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Abstract
This paper describes the design, implementation and preliminary results of a technique for creat-
ing a comprehensive probabilistic atlas of the human brain based on high-dimensional vector field
transformations. The goal of the atlas is to detect and quantify distributed patterns of deviation
from normal anatomy, in a 3-D brain image from any given subject. The algorithm analyzes a
reference population of normal scans and automatically generates color-coded probability maps
of the anatomy of new subjects. Given a 3-D brain image of a new subject, the algorithm
calculates a set of high-dimensional volumetric maps (with typically 3842 × 256 × 3 ≈ 108

degrees of freedom) elastically deforming this scan into structural correspondence with other
scans, selected one by one from an anatomic image database. The family of volumetric warps
thus constructed encodes statistical properties and directional biases of local anatomical variation
throughout the architecture of the brain. A probability space of random transformations, based
on the theory of anisotropic Gaussian random fields, is then developed to reflect the observed
variability in stereotaxic space of the points whose correspondences are found by the warping
algorithm. A complete system of 3842× 256 probability density functions is computed, yielding
confidence limits in stereotaxic space for the location of every point represented in the 3-D
image lattice of the new subject’s brain. Color-coded probability maps are generated, densely
defined throughout the anatomy of the new subject. These indicate locally the probability of
each anatomic point being unusually situated, given the distributions of corresponding points in
the scans of normal subjects. 3-D MRI and high-resolution cryosection volumes are analyzed
from subjects with metastatic tumors and Alzheimer’s disease. Gradual variations and continuous
deformations of the underlying anatomy are simulated and their dynamic effects on regional
probability maps are animated in video format (on the accompanying CD-ROM). Applications
of the deformable probabilistic atlas include the transfer of multi-subject 3-D functional, vascular
and histologic maps onto a single anatomic template, the mapping of 3-D atlases onto the scans of
new subjects, and the rapid detection, quantification and mapping of local shape changes in 3-D
medical images in disease and during normal or abnormal growth and development.

Keywords: 3-D stereotaxic space, brain mapping, morphometry, non-linear image registration,
probabilistic atlas

Received November 4, 1996; revised April 7, 1997; accepted April 9, 1997

1. INTRODUCTION

Remarkable variations exist, across individuals, in the internal
and external geometry of the brain. In the past, comparing
∗Corresponding author
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data from different subjects or patient subpopulations has
been difficult because cortical topography and the internal
geometry of the brain vary so greatly (Ono et al., 1990). At
the same time, much research has been directed towards the
development of standardized three-dimensional atlases of the
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human brain (Talairach and Tournoux, 1988; Greitz et al.,
1991; Höhne et al., 1992; Thurfjell et al., 1993; Kikinis et al.,
1996). These provide an invariant reference system and the
possibility of template matching, allowing anatomical struc-
tures in new scans to be identified and analyzed. Atlases
serve as a guide in planning stereotaxic neurosurgical proce-
dures and provide a precise quantitative framework for multi-
modality brain mapping.

1.1. Deformable and probabilistic brain atlases
1.1.1. Deformable atlases
In view of the complex structural variability between in-
dividuals, a fixed brain atlas may fail to serve as a faith-
ful representation of every brain (Roland and Zilles, 1994;
Mazziotta et al., 1995). It would, however, be ideal if the
atlas could be elastically deformed to fit a new image set
from an incoming subject. Transforming individual datasets
into the shape of a single reference anatomy, or onto a 3-D
digital brain atlas, removes subject-specific shape variations
and allows subsequent comparison of brain function between
individuals (Christensen et al., 1993). Conversely, high-
dimensional warping algorithms (Christensen et al., 1993,
1996; Collins et al., 1994a; Rabbitt et al., 1995; Thirion,
1995; Davatzikos, 1996; Thompson and Toga, 1996a, Bro-
Nielsen and Gramkow, 1996) can also be used to transfer all
the information in a 3-D digital brain atlas onto the scan of
any given subject, while respecting the intricate patterns of
structural variation in their anatomy. Such deformable atlases
(Evans et al., 1991; Christensen et al., 1993; Gee et al., 1993;
Sandor and Leahy, 1994, 1995) can be used to carry 3-D
maps of functional and vascular territories into the coordinate
system of different patients, as well as information on differ-
ent tissue types and the boundaries of cytoarchitectonic fields
and their neurochemical composition. Thirdly, 3-D warping
algorithms, such as the one featured in our video which ac-
companies this paper, provide a method for calculating local
and global shape changes and produce valuable information
about normal and abnormal growth and development (Toga
et al., 1996). In particular, the complex profiles of dilation
and contraction required to warp the atlas onto the new sub-
ject’s brain provide an index of the anatomical shape differ-
ences between that subject’s brain and the atlas (Davatzikos
et al., 1996). Differences in regional shape can therefore be
assessed by the local displacement required to deform one
brain volume into another. As a result, deformable atlases not
only account for the anatomic variations and idiosyncrasies
of each individual subject, they also offer a powerful strategy
for exploring and classifying age-related, developmental or
pathologic variations in anatomy.

1.1.2. Probabilistic atlases

On the other hand, probabilistic atlasing (Evans et al., 1994;
Mazziotta et al., 1995; Thompson et al., 1996a) is a research
strategy the goal of which is to generate anatomical templates
and expert diagnostic systems which retain quantitative infor-
mation on inter-subject variations in brain architecture. The
recent interest in comprehensive brain mapping also stresses
that comparisons between subjects, both within and across
homogeneous populations, are required to understand nor-
mal variability and genuine structural and functional differ-
ences. Initial attempts to derive average representations of
neuroanatomy have underscored the validity and power of this
approach in both clinical and research settings (Andreasen
et al., 1994; Evans et al., 1994). In one such approach, 305
MRI volumes (2 mm thick slices) were mapped by linear
transformation into stereotaxic space, intensity normalized
and averaged on a voxel-by-voxel basis (Evans et al., 1992).
The effect of anatomical variability in different brain areas is
illustrated qualitatively by this average-intensity MRI dataset.
Nevertheless, the resulting average brain has regions where
individual structures are blurred out due to spatial variability
in the population (Evans et al., 1992, 1994).

In a recent approach for constructing a probabilistic sur-
face atlas of the brain (Thompson et al., 1996a), a statisti-
cal analysis was performed to assess the three-dimensional
spatial variation of deep surface structures in the brain (in a
reference database of normal scans). Based on this analy-
sis, distributed patterns of abnormality in the same system of
anatomic surfaces were quantified and mapped in new sub-
jects. Specifically, connected systems of parametric meshes
were used to model several deep internal fissures, or sulci,
the trajectories of which represent critical functional and lo-
bar boundaries. Many sulci are comparatively stable in their
incidence and connectivity in different individuals. They are
also sufficiently extended inside the brain to reflect distributed
three-dimensional variations in anatomy between subjects.
The parametric form of the system of connected surface ele-
ments allowed us to represent the relation between any pair of
anatomies as a family of high-resolution displacement maps
carrying the surface system of one individual on to another
in stereotaxic space. An additional surface analysis algorithm
constructed a probability space of random transformations
(based on the theory of 3-D Gaussian random fields) reflecting
the variability in stereotaxic space of the connected system of
anatomic surfaces. Automatic parameterization of the surface
anatomy of new subjects enabled the detection and mapping
of shape and volume abnormalities in the brains of patients
with metastatic tumors. These shape changes were visualized
in the form of probability maps on a graphical surface model
of the subject’s anatomy.
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1.2. A hybrid atlasing strategy
1.2.1. A 3-D deformable probabilistic atlas
This paper describes the development of a more comprehen-
sive probabilistic atlas (Figure 1). The technique used in
Thompson et al. (1996a) quantified anatomic abnormalities in
new subjects only on a connected system of surfaces inside
their brains. In contrast, we have now devised a strategy for
quantifying, mapping and visualizing the anatomic deviations
of any given subject not only on an internal surface system,
but throughout the entire volume architecture of their brain.
To do so, the strategy invokes:

(i) a spatially accurate, anatomically constrained warping
algorithm (Thompson and Toga, 1996a), which com-
putes high-dimensional volume deformations, elastically
transforming 3-D anatomic images from different sub-
jects and/or modalities into structural correspondence
and

(ii) a 3-D probability mapping theory, which generates a vi-
sualizable probability measure throughout the 3-D vol-
ume of the brain. These probability values quantify the
severity of structural abnormalities at a very local level.

A family of high-dimensional volumetric warps relating the
new scan to each normal scan in a brain image database is cal-
culated and then used to quantify local structural variations.
These warps encode the distribution in a stereotaxic space of
anatomic points which correspond across a normal population
and their dispersion is used to determine the likelihood of local
regions of the new subject’s anatomy being in their actual
configuration. Any discrepancies can therefore be mapped
in three-dimensional space, quantified and evaluated. In de-
riving the parameters of anatomic variation, the algorithm
accounts for the fact that the magnitude of normal anatomic
variability, as well as its local directional biases, may dif-
fer significantly at every anatomic point in the brain repre-
sented in the 3-D image lattice of the new subject’s scan.
Preliminary results are shown, in which 3-D MRI and high-
resolution cryosection volumes were analyzed, from subjects
with metastatic tumors and Alzheimer’s disease. Gradual
variations in the underlying anatomy were also simulated and
their dynamic regional effects on the associated probability
maps were visualized in the form of graphical animations (see
the accompanying video).

Computerized strategies for detecting abnormal structural
features in the brain have been very elusive, due to the extraor-
dinary complexity of neuroanatomy and due to the lack of a
precise mathematical framework for encoding and retaining
information about local variability of structure across homo-
geneous populations (Grenander and Miller, 1994). Never-
theless, accurate and reproducible detection and classification
of anatomic differences remains a topic of much interest in

the computer vision and image analysis community. These
difficulties have prompted us to explore hybrid approaches
in which standard computer vision algorithms and statistical
pattern recognition measures are integrated with anatomically
driven elastic transformations which encode complex shape
differences between systems of anatomic surfaces. Accurate
quantitative measurements may then be used to obtain objec-
tive criteria for conditions such as global or regional cerebral
atrophy and for the assessment of gyral or sulcal anomalies
which may be specific to certain disease states (Cook et al.,
1994; Kikinis et al., 1994).

