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Abstract

Multivariate statistical analysis relies heavily on moment assumptions of
second order and higher. With increasing interest in modeling with heavy
tailed distributions, however, it is desirable to describe dispersion, skewness,
and kurtosis of multivariate distributions under merely first order moment as-
sumptions. Here we present a new method contributing toward this goal in
both parametric and nonparametric settings. We extend the univariate L-
moments of Hosking (1990), which are analogues of central moments defined
for all orders under merely a first moment assumption, by introducing a notion
of “L-comoments” similarly analogous to classical central moment notions of
covariance, coskewness, and cokurtosis. For certain types of model, this yields
correlational analysis not only coherent with classical correlation but also valid
and meaningful under just first moment assumptions.

We develop basic properties and estimators for L-comoments, illustrate L-
comoment matrices for several multivariate models, examine the behavior of
multivariate L-moments as nonparametric descriptive measures in a sampling
experiment with a heavy-tailed distribution, and consider certain extensions
such as trimmed versions. Also, applications to financial risk analysis and to
regional frequency analysis in environmental science are discussed.
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1 Introduction

A present limitation of multivariate statistical analysis is heavy reliance on moment
assumptions of second order and higher. With increasing attention, however, to the
problem of modeling with heavy tailed data, for example in environmental science
and financial risk analysis, it is important to rectify this shortcoming. We would
like to be able to characterize typical descriptive features of the joint distribution of
several covariates, for example not only dispersion but also skewness and kurtosis,
without assuming moments of order higher than the first or possibly the second. Here
we introduce a new multivariate analysis methodology that contributes toward this
goal in both parametric or nonparametric settings.

Our approach is to develop suitable extensions of the univariate “L-moments”
(Hosking [22]), which are analogues of the univariate mean and central moments and
have similar interpretations but remain well-defined for all orders under merely a
first moment assumption and possess other appealing properties as well. To obtain
a multivariate extension, we define a notion of “L-comoments” which retains the
features of the L-moments and includes analogues of classical central moment notions
of covariance, coskewness, and cokurtosis. Accordingly, our multivariate extensions
of L-moments for all orders higher than two consist of matrices — L-covariance, L-
coskewness, L-cokurtosis, etc. — having roles analogous to the classical covariance
matrix.

One important finding in our treatment is that if random variables X and Y
are jointly distributed with affinely equivalent marginal distributions and with Y
having linear regression on X, then under second moment assumptions the sample
L-correlation estimates the same parameter as the classical sample Pearson product-
moment correlation but also remains valid and meaningful under only first moment
assumptions (see Proposition 3). That is, under these assumptions, the L-correlation
provides a coherent extension of the classical correlation. Clearly, this result may
be applied not only in parametric, but also in semiparametric and nonparametric,
modeling settings.

Section 1.1 provides general background and perspective and describes the nature
of our solution, while Section 1.2 presents definitions of the univariate L-moments
and their leading features desired as well by L-comoments. These two sections may
be read independently. Section 2 provides a needed foundation of basic results, some
new, for univariate L-moments. These results, which include treatment of estimators,
are instrumental in the formulation and treatment of L-comoments and multivariate



L-moment matrices in Section 3. In Section 4 we provide illustrations with some
tractable multivariate models, the normal, Pareto, and Farlie-Gumbel-Morgenstern,
and briefly describe some applications, to financial risk management and to regional
frequency analysis in environmental science. Section 5 discusses further studies, in-
cluding an extension of univariate trimmed L-moments to a notion of trimmed L-
comoments.

1.1 Background and Perspective

For measuring descriptive features of a univariate distribution, the central moments
are very popular, but their use is confined to sufficiently light-tailed distributions. An
appealing alternative is provided by the series of L-moments, which have the form of
expectations of strategically selected linear functions of order statistics. While the
first L-moment is just the ordinary mean, the higher order cases not only measure
spread, skewness, kurtosis, etc., just as do the central moments, but also possess
attractive properties not shared by the latter. For example, the L-moment of any
order k exists under merely a finite first moment assumption, making the entire series
of L-moments available for typical heavy-tailed distributions. Further, the L-moments
completely determine the parent distribution.

With antecedents in Sillitto [50, 51] and Downton [11], a formal and comprehen-
sive treatment of L-moments was first developed by Hosking [22], who established
foundational results supporting a new methodology in data analysis and statistical
inference based on L-moments. Parametric fitting of distributions by a “method of
L-moments”, or exploratory and nonparametric analysis via the L-moments as de-
scriptive measures, may be carried out.

As interest in statistical modeling using heavy-tailed distributions is increasing,
so is the importance of the potential offered by the L-moment approach. In some
contexts, modeling the frequency of extreme events is of particular concern. In this
connection, an extensive L-moment methodology has been developed in support of
regional frequency analysis in environmental science, which treats the quantiles of
distributions of variables such as annual maximum precipitation, streamflow, or wind-
speed observed at each site in a given network. Hosking and Wallis [26] provide an
excellent exposition. The L-moment approach also has special utility in applications
where descriptive estimates more stable than the usual central moments are criti-
cally needed. Such concerns arise, for example, in volatility estimation in financial
risk management involving market variables such as stock indices, interest rates, etc.
(Hosking, Bonti, and Siegel [25]). We return to these applications in Section 6.

Data of current interest typically is multivariate in nature and calls for statistical
analysis taking into account relevant underlying dependence structure and geometry.
Up to now, however, L-moments have been defined only in the univariate case, and



using these marginally cannot adequately capture the features of jointly distributed
component variables. What is needed is an extension of the notion of L-moments
to the multivariate case. Except for the obvious extension of the univariate mean
to the multivariate vector mean, this has remained an open problem, in part for
lack of an immediate extension of the notion of linear function of order statistics to
higher dimensional space. Indeed, Hosking [22, p. 122] writes: “No extension of L-
moments to multivariate distributions is immediately apparent.” On the other hand,
he also mentions, although without elaboration, that the “seemingly most promising
approach” would be to use the notion of concomitants of order statistics to measure
association between two random variables. In the present paper, we develop Hosking’s
insight into an effective solution.

For perspective, we note that classical multivariate analysis revolves around two
key parametric entities, the mean vector and the covariance matrix, which extend
the univariate mean and variance, respectively. Also, the third and fourth univariate
central moments, measuring skewness and kurtosis, respectively, have been extended
by Mardia [36] to certain scalar analogues for multivariate data. Further, extending
the notion of covariance, very natural notions of (central) “coskewness”, ”cokurtosis”,
and even higher-order “comoments” of two jointly distributed random variables have
been formulated in financial risk analysis for purposes of characterizing aspects of
the response of an asset to market portfolio variations and of providing additional
parameterization in the widely used Capital Asset Pricing Model (see, for example,
Rubenstein [44], Fang and Lai [14], Christie-David and Chaudhry [7], Dittmar [10],
and Jurczenko and Maillet [29, 30].

Our multivariate extension of the univariate L-moments proceeds by introducing,
for any ordered pair of random variables (V; W) jointly distributed with finite mean,
a general notion of L-comoment of order k, k > 2. In the case k = 2, this is the
“Gini covariance” already studied by Schechtman and Yitzhaki [46], Yitzhaki and
Olkin [55], and Olkin and Yitzhaki [41] in the contexts of income distribution, risk
assessment in portfolio theory, and linear regression. The cases k = 3 and 4, however,
offer novel analogues of the above-mentioned central coskewness and cokurtosis and
may be used similarly to them, as well as in other ways, in applications.

Given a random vector X = (X1,...,Xy) in R? with finite mean, for each k > 2
the corresponding k-th multivariate L-moment is then defined as the d x d matrix of
L-comoments of order k for the ordered pairs (X;, Xj), 1 <4, j, < d. Our multivariate
L-moments are thus matriz-valued for all orders k > 2, not merely for £k = 2 as in
the classical case. The 2nd multivariate L-moment may be thought of as a “Gini
covariance matrix”, an alternative to the classical covariance matrix. For k£ = 3 and
4, the multivariate L-moments represent novel “L-coskewness” and “L-cokurtosis”,
matrices, respectively. Because the L-comoments are similar in structure and behavior
to the univariate L-moments and capture their attractive properties, the matrix-
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valued multivariate L-moments are effective new descriptive tools having practical
utility similar to the widely used classical covariance matrix or, more precisely, to
analogous but less known higher-order “central comoment” matrices.

