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Abstract—This study covers the learning approaches 

discussed by the information retrieval community in 

categorising texts with a specific focus given to blogs within the 

last ten years. Early research studies were solely focused on 

general text classification and these techniques were later 

improved, and applied to classify webpages, and then to blogs 

due to the similarity of textual content present in these items. We 

review how blog classification techniques have evolved from the 

foremost text classification techniques to the recent ones and 

discuss the future research directions. 

 

Index Terms— Blog classification, Blogosphere, Supervised, 

Semi-supervised, Unsupervised classification.  

I. INTRODUCTION 

  Blogs are different from generic webpages, where even 

single blog content could consist of different topics, and 

searching the valuable information would be of extensive 

inquisitiveness. So a convenient solution is to classify blogs 

based on its stated contents. Since the content of blogs is 

diverse in nature, classifying blogs is a difficult and 

challenging task than traditional text classification ([1], [2], 

[3], [4], [5], [6], [7], [8], [9]). Major research studies on blog 

classification was identified and grouped based on their 

approaches and relevance to this survey. Since every 

approach has its pros and cons, we also consider the strengths 

and limitations of these approaches and briefly discuss how 

these limitations can be addressed. 

The state of the art text classification and research survey 

has been discussed in some literatures such as, on text 

classification [10], data clustering ([11], [12]), webpage 

classification ([13], [14]), and hypertext categorization ([15], 

[16]). As similar to webpage classification [14], an 

increasing body of research studies was started on blog 

classification based on different specific problems: subject 

classification ([2], [18]), functional classification ([19], [8]), 

sentimental classification ([21], [22], [23]), spam blog 

classification [24], blog genre classification ([25], [26]), 

mood classification [27] and many other types of 

classifications. The information content present in the 

blogosphere has been proven more valuable for applications 

such as business intelligence, trend discovery, and opinion 

tracking [28]. As blog classification is in its nascent stage, 

there is no extensive review of literature that describes 

different approaches adopted by various researches to date. 
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We first enumerate the different classification approaches in 

Section 2. In Section 3, limitations of each approach are 

discussed. Section 4 concludes with a brief summary that 

provides insight into some future research directions that 

could enhance the performance of current blog classification 

based research activities. 

II. CLASSIFICATION APPROACHES 

We explain different classification methods and describe its 

functions, limitations on classifying documents. As shown in 

Figure 1, classification approaches are applied for any forms 

of text such as webpages, blogs, spam blogs, forums, emails 

and so forth. The purpose of explaining different 

classification approaches in this section is to identify the 

strengths and limitations of the current needs on classifying 

blogs. 

 

  
Figure 1.  Classification Overview 

A. Supervised learning approach 

The supervised learning or so called inductive learning 

approach was started around 1995-96 [29], where a set of 

classification rules or the features are learned from a 

collection of labelled training documents. These rules are 

employed to classify target data items from other similarly 

formatted pages. Figure 2 shows the functionality of the 

overall system of supervised classification that uses human 

indexers to provide a good number of labelled training 

documents for each category to learn. The needs of manual 

classification are also not eliminated, where training text 

documents are labelled by human indexers based on the 

respective categories using cognitive judgement. Once 

supervised learning algorithm learns the rules in identifying 

different categories, the algorithm is able to classify any 

document which is given according to the training provided. 

A wide range of supervised learning algorithms are available 

namely, kNN [30], SVM [31], naive Bayes ([32], [33]), 
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Supervised Neural Network [34], and Bayesian Network 

classifier [35].  

 
Figure 2.  Diagrammatic Representation of Supervised Classification 

SVM learning algorithm is suggested in areas where 

documents are not pre-classified. In some analysis, SVM 

classifier can easily be improved using training data and 

prior knowledge, to identify similarities between them. SVM 

learning algorithm is closely related to supervised neural 

network model in identifying the data structure during 

learning its feature space to successfully classify all the 

unlabelled data. 