2. METHODS

2.1. Anatomic image acquisition
A multi-modality, multi-subject reference archive of
3-D anatomic images was assembled by imaging many
normal subjects with consistent acquisition criteria.
Three-dimensional (3842 × 256 resolution) T1-weighted fast
SPGR (spoiled GRASS) MRI volumes were acquired from
10 normal subjects, on a GE Signa 1.5 T clinical scanner
with TR/TE 14.3/3.2 ms, flip angle 35◦, FOV 25 cm and
contiguous 1 mm thick slices covering the entire brain. These
subjects were age-matched with an identically imaged patient
with clinically determined Alzheimer’s disease, whose
anatomy was analyzed in our first experiment (see Section 3).
In addition, six ultra high-resolution (10242 × 1300 × 24
bit) full-color digital cryosection volumes were acquired,
as described previously (Toga et al., 1994). Six cadavers
(age range 72–91 years, three males) were obtained, within
5–10 h post-mortem, through the Willed Body Program
at the UCLA School of Medicine. Standard exclusion
procedures were applied (Thompson et al., 1996b). For our
second experiment, an additional cryosection volume was
identically acquired, from an age-matched subject with two
well-defined metastatic tumors (in the high right putamen and
left occipital lobe). Three-dimensional image data from the
18 heads were corrected for differences in relative position
and size by transformation into standardized Talairach
stereotaxic space, using the steps specified in the Talairach
atlas (Talairach and Tournoux, 1988). Control points for
the stereotaxic transformation were identified manually
in both the high-resolution cryosection and MR volumes,
using a 3-D navigation interface (developed by David
MacDonald, Montreal Neurological Institute). Alternative,
more automated approaches are also under investigation
[in particular, the algorithm of Collins et al. (1994b)] for
the transformation of MR image volumes into standardized
Talairach space, with the goal of reducing user intervention
and accelerating the registration procedure.
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2.2. A generic model of brain geometry using parametric
surfaces

2.2.1. Cortical surface extraction
The external cortical surface was extracted automatically
from each scan in parametric form, using the 3-D active sur-
face algorithm of MacDonald et al. (1993, 1994). Because
this algorithm deforms a high-resolution spherical surface
mesh into the configuration of the cortex, the resulting model
is parametric in the sense that a continuous, invertible one-
to-one mapping is always available between points on the
cortical surface model and their counterparts on the surface
of a sphere. This feature will be invoked in a series of al-
gorithms described in subsequent sections. A range of ap-
proaches has been proposed for semi-automatic or automatic
extraction of cortical surfaces from high-resolution 3-D MR
data (Goble et al., 1994; Sandor and Leahy, 1995; Davatzikos
and Bryan, 1996). These methods produce high-resolution
shape representations of the cortex, for subsequent visualiza-
tion and analysis. The 3-D active surface extraction algorithm
of MacDonald et al. (1993, 1994) has been extensively tested
and validated in prior studies (MacDonald et al., 1993, 1994;
Holmes et al., 1996). Its ability to extract high-fidelity surface
representations of the CSF–gray matter and gray–white matter
interfaces in high-resolution MR data has been demonstrated
previously (Holmes et al., 1996). In the course of the surface
extraction, a spherical mesh surface is continuously deformed,
i.e. ‘shrink-wrapped’, to match a target boundary defined by
a threshold value in the continuous 3-D MR image intensity
field. The concept is similar to that of a regular net being
stretched over an object. The algorithm operates in a multi-
scale fashion, so that progressively finer surface detail is ex-
tracted at finer scale representations of the data. Initially, both
the surface mesh and 3-D intensity field are coarsely sampled
and the latter heavily blurred. The initial surface, composed
of 8192 polygons, is extracted rapidly, but expresses only the
gross shape of the cortex. After several finer scale steps, the
data are sampled at 1.0 mm intervals resulting in a surface
consisting of 100 000–150 000 polygons (see Figure 5a, and
d). The spherical parameterization of the deforming surface is
maintained under the complex transformation and the result-
ing model of the cortex consists of a high-resolution mesh of
discrete triangular elements that tile the surface.

2.2.2. Deep surface anatomy
Secondly, since so much of the functional territory of the
human cortex is buried in the cortical folds or sulci, we ap-
plied a series of recently developed parametric strategies for
mapping the internal cortex (Thompson and Toga, 1996b;
Thompson et al., 1996a, b). The construction of extremely
complex surface deformation maps on the internal cortex
is made easier by building a generic structure to model

it (Figure 2). This modeling structure is generic in the
anatomical sense, incorporating a priori topological and
shape information about the deep sulcal pattern. It is also
generic in the computational sense, in that the underlying data
structure consists of a connected system of surface meshes,
in which the individual meshes are parametric and have the
form of complex 3-D sheets which divide and join at curved
junctions to form a network of connected surfaces. Informa-
tion on the spatial relations of these meshes, including their
surface topology (closed or open), anatomical names, mu-
tual connections, directions of parameterization and common
3-D junctions and boundaries is stored in a hierarchical graph
structure [for a powerful related approach see Mangin et al.
(1995)]. This information is required to ensure the continuity
of displacement vector fields and other measures subsequently
defined at mesh junctions.

Connected systems of parametric meshes were used to
model major lobar, ventricular and cytoarchitectural bound-
aries in three dimensions. These included complex internal
trajectories of the parieto-occipital sulcus, the anterior and
posterior calcarine sulcus, the Sylvian fissure and the cingu-
late, marginal and supracallosal sulci in both hemispheres.
The ventricular system was partitioned into a closed system of
14 connected surface elements, the junctions of which reflect
cytoarchitectonic boundaries of the adjacent tissue.

2.2.3. Parametric mesh construction
After digital transformation of the 3-D image data into
Talairach stereotaxic space, the complex internal paths of
the major deep sulcal fissures in each brain were recon-
structed using a contour-based system developed in our lab-
oratory (and available at http://www.loni.ucla.edu/loni code/
loni dist.html), according to the detailed anatomic criteria set
out in Steinmetz et al. (1989). Additional formal guidelines
were devised and applied when identifying the exact course of
individual sulci in three dimensions (Thompson et al., 1996b).
As in Thompson et al. (1996b), the internal trajectory of each
sulcus was defined as the medial surface equidistant between
the gray–white matter interfaces on either side. Sulcal out-
lines were digitized as a cursor was moved over a highly
magnified image of each slice along the curvilinear path of
each sulcus. This resulted in a sampling of ∼15 000 points
per structure, capturing the details of each anatomic surface
at a very local level. In the future more automated strate-
gies for the extraction and identification of deep cortical folds
(Mangin et al., 1995; Le Goualher et al., 1996), sulcal crest
lines (Thirion and Gourdon, 1993) and deep sulcal surfaces
in parametric form (Vaillant et al., 1996) may facilitate the
construction of complex models of deep cortical anatomy.

In the current approach, each surface element, in a con-
nected system of deep cortical folds, was converted into the
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Figure 1. Strategy for construction of the brain atlas. A family of high-dimensional volumetric warps relating a new subject’s scan to each
normal scan in a brain image database is calculated (I, II, above) and then used to quantify local structural variations. Differences in cortical,
ventricular and deep sulcal topography are recorded in the form of vector field transformations in 3-D stereotaxic space which drive both
subcortical anatomy and the gyral–sulcal patterns of different subjects into register. The resulting family of warps encodes the distribution in
stereotaxic space of anatomic points which correspond across a normal population (III) and their dispersion is used to determine the likelihood
(IV) of local regions of the new subject’s anatomy being in their actual configuration. Easily interpretable, color-coded topographic maps are
generated to highlight regional patterns of deformity in the anatomy of the new subject. This approach enables abnormal structural patterns to
be quantified locally and mapped in three dimensions.

form of a parametric mesh as previously described (Thomp-
son et al., 1996a, b). Briefly, parameterization of these deep
surfaces involves the molding of a linearly elastic lattice-like
mesh onto the geometric profile of each surface (Figure 3).
The concept is similar to that of a regular net being stretched
over an object. Interactive outlining of each sulcal sur-
face S produces an ordered set of cross-sectional contours
C0,C1,C2, . . . ,CK of S, where each contour is itself an or-
dered set of 3-D digitized points Ck = {Pi (xk

i , yk
i , z

k
i )|0 ≤

i ≤ Nk} in Talairach stereotaxic space. The number of
points, Nk, varies for each member, Ck, of the overall stack of
contours. Let ‖x− y‖ denote the distance between 3-D points
x and y. To create a mesh of size I×J, we first define, for each
Ck, a cumulative arc length l (pk

i ) =
∑

j=1 to i ‖pk
j − pk

j−1‖ to
point pk

i = Pi (xk
i , yk

i , z
k
i ). For each integer u = 0 to I , we

also let i (u) = min{i |l (pk
i ) > ul(pk

Nk)/I }. A family of K
parametric curves is then given by

qk
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i (u) − pk

i (u)−1),

where
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i (u))− l (pk

i (u)−1)}.

We then let lu(qk
u) be the cumulative arc length∑

i=1 to k

‖qi
u − qi−1

u ‖.

