{2}+2 r-4\right)}{2(t+1)^{2}}=\frac{d_{1} x}{d_{1}-d_{-1}}
$$

Now $r_{2}=d_{1}+y$, which we take even to maintain $v_{f}(0)=v_{f}(1)$ in $C\left(n \cdot K_{n}\right)$. So we shall take $y_{3}=\frac{d_{1} x}{d_{1}-d_{-1}}$ and

$$
\begin{aligned}
y & =\left\lfloor y_{3}\right\rfloor, & & \text { when }\left\lfloor y_{3}\right\rfloor+d_{1} \text { is even } \\
& =\left\lfloor y_{3}\right\rfloor+1, & & \text { when }\left\lfloor y_{3}\right\rfloor+d_{1} \text { is odd. }
\end{aligned}
$$

By choosing $r_{2}=d_{1}+y, r_{1}=n-r_{2}$ copies of K_{n} in $C\left(n \cdot K_{n}\right)$, we shall have $e_{f}(1)-e_{f}(0)=r_{1} d_{1}+r_{2} d_{-1}$, if $\left|r_{1} d_{1}+r_{2} d_{-1}\right| \leq n$, we can maintain $e_{f}(1)=e_{f}(0)$ in $C\left(n \cdot K_{n}\right)$, when n is even, as shown in Table 4 .
Case II n is odd
$\Rightarrow \exists t \in N$ such that $(2 t-1)^{2}<n \leq(2 t+1)^{2}$
$\Rightarrow n=(2 t-1)^{2}+2 r$, for some $r(1 \leq r \leq 4 t-1)$ and $d_{1}=2 t(t-1)+r, d_{-1}=-4 t+r$ with $d_{1}+\left|d_{-1}\right|=2 t(t+1)$.
If we take Rcopy $=n-\left(d_{1}-d_{-1}\right)$ like Case -I , we must have Rcopy $=2 t^{2}-6 t+2 r+1=x$ (say).
Now this $x=$ Rcopy we have to make two parts say y and $x-y$, so that

$$
\frac{y}{x-y} \approx \frac{d_{1}}{\left|d_{-1}\right|} . \Rightarrow y \approx \frac{d_{1}\left(2 t^{2}-6 t+2 r+1\right)}{d_{1}-d_{-1}}
$$

We shall take $r_{2}=d_{1}+y$ even to preserve $\left|v_{f}(1)-v_{f}(0)\right| \leq 1$ in $C\left(n \cdot K_{n}\right)$. For this we shall take $y_{4}=\frac{d_{1} x}{d_{1}-d_{-1}}$ and

$$
\begin{aligned}
y & =\left\lfloor y_{4}\right\rfloor+1, & & \text { when }\left\lfloor y_{4}\right\rfloor+d_{1} \text { is odd } \\
& =\left\lfloor y_{4}\right\rfloor, & & \text { when }\left\lfloor y_{4}\right\rfloor+d_{1} \text { is even. }
\end{aligned}
$$

We shall see that $n=t^{2}$, for some $t \in N, d_{1}=0$ and in this case we shall choose $r_{2}=n, r_{1}=0$ an exceptional case due to n is odd and we can preserve $\left|v_{f}(1)-v_{f}(0)\right|=1$.

By choosing $r_{2}=d_{1}+y, r_{1}=n-r_{2}$ copies of K_{n} in $C\left(n \cdot K_{n}\right)$, we shall have $e_{f}(1)-e_{f}(0)=r_{1} d_{1}+r_{2} d_{-1}$. If its absolute value is less than or equal to n, we can maintain $e_{f}(1)-e_{f}(0) \leq 1$ in $C\left(n \cdot K_{n}\right)$, when n is odd, as shown in Table 5.

Table 4. Shows for even n to produce d_{1} and d_{-1} in K_{n} and to compute r_{1}, r_{2} in $C\left(n \cdot K_{n}\right)$

t	r	n	d_{1}	$\mathrm{~d}_{-1}$	y_{3}	y	r_{2}
0	2	4	2	0	2	2	4
1	1	6	3	-5	-0.75	-1	2
1	2	8	4	-4	0	0	4
1	3	10	5	-3	1.25	1	6
1	4	12	6	-2	3	4	10
1	5	14	7	-1	5.25	5	12
1	6	16	8	0	8	8	16
2	1	18	9	-9	0	1	10
2	8	32	16	-2	12.44	12	28
2	9	34	17	-1	15.11	15	32
2	10	36	18	0	18	18	36
3	1	38	19	-13	3.56	3	22
3	2	40	20	-12	5	6	26
3	13	62	31	-1	29.06	29	60
3	14	64	32	0	32	32	64

Where $n=4 t^{2}+2 r, d_{1}=\frac{n}{2}, d_{-1}=-(4 t+2)+r, y$ taken as computation of the case, $r_{2}=d_{1}+y$ and $r_{1}=n-r_{2}$.
Table 5. Shows for odd n to produce d_{1} and d_{-1} in K_{n} and to compute r_{1}, r_{2} in $C\left(n \cdot K_{n}\right)$

t	r	n	d_{1}	$\mathrm{~d}_{-1}$	y_{4}	y	r_{2}	r_{1}
1	1	3	1	-3	-0.25	-1	0	3
1	2	5	2	-2	0.5	0	2	3
1	3	7	3	-1	2.25	3	6	1
1	4	9	4	0	5	5	9	0
2	1	11	5	-7	-0.42	-1	4	7
2	2	13	6	-6	0.5	0	6	7
2	3	15	7	-5	1.75	1	8	7
2	4	17	8	-4	3.33	4	12	5
2	5	19	9	-3	5.25	5	14	5
2	6	21	10	-2	7.5	8	18	3
2	7	23	11	-1	10.08	11	22	1
2	8	25	12	0	13	13	25	0
3	1	27	13	-11	1.63	1	14	13
3	2	29	14	-10	2.92	2	16	13
3	3	31	15	-9	4.38	5	20	11
3	4	33	16	-8	6	6	22	11
3	5	35	17	-7	7.79	7	24	11