1.2 Univariate L-Moments: Definitions and Features

Essential to our development of L-comoments is an understanding of univariate L-
moments. Deferring technical results to Section 2, here we provide definitions and
qualitative features. We will see that a host of favorable aspects stem from character-
izations as expectations of (a) L-statistics (linear functions of order statistics) and (b)
kernels defining U-statistics. With standard notation X, < Xo.x < ... < Xjp for the
ordered observations of a sample of size k from a univariate probability distribution,
the kth L-moment is defined as

k—1

) Y& e L) (1)
j=0 )

It is immediately evident that the L-moments are scale equivariant. The coefficients
in the summation in (1) are just those of the binomial expansion of (1 + (—1))*1 =
0*~! and hence sum to 1 or 0 according as k = 1 or £ > 2. Thus the first L-moment,
the mean \; = E(X1.1), is translation equivariant, while for k > 2 the L-moments may
be characterized as linear contrasts among the expected order statistics and hence,
like the central moments, are translation invariant: in an obvious notation,

Ak(0 +nX) = n A (X), (2)

for n > 0 and arbitrary 6, i.e., for £ > 2 and n > 0, the k-th L-moment of the
distribution F(n=%(z — 0)) is n times that of F(x). Also, \p(=X) = (—=1)* s (X).

The coefficients in (1) are also those of the forward difference operator of order
k—1, k > 2, in which case A\; becomes the (k—1)th iteration of the forward difference
operator applied to the sequence {E(X,y) : j = 1,...,k}. Consequently, for £ > 2,
Ak is the (k — 2)th iteration of the first order differences {E(X;11:1) — E(Xjuk) 1 J =
1,...,k — 1} and hence may be expressed as a linear contrast among the expected
spacings Xk = E(Xjt16 — Xjx), 1 < j <k —1, from a sample of size k:

A=k g(—l)j (k j_ 2) Xk—1—jik- (3)

J=0

This representation greatly facilitates the interpretation and understanding of L-
moments. Although carried somewhat further here, the idea of connecting with
expected spacings is due to Sillitto [50].



The 2nd L-moment clearly measures spread: Ao = %E(Xm — X1:2) = x1:2/2. In
fact, it is a well-known such measure: one-half the classical Gini mean difference
(Gini [17]). Besides its intrinsic interest, Ay is used to obtain scale-free higher-order
descriptive measures,

Tk = )\k/)\g, k‘ 2 3,

called L-moment ratios (Hosking and Wallis, 1997). Very conveniently for practical
use and interpretation, these L-moment coefficients satisfy (Hosking, 1989)

—1<7, <1, k>3. (4)

In comparison, the classical central moment analogues (further discussed in Section
3.1.1) do not satisfy any such inequality.

The 3rd L-moment is simply the difference in expectations of the two spacings
from a sample of size 3, \3 = %E(Xg;g —2Xo.3 + X1:3) = (x2:3 — x1.3)/3, and hence
measures skewness (unscaled). That it measures skewness may also be seen from its
representation as a difference of two location measures, the expected values of the
sample mean and the sample median for a sample of size 3: \3 = E((X1.3 + Xo3 +
X3.3)/3) — E(Xa:3). As pointed out by Hosking [22], by the result of Robbins [43] that
the expected range for sample size 3 is three-halves the expected range for sample size
2, we may write 73 = F(Q3 —2Q2+ Q1)/E(Q3 — Q1) in terms of the sample quartiles
for sample size 3, Q1 = (X1.3+ X2.3)/2, Q2 = X3, and Q3 = (Xa.3+ X3.3)/2, so that
73 is a direct analogue of Bowley’s skewness measure (Bowley [5]).

The 4th L-moment Ay = iE(X4;4 — 3X3.4 + 3Xo4 — Xi.4) measures kurtosis, as
argued very nicely by Hosking [22]. This also may be seen very directly via (3) by
writing A4 as a difference of measures of spread in the tails and of spread in the center:

At = (X314 — 2x24 + X1:4) /4 = [(X3:4 + X1:4) /2 — X2:4]/2,

namely, the expected average of the outer two spacings minus the expected middle
spacing, times one-half.

To interpret the 5th L-moment, we first note that all L-moments of odd order
higher than the first are zero in the case of a symmetric distribution and hence may
be regarded as “generalized skewness measures” (Hosking [22]). In particular, then,
a departure of A\s = (x4.5 — 3X3:5 + 3x2:5 — X1:5)/5 from zero would seem to indicate
skewness combined with departure from unimodality.

For the first four L-moments for a variety of univariate distributions, see Hosking
and Wallis [26, Appendix]. In particular, for the Normal(y, 02) distribution, we have
A=, Ao = 7 Y20, A3 =0, and Ay = (307" arctan v/2 — 9)7 /%0 For the uniform
distribution on (a, b), we have A\; = (a+b)/2, Ay = (b—a)/6, and A\, =0, k > 2. This
intuitively appealing property that L-measures for skewness, kurtosis, bimodality,
etc., are all zero for uniform distributions is not shared by the central moments.

Let us summarize key features of univariate L-moments:
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1. Ezistence (finite) for all orders, if first moment finite.

2. Distribution determined by its L-moments, if first moment finite.

Distinct distributions generate distinct series of L-moments. For the ordinary
moments, this holds only under more restrictive conditions (e.g., [49, §1.13]).

3. L-functional representations, with mutually orthogonal weight functions.
L-moments of different orders capture sharply different population features.

4. Representation as the expected value of an L-statistic (linear function of order
statistics), for each choice of order k and sample size n > k.
For n = k, this is the defining expression for the kth L-moment and provides
the relevant kernel for a U-statistic sample version (item 5 below). For n > k,
this suggests an L-statistic sample version (item 6 below).

5. U-statistic structure of sample versions.
Thus standard U-statistic theory may be applied, for variance computations,
martingale representations, almost sure behavior, asymptotic normality, and
asymptotic variance estimation.

6. L-statistic structure of sample versions.
This enables computation of the sample kth L-moment based on sample size n
in O(nlogn) time, instead of O(n*) time via the U-statistic representation, and
provides another standard approach to asymptotic normality.

7. Sample versions unbiased as estimators of population L-moments.
This follows from each of the U-statistic and L-statistic sample versions, which
are equivalent. In comparison, sample central moments of order greater than 1
are biased.

8. Sample L-moments more stable than central versions, increasingly with higher
order.

Large deviations from the mean influence the sample central moments with
increasing impact (x —7)* as the order k increases, while the sample L-moments
are only linearly influenced for any order.

2 Univariate L-Moments: Technical Basics

We provide here certain basic results some new, for univariate L-moments, covering
representations, estimation, and asymptotic behavior. Besides having independent



interest, these results and and methods of proof are instrumental to our develop-
ment of multivariate extensions in Section 3. Throughout, we consider a univariate
distribution function F' having quantile function F'~! and L-moment sequence {\;}.

2.1 Representations

Several different types of representation for L-moments prove useful: as an L-functional,
as a covariance, and as a linear function of expected values of order statistics.

2.1.1 An Expression for )\; as an L-Functional

Substitution into (1) of a standard expression for the expected value of an order
statistic (e.g., David and Nagaraja, 2003),

B(X,,) = r(n) /0 1F—l(u)u“1 (1— )" du (5)

r

_ n(” - 1) /_oo 2[F@)] 1= F(z)]" " dF(z), r <n,  (6)

r—1 .

yields a classical L-functional representation,

)\k:/O F~Y(u) PF_ | (u) du, (7)

where
k
_ E * J
- pk,j u,
Jj=0

with pj ; = (=1)¥7 (';) (k;’” ). For general treatment of L-functionals, see [49, Chap. 8]
and [23]. For discussion of (7) in particular, see Hosking [22] and Hosking and Wallis
26, §§2.4-2.5]. The functions P*(u), r = 0,1,2,..., comprise the shifted Legendre
system of orthogonal polynomials, i.e., the standard Legendre polynomials defined
over the interval —1 < ' < 1 shifted to 0 < u < 1 via v/ = 2u — 1. By the
orthogonality, the )\k capture differing types of information about the underlying F'.
For example, \; = fo u) du (the mean of F) and Ay = fo ) (2u—1) du. The
latter expression is easily transformed to another well-known representatlon (Stuart

[52]) for the Gini mean difference,

Ay =2Cov(X, F(X)) = Cov(X,2F(X) —1). (8)



In terms of the usual centered rank function 2F'(z) — 1, Ay may be interpreted as the
covariance of X and its centered rank. By the Cauchy-Schwarz inequality, (8) yields a
useful inequality comparing the second L-moment with the usual standard deviation:

Ao < 0 /V3. (9)

We shall see an application in Section 4.3. In different contexts, (9) was given by
Plackett [42] and an equivalent result derived by Schucany, Parr, and Boyer [45].
Next we develop novel and productive covariance expressions for A\ in general.

