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Abstract

The problem of how infants learn to associate visual inputs, speech, and internal
symbolic representation has long been of interest in Psychology, Neuroscience,
and Artificial Intelligence. A priori, both visual inputs and auditory inputs are
complex analog signals with a large amount of noise and context, and lacking of
any segmentation information. In this paper, we address a simple form of this
problem: the association of one visual input and one auditory input with each
other. We show that the presented model learns both segmentation, recognition
and symbolic representation under two simple assumptions: (1) that a symbolic
representation exists, and (2) that two different inputs represent the same symbolic
structure. Our approach uses two Long Short-Term Memory (LSTM) networks for
multimodal sequence learning and recovers the internal symbolic space using an
EM-style algorithm. We compared our model against LSTM in three different
multimodal datasets: digit, letter and word recognition. The performance of our
model reached similar results to LSTM.

1 Introduction

Our brain has an important skill that is to assign semantic concepts to their sensory input signals,
such as, visual, auditory. In other words, the sensory inputs can be considered as meaningless
physical information and the semantic concepts are linked to their physical features. This scenario
can be seen as Symbol Grounding Problem (SGP) [1].

Infants in their development ground the semantic concepts to their sensory inputs. For example,
several cognitive researchers found a relation between the vocabulary acquisition (audio) and object
recognition (visual) [2, 3]. Recently, Asano et al. [4] recorded the infant brain activity using three
Electroencephalogram (EEG) measures. They found that infants are sensitive to the correspondence
between visual stimulus and their sound-symbolic match or mismatch. Furthermore, the lack of one
of these components affects the learning behavior, i.e., deafness or blindness [5, 6].

Several models have been proposed for grounding concepts in multimodal scenarios. Yu and Bal-
lard [7] developed a multimodal learning algorithm that maximize the probabilities between spoken
words and the visual perception using EM approach. Nakamura et al. [8] developed a different ap-
proach based on a latent Dirichlet allocation (LDA) for multimodal concepts. They used not only
visual and audio information but also haptic information for grounding the concept.
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Figure 1: Examples of several components in this work. Figure 1a shows the relation between the
traditional approach and our approach for multimodal association. It can be seen that proposed
scenario learns the representation of the semantic concept, whereas that relation is fixed in the tra-
ditional scenario (red box). Figure 1b illustrates the relation among a semantic concept, a visual
sensory input and a set of symbolic features. In this scenario, there are ten possible options (c0,
. . ., c9) that can be assigned to the concept ‘five’ in order to be represented in the network. In this
example, the semantic concept ‘five’ is represented by the symbolic feature c1.

Previous work has focused only on segmented inputs. However, recent results in Recurrent Neural
Network, mainly Long Short-Term Memory (LSTM), has been successfully applied to scenarios
where the input is unsegmented, e.g., OCR and speech recognition. In this paper, we are proposing
an alternative solution that exploits those benefits. Furthermore, we address a simplified version of
the multimodal symbol grounding: the association of one visual input and auditory input between
each other. Our model uses two parallel LSTM networks that segments, classifies and finds the
agreement between two multimodal signals of the same semantic sequence. For example, the visual
signal is a text line with digit ‘2 4 5’ and the audio signal is ‘two four five’. We want to indicate that
our model is trained with less information because the semantic concept and its representation is
learned during training. Figure 1a shows the learned components in the traditional scenario and this
work. In the traditional scenario, the relation between the semantic concepts and their representation
is fixed, whereas that relation in our model is trainable. Moreover, we want to point out that LSTM
outputs are used as symbolic features. Figure 1b shows the relation between a semantic concept
(SeC), a visual sensory input and a set of symbolic features (SyF ). This relation from now on is
called symbolic structure. This work is based on Raue et al.[9]. In their work, the model was applied
to a mono-modal parallel sequence case. In more detail, they learn the association between two text
lines, i.e., only visual information. In this work, we explore the model in a more complex scenario
where the training is applied on multimodal sequences. Thus, the alignment and the agreement
between two modalities are not as smooth as the monomodal scenario.

