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Abstract  Bending a human joint generates a sound. This paper theoretically tackles the cracking sound generated 
by the manipulation of human joint such as finger. The Rayleigh-Plesset equation in the classical bubble dynamics is 
applied to determine the nonlinear oscillations of bubble that generates sound. Comparing the numerical solutions of 
the Rayleigh-Plesset equation for two types of modeling, i.e., forced- and free-oscillator assumptions for 
inhomogeneous terms, gives clear difference. 
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1. Introduction 
By bending a joint, we daily recognize the generation of 

a sound, the so-called cracking sound. The joint such as 
finger or neck commonly and frequently induces an 
audible cracking sound. A number of observations [1-7] 
on cracking sound have intensively been performed and 
then elucidated the formation of cavitation bubble in the 
synovial fluid of these joints when a cracking sound is 
produced. Since the manipulation of joint with cracking 
sound may damage to the articular capsule or bone [8,9] 
we should reveal the origin of the cracking sound because 
of a medical requirement. The phenomenon is also 
categorized in the bio-acoustics: The expansion of bubble 
in the synovial fluid emits a pressure wave, i.e., sound 
generation. However, the detailed mechanism to explain 
the cracking sound, especially focusing on a condition 
necessary to generate an audible sound, has long remained 
unclear. Hence, many interests have been considerably 
focused on the audible sound generated by the joint 
manipulation.  

Although many hypotheses based on medical 
experiments [10,11,12] have been proposed, theoretical 
works from the physical viewpoint have not long been 
carried out. Minami et al. [13] clarified that the cracking 
sound is a complex flow phenomenon accompanied by 
cavitation [14] with violent oscillations and destruction of 
many bubbles. We emphasize that, however, our present 
target is not to perform a complete numerical simulation 
considering strongly nonlinear phenomena. In this paper, 
we theoretically investigate the bubble dynamics with 
regard to the cracking sound, leading to extract the most 
important and fundamental physics in the sound. The 

origin of cracking sound is examined from the viewpoint 
of fluid mechanics by solving a simple physico-
mathematical model, i.e., the Rayleigh-Plesset equation 
[15] for the description of bubble oscillations (i.e., 
contraction and expansion). As a result, the velocity of 
bubble oscillations readily reaches a sharp peak after the 
generation of bubble. This tendency represents that the 
cracking sound is audible at just one time, and coincides 
with our daily experience regarding joint manipulation. 

2. Formulation of the Problem 
In the following, we formulate the problem. Let us 

assume that a single spherical gas bubble is surrounded by 
an incompressible liquid, and its bubble wall radially 
oscillates, as sketced in Figure 1. It is well established that 
the bubble dynamics is described by the following 
Rayleigh-Plesset equation [15]: 
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where t is the time, R radius of the bubble, ρ density of the 
surrounding liquid, p0 hydrostatic pressure, R0 bubble 
radius in the initial state, γ polytropic index (γ = 1 is used 
in the following analysis since we consider the isothermal 
process inside the bubble), µ viscosity of the liquid, σ 
surface tension coefficient, and p∞(t) driving pressure. In 
the right-hand side of Eq. (1), the vapor pressure is 
dropped. The second term on the left-hand side, (dR/dt)2, 
represents the second-order nonlinearity. The momentum-
conservation equation (or equation of motion) of fluid 
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mechanics [11] clearly results in the nonlinearity in Eq. 
(1), i.e., the nonlinear oscillations. Equation (1) describes 
a forced oscillator (i.e., simple oscillations of the spring-
mass system), and its left- and right-hand sides express the 
inertia and driving forces, respectively. 