2.1.2 An Expression for )\; as a Covariance

Straightforward transformation in (7) yields
k1
M= pia, 6 (10)
=0

with 3; = fol FYuw)w/du = E(XF(X)?), as given in Hosking and Wallis [26], formula
(2.36). Using Pj(u) = 1 and orthogonality of the functions P}, we readily obtain

N = Cov(X, P (F(X))+1{k = 1}E(X)

_ E(X)> k= 1;
B { Cov(X, P{_(F(X))), k> 2. (11)

For k > 2, equation (11) facilitates an illuminating characterization: the kth L-
moment is the covariance of X and a particular function of its rank F'(X). The case
k = 2 was noted in (8). For k = 3, we have

\s = —6 Cov(X, F(X)(1 — F(X))), (12)

expressing A3 as the covariance of X and a function symmetric about the median of
F. Tt follows that, as noted earlier, A3 is a skewness measure which is zero if the
distribution of X is symmetric.

Remark. Via (10), the sequences {\;} and {0} are equivalent, and in turn
these are equivalent to {E(Xyx)}, since via (6) we have 8, = E(XF/(X)) = (j +
1)"'E(Xj41j+1). By Chan [6], in the case of finite mean, the sequence {E(Xgx)}
determines F' and hence so does the sequence of L-moments. See Hosking [22] for fur-
ther discussion. Also, by (10) we thus have an expression for Ay in terms of ezpected
extreme values: N\ = Zf;é Proa; G+ D7 E(Xjy1541)- O



2.1.3 An Expression for )\, in Terms of {E(X,.,), r=1,...,n}
The use of (6) with the definition of 3; yields

n—1\ <= (n—r .
E(Xr:n) = n( ) Z ( . )(—1)n_r_jﬁn_1_j, (13)
r—1 = 7
which can be inverted via some manipulations to obtain
n—1\"" (i1
= (") X () E (14)
j=k+1

The use of (14) in (10) then yields the desired representation:

n

. o /n-1\" r—1
A\ = Zpk_mn j Z j E(X, )
=0

r=j+1
= 17wl B(Xe), (15)
r=1
where
min{r—1,k—1} ‘ B
=S () ) () ()

J=0

The sample version of (15) and illustrative visual display of w®) for n =19 and k < 4
are given by Hosking and Wallis [26, formula (2.59) and Fig. 2.6]. In particular,
wp% = 1 and wﬁ{ ==2r—-n-1)/(n—=1), r =1,...,n. (The symmetry and
skew-symmetry of the coefficients w'l) and wﬁ?%, respectivel%g) in the index r holds in

general, for k even and odd, respectively: w!¥) = (D w,” i r=1,...,n.)

2.2 Estimation

We now consider estimation of Ay based on a sample of size n. Estimators of the
scaled versions 7 follow automatically.

2.2.1 An Unbiased L-Statistic Estimator for A,

An immediate application of (15) is to suggest the estimator
Ne=n"" Z w® X, (16)
r=1

which is that given by Hosking and Wallis [26], formula (2.59) — an L-statistic in form,
and unbiased for \j.
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2.2.2 Representation of Xk as a U-Statistic

In particular, for £ = 1 and 2, formula (16) yields, respectively, A= X, the sample

mean, and (see Serfling [49, p. 263] and Hosking and Wallis [26, p. 30]) Do = 3G,
where G is the U-statistic known as Gini’s mean difference,

G:(Z)_l YX - Xl

1<i<j<n

Not only are Xl and 3\\2 thus U-statistics, but also each Xk is a U-statistic. To see this,
first note from (1) that A\, = E(h(Xy,...,Xk)), where

h(zy,... 2 :klg ( ‘ )a:k_j;k. (17)

J=

Now, in general, for any kernel h(zy,...,z;) which is a linear combination of the
order statistics of its arguments, it is not difficult to show that the corresponding U-
statistic based on a sample of size n may be expressed also as a linear combination of
the order statistics of the full sample. This follows by a straightforward, but tedious,
derivation, or by using a technique of Blom [4] to obtain the relevant coefficients in
this linear combination from a particular generating polynomial associated with the
given kernel. Consequently, the U-statistic based on the kernel (17) is found to agree
with the L-statistic representation given by (16).

2.2.3 A Sample Analogue Estimator for \;

Let F), denote the usual sample cdf based on Xj, ..., X, with corresponding quantile
function F'. Substitution of £ into (7) yields another L-statistic estimator,

1
Z:/O ( )Pk 1 du_zcnz iy (18)
h i/n
where ¢,,; = |,

(1) /n (u)du. For k = 1 the estimators agree, )\ =\ = X, and for

k = 2 they are close: )\2 =n"t(n-1) Xo. By a straightforward derivation it follows
that in general XZ — Xk = o0,(n7!), n — oo, yielding equivalence of these estimators
with respect to asymptotic distribution theory under typical assumptions (see below).
In the sequel we confine attention to the unbiased version Xk
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2.2.4 Asymptotic Distribution Theory for . and 7,

From the foregoing results, under second moment conditions on F', standard theory
for U-statistics and L-statistics [49, Chaps. 5 and 8] yields that the vector of the first
k L-moments is asymptotically k-variate normal, with a similar result for the vector
of scaled L-moments. These and related results are given by Hosking [22].

3 L-Comoments and Multivariate L-Moments

As discussed in Section 1.1, our multivariate extensions of the univariate L-moments
for order k£ > 2 are matriz-valued, with elements the L-comoments. We now introduce
these and examine major properties, key inequalities, representations in terms of
concomitants of order statistics, suitable estimators, and asymptotic convergence.
Concluding this section, we discuss the matrices formed by the L-comoments.

3.1 Definition and Properties of L-Comoments
3.1.1 Preliminary on Central Comoments

Helpful perspective on the L-comoments will be provided by comparison with the
central comoments, which we briefly review. Consider a bivariate random variable
(XM, X)) having cdf F with marginal distributions Fy and F,, means p; and o,

and finite central moments ,u,(; and ,u,f , for 2 < k < K. The classical scaled central

moments are given by ¢\ = u /()42 k > 3, for i = 1,2, the cases k = 3 and
4 denoting the classwal skewness and kurtosis coefficients, respectlvely The central
moment coefficients wk , k > 3, do not satisfy any universal bounds and can have
arbitrarily large magnitudes. To interpret sample values, therefore, it is conventional
to compare with values from specific reference distributions.

We now introduce related central comoments, which are (asymmetric) higher order
analogues of covariance that have been developed in financial risk modeling (discussed
in detail in Section 4.4). For each k > 2, the kth central comoment of X" with respect
to X@ is defined as

Expig = Cov( XM (X® — 21y,

(The analogous asymmetric counterpart is denoted & p217.) Of course, for the 2nd
order case, we have simply &y[12) = &2 [21] = 012, the usual covariance. The symmetry
in this instance is merely an artifact of the definition of comoments that shows up just
for k£ = 2, rather than being a feature necessarily desired for comoments in general.
Indeed, for higher order cases one could produce symmetric versions, if desired, by
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taking signed versions of /& 12 &k 21], for example. The ordered pairs (§;112), §k[21)),
k > 3, however, carry greater information while still being simple and therefore are
preferred.

Corresponding to the comoments, scale-free versions are given by

Uiz = epa /()2 () D12,

the case k = 2 being the usual correlation coefficient denoted pi5. In particular, we
call §3119) and & (19 the coskewness and cokurtosis, respectively, and 13(19) and 419
the coskewness and cokurtosis coefficients, respectively, of X with respect to X®.

Drawing upon familiarity with covariance, it is straightforward to interpret the
central comoments. For example, the coskewness &3(12) of X (1) with respect to X®
increases or decreases with relatively higher or lower weight, respectively, on points

(zM, 2)) with positive deviations z() — ,ugl), for given size of squared deviation

(z® — )2, In similar vein, the cokurtosis with cubing of deviations =2 — u{?
produces still greater sensitivity to tailweight of X ® along with a signed effect.
A variant notion of kth central comoment is based on k jointly distributed variables

X(1)> o >X(k) and given by the tensor of terms
E{(X(l) _ M§1>)(X<2) _ ,ugz)) . (X(k) . ,ugk))}.

See Athayde and Flores [3] and Jurczenko, Maillet, and Merlin [31] for discussion in
the context of financial risk modeling.

3.1.2 L-Comoments

Consider a bivariate random variable (X" X®) having cdf F' with finite mean,

marginal distributions F; and F5, and L-moment sequences {A,il)} and {)\,(f)}. By
analogy with the covariance representation (11) for L-moments, and also by analogy
with the central comoments, we define associated L-comoments of order k > 2 by

Aoz = Cov(XW, P (Fa(X@))) (19)
and
Ay = Cov(X @, P (Fi(XM))). (20)

Here Appig) and Ap21) need not be equal. We term these, respectively, the kth L-
comoment of XM with respect to X® and the kth L-comoment of X® with respect
to XM, We emphasize the first case, results for the other case being similar.