This paper is organized as follows. Section 2 explains LSTM network as a background information.
In Section 3, we describe our model that uses two parallel LSTMs in combination with an EM-based
algorithm in order to learn segmentation, classification and symbolic representations. Section 4
explains our experimental setup. Section 5 reports the performance of our model; and, a comparison
between our model and a single LSTM network.

2 Background: Long Short-Term Memory (LSTM) networks

LSTM was introduced to solve the vanishing gradient in recurrent neural networks [10, 11]. In more
detail, the output of the network represents the class probability at each time step. The architecture
has already been applied to learn unsegmented inputs using an extra layer called Connectionist
Temporal Classification (CTC) for speech recognition [12] and OCR [13]. CTC adds an extra class
(called blank class (b)) to the target sequence for learning the monotonic alignment between two
sequences. In that case, the alignment is accomplished by learning to insert the blank class at
appropriate positions. As a result, LSTM learns the classification and the segmentation. CTC was
motivated by the forward-backward algorithm for training Hidden Markov Models (HMM) [14]. In
addition, a decoding mechanism extracted the labeled classes from LSTM outputs. Please review
the original paper for more details about LSTM and CTC [12].
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Figure 2: Overview of symbolic association framework. The statistical constraints (γ and β) guide
each LSTM to the internal representation (symbolic feature) for each semantic concept. Also, the
monotonic behavior is exploited by DTW. In this manner, LSTM1 output is used as target for
LSTM2, and vice versa.

3 Multimodal Symbolic Association

As we mentioned in Section 1, the goal of our model is to learn the agreement in a multimodal
symbolic sequences. In this case, the term ‘agreement’ is referred to the output classification of
both LSTMs are the same (regardless of the modalities). In other words, both LSTMs learn the
segmentation, the classification and the symbolic structure in a simplified multimodal scenario.

More formally, we define the multimodal symbolic association problem in the following manner. A
multimodal dataset is defined byM = {(xa,t1 ;xv,t2 ; s1,...,n)|xa,t1 ∈ Xa,xv,t2 ∈ Xv, s1,...,n ∈
SeC}. Xa and Xv are sets of audio and visual sequences, respectively. The length of both se-
quences can be different. s1,...,n define the semantic concept sequence of size n that is represented
by two modalities (Xa and Xv). As mentioned, the goal is to learn the same symbolic structure
that is represented by both modalities. In more detail, each semantic concept is grounded by a sim-
ilar symbolic feature in both modalities. Also, all semantic concepts are represented by different
symbolic features.

In this work, we are proposing a framework that combines two LSTMs for learning a unified sym-
bolic association between two modalities. The intuition behind this idea is to convert from a multi-
modal input feature space to a common output class space, where two modalities can be associated.
Thus, LSTM outputs have the same size. Also, we introduce an EM-training rule based on two
constraints: (1) a symbolic representation exists, and (2) two different inputs represent the same
symbolic structure. Figure 2 shows a general view of our framework.

In more detail, our model works in the following manner. First, the sequences xa,t1 and xv,t2 are
passed to each LSTM (LSTM1, LSTM2). Then, LSTM outputs (za,t1 , zv,t2 ) and the semantic
concept sequence (s1, . . . , sn) are feeding to the statistical constraint (γ and β). We want to indicate
the LSTM output are used as symbolic feature (SyF). This component selects the most likely rela-
tion between semantic concepts and the symbolic features (Section 3.1). As a result, this relation
provides information in order to apply the forward-backward algorithm for training (cf. Section 2).
Previous steps are independently applied to each LSTM. As we mentioned before, the goal of our
model is to learn a unified symbolic structure. With this in mind, the next step in our framework is
to align both outputs from the forward-backward algorithm. Our model exploits the monotonic be-
havior and both sequences are aligned by Dynamic Time Warping (Section 3.2). The aligned output
of one LSTM is used as a target of the other LSTM, and vice versa.
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Figure 3: Example of the statistical constraint. The semantic weights (γ4,γ3,γ6) modify the av-
erage output of LSTM. It can be seen that only one symbolic feature spikes among all for each
semantic concept.