For each integer v = 0 to J, we let

i (v) = min{i |lu(qi
u) > vlu(qi

K )/J}
and

µ = {(vlu(qi
K )/J)− lu(qi (v)−1

u )}/{lu(qi (v)
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Then the 3-D lattice of points

r(u, v) = qi (v)−1
u + µ(qi (v)

u − qi (v)−1
u ),

0 ≤ u ≤ I , 0 ≤ v ≤ J,
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Figure 2. Connected surface systems used to drive the 3-D warp. The complex internal trajectory of the deep structures controlling the
deformation field is illustrated here. Deep sulcal surfaces include: the anterior and posterior calcarine (CALCa/p), cingulate (CING), parieto-
occipital (PAOC) and callosal (CALL) sulci and the Sylvian fissure (SYLV). Also shown are the superior and inferior surfaces of the rostral horn
(VTSs/i) and inferior horn (VTIs/i) of the right lateral ventricle. Ventricles and deep sulci are represented by connected systems of rectangularly
parameterized surface meshes, while the external surface has a spherical parameterization which satisfies the discretized system of Euler–
Lagrange equations used to extract it. Connections are introduced between elementary mesh surfaces at known tissue-type and cytoarchitectural
field boundaries and at complex anatomical junctions (such as the PAOC–CALCa–CALCp junction shown here). Color-coded profiles show
the magnitude of the 3-D deformation maps warping these surface components (in the right hemisphere of a 3-D T1-weighted SPGR MRI scan
of an Alzheimer’s patient) onto their counterparts in an identically acquired scan from an age-matched normal subject.

Figure 3. Parametric mesh construction. Comparison and analysis of anatomical models in multiple subjects is facilitated by deriving a standard
surface representation of the same type for each corresponding structure. Interactive outlining results in a sampling of ∼15 000 points (dots,
right-hand panel) located on the boundary of each structure. Although this dense system of points captures the shape details of each anatomic
surface at a very local level, their spatial distribution is not quite uniform. To eliminate this dependency, an algorithm (described in the main
text) generates a parametric grid of 100×150 uniformly spaced points that act as nodes in a regular rectangular mesh stretched over the surface
(right). This scheme provides a means for converting dense systems of points, sampled during outlining, into fully parametric surfaces that can
be analyzed, visualized and compared geometrically and statistically.



          

A probabilistic deformable brain atlas 277

Figure 4. Scheme for matching connected systems of anatomic surfaces. Accurate detection and encoding of anatomic differences between
subjects requires transformation tools that deform connected systems of mesh-based surface models (right) representing structures in one
subject’s anatomy into correspondence with their counterparts (left) in the anatomy of another subject. The computation of this mapping
is conceptualized mathematically as a surface-based displacement map, which deforms one system of surfaces into the shape of another.
Maintenance of information on surface connectivity guarantees accurate mapping of curved junctions among surfaces, under both the surface-
based and subsequent volumetric transformations. Note that matching of surfaces with a spherical parameterization requires the design of
separate methods, which deal with the matching of curved internal landmarks. These are detailed in Subsection 2.3.3.

designates the grid points of a regular parametric mesh of size
I × J spanning the sulcal surface S.

Each resultant surface mesh is analogous in form to a uni-
form rectangular grid, drawn on a rubber sheet, which is sub-
sequently stretched to match all data points. Association of
points on each surface with the same mesh coordinate pro-
duces a dense correspondence vector field between surface
points in different subjects. This procedure is carried out un-
der very stringent conditions (see Subsection 2.2.4), in order
to guarantee that the modeling approach has biological as well
as computational validity. Constraints on surface parameter-
izations are designed to ensure that all available anatomical
information is incorporated into the model and exploited in
driving and constraining the correspondence maps which as-
sociate anatomic points in different subjects.

Imposition of an identical regular structure on anatomic
surfaces from different subjects (Figure 4) is also required for
surface statistics to be derived (Figure 9a). The explicit geom-
etry provided by a parametric mesh-based approach has also
proved advantageous for the rapid generation of morphomet-
ric statistics from anatomic models derived from normal and
diseased populations, as well as quantitative indices of sur-
face curvature, extent, area, fractal dimension and structural
complexity (Thompson and Toga, 1996b; Thompson et al.,
1996b).

2.2.4. Definition of point correspondences on different
surfaces

Much research has been devoted to developing robust
methods for defining homology between mesh points, when
mesh-based surface models are made to represent anatomical

surfaces in different subjects. Parametric mesh approaches,
which define a mapping of a 2-D regular grid onto a 3-D
surface (Bookstein et al., 1985; Pedersen, 1994) permit
cross-subject comparisons to be made by association of
different kinds of points (landmark and non-landmark)
among geometric forms (Bookstein et al., 1985; see
Figure 4). For the comparisons to be valid, several criteria
are enforced. First, landmark curves and points known
to the anatomist must appear in corresponding locations
in each parametric grid. For this reason, the calcarine
sulcus (see Figures 2 and 9) was not modeled as a single
mesh, but was partitioned into two meshes (CALCa and
CALCp); the complex 3-D curve forming their junction
with the parieto-occipital sulcus was therefore accurately
mapped under both the surface displacement and 3-D
volumetric maps, reconfiguring one anatomy into the shape
of another. Figure 4 illustrates this procedure in a case where
three surface meshes in one brain are matched with their
counterparts in a target brain. Exact matching is guaranteed
at a three-dimensional junction between the surfaces. This
type of method for constraining surface parameterizations,
using 3-D free-form landmark curves as constraints, supports
both (i) partitioning of parametric elements along landmark
curves known to the anatomist and (ii) matching of systems
of curves lying within a surface with their counterparts in a
target brain. The latter strategy is adopted in Section 3 for
bringing gyral regions of the cortex into better alignment. In
addition, when mapping a parametric grid from one sulcal
surface r(1)(u, v) to its counterpart in another brain r(2)(u, v),
a second criterion is enforced. This criterion ensures that the
amount of local stretching or contraction of the grid which
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Figure 5. Scheme for matching cortical regions with high-dimensional transformations and color-coded spherical maps. High-resolution surface
models of the cerebral cortex were extracted in parametric form, using the active surface algorithm of MacDonald et al. (1993, 1994). This
means that a continuous, invertible one-to-one mapping is always available between points on the cortical surface (a) and their counterparts
on the surface of a sphere. No three-dimensional information is lost in this data representation scheme, as each point in the spherical map (b)
is color-coded with a color value which accurately and uniquely represents the location of its counterpart on the convoluted surface model (a)
in 3-D stereotaxic space. (To preserve accuracy, floating point triplets, representing cortical surface point locations in stereotaxic space, are
color-coded at 16 bits per channel to form an image of the parameter space in RGB color image format.) To find good matches between cortical
regions in different subjects (a and d), we first derive a colorized spherical map for each respective surface model (b and c) and perform the
matching process in the angular parametric space. When spherical maps are made from two different cortical surfaces, the respective sulci will
be in different positions in each spherical map (b and c), reflecting their different locations on the folded brain surface [shown here in pink, (a and
d); curved lines are thickened for visualization purposes only]. Using a complex vector-valued flow field defined on the sphere (c), the system
of sulcal curves in one spherical map can be driven into exact correspondence with their counterparts in the target spherical map, guiding the
transformation of the adjacent regions. A spatially accurate, anatomically driven warping algorithm is used (Thompson and Toga, 1996a), which
calculates the high-dimensional deformation field (typically with 65 536 × 3 ≈ 200 000 degrees of freedom) which reconfigures the starting
spherical map, and the networks of curves embedded within it, into the shape of their counterparts in the target spherical map. The effect of
the transformation is illustrated in (c) by its effect on a uniform grid, ruled over the starting spherical map and passively carried along in the
resultant deformation. Notice the complex reconfiguration of sulcal landmarks, and how they drive the deformation of the surrounding cortex,
allowing for complex profiles of dilation and contraction of the surface into the shape of the target surface. Complex non-linear flow is observed
in superior temporal regions, as the superior temporal sulcus (STS) extends further posteriorly in the target brain and the posterior upswing of
the Sylvian fissure (SYLV) is more pronounced in the reference brain (a) than in the target (d). Outlines are also shown for the superior frontal
sulcus (SFS) and for the central sulcus (CENT) which is far less convoluted in the reference brain than in the target. Because the color-coded
spherical maps index cortical surface locations in 3-D, the transformation of one spherical map to another can be recovered in 3-D stereotaxic
space as a displacement of points in one subject’s cortex onto their counterparts in the cortex of another subject. Matching can therefore be driven
by a network of anatomically significant surface features. High spatial accuracy of the match is guaranteed in regions of particular functional
significance or structural complexity, such as sulcal curves, lobar and cytoarchitectural boundaries and critical functional landmarks.
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results, represented by the scalar field

θ(u, v) = [‖∂r(2)(u, v)/∂u‖·‖∂r(2)(u, v)/∂v‖]
×[‖∂r(1)(u, v)/∂u‖·‖∂r(1)(u, v)/∂v‖]−1,

is uniform across the whole surface. The resulting corre-
spondence field r(1)(u, v) → r(2)(u, v) between surfaces is
unaffected by, and entirely independent of, any global trans-
lational or rotational shifts of one surface relative to the other
(Thompson et al., 1996a). Experiments conducted and dis-
cussed by Thompson et al. (1996b) indicate that this surface
correspondence algorithm results in an accurate, reproducible,
invertible and rotation-invariant method for determining sur-
face correspondence fields. It is by no means the only ap-
proach and other powerful techniques have been proposed
for matching arbitrary 3-D surfaces based on differential in-
variants, such as mean and Gaussian curvatures (Feldmar and
Ayache, 1994) and crest lines (Monga and Benayoun, 1995).
Curvature-based approaches have many advantages in match-
ing curved cortical, ventricular and callosal features (Declerck
et al., 1995; Davatzikos, 1996; Davatzikos et al., 1996). The
suitability of these differential invariants, across subjects, for
matching of deep sulcal surfaces is also under active investi-
gation by ourselves and several other research groups (Joshi
et al., 1995a, b; Vaillant et al., 1996). Consistency, across
subjects, in sulcal curvature patterns, would be necessary for
the success of curvature-based sulcal matching. Variable in-
cidence and numbers of secondary convolutions (Ono et al.,
1990) and the lack of a consistent one-to-one map between
these features across subjects (e.g. note the morphology of
the cingulate sulcus in Figure 8a and b), led us to not adopt
curvature-based constraints, in this study, for cross-subject
matching of deep sulcal surfaces. Instead, we were encour-
aged to adopt the uniform surface-dilation approach described
above. The correspondence vector field which this defines
also sets up a transitive, invertible, equivalence relation on
surface points in different subjects. Invertibility properties
are advantageous for sulcal matching (Luo and Evans, 1995),
because they guarantee that the same pairs of surface points
will be matched up by the algorithm in different subjects, re-
gardless of the order in which one scan is warped onto another
(Figure 4). Transitivity is also an advantageous property for
algorithms which perform surface matching across many sub-
jects. Transitivity guarantees that the same surface points in
different scans in the database will be associated, irrespec-
tive of which scan is mapped onto the remaining scans in
the database to define these correspondences. As well as
meeting the additional anatomical criteria described above,
this surface matching approach has also been explored, tested
and validated statistically in previous studies (Thompson and
Toga, 1996a, b; Thompson et al., 1996a, b, c).