It is readily checked that the kth L-comoment of X with respect to X® is
translation invariant and scale equivariant with respect to transformations of X®)
and translation and scale invariant with respect to transformations of X®. That is,

Mepz (0 +nX Y ¢+ BXD) =Xy (XD, X3, (21)
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for positive 7 and (§ and arbitrary € and {. Appropriate scaled versions are thus given
by

Tk[12] = Ak [12]/)\9),
the analogues of the 7. We call these L-comoment coefficients. The case T19) We
also term the L-correlation of X with respect to X® and denote by pl2)-

As discussed with the central comoments, we could construct symmetric versions
(see [55] for some examples and comparisons), but the more fundamental notion of
an ordered pair of asymmetric comoments is preferred. Fortuitously, in the case of
L-comoments we have this option even in the 2nd order case. Indeed, the (asymmet-
ric) 2nd order comoments and related correlations arise instrumentally for a natural
decomposition of the 2nd L-moment of an arbitrary sum of random variables: for
univariate Yy,..., Y, and S=Y; +--- 4+ Y],

X(S) = 2Cov(S, Fs(S))

- 2 Z Cov(Y;, Fs(S))

i=1

= ZA2[12](Y1'>5)
=1

= Y s (V7).
=1

For XM = X® the L-comoments reduce to the L-moments: Agpg = App1) =

A,il) = )\,(f), which we also denote by A1) and Ag 2. On the other hand, for xX®
and X® independent the L-comoments of all orders k& > 2 take the value 0. (Similar
remarks hold for the central comoments in these two cases.)

A convenient tool is that the comoment of X with respect to X® can be
expressed as that of E(X™ | X®) with respect to X®. The following proposition
and corollary are used to advantage in Section 4.

Proposition 1 Let XV have finite mean. Then, for k > 2,
Az = Cov(E(XW [ X®), Py o (X)) (22)
and, under finiteness of the kth moment of X,

Eepz) = Cov(B(XW | XP) (x@ — [ Pyk-1y, (23)

14



Proof. By straightforward steps with conditional expectation, for any measurable
function Q(-) we have

Cov(XW, Q(Xx®)) = BXWQXY)) - EXD)EQX®))
= E(EXD|XP)QX®) - E(EXD | XP)EQ(X®))
= Cov(E(XW|X®) Q(Xx@)).

Taking in turn Q(z) = P | o Fy(x) and Q(z) = (z — ,ugz))'“‘1 with k > 2, we obtain
(22) and (23). O
If E(XW | X®)is a strictly increasing function g(X ), say, then Fyx)(g(X®))

= F5(X®), and by Proposition 1 A 9] is simply the kth L-moment of g(X®). In
particular, for ¢ linearly increasing we obtain

Corollary 2 Let XY have finite mean and linear regression on X : BE(X™) | X2))
=a+bX® . Then, for k> 2,
2
Mg = bAY) (24)

and, under finiteness of the kth moment of X,

Skpz) = b,uz(fz)- (25)

When X has linear regression on X and Fy and F, are affinely equivalent,
there hold simple expressions for 7;(19) in terms of 7‘,51) and 1y (19 in terms of w,gl). In
the case k = 2 these yield the important result that, under the assumed conditions,
the L-correlation pji9) not only agrees with the classical Pearson product-moment
correlation pjo but also assumes the same formula in terms of model parameters
while remaining well-defined under lesser moment assumptions.

Proposition 3 Assume (i) (X1, X)) has joint distribution with linear regression
of XM on X@: for some constants a and b, E(XM | X®)) =a+bX®?. Also, assume
(ii) the respective marginals Fy and Fy are affinely equivalent: for some constants 6
and 1, Fy(z) = Fi(n Yz —0)), i.e., X Z 0+ XD Then

puz) = bn = p12 (26)

holds under second moment assumptions, with the first equality valid as well under
only first moment assumptions. Also, for k > 2,

Aepz) = b A = pg A (27)
and thus )
Tk12] = P12 7'15 )> (28)
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and, under finiteness of the kth moment of X,

&k 2] = bﬁk ,Uz(fl) (29)

and thus
1 1
Yrpo = bﬁwl(f ) = P12 %i ) (30)

Proof. Under 1st moment assumptions,
priz = Aapizg/ Ay = 0 /g = b,

the 1st equality being the definition, the 2nd following by Corollary 2 using (i) and
(24), and the 3rd following by (ii) and (2). Also, in standard notation, under 2nd
moment assumptions we have

pr2 = 012/0105 = bas /o102 = boa /o1 = by,

where the 2nd equality follows by (i) and the last by (ii). This yields (26), and similar
arguments using Corollary 2 lead to (27) and (29). O

Thus, in the setting of Proposition 3, the L-correlation pp9 coherently extends the
Pearson correlation piy to cases when 2nd moments are not finite, and, further, the
comoment coefficients are simply described by the correlation coefficient and marginal
coefficients. We illustrate in Section 4 with some specific multivariate models. Besides
a role in parametric modeling, Proposition 3 also has application, as does the L-
moment approach in general, to moment-based nonparametric descriptive analysis.

3.1.3 Key Inequalities for L-Comoments

An important result about L-correlation is that like the Pearson version its values
lie between +1. Unlike pio, however, which attains these extremes only for linear
relationships between the variables, pj12) more broadly attains these under any strictly
monotone relationship. In the same sense that p;5 is said to measure linearity, we may
consider p(j9) to measure monotonicity. This is established rigorously in the following
proposition and proof (for useful previous treatments see [46], [47]).

Proposition 4 In general,
M2z = 2|Cov(XD, FB(X®)| < 2Cov(X D, Fy(xM) = A (31)

and thus
—1<ppy <L (32)

The upper (lower) bound in (32) is attained when X and X® are related a.s. through
a strictly increasing (decreasing) function, and in the case of continuous distributions
this condition is necessary as well.
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Proof. Let F5 denote the joint distribution of X" and X®). By a well-known lemma
of Hoeffding [20] quoted in [34], for any random variables V' and W with finite E|V|,
E|\W|, and E|VW|, we have

Cov(V, W) = //[FVW(U,QU) — Fy(v)Fy(w)] dv dw.

Transforming by v = M and w = Fg(l’(z)) and checking that Fy (w) = Fg(l’(z)) and
Fyw(v,w) = Fa(z®, 2?), we obtain

Cov(XW), By(X®)) //F]2 B (W) Fy(®)] deV dFy(®).  (33)

Now, for any jointly distributed X and Y with specified marginals F'y and Fy, the
joint distribution Fx y(z,y) must satisfy (see [16], [33]) the well-known and quickly
derived Fréchet bounds

max{Fx(z) + Fy(y) = 1,0} < Fxy(z,y) < min{Fx(z), Fy(y)}-

The upper (or lower) bound is attained under the condition that ¥ = g(X) a.s.
for some strictly increasing (or decreasing) function g, since then Fy-141(g7'(Y)) =
Fy(Y) (or 1 — Fy(Y)). In the case that F'x and Fy are continuous distributions, this
condition is necessary [48, Theorem 2]. Applying the upper Fréchet bound with (33),
we obtain

Cov(XW, Fy(X @)
g(/ﬂmmaw%jm@ﬂ—H@%RM%M&MBM%

:://mqm@w—m@mmm. (34)

Also, hypothetically for the moment taking X? = X in which case Fy(X?)) =
Fi(X™M) and the joint distribution of X and F (X)) attains the upper bound, the
same steps yield

Cov(XW, Fy(XW)) / / min{ Fy(z),u} — Fy(z)u] dz du. (35)
Combining (34) and (35), we have

Cov(XW Fp(X®)) < Cov(XW, Fy(XWY).

Now using max{a + b — 1,0} — ab = —[min{l — a,b} — (1 — a)b], along with the
lower Fréchet bound, a similar derivation leads to

Cov(XW, Fy(XP)) > —Cov(XW, [y (X DY),
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completing the proof. O
Remark. The quantity in (35) may also be evaluated as

/:/hmnﬂﬂ@%u}—lﬂ@ﬁuhhdu

— / [(/Opl(m)udu> [1— Fy(z)] + (/F;m)(l —u) dU) Fi(z)

1

:gfmwm—ﬂwwa

dx

yielding for the 2nd L-moment of a univariate distribution F' the representation

Ay = /F(:E)[l — F(z)]dx,

also given by Hosking [21] and equivalent to a result for the Gini mean difference
obtained in [35]. O

Generalization of Proposition 4 to higher order comoment coefficients is somewhat
problematic. Under the assumptions of Proposition 3, however, we can assert that
both L-comoment and central comoment coefficients are bounded by corresponding
univariate analogues. Using (32) with (28) and the standard inequality for Pearson
correlation with (30), we obtain the following result.

