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Chapter 1

Introduction

Common sense suggests that contracts which are not enforceable are not
worth the paper on which they are written. Enforcement, however, requires
both the existence of a functioning legal system and the ability of courts to
judge whether a contract has been broken. The latter criterion leads directly
to the notion of verifiability. If the performance of a contractual duty is not
verifiable vis-a-vis the court, then we can reasonably assume that this duty
is not enforceable, which in turn implies that it should not be made part of
a contract in the first place.
In many situations, parties would like to include a rule or instruction in

a contract, but cannot do so by the above reasoning because either i) the
performance of the rule is observable by all parties but not verifiable vis-a-
vis the court, or ii) the performance is not even observable by all the parties
involved. Throughout these notes, we refer to such rules as social choice
rules. A social choice rule is a mapping f : Θ → A from a set of states Θ
into a set of outcomes or alternatives A. While we exclusively concentrate on
social choice rules that are (Pareto-)efficient, we abstract from distributional
consequences. For instance, in chapters 3 and 4, we deal with social choice
rules that maximize the (expected) utility of one party subject to holding the
utility of another party constant at the lowest possible level. This suggests
that the term ”social” must not always be taken literally.
Contract theory is concerned with the implementation of social choice

rules in situations where these cannot be made part of a contract due to
the presence of incomplete information (i.e. either non-observability and/or
non-verifiability of performance). In such cases, we examine whether the
social choice rule in question can be implemented indirectly or replicated
through either a) an alternative rule that is enforceable by courts or b) some
institutional arrangement. If the social choice rule can be fully replicated,
then we speak of an efficient or first-best solution. Usually, however, this
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CHAPTER 1. INTRODUCTION 4

is not possible due to the constraints imposed by incomplete information.
We then typically search for an enforceable alternative rule or institutional
arrangement that maximizes potential efficiency gains and thus comes as
close as possible to the original social choice rule. Such rules or institutions
are called constrained efficient or second-best optimal.
In chapters 2 to 4, we study contracts (i.e. rules or instructions) that

are comprehensive in the sense that they optimally take into account all
commonly observable information. There, it is implicitly assumed that this
information is also verifiable in front of courts. Often, however, it is too costly
to write a contract that is contingent on all jointly observable information.
For instance, suppose that an employment contract had to specificy what a
bricklayer should do next Monday when the weather is x, his health is y, and
the price of concrete is z. If each of these three variables had only ten possible
realizations, the contract would have to include 1,000 different contingencies.
Alternatively, some commonly observable information may simply not be
verifiable vis-a-vis the court. In both cases, contracts will be left incomplete,
i.e. they will not optimally utilize all available information. Incomplete
contracts are the subject of chapter 5. When the incompleteness is severe
such that there is no hope of replicating the SCR through an alternative
enforceable rule, institutional arrangements become important. In the case
of the bricklayer, we would expect that either he or his supervisor has the
authority do decide what to do in each situation. If (nonhuman) assets
are involved, ownership rights usually determine how the asset is used in
unforeseen contingencies.

To be completed



Chapter 2

Mechanism Design

2.1 The Implementation Problem
Mechanism design is based on two canonical examples, both of which can
be addressed in the same theoretical framework. The first example is the
planner’s problem, where an uninformed agent (the planner) faces a group
of informed agents. The agents’ private information concerns the state θ,
which determines their preferences over outcomes in A. Clearly, the planner
cannot directly implement the social choice rule since she does not know the
true state.
For instance, suppose that a government decides that it will provide a

public good if and only if the aggregate valuation of all citizens exceeds the
cost of the public good. Moreover, the citizens shall be taxed according to
their valuations. If the citizens are asked to reveal their valuations, each
individual citizen has an incentive to understate his valuation since the tax
savings outweigh the potentially adverse effects on the collective decision.
This is the well-known free-rider problem. Similarly, bidders in an auction
where the object is sold at the price of the highest bid have an incentive to
bid less than their true valuation. For each bidder, the reduction in price
if he wins the object outweighs the reduction in the probability of winning.
In both examples, the planner (i.e. the government or the auctioneer) has
failed to elicit the agents’ private information.
As we will see shortly, the planner can do better by designing amechanism

or game form that defines a game to be played by the agents in each state.
Formally, a mechanism consists of a collection of strategy sets and an outcome
function g : ×Si → A that assigns an outcome to each strategy profile
s ∈ ×Si. The planner’s objective is to select the function g (s) such that
in each state, the set of equilibrium outcomes ”coincides” with the set of
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CHAPTER 2. MECHANISM DESIGN 6

outcomes determined by the social choice rule. Since the equilibrium strategy
profile s is publicly observable, the outcome function g (s) is verifiable vis-a-
vis the court and can -unlike the social choice rule- be included in a (ficticious)
contract between the agents and the planner.
The other canonical example is the trade model, which involves no plan-

ner, but a group of agents who would like to implement a social choice rule
by means of a contract. The problem is that the true state is not verifiable so
that the contract is not enforceable. For instance, consider a bilateral trading
problem where agent 1 owns a good that agent 2 likes to buy. Here, a state
is a profile of valuations, where each agent knows only his own valuation. A
mechanism can then be interpreted as a bargaining rule which specifies an
allocation of the good and a monetary transfer from agent 2 to agent 1 as a
function of the agent’s (verifiable) bid and ask prices s1 and s2.

The Model

We begin by assuming that agents possess complete information about each
others’ preferences. However, this restriction does not become relevant until
section 2.3 when we study Nash implementation. In section 2.4, we then drop
the assumption of complete information and turn to environments where
preferences are no longer mutually observable.
Consider the following model:

1. There are n agents indexed by i ∈ I = {1, ..., n}.
2. There is a finite set A of feasible outcomes.

3. Each agent has a characteristic or type θi ∈ Θi.
4. A state is a profile of types θ = (θ1, ..., θn) ∈ Θ which defines a profile
of preference orderings % (θ) = (%1 (θ) , ...,%n (θ)) ∈ < on the set of
feasible outcomes A. %i (θ) ∈ <i denotes agent i’s preference ordering
on A in state θ.

5. Each agent (but no outside party) observes the entire vector θ =
(θ1, ..., θn), i.e. agents have complete information.

6. A social choice rule (SCR) is a correspondence f : Θ ³ A which
specifies a nonempty choice set f (θ) ⊆ A for every state θ.

An SCR is a selection rule that determines a set of socially desirable
outcomes for each state θ ∈ Θ. Two examples of social choice rules which
feature prominently in the literature are the Paretian SCR, which comprises
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only Pareto optimal allocations, and the dictatorial SCR, where for all θ,
the social choice set f (θ) is a subset of the most preferred outcomes of a
particular agent. Note that implementation theory takes the existence of
social choice rules as given - the underlying problem of constructing an SCR
via aggregation of preferences is the subject of social choice theory.
In principle, the above formulation allows for any degree of correlation

among the agents’ preference orderings. For convenience, let us therefore
narrow down the set of admissible preferences by requiring that the domains
of the individual preference orderings be independent.

7. The set of possible preference orderings < is the Cartesian product of
the n sets of preference orderings, i.e. < = ×<i.

Assumption 7 can be illustrated by means of a simple example: Let I =
{1, 2}, A = {a, b}, <1 = {a Â1 b, b Â1 a}, and <2 = {a Â2 b, b Â2 a, aI2b}.
With independent domains, the set < = <1 ×<2 becomes

a Â1 b
a Â2 b

a Â1 b
b Â2 a

a Â1 b
a ∼2 b

b Â1 a
a Â2 b

b Â1 a
b Â2 a

b Â1 a
a ∼2 b

Finally, let us concentrate on a special, but much studied case known as
private values which assumes that the mapping from preference orderings to
types is one-to-one.

8. Agent i’s preferences in state θ depend only on his type θi, i.e. %i
(θ) =%i (θi).

From assumption 8, it follows that we can label the rows and columns in
the above example with θ11 and θ

1
2, and θ

2
1, θ

2
2, and θ

2
3, respectively. Moreover,

assumptions 7 and 8 together imply that Θ = ×Θi, i.e. that the state-space
is spanned by the Cartesian product of the individual sets of possible types.

Example: Provision of a Public Good

The city council (”the social planner”) considers the construction of a road for
the n inhabitants of the city. In this example, θi represents agent i’s valuation
or willingness to pay for the road. An outcome is a profile y = (x, t1, ..., tn),
where x can be either 1 (”the road is built”) or 0 (”the road is not built”), and
where ti denotes a transfer to agent i Note that transfers can be negative.
Preferences are assumed to be quasilinear of the form θix + ti. The city
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council faces the restriction that it cannot provide additional funds, i.e. the
cost c ≥ 0 must be covered entirely by the inhabitants. This defines the set
of feasible outcomes as A = {(x, t1, ..., tn) | x = {0, 1} and

P
i ti ≤ −cx}. A

particularly desirable SCR is one where the road is built if and only if the
the sum of the agent’s valuations exceeds the construction cost and where
the budget constraint is satisfied with equality, i.e.

x (θ) =

½
1 if

P
i θi ≥ cx

0 otherwise,
(2.1)

X
i

ti = −cx. (2.2)

The set of outcomes defined by (2.1)-(2.2) coincides with the set of Pareto
optimal allocations (with respect to both the public good and money). Un-
fortunately, it turns out that this SCR is not implementable in dominant
strategies (cf. section 2.2).

Implementation and Full Implementation

At the beginning of this chapter, we distinguished between two canonical
examples of mechanism design problems: the planner’s problem and the trade
model. In both examples, the social choice rule f : Θ ³ A is not directly
implementable as it depends on the true state θ, which is not verifiable vis-
a-vis the court (in the planner’s problem, θ is not even known to the planner
herself). We also argued that when the agents are asked to reveal their
preferences honestly, each individual agent has an incentive to misrepresent
his information.
We then showed that the planner (or in the trade model, the agents them-

selves) can improve the situation by constructing a mechanism or game form
that uses only publicly observable (and thus verifiable) information. For-
mally, a mechanism Γ consists of a collection of strategy sets Σ = {S1, ..., Sn}
and an outcome function g : ×Si → A which assigns an outcome y ∈ A to
each strategy profile s = (s1, ..., sn) ∈ ×Si. Since the state θ is not verifiable,
the outcomes themselves cannot be made contingent on the state. However,
the agents’ payoffs (utilities) from a particular outcome typically vary with θ
since preferences %i (θi) are state-dependent. Thus, the mechanism Γ com-
bined with the state-space Θ defines a game of complete information with
a (possibly) different payoff structure in every state θ. The implementation
problem is then to construct Γ such that in each state, the equilibrium out-
comes of the resulting game coincide (in a way yet to be defined) with the
elements in f (θ).
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The idea which underlies mechanism design is information revelation
through strategy choice. Since the collection of strategy sets Σ = {S1, ..., Sn}
and the outcome function g : ×Si → A are public information, outsiders such
as courts (or the planner) can compute the agents’ equilibrium strategy rules
s∗ (θ) = (s∗1 (θ) , ..., s

∗
n (θ)). By observing a particular equilibrium strategy

profile (s∗1, ..., s
∗
n), these outsiders can then infer the true state θ.

Definition 1 (Mechanism) A mechanism or game form Γ is a collection
of strategy sets Σ = {S1, ..., Sn} and a mapping g : ×Si → A.

Definition 2 (Implementation) Denote by Eg (θ) the set of equilibrium
profiles s∗ (θ) of Γ in state θ, and define the set of equilibrium outcomes of Γ in
θ as g (Eg (θ)) ≡ {g (s∗ (θ)) | s∗ (θ) ∈ Eg (θ)}. The mechanism Γ implements
the social choice rule f (θ) if Eg (θ) is nonempty, and if for every θ ∈ Θ,
g (Eg (θ)) ⊆ f (θ).
Definition 3 (Full Implementation) The mechanism Γ fully implements
the social choice rule f (θ) if for every θ ∈ Θ, g (Eg (θ)) = f (θ).
The distinction between implementation and full implementation is sub-

tle. While implementation requires that all equilibrium outcomes are in the
social choice set f (θ), it does not require that all elements in f (θ) correspond
to some equilibrium outcome. Clearly, the notion of full implementation is
stronger since it requires that the set of equilibrium outcomes exactly coin-
cides with the choice set f (θ). Notice that there can be more equilibria than
equilibrium outcomes if several equilibria give rise to the same outcome.

Truthful Implementation

The identification of all social choice rules that are implementable for a spe-
cific equilibrium concept requires knowledge of the entire set of possible mech-
anisms. Fortunately, a very useful result known as the revelation principle
allows us to restrict attention to a particularly simple class of mechanisms
called direct mechanisms. In a direct mechanism, an agent’s strategy set
consists of his possibly types Θi. In the underlying game, each agent an-
nounces a type θ̂i, and the outcome function g : Θ̂→ A subsequently selects
an outcome g(θ̂) = g(θ̂1, ..., θ̂n). If in each state, there exists an equilibrium
in which all agents report their types truthfully (i.e. θ̂i = θi for all i) and the
equilibrium outcome g (θ) is an element in f (θ), then we say that the direct
mechanism Γd truthfully implements the social choice rule f (θ).

Definition 4 (Direct Mechanism) A direct mechanism Γd is a mechanism
in which Si = Θi.
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Definition 5 (Truthful Implementation) The direct mechanism Γd tru-
thfully implements the social choice rule f (θ) if for every θ ∈ Θ, θ ∈ Eg (θ)
and g (θ) ∈ f (θ).
Observe that truthful implementation is a weaker concept than imple-

mentation or full implementation. Truthful implementation only requires
that the profile θ = (θ1, ..., θn) of truthful announcements is an equilibrium
in each state θ and that the equilibrium outcome g (θ) is an element in f (θ).
However, truthful implementation does not rule out the existence of further
equilibria with outcomes g(θ̂) /∈ f (θ) in which some agents lie (i.e. θ̂ 6= θ).
Both implementation and full implementation rule out such ”unwanted” equi-
libria as they require either that the set of equilibrium outcomes constitutes
a subset of f (θ) (implementation) or that it coincides with f (θ) (full imple-
mentation).
Let us illustrate the notion of truthful implementation by means of an

example. Suppose I = {1, 2}, A = {a, b, c, d}, Θ1 = {θ11, θ21}, and Θ2 =
{θ12, θ22}, where

θ11 θ21 θ12 θ22
a
b
c
d

b
a
d
c

a ∼ b
c ∼ d

c ∼ d
a ∼ b

Consider the SCR
f (θ11, θ

1
2) = {a}

f (θ11, θ
2
2) = {c}

f (θ21, θ
1
2) = {b}

f (θ21, θ
2
2) = {d}

This SCR has the desirable property that in each state θ it contains only
strong Pareto optimal allocations. The following direct mechanism Γd truth-
fully implements f (θ) in dominant strategies (agent 1 plays ”row” and agent
2 plays ”column”):

θ12 θ22
θ11 a c
θ21 b d

Incidentally, Γd also fully implements f (θ) in dominant strategies since for
each θ, the truthtelling outcome is the unique dominant strategy equilibrium
outcome (this proves the ”if”-part of a theorem stated in section 2.2 that
an SCR is fully implementable in dominant strategies if and only if it is
single-valued and truthfully implementable with a unique dominant strategy
equilibrium outcome).
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2.2 Dominant Strategy Implementation
The Revelation Principle

The great virtue of dominant strategy equilibrium is that agents need not
forecast how other agents choose their strategies. In other words, agents do
not have to know each others’ preferences. This is the basis for an extremely
convenient result known as the revelation principle (Gibbard (1973), Green
and Laffont (1977), Dasgupta, Hammond, and Maskin (1979)), which says
that we can restrict attention to direct mechanisms in which agents report
only their own types. Thus, the assumption of complete information made at
the beginning of this chapter is irrelevant and any result derived in this sec-
tion continues to hold if this assumption is dropped. Due to this robustness
property, SCRs that are truthfully implementable in dominant strategies are
of particular interest.

Definition 6 (TIDS Social Choice Rule) The social choice rule f (θ) is
truthfully implementable in dominant strategies (TIDS) or strategy-proof if
there exists a direct mechanism Γd such that i) truthtelling is a dominant
strategy equilibrium, i.e. if for all i ∈ I and θi ∈ Θi,

g(θi, θ̂−i) %i (θi) g(θ̂i, θ̂−i) (2.3)

for all θ̂i ∈ Θi, θ̂−i ∈ Θ−i, and ii) g (θ) ∈ f (θ) for all θ ∈ Θ.
We now present the revelation principle, which asserts that for every

mechanism Γ that implements f (θ) in dominant strategies, we can find a
direct mechanism Γd that truthfully implements f (θ) in dominant strategies.

Theorem 1 (Revelation Principle) If an SCR is implementable in dom-
inant strategies, then it is TIDS.

Proof (direct) Suppose Γ implements the social choice rule f (θ) in domi-
nant strategies, and let Eg (θ) be non-empty for all θ. Define an equilibrium
selection as a mapping s∗ : Θ → ×Si which selects exactly one equilibrium
profile s∗ (θ) ∈ Eg (θ) for each θ ∈ Θ. Since s∗ (θ) is a dominant strategy
profile, we have

g (s∗i (θi) , s−i) %i (θi) g (si, s−i) (2.4)

for all i ∈ I, θi ∈ Θi, si ∈ Si, and s−i ∈ S−i. In particular, it is true that
g(s∗i (θi) , s

∗
−i(θ̂−i)) %i (θi) g(s∗i (θ̂i), s∗−i(θ̂−i)) (2.5)

for all i ∈ I, θi, θ̂i ∈ Θi and θ̂−i ∈ Θ−i since s∗i (θ̂i) ∈ Si and s∗−i(θ̂−i) ∈ S−i
are merely specific strategies.
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Next, define the composed mapping h : Θ → A with h (θ) ≡ g (s∗ (θ)).
The function h (θ) together with the collection of possible types {Θ1, ...,Θn}
defines a direct mechanism Γd. But Γd truthfully implements f (θ) in domi-
nant strategies because h (θ) ≡ g (s∗ (θ)) ∈ f (θ) and

h(θi, θ̂−i) %i (θi) h(θ̂i, θ̂−i) (2.6)

for all i ∈ I, θi, θ̂i ∈ Θi and θ̂−i ∈ Θ−i. Thus, f (θ) is TIDS.

Remarks

1. The intuition that underlies the proof is straightforward. For each state
θ, consider an equilibrium profile s∗ (θ) = (s∗1 (θ1) , ..., s

∗
n (θn)) induced

by the (indirect) mechanism Γ with outcome g (s∗ (θ)) ∈ f (θ). The
planner can mimick Γ by asking each agent to announce a type θ̂i and
playing on his behalf the strategy s∗i (θ̂i). Since s

∗
i (θi) is a dominant

strategy in the game induced by Γ, reporting the true type θ̂i = θi
must also be a dominant strategy in the new game. Notice that we
have assumed that the planner can commit to playing s∗i (θ̂i) after the
agents have revealed their types.

2. Since full implementation implies implementation, theorem 1 continues
to hold if we substitute ”implementable” with ”fully implementable”.

3. In the remainder of this section, we will characterize the set of SCRs
that are implementable in dominant strategies. In theory, this implies
that we have to consider all possible mechanisms. However, due to the
revelation principle, we can restrict attention (subject to a caveat) to
direct mechanisms and identify the set of SCRs that are TIDS.

4. Here is the caveat mentioned in 3. According to the revelation prin-
ciple, TIDS is a necessary, but not a sufficient condition for dominant
strategy implementation. Hence, if an SCR is not TIDS, we can be
sure that it is not implementable in dominant strategies. However,
the converse is not true, i.e. there may exist SCRs that are TIDS but
not implementable in dominant strategies. For instance, if truthtelling
is only a weakly dominant strategy and there exist other (untruthful)
equilibria in weakly dominant strategies with outcomes g(θ̂) /∈ f (θ),
then the direct mechanism Γd does not implement f (θ), even though
it truthfully implements f (θ). Conditions under which the revelation
principle also holds in the other direction are presented in the following
subsection.
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Necessary and Sufficient Conditions for Implementation

Consider a direct mechanism Γd that truthfully implements f (θ) in dominant
strategies with a unique outcome in each state. Per definition, Γd implements
f (θ) in dominant strategies. Moreover, when f (θ) is single-valued, the con-
cepts of implementation and full implementation coincide and Γd also fully
implements f (θ) in dominant strategies. This suggests that the revelation
principle holds in the other direction as well if we can ensure that the out-
come associated with truthtelling is the unique dominant strategy equilibrium
outcome. A sufficient condition for a game to have at most one dominant
strategy outcome is that < contains only strict preference orderings.

Theorem 2 Suppose that < contains only strict preference orderings. If an
SCR is TIDS, then it is implementable in dominant strategies.

Proof (direct) Assume that the direct mechanism Γd truthfully implements
f (θ) in dominant strategies. Since < contains only strict orderings, the set
g (Eg (θ)) ≡ {g(θ̂) | θ̂ ∈ Eg (θ)} of dominant strategy equilibrium outcomes
must be a singleton set for all θ ∈ Θ. Because the social choice rule f (θ)
is TIDS, θ ∈ Eg (θ) and g(θ) ∈ f (θ). This implies g (Eg (θ)) ⊆ f (θ) for all
θ ∈ Θ, i.e. f (θ) is implementable.

Theorem 2 shows that strict preference orderings and truthful implemen-
tation imply implementation. The following theorem goes beyond theorem
2 by showing that strict preference orderings, truthful implementation and
single-valuedness of f (θ) imply full implementation. In addition, it shows
that the reverse also holds.

Theorem 3 Suppose that < contains only strict preference orderings. An
SCR is fully implementable in dominant strategies if and only if it is TIDS
and single-valued.

Proof (direct) ”if”-part: By theorem 2, strict preference orderings and
TIDS imply implementability. When the social choice rule f (θ) is single-
valued, the concepts of implementability and full implementability coincide.
It follows that f (θ) is fully implementable.
”only if”-part: By Theorem 1, full implementability implies TIDS. More-

over, if < contains only strict preference orderings, the set of dominant strat-
egy equilibrium outcomes g (Eg (θ)) ≡ {g (s∗ (θ)) | s∗ (θ) ∈ Eg (θ)} is a sin-
gleton set for all θ ∈ Θ. Hence every fully implementable SCR must be
single-valued.
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The Gibbard-Satterthwaite Theorem

In virtually all economic applications of interest, dictatorial SCRs are viewed
as undesirable (recall that the social choice set f (θ) of a dictatorial SCR
is a subset of the most preferred outcomes of a particular agent i in each
state). For instance, democratic voting rules such as the majority rule are
generically non-dictatorial. Also, the decision whether to provide a public
good is typically not based on the valuation of a particular individual, but
depends on the valuations of all the agents in the economy. Likewise, auctions
do typically not assign the object in question to a single predetermined agent,
but to the bidder with the highest valuation.
Given the prevalence of non-dictatorial SCRs, it is disturbing to learn that

under some very general conditions, none of these SCRs is implementable in
dominant strategies. In fact, the following theorem due to Gibbard (1973)
and Satterthwaite (1975) tells us that when the domain of the agents’ pref-
erence orderings is unrestricted, only dictatorial SCRs can be implemented
in dominant strategies.