2.3. High-dimensional elastic warping driven by
parametric surface systems

2.3.1. Overview of the 3-D warping algorithm
Once the surface parameterization and transformation
algorithms had been tested and validated on a range of
multi-modal image volumes (Thompson et al., 1996a, b),
the mathematical theory for a surface-based 3-D warping
algorithm was devised (Thompson and Toga, 1996a). This
algorithm calculates the high-dimensional deformation
field (typically with 3842 × 256 × 3 ≈ 108 degrees of
freedom) relating the brain anatomies of an arbitrary pair
of subjects. Using complex 3-D deformation maps, the
connected surface elements in one scan are driven into exact
correspondence with their counterparts in a target scan,
guiding the transformation of the adjacent brain volume.
High spatial acuity of the warp is guaranteed at the surface
interfaces used to constrain it and these include many critical
functional interfaces such as the ventricles and cortex, as
well as numerous cytoarchitectonic and lobar boundaries
in three dimensions. The spatial accuracy of the approach
was demonstrated on multi-modality real and simulated data
in Thompson and Toga (1996a), where full details of the
algorithm are presented. Briefly, the algorithm calculates
the deformation field required to elastically transform the
elements of the surface system in one 3-D image to their
counterparts in the target scan. Weighted linear combinations
of radial functions, describing the influence of deforming
surfaces on points in their vicinity, are then used to extend
this surface-based deformation to the whole brain volume.

2.3.2. Matching of deep connected systems of internal
surfaces

Let 3 be the image lattice {(i, j, k)|0 ≤ i ≤ I , 0 ≤ j ≤
J, 0 ≤ k ≤ K ; I , J, K , i, j, k ∈ N} and let � = {(u, v)|0 ≤
u ≤ U, 0 ≤ v ≤ V;U,V, u, v ∈ N} be the lattice of
integer-valued grid points in a rectangular domain of R2, of
fixed size U × V (for any positive integers U and V). As in
Thompson and Toga (1996a), let the l th parametric surface in
the nth brain be denoted by the mesh

Mn
l = {rn

l (u, v)|0 ≤ u ≤ U, 0 ≤ v ≤ V}.

For each of the L different types of anatomic surface, let
Fl = {Mn

l , �, N} be the family of N parametric meshes
Mn

l : � ⊂ R2 → R3 representing that structure in the N
scans {A1, . . . ,AN} comprising the reference database. For
each pair of scans Ap and Aq in the reference database, the
goal is to define a 3-D displacement field Wpq(x), carrying
each surface point x ∈ Ap into structural correspondence with
its anatomic counterpart in Aq, as follows. Firstly, for each
surface mesh Mp

l in Ap we define corresponding displacement
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maps (Figure 4) on the surfaces, i.e.

Wpq
l

[
rp
l (u, v)

] = rq
l (u, v)− rp

l (u, v)

(see Subsection 2.2.4).
As illustrated in Figure 4, here Wpq

l [rp
l (u, v)] is a 3-D

displacement vector, which, when applied to the mesh point
rp
l (u, v), drives it into correspondence with rq

l (u, v), which
is the point in the target mesh parameterized by rectangular
coordinates (u, v).

This family of high-resolution transformations, applied to
individual meshes in a connected system deep inside the brain,
represents a method for transforming and reconfiguring a deep
system of anatomic surfaces in one individual onto their coun-
terparts in a target brain.

2.3.3. Cortical surface matching with high-dimensional
transformations and color-encoded spherical maps

The full complexity of the correspondence field which
matches two cortical surfaces is considerable; even the
sulci which match have arbitrary 3-D trajectories and are
embedded in highly convoluted surfaces. Special algorithms
are therefore required to define a dense correspondence
vector field between scans on the external cortex. To
find good matches between cortical regions, we perform
the matching process in the cortical surface’s spherical
parametric space (Thompson and Toga, 1996a; see Figure 5).
Approaches using sulcal lines to drive a 3-D volumetric
warp are under active investigation in macaque (Joshi et al.,
1995a) and human MR data (Banerjee et al., 1995; Declerck
et al., 1995; Luo and Evans, 1995), and have been combined
with regional intensity correlation to assist in calculating
the inter-subject transformation field at the cortical surface
(Collins et al., 1996). Our method is conceptually more
similar to that of Davatzikos (1996) and is summarized as
follows. Three-dimensional active surfaces first produce
parametric representations of each subject’s cortex, on
which corresponding networks of anatomical curves are
identified. The transformation relating these networks is
expressed as a vector flow field in the parameter space of the
cortex. This vector flow field in parameter space indirectly
specifies a correspondence field in 3-D, which drives one
cortical surface into the shape of another, matching up every
element of the specified system of landmark curves, with its
counterpart in the target brain.

Because the cortical model is arrived at by the deforma-
tion of a spherical mesh [MacDonald et al. (1993, 1994); cf.
Székely et al. (1996) for a discussion of this type of model-
ing approach], any point on the cortical surface must map to
exactly one point on the sphere and vice versa. The location
on the sphere corresponding to a surface point defines the

parameters of the point; curves on the brain surface (Fig-
ure 5a), such as sulci, have exact counterparts on the globe
coordinate grid.

Colorized RGB maps of the cortical parameter space.
Because surface models of the cerebral cortex were extracted
in parametric form, by the continuous deformation of
a spherical mesh surface, this means that a continuous,
invertible one-to-one mapping is always available
between points on the cortical surface (Figure 5a) and
their counterparts on the surface of a sphere (Figure 5b).
Consequently, all of the sulcal curves and landmarks in
the folded brain surface can be reidentified in the spherical
map (see Figure 5b), because the spherical map is just
an alternative way of representing the brain surface. To
avoid loss of three-dimensional information in this data
representation scheme, each point in the spherical map
(Figure 5b) is color-coded with a color value which accurately
and uniquely represents the location of its counterpart on
the convoluted surface model (a) in 3-D stereotaxic space.
To preserve accuracy, floating point triplets, representing
cortical surface point locations in stereotaxic space, are
color-coded at 16 bits per channel to form an image of
the parameter space in RGB color image format. To find
good matches between cortical regions in different subjects
(Figure 5a and d), we first derive a spherical map for each
respective surface model (Figure 5b and c) and perform the
matching process in the spherical parametric space.

Cortical maps. For our current goal, color-coded spherical
maps are advantageous for matching cortical regions in
different subjects, because the relevant geometric and topo-
logical information in the sulcal pattern can be stored in a two-
dimensional array structure which supports easy localization
of salient features, as well as search and comparison strate-
gies. Much research has also been devoted to computational
methods for flattening cortical models into a fully 2-D planar
representation (Van Essen and Maunsell, 1980; Schwartz and
Merker, 1986; Dale and Sereno, 1993; Carman et al., 1995;
Drury et al., 1996b). Faithfully implementing the concept
of flattening with all its facets has proved difficult, since the
exact Euclidean metric has to be retained along with the flat
map to avoid loss of relevant 3-D spatial information about
the cortex. For our current purpose, the very difficult issue of
creating planar 2-D maps which optimally preserve point-to-
point distances is avoided, because the 16-bit color encoding
of the spherical map enables measures of in-surface distance
between points on the cortex to be computed from the 3-D
cortical model directly, rather than from a derived or flattened
map of the cortical parameter space.
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When colorized spherical maps are made from two differ-
ent cortical surfaces (Figure 5a and d), the respective sulci
will be in different positions in each spherical map, reflecting
their different locations on the folded brain surface. Using a
complex deformation map (Figure 5c), the system of sulcal
curves in one spherical map can be driven into exact corre-
spondence with their counterparts in the target spherical map,
guiding the transformation of the adjacent regions. To do this,
a spatially accurate, anatomically driven warping algorithm is
used (Thompson and Toga, 1996a), which calculates the high-
dimensional deformation field (typically with 65 536 × 3 ≈
200 000 degrees of freedom) which reconfigures the starting
spherical map into the shape of the target spherical map. This
displacement map is a vector field which matches up major ex-
ternal sulci and is driven by a set of uniformly parameterized
external curves, ck(t). These curves mark critical functional
landmarks and lobar boundaries at which deep sulcal surface
meshes interface with the automatically extracted external
cortex.

Identification of sulcal networks. Because several networks
of sulcal curves are used to compute the mapping of one
surface onto another, these features must first be identified
in high-magnification surface renderings of the cortex of
each subject. With the aid of an interactive contouring pro-
gram (developed by David MacDonald, Montreal Neurolog-
ical Institute), these sulci were outlined directly using a 3-D
navigation interface, on a highly magnified surface-rendered
image of each cortical surface. Priority was given to bi-
ological features the topological consistency of which has
been demonstrated across normal populations (Ono et al.,
1990). Three-dimensional curves were drawn to represent
(i) the posterior–medial limit of the occipital lobe in each
hemisphere, between the parieto-occipital and posterior cal-
carine sulci; (ii) the inferior limit of the lingual gyrus at
the medial wall of each brain hemisphere, from the poste-
rior calcarine sulcus to the splenium of the corpus callosum;
(iii) the superior–medial boundary of the parietal lobe, from
the parieto-occipital to the central sulcus; (iv) the anterior
boundary of the frontal lobes, from the superior–medial limit
of the central sulcus to the antero-medial tip of the supe-
rior rostral sulcus; (v) the inferior boundary of the frontal
lobes, from the superior rostral sulcus posteriorly and infe-
riorly along the rhinal gyri to the rostral tip of the anterior
commissure. As major functional interfaces in the brain,
these primary sulci and cortical landmarks were selected be-
cause they are easily identifiable, mark critical gyral and lo-
bar boundaries and extend sufficiently far across the cerebral
hemispheres to introduce a topological decomposition of their
external surface. In addition, their trajectories are sufficiently

extended across the exterior surface of the brain to reflect
distributed variations in neuroanatomy between individuals.