3.1 Statistical Constraint

The goal of this component is to learn the structure between the semantic concepts (SeC) and the
symbolic feature (SyF) that are represented by the output of LSTM networks. Our proposed train-
ing rule is based on EM algorithm [15]. With this in mind, we define a set of weighted concepts
(γ1, . . . ,γc) where c ∈ SeC and each γc is represented by a vector γc = [γc,0, . . . , γc,k] where k
is the size of the LSTM output. As a result, the relation can be retrieved by a winner-take-all rule.
Figure 3 shows an example of the statistical constraint.

The E-Step finds the structure between SeC and SyF. First, we construct the matrix Ẑ which is
defined by

Ẑ =
[
ẑ(1), . . . , ẑ(c)

]
; c ∈ SeC (1)

ẑ(c) =
1

T

T∑
t=1

(zt)
γ(c); c ∈ SeC (2)

where zt is a column vector that represents LSTM output1 at time t, t ∈ [1, . . . , T ] is the timesteps.
The column vector ẑ(c) is the weighted average of LSTM output. Next, we convert from matrix
Ẑ to matrix Z∗. A row-column elimination is applied in order to find the symbolic structure for
the training. The maximum element (i, j) in Ẑ is set to 1 and the elements at the same row i and
column j are set to 0 except the element (i, j). This procedure is repeated |SeC| times. As a result,
only one symbolic representation is selected for each semantic concept.

The M-Step updates the set of weighted concepts given the current symbolic structure (Ẑ). In this
case, we are assuming a uniform distribution of semantic concepts. We define the following cost
function

cost(c) =

(
ẑ(c)− 1

|SeC|
z∗(c)

)2

; c ∈ SeC (3)

where z∗(c) is a column-vector of matrix z∗. The update of γ(c) is accomplished by applying
gradient descent

γ(c) = γ(c)− α ∗∇γcost(c); c ∈ SeC (4)

where α is the learning rate and ∇cost(c) is the derivatives of the cost function with respect to
γ(c).

1For explanation purposes, the index that represents the modality is dropped, i.e, zt ≡ za,t1
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Figure 4: Several examples of the generated multimodal datasets.

After the symbolic structure is learned, the semantic concept is grounded to the symbolic feature,
and vice versa. As a result, the semantic concept can be retrieved from the symbolic feature by the
maximum element of the following equation:

c∗ = arg maxc z
γc,k∗

k∗ (5)

where k∗ is the class decoded from LSTM outputs2, γ(c,k∗) is the value at position k∗ in the column
vector γ(c).

3.2 Dynamic Time Warping (DTW)

The goal of the second component of our modified learning rule is to align the output of both
networks. In other words, the alignment is a mapping function between both networks. Thus,
the output of one network can be converted as an approximated output to the other network. This
mapping is important for calculating the error for updating the weights in the backpropagation step.
We apply Dynamic Time Warping (DTW) [16] because of its monotonic behavior scenario. For this
purpose, a distance matrix is calculated between each timestep of the forward-backward algorithm
from both networks. Equation 6 shows the standard constrains of the path in DTW.

DTW [i, j] = dist[i, j] +min

{
DTW [i− 1, j − 1]
DTW [i− 1, j]
DTW [i, j − 1]

(6)

where dist[i, j] is the distance between the timestep i of LSTM1 and the timestep j of LSTM2.