Definition 7 (Dictatorial Social Choice Rule) The social choice rule
f (θ) is dictatorial on the set A0 ⊆ A if there exists an agent i ∈ I such
that for all θ ∈ Θ, the choice set f (θ) is a subset of agent i’s most preferred
outcomes in A0, i.e. f (θ) ⊆ {y ∈ A0 | y %i (θi) z for all z ∈ A0}.

Theorem 4 (Gibbard-Satterthwaite Theorem) Let the social choice
rule f (θ) be single-valued and let A0 ⊆ A denote the range of f (θ). Suppose
that A is finite, that A0 contains at least three elements, and that for each
agent i ∈ I, the set of possible preference orderings <i is the set of strict
preference orderings on A. Then f (θ) is TIDS if and only if it is dictatorial
on A0.

Proof The ”if”-part is obvious: Any dictatorial single-valued SCR is TIDS
(assume that agent i is the dictator. In the direct mechanism Γd, we can then
simply assign an element in the set {y ∈ A0 | y %i (θi) z for all z ∈ A0} to any
profile of announcements θ̂ containing θi). The outline of the ”only if”-part
is as follows: From f (θ), we construct a social welfare function (SWF ) F (θ)
that is maximized by f (θ) and fulfills the conditions of Arrow’s impossibility
theorem. It follows that F (θ) is dictatorial, which in turn implies that f (θ)
is dictatorial.

The full proof of the ”only if”-part is lengthy and is omitted for the sake
of brevity. For a complete version of the proof, see Green and Laffont (1979),
theorem 2.2.
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Remarks

1. Some intuition for the Gibbard-Satterthwaite theorem can be gained by
looking at definition 6 which defines SCRs that are TIDS: In a simple
setting with two agents and two possible types per agent, TIDS implies
that an SCR must satisfy 16 incentive compatibility constraints. Given
these restrictive requirements, it is somewhat less surprising that only
dictatorial SCRs are TIDS.

2. In the face of this daunting result, we can choose between two possibil-
ities: We can either relax the assumption of unrestricted preferences or
we can abandon the concept of dominant strategy implementation al-
together. In the remainder of this section, we pursue the first approach
and assume that preferences are restricted to the quasilinear domain.
The second approach is pursued in sections 2.3 and 2.4 where we study
Nash and Bayesian implementation, respectively.

Groves Mechanisms

In the remainder of this section, we concentrate on the special, but much
studied problem introduced at the beginning of this chapter whether to pro-
vide a public good. Consider the following additional assumptions:

9. A feasible outcome is a profile y = (x, t1, ..., tn) ∈ A consisting of a
decision x ∈ {0, 1} and a vector of monetary transfers t = (t1, ..., tn).

10. The agents’ preferences are quasilinear of the form θix + ti. Here, the
type θi represents agent i’s valuation or willingness to pay for the public
good.

In the public good context, x = 1 means that the public good is provided
and x = 0 means that it is not provided. However, the same framework
can be used to represent an auction setting where an indivisible good is
auctioned off to one of n agents. In this case, the decision x is a profile
x = (x1, ..., xn), where xi = 1 means that agent i receives the good and
xi = 0means that he does not receive the good (which imposes the additional
constraint

P
i xi = 1). The agents’ preferences then take the form θixi + ti.

Without loss of generality, we can assume that the cost of the public good
is zero (if the cost is c ≥ 0, we simply let each agent pay an equal share
c
n
and redefine the agents’ valuations as θi = θi − c

n
, where θi is now a net

valuation). Note that ti can be negative.
When the agents’ utilities are cardinally and interpersonally comparable,

a reasonable social objective is the maximization of the utilitarian SWF
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F (θ) =
P

i (θix+ ti). The solution to this problem is x = 1 if and only
if
P

i θi ≥ 0, i.e. the public good is provided if and only if the sum of
the agents’ valuations exceeds the cost of the public good c = 0. Let us
henceforth restrict attention to SCRs that meet this welfare criterion. Such
SCRs are called successful.

Definition 8 (Successful Social Choice Rule) The social choice rule
f (θ) = (x (θ) , t1 (θ) , ..., tn (θ)) is successful if

x (θ) =

½
1 if

P
i θi ≥ 0

0 otherwise.
(2.7)

Since successful SCRs have such desirable welfare properties, we would like to
find out whether they are also TIDS. In what follows, we show that successful
SCRs are indeed truthfully implementable in dominant strategies by a class
of direct mechanisms known as Groves mechanisms due to Groves (1973).

Definition 9 (Groves Mechanism) A Groves mechanism ΓG is a direct
mechanism with

x(θ̂) =

½
1 if

P
i θ̂i ≥ 0

0 otherwise,
(2.8)

ti(θ̂) =

( P
j 6=i θ̂j + hi(θ̂−i) if

P
i θ̂i ≥ 0

hi(θ̂−i) otherwise,
(2.9)

for all i ∈ I, where θ̂ is a profile of announcements, and where hi(θ̂−i) is an
arbitrary function of θ̂−i.

In a Groves mechanism, agent i’s transfer ti(θ̂) depends on his announce-
ment θ̂i only insofar as this announcement affects the decision x(θ̂), given the
announcements

P
j 6=i θ̂j of the remaining j 6= i agents. If x(θ̂) is changed,

agent i’s transfer is reduced by an amount equal to the sum of the other
agents’ valuations |Pj 6=i θ̂j |, which corresponds exactly to the negative ex-
ternality that agent i is imposing on these agents. Since externalities are
now fully internalized, agent i no longer benefits from free riding at the ex-
pense of the other agents by misreporting his type and truthtelling becomes
a dominant strategy.

Theorem 5 In a Groves mechanism ΓG, truthtelling is a dominant strategy.

Proof (direct) Denote the true and the announced type of agent i by θi
and θ̂i, respectively, and denote the announcements of the other j 6= i agents
by θ̂−i.
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i) Suppose that θi +
P

j 6=i θ̂j ≥ 0. Any announcement θ̂i 6= θi such that
θ̂i +

P
j 6=i θ̂j ≥ 0 yields the same utility as truthtelling, viz. θi +

P
j 6=i θ̂j +

hi(θ̂−i). Any announcement θ̂i 6= θi such that θ̂i+
P

j 6=i θ̂j < 0 yields hi(θ̂−i),
which is less than or equal to θi +

P
j 6=i θ̂j + hi(θ̂−i) since θi +

P
j 6=i θ̂j ≥ 0.

Thus, agent i is never worse off by telling the truth.
ii) Suppose now that θi +

P
j 6=i θ̂j < 0. Any announcement θ̂i 6= θi such

that θ̂i+
P

j 6=i θ̂j < 0 yields the same utility as truthtelling, viz. hi(θ̂−i). Any

announcement θ̂i 6= θi such that θ̂i+
P

j 6=i θ̂j ≥ 0 yields θi+
P

j 6=i θ̂j+hi(θ̂−i),
which is less than hi(θ̂−i) since θi+

P
j 6=i θ̂j < 0. Again, agent i is never worse

off by telling the truth.

Since truthtelling is a dominant strategy, (2.7) and (2.8) coincide, from
which it follows that the Groves mechanism truthfully implements successful
SCRs in dominant strategies. Perhaps even more intriguing is the following
result, which states that the Groves mechanism ΓG is the only mechanism
that truthfully implements successful SCRs in dominant strategies.

Theorem 6 Any mechanism Γd that truthfully implements a successful SCR
in dominant strategies coincides with the Groves mechanism.

Proof (indirect) We prove the logically equivalent statement that any
mechanism Γd that does not coincide with the Groves mechanism cannot
truthfully implement a successful SCR in dominant strategies. From defi-
nition 9, a mechanism Γd is a Groves mechanism if and only if it has the
following properties:
i) x(θ̂) = 1 if and only if

P
i θ̂i ≥ 0,

ii) Given θ̂−i, ti(θ̂) is constant for all i and θ̂i such that θ̂i +
P

j 6=i θ̂j ≥ 0,
iii) Given θ̂−i, ti(θ̂) is constant for all i and θ̂i such that θ̂i+

P
j 6=i θ̂j < 0,

iv) x(θ̂i, θ̂−i) = 1 and x(θ̂
0
i, θ̂−i) = 0 imply ti(θ̂i, θ̂−i)−ti(θ̂

0
i, θ̂−i) =

P
j 6=i θ̂j.

We now show that if Γd lacks one or more of these properties, then it either
violates success or TIDS or both. Since each property can either hold or fail,
there are 24-1=15 possible events which contain at least one failure.
1) Suppose property i) does not hold (8 cases). Then Γd either violates

success (if θ̂ is the true state) or TIDS (if θ̂ is not the true state).
2) Assume that property i) holds but that property ii) fails (4 cases).

Then there exists an agent i and announcements θi (truthtelling), θ̂i, and θ̂−i
such that θ̂i +

P
j 6=i θ̂j ≥ 0, θi +

P
j 6=i θ̂j ≥ 0 (i.e. given θ̂−i, both θ̂i and θi

yield x = 1) and t(θ̂i, θ̂−i) > t(θi, θ̂−i). It follows that truthtelling is not a
dominant strategy for agent i.
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3) Suppose properties i) and ii) hold but property iii) does not hold (2
cases). Then there exists an agent i and announcements θi (truthtelling),
θ̂i, and θ̂−i such that θ̂i +

P
j 6=i θ̂j < 0, θi +

P
j 6=i θ̂j < 0 (i.e. given θ̂−i,

both θ̂i and θi yield x = 0) and t(θ̂i, θ̂−i) > t(θi, θ̂−i). Again, it follows that
truthtelling is not a dominant strategy for agent i.
4) Finally, assume that properties i), ii), and iii) hold and that prop-

erty iv) fails (1 case). Then x(θ̂i, θ̂−i) = 1 and x(θ̂
0
i, θ̂−i) = 0 imply that

either a) ti(θ̂i, θ̂−i) − ti(θ̂0i, θ̂−i) =
P

j 6=i θ̂j − ² or b) ti(θ̂i, θ̂−i) − ti(θ̂
0
i, θ̂−i) =P

j 6=i θ̂j + ² is true for some ² > 0 . Let us only consider the former pos-
sibility (the proof of b) is along the same lines). If a) holds, then there
exists an agent i and announcements θ̂i = θi (truthtelling), θ̂

0
i, and θ̂−i such

that θ̂
0
i +

P
j 6=i θ̂j < 0, θi = −Pj 6=i θ̂j +

²
2
(hence θi +

P
j 6=i θ̂j > 0) and

ti(θi, θ̂−i)− ti(θ̂0i, θ̂−i) =
P

j 6=i θ̂j − ². Agent i’s utility from telling the truth

is θi + ti(θi, θ̂−i) = ti(θ̂
0
i, θ̂−i) − ²

2
, whereas his utility from announcing θ̂

0
i is

ti(θ̂
0
i, θ̂−i) > ti(θ̂

0
i, θ̂−i) − ²

2
. It follows that truthtelling is not a dominant

strategy for agent i.

One implication of theorem 6 is that the only SCRs that are both success-
ful and TIDS are those defined in (2.8)-(2.9). We can think of many examples
where we may want to place even further restrictions on the transfer function
ti (θ). For instance, in some cases the planner may not be allowed to run a
deficit when implementing f (θ), i.e. the sum

P
i ti (θ) must not exceed zero.

An SCR with this property is called feasible.

Definition 10 (Feasible Social Choice Rule) An SCR is feasible ifP
i ti (θ) ≤ 0 for all θ ∈ Θ.

An even stronger requirement is that f (θ) be budget-balanced, i.e. that
the sum of transfers

P
i ti (θ) be identically equal to zero.

Definition 11 (Budget-Balanced Social Choice Rule) An SCR is budg-
et-balanced if

P
i ti (θ) = 0 for all θ ∈ Θ.

Since the planner’s preferences do not enter into our welfare considera-
tions, any net surplus |Pi ti (θ)| > 0 collected from the agents is wasteful. It
is therefore not surprising that the social choice rule f ∗ (θ) which maximizes
the utilitarian SWF F (θ) =

P
i (θix+ ti) subject to the feasibility constraintP

i ti (θ) ≤ 0 is both successful and budget-balanced. Such an SCR is called
ex-post efficient.
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Definition 12 (Ex-Post Efficient Social Choice Rule) An SCR is ex-
post efficient if it is both successful and budget-balanced.

Next, we will address the question whether ex-post efficient SCRs are
TIDS. An important member of the class of Groves mechanisms is the piv-
otal or Clarke mechanism suggested by Clarke (1971). It has the convenient
property that an agent’s transfer ti(θ̂) is zero unless he is pivotal, i.e. unless
his announcement θ̂i affects the decision x(θ̂), in which case ti(θ̂) is negative
and equal to the externality |Pj 6=i θ̂j | imposed on the other agents. Thus,
the Clarke mechanism embodies a fundamental principle of resource alloca-
tion in the presence of externalities according to which an individual should
compensate the others for the harm he causes (albeit with the caveat that
the transfers go to the planner and not to the other agents).

Definition 13 (Clarke Mechanism) A Clarke mechanism ΓC is a Groves
mechanism where for all i ∈ I

hi(θ̂−i) = min
³
−
X

j 6=i
θ̂j, 0

´
. (2.10)

Since any Groves scheme induces truthtelling, we henceforth set θ̂ = θ for
ease of notation. The transfers ti(θ̂) that ensue from (2.7) can be depicted
in a 2× 2 matrix as follows: P

j 6=i θj < 0
P

j 6=i θj ≥ 0
.R
.

P
i θi < 0 0 −Pj 6=i θj

.R
.

P
i θi ≥ 0

P
j 6=i θj 0

In what follows, we show that there exists no mechanism Γd that truthfully
implements ex-post efficient SCRs in dominant strategies. From theorem
6, we know that if such a mechanism exists, it must belong to the class of
Groves mechanisms. First, let us consider the Clarke mechanism ΓC. A
simple counterexample reveals that the Clarke mechanism entails a strictly
positive surplus |Pi ti (θ)| > 0 in some states, which implies that it is not
budget-balanced and therefore unable to implement budget-balanced SCRs.

Theorem 7 The Clarke mechanism ΓC is not budget-balanced.

Proof (by contradiction) Suppose ΓC is budget-balanced. Then
P

i ti (θ) =
0 must hold for all θ ∈ Θ. Consider the example where n = 3 and θ =
(−1,−1, 3). The Clarke transfers are t = (0, 0,−2), which impliesPi ti (θ) <
0, a contradiction.
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Next, we prove that there is no other feasible mechanism in the class of
Groves mechanisms whose surplus dominates that of the Clarke mechanism.

Theorem 8 There exists no feasible Groves mechanism ΓG with |
P

i ti (θ)| ≤
|Pi t̄i (θ)| for all θ ∈ Θ and |Pi ti (θ)| < |Pi t̄i (θ)| for some θ ∈ Θ, where
t̄i (θ) denotes the Clarke transfer to agent i.

The proof is lengthy and is omitted here. See Laffont and Maskin (1982),
theorem 3.3. for a complete proof.
Theorems 7 and 8 together imply that no budget-balanced Groves mech-

anism exists. But by theorem 6, Groves mechanisms are the only candidates
for truthful implementation of ex-post efficient SCRs. This leads to the fol-
lowing trivial, but important corollary:

Corollary 1 There exists no SCR that is both TIDS and ex-post efficient.

Remarks

1. While there is no SCR that is both ex-post efficient and TIDS, there
do exist SCRs which are successful, feasible, and TIDS. In fact, any
SCR that is implemented by the Clarke mechanism has this property.

2. More encouraging results can be obtained when the underlying equi-
librium concept is weakened so that less incentive compatibility con-
straints must be satisfied. For instance, in sections 2.3 and 2.4 we
will show that ex-post efficient SCRs are implementable in Nash and
Bayesian equilibrium, respectively.

3. At the beginning of this subsection, we pointed out the analogy be-
tween the public good model and a setting where an indivisible good is
auctioned off to one of n agents. In the auction setting, the analogue of
the Clarke mechanism is known as second-price sealed-bid or Vickrey
auction. There, agent i is pivotal if he is the bidder with the highest
valuation, and his transfer ti(θ) is equal to the second-highest valuation
max{θj | j 6= i}, which is again the externality caused by agent i.

4. Despite the striking similarity, the public good setting and the auc-
tion setting differ in an important aspect: In the auction setting, the
planner coincides with the seller, whose utility enters into our welfare
considerations. An immediate consequence of this is that the SCR im-
plemented by the Clarke-Vickrey mechanism is then ex-post efficient
since the surplus |Pi ti (θ)| > 0 collected by the planner (”agent 0”) is
no longer wasteful. More generally, any profile of transfers is compati-
ble with a Pareto optimal allocation.
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Finally, we look at situations where the planner cannot force the agents
to take part in the game. When participation is voluntary, an implementable
SCR must satisfy an additional set of constraints known as individual ratio-
nality or participation constraints. These constraints ensure that each agent
can guarantee himself a certain minimum utility (typically normalized to
zero) by telling the truth.

Definition 14 (Ex-Post Individually Rational Social Choice Rule)
An SCR is ex-post individually rational if θix (θ)+ t (θ)i ≥ 0 for all i ∈ I and
θ ∈ Θ.

In the absence of voluntary participation, it was shown that successful
and feasible SCRs can be truthfully implemented in dominant strategies.
When individual rationality constraints are added, this turns out impossible.

Theorem 9 There exists no SCR that is TIDS, successful, feasible, and
ex-post individually rational.

Proof (by contradiction) Suppose there exist SCRs that are TIDS, suc-
cessful, feasible, and ex-post individually rational. By theorems 6 and 5, we
can restrict attention to Groves mechanisms. Choose a profile θ = (θ1, ..., θn)
such that

P
i θi ≥ 0 and such that for all i ∈ I, there exists a θ0i with

θ0i +
P

j 6=i θj < 0. Given that the other agents are of type θ−i, the func-
tion hi (θ−i) to agent i is the same for type θi or type θ0i. If agent i is of
type θ0i, success implies x = 0. From individual rationality, it then follows
that hi (θ−i) ≥ 0. This is true for all i ∈ I. Consider now the case where
θ = (θ1, ..., θn). Success implies x = 1, and feasibility requiresX

i

ti =
X
i

X
j 6=i
θj +

X
i

hi (θ−i) = (n− 1)
X
i

θi +
X
i

hi (θ−i) ≤ 0. (2.11)

Since
P

i θi ≥ 0, this implies
P

i hi (θ−i) < 0, a contradiction.

2.3 Nash Implementation
Direct vs. Indirect Mechanisms

The previous section made clear that very little is implementable in domi-
nant strategies: For unrestricted preference domains, it was shown that only
dictatorial SCRs are TIDS, and when preferences were restricted to the qua-
silinear domain, it was shown that no SCR is both ex-post efficient and TIDS.
A less restrictive equilibrium concept than dominant strategy equilibrium is
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Nash equilibrium. For a strategy s∗i to be an equilibrium strategy, it need
only be optimal with respect to the other players’ equilibrium strategies s∗−i,
as opposed to dominant strategy equilibrium, where s∗i must be optimal with
respect to any profile s−i in the other players’ strategy set ×S−i.
In section 2.2, it turned out to be convenient to restrict attention to direct

mechanisms and concentrate on SCRs that are truthfully implementable.

Definition 15 (TINS Social Choice Rule) The social choice rule f (θ)
is truthfully implementable in Nash strategies (TINS) if there exists a direct
mechanism Γd such that i) truthtelling is a Nash equilibrium, i.e. if for all
i ∈ I, θi ∈ Θi, and θ−i ∈ Θ−i,

g(θi, θ−i) %i (θi) g(θ̂i, θ−i) (2.12)

for all θ̂i ∈ Θi, and ii) g (θ) ∈ f (θ) for all θ ∈ Θ.
We could now proceed by deriving a corresponding version of theorem

1 (revelation principle) for Nash implementation. Unfortunately, restricting
attention to direct mechanisms does not get us any further since the set of
SCRs that are TINS is no greater than the set of SCRs that are TIDS, which
brings us back to dominant strategy implementation.

Theorem 10 An SCR is TINS if and only if it is TIDS.

Proof (direct) The ”if”-part is obvious, since any dominant strategy equi-
librium is a Nash equilibrium.
”Only if”-part: Assume that the direct mechanism Γd truthfully imple-

ments f (θ) in Nash strategies. Then for all i and θi, θ̂i, and θ−i ∈ Θ−i,
g(θi, θ−i) %i (θi) g(θ̂i, θ−i), from which it follows that truthtelling is a domi-
nant strategy.

The ”only if”-part is nothing but a restatement of definition 15. There,
we required that θi is optimal with respect to any possible profile θ−i in
the other players’ strategy set Θ−i, which coincides with the definition of a
dominant strategy. Alternatively, by setting θ−i = θ̂−i, we see that definitions
15 and 6 are equivalent. Intuitively, remember that the direct mechanism Γd
induces a game of complete information in every state θ. In any such game,
TINS requires only that announcing θi is optimal with respect to the profile
of true announcements θ−i. Thus, fix θi and consider the states (θi,θ−i),
(θi,θ0−i), (θi,θ

00
−i) etc. such that {θ−i, θ0−i, θ00−i, ...} = Θ−i. Clearly, requiring

that θi is optimal with respect to any possible profile of truthful reports
θ−i, θ0−i, θ

00
−i, ... ∈ Θ−i amounts to the same as requiring that θi is a dominant

strategy.
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The reasoning which underlies theorem 10 does not apply if we define a
strategy set in Γd as the entire state spaceΘ = ×Θi. That is, instead of having
agents announce their types θi, we let each agent announce a complete profile
θ̂ = (θ̂1, ..., θ̂n). In this case, SCRs that are TINS are no longer automatically
TIDS, and we can hope that by restricting attention to direct mechanisms,
more SCRs are truthfully implementable in Nash strategies than in dominant
strategies. Unfortunately, it turns out that with this enlarged definition of
strategy sets, any SCR is TINS. To see this, let the true state be θ and
consider the direct mechanism Γd which implements outcome y ∈ f(θ̂) if
and only if all agents announce the same θ̂. If one or more agents disagree,
a ”bad” outcome is implemented (e.g. all agents are shot). Clearly, this
mechanism has θ̂ = θ as a Nash equilibrium and thus truthfully implements
f(θ). But any common report θ̂ 6= θ is also a Nash equilibrium, from which
it follows that f(θ) is not implemented unless all equilibria have outcomes
that are in f(θ).
Although there exists a version of the revelation principle for Nash imple-

mentation (cf. Repullo (1986), theorem 6.1), it is of little use here because
restricting attention to direct mechanisms implies a great loss of generality
due to the multiple equilibrium problem. In the remainder of this section,
we therefore focus on indirect mechanisms.