Where $n=(2 t-1)^{2}+2 r, d_{1}=\frac{n-1}{2}, d_{-1}=-4 t+r, y$ taken as computation of the case, $r_{2}=d_{1}+y$ and $r_{1}=n-r_{2}$.
Above Tables 4 and 5 shows that $r_{1} d_{1}+r_{2} d_{-1}$ is too small, when n is becoming large. Thus $C\left(n \cdot K_{n}\right)$ can be made a cordial graph, according to Tables 4 and 5.

Illustrative example 2.10 For $C\left(12 \cdot K_{12}\right)$ and its cordial labeling, according to Table 4, we have following data.

$$
n=12, d_{1}=6, d_{-1}=-2, y_{3}=3, y=4, r_{2}=10, r_{1}=2 \text { and } r_{1} d_{1}+r_{2} d_{-1}=-8
$$

Let $u_{i, j}(1 \leq i, j \leq 12)$ be vertices of $C\left(12 \cdot K_{12}\right)$. We shall define require labeling $f: V\left(C\left(12 \cdot K_{12}\right)\right) \longrightarrow\{0,1\}$ by taking help of Table 6 as follows.

$$
\begin{aligned}
& f\left(u_{i, j}\right)=0, \forall j=1,2, \ldots, 6, \quad \forall i=1,2 ; \\
& f\left(u_{i, j}\right)=1, \quad \forall j=7,8, \ldots, 12, \quad \forall i=1,2 ; \\
& f\left(u_{i, j}\right)=0, \forall j=1,2,3,4, \\
& \forall i=3,5,7,9,11 ; \\
& f\left(u_{i, j}\right)=1, \forall j=5,6, \ldots, 12, \\
& \forall i=3,5,7,9,11 ; \\
& f\left(u_{i, j}\right)= 1, \quad \forall j=1,2,3,4, \\
& \forall i=4,6,8,10,12 \\
& f\left(u_{i, j}\right)=0, \forall j=5,6, \ldots, 12 \\
& \forall i=4,6,8,10,12 .
\end{aligned}
$$

Also we shall join $u_{i, 2}$ with $u_{i+1,1}, \forall i=1,2, \ldots, 11$ and $u_{12,2}$ with $u_{1,1}$ by an edge to form the cycle graph $C\left(12 \cdot K_{12}\right)$. Above labeling pattern give rises to $\left|v_{f}(1)-v_{f}(0)\right|=0,\left|e_{f}(1)-e_{f}(0)\right|=0$ for $C\left(12 \cdot K_{12}\right)$, as shown in Table 6 and Figure 3 and so $C\left(12 \cdot K_{12}\right)$ is a cordial graph.

Table 6 . Shows binary vertex labeling for $C\left(12 \cdot K_{12}\right)$

Order of copy	$\mathrm{vf}(0)$	$\mathrm{vf}(1)$	$\operatorname{ef}(1)$	$\mathrm{ef}(0)$	$\mathrm{ef}(1)-\mathrm{ef}(0)$
1 and 2	6×2	6×2	36×2	30×2	$6 \times 8=12$
$3,5,7,9,11$	4×5	8×5	32×5	34×5	$-2 \times 5=-10$
$4,6,8,10,12$	8×5	4×5	32×5	34×5	$-2 \times 5=-10$
Other outer edges	0	0	10	2	8
Total	72	72	402	402	0

Figure 3. $C\left(12 \cdot K_{12}\right)$ and its cordial labeling $\left(v_{f}(1)=72=v_{f}(0), e_{f}(1)=402=e_{f}(0)\right)$

3. Concluding Remarks

In the present work cordial labeling for K_{n}^{\star} and $C\left(n \cdot K_{n}\right)$ are discussed. This work rule out the impression of cordial labeling being a weak labeling. The labeling pattern is demonstrated by means of illustrations, which
provide better understanding of derived results. The combination of Number Theory and Graph Labeling is a real beauty of this investigations.

Acknowledgements

The authors of this paper would like to thanks the reviewers for their valuable suggestions.

References

Cahit, I. (1987). Cordial graphs: A weaker version of graceful and harmonious graphs. Ars Combin, 23, 201-207.
Gallian, J. A. (2013). The Electronics Journal of Combinatorics, 19, DS6. Retrieved from http://www.combinatorics.org/ojs/index.php/eljc/article/viewFile/DS6/pdf
Harary, F. (1972). Graph theory Massachusetts: Addition Wesley.
Kaneria, V. J., Makadia, H. M., \& Jariya, M. M. (2014). Graceful labeling for cycle of graphs. Int. J. of Math. Res., 6(2), 173-178. http://irphouse.com/volume/ijmrv6n2.htm
Kaneria, V. J., \& Vaidya, S. K. (2010). Index of cordiality for complete graphs and cycle. IJAMC, 2(4), 38-46. http://www.darbose.in/ojs/index.php/ijamc/article/view/2.4.5
Vaidya, S. K., Srivastav, S., Kaneria, V. J., \& Ghodasara, G. V. (2008). Cordial and 3-equitable labeling of star of a cycle. Mathematics Today, 24, 54-64.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