4 Experimental Design

4.1 Datasets

We generated three multimodal datasets for the following sequence classification scenarios: hand-
written digit recognition, printed letter recognition, and word recognition. Each dataset has two
components: visual and audio. The visual component is a text line (bitmap) and the audio compo-
nent is a speech (wav file). Both components represent the same semantic sequence. For example,
the semantic sequence ‘3 8 3 2 1’ is represented by a bitmap with those digits and an audio file with
‘three eight three two one’. Figure 4 shows several examples of the multimodal datasets.

Digit Recognition The first dataset was generated based on a combination between MNIST [17] and
Festival Toolkit [18]. This dataset has ten semantic concepts. Sequences were randomly generated
between 3 and 8 digits. The visual component was generated using MNIST dataset. MNIST has
already a training set and a testing set. Thus, we kept the same division for creating our raining
set and testing set. Each selected digit was attached before and after a random blank background
(between 3 and 10 columns). All the selected digits were horizontally stacked. For the audio com-
ponent, the audio file was generated given the sequences obtained from the visual component and

2cf. Section 2
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Figure 5: Several examples of the DTW cost matrix. The audio component of the sequences was
omitted. The cost matrix (right) shows the path (red line) pass through nine regions. These regions
represent the blank class and the semantic concepts.

selected between four artificial voices. As a result, the training set has 50,000 sequences and testing
set has 15,000 sequences.

Letter Recognition The second dataset was generated following a similar procedure as the previ-
ous dataset. This dataset has 27 semantic concepts. We generated text lines of letters as the visual
component. The length was randomly selected between 3 and 8 lower characters. The audio com-
ponent was generated similar to the first dataset using Festival Toolkit. In contrast to MNIST, this
dataset does not have an explicit division for the training set and the testing set. Thus, we decided to
generate a slightly bigger dataset of 60,000 sequences.

Word Recognition The last multimodal dataset is generated based on the audio of the GRID audio-
visual sentence corpus [19]. This dataset has 52 semantic concepts. The audio has a fixed sequence
length of eight semantic concepts. Also, the audio component is composed by 34 talkers, 18 were
males and 16 were females. We generated the text lines of each sequence semantic sequence. The
size of this dataset is 34,000 sequences.

4.2 Input Features and LSTM Setup

The visual component was used raw-pixel values between 0.0 and 1.0. The audio component was
converted to Mel-Frequency Cepstral Coefficient (MFCC) using HTK toolkit3. The following pa-
rameters were selected for extracting MFCC: a Fourier-transform-based filter-bank with 40 coeffi-
cients (plus energy) distributed on a mel-scale, including their first and second temporal derivatives.
As a result, the size of the vector was 123. Also, the audio component was normalized to zero mean
and unit variance. The training set of the audio component was normalized to zero mean and unit
variance.

As a baseline, each component was evaluated using LSTM with CTC layer in order to test the
performance of our model. The following parameters were selected for the visual component. The
memory size is 20 for the first two datasets and 40 for the last dataset, the learning rate of the
network is 1e-5 and the momentum is 0.9. The parameters for the audio component are similar but
the memory size is 100. The statistical constraint were initialized with 1.0 and the learning rate was
set to 0.01 for both networks.

5 Results and Discussion

In this paper, the performance of the presented model and the standard LSTM were compared.
We want to point out that our goal is not to outperform the standard LSTM, but to know if the

3http://htk.eng.cam.ac.uk
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Table 1: Label Error Rate (%) between the standard LSTM and our model. We want to point out
that our goal is not to outperform the standard LSTM.

METHOD DIGITS LETTERS WORDS

STANDARD LSTM VISUAL 3.42± 0.84 0.09± 0.05 0.45± 0.68
AUDIO 0.08± 0.06 1.06± 0.14 3.68± 0.27

OUR MODEL
VISUAL 2.69± 0.55 0.35± 0.33 0.51± 0.84
AUDIO 0.15± 0.08 1.24± 0.50 3.77± 0.40
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Figure 6: Symbolic Structure between our model and LSTM. The audio component was omitted.
Both networks converge to the structure (SyF, SeC): (0, 2), (1, 5), (2, 6), (3, 9), (4, 3), (5, 7), (6,
blank-class), (7, 0), (8, 1), (9, 8), (10, 4). It is noted that both models shows similar behavior
related to the symbolic structure. LSTM uses a pre-defined structure before the training, whereas
the presented model learns the structure during training