Necessary and Sufficient Conditions for Implementation

Consider a social choice rule f(θ) that is implementable in Nash strategies
and select a particular state θ0. This state has at least one Nash equilibrium
whose outcome, say y, is in f(θ0). Next, select a different state θ00 and
assume that y (weakly) moves up everyone’s ranking when switching from
θ0 to θ00. Clearly, the Nash equilibrium with outcome y continues to be a
Nash equilibrium in state θ00. By the definition of implementability, y must
therefore also be an element of f(θ00). An SCR with the property that an
outcome y that is an element of f(θ0) and does not fall in anyone’s ranking
when moving from θ0 to θ00 is also an element of f(θ00) is called monotonic.
By the above reasoning, any Nash implementable SCR must be monotonic.

Definition 16 (Monotonic Social Choice Rule) The social choice rule
f(θ) is monotonic if for all y ∈ A and θ0, θ00 ∈ Θ, the following holds: if i)
y ∈ f(θ0) and ii) for all i ∈ I and z ∈ A, y %i (θ0) z ⇒ y %i (θ00) z, then
y ∈ f(θ00).

An immediate consequence of definition 16 is the following property of
monotonic SCRs: If y ∈ f (θ0) and y /∈ f (θ00), then there exists at least one
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agent i and outcome z such that y %i (θ0i)z and z Âi (θ00i )y. Let us henceforth
call z a test outcome with respect to (y, θ0, θ00) and the agent i for whom this
preference reversal holds a test agent with respect to (y, θ0, θ00).
The assertion that Nash implementability implies monotonicity is part of

a theorem due to Maskin (1977), which is considered as the most important
result in the theory of Nash implementation.

Theorem 11 (Maskin’s Theorem I: Necessity) If an SCR is imple-
mentable in Nash strategies, then it is monotonic.

Proof (by contradiction) If f(θ) is implementable in Nash strategies, there
exists a state θ0 ∈ Θ and a Nash equilibrium profile s∗ (θ0) = (s∗i (θ0) , s∗−i (θ0))
with g (s∗ (θ0)) ∈ f(θ0). By the definition of Nash equilibrium,

g(s∗i (θ
0) , s∗−i (θ

0)) %i (θ0i) g(si, s∗−i (θ0)) (2.13)

for all i ∈ I and si ∈ Si. Suppose now that f (θ) is not monotonic. Then
there exists a state θ00 6= θ0 such that

g(s∗i (θ
0) , s∗−i (θ

0)) %i (θ00i ) g(si, s∗−i (θ0)) (2.14)

for all i ∈ I and si ∈ Si but g (s∗ (θ0)) /∈ f (θ00). However, from (2.14)
it follows that the profile s∗ (θ0) with outcome g (s∗ (θ0)) continues to be a
Nash equilibrium in state θ00, which contradicts the assumption that f(θ) is
implementable.

Remarks

1. Since full implementation implies implementation, theorem 11 con-
tinues to hold if we substitute ”implementable” with ”fully imple-
mentable”.

2. For the case of single-valued SCRs, it can be shown that an SCR is im-
plementable in Nash strategies only if it is truthfully implementable in
dominant strategies (given that the domain of preferences is monoton-
ically closed - a property that we will not define here). Thus, nothing
is gained from weakening the underlying equilibrium concept. Even
worse, under some fairly innocuous assumptions, a result reminiscent
of the Gibbard-Satterthwaite theorem can be proven which says that
an SCR is implementable in Nash strategies if and only if it is dictator-
ial. For a proof, see Dasgupta, Hammond, and Maskin (1979), theorem
7.2.3. and corollary 7.2.5.
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3. Monotonicity is satisfied by such common SCRs as the Paretian choice
rule and the majority rule (if < consists of strict orderings). Further-
more, monotonicity is closely related to Arrow’s well-known ”indepen-
dence of irrelevant alternatives” condition. For instance, suppose that
by switching from state θ0 to state θ00, the set L (y) of outcomes that
all agents value less than y remains the same (L (y) is called the lower
contour set with respect to y), but that the relative rank order of some
of the elements in L (y) changes for some agents. Then, monotonicity
requires that if y is in f (θ0), it must also be in f (θ00), regardless of the
changes in L (y).

4. Monotonicity rules out interpersonal comparisons of the kind inherent
in utilitarian or Rawlsian SCRs: The only thing that matters when
switching from state θ0 to θ00 is that no agent values y less than before.
Whether some agents value y much higher while others value y only
slightly higher is inconsequential.

The second part of Maskin’s theorem shows that monotonicity together
with the additional condition of no veto power implies full implementability.

Definition 17 (No Veto Power) The social choice rule f (θ) satisfies no
veto power if for all i ∈ I and y ∈ A, the following holds: if for all j 6= i and
z ∈ A, y %j (θj) z, then y ∈ f (θ).

In words, no veto power says that whenever in some state θ an outcome
y is top-ranked for n− 1 agents, then y should be in the choice set f (θ), i.e.
the remaining agent cannot veto it.

Theorem 12 (Maskin’s Theorem II: Sufficiency) Suppose n ≥ 3. If an
SCR is monotonic and satisfies no veto power, then it is fully implementable
in Nash strategies.

Proof (by contradiction) Consider the following mechanism: Each agent
announces a state, an outcome, and a nonnegative integer.
i) If all agents agree on some state θ and outcome y ∈ f (θ), then y is

implemented.
ii) If n− 1 agents agree on some state θ and outcome y ∈ f (θ), then y is

implemented unless the remaining agent i announces a state θ0 and outcome
z such that I) y /∈ f (θ0), II) i is a test agent for (y, θ, θ0), and III) z is a test
outcome for (y, θ, θ0), in which case z is implemented.
iii) In all other cases, the outcome of the agent with the highest integer

is implemented.
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First, we show that if the true state is θ, there exists a Nash equilibrium
for each y ∈ f (θ) where all agents announce (y, θ). Suppose that this is
not the case. Then there must exist an agent i who strictly benefits from
announcing a pair (z, θ0) that satisfies conditions I)-III) (any other unilateral
deviation leads to y being implemented and thus cannot be strictly prof-
itable). By definition, i is a test agent and z is a test outcome for (y, θ, θ0),
from which it follows that y %i (θi) z. However, strict profitability implies
that z Âi (θi) y, a contradiction.
Next, we show that if the true state is θ, no Nash equilibrium with out-

come z /∈ f (θ) exists. Suppose that such an equilibrium exists. From i)-iii),
we conclude that this Nash equilibrium must belong to one of the following
two categories:
1) All agents agree on some state θ0 and outcome z, where z ∈ f (θ0)

and z /∈ f (θ). By monotonicity, there exists a test outcome y and a test
agent i who strictly prefers to unilaterally deviate by announcing (y, θ) a
contradiction.
2) n−1 agents agree on some state and outcome and the remaining agent

disagrees. Denote the outcome from this equilibrium by z /∈ f (θ). There
are two possibilities: a) There exists an x ∈ A such that one of the n − 1
agents strictly prefers x to z. This agent is strictly better off by unilaterally
deviating from the proposed equilibrium, a contradiction (he will announce a
different state, together with x and some integer that exceeds the integers of
the other agents). b) z is top-ranked for all n− 1 agents. By no veto power,
z ∈ f (θ), which contradicts the assumption that z /∈ f (θ).
Remarks

1. The role of the integers is solely to rule out Nash equilibria based on
step iii) of the mechanism with unwanted outcomes z /∈ f (θ). Since
the set of integers is unbounded, such equilibria cannot exist. For any
profile of integers announced by the remaining j 6= i agents, agent i
would always want to deviate by announcing a higher integer.

2. The assumption of no veto power is trivially satisfied in any example
with n ≥ 3 agents in which there is a private good that yields positive
utility (e.g. money). Because each agent wants to have all of the private
good himself, there cannot exist situations in which n− 1 agents agree
on the same outcome. Then, monotonicity constitutes both a necessary
and sufficient condition for full Nash implementability.

3. When n = 2, a result similar to theorem 12 can be proven if in addi-
tion to monotonicity, f (θ) satisfies a condition called restricted no veto
power. See Moore and Repullo (1990), corollary 3, for details.



CHAPTER 2. MECHANISM DESIGN 27

The Public Good Problem Revisited

In section 2.2, we saw that even if preferences are restricted to the quasi-
linear domain, ex-post efficient SCRs cannot be implemented in dominant
strategies. We now reconsider the public good problem studied earlier and
show that with Nash implementation, life is much easier.
First, note that no veto power is trivially satisfied in the public good

setting since preferences depend positively on the monetary transfers ti. It
then follows from Maskin’s theorem that an SCR is fully implementable in
Nash strategies if and only if it is monotonic. We can now apply definition
16 to the present context and conclude that an SCR is monotonic iff

(0, t1, ..., tn) ∈ f (θ) and θ ≥ θ0 implies (0, t1, ..., tn) ∈ f (θ0) , (2.15)

(1, t1, ..., tn) ∈ f (θ) and θ ≤ θ0 implies (1, t1, ..., tn) ∈ f (θ0) . (2.16)

In words: If an outcome y in the choice set implies x = 0 and the profile of
valuations θ = (θ1, ..., θn) decreases in the vector sense, then y should remain
in the choice set. Conversely, if an element in the choice set implies x = 1
and the profile θ increases in the vector sense, then y should remain in the
choice set. Notice that a decrease in θ implies an increase in each agent’s
valuation for outcomes that contain x = 0.
Conditions (2.15)-(2.16) reveal that monotonicity places only very little

restriction on the vector of transfers (t1, ..., tn). In particular, the following
ex-post efficient SCR is monotonic and therefore Nash implementable:

x(θ) =

½
1 if

P
i θi ≥ 0

0 otherwise,
(2.17)

ti(θ) = 0 for all i ∈ I. (2.18)

2.4 Bayesian Implementation
The Revelation Principle

We now turn to environments where agents cannot observe each others’ pref-
erences. As was remarked earlier, agents who possess a dominant strategy
will use it even if they do not have complete information about the other
agents’ types. One implication of this is that the results derived in connec-
tion with dominant strategy implementation continue to hold in the presence
of incomplete information. In this section, we employ the weaker concept of
Bayesian (Nash) equilibrium. Consider the following assumptions which re-
place assumption 5 of the basic model:
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5a. Each agent observes only his own type θi, i.e. agents have incomplete
information.

5b. The profile of types θ = (θ1, ..., θn) is drawn from the set Θ = ×Θi
according to the distribution function Π (θ) with density π (θ), which
is common knowledge.

5c. The agents’ types are statistically independent, i.e. π (θ) =
Q
i∈I πi (θi).

The assumption of common knowledge in 5b is important and known
in game theory as common prior assumption or Harsanyi doctrine. It is
crucial, because in a game of incomplete information a player’s strategy not
only depends on his beliefs about π (θ), but also on his beliefs about others’
beliefs about π (θ), beliefs about beliefs about beliefs, etc.
If assumption 5c fails and types are correlated, a ”shoot-them-all” mech-

anism along the lines of that presented in section 2.2 can be used to truth-
fully implement any social choice rule f (θ) as if information was complete.
However, as was also shown in section 2.2, any common report is then an
equilibrium and we are very far from actually implementing f (θ).
In environments with incomplete information, a mechanism Γ combined

with the state-space Θ and density π (θ) defines a game of incomplete infor-
mation with a (possibly) different payoff structure for every θ ∈ Θ. From
now on, let ui (y, θi) denote agent i’s von Neumann-Morgenstern utility over
outcomes when he is of type θi. As in the previous sections, we are especially
interested in SCRs that are truthfully implementable.

Definition 18 (TIBS Social Choice Rule) The social choice rule f (θ)
is truthfully implementable in Bayesian strategies (TIBS) if there exists a
direct mechanism Γd such that i) truthtelling is a Bayesian equilibrium, i.e.
if for all i ∈ I and θi ∈ Θi,Z

Θ−i
ui (g(θi, θ−i), θi) dΠ−i (θ−i) ≥

Z
Θ−i
ui(g(θ̂i, θ−i), θi)dΠ−i (θ−i) (2.19)

for all θ̂i ∈ Θi, and ii) g (θ) ∈ f (θ) for all θ ∈ Θ.
According to (2.19), truthtelling need only be optimal in expected terms,

which is a weaker requirement than both TIDS (where θ̂i = θi is to be optimal
for any profile θ̂−i) and TINS (where θ̂i = θi is to be optimal for any profile
of truthful reports θ−i).
If the density function π (θ) is degenerate (i.e. if it has point mass only

on a single vector θ), Bayesian equilibrium reduces to ordinary Nash equilib-
rium. Therefore, if we require that an SCR is implementable for all densities
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(including degenerate ones), we inevitably run into the problems associated
with Nash implementation. In particular, there is no point in restricting
attention to direct mechanisms as was shown in theorem 10.

Theorem 13 An SCR is TIBS for all possible densities π (θ) if and only if
it is TIDS.

Proof (indirect) The ”if”-part is obvious, since any dominant strategy
equilibrium is a Bayesian equilibrium.
”Only if”-part: Suppose f (θ) is not truthfully implementable in domi-

nant strategies. Then there exists an i ∈ I and a θ0 ∈ Θ such that truthtelling
is not a Nash equilibrium strategy for agent i, given the profile of truthful
announcements θ0−i. Now let π (θ

0) = 1. Then truthtelling is not a Bayesian
equilibrium strategy either.

In the remainder of this section, we confine ourselves to density functions
π (θ) which are not degenerate. Analogous to theorem 1, we can now derive
a version of the revelation principle for Bayesian equilibrium.

Theorem 14 (Revelation Principle) If an SCR is implementable in Baye-
sian strategies, then it is TIBS.

Proof (direct) Suppose that Γ implements the social choice rule f (θ) in
Bayesian strategies, and let Eg (θ) be non-empty for all θ. As in the proof of
theorem 1, s∗ : Θ→ ×Si is a mapping which selects exactly one equilibrium
profile s∗ (θ) ∈ Eg (θ) for each θ ∈ Θ. Since s∗ (θ) is a profile of Bayesian
equilibrium strategies, we haveZ

Θ−i
ui
¡
g(s∗i (θi) , s

∗
−i (θ−i)), θi

¢
dΠ−i (θ−i) (2.20)

≥
Z
Θ−i
ui
¡
g(si, s

∗
−i (θ−i)), θi

¢
dΠ−i (θ−i)

for all i ∈ I, θi ∈ Θi, and si ∈ Si. In particular, it is true thatZ
Θ−i
ui
¡
g(s∗i (θi) , s

∗
−i (θ−i)), θi

¢
dΠ−i (θ−i) (2.21)

≥
Z
Θ−i
ui(g(s

∗
i (θ̂i), s

∗
−i (θ−i)), θi)dΠ−i (θ−i)

for all i ∈ I and θi, θ̂i ∈ Θi, since s∗i (θ̂i) ∈ Si is merely a specific strategy
rule.
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Next, define the composed mapping h : Θ → A with h (θ) ≡ g (s∗ (θ)).
The function h (θ) together with the collection of possible types {Θ1, ...,Θn}
constitutes a direct mechanism Γd. But Γd truthfully implements f (θ) in
Bayesian strategies because h (θ) ≡ g (s∗ (θ)) ∈ f (θ) andZ

Θ−i
ui (h (θi, θ−i) , θi) dΠ−i (θ−i) ≥

Z
Θ−i
ui(h(θ̂i, θ−i), θi)dΠ−i (θ−i) (2.22)

for all i ∈ I and θi, θ̂i ∈ Θi. It follows that f (θ) is TIBS.

Remarks

1. The revelation principle for Bayesian equilibrium is based on the same
intuition as the revelation principle for dominant strategy equilibrium.
We therefore refer to the remarks made subsequent to theorem 1.

2. Contrary to an assertion by Laffont and Maskin (1982), p.44, the set of
Bayesian equilibria in any indirect mechanism Γ is not isomorphic to
that in a corresponding direct mechanism Γd (cf. Repullo (1986), p.185
for a counterexample). Hence, even if Γ gives rise to a unique Bayesian
equilibrium, truthtelling may not be the unique equilibrium in Γd and
restricting attention to direct mechanisms leads to a loss of generality.

3. If it can be ensured that the truthtelling outcome is the sole equilibrium
outcome in the direct mechanism Γd, then the reverse of theorem 14
is also true. Sufficient conditions for uniqueness are given by Repullo
(1986), section 5, and Palfrey (1992), theorem 1.

By definition 18, TIBS imposes fewer incentive constraints than TIDS,
which suggests that a wider range of SCRs is implementable in Bayesian
strategies than in dominant strategies. We will now show for the quasilinear
framework that this is indeed true.

AGV Mechanisms

Let us return to the public good problem analyzed in section 2.2. There,
we concluded that ex-post efficient SCRs are not implementable in dominant
strategies. For environments with complete information, we then showed
that this problem can be resolved by employing the weaker notion of Nash
equilibrium. As it turns out, a similar result also holds in environments where
information is incomplete, i.e. there exists a mechanism that (truthfully)
implements ex-post efficient SCRs. The mechanism in question in known
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as AGV mechanism and was independently discovered by d’Aspremont and
Gérard-Varet (1979) and Arrow (1979).

Definition 19 (AGV Mechanism) An AGV mechanism ΓAGV is a direct
mechanism with

x(θ̂) =

½
1 if

P
i θ̂i ≥ 0

0 otherwise,
(2.23)

ti(θ̂) =

Z
Θ−i

³X
j 6=i
θjx

³
θ̂i, θ−i

´´
dΠ−i (θ−i) + hi(θ̂−i), (2.24)

where

hi(θ̂−i) = − 1

n− 1
X

j 6=i

Z
Θ−j

³X
k 6=j θkx

³
θ̂j, θ−j

´´
dΠ−i (θ−j) (2.25)

for all i ∈ I, and where θ̂ is a profile of announcements.

The logic which underlies the AGV mechanism is very similar to that of
the Groves mechanism: Agent i’s transfer ti(θ̂) depends on his announcement
θ̂i only insofar as this announcement changes the decision x(θ̂), given that all
other agents tell the truth. For any given profile of truthful announcements
θ−i, such a change in x(θ̂) reduces agent i’s transfer by an amount equal
to the other agents’ valuations | Pj 6=i θj |, which represents the negative
externality that he is imposing on these agents. Thus, the integral in (2.24)
constitutes the expected (negative) externality from agent i’s announcement.
Since all externalities are now fully internalized, no agent has an incentive to
misreport his type.

Theorem 15 In the AGV mechanism ΓAGV , truthtelling is a Bayesian equi-
librium.

Proof (direct) Given that the remaining j 6= i agents tell the truth, agent
i solves

max
θ̂i

Z
Θ−i
(θix(θ̂i, θ−i) + ti(θ̂i, θ−i))dΠ−i (θ−i) . (2.26)

Because hi(θ̂−i) is independent of θ̂i, this is equivalent to

max
θ̂i

Z
Θ−i

³
θi +

X
j 6=i
θj

´
x(θ̂i, θ−i)dΠ−i (θ−i) . (2.27)

By (2.23), θ̂i = θi maximizes the integrand in (2.27) for any profile θ−i, which
implies that θ̂i = θi also maximizes the integral.
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From theorem 15, it follows that an SCR with decision rule and trans-
fer functions given by (2.23)-(2.24) is truthfully implementable in Bayesian
strategies. It is now a straightforward exercise to show that any such SCR
is ex-post efficient.

Theorem 16 There exist SCRs that are both TIBS and ex-post efficient.

Proof (direct) Consider the social choice rule f (θ) with decision rule x (θ)
and transfer functions ti (θ) given by (2.23)-(2.24). Success is obvious. Fur-
thermore, by theorem 15, f (θ) is TIBS. In order to prove that it is also
budget-balanced, let us define

τi(θ̂i) ≡
Z
Θ−i

³X
j 6=i
θjx

³
θ̂i, θ−i

´´
dΠ−i (θ−i) . (2.28)

Since f (θ) is TIBS, we can set θ̂i = θi. Summing over all i yieldsX
i
ti (θ) =

X
i
τi (θi)− 1

n− 1
X

i

X
j 6=i
τj (θj) (2.29)

=
X

i
τi (θi)− n− 1

n− 1
X

i
τi (θi)

= 0

for all θ ∈ Θ.

Hitherto, we have assumed that participation in the AGV mechanism
is voluntary. If this assumption is relaxed, it may no longer be true that
ΓAGV truthfully implements ex-post efficient SCRs in Bayesian strategies. In
fact, as we will show later in the context of a bilateral trade problem, there
is no direct mechanism which truthfully implements ex-post efficient SCRs
in Bayesian strategies and satisfies individual rationality at the same time.
Prior to that, however, we characterize for a rather general class of problems
the set of SCRs that are both TIBS and individually rational.

Necessary and Sufficient Conditions for Truthful Implementation
with Individual Rationality Constraints

For convenience, we maintain the assumption that preferences are quasilinear,
albeit we consider now the more general form θivi (x) + ti, where x ∈ X ⊆
Rk. In addition, let us replace assumption 3 of the basic model with

3a. Each agent has a characteristic or type θi ∈ Θi =
£
θi, θi

¤
with θi 6= θi

and strictly positive density πi (θi) > 0 for all θi ∈ Θi.
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For ease of exposition, let vi(θ̂i) ≡
R
Θ−i
vi(x(θ̂i, θ−i))dΠ−i (θ−i) and t̄i(θ̂i) ≡R

Θ−i
ti(θ̂i, θ−i)dΠ−i (θ−i) denote agent i’s expected net benefit and expected

transfer, respectively, when he announces θ̂i and the remaining j 6= i agents
tell the truth. This allows us to write agent i’s expected utility from the
profile (θ̂i, θ−i) as θiv̄i(θ̂i) + t̄i(θ̂i). Finally, let Ui(θi) ≡ θiv̄i(θi) + t̄i(θi) de-
note agent i’s expected utility if everyone (including him) reveals his type
truthfully.
The ex-post version of individual rationality given in definition 14 appears

overly strong for environments where information is incomplete. If we require
that θivi (x (θ)) + t (θ)i ≥ 0 for all i ∈ I and θ ∈ Θ, then we essentially allow
agents to withdraw from the game after everybody (truthfully) announced
his type. It seems therefore more appropriate to require that an SCR be
interim individually rational in the sense that agents can only withdraw at
a stage where they do not yet know each others’ types.

Definition 20 (Interim Individually Rational Social Choice Rule)
An SCR is interim individually rational (IIR) if Ui (θi) ≥ 0 for all i ∈ I and
θi ∈ Θi.

As in definition 14, the agents’ reservation utilities are normalized to zero.
We can now characterize the set of SCRs that are both TIBS and IIR.

Theorem 17 An SCR is both TIBS and IIR if and only if for all i ∈ I,
1) v̄i(θi) is nondecreasing,

2) Ui (θi) = Ui (θi) +
R θi
θi
v̄i(η)dη for all θi, and

3) Ui (θi) ≥ 0.