Corollary 5 Under the conditions of Proposition 3, we have for k > 2
ezl < Im (S 1, by (4)) (36)

and
Wrng] < [03)] (< o0). (37)

3.1.4 L-Correlation, L-Coskewness, and L-Cokurtosis

In applications the L-comoments of primary interest are those for k = 2, 3, and 4.
We briefly discuss their special features.

L-correlation. The 2nd L-comoments and the L-correlations ppg; and ppp1) have
already been studied by Schechtman and Yitzhaki [46], [47], Yitzhaki and Olkin [55],
and Olkin and Yitzhaki [41] as Gini covariances and Gini correlations, with emphasis
on applications in economics. Comparisons are made with the Pearson product-
moment and Spearman rank correlation coefficients based on Cov(X™, X®) and
Cov(F1(XM), Fo(X?)), respectively, and a “Gini regression analysis” based on Gini
covariance is developed.
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While ppi2) and pp1) need not agree, each being a covariance between one variable
and the rank of another, with differing choices of which variable is the one ranked, they
do agree when (X, X®) are centrally symmetric, i.e., (X, X)) £ (X® XO) or
more generally are exchangeable. See Schechtman and Yitzhaki [46], [47] for detailed
discussion and examples.

One natural way to interpret the second L-comoment relative to the standard
covariance is through the following analogue of (8):

Aoy = 2 Cov(X W, Fy(XP)) = 2Cov(XW, F(X®) — 1/2).

Thus Ap[19) differs from o1 simply in replacing the deviation X® - uf) of X® from
its mean by the deviation Fy(X®)—1/2, a scale-free measure of the deviation of X ()
from its median. This approach applies equally well to higher-order cases, as seen
next.

L-skewness and L-kurtosis. For A3[ig), the L-coskewness of X M) with respect to
X® | we have in analogy with (12)

Aapy = Cov(XW, Py (Fy(X1)))
= —6Cov(XW, Fy(X®)(1 - Fp(X?))
6 Cov(X W, (Fp(X®) —1/2)%),

Thus Az[19) differs from its central comoment analogue §3(19) simply by replacing the
deviation X® — 4% by the deviation Fy(X®) — 1/2.
For A4pig), the L-cokurtosis of XU with respect to X@, we have

Mpg = Cov(XW, P (Fy(X1™)))
= Cov(XW, 20F3(X@) — 30F2(X@) + 12F,(X®) —1)
= Cov(XW 20(Fy(X®) —1/2)3 — 3(Fy(X®) —1/2)).

Again the L-comoment differs from its central counterpart by replacing X ) — uf) by
Fy(X®) —1/2, except that here in addition the particular function of the deviation
also changes (slightly, to one less appealing in form, perhaps, but still an odd function
and indeed orthogonal to those for other choices of k).

We see that L-comoments provide a hierarchy of intuitively appealing analogues of
classical covariance and central comoments. The definitions in terms of the classical
covariance operator facilitate useful interpretations and comparisons.

Further understanding of these quantities is provided in the following subsection
through useful representations in terms of concomitants. In fact, such representations
serve as an equivalent way to define the L-comoments.
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3.2 Representations for \;[9 in Terms of Concomitants

Consider now a sample {(Xi(l),Xi(z)),l < i < n} from a bivariate distribution
F(zM, ) with marginal distributions F| and F,. Corresponding to the ordered
X@_values X1(27)L < X2(27)L < .- < X, we call the element of {Xl(l), ., XV} that is
paired with X\2) the concomitant of X\2) and denote it by X[(:i)] (see Yang [53] and
David and Nagaraja [8] for general treatments).

It is quickly seen that E(X[(:i)]) = nE(Xl(l) |X1(2) = Xﬂ%), leading immediately to
the following useful analogue of (6):

Ex1)) = (38)

[r:n]

o(220) [ [ - B ana.a?), <

That is, B(X{)) = n("7 1) E(XD [Fy(X®)]1[1 — F(X®)]"~"). We use (38) to
establish the following representation, which states that the L-comoments may be
defined in terms of expected values of concomitants in exactly the same way that
the L-moments are defined in terms of expected values of order statistics. (This does
not quite mean, however, that the L-comoments can be called the L-moments of the

concomitants.)

Proposition 6 The kth L-comoment of XV with respect to X may be represented
as
k-1 k1 "
e = 0 (M) B (39)
=0

Proof. Denote the right-hand side of (39) by Lj. With (38) inserted into (39), similar
steps as with the insertion of (6) into (1) in Section 2 yield the following concomitant

analogue of (11):
Ly, = Cov(XW, Py [(Fy(X@))), k> 2. (40)

Thus the Ly are in fact the L-comoments defined by (19). O

Proposition 6 immediately yields another proof, communicated by Jon Hosking,
of the inequality (31) given in Proposition 4 (although not, however, the statement of
necessary and sufficient conditions). We merely apply to (39) the well-known result of
Hardy, Littlewood, and Pdlya [18, Theorem 368] that, given an ordered sequence a; <
as < --- < ay and any other sequence by, ..., by, the sum of products Zle aibo(;y for
a permutation (o(1),...,0(I)) of (1,...,1) attains its mazimum (minimum) possible
value when the sequence by (), . . ., by (1) is increasing (decreasing).
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The main role of Proposition 6, however, is to make it straightforward to obtain

key results for L-comoments as analogues of those for L-moments, with concomitants
in place of order statistics. Thus, for example, defining XE;?] = E(X[(jlﬂ:k]) - E(X[(le%),

we have for & > 2 the following analogue of (3):

k—2
) (k=2
e = 0 (T (41)
=0

providing yet another approach toward interpretation of the L.-comoments. Further,
using again the derivations of Section 2, we obtain for a sample of size n a direct
analogue of (15) and thus the basis for unbiased estimation of comoments:

Proposition 7 For k > 2, and with w') the same as in (15),

)\k [12] = n- Zw (k) FE X(12 (42)

[r: n]

3.3 Estimation of L-Comoments

Proposition 7 yields for the kth L-comoment, k£ > 2, the unbiased estimator
N _ 12
)\k 2 ="n ! Z wv("kn X[(fr;n)] ) (43)

which is an L-statistic in the concomitants. Further, each Xk 2 is a U-statistic. To
see the latter, note from Proposition 6 that

Mz = BEA® (XM, xP), o (xM x2))),

where

k—1
_ (k-1
WO (@, 2P),. . (@), 2) = k7 <—1>ﬂ( ‘ ) Ty (44)

It is routine to show that the discussion of Section 2.2.1 carries over: for a kernel h
with bivariate arguments which is a linear combination of the concomitants of one
of the components, the corresponding U-statistic based on a sample of size n may
be expressed as a linear combination of the concomitants of that component for the
full sample. Thus the U-statistic based on the kernel (44) agrees with the L-statistic
given by (43).
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lllustration: Estimation of 2nd L-Comoment. For k& = 2 in (43) and (44), we obtain
the L- and U-statistic representations

-1
2r—n—1yay _(n (12)  +(12)
)\2[12]—71 Z n—1 [rn] - (2) Z (X[Jn] X[M])/2
1<i<j<n
analogous to expressions for the 2nd L-moment, as expected. (The present U-statistic

representation, however, cannot be reexpressed as one-half the Gini mean difference

of the concomitants, because the relevant kernel in the concomitants, (z le 22] 8 22]) /2,
(12) _ (12)

2:0] — Z[1.9|/2 for the Gini mean difference.) O
The asymptotic distribution of a vector of L-comoment estimators follows from
standard theory for U-statistics (Serfling [49]). Noting that the kernel h(? defined by
(44) with k =i is symmetric in its ¢ arguments, and defining
g (@0, 2®) =i B (0, 2®), (X3, X3, (47, X))
and (;; = Cov(g® (XM, X@)) ¢0)(XD X2)) 2 <4 5 <k, we have
Proposition 8 Under second moment assumptions on XO for k > 2 the vector of

sample L-comoments ()\2 s - - )\k ) is asymptotically (k — 1)-variate normal with
mean (Aap2, - - -, A\epiz) and covariance matriz [(;;]/n.

is not the same as the kernel |z

(Alternatively, this result follows using (43) with results of Yang [54].) Asymptotic
normality of the corresponding vector of scaled versions 7; 19, 2 < @ < k, follows by
standard results on transformations of asymptotically normal vectors.

3.4 Multivariate L-Moments

For a random d-vector X = (XM, ..., X))’ we now define “multivariate L-moments”
for all orders k£ > 1. The first order multivariate L-moment is simply the vector mean
A = E(X),

assumed finite. For k > 2, the kth multivariate L-moment is the matrix of kth
L-comoments for all pairs (X®, X)) 1 <, j < d:

Ar = (Mefig))dxds

with Ay, A3, and Ay the L-covariance, L-coskewness, and L-cokurtosis matrices, re-
spectively. Corresponding versions with scaled elements are given by Ay = (73};;), the
L-comoment coefficient matrices. The diagonals of Ay and A, are the componentwise
univariate L-moments and L-moment coefficients, respectively.