As seen in Figure 5, the cortical surface warp from Ap to
Aq will have the form

(r C
p , θ, φ)+WC

pq = (r C∗
q , θ + [1θ(θ, φ)], φ + [1φ(θ, φ)]),

where (r C
p , θ, φ) is a point on the cortex of scan p, WC

pq is
a 3-D displacement vector which takes this point onto the
cortical point (r C∗

q , θ + [1θ(θ, φ)], φ + [1φ(θ, φ)]) in scan
q. The parameter shift functions,1θ(θ, φ) and1φ(θ, φ), in-
dicate that corresponding points in different cortical surfaces
will, in general, be found at different parameter locations on
their respective surfaces. Appropriate parameter shifts are
given by the solution to a curve-driven warp in the biperiodic
parametric space (θ, φ) ∈ [0, 2π) × [0, π) = 0 of the
external cortex (cf. Davatzikos, 1996; Drury, 1996), using a
previously published method (Thompson and Toga, 1996a).
Briefly, this method calculates the deformation field required
to transform elastically the curved sulcal landmarks in one
spherical map (e.g. Figure 5b) into the exact configuration of
their counterparts in the target spherical map (e.g. Figure 5c).
Spherical harmonic functions, which describe the influence of
deforming curves on points in their vicinity, are then used to
extend this curve-based deformation to the whole surrounding
spherical map. The spatial accuracy of this approach was
demonstrated previously (Thompson and Toga, 1996a; Mega
et al., 1997) where full details of the algorithm are presented.

One aspect of this transformation not covered in prior work
is how the deformation field which transforms one spherical
map (and its embedded curve networks) into the configura-
tion of their counterparts in another spherical map, indirectly
specifies a correspondence field which matches up points and
regions on the convoluted cortical surfaces which the spher-
ical maps represent (Figure 5a and d). Because the spherical
maps index cortical surface locations in 3-D, the transforma-
tion of one spherical map to another can be recovered in 3-D
stereotaxic space as a displacement of points in one subject’s
cortex onto their counterparts in the cortex of another subject.

This is achieved by computing a series of mathematical
mappings, the relationships of which are indicated in Figure 6.
If we let {x0, x1, y0, y1, z0, z1} represent the extreme (lowest
and highest) allowable x, y and z coordinate values for points
in Talairach stereotaxic space, then the 3-D stereotaxic lo-
cations of cortical surface points in the pth brain are color-
encoded in the form of a spherical map, using the invertible
function

I p : (xp, yp, zp)→ (R,G,B),

with 16-bit RGB color channel values given by R = (216 −
1)(xp − x0)/(x1 − x0), G = (216 − 1)(yp − y0)/(y1 − y0),
B = (216 − 1)(zp − z0)/(z1 − z0). Since the cortical surface
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Figure 6. High-dimensional matching of cortical surfaces and sulcal networks. Accurate and comprehensive matching of cortical surfaces
requires more than the matching of overall cortical geometry. Connected systems of curved sulcal landmarks, distributed over the cortical
surface, must also be driven into correspondence with their counterparts in each target brain. A cascade of mathematical mappings is required
to achieve this. Active surface extraction of the cortex provides a continuous inverse mapping from the cortex of each subject to the spherical
template used to extract it. Application of these inverse maps (D−1

p , D−1
q ) to connected networks of curved sulci in each subject transforms the

problem into one of computing an angular flow vector field Fpq, in spherical coordinates, which drives the network elements into register on
the sphere (Thompson and Toga, 1996a). To greatly accelerate computation of the overall mappings Dq FpqD−1

p , the forward mapping Dq, is
pre-encoded via the mapping I −1

q Kq as a three-channel floating point array (shown here in color) defined on the co-domain of Fpq. The full
mapping Dq FpqD−1

p can be expressed as a displacement vector field which drives cortical points and regions in brain P into precise structural
registration with their counterparts in brain Q.

extraction algorithm, described earlier, continuously deforms
a spherical mesh of points, with initial angular position (θ, φ),
onto 3-D cortical points with stereotaxic coordinates (x, y, z),
we may also represent the extraction of the cortical surface
from the pth scan as an invertible mapping Dp : (θ, φ) →
(xp, yp, zp). Then if Kq : (θ, φ)→ (R,G,B) represents the
color already assigned by the mapping Iq at angular position

(θ, φ) in the spherical map of the qth brain, and if Fpq :
(θ, φ) → (θ + [1θ(θ, φ)], φ + [1φ(θ, φ)]) represents the
angular flow field on the sphere calculated for mapping the
pth cortical model into the shape of the qth cortical model,
then the cortical surface warp WC

pq is given as a displacement
map in Cartesian coordinates by the composite mapping

(xp, yp, zp)+WC
pq = (xq, yq, zq),
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where

(xq, yq, zq) = I −1
q Kq FpqD−1

p (xp, yp, zp).

This sequential procedure is illustrated in Figure 6. Using
this method, surface matching can be driven by anatomically
significant surface features and the high spatial accuracy of
the match is guaranteed in regions of functional significance
or structural complexity, such as sulcal curves and cortical
landmarks. Consequently, the transformation of one cortical
surface model onto another is parameterized by one transla-
tion vector for each mesh point in the surface model or 3 ×
65 536 ≈ 0.2 × 106 parameters. This high-dimensional
parameterization of the transformation is required to accom-
modate the fine anatomical variations (cf. Christensen et al.,
1995a).

2.3.4. Systems of surface deformation maps drive the full
3-D volume transformation of one brain onto another

The surface maps described so far drive the full 3-D volume
transformation as detailed extensively in Thompson and Toga
(1996a). Briefly, for a general voxel x in the scan Ap to be
transformed, let δ p

l (x) be the distance from x to its nearest
point(s) on each surface mesh Mp

l and let the scalars γ p
l (x) ∈

[0, 1] denote the weights {1/δ p
l (x)}/

∑
l=1 to L{1/δ p

l (x)}. Then
Wpq(x), the displacement vector which takes a general point
x in scan p onto its counterpart in scan q, is given by the linear
combination of functions:

Wpq(x) =
∑

l=1 to L

γ
p

l (x)·Dpq
l (npp

l (x)), for all x ∈ Ap.

Here Dpq
l are distortion functions (Figure 7) due to the defor-

mation of surfaces close to x, given by

Dpq
l (x) =

{∫
r∈B(x;rc)

w
p
l (x, δ

p
l (r))·Wpq

l [npp
l (r)]dr

}
×
{∫

r∈B(x;rc)

w
p
l (x, δ

p
l (r))dr

}−1

.

Wpq
l

[
npp

l (r)
]

is the (average) displacement vector assigned by
the surface displacement maps to the nearest point(s) npp

l (r)
to r on Mp

l . Rc is a constant and B(x; rc) is a sphere of radius
rc = min{Rc,min{δ p

l (r)}}. The wp
l are additional weight

functions defined as

w
p
l (x, δ

p
l (r)) = exp(−{d(npp

l (r), x)/δ p
l (x)}2),

where d(a, b) represents the 3-D distance between two points
a and b. The Jacobian of the transformation field at each
point x is tracked during the computation, as recommended

by Christensen et al. (1995b)a. In rare cases where the trans-
formation is locally singular, the vector field computation is
discretized in time and the deformation field is reparameter-
ized at successive time steps, as suggested in Christensen
et al. (1996). Intermediate surface blends (1 − t)rp

l (u, v) +
trq

l (u, v) (t ∈ [0, 1]), are generated for every surface and
these surfaces are uniformly reparameterized at times 0 ≤
. . . tm ≺ tm+1 . . . ≤ 1, as described in Subsection 2.2. The M
warps mapping the full surface system and surrounding vol-
ume from one time point to the next are then concatenated to
produce the final transformation. This incremental evolution
of the transformation is visualized in the accompanying video
(see Section 3). Computational speed is also critical for the
practical utility of this algorithm and this issue is addressed at
the end of Section 2.4.

Alternative approaches. Experiments conducted and dis-
cussed in Thompson and Toga (1996a) indicate that this
method for driving a 3-D deformation field with a connected
graph of embedded parametric surfaces results in an accu-
rate, reproducible and rotation-invariant algorithm for com-
puting complex vector fields which handle large-magnitude
deformations and reconfigure one anatomy into the shape of
another. This is by no means the only approach and other
powerful methods have been proposed for calculating high-
dimensional transformation fields of brain imagery, driven by
anatomic features. Declerck et al. (1995) express a volume
transformation driven by crest lines as a 3-D tensor product of
B-spline basis functions. Similarly, Davatzikos (1996) used
closed surface models of the ventricles and cortex as anatom-
ical constraints, in a 3-D elastic registration algorithm. In
another model, Joshi et al. (1995b) demonstrated that a 3-D
warping field driven by embedded points, curves and surfaces
may also be viewed as the solution of a generalized Dirichlet
problem, the precise mathematical form of which depends on
the Green’s function of the self-adjoint linear operator de-
scribing the mechanics of the deforming system. The method
presented here was adopted because of its ability to accurately
transform complex systems of connected tissue interfaces into
structural correspondence with their counterparts in a target
brain, respecting complex differences in gyral, cortical and
deep sulcal topography from one individual to another (see
Figure 8a–c). This type of registration of critical lobar, sulcal
and cytoarchitectural boundaries is only possible with a high-
dimensional warping technique.

aThe local Jacobian determinant is a scalar field which provides an index of
the topological integrity of the deforming template, with values of zero or
below indicating that extension of the deformation field from the computation
lattice to the continuous domain would not result in a one-to-one transforma-
tion of the deforming scan onto the target.
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Figure 7. Volume warp calculation. The volumetric transformation Wpq(x) of an arbitrary point x in the pth scan to its counterpart in the
qth scan is expressed as a weighted linear combination of distortion functions associated with each surface. Within a surface Si , the relative
contribution of each point in the projected patch {npi [B(x; rc)]} to the elastic transformation at x is given a relative weight wi . The distortion
at x due to surface Si is given by Dpq

i (x) = {
∫

B wi W
pq
i dr}/{∫B wi dr}, where the Wpq

i are the displacement maps defined on each surface (see
Subsections 2.3.2 and 2.3.3). The volume warp Wpq(x) is a weighted average (over i ) of Dpq

i , depending on the relative distance γi (x) of x from
its near points on each surface Si [adapted from Thompson and Toga (1996a)].