Proof (direct/by contradiction) ”if”-part: First, we show that 1) and 2)
imply TIBS. Take any two values θi, θ0i ∈

£
θi, θi

¤
with θi > θ0i > θi. From 2),

we have

Ui (θi)−
Z θi

θi

v̄i(η)dη = Ui(θ
0
i)−

Z θ0i

θi

v̄i(η)dη. (2.30)

Rearranging terms and using 1) gives

Ui (θi)− Ui(θ0i) =
Z θi

θ0i

v̄i(η)dη ≥
Z θi

θ0i

v̄i(θ
0
i)dη = (θi − θ0i)v̄i(θ0i). (2.31)

Note that v̄i(θ0i) is a constant. Hence

Ui (θi) ≥ Ui(θ0i) + (θi − θ0i)v̄i(θ0i) ≡ θiv̄i(θ0i) + t̄i(θ0i). (2.32)
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Similarly, suppose that θ0i > θi > θi. By the same reasoning, we have

Ui(θ
0
i) ≥ Ui(θi) + (θ0i − θi)v̄i(θi) ≡ θ0iv̄i(θi) + t̄i(θi). (2.33)

Together, (2.32) and (2.33) imply TIBS. Next, we prove that 1), 2), and 3)
imply IIR. Suppose not. Then there exists some θi > θi with Ui (θi) < 0. We
just established that 1) and 2) imply TIBS. However, TIBS in conjunction
with 3) implies

Ui (θi) ≥ θiv̄i(θi) + t̄i(θi) > θiv̄i(θi) + t̄i(θi) ≡ Ui(θi) ≥ 0, (2.34)

a contradiction.
”only if”-part: We now show that TIBS implies 1) and 2). For any i ∈ I

and any two types θi, θ0i ∈
£
θi, θi

¤
, TIBS requires that

Ui (θi) ≥ θiv̄i(θ0i) + t̄i(θ0i) ≡ Ui(θ0i) + (θi − θ0i)v̄i(θ0i), (2.35)

and
Ui(θ

0
i) ≥ θ0iv̄i(θi) + t̄i(θi) ≡ Ui(θi)− (θi − θ0i)v̄i(θi). (2.36)

Suppose without loss of generality that θi < θ0i. From (2.35) and (2.36), it
follows that

v̄i(θ
0
i) ≥

Ui (θi)− Ui(θ0i)
θi − θ0i

≥ v̄i(θi), (2.37)

which shows that v̄i(·) is nondecreasing. Next, letting θ0i → θi, we obtain
dUi(θi)
dθi

= v̄i(θi) for all θi. Integrating both sides over [θi, θi] gives

Ui (θi) = Ui (θi) +

Z θi

θi

v̄i(η)dη. (2.38)

for all θi Finally, note that IIR obviously implies 3) by definition 20.

Remarks

1. Theorem 17 is an extremely powerful tool in Bayesian implementation
theory and will be used repeatedly in the remainder of this section.
An analogous version for the one-agent case was developed by Mirrlees
(1971) and plays a central role in our analysis of adverse selection in
chapter 3.

2. The great merit of theorem 17 is that it allows us to replace the origi-
nal TIBS and IIR constraints with the mathematically more tractable
constraints 1)-3). Furthermore, direct inspection of conditions 1)-3)
already yields many important insights as is shown in the following
subsections in the context of a bilateral trading problem and auction
design.
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The Myerson-Satterthwaite Theorem

Consider a bilateral trading problem where agent 1 is the seller of an indivisi-
ble object that agent 2 likes to buy. Each agent has quasilinear utility θixi+ti,
where θi and ti denote agent i’s valuation and transfer, respectively, and
where xi is the probability that agent i receives the object. This setting corre-
sponds in the framework of the previous subsection to the case where vi (x) =
xi, and where X = {(x1, x2) | xi ∈ [0, 1] for i = 1, 2 and x1 + x2 ≤ 1}. Simi-
lar to the previous subsection, let us define x̄i(θi) ≡

R
Θ−i
xi(θi, θ−i)dΠ−i (θ−i),

t̄i(θi) ≡
R
Θ−i
ti(θi, θ−i)dΠ−i (θ−i), and Ui(θi) ≡ θix̄i(θi) + t̄i(θi).

Note that unlike in the public good problem where x ∈ {0, 1}, we now
also consider random decisions. Randomization convexifies the decision space
X and thus allows us to prove our results (here: the Myerson-Satterthwaite
theorem) for a wider class of SCRs. Besides, randomization also turns out
to be convenient for technical reasons (cf. Laffont and Maskin (1982), p.44).
In the bilateral trading problem, an SCR is ex-post efficient if and only

if i) there is no waste of either the object or money, and ii) whoever has a
higher valuation receives the object with probability one.

Definition 21 (Ex-Post Efficient Social Choice Rule) An SCR is ex-
post efficient if

1) t1 (θ) + t2 (θ) = 0 for all θ ∈ Θ,
2) x1 (θ) + x2 (θ) = 1 for all θ ∈ Θ, and
3) x1 (θ) = 1 if θ1 > θ2 and x2 (θ) = 1 if θ1 < θ2.

The Coase theorem predicts that in the presence of complete information,
bargaining over the object in question leads to an ex-post efficient alloca-
tion. When information is incomplete, sellers typically overstate and buyers
understate their valuations in order to maximize profits. The question is
then whether there exists a trading mechanism (i.e. a bargaining or bid-
ding procedure) that nonetheless attains an ex-post efficient outcome. By
the revelation principle, it is not necessary to examine all possible bargain-
ing games. Rather, we can restrict attention to direct mechanisms in which
each agent simultaneously reports his valuation to a ficticious third party
who then implements an outcome (x (θ) , t (θ)) ∈ f (θ). Implicitly, this as-
sumes that prior to announcing their valuations, both parties have signed an
enforceable contract that specifies a social choice rule f (θ).
From our analysis of the public good problem, we already know that in

the absence of individual rationality constraints, the AGVmechanism (truth-
fully) implements ex-post efficient SCRs in Bayesian strategies. However, in
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the bilateral trading problem it is appropriate to require that f (θ) be (in-
terim) individually rational, i.e. that both buyer and seller have nonnegative
expected gains from trade if they are to participate. Since the seller can
always consume the object, this implies that U1 (θ1) ≥ θ1 for all θ1 ∈ [θ1, θ1].
By the same reasoning, the buyer’s expected utility ought to be nonnegative,
i.e. U2 (θ2) ≥ 0 for all θ2 ∈ [θ2, θ2]. Unfortunately, the following result due to
Myerson and Satterthwaite (1983) tells us that if gains from trade are possi-
ble but not certain, there is no SCR that is TIBS, IIR, and ex-post efficient
at the same time.

Theorem 18 (Myerson-Satterthwaite Theorem) Suppose that θ1 < θ2
and θ1 > θ2. Then there exists no SCR that is TIBS, IIR and ex-post
efficient.

Proof (by contradiction) Assume that there exists a social choice rule
f (θ) that is TIBS, IIR and ex-post efficient. By theorem 17, we have

Ui (θi) = Ui (θi) +

Z θi

θi

x̄i(η)dη (2.39)

for all θi and i = 1, 2. Substituting Ui(θi) ≡ θix̄i(θi) + t̄i(θi) in (2.39) and
solving for t̄i(θi) gives

t̄i(θi) = Ui (θi) +

Z θi

θi

x̄i(η)dη − θix̄i(θi) (2.40)

for all θi and i = 1, 2. Taking expectations with respect to θi, we obtainZ θi

θi

t̄i(θi)dΠi (θi) = Ui (θi) +

Z θi

θi

Z θi

θi

x̄i(η)dηdΠi (θi) (2.41)

−
Z θi

θi

θix̄i(θi)dΠi (θi)

for i = 1, 2. Consider the second term on the right-hand side of (2.41).
Integration by parts yieldsZ θi

θi

Z θi

θi

x̄i(η)dηdΠi (θi) =

Z θi

θi

x̄i(η)dηΠi (θi)

¯̄̄̄
¯
θi

θi

(2.42)

−
Z θi

θi

x̄i(θi)Πi (θi) dθi

=

Z θi

θi

x̄i(θi) (1− Πi (θi)) dθi.
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Inserting (2.42) back in (2.41), we haveZ θ1

θ1

t̄1(θ1)dΠ1 (θ1) = U1 (θ1)−
Z θ1

θ1

x̄1(θ1)

µ
θ1 +

Π1 (θ1)

π1 (θ1)

¶
dΠ1 (θ1)

+

Z θ1

θ1

x̄1(θ1)dθ1, (2.43)

and Z θ2

θ2

t̄2(θ2)dΠ2 (θ2) = U2 (θ2) (2.44)

−
Z θ2

θ2

x̄2(θ2)

µ
θ2 − 1−Π2 (θ2)

π2 (θ2)

¶
dΠ2 (θ2) .

By theorem 17, the third term on the right-hand side of (2.43) can be written
as Z θ1

θ1

x̄1(θ1)dθ1 = U1
¡
θ1
¢− U1 (θ1) , (2.45)

so that (2.43) is equal toZ θ1

θ1

t̄1(θ1)dΠ1 (θ1) = U1
¡
θ1
¢− Z θ1

θ1

x̄1(θ1)

µ
θ1 +

Π1 (θ1)

π1 (θ1)

¶
dΠ1 (θ1) . (2.46)

For convenience, set x (θ) ≡ x2 (θ) and t (θ) ≡ t1 (θ). By definition 21,
ex-post efficiency implies that t2 (θ) = −t (θ) and x1 (θ) = 1 − x (θ), where
x (θ) is now simply the probability of trade. Next, define

x̄1(θ1) ≡ 1−
Z θ2

θ2

x(θ1, θ2)dΠ2 (θ2) , (2.47)

x̄2(θ2) ≡
Z θ1

θ1

x(θ1, θ2)dΠ1 (θ1) , (2.48)

t̄1(θ1) ≡
Z θ2

θ2

t(θ1, θ2)dΠ2 (θ2) , (2.49)

and

t̄2(θ2) ≡ −
Z θ1

θ1

t(θ1, θ2)dΠ1 (θ1) . (2.50)
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Inserting (2.47) and (2.49) in (2.46) and rearranging yields

U1
¡
θ1
¢
=

Z θ1

θ1

Z θ2

θ2

t(θ1, θ2)dΠ2 (θ2) dΠ1 (θ1) (2.51)

+

Z θ1

θ1

Z θ2

θ2

µ
θ1 +

Π1 (θ1)

π1 (θ1)

¶
dΠ2 (θ2) dΠ1 (θ1)

−
Z θ1

θ1

Z θ2

θ2

x(θ1, θ2)

µ
θ1 +

Π1 (θ1)

π1 (θ1)

¶
dΠ2 (θ2) dΠ1 (θ1) .

Using integration by parts, the second term on the right-hand side of (2.51)
can be written as (note that θ1 +

Π1(θ1)
π1(θ1)

is a constant with respect to θ2)Z θ1

θ1

Z θ2

θ2

µ
θ1 +

Π1 (θ1)

π1 (θ1)

¶
dΠ2 (θ2) dΠ1 (θ1) = θ1Π1 (θ1)|θ1θ1 (2.52)

= θ1.

Inserting (2.52) back in (2.51), we obtain

U1
¡
θ1
¢− θ1 =

Z θ1

θ1

Z θ2

θ2

t(θ1, θ2)dΠ2 (θ2) dΠ1 (θ1) (2.53)

−
Z θ1

θ1

Z θ2

θ2

x(θ1, θ2)

µ
θ1 +

Π1 (θ1)

π1 (θ1)

¶
dΠ2 (θ2) dΠ1 (θ1) .

Similarly, inserting (2.48) and (2.50) in (2.44) and rearranging, we have

U2 (θ2) = −
Z θ1

θ1

Z θ2

θ2

t(θ1, θ2)dΠ2 (θ2) dΠ1 (θ1) (2.54)

+

Z θ2

θ2

Z θ1

θ1

x(θ1, θ2)

µ
θ2 − 1−Π2 (θ2)

π2 (θ2)

¶
dΠ1 (θ1) dΠ2 (θ2) .

Adding up (2.53) and (2.54) gives

U1
¡
θ1
¢− θ1 + U2 (θ2) (2.55)

=

Z θ2

θ2

Z θ1

θ1

x(θ1, θ2)

µ
θ2 − 1− Π2 (θ2)

π2 (θ2)

¶
dΠ1 (θ1) dΠ2 (θ2)

−
Z θ2

θ2

Z θ1

θ1

x(θ1, θ2)

µ
θ1 +

Π1 (θ1)

π1 (θ1)

¶
dΠ1 (θ1) dΠ2 (θ2) .
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But IIR implies that U1
¡
θ1
¢ ≥ θ1 and U2 (θ2) ≥ 0, from which it follows that

the right-hand side of (2.55) must be nonnegative.
The remainder of the proof establishes that if f (θ) is to be ex-post effi-

cient, the right-hand side of (2.55) cannot be nonnegative, thus leading to a
contradiction. Suppose that f (θ) is ex-post efficient. By definition 21, we
then have x (θ) = 0 if θ1 > θ2 and x (θ) = 1 if θ1 < θ2, which implies that
both integrands in (2.55) become zero whenever θ1 > θ2. Consequently, the
right-hand side of (2.55) can be written asZ θ2

θ2

Z min[θ2,θ1]

θ1

µ
θ2 − 1−Π2 (θ2)

π2 (θ2)

¶
π1 (θ1) π2 (θ2) dθ1dθ2 (2.56)

−
Z θ2

θ2

Z min[θ2,θ1]

θ1

µ
θ1 +

Π1 (θ1)

π1 (θ1)

¶
π1 (θ1) π2 (θ2) dθ1dθ2.

Integrating with respect to θ1, the first term in (2.56) is equal toZ θ2

θ2

Π1 (θ1)|min[θ2,θ1]θ1
(θ2π2 (θ2)− 1+Π2 (θ2)) dθ2 (2.57)

=

Z θ1

θ2

Π1 (θ2) (θ2π2 (θ2)− 1+Π2 (θ2)) dθ2

+

Z θ2

θ1

(θ2π2 (θ2)− 1+Π2 (θ2)) dθ2.

Using integration by parts, the second term in (2.56) can be written as

−
Z θ2

θ2

θ1Π1 (θ1)|min[θ2,θ1]θ1
π2 (θ2) dθ2 (2.58)

= −
Z θ1

θ2

θ2Π1 (θ2)π2 (θ2) dθ2 −
Z θ2

θ1

θ1π2 (θ2) dθ2.

Adding up (2.57) and (2.58) yields

−
Z θ1

θ2

Π1 (θ2) (1−Π2 (θ2)) dθ2 (2.59)

+

Z θ2

θ1

¡¡
θ2 − θ1

¢
π2 (θ2)− 1+Π2 (θ2)

¢
dθ2.

Integrating by parts shows that the second integral in (2.59) is equal to zero:Z θ2

θ1

¡¡
θ2 − θ1

¢
π2 (θ2)− 1+Π2 (θ2)

¢
dθ2 (2.60)
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=
¡¡
θ2 − θ1

¢
Π2 (θ2)− θ2

¢¯̄θ2
θ1

= 0.

Thus, if f (θ) is to be ex-post efficient, the right-hand side of (2.55) can be
written as

−
Z θ1

θ2

Π1 (θ2) (1−Π2 (θ2)) dθ2, (2.61)

which is strictly negative since θ1 > θ2 and θ1 < θ2, a contradiction.

Remarks

1. If θ1 > θ2 but θ1 > θ2 so that there are no gains from trade, (2.61)
is equal to zero and IIR holds. Likewise, if θ1 < θ2 but θ1 < θ2 so
that the gains from trade are certain, (2.61) is equal to θ2 − θ1 > 0
and IIR is satisfied. In addition, if the density πi (θi) is not strictly
positive everywhere on

£
θi, θi

¤
, then SCRs that are TIBS, IIR, and ex-

post efficient exist. For an example where πi (θi) does not have strictly
positive mass everywhere, see Myerson and Satterthwaite, p.273.

2. A weaker requirement than IIR is ex ante individual rationality, which
ensures that the agents do not opt out of the mechanism at the ex
ante stage prior to learning their types. This implicitly assumes that
agents can commit to be bound by the mechanism at both the interim
stage (when they get to know their own types) and the ex-post stage
(when the state θ is truthfully revealed in equilibrium). With ex-ante
individual rationality, the Myerson-Satterthwaite theorem no longer
holds and it can be shown that the AGV mechanism achieves ex-post
efficiency.

3. It is easy to check that the Myerson-Satterthwaite theorem continues
to hold if we replace the ex-post constraint ”t1 (θ) + t2 (θ) = 0 for all
θ ∈ Θ” in definition 21 with the ex-ante budget-balancing conditionR θ1
θ1

R θ2
θ2
t1(θ1, θ2)dΠ2 (θ2) dΠ1 (θ1) +

R θ1
θ1

R θ2
θ2
t2(θ1, θ2)dΠ2 (θ2) dΠ1 (θ1) =

0. After all, in the first part of the proof we essentially add up (2.44)
and (2.46) and set the left-hand side equal to zero, which is equivalent
to the requirement that f (θ) be budget-balancing ex ante.

4. Given that TIBS, IIR and ex-post efficiency cannot be satisfied simul-
taneously, Myerson and Satterthwaite go on to solve for the optimal
trading mechanism, i.e. the mechanism that maximizes expected gains
from trade subject to TIBS and IIR. We will derive such an optimal
mechanism in the following subsection in the context of auction design.
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Optimal Auctions

We have already encountered auction mechanisms in section 2.2 in connection
with the Clarke mechanism. There, we pointed out that the Clarke mecha-
nism is the public good analogue of what is known in a private good setting
as second-price sealed-bid or Vickrey auction. In addition, we remarked that
the Vickrey auction is ex-post efficient since the seller receives all transfers
and budget-balancing is consequently not a problem.
In this subsection, we will discuss auctions in the context of Bayesian

implementation. Consider the problem of a seller (agent 0) who wants to
auction off an indivisible object to n bidders. We adopt the notation and
assumptions from the previous subsection, except for the fact that the seller’s
valuation θ0 is common knowledge. In particular, we require that Ui (θi) ≥ 0
for all i 6= 0 (IIR) and allow for random assignments of the object xi ∈ X =
{xi | xi ∈ [0, 1] and

P
i xi ≤ 1 for i ∈ {0, ..., n}}. Finally, let us assume that

for all i 6= 0, the distribution functions Πi (θi) satisfy the monotone hazard
rate property.

Definition 22 (Monotone Hazard Rate Property) The distribution
function Π (θ) satisfies the monotone hazard rate property (MHRP) if π(θ)

1−Π(θ)
is nondecreasing.

MHRP holds for many distributions such as the normal, uniform, logistic,
and exponential distribution. It has a very natural interpretation if θ is
interpreted as, say, the lifetime of a machine. Then, MHRP states that the
conditional probability that the machine fails in the interval [θ, θ + dθ] given
that it lasts until time θ is nondecreasing.
Next, we pursue the question of optimal auction design from the seller’s

point of view. Without loss of generality, we can assume that x0 (θ) ≡
1−Pi6=0 xi (θ) and t0 (θ) ≡ −

P
i6=0 ti (θ), since the seller is always better off

by choosing an auction that entails no waste of either the object or money.
At first glance, the task of finding an optimal auction mechanism appears
quite formidable in view of the unlimited possibilities that are available.
Fortunately, the revelation principle states that we can restrict attention
to direct mechanisms in which each bidder announces only his valuation.
The problem is then to find a social choice rule that maximizes the seller’s
expected utility subject to the constraint that it satisfies both TIBS and IIR.
A remarkable result discovered by Vickrey (1961) and extended by Myerson
(1981) and Riley and Samuelson (1981) known as the revenue equivalence
theorem states that the sellers’ expected revenue is completely determined
by the decision x (θ) and the profile of rents earned by the lowest possible
type of each bidder, and therefore independent of the transfer function t (θ).
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Theorem 19 (Revenue Equivalence Theorem) Any two SCRs that are
TIBS and have the same decision x (θ) = (x1 (θ) , ..., xn (θ)) and profile of
rents U (θ) = (U1 (θ1) , ..., Un (θn)) generate the same expected revenue for
the seller.

Proof (direct) By equation (2.44) (setting 2 = i), TIBS implies thatZ
Θi

t̄i(θi)dΠi (θi) = Ui (θi)−
Z
Θi

x̄i(θi)

µ
θi − 1− Πi (θi)

πi (θi)

¶
dΠi (θi) . (2.62)

Substituting in (2.62) for t̄i(θi) ≡
R
Θ−i
ti (θi, θ−i) dΠ−i (θ−i) and x̄i(θi) ≡R

Θ−i
xi (θi, θ−i) dΠ−i (θ−i), and using the fact that the θi’s are statistically

independent, we haveZ
Θ

ti(θ)dΠ (θ) = Ui (θi)−
Z
Θ

xi(θ)

µ
θi − 1− Πi (θi)

πi (θi)

¶
dΠ (θ) . (2.63)

The seller’s expected revenue if all bidders tell the truth isZ
Θ

³
−
X

i6=0
ti(θ)

´
dΠ (θ) = −

X
i6=0

Z
Θ

ti(θ)dΠ (θ) . (2.64)

Inserting (2.63) in (2.64), the seller’s expected revenue can be written asZ
Θ

X
i6=0
xi(θ)

µ
θi − 1− Πi (θi)

πi (θi)

¶
dΠ (θ)−

X
i6=0
Ui (θi) , (2.65)

which is completely determined by x (θ) = (x1 (θ) , ..., xn (θ)) and U (θ) =
(U1 (θ1) , ..., Un (θn)).

Remarks

1. One implication of theorem 19 is that any two auctions which award
the object to the bidder with the highest valuation and leave zero rents
to bidders of type θi must yield the same revenue to the seller. In
the symmetric case where the types of all bidders are drawn from the
same probability distribution, the following standard auctions all have
these properties and therefore generate the same revenue: i) the Dutch
auction, where prices are called in descending order, ii) the English
auction, where prices are announced in ascending order, iii) the first-
price sealed bid auction, where the bidder with the highest bid acquires
the object at that price, and iv) the second-price sealed-bid or Vickrey
auction, where the bidder with the highest bid pays a price equal to
the second highest bid.
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2. The seller’s expected utility is
R
Θ
(θ0x0 (θ) + t0 (θ)) dΠ (θ), where the

probability of keeping the object x0 (θ) = 1−
P

i6=0 xi (θ) is completely
determined by the decision x (θ). Thus, theorem 19 continues to hold
if we replace ”expected revenue” by ”expected utility”.

3. Assumptions 5c (independence) and 10 (risk-neutrality) are crucial for
the revenue equivalence theorem to hold. If one of these assumptions
fails, the seller is typically no longer indifferent between the four stan-
dard auctions listed in 1.

While the revenue equivalence theorem permits a comparison among dif-
ferent auction mechanisms, it says nothing about the maximum revenue that
can be attained. Let us now finally derive the social choice rule that maxi-
mizes the seller’s expected utility subject to TIBS and IIR.