B. Semi-supervised learning approach 

In order to address the issue of reducing the involvement of 

human indexers and to improve the learning accuracy on 

classifying documents, semi-supervised classification arisen. 

This type of classification is half way between supervised and 

unsupervised classification. Figure 3 shows the functionality 

of the overall system of Semi-supervised classification that 

uses human indexers to label parts of the documents for each 

category to learn. When dealing with the situations where 

few labelled training documents and large number of 

unlabelled training documents are available, then 

semi-supervised classification are used ([36], [37]). It starts 

by training the classifiers on labelled documents and, in each 

step a part of unlabelled documents are used. During training, 

the unlabelled documents are helpful in providing the joint 

probability distribution over words [29]. 

Several semi-supervised learning algorithms such as 

PLSA [39], S3VM classifier [40], TSVM classifier [41], 

Semi-supervised naive Bayes classifier [42], and 

Semi-supervised clustering [43] are used for text 

classification.  

 
Figure 3.  Diagrammatic Representation of Semi-supervised Classification 

During this classification, the learning algorithm takes 

only few labelled documents and large number of unlabelled 

documents for training.  

C. Unsupervised learning approach 

Unsupervised learning approach was started around 1998 

[29]. Figure 4 shows the functionality of the overall system of 

unsupervised classification that uses learning algorithm to 

solve the classification task without human intervention. It 

does not require the foreknowledge of each dataset and does 

classification automatically. The unsupervised classification 

becomes the most important for the present state, since 

labelled training documents are seldom available. In general, 

the task of unsupervised learning is more abstract and less 

defined. 

 

 
 

Figure 4.  Diagrammatic Representation of Unsupervised Classification 
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Unsupervised learning algorithms such as ANN [44], and 

text-based unsupervised clustering such as k-means 

clustering ([45], [46], [47]), non-negative matrix 

factorization ([48] [49], spectral clustering ([50], [51]) are 

used for text classification. Here, these learning algorithms 

learn on their own and does classification for different 

real-time text documents. 

ANN is relatively crude electronic network of neurons 

inspired from the brain’s neural structure. ANN model 

processes each record, and compares its record pattern with 

the known actual classified record. SOM is one of the 

prominent ANN model produces a similarity graph of input 

data [52]. In order to use the SOM for text classification, 

documents are needed to be represented as a histogram of 

word occurrences. SOM visualises the document similarity 

in terms of distances on a two-dimensional map display, 

where every document is represented within a single 

two-dimensional map [53]. The limitation of SOM is its high 

dimensional feature space document representation [44]. 

Hung et al. [55] used hybrid neural network model-SOM, 

guided by WordNet to cluster documents. This hybrid model 

considers each word as a symbol and word sequences are 

ignored. Finally, author has mentioned that there exists a 

wide gap between the neural clustering and manual text 

classification. 

Clustering deals in identifying a proper structure in a finite 

set of unlabelled data. There is a considerable amount of 

literature on clustering, and exploring this literature is 

complicated by the fact that there are many domains in which 

clustering can be applied. One method in particular, 

clustering has been successful in a wide range of knowledge 

discovery applications [56]. Berkhin [11] investigated the 

applications of clustering algorithms for data mining. 

Clustering has received a significant amount of attention and 

has been used in the area of text classification as a term 

selection for dimensionality reduction or as a method to 

enhance the training set [57]. Text classification using 

clustering methods focused on searching similarities in the 

document content, and organizes in groups according to 

these properties. During training, clustering algorithm 

classifies similar objects in one group, and dissimilar objects 

to others [58]. Initially it discovers a kind of structure in the 

training examples and expands the feature vectors with new 

attributes extracted from clusters. Clustering is usually 

performed when there is no information concerning the 

membership of data items to pre-defined classes. 

Slonim et al. [54] proposed document classification 

framework by following unsupervised clustering methods.  