In Section 4 we illustrate these matrices in various settings. We also compare
with the corresponding central versions, denoted by Ei = (&upij) and Ef = (Vwpij)),
respectively, k > 2 (2, and E3 being the usual covariance and correlation matrices).
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4 Illustrations and Applications

In the multivariate case, tractable distributions are fewer and parametric approaches
more limited than in the univariate setting. Although univariate L-moments provide
a useful alternative to the classical method of moments in parametric model-fitting,
and such an approach indeed extends to the multivariate case, the widest and most
significant role of multivariate L-moments lies in providing attractive nonparametric
multivariate estimators and descriptive measures. Using the estimators and theory
of Sections 2.2 and 3.3, one may readily compute for a data set sample versions of
A5, A%, and A} and (under second moment assumptions) characterize asymptotic
distributions.

As with classical correlation, by Proposition 4 the strengths of the L-correlations
between the ith and jth component variables are assessed through comparison with
the value 1. No such simple guideline exists in the case of higher orders, however,
neither for central comoment nor L-comoment coefficients, nor for the univariate
central counterparts. One compensating approach is to rely upon suitable reference
multivariate distributions selected as meaningful benchmarks. Another is to intro-
duce productive special assumptions, which may be verified for a particular model or
assumed in a nonparametric formulation. In particular, we have

Proposition 9 Assume that the components of X = (XU, ..., XY have affinely
equivalent marginal distributions and pairwise linear regressions, in the sense of the
conditions of Proposition 3. Then marginal L-moment coefficients agree and likewise
for marginal central moment coefficients:

7‘,51) = ...= T,gd) = Tk, Say, (45)

,(:) = ...=y9pP= Vi, say, (46)
for k > 3. Further,
P = Pig = Py, 1 < 0,5 < d,
yielding, with C = (pi;) = (ppj),
r = TG, (47)
g = ¥ C. (48)

This result follows readily from Proposition 3. In each of (47) and (48), the comoment
coefficient matrix is simply the product of the univariate moment coefficient of the

same order and the correlation matrix C. The central comoment and L-comoment
coefficient matrices are both, in this instance, equivalent in structure to the usual
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correlation matrix, which thus contains all of the multivariate shape information (in
the scale-free sense).

In Sections 4.1, 4.2, and 4.3, respectively, we illustrate for three multivariate
distributions — normal, Pareto, and Farlie-Gumbel-Morgenstern. The first two are
governed by Proposition 9, the third is not. In Sections 4.4 and 4.5, respectively, we
indicate the role of multivariate L-moments in portfolio risk analysis in finance and
regional frequency analysis in environmental science.

4.1 The Multivariate Normal Distribution

For a d-variate normal model with variances o7 and covariances o;;, the assumptions
of Propositions 1, 3, and 9 are fulfilled with b = aij/a?, n = o;/o;, and thus bn = p;;.
The comoments are given by Agpij] = (aij/ajz»))\,(f) and &g pij) = (aij/ajz»)u,(f), and the
comoment coefficients by 7, ;5 = pi;Te and ¥y (i) = pijr, k > 2. For odd k > 3, these
quantities are all 0. For even k, the central moment coefficients are invariant over
parameters and readily found to be ¢y = (k—1)(k—3)---3-1. The quantities 7, are
more elusive, explicit expressions for the expected values of order statistics for normal
samples in terms of elementary functions being known only for sample sizes < 5. For
a range of larger sample sizes, however, these expected values have been computed
numerically and tabulated, and approximations are available for indefinitely large
sample sizes. See Johnson, Kotz, and Balakrishnan [28, pp. 94-96] for discussion. In
particular, the 2nd, 3rd, and 4th normal L-moments were mentioned in Section 1.2
and yield 73 = 0, and 74 = (307~ arctan v/2 — 9).

4.2 A Multivariate Pareto Distribution

Various forms of multivariate Pareto distribution are treated by Arnold [2]. We
consider here his Type II version, given by the d-variate joint cdf

for 20 > 6, and 0; > 0,1 < i < d, and a > 0. The kth moment is finite if k < a.
Many typical applications involve heavy-tailed modeling, with « in the range 1 to 2
for quite diverse data sets (see, for example, [2, Appendix A], [28, p. 575], and [37]).

With 0; = 0;, 1 < i < d, (49) reduces to the Type I Pareto model, of long-standing
use in actuarial science and economics. With 6; = 0, (49) becomes the multivariate
Lomazx distribution (Nayak [40]) arising in reliability theory for the joint distribution
of lifetimes in a system of d components having conditionally independent exponential
failure rates of form A/o;, where A is a random “environmental” effect following a

FaW, . . z@)y=1-
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gamma distribution with shape parameter a. For general discussion of model (49),
see [2] and [33, pp. 380382 and 603-605].

For parametric inference using this model, one may estimate the parameters via
the maximum likelihood method. Also, fortuitously, tractable formulas for the L-
moments, [.-comoments, central moments, central comoments, and related coefficients
are available. These, provided below, support method-of-moments approaches to
parameter estimation.

We also may apply model (49) to explore, comparatively with central versions,
the behavior of the sample L-moments, L-comoments, and related coefficients as
nonparametric descriptive measures based on data from an unknown and possibly
heavy-tailed distribution. Some sampling and simulation results are provided below.

4.2.1 Formulas

For X = (XM . . X@) having distribution (49), X® has marginal distribution
Fi(z®@) =1 —[1 + (6, (2 — 6;))]7® and linear regression on X fulfilling the
assumptions and conclusions of Propositions 1, 3, and 9 with n = o,/0;, b = 0;/0;a,
and

dxd
For the distribution F; we readily obtain from (5) that

n!

—1].
m—r)!n—1/a)(n—1-1/a)---(n—r+1—1/a) )
This yields A = 6, + 0;/(a — 1) = u?,

k=2 .

, 1
M? k227
Hj:l(]a —1)

MM%:@+Q(

)\,(f) =0;

and -

szo (ja+1)

For computation of the kth central moment, we assume without loss of generality
that 6; = 0 and use [2, (3.3.8)] E(X®¥) = ¢%k!/(a — 1) --- (o — k), which leads to

n = otk (o= D a—=2)- (o= k) x
(D= ) a =1 Na—j— 1) (a—k),

j=0

Tk =
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2 < k < «a, which in turn determines the central moment coefficient 1. In particular,
Y3 = 2(a+1)((a—2)/a)?/(a—3) and ¢y = 3(30® + o +2)(a —2) /a(a — 3)(a —4).

With C, ¢, and 7, as above, the comoment coefficient matrices for this model
are now given by (47) and (48). Here the factors 7, and v depend not only upon
k but also upon the shape parameter oe. The use of (47) requires a > 1, while (48)
requires o > k. We thus obtain for this model an extended correlation analysis, since
the formula o~! for all the Pearson correlations under o > 2 holds also for all the
L-correlations under @ > 1. The maximal value 1/2 for the correlation under o > 2
increases to 1 and becomes approached, as o | 1.

4.2.2 Some Empirical Results

To examine the performance of sample L-moments and L-comoments, with special
reference to the case of heavy-tailed data, and to compare with corresponding central
versions, we provide a small simulation study using the above Pareto II model. For
each of a = 1.5, 2.5, 3.5, and 4.5, and for each of sample sizes n = 50 and 500, we
generated 20,000 samples from the cdf (49) with d = 3, 6, = 0, and 0; = 1. Each
trivariate observation X = (XM, X®) X©)) was obtained via the representation [2,
p. 252] X = W;/Z, 1 < i < 3, with independent standard exponential random
variables Wy, W, and W3 and gamma(a, 1) random variable Z. For each sample, the
L-moments, L-comoments, central moments, central comoments, and corresponding
coefficients were computed for orders £k < 4. With these simulated data, we can
compare, on the basis of 20,000 observations each, the L-versions and central versions
of multivariate nonparametric descriptive measures for spread, skewness, and kurtosis
(taking into account, of course, that each such quantity is measured in a different way
by the two versions). Here we present and discuss selected representative results.