Theorem 20 The social choice rule f ∗ (θ) = (x∗ (θ) , t∗ (θ)) maximizes the
seller’s expected utility subject to TIBS and IIR if and only if

x∗i (θ) =

(
1 if Ji (θi) = max

j∈{0,...,n}
Jj (θj)

0 otherwise,
(2.66)

and

t̄∗i (θi) = −θix̄∗i (θi) +
Z θi

θi

x̄∗i (η)dη, (2.67)

for all i 6= 0 and θ ∈ Θ, where Ji (θi) ≡ θi − 1−Πi(θi)
πi(θi)

and J0 (θ0) ≡ θ0.

Proof (direct) Replacing TIBS and IIR with conditions 1)-3) in theorem
17, the seller’s relaxed problem can be written as

max
{xi(·),ti(·)}i6=0

Z
Θ

³
θ0

³
1−

X
i6=0
xi (θ)

´
−
X

i6=0
ti(θ)

´
dΠ (θ) (2.68)

s.t. 1) x̄i (θi) is nondecreasing for all i 6= 0,
2) Ui (θi) = Ui (θi) +

R θi
θi
x̄i(η)dη for all θi and i 6= 0,

3) Ui (θi) ≥ 0 for all i 6= 0,
4) for all θ: xi (θ) ∈ [0, 1] for all i 6= 0 and

P
i xi (θ) ≤ 1.

By (2.63), constraint 2) is equivalent toZ
Θ

ti(θ)dΠ (θ) = Ui (θi)−
Z
Θ

xi(θ)

µ
θi − 1− Πi (θi)

πi (θi)

¶
dΠ (θ) . (2.69)
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Inserting (2.69) in the objective function (2.68), the seller’s relaxed problem
can be written as

max
{xi(·),Ui(θi)}i6=0

Z
Θ

X
i6=0
xi(θ)

µ
θi − 1−Πi (θi)

πi (θi)
− θ0

¶
dΠ (θ) (2.70)

+ θ0 −
X

i6=0
Ui (θi)

s.t. 1), 3), and 4).

Let us ignore constraint 1) for the moment. Inspection of (2.70) immediately
reveals that the solution to the relaxed problem is

x∗i (θ) =

(
1 if Ji (θi) = max

j∈{0,...,n}
Jj (θj)

0 otherwise,
(2.71)

and
U∗i (θi) = 0 (2.72)

for all i 6= 0 and θ ∈ Θ (we disregard ties as they occur with probability
zero). By theorem 17, (2.72) can be rewritten as

t̄∗i (θi) = −θix̄∗i (θi) +
Z θi

θi

x̄∗i (η)dη, (2.73)

where we used the fact that Ui(θi) ≡ θix̄i(θi) + t̄i(θi).
Finally, let us verify that 1) holds. MHRP implies that Ji (θi) is non-

decreasing, which in turn implies that x∗i (θ) ≡ x∗i (θi, θ−i) is nondecreasing
in θi. From x̄i(θi) ≡

R
Θ−i
xi(θi, θ−i)dΠ−i (θ−i), it then follows that x̄∗i (θi) is

nondecreasing and that constraint 1) is satisfied.

Remarks

1. The expression Ji (θi) ≡ θi − 1−Πi(θi)
πi(θi)

is known as a bidder’s virtual
valuation. Hence, the optimal solution (2.66) states that the object
should be awarded to the agent (bidder or seller) with the highest
virtual valuation. Since this may not always be the agent with the
highest actual valuation, the optimal solution is not necessarily ex-
post efficient. One particular case where the optimal solution is ex-post
efficient is when i) the types of all bidders are drawn from the same
probability distribution (i.e. Ji (θi) = J (θi) for all i 6= 0 so that the
bidder with the highest actual valuation coincides with the bidder with
the highest virtual valuation), and ii) J (θ) > θ0 (i.e. the object is
always transferred to one of the bidders).



CHAPTER 2. MECHANISM DESIGN 45

2. In the symmetric case, the optimal solution (2.66) translates into

x∗i (θ) =

(
1 if θi = max

j∈{1,...,n}

h
θj , θ̃

i
0 otherwise,

(2.74)

where θ̃ is defined by θ̃− 1−Π(θ̃)
π(θ̃)

≡ θ0. It follows that with a reservation
or minimum price of θ̃, the four standard auctions introduced earlier
are all optimal.

3. Notice that the optimal solution (2.67) is only defined in terms of ex-
pected transfers t̄∗i (θi). This suggests that there is a great deal of
flexibility in choosing the ex-post transfers t∗i (θi), which results in a
multiplicity of optimal SCRs. For instance, the SCRs implemented by
the first- and second-price auctions are under certain conditions both
optimal (cf. point 3), even though they differ in their transfer functions
ti(θi).

2.5 Bibliographic Notes
Our discussion of the revelation principle and the necessary and sufficient
conditions for dominant strategy implementation in section 2.2 borrows from
Dasgupta, Hammond, and Maskin (1979). The section on Groves mecha-
nisms is based on Green and Laffont (1977, 1979) and Laffont and Maskin
(1982). Laffont and Maskin (1980) obtain similar results by using an alter-
native approach which rests on the differentiability of the agent’s valuation
function.
The section on Nash implementation draws on the works of Dasgupta,

Hammond, and Maskin (1979) and Maskin (1985). The proof of the suf-
ficiency part of Maskin’s theorem is adopted from Repullo (1987), and the
application of Maskin’s theorem to the public good problem is due to Laffont
and Maskin (1982). Let us also mention the comprehensive survey by Moore
(1992), who deals with many issues related to implementation in complete
information environments that have been neglected here.
The treatment of the revelation principle for Bayesian implementation

is, once again, based on Dasgupta, Hammond, and Maskin (1979). Much
of the remaining discussion of Bayesian implementation follows Mas-Colell,
Whinston, and Green (1995), chapter 23, and Fudenberg and Tirole (1991),
chapter 7. In addition, our analysis of the Myerson-Satterthwaite theorem
borrows fromMyerson and Satterthwaite (1983), and that of optimal auctions
draws on Myerson (1981).
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Chapter 3

Adverse Selection

3.1 Static Adverse Selection
The previous chapter ended with a discussion of optimal mechanisms that
maximize the planner’s utility subject to the constraints that the agents re-
veal their preferences truthfully and receive at least their reservation utility
in equilibrium. In this chapter, we examine the special case in which there
is only one agent. This case is commonly known as adverse selection, which
constitutes a somewhat inappropriate use of language as it refers to the con-
sequences of asymmetric information rather than to the problem as such. In
order to distinguish the one agent-case from the more general implementa-
tion problem, we will call the planner from now on principal - an expression
that carries over to the next chapter where we deal with moral hazard. With
only one agent, the principal need no longer be concerned with the intricate
problems of equilibrium play, and the concepts of dominant strategy, Nash,
and Bayesian equilibrium all coincide. In particular, all versions of the rev-
elation principle are now equivalent, and TIDS, TINS, and TIBS boil down
to the same requirement that the social choice rule be implementable.
In many applications of adverse selection models, the notion of a mecha-

nism has received a very natural interpretation as a menu of outcomes from
which the agent can choose. For instance, nonlinear pricing models typically
assume that firms offer different price/quantity-pairs in order to separate
consumers with high valuations from those with low valuations. Similarly,
models of insurance markets assume that firms offer a menu of insurance
policies in order to separate individuals with different risk attributes. The
act of offering a menu of outcomes in order to separate agents with different
types is known as screening, and the subsequent revelation of preferences
through the choice of an outcome is called self-selection. However, by the

48
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revelation principle, we can ignore mechanisms in which the agent chooses
from a menu of outcomes and concentrate on direct mechanisms in which
the agent reports his type to the principal who then makes a choice from the
menu on his behalf.

The Model

Consider the following model:

1. There is a finite set A of feasible outcomes. A feasible outcome y =
(x, t) consists of a decision x ∈ X and a monetary transfer t ∈ R from
the principal to the agent.

2. The agent has a type θ ∈ Θ = £θ, θ¤ with θ 6= θ and density π (θ) > 0
for all θ ∈ Θ. The principal cannot observe θ.

3. The agent has quasilinear preferences of the form U (x, t, θ) = u (x, θ)+
t, where u (·) is thrice continuously differentiable and strictly concave
in x.

4. The principal has quasilinear preferences of the form V (x, t) = v (x)−t,
where v (·) is twice continuously differentiable and concave in x.

5. A social choice rule (SCR) is a correspondence f : Θ ³ A which
specifies a nonempty choice set f (θ) ⊆ A for every type θ.

Before we proceed, let us compare these assumptions with those used in
chapter 2. Assumption 1 is equivalent to assumption 9, except that x is no
longer binary, and assumption 2 is identical to assumption 3a. Assumptions
3 and 4 are similar to assumption 10, albeit here, the valuation functions take
a more general form. However, novel are the concavity and differentiability
assumptions. Incidentally, assumption 8 (private values) is also satisfied.
Finally, assumption 5 coincides with assumption 6 of chapter 2. Since we
concentrate on SCRs that maximize the principal’s expected utility, the term
”social” is rather unsuitable. We have nonetheless kept this terminology in
order to emphasize the resemblance to the model of chapter 2.

6. a) ∂u
3(x,θ)
∂x∂θ2

≤ 0, b) ∂u3(x,θ)
∂x2∂θ

≤ 0, c) ∂2

∂x2

³
u (x, θ)− ∂u(x,θ)

∂θ
1−Π(θ)
π(θ)

´
< 0, and

d) ∂u(x,θ)
∂θ

> 0.

7. X ⊆ [0, x], where x >argmax
x

[v (x) + u (x, θ)] > 0 for all θ.

8. d
dθ

π(θ)
1−Π(θ) ≥ 0.
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Let us once more comment on the assumptions. Assumptions 6a, b, and
c involve third derivatives and are therefore controversial. Observe that as-
sumption 6c requires that either u (x, θ) is sufficiently concave or that−∂u(x,θ)

∂θ

is not too convex in x. Assumption 6d states that agents with a higher type
have a higher valuation. Incidentally, this assumption is met by the quasilin-
ear utility function θx+ t, which was used repeatedly in chapter 2. In 7, the
values of x that solve the right-hand side of the inequality represent the first-
best solution. Thus, assumption 7 requires that the first-best problem has
an interior solution. Assumption 8 is the by now familiar monotone hazard
rate property (MHRP) encountered in our discussion of optimal auctions.
Finally, let us introduce an assumption known as single-crossing property or
Spence-Mirrlees condition on which the entire analysis in this chapter (and
that of optimal mechanisms in general) is based.

Definition 1 (Single-Crossing Property) The agent’s utility function
U (x, t, θ) satisfies the single-crossing property if ∂U(x,t,θ)

∂x
/∂U(x,t,θ)

∂t
is either

strictly increasing (SC+) or decreasing (SC−) in θ.

Here, we assume that SC+ holds, so that the single-crossing property
implies ∂

2u(x,θ)
∂x∂θ

> 0. Also, note that the (quasi-)linear utility function θx+ t
used in the previous chapter trivially satisfies the single-crossing property.
In the (t, x) space, assumption 3 together with SC+ implies that agents with
higher values of θ have steeper indifference curves, which in turn implies that
the indifference curves of two agents with different types cross only once.

Necessary and Sufficient Conditions for Truthful Implementation
with Individual Rationality Constraints

As in the case of optimal auctions, our objective is to identify the set of SCRs
that maximize the principal’s expected utility subject to being implementable
and individually rational. By the revelation principle, we can again restrict
attention to direct mechanisms and concentrate on SCRs that are truthfully
implementable or incentive compatible.

Definition 2 (Incentive Compatible Social Choice Rule) The social
choice rule f (θ) is truthfully implementable or incentive compatible (IC) if
there exists a direct mechanism Γd such that i) truthtelling is optimal for the
agent, i.e. if for all θ ∈ Θ,

U (x (θ) , t (θ) , θ) ≥ U(x(θ̂), t(θ̂), θ) (3.1)

for all θ̂ ∈ Θ, and ii) (x (θ) , t (θ)) ∈ f (θ).
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In the applied literature, the incentive compatibility constraints (3.1) are
sometimes called self-selection constraints. In adverse selection models, there
is a loss of generality from restricting attention to direct mechanisms only if
the agent’s problem has several global maxima, some of which have outcomes
(x(θ̂), t(θ̂)) /∈ f (θ). In this case, it is usually assumed that the agent chooses
the outcome preferred by the principal.
For convenience, let us define U(θ̂, θ) ≡ (x(θ̂), t(θ̂), θ) and U(θ, θ) ≡ U(θ).

Since there is no uncertainty with respect to other agents, ex-post individual
rationality and IIR coincide and reduce to the concept of individual rational-
ity.

Definition 3 (Individually Rational Social Choice Rule) An SCR is
individually rational (IR) if U (θ) ≥ 0 for all θ ∈ Θ.

Again, we have normalized the reservation utilities to zero. Note that this
is only possible if we assume that the agent’s reservation utility is independent
of his type. We can now characterize the set of SCRs that satisfy both IC
and IR. For technical reasons, we need to limit the analysis to functions x (θ)
and t (θ) that are continuously differentiable.

Theorem 1 An SCR satisfies both IC and IR if and only if
1) x (θ) is nondecreasing,

2) U (θ) = U (θ) +
R θ
θ
∂u(x(η),η)

∂η
dη for all θ, and

3) U (θ) ≥ 0.

Proof (direct/by contradiction) ”if”-part: First, we show that 1) and 2)
imply IC. Suppose not. Then there exists a value θ̂ 6= θ such that

U (θ) < U(θ̂, θ) (3.2)

or equivalently,

U (θ)− U(θ̂, θ) =

Z θ

θ̂

∂U (η, θ)

∂η
dη (3.3)

=

Z θ

θ̂

µ
∂u (x (η) , θ)

∂x

dx (η)

dη
+
dt (η)

dη

¶
dη

< 0.

Differentiating 2) with respect to θ yields

−∂u (x (θ) , θ)
∂x

dx (θ)

dθ
=
dt (θ)

dθ
(3.4)



CHAPTER 3. ADVERSE SELECTION 52

for all θ ∈ Θ. Inserting (3.4) in (3.3), we haveZ θ

θ̂

µ
∂u (x (η) , θ)

∂x
− ∂u (x (η) , η)

∂x

¶
dx (η)

dη
dη < 0. (3.5)

Suppose first that θ > θ̂. The single-crossing property then implies that
∂u(x(η),θ)

∂x
> ∂u(x(η),η)

∂x
for all η ∈ [θ̂, θ). Together with 1), this implies that the

integral in (3.5) is nonnegative, a contradiction. Next, suppose that θ < θ̂.
Changing the order of integration, we can rewrite (3.5) as

−
Z θ̂

θ

µ
∂u (x (η) , θ)

∂x
− ∂u (x (η) , η)

∂x

¶
dx (η)

dη
dη < 0. (3.6)

Due to the single-crossing property, we have ∂u(x(η),θ)
∂x

< ∂u(x(η),η)
∂x

for all η ∈
(θ, θ̂]. In conjunction with 1), this implies that the left-hand side in (3.6) is
nonnegative, a contradiction. Finally, let us prove that 2) and 3) imply IR.
Suppose not. Then there exists a type θ > θ such that U (θ) < 0. In this
case, 2) implies that

U (θ) = U (θ) +

Z θ

θ

∂u (x (η) , η)

∂η
dη < 0, (3.7)

where U (θ) ≥ 0 due to 3). But from assumption 6d, it follows that the
integral in (3.7) is strictly positive, a contradiction.
”only if”-part: We now show that IC implies 1) and 2). For any two

values θ, θ̂ ∈ Θ, IC requires that
U (θ) ≥ u(x(θ̂), θ) + t(θ̂) ≡ U(θ̂) + u(x(θ̂), θ)− u(x(θ̂), θ̂), (3.8)

and

U(θ̂) ≥ u(x(θ), θ̂) + t(θ) ≡ U(θ) + u(x(θ), θ̂)− u (x (θ) , θ) , (3.9)

which implies

u (x (θ) , θ)− u(x(θ), θ̂) ≥ U (θ)− U(θ̂) ≥ u(x(θ̂), θ)− u(x(θ̂), θ̂). (3.10)

Suppose without loss of generality that θ > θ̂. Rearranging, we obtain

u (x (θ) , θ)− u(x(θ̂), θ) ≥ u(x(θ), θ̂)− u(x(θ̂), θ̂). (3.11)

Together with the single-crossing property, (3.11) implies that x (θ) is nonde-
creasing (note that this is true regardless of the sign of ∂u(·)

∂x
). Dividing (3.10)
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by (θ − θ̂) and letting θ → θ̂, we have dU(θ)
dθ

= ∂u(x(θ),θ)
∂θ

for all θ. Integrating
both sides over [θ, θ] yields

U (θ) = U (θ) +

Z θ

θ

∂u (x (η) , η)

∂η
dη (3.12)

for all θ. Finally, note that IR obviously implies 3) by definition 3.

Remarks

1. Theorem 1 is the analogue of theorem 17 in chapter 2. Like theorem
17, it allows us to replace the original IC and IR constraints with the
mathematically more tractable conditions 1)-3). This approach was
first used by Mirrlees (1971) in his study of optimal income taxation.

2. Differentiating 2) with respect to θ, we obtain the agent’s first-order
condition at θ̂ = θ. Thus, theorem 1 states that if x (θ) is nondecreas-
ing, the (global) incentive compatibility constraints can be replaced by
the agent’s (local) first-order condition. A similar technique also exists
in moral hazard models and is known as first-order approach (cf. chap-
ter 4), albeit there, the conditions under which the first-order condition
is sufficient are less appealing.

Optimal Mechanisms

The design of optimal mechanisms can be viewed as a two step-procedure:
The first step characterizes the set of SCRs that satisfy both IC and IR, and
the second step selects from this set those SCRs that maximize the principal’s
expected utility. We now proceed with the second step. As a benchmark, let
us first determine the optimal solution for the complete information case.

Theorem 2 Suppose that the agent’s type θ is observable. The social choice
rule f ∗ (θ) = (x∗ (θ) , t∗ (θ)) maximizes the principal’s utility subject to IR if
and only if

dv (x∗ (θ))
dx

+
∂u (x∗ (θ) , θ)

∂x
= 0 (3.13)

and
t∗ (θ) = −u (x∗ (θ) , θ) . (3.14)

Proof (direct) The principal’s first-best problem is

max
x(θ),t(θ)

v (x (θ))− t (θ) (3.15)
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s.t. u (x (θ) , θ) + t (θ) ≥ 0.

Inspection of (3.15) immediately reveals that IR must be binding. Thus, the
principal’s relaxed problem can be written as

max
x(θ)

v (x (θ)) + u (x (θ) , θ) , (3.16)

which corresponds to the maximization of total welfare. Differentiating with
respect to x gives

dv (x∗ (θ))
dx

+
∂u (x∗ (θ) , θ)

∂x
= 0, (3.17)

and inserting x∗ (θ) in IR yields

t∗ (θ) = −u (x∗ (θ) , θ) . (3.18)

Since v (·) is concave and u (·) is strictly concave , the first-order condition
(3.17) is sufficient for a (unique) global maximum.

Back to the incomplete information case, let us now determine the optimal
SCR from the set of SCRs that satisfy both IC and IR.

Theorem 3 The social choice rule f ∗ (θ) = (x∗ (θ) , t∗ (θ)) maximizes the
principal’s expected utility subject to IC and IR if and only if

dv (x∗ (θ))
dx

+
∂u (x∗ (θ) , θ)

∂x
− ∂

2u (x∗ (θ) , θ)
∂x∂θ

1−Π (θ)
π (θ)

= 0 (3.19)

and

t∗ (θ) = −u (x∗ (θ) , θ) +
Z θ

θ

∂u (x∗ (η) , η)
∂η

. (3.20)

Proof (direct) By theorem 1, we can replace IC and IR with conditions
1)-3). The principal’s relaxed problem can then be written as

max
x(θ),t(θ)

Z
Θ

(v (x (θ))− t (θ)) dΠ (θ) (3.21)

s.t. 1) x (θ) is nondecreasing,

2) U (θ) = U (θ) +
R θ
θ
∂u(x(η),η)

∂η
dη for all θ,

3) U (θ) ≥ 0.
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Clearly, constraint 3) must be binding since transfers are costly to the prin-
cipal. Consequently, 2) reduces to

U (θ) =

Z θ

θ

∂u (x (η) , η)

∂η
dη, (3.22)

or

t (θ) = −u (x (θ) , θ) +
Z θ

θ

∂u (x (η) , η)

∂η
dη (3.23)

for all θ, where we used the fact that U (θ) ≡ u (x (θ) , θ) + t (θ). Inserting
(3.23) in the objective function (3.21), the principal’s relaxed problem is
equivalent to

max
x(θ)

Z
Θ

(v (x (θ)) + u (x (θ) , θ)) dΠ (θ)−
Z
Θ

Z θ

θ

∂u (x (η) , η)

∂η
dηdΠ (θ) (3.24)

s.t. 1).

Using integration by parts, the second term in (3.24) can be expressed asZ
Θ

Z θ

θ

∂u (x (η) , η)

∂η
dηdΠ (θ) =

Z θ

θ

∂u (x (η) , η)

∂η
dηΠ (θ)

¯̄̄̄θ
θ

(3.25)

−
Z
Θ

∂u (x (θ) , θ)

∂θ
Π (θ) dθ

=

Z
Θ

∂u (x (θ) , θ)

∂θ

1− Π (θ)
π (θ)

dΠ (θ) .

Inserting (3.25) in (3.24), the principal’s relaxed problem reduces to

max
x(θ)

Z
Θ

µ
v (x (θ)) + u (x (θ) , θ)− ∂u (x (θ) , θ)

∂θ

1−Π (θ)
π (θ)

¶
dΠ (θ) (3.26)

s.t. 1).

Let us ignore constraint 1) for the moment. Pointwise maximizing (3.26)
with respect to x, we obtain (after dividing through by π (θ))

dv (x∗ (θ))
dx

+
∂u (x∗ (θ) , θ)

∂x
− ∂

2u (x∗ (θ) , θ)
∂x∂θ

1−Π (θ)
π (θ)

= 0 (3.27)

for all θ. Inserting x∗ (θ) in (3.23) yields

t∗ (θ) = −u (x∗ (θ) , θ) +
Z θ

θ

∂u (x∗ (η) , η)
∂η

dη. (3.28)
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By assumption 6c, the objective function (3.26) is strictly concave in x, which
implies that the first-order condition (3.27) is sufficient for a (unique) global
maximum.
Finally, let us verify that the monotonicity constraint 1) holds. Totally

differentiating (3.27), we have

d (x∗ (θ))
dθ

µ
d2v (x∗ (θ))

dx2
+
∂2u (x∗ (θ) , θ)

∂x2
− ∂

3u (x∗ (θ) , θ)
∂x2∂θ

1− Π (θ)
π (θ)

¶
=

∂2u (x∗ (θ) , θ)
∂x∂θ

µ
d

dθ

1− Π (θ)
π (θ)

− 1
¶
+
∂3u (x∗ (θ) , θ)

∂x∂θ2
1−Π (θ)
π (θ)

. (3.29)

for all θ. Concavity of v (·) together with assumption 6c implies that the
expression in the parenthesis on the left-hand side of (3.29) is negative).
Furthermore, the single-crossing property, in conjunction with assumption 8
(MHRP) and assumption 6a implies that the right-hand side is of (3.29) is
also negative. Together, this establishes that x∗ (θ) is (strictly) increasing
and that constraint 1) is satisfied.