This framework searches for highly correlated clusters with 

the real categories, using sequential Information Bottleneck 

algorithm. Their results are compared with a supervised 

naive Bayes classifier and found to be similar. In most of the 

experiments, partitioned clustering algorithm is suited for 

large data set clustering due to their low computational 

requirements [12]. Baker et al. [38] used the distributional 

clustering method, which clusters the terms together that 

specifies the occurrence of the same category, or a set of 

categories. Xu et al. [49] presented a simple document 

clustering application using Non-negative Matrix 

Factorization. As k-means clustering algorithm cannot 

separate clusters that are non-linearly separable in input 

space, Dhillon et al. [20] used JSD to cluster words in 

k-means fashion in text clustering. 

Trends in data mining have demanded clustering 

algorithm to utilize two extremely correlated objects, terms 

and documents in a text dataset. Clustering individual object 

type would not perform better, since each type could be 

defined by another object types. This paved the way for many 

researchers to co-cluster two or more heterogeneous data. 

Dhillon [50] and Zha et al. [17] have expanded the generic 

clustering algorithms into bipartite graph clustering 

algorithm to cluster terms and documents concurrently. Gao 

et al. [51] suggested Consistent Bipartite Graph 

Co-Partitioning algorithm by considering each tripartite 

graph as two-bipartite graphs. This study proved that 

consistent partitioning provides the optimal solution using 

positive Semi-Definite Programming. 

III. LIMITATIONS ON CLASSIFICATION 

APPROACHES 

Every classification method has its own limitations in 

terms of cost, efficiency and type of input data presented. In 

supervised classification, the learning algorithm requires 

sufficient amount of training documents to achieve higher 

precision in classifying texts. Obtaining labelled training 

documents is expensive and if rare categories consist of only 

very few training documents, then the classifier do not 

perform well to that particular category. Chances of labelled 

documents being biased based on human indexer’s 

perception are possible. 

Semi-supervised learning does the task of learning from 

labelled and unlabelled examples; its drawbacks are as same 

as that of supervised classification. The limitations in 

semi-supervised classification are, it involves human 

indexers to label training documents, and such learning 

algorithms cannot be used for large datasets. Another key 

limitation is that although the labelled training documents 

may be small, every category should have some labelled 

examples [29]. Since the involvement of human indexers for 

classification is expensive and time consuming, the need for 

automatic learning came into existence. 

As mentioned in the above section, unsupervised 

classification methods are done through clustering 

algorithms. One widely used technique in unsupervised 

learning is SOM. The drawback in SOM is, it is a static 

model and uses only fixed number of input units. SOM does 

not represent structure of clusters and actual distance 

between two different clusters. SOM follows fixed two 

dimensional - 2D lattices and the size of 2D lattices is based 

on trial and error. Thus research studies are done to integrate 

SOM with the ontology to increase performance [55]. 

Evidently, this study states that there is still a gap between 

the neural clustering and manual text classification. But 

existing clustering techniques do not satisfy the requirements 

of different form of texts. Another disadvantage in 

unsupervised classification method is time-complexity and 

high-processing speed. Since the learning algorithms train 

on its own, iterating with large number of dimensions and its 

data items can be challenging because it takes lots of time to 

do classification.  

IV. CONCLUSIONS AND FUTURE WORK 
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Blog classification is in its nascent stage and much of the 

initial investigation of blog classification research studies 

have been carried out based on traditional text and webpage 

classification approaches, and not by considering the blogs as 

an individual entity. This section summarizes the existing 

research studies and briefly highlights possible future 

research directions. 

Most research studies on blog classification follow three 

basic text classification approaches: supervised, 

semi-supervised and unsupervised classification. Thus, in 

this paper we provided the review of different text 

classification methods, learning algorithms and their 

functions. Here supervised and semi-supervised 

classification methods require the labelled and unlabelled 

data. Furthermore, limitations of text classification method 

were mentioned and unsupervised classification is mostly 

needed in the current scenario. Traditional text classification 

method treats each word appearing in the documents as 

features and follows Bag-of-Words approach, which 

disregards the semantic relationships between key terms, and 

the order of appearance. 
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