2.4. Probability mapping theory
Given a new subject’s 3-D brain scan, T, our goal was to
assign a probability value p(x) to each anatomic point x in
T. This probability value indicates how abnormally situated
that point is, given where its counterparts are in the normal
scans which make up the database. For increasingly extreme
deviations of the anatomic structure at x from its counterparts
in the normal scans, the associated probability p(x) of finding
the structure there will be correspondingly lower.

Probability values are assigned as the result of a two-stage
process, as follows.

(i) For each anatomic point x in the new subject’s scan, T, its
counterparts are found in the N normal scans (Figure 1, I
and II). This is done by calculating the set of warping
fields {WT n(x)}n=1 to N deforming scan T into structural
correspondence with each of the N scans in the database.

(ii) A 3-D probability density function is then recovered
from the distribution (in stereotaxic space) of the N
points corresponding to x (Figure 1, III). The probabil-
ity of the anatomic structure at x is then assessed (Fig-
ure 1, IV) with reference to the resulting probability
distribution.

2.4.1. Three-dimensional spatial variability of anatomy in
stereotaxic space

Firstly, let WT n(x) be the 3-D displacement vector mapping
voxel x in the new subject’s scan, T, onto its counterpart in the
nth brain. Its counterparts in stereotaxic space have a mean
position

µ(x) = x+ 1

N

∑
n=1 to N

WT n(x),

and 3× 3 dispersion matrix 9(x) whose entries are given by

9i j (x) =
(

1

N − 1

) ∑
n=1 to N

|πi Wnµ(x)|·|π j Wnµ(x)|,

where 1 ≤ i, j ≤ 3 and π1, π2, π3 are orthogonal projec-
tions onto each of the three axes of stereotaxic space. Here
Wnµ(x) is defined as µ(x)− (x+WT n(x)) or simply µ(x)−
counterpartn(x) and can be regarded as the 3-D displacement
vector which takes x’s counterpart in scan n onto the mean
position, or centroid, of x’s counterparts in the database. 9(x)
can be regarded as the covariance matrix of the counterparts
of x in the database of normal scans. The diagonal elements
9kk = σ 2

k are the variances of the x, y and z components of
the N volumetric warps Wnµ(x) at x, respectively, and the off-
diagonal elements represent the degree of correlation among
the components. Then if Wnµ(x) has the multivariate normal
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Figure 8. MRI-to-MRI experiment. T1-weighted MR sagittal brain slice images from (a) a randomly selected normal scan from the reference
archive; (b) the target anatomy, from a patient with clinically determined Alzheimer’s disease; (c) the result of warping the reference anatomy
into structural correspondence with the target. Due to the high degree of cerebellar atrophy, the cerebellar surface was also used to control
the deformation in this case. Note the precise non-linear registration of the cortical boundaries, the desired reconfiguration of the major sulci
and the contraction of the ventricular space and cerebellum. Both global and local differences in anatomy have been accommodated by the
transformation. The complexity of the recovered deformation field is shown by applying the two in-slice components of the 3-D volumetric
transformation to a regular grid in the reference coordinate system. This visualization technique (d) highlights the especially large contraction
in the cerebellar region and the complexity of the warping field in the posterior frontal and cingulate areas, corresponding to subtle local variations
in anatomy between the two subjects. To monitor the smooth transition to the surrounding anatomy of the deformation fields initially defined
on the surface systems, additional software was developed to visualize the magnitude of the warping field on the surface anatomy of the target
brain, as well as on an orthogonal plane slicing through many of these surfaces at the same level as the anatomic sections (e). Note the smooth
continuation of the warping field from the complex anatomic surfaces into the surrounding brain architecture and the highlighting of the severe
deformations in the pre-marginal cortex, ventricular and cerebellar areas. Inter-modality warping: mapping 3-D digital cryosection volumes
onto 3-D MRI volumes. The result of warping a randomly selected 3-D cryosectioned image (f) into the shape of the target MRI anatomy (b)
is shown in (g), with cortical and ventricular landmarks of the target anatomy superimposed. Note the degree to which the reference corpus
callosum is deformed into the shape of the target corpus callosum. Also, note the reconfiguration (i) of the major occipital lobe sulci (h) into
the shape of the target anatomy. This type of registration of critical lobar, sulcal and cytoarchitectural boundaries would only be possible with
a high-dimensional warping technique.

density on R3 with covariance 9(x), then even for small N
the quantity

F(n, x, N) = [N(N − 3)/3(N2 − 1)]

×[Wnµ(x)]T[9(x)]−1[Wnµ(x)]

is an F-distributed variable with 3 and N − 3 degrees of
freedom (Anderson, 1984). Note that this quantity is an F-
distributed function which depends not just on the size of the
database, N, but also on the number of the scan (n) onto which

the anatomy of the subject under analysis is being warped. It
is a measure of how much the point corresponding to x in scan
n deviates from the three-dimensional distribution of N points
corresponding to x in the entire database.

2.4.2. Confidence limits for location of neuroanatomic
structures in stereotaxic space

For any desired confidence threshold α, 100(1 − α)% con-
fidence regions in stereotaxic space for possible locations of
points corresponding to x in T are given by nested ellipsoids
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Figure 8. Continued.

Eλ(α)(x) in displacement space (Thompson et al., 1996a; Fig-
ure 1, IV). Here, the ellipsoidal regions, in which a point
corresponding to x will occur with probability α in a randomly
selected normal subject, have the general form

Eλ(α)(x) = {p|[p− µ(x)]T[9(x)]−1[p− µ(x)] < λ(α)},

where

λ(α) = [N(N − 3)/3(N2 − 1)]−1 Fα,3,N−3,

and Fα,3,N−3 is the critical value of the F distribution such that
Pr{F3,N−3 ≥ Fα,3,N−3} = α. Note that in this expression,
while F3,N−3 is an F-distributed random variable, the value
of Fα,3,N−3 depends only on α.

2.4.3. Measuring deviations from normal anatomy
Finally, we derive a probability measure which expresses how
drastically the anatomy found at x in T deviates from its coun-
terparts in the normal scans. If we define WTµ(x) = µ(x)−x,
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the appropriate probability measure, defined throughout the
new subject’s anatomy, is

p(x) = sup{α|Fα,3,N−3 ≥ [N(N − 3)/3(N2 − 1)]

×[WTµ(x)]T[9(x)]−1[WTµ(x)]},
∀x ∈ T.

This metric quantifies the severity of local discrepancies
WTµ(x) between an anatomic point in a new subject and the
3-D statistical distribution of its counterparts (found by the
warping algorithm) in normal anatomic scans which make up
the reference database (Figure 1, IV). This closed-form ex-
pression, giving the probability measure p(x) for each voxel
x in the image lattice of the new subject’s scan, is evaluated
as the limit of an asymptotic series of incomplete gamma
functions (Lanczos, 1964), and mapped, via a logarithmic
look-up table, on to a standard color range. Probability maps
are visualized using Data Explorer 2.1 (IBM Visualization
Software). All warping and probability mapping algorithms
were written in C and executed on standard 200 MHz DEC
Alpha AXP3000 workstations running OSF-1.

2.4.4. Computation speed and efficiency
Accurate quantitative maps, which indicate the severity of
deviations from normal anatomy in a convenient graphical
form, are easily interpretable and future tests will compare
them with more conventional measures of incipient pathology
in several clinical scenarios. To be practical, however, these
maps must be generated rapidly. This presents a challenge, es-
pecially when a family of high-dimensional volumetric maps,
taking a subject’s image on to each scan in an image database,
must be invoked to quantify local variations in brain structure.
In practice, the generation of preliminary estimates of trans-
formation fields is accelerated by calculating the deformation
fields on a successively refined multi-resolution hierarchy of
octree-spline grids (Szeliski and Lavallée, 1993) in the same
space as the target image lattice. This hierarchical data struc-
ture and multi-resolution strategy permit rapid coarse-to-fine
refinement of the deformation field and the generation of in-
termediate images using 3-D spline interpolation. Within 6–
7 min, reasonable estimates of the final deformed images can
be generated on demand, for specified slices throughout the
warped image volume. As the resolution of the octree-mesh
is increased, the algorithm adjusts finer and finer details as
subtler differences between the reference and target anatomy
are accommodated. A 1152-parameter 3-D spline estimate
of the deformation of a single 2-D slice is typically obtained
within 240 s on a standard 200 MHz Alpha AXP3000 work-
station. 30 min of computation time is required to compute
a 6912-parameter estimate of the 3-D deformation field for
warping a full volume (calculations being performed on a

regular octree grid of size 16× 12× 12). If appropriate hard-
ware is available, several of these computations may be per-
formed simultaneously in parallel. Even on a single processor,
though, by restricting the domain on which the computations
are defined, probability maps of each anatomical surface in
the subject being analyzed can be obtained in considerably
less time, typically in 10–12 s per surface mesh or ∼1.5 min
for the system of surfaces shown in Figure 9. As the reso-
lution of the computation mesh is successively increased, so
is the spatial frequency of the domain on which probability
values are defined. Future work will be directed towards the
optimization of the component algorithms, with the goal of
providing more rapid access to intermediate probability maps
which may be updated asymptotically, as the spatial frequency
of the underlying computation mesh is successively increased.