 
Figure 1. Spherically symmetric oscillations of the bubble: R(t) is the 
bubble radius, ρ density, p(t) driving pressure, and t time 

The driving force acting on the bubble is given by the 
sinusoidal form:  

 ( ) sinp t tω∞ =   (2) 

where ω is the frequency of the driving force. In this paper, 
we assume that ω equals the eigenfrequency of spherically 
symmetric linear oscillations of the single bubble, i.e.,  
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We emphasize that the assumption of Eq. (3) is only for 
simplicity. Precisely speaking, we should use an 
eigenfrequency of a coupled-oscillator system composed 
of the bone, synovial fluid, and bubble, and we substitute 
it into Eq. (2) instead of Eq. (3). However, this concern 
contains high difficulty because the dynamical properties 
of bone and synovial fluid have not fully examined. 
Nevertheless, as shown in the following result, the set of 
Eqs. (1)-(3) can predict an essence of the phenomenon 
because the use of more rigorous formulation of Eq. (3) 
would not essentially affect our procedure. In the 
forthcoming report, we will take into account the effect of 
the coupled oscillation. 

Let us solve numerically Eq. (1). The Runge-Kutta 
scheme with fourth-order central differencing in space has 
been used, in which the initial conditions are given by 

 0 , dRR R v
dt

= =  (4) 

The initial radius R0 was set to 1 µm since R0 should be 
smaller than the size of the synovial space occupied by the 
synovial fluid. The initial velocity v was set 0 m/s for 
simplicity. The values of physical quantities appearing in 
Eq. (1), i.e., ρ, p0, µ, and σ, are summarized in Table 1. 
Furthermore, we determined these values by referring to 
not synovial fluid but water with the normal body 
temperature of a human. This assumption is intended to 
easily perform future experiments in order to verify our 
theoretical prediction.  

Table 1. Physical quantities used in the computation. 

Density ρ 1000 kg/m3 

Viscosity µ 0.0008 Pa s  

Hydrostatic pressure p0 101325 Pa 

Surface tension σ 0.728 N/m 

3. Results and Discussions 
Let us discuss the numerical results by considering four 

cases:  
i) free oscillator without external force p(t) as well as 

surface tension σ,  
ii) forced oscillator with external force p(t) and without 

surface tension σ,  
iii) free oscillator without external force p(t) and with 

surface tension σ, 
iv) forced oscillator both with external force p(t) and 

surface tension σ. 
Figure 2(a) and (b) show bubble-wall velocity and 

radius as a function of time t, respectively in the case of (i). 

 
Figure 2. Free oscillation without surface tension case (i.e., p∞(t) = 0, σ = 
0): Temporal evolution for (a) bubble wall velocity and (b) bubble radius 
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Figure 3. Forced oscillation without surface tension case (p∞(t) is given 
by Eq. (2), σ = 0): Temporal evolution for (a) bubble wall velocity and (b) 
bubble radius 

The most important observation is that one large and 
sharp peak appeared around t = 0 for velocity [Figure 2(a)]. 
This indicates that we recognize the cracking sound only 
one time and agree with our empirical fact which we 
generate only one cracking sound by bending our joint. 
Bubble-wall radius plotted in Figure 2(b) monotonically 
increases with convex upward. This reveals that the 
bubble collides with boundary of the synovial space, 
resulting in the destruction and extinction of the bubble. It 
would be noted that this extinction theoretically explains 
the previous experimental result [16] that bubbles created 
in the synovial fluid became extinct with time. 

In the case of (ii), we take into account the external 
force p(t), i.e., forced oscillator case but without any 
surface tension. This is because the external force 
appearing in Eq. (2) can drives a bubble periodically. We 
examine the difference between free and forced oscillators. 
Figure 3(a) and (b) illustrate the bubble-wall velocity and 
bubble-wall radius versus time t, respectively, on external 
force. Compare the difference between Figure 2(a) with 
Figure 3(a). It is clearly seen that amplitude of the bubble-
wall velocity reaches a maximum value around t = 0 and 
subsequently decreasing with time in both figures. The 
apparent difference is that the functional form of the 