performance of our model was in good range. Note that our model has less information than LSTM
networks. We randomly selected 10,000 sequences and 3,000 sequences as a training set and testing
set (respectively). This random selection was repeated ten times. In the word recognition dataset,
we randomly selected 50% male voices and 50% female voices for each training and testing set. We
are reporting Label Error Rate (LER), which is defined by

LER =
1

|Z|
∑

(x,y)∈Z

ED(x, y)

|y|
(7)

where ED is the edit distance between the classification of the network x and the correct output
classification y and Z is the size of the dataset. Table 1 shows that our model reaches a similar
performance to the standard LSTM. In more detail, Fig. 5 shows several examples of the output
classification of our model. The first row shows a correct classification of both LSTMs. In this
case, both structures of the semantic concepts and the symbolic features are the same. It can be seen
that the semantic concept ‘5861’ is represented by the symbolic feature ‘2867’ (dark blue in column
2-3) in both LSTMs. In addition, DTW cost matrix shows an example of the alignment between
the both LSTMs. We mentioned in Section 2 that CTC layer adds an extra class. Consequently, our
sequence example is converted to ‘b5b8b6b1b’ (nine elements). The DTW cost matrix shows nine
regions that the DTW path (red line) crossed. In other words, the alignment happened in the same
semantic concept. Furthermore, the alignment still follows the same behavior, even if one or both
output classification are wrong.
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Figure 7: Steps of the training rule. In the beginning, the output of the networks is sparse and they
point to align first the blank-class (first three rows). The forward backward algorithm shows high
values (dark blue) where the blank-class appears. After the blank-class is aligned, the remaining
symbolic features are slowly converging to the same representation. The last row shows that both
outputs classify the multimodal sequence with similar symbolic features. The DTW cost matrix
shows the alignment (red line) between the symbolic features. The alignment has two cases: blank-
class to blank-class and semantic concepts to semantic concepts.

Figure 6 shows examples of the symbolic structure. It can be noted that the presented model has a
similar behavior as the standard LSTM. For example, our model also learns the blank class for seg-
menting the semantic concepts. The difference is mainly in the symbolic features for each semantic
concept. It is observed that the standard LSTMs used a pre-defined structure between the seman-
tic concepts and the symbolic features. For example, the semantic concept ‘1’ is represented by
the symbolic feature ‘1’, the same happened with the rest of semantic concepts. In the other hand,
our model learns the structure for each LSTM and both LSTMs converge to a common symbolic
structure.

Figure 7 shows the behavior of our model during training. In the beginning, the output of the
networks has sparse values and the DTW cost matrices do not have clear regions as in Figure 6.
After 10,000 sequences, both networks align first to blank class. DTW cost matrices start showing
some initial regions of alignment. After 50,000 sequences, the blank class changes because the
structure of the semantic concepts and the symbolic features are not stable. After 20,000 sequences,
both networks converge to a common a structure and the DTW cost matrices show a clear DTW
path similar to Figure 6.

6 Conclusions

This paper has demonstrated that learning symbolic representations of unsegmented sensory inputs
is possible with a minimum of assumptions, namely that symbolic representations exist, that two
inputs represent the same symbolic content and that classes follow prior distribution. One limitation
of our model is the constraint to one-dimension. However, there are many applications in this
context, e.g., combining eye tracking system with audio. We will validate our findings with more
realistic scenarios, i.e., unknown semantic concepts, aligning a two-dimensional image and a one-
dimensional speech, handling missing semantic concepts in one component or both components of
the sequence. Finally, it can be seen that this scenario is simple but assigning semantic meanings to
symbols is important for language development and remains as an open problem [20, 21, 22].
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