3. PRELIMINARY RESULTS

3.1. Visualization of 3-D volumetric transformation
fields

A battery of tests was first carried out (Figure 8a–i; Thompson
and Toga, 1996b) to evaluate the performance of the warping
algorithm on a wide range of real and simulated data. Its
capacity to transform images correctly into structural corre-
spondence was investigated by warping different subjects’
anatomic images onto each other, both within and across
modalities.

Figure 8 shows T1-weighted MR sagittal brain slice images
from (a) a randomly selected normal scan from the reference
archive, (b) the target anatomy, from a patient with clinically
determined Alzheimer’s disease and (c) as a result of warping
the reference anatomy into structural correspondence with the
target. Parasagittal slices from both 3-D volumes are taken at
a level 7.0 mm to the left of the mid-sagittal plane. To em-
phasize the local differences between the anatomies, several
structure boundaries, taken from the same sagittal slice of the
target scan, are shown superimposed on the reference scan (a).
Major differences are apparent in the extent of the lateral ven-
tricle, as well as differences in cortical boundaries. Note also
the smaller cerebellum, less convoluted cingulate sulcus and
more ventral position of the posterior calcarine sulcus in the
target scan. Figure 8c and d show the result of warping the ref-
erence anatomy into the shape of the target. Figure 8d shows
the complex effect of the transformation field on a regular grid
ruled over the reference anatomy and passively carried along
in the resultant deformation. The transformation accommo-
dates both global and local differences in anatomy, ensuring
a precise non-linear registration of cortical boundaries, the
desired alignment and reconfiguration of major sulci, and the
contraction of the ventricular space and the cerebellum. Fi-
nally, Figure 8e shows the magnitude of the 3-D deformation
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Figure 9. Distortions in brain architecture induced by tumor tissue: probability maps for major sulci in both hemispheres. Top, 3-D RMS
variability maps are shown for major occipital and paralimbic sulci; bottom, color-coded probability maps quantify the impact of two focal
metastatic tumors (illustrated in red) on the supracallosal, parieto-occipital and anterior and posterior calcarine sulci in both hemispheres.

field in the plane of the anatomic sections, as well as on several
elements of the surface system driving the deformation. The
warping field exhibits a smooth continuation from the surface

systems driving it, into the surrounding architecture of the
brain. It also displays considerable complexity in posterior
frontal and cingulate areas (see also Figure 8d). Particularly
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notable is the pronounced deformation in frontal, ventricular
and cerebellar regions, corresponding to local variations in
anatomy between the two subjects.

3.2. Inter-modality warping: mapping 3-D digital
cryosection volumes onto 3-D MRI volumes

To test the capacity of the algorithm to warp 3-D anatomic im-
agery acquired in one modality (high-resolution cryosection
imaging) onto a target scan from another modality (3-D SPGR
MRI), a randomly selected cryosection volume (Figure 8f)
was warped into the shape of the target anatomy (Figure 8b)
used in the previous experiment. Note, in particular, the de-
gree to which the reference corpus callosum is transformed
into the shape of the target callosum. The spatial complexity
and continuity properties of this transformation are examined
in greater detail on the accompanying video, as described in
Subsection 3.4. Complex reconfigurations of cortical regions,
such as those observed here most clearly in the occipital lobe
(Figure 8h and i), are only possible with high-dimensional
warping techniques.

3.3. Probability maps derived from a family of high-
dimensional warping fields

As mentioned earlier, the main goal of a deformable prob-
abilistic atlas is to determine whether a subject’s anatomy,
when compared (by high-dimensional transformation) with
matched normal scans in a reference image database, ex-
hibits differences which are statistically unlikely (and hence
may constitute a clinical abnormality) or whether they can
be explained by normal variations. Random field algorithms
are therefore required to understand the full range of nor-
mal variability and to help distinguish genuine structural and
functional differences. The atlasing strategies developed here
incorporate analysis methods which take into account con-
fidence limits on normal variability, as determined from a
database of brain images, including non-uniform variability
across individual surfaces and volumes in a range of anatomic
regions.

As described in Subsection 2.3.2, for each anatomical sur-
face, N different surface meshes have been constructed to
represent that surface in N separate individuals, drawn from
the image archive. If ri (u, v) is the 3-D position in stereotaxic
space of the point with parametric coordinates (u, v) on the i th
person’s mesh, then the vector displacement map

di (u, v) = ri (u, v)− rµ(u, v)

= ri (u, v)− 1

N

∑
j=1 to N

r j (u, v),

∀(u, v) ∈ �
expresses the i th surface’s local deviation from an ‘average

mesh’, derived from all the subjects in the archive. This map
assigns a 3-D displacement vector to each internal surface
point. The root mean square magnitude of these displace-
ments, in the N surface maps di from individual to average,
provides a measure of that surface’s variability in stereo-
taxic space. The values of this function are in millimeters of
Talairach space and their range can be linearly mapped via a
look-up table onto a color range. Profiles of local variability
can therefore be visualized as they vary across each anatomi-
cal surface (Figure 9).

Three-dimensional RMS variability maps are shown in
Figure 9 for major occipital and paralimbic sulci, as deter-
mined from high-resolution image volumes in the cryosec-
tion archive. These maps illustrate the ranges of positional
variability in stereotaxic space observed for several important
functional interfaces in the brain. To illustrate the behavior
of the probability mapping algorithms, the brain of a subject
with two large, well-defined metastatic tumors, in the high
right putamen and left occipital lobe, was cryosectioned and
digitally imaged in full color at 10242×1300 pixel resolution
and a family of deformation fields was recovered relating their
anatomy to that of six identically imaged normal subjects in
a reference archive. We emphasize that due to the need for
careful age-matching, for this part of the current investigation
we focused on a relatively small group of scans from care-
fully age-matched normal subjects. Accordingly, the statisti-
cal framework and probability theory developed here support
future expansion of the underlying database and the effects
of sample size are taken into account (see Subsections 2.4
and 3.4.3). Future expansion of the reference database will
enable us to characterize in detail the effects of different ref-
erence populations [such as the group of 10 age-matched sub-
jects with Alzheimer’s disease, examined in Thompson et al.
(1996c)] on measures of regional variability in the brain.

In the anatomy of the cancer patient under analysis, the
tumors induced marked distortions in the normal architecture
of the brain (Figure 9). Structures in the immediate vicinity
of the lesions exhibit probability values three orders of magni-
tude lower than normal (p < 0.0001; red colors), while more
distal regions of these structures are normal (p > 0.05; deep
blue colors). Normal results were obtained for all surfaces
(p > 0.05; Thompson et al., 1996a), when probability maps
were generated for each of the six normal subjects which made
up the underlying database. These maps indicate the capacity
of the algorithm to appropriately assess structural variants
which are within the normal range of variability (Figure 9),
without signaling them as regions of potential abnormality.
The severity of structural herniation, due to the mechanical
effects of a lesion, can also be highlighted and quantified by
probability mapping of structures in each hemisphere.
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3.4. Video: animation of high-dimensional
transformation and probability mapping
algorithms used in creating the probabilistic atlas

The accompanying video, which may be found on the CD-
ROM included with this journal, illustrates the behavior of
some of the warping and probability mapping approaches
used in creating the deformable probabilistic atlas.

3.4.1. Animation of high-dimensional image
transformations

[0–852 (28 s)a]. The kinematics of the continuous elastic
deformation of a 3-D cryosectioned brain volume (Figure 9f)
into the shape of a target MR volume, shown in Figure 9b,
are shown in this animated segment. Notice the complex
trajectory of cortical, ventricular and callosal regions as
they are elastically reconfigured into the shape of the tar-
get anatomy. Recent developments in our laboratory have
enabled pre-mortem functional–anatomic scanning and post-
mortem cryosection imaging of the same individual (Mega
et al., 1997). In these investigations, 3-D warping algorithms,
which correct for post-mortem anatomic change, were used to
allow direct correlation of 3-D neurochemical and cytoarchi-
tectural maps with 3-D functional (PET) data obtained from
the same individual in vivo.

3.4.2. Complexity and continuity properties of 3-D
deformation fields

[853–1452 (20 s)]. As in Figure 9d, the complexity and
continuity of the recovered deformation field in Subsec-
tion 3.4.1 are shown by applying the two in-slice components
of the 3-D volumetric deformation field to a regular grid in
the reference coordinate system. The continuous one-to-one
mapping property of the warping transformation keeps all of
the structures connected and prevents them from being bro-
ken apart. The continuously deforming grid shows dynam-
ically that structures are not broken apart, because the grid
lines remain continuous and connected under the evolving
transformation.

3.4.3. Dynamic probability mapping: detection and
quantification of a series of simulated deformations

[1453–2240 (26 s)]. In this segment, the detection sensitivity
of the probability mapping algorithm is investigated by
adding deformations of spatially varying magnitude to
real anatomical surfaces. In this case, abnormalities are
deliberately created and defined mathematically, and the
nature and context of the deformations can be varied

aThe video plays at 30 frames/s; the first set of numbers denote the frame
numbers in the video sequence and the number in parentheses denotes the
frame playback duration in seconds.

systematically to determine the conditions which affect
detection sensitivity.