Results for L-moments and L-comoments of orders 2—4 as well as for L-correlation
are provided for = 1.5 and 4.5 in Tables 1 and 2, respectively. Table 2 also includes
corresponding results for central versions (which are defined for o = 4.5). For each
target parameter and each choice of sample size, we list the population value and,
based on the 20,000 sample estimates, the mean estimate (mean), the median estimate
(med), the coefficient of variation (CV) of the estimates, and the relative interquartile
range (RIQR, defined as IQR /med) of the estimates. The results in the tables support
a number of conclusions:

e The CV and RIQR variability measures both decrease as the sample size n
increases. However, in the case of a = 1.5, the decrease in the CV is only slight,
reflecting the higher sensitivity of this measure to extreme observations.

e The CV and RIQR variability measures both increase as the order k increases,
with the increase in CV for the central versions very dramatic.
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For o = 4.5, comparison of each sample L-moment or sample L-comoment
with its central counterpart on the basis of CV and RIQR values, and also
in terms of the observed bias (discrepancy between mean estimate and target
parameter, and between median estimate and target parameter), indicates that
the L-versions are much more stable and efficient than the central versions as
estimators of their respective parameters. For order > 3, the central versions
are especially erratic. Even though the 4th order central moment is finite, this
case of « is still quite heavy-tailed.

For estimation of correlation, in the case of a = 4.5 the sample L-correlation
and the sample Pearson correlation are both fairly strong, with pronounced
improvement in the case of n = 500 versus n = 50. Nevertheless, by both
the CV and RIQR measures and in terms of the observed bias, the sample L-
correlation is distinctly more stable and efficient. In the very heavy-tailed case
of a = 1.5, however, the sample L-correlation is noticeably less efficient, while
the sample Pearson correlation is completely off the mark (figures not included).

In comparison with the second order sample L-moment and sample L-comoment,
the sample L-correlation exhibits considerably greater observed bias (Tables 1
and 2). This effect holds true also for the central versions (Table 2). Even more
pronounced for higher orders (figures not included here), this is merely a conse-
quence of the fact that in general the sample central comoment coefficients and
the sample L-comoment coefficients are, unfortunately, all biased estimators.

The sample L-comoments for Aypg and Agppq; (which are equal in the present
model) behave very consistently for each case of a.

Summary Comment. For nonparametric moment-based description with data
from a possibly heavy-tailed distribution, L-versions offer clear advantages over
central versions. The gain increases with increasing order of moments and with
increasing heaviness of tails.
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Table 1: L-Moment and L-Comoment Sampling Results, a = 1.5.

Sample Values

Target True n = 50 n = 500
Parameter | Value || mean | med | CV | RIQR || mean [ med | CV | RIQR
Ao 1.50 1.47 | 1.09 | 1.78 | 0.67 1.52 | 1.32 | 1.70 | 0.32
A2[12] 1.00 0.97 | 0.56 | 2.69 | 1.09 1.01 | 0.82 | 2.54 | 0.49
Aoj21] 1.00 0.96 | 0.60 | 2.93 | 1.08 1.00 | 0.82 | 2.04 | 0.49
P[12] 0.67 0.56 | 0.58 | 0.37 | 0.47 0.63 | 0.63 | 0.15| 0.19
A3 1.07 1.05 | 0.66 | 2.49 | 0.95 1.09 | 0.89 | 2.37 | 0.44
A3[19] 0.71 0.69 | 0.32 | 3.75| 1.65 0.73 | 0.53 | 3.52 | 0.69
A4 0.86 0.83 | 0.45 | 3.11 | 1.21 0.87 | 0.67 | 2.95| 0.56
Aij12] 0.57 0.54 | 0.20 | 4.70 | 2.27 0.59 | 0.39 | 4.37 | 0.88

4.3 Multivariate Farlie-Gumbel-Morgenstern Distributions

An appealing structure for construction of joint distributions having given marginals
was introduced by Morgenstern [38] and extended by Farlie [15]. Considerable further
development has led to several variant so-called Farlie-Gumbel-Morgenstern (FGM)
classes of distributions. General discussion is provided by Kotz, Balakrishnan, and
Johnson [33], whose equation (44.73) gives the particular version we consider here:

FzW, . .. 2@) = (50)
d
[T 1+< > o <1—m:“ﬂ)m—mxx@))) +
i=1 1<y <in<d

-+ <a12---d H(l - Fz(f(l)))>] )

with the coefficients a;,..;, real-valued and assumed to satisty the constraints

1+ < Z Qo 5i15i2> +o 4+ ar2.q€1-0€0 >0,

1<i1<i2<d

for all cases of e; = £1, a sufficient condition for F(z™") ... z@®) in (50) to be a non-
decreasing function of its arguments. The case of mutually independent components
is given by ;,..;, = 0. For X = (XM ... X@) having cdf (50), X has marginal
distribution Fj(-), thus determining the marginal L-moments and central moments
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Table 2: L-Moment, L-Comoment, Moment, and Comoment Sampling Results, o =
4.5.

Sample Values

Target True n = 50 n = 500
Parameter | Value mean‘ med ‘ (GAY ‘RIQR mean‘ med ‘ (GAY ‘RIQR
A2 0.161 || 0.161 | 0.155 | 0.25 | 0.31 || 0.161 | 0.160 | 0.08 | 0.10
Aof12] 0.036 || 0.036 | 0.032 | 1.04 | 1.36 || 0.036 | 0.035 | 0.32 | 0.43
Aoj21] 0.036 || 0.036 | 0.032 | 1.04 | 1.37 || 0.036 | 0.035 | 0.32 | 0.43
P2] 0.222 || 0.209 | 0.216 | 0.90 | 1.21 | 0.221 | 0.221 | 0.29 | 0.39
A3 0.071 || 0.071 | 0.065 | 0.45 | 0.54 || 0.071 | 0.070 | 0.14 | 0.18
A3[12] 0.016 || 0.016 | 0.013 | 1.93 | 2.81 || 0.016 | 0.015 | 0.59 | 0.80
A4 0.042 || 0.042 | 0.036 | 0.41 | 0.77 | 0.042 | 0.041 | 0.19 | 0.25
A4[12] 0.009 || 0.010 | 0.007 | 2.93 | 4.53 || 0.009 | 0.009 | 0.86 | 1.15
4o 0.147 || 0.150 | 0.108 | 1.39 | 0.86 || 0.147 | 0.135 | 0.45 | 0.36
§op12) 0.033 || 0.034 | 0.019 | 2.68 | 1.86 || 0.032 | 0.028 | 0.70 | 0.63
P12 0.222 || 0.204 | 0.181 | 0.98 | 1.49 | 0.217 | 0.267 | 0.39 | 0.50
43 0.308 || 0.413 | 0.138 | 7.56 | 1.55 || 0.388 | 0.247 | 3.72 | 0.77
§312] 0.068 || 0.101 | 0.019 | 12.5 | 2.96 || 0.083 | 0.046 | 3.33 | 1.11
m 3.227 || 2.517 | 0.185 | 25.4 | 2.50 || 2.485 | 0.551 | 19.7 | 1.40
§a12) 0.717 || 0.738 | 0.019 | 43.3 | 4.66 || 0.452 | 0.091 | 16.0 | 1.86

under relevant moment conditions. For derivation of the comoments and comoment
coefficients, we use the bivariate distributions

B, 29) = Fia®) Fi)[L + ay(1 = F@D)(1 = Fa?))],

with |a;| < 1, from which it follows [33, p. 56] that X has linear regression on
Fj(X(j)) with regression coefficient b = 4 ay; Cov(X® Fy( X)) =2 Qj )\g). Applying
Proposition 1 with g = F}, we obtain under appropriate moment conditions

Ak lij) = 2 Qg A Cov(Fy (X)), P (F;(XWY))
and | | | |
ki) = 2 Qg )\g) Cov(F;(XW), (X — Iugj))k—l)’
for k > 2.
Let us now take all Fj to be continuous. Then the covariance in A is by (11)

just the kth L-moment of the uniform(0, 1) distribution, which equals 1/6 for k = 2
and 0 for £ > 3, due to the orthogonality of the Legendre polynomials P/. The
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central comoments {12, however, are nonzero for £ > 3. Treating in detail the case
k= 2, we have o) = )\gi)/?) and 045 = o1y = g )\gi) )\gj), with corresponding
correlations pji;) = «;;/3 under first moment assumptions and p;; = aij)\gi))\gj )/ 0i0;
under second moment assumptions. By (9) we thus obtain the inequality

1pij| < laisl /3 = |ppj)l-

The correlations p;; and pp; are different multiples of a;;. The multiplicative
factor for p;; involves the marginal distributions F; and F}; through not only their
standard deviations but also, interestingly, their second L-moments. For F; and Fj
normal p;; = «y;/7, for F; and F; uniform p;; = a;;/3. On the other hand, for the
L-correlation pp;j), the multiplicative factor 1/3 does not depend upon the marginal
distributions, so that the L-correlation can serve nonparametric or semi-parametric
modeling using the FGM structure.

Since |a;;| < 1, both correlations are no greater than 1/3 in magnitude, limiting
practical application of the FGM model to situations involving only weak pairwise
linear dependence among the component variables. The weak dependence within
this model is further manifest, in a new way, by the L-coskewness, L-cokurtosis,
and higher-order L-comoments all being 0, similar to the case of independent vari-
ables. Despite the limited possible magnitude of the L-correlation, its availability
under merely first moment assumptions usefully extends the range of meaningful
FGM modeling with heavy-tailed marginal distributions.