Remarks

1. The optimal solution (3.20) reveals that U (θ) > U (θ). Since U (θ) = 0,
this implies that IR is only binding at θ = θ. If the agent’s reservation
utility is type-dependent, this need no longer be the case and we may
observe that IR is also binding at other values.

2. The surplus U (θ) =
R θ
θ
∂u(x∗(η),η)

∂η
dη is known as type θ’s information

rent and is strictly increasing in θ. Intuitively, the information rent
reflects the ability of agents with higher types to mimick those with
lower types. To see this, suppose for a moment that contrary to (3.20),
it is true that U (x∗ (θ) , θ) = U (x∗ (θ0) , θ0) for θ > θ0. By the single-
crossing property, we then have U (x∗ (θ0) , θ) > U (x∗ (θ0) , θ0), i.e. type
θ is better off by announcing θ0 instead of his own type θ, which violates
IC. In order to make type θ indifferent between lying and telling the
truth, he must be offered some additional rent, i.e. U (x∗ (θ) , θ) >
U (x∗ (θ0) , θ0).

3. Inspection of the optimal solution shows that (3.19)-(3.20) coincides
with the first-best solution (3.13)-(3.14) at θ = θ (recall that Π

¡
θ
¢
=

1). This result is commonly referred to as ”no distortion at the top”.
Moreover, a simple revealed preference argument shows that for all
θ < θ, the second-best solution entails an underprovision of x. To see
this, recall that the first-best solution x∗FB (θ) maximizes (3.16) for all
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θ, while the second-best solution x∗SB (θ) maximizes (3.26) for all θ.
But this implies that

v (x∗FB (θ)) + u (x
∗
FB (θ) , θ) ≥ v (x∗SB (θ)) + u (x∗SB (θ) , θ)

and

v (x∗SB (θ)) + u (x
∗
SB (θ) , θ)−

∂u (x∗SB (θ) , θ)
∂θ

1− Π (θ)
π (θ)

≥ v (x∗FB (θ)) + u (x
∗
FB (θ) , θ)−

∂u (x∗FB (θ) , θ)
∂θ

1− Π (θ)
π (θ)

.

Adding up both inequalities yields
∂u(x∗SB(θ),θ)

∂θ
≤ ∂u(x∗FB(θ),θ)

∂θ
for all θ.

By the single-crossing property, ∂u(x,θ)
∂θ

is strictly increasing in x, which
implies x∗SB (θ) ≤ x∗FB (θ) for all θ. Finally, a comparison of the first-
order conditions (3.13) and (3.19) shows that x∗SB (θ) 6= x∗FB (θ) for
all θ < θ because ∂u(x(θ),θ)

∂θ
1−Π(θ)
π(θ)

is strictly positive for all θ 6= θ. But
since we established that x∗SB (θ) ≤ x∗FB (θ), this implies that x∗SB (θ) <
x∗FB (θ) for all θ < θ, i.e. the second-best allocation is strictly inefficient.

4. In (3.26), the principal’s relaxed problem reflects a tradeoff between
efficiency (represented by the total surplus v (x (θ)) + u (x (θ) , θ)) and
rent extraction (represented by the term ∂u(x(θ),θ)

∂θ
1−Π(θ)
π(θ)

=
R θ
θ
∂u(x(η),η)

∂η
dη

(cf. (3.25)). The first-order condition (3.27) then says that at the
optimum, the increase in total surplus from a marginal increase in x (·)
must be offset by the increase in the agent’s rent.

5. In the proof, we have implicitly assumed that the principal’s relaxed
problem (3.26) has an interior solution, i.e. we have ignored the con-
straint x ∈ X ⊆ [0, x]. Since x∗ (θ) is nondecreasing (in fact, it is
strictly increasing), it is true that x∗ (θ) ≤ x∗

¡
θ
¢
. But x∗

¡
θ
¢
=

argmaxx
£
v (x) + u

¡
x, θ
¢¤
(this can be seen by comparing (3.19) with

the welfare optimum (3.14) at θ = θ), which is strictly smaller than x
by assumption 7. Hence, x ≤ x is never binding. However, x ≥ 0 may
be binding, in which case the optimal solution is x∗ (θ) = 0.

6. If assumption 8 (MHRP) is not satisfied, the optimal solution x∗ (θ)
may (!) not be nondecreasing everywhere. If this is the case, the
monotonicity constraint 1) is binding over some range and the optimal
solution involves bunching or pooling, i.e. the principal chooses the
same value of x (θ) for a subset of

£
θ, θ
¤
(see Guesnerie and Laffont

(1984) for a more detailed analysis).
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Application: Nonlinear Pricing

Consider a monopolist who produces a good at a constant marginal cost
of c. The monopolist has utility V (x, t) = t − xc, where t denotes the
monopolist’s revenue and x is the quantity of the good sold. Consumers have
utility functions U (x, t, θ) = u (x, θ)− t indexed by their valuation θ ∈ £θ, θ¤.
Unlike in the previous setting, we now assume that SC− holds. Since transfers
are negative, this implies again that ∂

2u(x,θ)
∂x∂θ

> 0, i.e. consumers with a high
valuation have a higher marginal utility from the good than consumers with
a low valuation.
As a benchmark, let us first derive the first-best solution. From (3.13)-

(3.14), it follows that
∂u (x∗ (θ) , θ)

∂x
= c (3.30)

and
t∗ (θ) = u (x∗ (θ) , θ) (3.31)

for all θ. Equation (3.30) requires that marginal utility is equal to marginal
cost, and (3.31) implies that after purchasing x∗ (θ) units of the good, a
consumer with valuation θ should be left with zero utility.
In the presence of incomplete information, the welfare optimum cannot

generally be attained. By theorem 3, we have

∂u (x∗ (θ) , θ)
∂x

− ∂
2u (x∗ (θ) , θ)
∂x∂θ

1− Π (θ)
π (θ)

= c (3.32)

and

t∗ (θ) = u (x∗ (θ) , θ)−
Z θ

θ

∂u (x∗ (η) , η)
∂η

(3.33)

for all θ. Setting θ = θ in (3.32) reveals that the consumer with the high-
est valuation consumes the (first-best) efficient quantity. Moreover, using
the revealed preference argument from the previous subsection, it can be
shown that consumers with valuations θ < θ consume an inefficiently small
amount. This underconsumption reflects the fundamental tradeoff between
efficiency and rent extraction. Suppose that the monopolist wanted to raise
the quantity x∗ (θ) for all types θ ∈ [θ1, θ2]. By the single-crossing property,
this increases the integrand in (3.33) for all θ ∈ [θ1, θ2], which in turn implies
less rent extraction from consumers with valuations θ > θ2. The effect on
rent extraction from types θ ∈ [θ1, θ2] is ambiguous since both components
of t∗ (θ) are now larger. In addition, production costs rise proportionally at
a rate of c. Balancing these effects, the monopolist sacrifices some efficiency
in order to limit the rent earned by consumers with high valuations.
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In this framework, it can also be shown that the optimal nonlinear pricing
rule entails quantity discounts. Since x∗ (θ) is monotonic, it has a monotonic
inverse x∗−1 (x) such that x∗−1 (x) = θ ⇔ x = x∗ (θ). Thus, x∗−1 (x) denotes
the type that consumes exactly x units according to the optimal decision
x∗ (θ). We can then rewrite the optimal transfer function t∗ (θ) as t (x∗−1 (x)),
which is a function of x only. Our objective is to show that t (x∗−1 (x)) is
strictly concave in x.

Theorem 4 The optimal nonlinear pricing rule involves quantity discounts.

Proof (direct) Differentiating t (x∗−1 (x)) with respect to x yields

dt (x∗−1 (x))
dx

=
dt (x∗−1 (x))

dθ

dx∗−1 (x)
dx

. (3.34)

By the inverse function theorem, it is true that dx
∗−1(x)
dx

= 1
.
dx∗(θ)
dθ

. Equation

(3.34) can then be rewritten as

dt (x∗−1 (x))
dθ

=
dt (x∗−1 (x))

dx

dx∗ (θ)
dθ

. (3.35)

Totally differentiating (3.33), we have

dt (x∗−1 (x))
dθ

=
∂u (x, x∗−1 (x))

∂x

dx∗ (θ)
dθ

. (3.36)

Subtracting (3.36) from (3.35) gives

dt (x∗−1 (x))
dx

=
∂u (x, x∗−1 (x))

∂x
, (3.37)

and totally differentiating (3.37), we obtain

d2t (x∗−1 (x))
dx2

=
∂2u (x, x∗−1 (x))

∂x2
+
∂2u (x, x∗−1 (x))

∂x∂θ

1
dx∗(θ)
dθ

, (3.38)

where we again used the inverse function theorem. For convenience, let us
now use subscripts in order to denote partial derivatives. Equation (3.38)

implies that
d2t(x∗−1(x))

dx2
is strictly negative if and only if

−uxθ
uxx

<
dx∗ (θ)
dθ

. (3.39)
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From (3.29) we know that (note that d
2v(x∗(θ))
dx2

= 0)

d (x∗ (θ))
dθ

µ
uxx − uxxθ 1− Π (θ)

π (θ)

¶
= uxθ

µ
d

dθ

1−Π (θ)
π (θ)

− 1
¶
(3.40)

+uxθθ
1−Π (θ)
π (θ)

.

Solving for dx
∗(θ)
dθ

and inserting the result in (3.39) yields

−uxθ
uxx

<
uxθ

³
d
dθ
1−Π(θ)
π(θ)

− 1
´
+ uxθθ

1−Π(θ)
π(θ)

uxx − uxxθ 1−Π(θ)π(θ)

. (3.41)

which can be rearranged as

0 < (uxxuxθθ − uxθuxxθ) 1− Π (θ)
π (θ)

+ uxxuxθ
d

dθ

1−Π (θ)
π (θ)

. (3.42)

Given that assumptions 3, 6a, 6b, 8, and the single-crossing property hold,
the inequality (3.42) is indeed satisfied, which implies that t (x∗−1 (x)) is
strictly concave.

3.2 Repeated Adverse Selection

From the principal’s point of view, the optimal static solution possesses two
unfavorable properties. Firstly, it involves an allocative inefficiency for agents
with types θ < θ. Secondly, the principal must grant agents with types θ > θ
an information rent U (θ)−U (θ). In a repeated version of the static problem,
information about the agent’s type is revealed over time. Naturally, the
principal would then like to use this information in order to reduce both the
productive inefficiency and the agent’s rent. This suggests that the analysis of
the repeated problem depends on whether the principal can credibly commit
to ignore this information. In line with the majority of the adverse selection
literature, let us from now on call an outcome y = (t, x) a contract. For
instance, in the nonlinear pricing example, the pair (x, t) can be interpreted
as a sales contract, and in the insurance example mentioned at the beginning
of this chapter, (x, t) constitutes an insurance contract.
Consider a T -period version of the static problem. By the above reason-

ing, we can distinguish between three possibilities:

1. Full commitment : Principal and agent can commit ex ante (at date 0)
to a T -period contract (x1, t1) , ..., (xT , tT ).
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2. Commitment with renegotiation: Principal and agent can commit ex
ante to a T -period contract (x1, t1) , ..., (xT , tT ). However, the parties
cannot commit not to renegotiate if a Pareto-improvement arises.

3. No commitment : Principal and agent cannot commit to a long-term
contract.

The full commitment case rests on the strong assumption that even if
there is a situation in which both parties can be made better off by replacing
the original contract with a new contract, they must nonetheless adhere to
the former. In real-world situations, the assumption of full commitment
is hopelessly unrealistic as courts do typically not intervene if all parties
agree to break an agreement. The second case allows for renegotiation, but
does not permit that either party unilaterally deviates from the initial T -
period contract. Finally, the case where no commitment exists is essentially
equivalent to a sequence of spot contracts where the principal offers a new
contract (xτ, tτ) at the beginning of each period.
For convenience, assume that the agent’s utility function is of the formPT
τ=1 δ

τ−1U (xτ , tτ, θ) =
PT

τ=1 δ
τ−1 (θxτ + tτ), where δ ∈ (0, 1) denotes the

discount factor. The principal’s utility is
PT

τ=1 δ
τ−1V (xτ , tτ). Let us now

determine the optimal solution for T = 2 for all three environments.

Full Commitment

In the full commitment case, the principal is bound to ignore any informa-
tion in period 2 that is revealed about the agent’s type in period 1. Thus,
there is no genuine dynamic interaction between periods and the principal’s
two-period problem reduces to a static problem. We can therefore apply
the revelation principle and restrict attention to direct two-period mecha-
nisms in which the agent announces a type θ̂ at date 0 and receives in re-
turn a two-period contract g1,2(θ̂) = (x1(θ̂), t1(θ̂)), (x2(θ̂), t2(θ̂)). Since both
(x1(θ̂), t1(θ̂)) and (x2(θ̂), t2(θ̂)) are based on the same information, the opti-
mal two-period contract replicates the optimal static contract in every period.

Theorem 5 Let (x∗ (θ) , t∗ (θ)) denote the optimal static solution. Under full
commitment, the social choice rule f∗1,2 (θ) = ((x

∗
1 (θ) , t

∗
1 (θ)) , (x

∗
2 (θ) , t

∗
2 (θ)))

maximizes the principal’s expected utility subject to the agent’s two-period
IC and IR constraints if and only if¡

x∗τ (θ) , t
∗
τ (θ)

¢
= (x∗ (θ) , t∗ (θ)) (3.43)

for τ = 1, 2.
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Proof (by contradiction) First, note that since f ∗1,2 (θ) satisfies IC and IR,
it must also satisfy the two-period incentive compatibility constraint IC1,2

2X
τ=1

δτ−1 (θxτ (θ) + tτ (θ)) ≥
2X
τ=1

δτ−1(θxτ(θ̂) + tτ(θ̂)) (3.44)

for all θ, θ̂ ∈ Θ, and the two-period individual rationality constraint IR1,2
2X
τ=1

δτ−1 (θxτ (θ) + tτ (θ)) ≥ 0, (3.45)

where the agent’s reservation utility is time-invariant and normalized to zero
as usual. Finally, suppose that there exists a social choice rule f1,2 (θ) =
((x1 (θ) , t1 (θ)) , (x2 (θ) , t2 (θ))) which satisfies both (IC1,2) and (IR1,2) and
generates a higher expected utility for the principal than f ∗1,2 (θ) , i.e.Z

Θ

2X
τ=1

δτ−1V (xτ (θ) , tτ (θ)) dΠ (θ) (3.46)

> (1+ δ)

Z
Θ

V (x∗ (θ) , t∗ (θ)) dΠ (θ) .

Consider now the static problem examined in section 3.1. In particular,
consider a lottery which yields the social choice rule f1 (θ) = (x1 (θ) , t1 (θ))
with probability 1/ (1+ δ) and the social choice rule f2 (θ) = (x2 (θ) , t2 (θ))
with probability δ/ (1+ δ). Dividing (3.44)-(3.45) through by (1+ δ) gives

2X
τ=1

δτ−1

(1+ δ)
(θxτ (θ) + tτ (θ)) ≥

2X
τ=1

δτ−1

(1+ δ)
(θxτ(θ̂) + tτ(θ̂)) (3.47)

and
2X
τ=1

δτ−1

(1+ δ)
(θxτ (θ) + tτ (θ)) ≥ 0, (3.48)

which shows that the lottery is both incentive compatible and individually
rational (note that (3.47)-(3.48) are the static IC and IR constraints for the
lottery). However, dividing (3.46) through by (1+ δ), we have

1

(1+ δ)

Z
Θ

V (x1 (θ) , t1 (θ)) dΠ (θ) +
δ

(1+ δ)

Z
Θ

V (x2 (θ) , t2 (θ)) dΠ (θ)

>

Z
Θ

V (x∗ (θ) , t∗ (θ)) dΠ (θ) , (3.49)

which implies that the principal’s expected utility from the lottery is strictly
greater than from the optimal (!) social choice rule f∗ (θ) = (x∗ (θ) , t∗ (θ)),
a contradiction.
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No Commitment

Let us now study the other polar case where either party can terminate
the two-period contract at the beginning of the second period. One im-
plication of this is that we can no longer restrict attention to direct two-
period mechanisms in which the principal commits to an outcome function
g1,2(θ̂) = ((x1(θ̂), t1(θ̂)), (x2(θ̂), t2(θ̂))). The fact that we cannot employ the
revelation principle means that we must resort to a game-theoretic analysis.
Consider the following two-stage game of incomplete information.
At the beginning of period 1, the principal offers a menu of first-period

contracts (x1(θ̂), t1(θ̂)) indexed by θ̂. The agent can then either accept or
reject. If he accepts, he selects a contract from the menu by announcing a
type θ̂. In case he rejects, the game ends and the agent receives his reservation
utility of 0 in both periods. At the start of period 2, the principal offers a
menu of second-period contracts (x2(θ̂), t2(θ̂)), which the agent can again
either accept or reject. If the agent accepts, he chooses a contract from the
menu by announcing a type θ̂, whereas if he rejects, he receives his second-
period reservation utility of 0. Games like the one described in which the
uninformed party (i.e. the principal) moves first are known as screening
games, as opposed to signaling games, where the informed party moves first.
Suppose there exists a perfect Bayesian equilibrium (PBE) of the screen-

ing game that is fully separating (i.e. the function θ̂ : Θ→ Θ that maps types
into first-period announcements is one-to-one). Without loss of generality, we
can restrict attention to equilibria in which each agent announces his type
truthfully. Since the principal knows the agent’s type at the beginning of
period 2, sequential rationality requires that she offers only a single second-
period contract, viz. the first-best contract (x∗FB (θ) , t

∗
FB (θ)) , in order to

fully extract the agent’s second-period rent. Given the principal’s equilib-
rium strategy, the agent’s (second-period) continuation payoff depends on
his first-period announcement as follows:

1. If the agent makes a truthful report in the first period, he receives a
continuation payoff θx∗FB (θ) + t

∗
FB (θ) = 0.

2. If the agent unilaterally deviates and announces θ̂ < θ, he receives
a strictly positive continuation payoff θx∗FB(θ̂) + t

∗
FB(θ̂) > θ̂x∗FB(θ̂) +

t∗FB(θ̂) = 0.

3. Finally, if the agent deviates in the other direction by announcing θ̂ > θ,
he receives a continuation payoff max[θx∗FB(θ̂) + t

∗
FB(θ̂), 0] = 0, which

implies that he quits after the first period in order to avoid the negative
second-period utility θx∗FB(θ̂) + t

∗
FB(θ̂).
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Consider now a small deviation θ − dθ < θ. Since truthtelling is optimal
(recall that we are assuming a fully separating PBE), the envelope theo-
rem implies that if type θ announces θ − dθ, he incurs only a second-order
loss in the first-period. On the other hand, he enjoys a first-order profit
θx∗FB (θ − dθ) + t∗FB (θ − dθ) > 0 in the second period, which suggests that
he would like to pool with type θ − dθ. However, this contradicts our initial
assumption that the equilibrium is fully separating.

Theorem 6 There exists no fully separating PBE.

Proof (by contradiction) Suppose there exists a PBE in which each type
makes a truthful announcement in the first period. For technical reasons,
we first need to establish that the functions x1 (·) and t1 (·) are differentiable
almost everywhere.
Consider two types θ > θ̂. Truthtelling requires that

θx1 (θ) + t1 (θ) ≥ θx1(θ̂) + t1(θ̂) + δ(θx∗FB(θ̂) + t∗FB(θ̂)) (3.50)

and
θ̂x1(θ̂) + t1(θ̂) ≥ θ̂x1 (θ) + t1 (θ) . (3.51)

Recall that the agent receives a positive continuation payoff from announcing
a lower type (cf. point 2), but a zero continuation payoff from announcing
either the truth or a higher type (cf. points 1 and 3, respectively). Adding
up (3.50)-(3.51) and rearranging, we obtain

(θ − θ̂)(x1 (θ)− x1(θ̂)) ≥ δ(θx∗FB(θ̂) + t∗FB(θ̂)) > 0, (3.52)

which implies that x1 (·) is strictly increasing. Using this result in (3.51)
immediately shows that t1 (·) is strictly decreasing. Thus, x1 (·) and t1 (·) are
both differentiable almost everywhere.
Consider now a point of differentiability θ. Truthtelling implies that type

θ has no incentive to claim that he is type θ + dθ > θ, i.e.

θx (θ) + t (θ) ≥ θx (θ + dθ) + t (θ + dθ) , (3.53)

which can be rearranged as

t (θ + dθ)− t (θ) ≤ θ [x (θ)− x (θ + dθ)] . (3.54)

Dividing (3.54) through by dθ and letting dθ → 0, we have

dt (θ)

dθ
≤ θdx (θ)

dθ
. (3.55)
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Similarly, truthtelling also implies that type θ has no incentive to assert that
he is type θ − dθ < θ, i.e.

θx (θ) + t (θ) ≥ θx (θ − dθ) + t (θ − dθ) (3.56)

+δ (θx∗FB (θ − dθ) + t∗FB (θ − dθ)) ,
which can be rearranged as

t (θ)− t (θ − dθ) ≥ θ [x (θ − dθ)− x (θ)] (3.57)

+δ (θx∗FB (θ − dθ) + t∗FB (θ − dθ)) .
Note that

t∗FB (θ − dθ) = − (θ − dθ)x∗FB (θ − dθ) (3.58)

by (3.14). Inserting (3.58) in (3.57), dividing the result by dθ, and taking
the limit as dθ → 0, we have

dt (θ)

dθ
≥ θdx (θ)

dθ
+ δx∗FB (θ) . (3.59)

Together (3.55) and (3.59) imply

θ
dx (θ)

dθ
≥ dt (θ)

dθ
≥ θdx (θ)

dθ
+ δx∗FB (θ) , (3.60)

a contradiction, since x∗FB (θ) > 0 for all θ by assumption 7.

Remarks

1. Unlike in the static problem, the proof that x1 (·) is monotonic does
not depend on the monotone hazard rate property.

2. Since the proof of theorem 6 is based on arbitrarily small deviations
θ−dθ and θ+dθ, we can replace theorem 6 with the stronger assertion
that there exists no subinterval in

£
θ, θ
¤
with positive measure in which

full separation occurs.