The anatomy of the subject with two focal metastatic
brain tumors (see Subsection 3.3) served as the basis for this
experiment. The deformed configuration of their anatomy
(Figure 9b) was considered, for simulation purposes, as
a severely distorted version of the average representation
of anatomy shown in Figure 9a. Linear surface blends
were made, for each anatomic surface, and uniformly
reparameterized to generate a continuous sequence of
intermediate surface models lying between the average
anatomy of Figure 9a and the distorted anatomy of Figure 9b.
This progressive deformation of the underlying anatomical
models was also extrapolated beyond the configuration
shown in Figure 9b, to simulate surface deformities which
are even more severe than those observed in the anatomy of
the tumor patient. Probability maps were then generated for
each of the artificially transformed anatomical models. These
maps dynamically and continuously reflect the severity of
the deformations exhibited by each model, relative to the
confidence limits on normal variation determined from the
reference image archive.

Probability maps were computed rapidly for the dynami-
cally evolving surface system, using the formula

pl (u, v, t) = sup{α|Fα,3,N−3 ≥ [N(N − 3)/3(N2 − 1)]

×(t2/ f 2)[r∗l (u, v)− rµ,l (u, v)]T[9l (u, v)]
−1

×[r∗l (u, v)− rµ,l (u, v)]}, ∀(u, v) ∈ �.
pl (u, v, t) is the probability value assigned to the lattice point
(u, v) in the l th parametric surface mesh at time t . t is the
frame number (in this animation) and f is the frame rate,
chosen so that 0 ≤ . . . tm/ f ≺ tm+1/ f . . . ≤ 2. rµ,l
and r∗l denote the l th surface mesh in the average anatomy of
Figure 9a and the distorted anatomy of Figure 9b, respectively.
Fα,3,N−3 is the critical value of the F distribution with 3 and
N−3 degrees of freedom such that Pr{F3,N−3 ≥ Fα,3,N−3} =
α, N is the size of the reference image archive and 9l (u, v)
is the dispersion matrix of the stereotaxic locations of the N
surface points at parameter location (u, v) in the l th surface
mesh, for each subject in the reference archive. This closed-
form expression was evaluated recursively at each mesh point
by expansion in terms of incomplete gamma functions, the
computation of which was accelerated using asymptotic series
representations due to Lanczos (1964).

These data illustrate the graded response of the probability
mapping algorithm in assessing deformations of spatially
varying magnitude across complex systems of connected
anatomic surfaces. They also indicate the capacity of the
algorithm to assess appropriately structural variants which are
within the normal range of variability (cf. Figure 9a), without
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signaling them as regions of potential abnormality. Finally,
one very desirable property for characterizing the potential
severity of anatomic abnormalities is that the probability mea-
sure decreases, in a monotonic way, with the magnitude of
structural deformation. This feature is reflected in the se-
quence of probability maps constructed here.

4. CONCLUSION

The high-dimensional warping and probabilistic mapping ap-
proaches developed here provide a framework for visualizing
complex structural variations in the anatomy of new subjects.
Preliminary data have illustrated the feasibility of creating
probability maps on surface systems, which typically consist
of critical structural and functional interfaces and boundaries
in three dimensions. We have also described a method for
calculating probability maps throughout the full volume of a
subject’s brain to provide a more comprehensive measure of
distributed patterns of structural abnormality. The extension
of a probability measure from surfaces to volumes requires
the development of an additional algorithm, with almost un-
limited degrees of freedom, to transform a scan into structural
correspondence with each scan in an image archive. The ca-
pacity of this algorithm to estimate the locations of classes of
points which correspond across a range of image volumes al-
lows us to characterize the statistical dispersion of these points
in stereotaxic space. Algorithms defined on the archive of
anatomic data can readily use the family of associated warp-
ing fields to produce probability distributions and confidence
limits for structure identification. Deviations in the anatomy
of new subjects can therefore be analyzed and quantified at an
extremely local level. Anisotropic random fields, invoked in
the generation of probability maps for new subjects, readily
encode local biases in the direction of anatomic variability
(Figure 9) and hence quantify the severity of anatomic devia-
tions more effectively than simple distance-based descriptors
(Figure 8d and e).

In the future, probabilistic atlases of the human brain,
which encode information on structural variability, may pro-
vide a better understanding of the complex regional changes
which occur under a variety of normal and pathological condi-
tions. Accurate quantitative measurements may ultimately be
used to obtain objective criteria for conditions such as global
or regional cerebral atrophy (Thompson et al., 1997) and for
the assessment of gyral or sulcal anomalies which may be
specific to certain disease states.

The surface-based modeling, mapping and warping ap-
proaches presented in this paper may offer distinct advantages
over volume averaging for statistical atlasing applications.
Surface representations lend themselves readily to averaging
and subsequent statistical characterization. More particularly

though, the averaging procedure itself does not lead to the
same type of degradation of structural geometry (and loss
of fine anatomic features) as is often apparent when im-
age volumes are directly averaged, without high-dimensional
registration.

In addition, the retention of an explicit surface topology
after averaging is particularly advantageous for subsequent
visualization (Thompson and Toga, 1996a; Thompson et al.,
1996a). This feature of both the individual and average repre-
sentations of brain anatomy enables secondary regional infor-
mation, including local probability maps, to be overlaid and
visualized on the underlying surface models (Sclaroff, 1991).
Information about physiology, neurochemistry, and an infinite
variety of relevant maps can potentially be layered onto the
anatomic atlas and referenced using such a system. In the
brain, such surface maps include cytoarchitecture, chemoar-
chitecture, blood-flow distributions and metabolic rates.

Strictly speaking, some anatomical detail is lost in surface-
based methods, since deformable surface models are used for
regularization and resampling of anatomical surfaces. Reg-
ularization is directly analogous to filtering (Nielsen et al.,
1994), a feature which has been used to great effect in a recent
fast fluid registration approach (Bro-Nielsen and Gramkow,
1996). However, experiments conducted in Holmes et al.
(1996) suggest that regularized surface models may reflect
the brain’s surface topography closely enough to determine
maps of cortical thickness; tests conducted by Thompson et al.
(1996b) also suggest that deep surface meshes, even derived
from manually traced contours, can be accurately reproduced
in separate trials with a spatial variability 30–80 times smaller
than the range of normal inter-subject variability.

In the future, probabilistic mapping is likely to be funda-
mental to multi-subject atlasing and many other brain map-
ping projects. Digital probabilistic atlases based on large
populations will rectify many current atlasing problems, since
they retain quantitative information on the variability inherent
in anatomic populations. As the underlying database of sub-
jects increases in size and content, the digital, electronic form
of the atlas provides efficiency in statistical and computational
comparisons between individuals or groups. The atlas also
improves in accuracy over time, achieving better statistics as
more information is added to the underlying database. Finally,
the source data on which probabilistic atlases are based may
be stratified into subpopulations by age, gender, by stage of
development (Toga et al., 1996) or to represent different dis-
ease types (Thompson et al., 1996c).

The ultimate goal of brain mapping is to provide a frame-
work for integrating functional and anatomical data across
many subjects and modalities. This task requires precise
quantitative knowledge of the variations in geometry and
location of intracerebral structures and critical functional
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interfaces. The high-dimensional warping and probabilistic
techniques presented here provide a basis for the generation
of anatomical templates and expert diagnostic systems which
retain and exploit quantitative information on inter-subject
variations in brain architecture.
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Höhne, K.-H., Bomans, M., Riemer, M., Schubert, R., Tiede, U. and
Lierse, W. (1992) A 3D anatomical atlas based on a volume
model. IEEE Comp. Graphics Appl., 12, 72–78.

Holmes, C. J., MacDonald, D., Sled, J. G., Toga, A. W. and
Evans, A. C. (1996) Cortical peeling: CSF/grey/white matter
boundaries visualized by nesting isosurfaces. Proc. Visualiza-
tion Biomed. Comp., 4, 99–104.

Joshi, S. C., Wang, J., Miller, M. I., Van Essen, D. C. and Grenan-
der, U. (1995a) On the differential geometry of the cortical sur-
face. Vision Geometry IV, Proc. SPIE Conf. on Optical Science,
Engineering and Instrumentation, San Diego, CA, Vol. 2573,
pp. 304–311.

Joshi, S. C., Miller, M. I., Christensen, G. E., Banerjee, A.,
Coogan, T. A. and Grenander, U. (1995b) Hierarchical brain
mapping via a generalized Dirichlet solution for mapping brain
manifolds. Vision Geometry IV, Proc. SPIE Conf. on Optical
Science, Engineering and Instrumentation, San Diego, CA,
Vol. 2573, pp. 278–289.

Kikinis, R., Shenton, M. E., Gerig, G., Hokama, H., Haim-
son, J., O’Donnell, B. F., Wible, C. G., McCarley, R. W. and
Jolesz, F. A. (1994) Temporal lobe sulco-gyral pattern anoma-
lies in schizophrenia: an in vivo MR three-dimensional surface
rendering study. Neurosci. Lett., 182, 7–12.

Kikinis, R., Shenton, M. E., Iosifescu, D. V., McCarley, R. W.,
Saiviroonporn, P., Hokama, H. H., Robatino, A. Metcalf, D.,
Wible, C. G., Portas, C. M., Donnino, R. and Jolesz, F. (1996) A
digital brain atlas for surgical planning, model-driven segmen-
tation, and teaching. IEEE Trans. Visualization Comp. Graph-
ics, 2, 232–241.

Lanczos, D. (1964) Numerical analysis. J. SIAM, 1, 86.
Le Goualher, G., Barillot, C., Bizais, Y. and Scarabin, J.-M, (1996)

3D segmentation of cortical sulci using active models. SPIE
Med. Imag., 2710, 254–263.

Luo, S. and Evans, A. C. (1995) A method to match human sulci
in 3D space. Proc. IEEE 17th Ann. Conf. on Engineering in
Medicine and Biology, Section 2.1.2(14).

MacDonald, D., Avis, D. and Evans, A. C. (1993) Automatic param-
eterization of human cortical surfaces. Ann. Symp. Information
Processing in Medical Imaging (IPMI).

MacDonald, D., Avis, D. and Evans, A. C. (1994) Multiple surface
identification and matching in magnetic resonance imaging.
Proc. SPIE, 2359, 160–169.

Mangin, J.-F., Frouin, V., Bloch, I., Regis, J. and López-Krahe, J.
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