4.4 Modeling for Portfolio Risk Analysis in Finance

Among approaches to portfolio optimization in finance, a central role has long been
played by the Capital Asset Pricing Model (CAPM), initially involving just first and
second moments but recently including consideration of higher moments. Skewness
measures are of interest for evaluation of the downside risk and asymmetric volatility
of a portfolio, aspects increasingly important to investors’ preferences. Along with
variance, measures of kurtosis are instrumental and appealing in accounting for high
volatility and uncertainty in returns. Just as the covariance of a particular security
and the “ market return” measures the contribution of that security to the dispersion
of a well-diversified portfolio, the corresponding coskewness and cokurtosis measure
the contributions of that asset to the overall skewness and kurtosis of the portfolio.
For detailed discussion of the increasing interest in these and higher order comoments
in connection with the CAPM in financial risk analysis, see Fang and Lai [14], Harvey
and Siddique [19], Christie-David and Chaudhry [7], Jurczenko and Maillet [29, 30],
Dittmar [10], Jurczenko, Maillet, and Negrea [32], de Prado, Mailoc, and Peijan [9],
Jurczenko, Maillet, and Merlin [31], and Adcock, Jurczenko, and Maillet [1]. In
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particular, for example, for a d-vector X = (XM, ..., XY of returns for a portfolio
of d assets, Christie-David and Chaudhry (2001) study the corresponding kth central
comoment matrices Zy = ({;[;5))axa and also the d-vector ({14, - - -, &k (as)) Of the kth
central comoments of portfolio returns taken over each asset with a “market return”
X for k=2,3,4.

Also increasing is interest in heavy-tailed distributions in modeling stock returns,
raising serious concern regarding higher moment assumptions and issues of stability
and robustness associated with higher order central moments and comoments. In
fact, for the marginal distributions of jointly distributed heavy-tailed variables in risk
analysis, univariate L-moments have already been applied (see, for example, Hosking,
Bonti, and Siegel [25]). Such treatments can be extended using L-comoments. In a
nonparametric approach, L-moments and L-comoments may be used descriptively in
evaluating risk characteristics of a portfolio. Alternatively, a parametric approach
could be explored using, for example, a multivariate Pareto model.

4.5 Modeling for Regional Frequency Analysis in Environ-
mental Science

Many environmental applications involve, for each variable of interest, for example
streamflow, separate series of observations taken at different measurement sites within
a network. This yields for a given variable multiples samples of similar data, with pos-
sible dependence within as well as between samples. One key goal is to estimate the
marginal quantile function, especially for the purpose of determining the upper quan-
tile corresponding to occurrence of a specified “extreme” event. In many applications
the sample size for a site is too small to enable efficient estimation of upper quan-
tiles, and data for all sites within a suitable region are combined through a “regional
frequency analysis” under effective simplifying assumptions. Distributions involving
tails heavier than those of normal distributions have been found relevant, and fit-
ting by maximum likelihood or classical moment methods has been problematic. In
this context, L-moment methods have proved very effective in providing stable and
reliable estimates less sensitive to distributional assumptions and to influence of ex-
treme observations. See Hosking and Wallis [26] for complete exposition of regional
frequency analysis via L-moment methodology as it has developed in fields such as
hydrology, climatology, and environmental science.

In regional frequency analysis, a major step is to partition a network of sites
into approximately homogeneous regions of sites with very similar frequency distribu-
tions for the variable of interest. For each site, the vector of the first four sample
L-moments or L-moment coefficients is obtained and “unusual” sites are identified
via a suitable discordancy measure. In many situations, however, there are several
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variables of interest, for example, streamflow, temperature, precipitation, windspeed,
etc., all measured at each site in the network. Instead of regional frequency analysis
carried out separately for each variable, each generating a different partition into ho-
mogeneous regions, with the multivariate L-moments approach one can now develop
an extended regional frequency analysis leading to a single partition into homogeneous
regions based on all the variables considered jointly.

5 Further Studies

Besides the lines of development suggested in Sections 4.4 and 4.5, we briefly discuss
here several further studies of special interest. All are beyond the scope of the present
paper and will be pursued elsewhere.

5.1 Versions for Increased Robustness and Reduced Moment
Assumptions

Here we consider two variants of L-moments and L-comoments which are more robust
and impose lower moment assumptions.

5.1.1 Trimming

TRIMMED L-MOMENTS

As a modification of the L-moments to obtain more robustness, Elamir and Seheult
[12] introduce trimmed L-moments, given by increasing the conceptual sample size
for defining the kth L-moment from £ to k + t; 4+ to and using the k order statistics
remaining after trimming the ¢; smallest and ¢ largest observations in the conceptual
sample. Thus A, given by (1) becomes replaced by

k—1

— (k-1
)\ffl’tZ) =k (—1)J( J )E(Xk+t1—j:k+t1+t2)’ (51)
=0

J

k > 1. Except for (t1,t2) = (0,0), which gives the usual L-moments, the TL-moments
exist under weaker moment assumptions (satisfied by the Cauchy distribution, for
example) and eliminate the influence of the most extreme observations. The sample
TL-moments do not, however, improve upon the asymptotic finite sample breakdown
point, 0, of the sample L-moments (or in fact of the sample central moments).

In particular, for (t1,t3) = (1,1), the 1st TL-moment is )\51,1) = F(Xa3), the
expected value of the median from a sample of size 3. See Elamir and Seheult [12],
[13] and Hosking [24] for detailed development.
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Our definitions of L-comoments and L-comoment coefficients carry over easily to
provide TL-comoments and TL-comoment coefficients as direct analogues of (51).
We note that asymptotic results are not provided in [12]. However, for (1, t2) fixed
as n — oo, the asymptotic results we have stated for sample L-moments and L-
comoments have similar formulations and derivations for these trimmed versions.

L-MOMENTS ON TRIMMED SAMPLES

Elamir and Seheult [12] also mention without development the alternative approach
of defining trimmed L-moments simply as ordinary L-moments defined on a trimmed
sample. This yields different versions of trimmed estimators — for example, in this
case the usual trimmed mean, which weights each observation equally after trimming
the sample. For (t1,t2) = (fn,Bn) with 5 > 0, the breakdown point improves from
0 to #. Asymptotic normality of these sample versions follows, using the U-statistic
representations noted in the present paper, from results of Janssen, Serfling and
Veraverbeke [27] for U-statistics defined on trimmed samples.

5.1.2 Quantiles instead of Expectations

A modification of L-moments that eliminates moment restrictions entirely, given by
Mudholkar and Hutson [39], consists of replacing each expectation in (1) by a suitable
linear combination of quantiles:

k—1

— (k-1
A = gt (—1)ﬂ( ‘ )ep,a(Xk_j;k), (52)
=0 J
where 0 < a<1/2,0<p<1/2, and
Oy Xi_j) = PP (@) + (1= 2)F5l (1/2) = pFg! (1 —a).

As with the above trimming approach, here too one may extend our development
to define LQ-comoments and related quantities. Starting with the representation
(39) of L-comoments in terms of concomitants, as given in Proposition 6, we replace
expectations by quantiles to define the kth LQ-comoment of XV with respect to X ?
by
= (k-1 (12)
)‘1(5[21)2] =k~ (—1)J( j )Qp,a(X[k—j;k])- (53)
=0

j
5.2 Variances and Covariances of Sample Versions

Exact formulae for the variances and covariances of sample L-moments and TL-
moments are developed by Elamir and Seheult [12], [13] following Downton [11].
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These have the form of a weighted sum of expected values of order statistics from
a conceptual sample. Here we note that these can also be derived the U-statistic
representations we have noted above, via standard expressions for the variances and
covariances of U-statistics. In the same fashion, exact expressions for the variances
and covariances of sample TL-comoments may be obtained.

Elamir and Seheult [12], [13] also provide distribution-free unbiased estimators
of these variances and covariances. We note here that, using the relevant weighted
sum of expected values from a conceptual sample to define a corresponding kernel
for a U-statistic, distribution-free unbiased estimators immediately are given by the
corresponding U-statistics.

5.3 Characterization Issues

In the univariate case, as noted in Sections 1.2 and 2.1.2, under the finite mean
assumption the series of L-moments determines the distribution. It is of interest to
explore this question for the multivariate case. For example, to what extent do the L-
moments and L-comoments together determine the bivariate distributions of jointly
distributed variates? Such characterization results would delineate the theoretical
limitations of the L-comoments as an extension of the univariate case and perhaps
suggest further extensions and developments necessary for a “complete” multivariate
extension.
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