forced oscillator oscillates but that of free oscillator does 
not oscillate. This oscillation is originated from the 
sinusoidal driving force given in Eq. (2). The appearance 
of multiple peaks in this oscillation implies multiple 
occurrences of the cracking sound. However, it may hear 
the sound about two or three times since the amplitude of 
this oscillation is small except for the region less than t = 
0.001 µm. This result indicates that the variation in 
bubble-wall velocity due to external forces raises the 
number of the cracking sound. We empirically experience 
that the cracking sound can be also audible two or three 
times, thus, in this case, the surface tension is important 
for the multiply audible sound. The time dependence of 
the bubble-wall radius [Figure 3(b)] is qualitatively 
similar to that in bubble-wall velocity [Figure 3(a)]. 
Because the bubble radii in both Figure 2(b) and Figure 3(b) 
are roughly the same, for example around t = 0.01 ms, the 
driving force affects only the small variation in bubble-
wall radius. We interpret this property that the time-
averaged value of the sinusoidal driving force given in Eq. 
(2) equals zero. 

 
Figure 4. Free oscillation with surface tension case (i.e., p∞(t) = 0, σ = 
0.0728 N/m): Temporal evolution for (a) bubble wall velocity and (b) 
bubble radius 

From now on, we discuss the bubble dynamics in cases 
of (iii) and (iv), i.e., cases of taking into account the 
surface tension. Figure 4(a) and (b) are counterparts of 
Figure 2(a) and (b), respectively, but the surface tension is 
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given by σ = 0.0728 N/m, which is the case (iii). The most 
intriguing characteristics is that both Figure 4(a) and (b) 
show damped oscillations. We can understand these 
behaviors by considering the term 2σ/R given in Eq. (1). 
This term may affect as the damped term. We found that 
the bubble-wall velocity is large around t = 0. However, 
the cracking sound may not be audible since the bubble-
wall radius is constant value with time, resulting in the 
bubble does not reaches the boundary of the synovial 
space and not extinct. This is inconsistent with the 
previous work [16]. In short, the case (iii) may not be the 
real situation. 

 
Figure 5. Forced oscillation with surface tension case (p∞(t) is given by 
Eq. (2), σ = 0.0728 N/m): Temporal evolution for (a) bubble wall 
velocity and (b) bubble radius 

Figure 5(a) and (b) are counterparts of Figure 3(a) and 
(b), respectively, but with the surface tension, which is the 
case (iv). It is obvious that the cracking sound occurs 
multiply and this is not consistent with our experience. 
Thus, the case (iv) as well as the case (iii) may not be the 
real situation. 

4. Conclusions 
In this paper, based on the bubble dynamics, the 

velocity and radius of a single spherical bubble in water 

have been numerically calculated by using the classical 
Rayleigh-Plesset equation. We summarize the main results 
as follows:  

Case (i) [p(t) = 0, σ = 0]: A sharp peak in the bubble-
wall velocity is appeared. It can be understood that this 
theoretical prediction validates the empirical observation 
that the cracking of a joint generates audible sound at only 
one time.  

Case (ii) [p(t) ≠ 0, σ = 0]: The cracking sound occurs 
two or three times. This is also the theoretical validation 
of audible sounds.  

Case (iii) [p(t) = 0, σ = 0.0728 N/m]: The cracking 
sound may not be audible since the bubble does not 
extinct with time.  

Case (iv) [p(t) ≠ 0, σ = 0.0728 N/m]: Multiple 
occurrences of audible sound are appeared, but this is no 
realistic. Thus, we can conclude that the cracking sound 
may be audible when the surface tension is negligibly 
small in our model.  

It is noteworthy that a study based on the physico-
mathematical model is absence except for the present 
study. We expect that the present study will shed light on 
the qualitative and quantitative understanding of the 
properties of the cracking sound and will spark the 
investigation of the condition generating the cracking 
sound. However, this paper addresses the simplest 
situation. Further studies are required for aforementioned 
understanding of the cracking sound, i.e., performing the 
computation using physical quantities of synovial fluid 
instead of water, using the eigenfrequency of the coupled-
oscillator system composed of the bone, synovial fluid, 
and bubble, instead of Eq. (3), considering the multiple 
bubbles and interaction among these bubbles, and 
incorporating the generation and destruction of bubbles. 
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