3. Under full commitment, the principal can replicate any outcome that is
attainable under no commitment. As was shown, the full commitment
outcome satisfies the two-period IC1,2 constraint (3.44) and is there-
fore separating, whereas the no commitment outcome involves pooling.
Thus, by revealed preference, the inability to commit makes the prin-
cipal strictly worse off.
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4. If the agent reveals his type in the first period, the principal will exploit
this information and fully extract the agent’s second-period rent. This
phenomenon is known as the ratchet effect. Hence, in order to maximize
future rents, high type agents prefer to pool with low type agents.

5. While the gains or losses from infinitesimally small deviations dθ are of
second order and therefore negligible, this is not the case for large de-
viations. Consider the IC1,2 constraint (3.50). If type θ tells the truth,
he receives no second period rent due to the ratchet effect, whereas if
he mimicks type θ̂ < θ, he gets δ(θx∗FB(θ̂) + t

∗
FB(θ̂)). Thus, in order to

induce type θ to announce his type truthfully, the first-period contract
(x1 (θ) , t1 (θ)) must be sufficiently attractive. In particular, it must
include the foregone rent δ(θx∗FB(θ̂) + t

∗
FB(θ̂)). But this creates a new

problem known as take-the-money-and-run strategy: Type θ̂ has now
an incentive to mimick type θ, cash in the first-period profit, and quit
at the end of the first period (recall that his continuation payoff from
this strategy ismax[θ̂x∗FB (θ)+t

∗
FB (θ) , 0] = 0 since he cannot be forced

to accept the unfavorable second-period contract (x2 (θ) , t2 (θ))). This
suggests that the upward IC constraint (3.51) is also binding.

6. With only two types, separation is possible, although it is typically
not optimal (except for small discount factors). See Laffont and Tirole
(1987) for a detailed analysis.

Commitment with Renegotiation

Let us finally look at the intermediate case where renegotiation is possible.
That is, neither party can unilaterally deviate from the initial contract, but
nothing prevents the parties from altering the initial contract to their mutual
advantage during the renegotiation stage at the beginning of period 2. A
multiperiod contract that is never renegotiated is called renegotiation-proof.

Definition 4 (Renegotiation-Proof Contract) A long-term contract is
renegotiation-proof if it is never renegotiated on the equilibrium path.

Without loss of generality, we can restrict attention to two-period con-
tracts that are renegotiation-proof. This is because any second-period con-
tract that results from the renegotiation process can be rationally anticipated
and made part of the initial two-period contract. Obviously, the full com-
mitment solution is not renegotiation-proof: At the renegotiation stage, the
agent’s type is known and it is strictly Pareto-improving to renegotiate away
from the inefficient decision x∗2 (θ) toward a more efficient level.
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In the no commitment case, it was shown that a fully separating menu
of first-period contracts is not feasible. In the present case, the principal can
credibly commit to ignore information that is revealed in the first period.
As a consequence, complete separation is now possible (but not necessarily
optimal). For convenience, let us be somewhat imprecise and call a menu of
two-period contracts ((x1(θ̂), t1(θ̂)), (x2(θ̂), t2(θ̂))) simply a two-period con-
tract (whose contents vary with the agent’s announcement θ̂).

Theorem 7 There exist fully separating renegotiation-proof two-period con-
tracts.

Proof (direct) Consider the following two-period contract: The second-
period contract implements the first-best decision x∗FB(θ̂) and leaves the prin-
cipal (!) with no second-period rent (Laffont and Tirole (1990) call this con-
tract sell-out contract). Since the second-period allocation is Pareto-efficient,
this two-period contract is renegotiation-proof. In the first period, the agent
receives the (fully separating) optimal static contract (x∗(θ̂), t∗(θ̂)). If there
was no second period, the optimal static contract would be incentive com-
patible by definition. With two periods, the optimal static contract remains
incentive compatible if truthtelling also maximizes the agent’s second-period
utility. But this is indeed the case since i) the agent is entitled to all welfare
gains in the second period, and ii) x∗FB(θ̂) maximizes second-period welfare
at θ̂ = θ.

In the parlance of game theory, theorem 7 shows that if the principal
offers the optimal static contract in the first period and a sell-out contract
in the second period, the agent’s best response is to tell the truth. However,
theorem 7 does not assert that choosing such a contract (or any other fully
separating two-period contract) is optimal from the principal’s point of view.
That is, theorem 7 does not assert the existence of a fully separating PBE.
In fact, the following theorem claims that the opposite is true, i.e. that a
fully separating equilibrium does not exist.

Theorem 8 A fully separating contract is never optimal for the principal.

The proof is cumbersome and omitted for the sake of brevity. See Laffont
and Tirole (1990), appendix 3 for a complete proof.
Finally, note that the principal’s utility under commitment with renego-

tiation is typically higher than under no commitment, but lower than under
full commitment. Intuitively, this is obvious since under full commitment,
the principal can replicate any contract that is possible in the case of com-
mitment with renegotiation, and under commitment with renegotiation, she
can always replicate the optimal sequence of spot contracts.
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3.3 Bibliographic Notes
The section on static adverse selection borrows from Fudenberg and Tirole
(1991), chapter 7, albeit some assumptions and proofs have been changed.
Our discussion of nonlinear pricing was inspired by Maskin and Riley (1984).
We have altered the Maskin-Riley model in order to make their results com-
patible with the more general framework used by Fudenberg and Tirole.
The treatment of repeated adverse selection is based on Laffont and Tirole

(1988, 1990), as well as Laffont and Tirole (1993), chapters 1, 9, and 10. Laf-
font and Tirole perform their analysis in the context of a regulatory setting.
We have adjusted their results so that they fit in the standard Fudenberg-
Tirole framework. Results similar to those by Laffont and Tirole have also
been derived by Hart and Tirole (1988) in the context of intertemporal price
discrimination.
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Chapter 4

Moral Hazard

4.1 Static Moral Hazard
In our discussion of adverse selection, we followed standard conventions and
interpreted an outcome y as a contract. It is therefore quite common to
use the term precontractual asymmetric information (or simply asymmetric
information) instead of adverse selection in order to emphasize the existence
of incomplete information prior to the date when the contract is signed.
In problems of moral hazard, there is no asymmetric information between

principal and agent at the precontractual stage. But there is postcontractual
asymmetric information in the sense that after the contract is signed, the
agent takes an unobservable action a ∈ Λ. Think of a as the parameter of a
probability distribution with random outcome x ∈ X. In our earlier notation,
a pair (a, x) corresponds to the state θ. What makes the moral hazard
problem intricate is an underlying risk-sharing problem. Ideally, the principal
would like to implement a social choice rule f : Λ × X → R which makes
the agent’s pay dependent on both a (in order to compensate him for his
action) and x (for risk-sharing purposes). However, since a is unobservable,
the social choice rule cannot be implemented directly. Note that here, an
outcome y ∈ A is not a contract like in the previous chapter, but a monetary
payment represented by a point on the real line.
Due to the unobservability of a, the principal must settle for an incentive

contract or sharing rule s : X → R which is based only on observable (and
thus verifiable) data. As before, we require that the sharing rule be both
incentive compatible and individually rational. In the case of moral hazard,
incentive compatibility means that given the sharing rule s (x), the agent
prefers a particular action a to any other action â ∈ Λ. Hence, by using
an incentive compatible sharing rule, the principal knows (!) which action

69
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the agent will subsequently take (in equilibrium). This makes it unnecessary
to construct a more complicated mechanism that, once the action is taken,
also asks the agent in addition to truthfully reveal the selected action to
the principal. The principal’s problem is then to determine the action and
sharing rule that maximize her expected utility subject to IC and IR.
Prominent examples of moral hazard are employment relationships and

insurance markets. Since input (e.g. effort) is hard to measure, an employee’s
pay is typically based on output or performance (note that a fixed wage
is merely a special kind of performance pay). Well-known examples are
piece rates or bonus schemes. Likewise, insurance companies typically cannot
monitor precautionary measures taken by individuals in order to reduce the
likelihood of an accident. As a consequence, insurance payments are based
on observable variables such as the occurence and/or size of an accident.

The Model

The first assumptions describe the chronological order in which events occur.

1. The principal offers the agent a sharing rule s (x) which he can either
accept or reject.

2. In case he accepts, the agent takes an unobservable action a ∈ Λ which
affects the distribution function Π (x, a) of a (random) monetary out-
come with support X ⊆ R. The agent incurs a cost c (a).

3. An outcome x ∈ X is realized and verifiable vis-a-vis the courts. The
agent receives s (x) and the principal keeps the remainder x− s (x).

Before we proceed with some some technical assumptions, let us briefly
comment on assumptions 1-3. In assumption 1, the principal can make a
take-it-or-leave-it offer. This has no implication for the relative bargaining
power between the two parties. The agent will accept the principal’s offer
only if he expects to receive at least his reservation utility (in equilibrium).
By raising the agent’s reservation utility, we can grant him more bargaining
power and thus trace out the entire (constrained) Pareto frontier. In addi-
tion, we implicitly assumed that the parties can commit to s (x) for the full
duration of the contract. Later in this chapter, we will briefly address the
question of what happens if renegotiation is possible. The above formula-
tion is known as parameterized distribution approach and was first used by
Mirrlees (1974, 1975, 1975) and Holmström (1979). The name is derived
from the fact that the agent’s action enters as a parameter in the distribu-
tion function Π (x, a). The very first moral hazard models used a different
representation known as state-space approach.
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4. The support X is invariant with respect to a.

5. The agent has additively separable preferences of the form U (s (x) , a) =
u (s (x)) − c (a), where u0 (·) > 0 and u00 (·) ≤ 0, and where c0 (·) > 0
and c00 (·) ≥ 0.

6. The principal has preferences of the form V (x− s (x)), where V 0 (·) > 0
and V 00 (·) ≤ 0.

Throughout the chapter, we use primes to denote derivatives and sub-
scripts to denote partial derivatives. By assumption 4, any x that occurs
with positive probability under action a must also occur with positive prob-
ability under action â for all a, â ∈ Λ. We will show later that if this as-
sumption is not satisfied, trivial solutions to the moral hazard problem may
be possible. The assumption of additive separability implies that the agent’s
preferences over (random) income are independent of his action. Notice that
we have been deliberately vague regarding the sets Λ and X. In particu-
lar, we have not provided sufficient conditions that ensure the existence of
a solution to the principal’s problem. In fact, later we will show that for
a rather broad class of problems, a solution does not exist. Finally, let us
introduce two assumptions that characterize the effect of the agent’s action
on the distribution function Π (x, a).

Definition 1 (Monotone Likelihood Ratio Property) The distribution
function Π (x, a) with density π (x, a) satisfies the monotone likelihood ratio
property (MLRP) if πa(x,a)

π(x,a)
is nondecreasing in x for all a ∈ Λ.

MLRP is equivalent to the condition that for any two actions a > â,
the ratio π(x,a)

π(x,â)
is nondecreasing in x. Thus, MLRP implies that higher val-

ues of x are more likely to be generated by the distribution π (x, a) than by
the distribution π (x, â). This condition is satisfied by many commonly used
probability distributions such as the normal and uniform distribution. Inci-
dentally, MLRP implies (but is not implied by) a weaker condition known
as first-order stochastic dominance (FOSD) which states that Πa (x, a) < 0
for all x in the interior of X, i.e. an increase in the agent’s action induces
a rightwards (and therefore favorable) shift in the distribution function. A
far more controversial assumption than MLRP is the convexity of the distri-
bution function condition which requires that Πaa (x, a) ≥ 0. Unlike MLRP,
this condition is satisfied by virtually no standard probability distribution.

Definition 2 (Convexity of the Distribution Function Condition)
The distribution function Π (x, a) satisfies the convexity of the distribution
function condition (CDFC) if Π (x, a) is convex in a for all x ∈ X.
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The First-Order Approach

As a benchmark, let us begin with the case where the agent’s action is ob-
servable and verifiable vis-a-vis the court. The principal’s problem is then
1) to determine the optimal risk-sharing rule s (x) for any given distribution
Π (x, a), and 2) given step 1, to determine the ”optimal distribution” Π (x, a)
by weighing up the costs and benefits from the agent’s action. Implicitly, we
assume that if the agent chooses â 6= a, he receives a large penalty.
Under complete information, the principal offers the agent a contract

which specifies a pair (s (x) , a). Under incomplete information, a is not
observable and the contract can only specify a sharing rule s (x). However,
s (x) will be designed such that in equilibrium, the agent finds it in his best
interest to choose the action preferred by the principal. Hence, in both cases
the principal (either explicitly or implicitly) offers a pair (s (x) , a). Let us call
(s (x) , a) simply an allocation. Since the agent is free to reject the principal’s
offer, the allocation (s (x) , a) must satisfy the agent’s individual rationality
constraint (IR).

Definition 3 (Individually Rational Allocation)The allocation (s (x) , a)
is individually rational (IR) ifZ

X

u (s (x)) π (x, a) dx− c (a) ≥ 0. (4.1)

Thus, an allocation is individually rational if by choosing a, the agent
can guarantee himself an expected utility of at least zero (note that the
normalization of the agent’s reservation utility to zero is without any loss of
generality).

Theorem 1 Suppose that the agent’s action a is observable. The allocation
(s∗FB (x) , a

∗
FB) maximizes the principal’s expected utility subject to IR only

if
V 0 (x− s∗FB (x))
u0 (s∗FB (x))

= λ (4.2)

for all x ∈ X.
Proof (direct) The principal’s first-best problem is

max
a,s(x)

Z
X

V (x− s (x))π (x, a) dx (4.3)

s.t. Z
X

u (s (x)) π (x, a) dx− c (a) ≥ 0. (4.4)
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Clearly, IR must be binding at the optimal solution. Denote the Lagrange
multiplier by λ. Assuming an interior solution, pointwise maximization of
the Lagrangean gives

−V 0 (x− s∗FB (x)) π (x, a∗FB) + λu0 (s∗FB (x)) π (x, a∗FB) = 0, (4.5)

which can be rearranged as

V 0 (x− s∗FB (x))
u0 (s∗FB (x))

= λ (4.6)

for all x ∈ X.

Remarks

1. Assuming an interior solution, the first-order condition (4.2) is neces-
sary, but not sufficient for an optimal solution: Firstly, it constitutes
only one of two first-order conditions (we have skipped the first-order
condition with respect to a as it yields only meager insights). And
secondly, our assumptions are not sufficient to ensure that the second-
order conditions are satisfied globally.

2. The first-best solution (4.2) states that the ratio of the marginal utilities
must be set equal for all values of x. This is an example of Borch’s
(1962) condition for optimal risk-sharing.

3. If the principal is risk neutral and the agent is risk averse, (4.2) requires
that the agent’s income is constant for all values of x. Borrowing an
expression from the insurance literature, we then say that the agent is
fully insured.

Let us now consider the case where the agent’s action is unobservable.
If the principal wishes to implement a certain action a, she can no longer
penalize the agent for choosing â 6= a, but must provide him with incentives
via the sharing rule s (x). We call an allocation (s (x) , a) incentive compatible
if given the sharing rule s (x), the agent finds it optimal to select a.

Definition 4 (Incentive Compatible Allocation)The allocation (s (x) , a)
is incentive compatible (IC) ifZ

X

u (s (x)) π (x, a) dx− c (a) ≥
Z
X

u (s (x))π(x, â)dx− c(â) (4.7)

for all â ∈ Λ.
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The principal’s problem is to determine the allocation (s (x) , a) that max-
imizes her expected utility subject to IR and IC. If Λ contains infinitely many
elements (as is the case when Λ ⊆ R), (4.7) represents a continuum of con-
straints and standard optimization techniques are not applicable. Instead of
IC, we will therefore work with the agent’s first-order conditionZ

X

u (s (x)) πa (x, a) dx− c0 (a) = 0. (4.8)

Assuming an interior solution, (4.8) constitutes a necessary condition for op-
timality in the agent’s problem. The substitution of IC with (4.8) is known
as first-order approach (FOA), and (4.3), (4.4) and (4.8) are called the prin-
cipal’s relaxed problem.
Let s∗ (x) be a solution to the principal’s relaxed problem. Clearly, the

FOA is valid if at s∗ (x) , the agent’s problem is globally concave. Mirrlees
(1979) shows that this is indeed the case if the Lagrange multiplier associated
with (4.8) is nonnegative and MLRP and CDFC hold. Unfortunately, the
only known proof that the multiplier for (4.8) is nonnegative rests on the
assumption (!) that the agent’s problem is globally concave. In order to
avoid this circularity, Rogerson (1985) introduces a further relaxation of the
principal’s relaxed problem. Let us replace (4.8) withZ

X

u (s (x)) πa (x, a) dx− c0 (a) ≥ 0 (4.9)

and call (4.3), (4.4) and (4.9) the principal’s doubly relaxed problem. Below
we prove that this further relaxation is without consequence, i.e. that at
the solution to the doubly relaxed problem, (4.9) is satisfied with equality
(or equivalently, that any allocation that solves the doubly relaxed problem
also solves the relaxed problem and vice versa). Moreover, since (4.9) is an
inequality constraint, the affiliated Lagrange multiplier must be nonnegative.
We can then apply Mirrlees’ argument and conclude that at the optimal
solution, the agent’s problem is globally concave.

Theorem 2 Let (s∗ (x) , a∗) solve the principal’s relaxed problem. If MLRP
and CDFC are satisfied, the agent’s problem is globally concave at s∗ (x).

Proof (direct) Consider the doubly relaxed problem

max
a,s(x)

Z
X

V (x− s (x))π (x, a) dx (4.10)

s.t. Z
X

u (s (x)) π (x, a) dx− c (a) ≥ 0, (4.11)
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X

u (s (x))πa (x, a) dx− c0 (a) ≥ 0. (4.12)

Denote by λ and δ the multipliers for (4.11) and (4.12), respectively. The
Kuhn-Tucker necessary condition with respect to s (·) is

V 0 (x− s∗ (x))
u0 (s∗ (x))

= λ+ δ
πa (x, a

∗)
π (x, a∗)

(4.13)

for all x ∈ X, and the necessary condition with respect to a is

0 =

Z
X

V (x− s∗ (x)) πa (x, a∗) dx (4.14)

+λ

·Z
X

u (s∗ (x)) πa (x, a∗) dx− c0 (a∗)
¸

+δ

·Z
X

u (s∗ (x)) πaa (x, a∗) dx− c00 (a∗)
¸
.

We will now show that if (s∗ (x) , a∗) solves the doubly relaxed problem,
then it also solves the relaxed problem (4.3), (4.4) and (4.8). In other words,
we will show that (4.12) is binding at (s∗ (x) , a∗). Complementary slackness
implies that if δ > 0, (4.12) must be binding, whereas if δ = 0, it can be
either binding or slack. It therefore remains to be proven that if δ = 0, (4.12)
is binding. Given that δ = 0, (4.13) in conjunction with assumptions 5 and 6
implies λ > 0 and s∗0 (x) ∈ [0, 1]. Set X = [x, x], where x and x can be equal
to −∞ and +∞, respectively. Using integration by parts, the first term on
the right-hand side of (4.14) can be expressed as

∂

∂a

Z
X

V (x− (s∗ (x))) π (x, a∗) dx (4.15)

=
∂

∂a

·
V (x− s∗ (x))−

Z
X

V 0 (x− (s∗ (x))) (1− s∗0 (x))Π (x, a∗) dx
¸

= −
Z
X

V 0 (x− (s∗ (x))) (1− s∗0 (x))Πa (x, a∗) dx
≥ 0,

where the inequality follows from assumption 6, s∗0 (x) ∈ [0, 1] and MLRP
(which implies FOSD, i.e. Πa (x, a) < 0). Since λ > 0 and δ = 0, it follows
from (4.14) that Z

X

u (s∗0 (x))πa (x, a∗) dx− c0 (a∗) ≤ 0. (4.16)
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But this is consistent with (4.12) if and only if (4.12) is binding. Hence, any
allocation (s∗ (x) , a∗) that solves the doubly relaxed problem also solves the
relaxed problem.
Finally, we show that at the solution to the (doubly) relaxed problem

(s∗ (x) , a∗), the agent’s expected utility is globally concave, which implies
that (s∗ (x) , a∗) also solves the unrelaxed problem (4.3), (4.4) and (4.7).
First, let us show that s∗ (x) must be nondecreasing (above we proved that
s∗0 (x) ∈ [0, 1] only for the case δ = 0): From δ ≥ 0 and MLRP, it follows
that the right-hand side (and consequently also the left-hand side) of (4.13)
is nondecreasing in x. By assumptions 5 and 6, this implies that s∗0 (x) ≥ 0.
Consider now the agent’s objective function at s∗ (x)Z

X

u (s∗ (x))π (x, a) dx− c (a) . (4.17)

Integrating by parts (again, we set X = [x, x] without loss of generality), we
have

u (s∗ (x))−
Z
X

u0 (s∗ (x)) s∗0 (x)Π (x, a) dx− c (a) . (4.18)

The first term in (4.18) is a constant. Furthermore, u0 (·) > 0 and c00 (a) ≥ 0
(by assumption 5), and Πaa (x, a) ≥ 0 (by CDFC). Since s∗0 (x) ≥ 0, the
agent’s problem is globally concave.

Remarks

1. For didactic reasons, let us once again repeat the main line of argument
used in the proof. First, we established that any allocation (s∗ (x) , a∗)
that solves the doubly relaxed problem also solves the relaxed problem.
Setting δ ≥ 0 in the principal’s first-order condition (4.13) and using
MLRP, we then showed that s∗ (x) is nondecreasing. Finally, using
s∗0 (x) ≥ 0, CDFC and FOSD (which is implied by MLRP), we showed
that at s∗ (x), the agent’s problem is globally concave, which in turn
implies that (s∗ (x) , a∗) is also a solution to the unrelaxed problem.

2. The circular proof mentioned earlier is based on the relaxed problem
(4.3), (4.4) and (4.8). The first-order condition for this problem with
respect to s (·) is

V 0 (x− s∗ (x))
u0 (s∗ (x))

= λ+ µ
πa (x, a

∗)
π (x, a∗)

, (4.19)

where µ is the Lagrange multiplier associated with (4.8). Unlike in
the doubly relaxed problem, the Lagrange multiplier can now also take
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negative values since (4.8) is an equality constraint. However, Holm-
ström (1979) shows that µ > 0 under the assumption that the FOA
holds (and additionally, that u00 (·) < 0). Using µ > 0 instead of δ ≥ 0,
one can now repeat the last step of the above proof and come to the
(erroneous) conclusion that the FOA is valid. Rogerson’s (1985) in-
genious proof avoids this circularity by using the inequality constraint
(4.9), which naturally entails a nonnegative multiplier.

3. The drawback of theorem 2 is that CDFC is only rarely satisfied (inci-
dentally, CDFC is satisfied if π (x, a) = aπ (x) + (1− a) π (x), where π
dominates π in the sense of FOSD). An alternative proof of the validity
of the FOA that does not rely on CDFC is provided by Jewitt (1988).
For instance, Jewitt shows that the FOA holds if the agent has either
square root, log, or exponential utility, and if x is drawn from either a
Poisson, gamma, or chi-squared distribution.

We proceed with an economic analysis of the second-best solution. The
results follow more or less immediately from the proof of theorem 2.

Corollary 1 Suppose MLRP and CDFC hold. The allocation (s∗ (x) , a∗)
maximizes the principal’s expected utility subject to IR and IC only if

V 0 (x− s∗ (x))
u0 (s∗ (x))

= λ+ δ
πa (x, a

∗)
π (x, a∗)

(4.20)

for all x ∈ X.
Proof (direct) Equation (4.20) is the first-order necessary condition (4.13)
for the doubly relaxed problem. By theorem 2, (s∗ (x) , a∗) solves the doubly
relaxed problem if and only if it solves the unrelaxed problem. Hence, (4.20)
is also the first-order necessary condition for the unrelaxed problem.

The following result was derived in the proof of theorem 2.

Corollary 2 If MLRP and CDFC hold, the optimal sharing rule s∗ (x) is
nondecreasing.

Comparing (4.20) with (4.2), we see that (s∗ (x) , a∗) = (s∗FB (x) , a
∗
FB) if

and only if δ = 0. We now show that if the agent is risk averse, it must be
necessarily true that δ > 0, which implies that the second-best solution is
strictly inefficient.

Corollary 3 Suppose MLRP and CDFC are satisfied and u00 (·) < 0. At the
solution to the principal’s problem, δ > 0.
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Proof (by contradiction) Since (4.12) is an inequality constraint, it is
true that δ ≥ 0. It therefore remains to be shown that δ 6= 0. Suppose that
δ = 0. Since u00 (·) < 0, (4.13) together with assumptions 5 and 6 imply that
λ > 0 and s∗0 (x) ∈ [0, 1). Repeating the argument in the proof of theorem 2,
(4.15) is now satisfied with strict inequality, and the left-hand side of (4.16)
is strictly negative, which contradicts (4.12).

Remarks

1. If the agent is risk averse, the principal faces a fundamental tradeoff
between risk-sharing and incentives. This can be best illustrated if we
assume a risk neutral principal. From Borch’s rule (4.2), it then follows
that the principal should bear all the risk, i.e. s∗0 (x) = 0. However,
full insurance implies that the agent’s action has no effect on his in-
come, which dulls his incentives to take a costly action. Therefore,
if the principal wishes to implement an action other than the least
costly action, she must deviate from first-best risk-sharing and make
the agent’s pay dependent on output, i.e. s∗0 (x) > 0. Assuming that
πa (x, a) /π (x, a) > 0, this follows immediately from the first-order con-
dition (4.13) and corollary 3.

2. If the agent is risk averse and output is informative about the agent’s
action (i.e. πa (x, a) /π (x, a) > 0), s∗ (x)must be strictly increasing. At
first glance, this looks like a statistical inference problem: The optimal
sharing rule pays more for outcomes that signal a higher choice of a
(in probabilistic terms) than for outcomes that signal a lower choice
of a. Note, however, that this is only seemingly the case. Due to the
incentive compatibility constraint, the principal knows exactly which
action was taken in equilibrium. Nonetheless, she must commit to an
incentive scheme that is based on the informativeness of x.

3. In the proof of corollary 3, it was claimed that δ = 0 and u00 (·) < 0
imply that λ > 0 and s∗0 (x) ∈ [0, 1). From (4.13), it is obvious that
δ = 0 implies λ > 0 due to V 0 (·) > 0. Consequently, the left-hand side
(lhs) of (4.13) must be positive and constant for all x. Next, note that
s∗ (x) cannot be strictly decreasing since this would imply that the lhs
of (4.13) is strictly decreasing. Likewise, s∗ (x) cannot be increasing at
a rate greater than 1 since this would imply that the lhs of (4.13) is
strictly increasing. Finally, note that s∗0 (x) = 1 is not feasible when
the agent is risk averse since then, the lhs of (4.13) would be strictly
increasing. This reveals that in the proof of theorem 2, s∗0 (x) = 1 was
only possible because we permitted that u0 (·) is constant.
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4. When the agent is risk neutral, corollary 3 no longer holds and the
first-best outcome can be attained by ”selling the firm to the agent”.
That is, s∗ (x) = x − K, where K is a lump-sum transfer from the
agent to the principal (K is chosen such as to hold the agent down
at his reservation utility). Recall that due to risk neutrality, imposing
risk on the agent involves no welfare loss. Being the residual claimant,
the agent then faces proper incentives and selects the first-best action
a∗FB. The fact that s

∗ (x) implies efficient risk-sharing can be verified
by setting u0 (·) equal to a constant in the first-order condition for the
first-best problem (4.3). To see that the agent chooses a∗FB, note that
the first-order condition with respect to a in the principal’s first-best
problem (4.3)-(4.4) isZ

X

[V (x− s∗FB (x)) + λu (s∗FB (x))] πa (x, a∗FB) dx = λc0 (a∗FB) . (4.21)

Integrating by parts and setting X = [x, x], (4.21) can be written as

[V (x− s∗FB (x)) + λu (s∗FB (x))]Πa (x, a∗FB)|xx (4.22)

−
Z
X

V 0 (x− s∗FB (x)) (1− s∗0FB (x))Πa (x, a∗FB) dx

−λ
Z
X

u0 (s∗FB (x)) s
∗0
FB (x)Πa (x, a

∗
FB) dx

= λc0 (a∗FB) .

Dividing through by λ and inserting (4.2), (4.22) reduces to

−
Z
X

u0 (s∗FB (x))Πa (x, a
∗
FB) dx = c

0 (a∗FB) . (4.23)

Finally, setting u0 (·) = 1 and integrating by parts once more, we getZ
X

xfa (x, a
∗
FB) dx = c

0 (a∗FB) , (4.24)

which implies that a∗FB maximizes
R
X
xf (x, a) dx − c (a). But this is

equivalent to a risk neutral agent’s maximization problem who faces an
incentive scheme s (x) = x−K.

5. A second case where the first-best can be attained is when assump-
tion 4 is violated. In environments with a shifting support, there exist
outcomes that indicate with probability 1 that the agent has taken an
action that differs from the one preferred by the principal. A forcing
contract that punishes the agent very hard whenever such an outcome
is observed can then restore the first-best. See Harris and Raviv (1979)
for a formal analysis.
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Renegotiation

Consider the case of a risk-neutral principal and a risk-averse agent. The
previous analysis has shown that in order to implement an action other than
the least costly action, the principal must deviate from the first-best risk-
sharing solution (here: full insurance) and make the agent’s pay dependent
on output. In this regard, we have implicitly assumed that both parties
can commit to the optimal sharing rule for the full duration of the contract.
Suppose now that after the action was taken, principal and agent can meet
and renegotiate the initial contract. Since the action choice is irreversible,
there is no reason why the agent should be still exposed to risk. The principal
can then realize efficiency gains by offering the agent a new contract that
provides him with full insurance (note that there is no adverse selection
problem since the principal knows which action was taken in equilibrium).
The problem with renegotiation is that while it is Pareto-improving ex post,
it is detrimental ex ante: Foreseeing that the outcome from renegotiation
will be full insurance, the agent supplies only the least costly action.
We know from our discussion of repeated adverse selection that if rene-

gotiation is possible, we can without loss of generality restrict attention to
renegotiation-proof contracts. The above reasoning suggests that in this case,
no action other than the least costly action can be implemented.

Theorem 3 Suppose V 00 (·) = 0 and u00 (·) < 0. The allocation (s (x) , a)
is renegotiation-proof and incentive compatible only if a is the least costly
action.

Proof (direct) If (s (x) , a) is incentive compatible, the principal ”knows”
a at the interim stage. Given that information is symmetric, renegotiation-
proofness requires that s (x) is the first-best sharing rule. By theorem 1, this
implies that s (x) must be a constant (say, s (x) = K). The agent’s problem
is then maxa

R
u (K) f (x, a) dx− c (a) which is equivalent to mina c (a).

Remarks

1. It is obvious that the reverse of theorem 3 also holds.

2. Theorem 3 no longer holds if we enlarge the agent’s strategy set to in-
clude mixed strategies. Suppose the agent randomizes with probability
distribution φ (a). At the interim stage (that is, after the action was
taken but before output is realized), the principal no longer ”knows” a
and the situation corresponds to an adverse selection setting in which
a represents the agent’s type. Consequently, renegotiation will not lead
to full insurance.
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3. If mixed strategies are allowed, the optimal renegotiation-proof con-
tract can be derived using backwards induction. Consider first the
interim stage where the distribution φ (a) is given. Renegotiation-
proofness requires that at the interim stage, the initial contract must
be (constrained) efficient. It then follows from chapter 3 that the initial
contract must specify an optimal menu of sharing rules sa (x), where
each sharing rule is ”designed” for a particular type a. Since low types
(i.e. types with a higher risk of low outcomes) value insurance more
than high types, the single-crossing property is satisfied, which implies
that under the optimal menu, low types will receive full insurance while
high types will be exposed to some risk. In a second step, we consider
the ex ante stage and determine the distribution φ (a) and the interim
menu sa (x) that maximize the principal’s expected utility subject to
the constraints that

(a) the interim menu sa (x) is renegotiation-proof given the distribu-
tion φ (a) (this imposes optimality at the interim stage),

(b) given sa (x), the agent finds it indeed optimal to randomize ac-
cording to φ (a) (this implies that ex ante, the agent must be
indifferent between any action in the support of φ (a)), and

(c) the agent receives at least his reservation utility in equilibrium.

Due to the added renegotiation-proofness constraint, welfare under
renegotiation can never be greater than under commitment. For a
full characterization of the mixed strategy equilibrium, see Fudenberg
and Tirole (1990).

4. Ma (1994) analyzes a signalling version of the renegotiation game in
which the informed party (i.e. the agent) makes a take-it-or-leave-it
offer. He shows that in this case, renegotiation does not lead to a
welfare loss, i.e. the principal can implement the same actions at the
same cost as under full commitment.

5. When the agent’s action is observable but not verifiable (so that a
contract contingent on a is not possible), renegotiation can even be
welfare-enhancing. Consider the following construction due to Herma-
lin and Katz (1991): At the ex ante stage, the principal ”sells the firm
to the agent”, i.e. s (x) = x−K. As we have shown earlier, this induces
the agent to exert the first-best action. At the interim stage, the prin-
cipal offers the agent to ”buy back” the lottery s (x) at a value equal to
its certainty equivalent ω (a), where u (ω (a)) ≡ R

X
u (s (x)) π (x, a) dx.

It follows that
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(a) the agent will accept the new (full insurance) contract as it gives
him the same expected utility as s (x),

(b) the agent’s incentives to exert the first-best action are not dis-
torted by renegotiation since for any action a, he receives the
same expected utility under the old and new contract, which im-
plies that

(c) the first-best allocation is implementable.

Near First-Best Efficiency with Step Functions (technical)

An important insight from our discussion of the first-order approach is that
the optimal sharing rule is likely to look very complicated. The reason for
this is that s∗ (x) is a function of x only indirectly via the likelihood ratio
πa (x, a) /π (x, a). Thus, unless the likelihood ratio depends on x in a sim-
plistic fashion, there is little hope of getting further-reaching results than
monotonicity. And yet, real-world incentive schemes appear to be simple.
For instance, salespeople are often rewarded according to bonus schemes,
and assembly line workers are typically paid by the piece. One way to deal
with this puzzle is to turn to richer and more structured environments. This
is done in section 4.3 where we discuss dynamic moral hazard. Alternatively,
one could simply try out various functional forms of s (x) and compare their
performance relative to some benchmark (the first-best). In general, this pro-
cedure is pointless (given that there is an infinite number of possible sharing
rules) unless one finds a sharing rule that actually is (at least nearly) first-
best efficient. Surprisingly, such a sharing rule exists. As was shown by
Mirrlees (1974) in the context of a concrete example, step functions can
under certain conditions approach the first-best asymptotically.

Definition 5 (Step Function) A step function is a sharing rule s (x) where

s (x) =

½
s if x ≥ x̂
s otherwise.

(4.25)

Thus, a step function is defined by three parameters: a high payment s, a
low payment s, and a cutoff value x̂. Consider now the following assumptions
which complement our earlier assumptions 1-6.

1. The principal is risk neutral, i.e. V (x− s (x)) = x− s (x).
2. The agent’s utility for wealth is defined on the set W = (w,∞), where
u00 (w) < 0 and lim

w→w
u (w) = −∞.
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3. The distribution function satisfies FOSD, i.e. Πa (x, a) < 0 for all x.

4. There exists a value x̃ such that for all x ≤ x̃, Π (x, a) is concave in a.
5. The likelihood ratio satisfies lim

x→x
πa(x,a)
π(x,a)

= −∞.

Let us briefly comment on the assumptions. Assumptions 1 and 2 im-
ply that the first-best sharing rule is a constant. Unboundedness of u (·) is
crucial and signifies that the agent’s utility becomes infinitely negative as
we approach the infimum of the domain. Moreover, assumption 2 restricts
the set of feasible payments to W . Assumption 4 is rather innocuous and
is satisfied, for example, by the normal distribution. Finally, assumption 5
implies that very low values of x are extremely informative with respect to
the agent’s action. We will discuss the role of this assumption in detail later
in the text. Note that we have not assumed that MLRP or CDFC hold.
We will now show that by using a step function, the principal can im-

plement the first-best action at a cost that is arbitrarily close to the first-
best cost. Put it differently, we will show that the principal’s expected
utility from implementing a∗FB converges to the value that obtains under
complete information. Recall that in the case of a risk neutral principal
and a risk averse agent, the first-best sharing rule is s∗FB (x) = K, where
the constant K is implicitly defined by the agent’s binding IR constraint
u (K) = c (a∗FB). Since u (w) is monotonic, it has a monotonic inverse u

−1 (u)
such that u−1 (u) = w⇔ u (w) = u. Thus, u−1 (u) denotes the level of wealth
that yields utility u. Using this notation, we can express the principal’s ex-
pected utility from the full information optimum asZ

X

xπ (x, a∗FB) dx− u−1 (c (a∗FB)) , (4.26)

which from now on shall be our benchmark.
Back to the incomplete information case, implementation of a∗FB through

a step function implies that a∗FB must satisfy the agent’s IC constraint

u (s)Π (x̂, a∗FB) + u (s) (1−Π (x̂, a∗FB))− c (a∗FB) (4.27)

≥ u (s)Π (x̂, â) + u (s) (1−Π (x̂, â))− c (â)
for all â ∈ Λ, where s, s and x̂ are given parameters. Instead of working with
(4.27), we will work with the agent’s first-order condition at a∗FB

(u (s)− u (s))Πa (x̂, a∗FB)− c0 (a∗FB) = 0. (4.28)

From our discussion of the FOA, we know that the substitution of (4.27)
with (4.28) is valid if under the step function (s, s, x̂), the agent’s objective
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function is concave in a. We now proceed as follows: First, we determine s
and s as a function of x by solving explicitly the agent’s first-order condition
and IR (note that at the optimum, IR must be binding since transfers are
costly to the principal). Given s (x̂) and s (x̂) , it follows trivially that for
any x̂ ≤ x̃, the agent’s problem is globally concave. We then insert s (x̂) and
s (x̂) in the principal’s objective function and obtain a maximization problem
with respect to x̂, subject to the constraint that x̂ ≤ x̃.

Theorem 4 For any step function (s (x̂) , s (x̂) , x̂) where s (x̂) and s (x̂)
satisfy the agent’s first-order condition and IR with equality at some ã ∈ Λ
and where x̂ satisfies x̂ ≤ x̃, the agent’s problem is globally concave.

Proof (direct) The agent’s first-order condition and indvidual rationality
constraint are

(u (s)− u (s))Πa (x̂, ã)− c0 (ã) = 0 (4.29)

and
u (s)Π (x̂, ã) + u (s) (1− Π (x̂, ã))− c (ã) = 0, (4.30)

respectively. Solving (4.29)-(4.30) for s and s as a function of x̂, we have

s (x̂) = u−1
µ
c (ã) +

c0 (ã) (1− Π (x̂, ã))
Πa (x̂, ã)

¶
(4.31)

and

s (x̂) = u−1
µ
c (ã)− c

0 (ã)Π (x̂, ã)
Πa (x̂, ã)

¶
. (4.32)

From FOSD and the fact that u−1 (·) is strictly increasing, it follows that
s (x̂) > s (x̂) for all x̂ in the interior of X.
Given a step function with cutoff value x̂ ≤ x̃ and payments s (x̂) and

s (x̂) as defined above, the agent’s problem is

max
a
u (s (x̂))Π (x̂, a) + u (s (x̂)) (1− Π (x̂, a))− c (a) , (4.33)

which is concave since s (x̂) > s (x̂) and Πaa (x̂, a) ≥ 0 by assumption 4.

Next, we let the principal choose x̂ in order to maximize her expected
utility over the set of step functions that implement a∗FB and satisfy IR with
equality at a∗FB. By theorem 4, this is equivalent to letting the principal
maximize over the set of step functions that satisfy (4.31)-(4.32) (each with
ã = a∗FB) and x̂ ≤ x̃. As it turns out, this maximization problem has no
solution. By choosing smaller and smaller values of x̂, the principal can
approach the first-best utility (4.26) arbitrarily closely.
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The near first-best result is driven by two assumptions: 2 and 5. As-
sumption 5 implies that for any action â < a∗FB, the relative likelihood that
an outcome x was generated by the ”inferior” distribution Π (x, â) instead
of Π (x, a∗FB)) tends to infinity as x → x. Heuristically, one could therefore
argue that by choosing a cutoff value close to x, the principal minimizes the
risk of erroneously punishing an agent who picked a∗FB and thereby avoids
paying a costly risk premium in equilibrium. Unfortunately, the mechanism
that underlies the result is more intricate. It can be best understood if we
concentrate on the case â < a∗FB and rewrite IC more conveniently as

c (a∗FB)− c (â) ≤ u (s) (Π (x̂, a∗FB)− Π (x̂, â)) (4.34)

+u (s) (Π (x̂, â)− Π (x̂, a∗FB)) .
For any value of x̂ close to x, assumption 5 implies that the difference
(Π (x̂, a∗FB)−Π (x̂, â)) is negative. Hence, by choosing s sufficiently small,
IC can always be satisfied. From (4.34) it is also clear that s must be de-
creasing as x̂ → x because Π (x̂, a∗FB) and Π (x̂, â) both go to zero and, as
is shown in the following proof, s is decreasing. However, as s approaches
w, a given decrease in s has an increasingly negative effect on u (s) since by
assumption 2, the slope of u (·) becomes negative infinite. As a consequence,
s need not decrease ”too fast”. It turns out that s decreases sufficiently
slowly so that the product s (x̂)Π (x̂, a∗FB) in the principal’s objective func-
tion

R
X
xπ (x, a∗FB) dx − s (x̂)Π (x̂, a∗FB) − s (x̂) (1− Π (x̂, a∗FB)) always con-

verges to zero, even if s (x̂) tends to −∞ (which is the case if W =R). This,
together with the comparably easy to prove fact that s (x̂) (1−Π (x̂, a∗FB))
converges to u−1 (c (a∗FB)) establishes the near first-best result.

Theorem 5 The principal’s problem has no solution. By letting x̂→ x, she
can approach the first-best utility (4.26) arbitrarily closely.

Proof (direct) By theorem 4, the principal’s problem is equivalent to

max
x̂

Z
X

xπ (x, a∗FB) dx− s (x̂)Π (x̂, a∗FB)− s (x̂) (1− Π (x̂, a∗FB)) (4.35)

s.t.

s (x̂) = u−1
µ
c (a∗FB) +

c0 (a∗FB) (1− Π (x̂, a∗FB))
Πa (x̂, a∗FB)

¶
, (4.36)

s (x̂) = u−1
µ
c (a∗FB)−

c0 (a∗FB)Π (x̂, a
∗
FB)

Πa (x̂, a∗FB)

¶
, (4.37)

and
x̂ ≤ x̃. (4.38)
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Let us ignore (4.38) for a moment. Inserting (4.36)-(4.37) in the objective
function (4.35), the principal’s problem can be written as

max
x̂

Z
X

xπ (x, a∗FB) dx (4.39)

−u−1
µ
c (a∗FB) +

c0 (a∗FB) (1− Π (x̂, a∗FB))
Πa (x̂, a∗FB)

¶
Π (x̂, a∗FB)

−u−1
µ
c (a∗FB)−

c0 (a∗FB)Π (x̂, a
∗
FB)

Πa (x̂, a∗FB)

¶
(1−Π (x̂, a∗FB)) .

We now show that as x̂ approches x, (4.39) converges to (4.26). Let us
begin with the second term in (4.39). We can distinguish between two cases:
i) u−1 (·) is bounded below, and ii) u−1 (·) is unbounded below. Case i) is
trivial and implies that the second term converges to zero as x̂→ x because
the argument in u−1 (·) goes to −∞. Case ii) is harder since the limit of
the product u−1 (...)Π (x̂, a∗FB) is ” (−∞) 0” and thus undefined. A standard
trick is to consider instead the product of Π (x̂, a∗FB) with the tangent of
u−1 (·) at some given value x̂ = k. Since u−1 (·) is increasing and strictly
convex, the tangent yields a smaller value than u−1 (·) for any x̂ 6= k. Hence,
if the product of Π (x̂, a∗FB) with the tangent of u

−1 (·) converges to zero, the
product u−1 (...)Π (x̂, a∗FB) must also converge to zero. We now prove that
this is indeed the case. The tangent of u−1 (·) at k is

u−1 (k) + u−10 (k) c0 (a∗FB)
µ
1−Π (x̂, a∗FB)
Πa (x̂, a∗FB)

− 1− Π (k, a
∗
FB)

Πa (k, a∗FB)

¶
, (4.40)

and the limit of the product of Π (x̂, a∗FB) with (4.40) as x̂→ x is

u−10 (k) c0 (a∗FB) lim
x̂→x

Π (x̂, a∗FB)
Πa (x̂, a∗FB)

. (4.41)

By l’Hôpital’s rule and assumption 5, (4.41) reduces to

u−10 (k) c0 (a∗FB) lim
x̂→x

π (x̂, a∗FB)
πa (x̂, a∗FB)

= 0. (4.42)

Consider now the third expression in (4.39). By l’Hôpital’s rule and
assumption 5, the limit as x̂→ x is

lim
x̂→x

u−1 (...) (1− Π (x̂, a∗FB)) = u−1 (c (a∗FB)) . (4.43)

Combining (4.42) and (4.43) implies that as x̂→ x, the principal’s expected
utility (4.39) converges toZ

X

xπ (x, a∗FB) dx− u−1 (c (a∗FB)) , (4.44)
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which is equal to the benchmark solution (4.26). Finally, note that since
the principal’s expected utility is strictly increasing as x̂ → x, the ignored
constraint x̂ ≤ x̃ is not binding.

Remarks

1. Let us briefly restate the intuition which underlies the near first-best
result. As x̂ → x, the penalty s tends to w and the payment s tends
to u−1 (c (a∗FB)). In the limit, the agent is punished with probability
zero and receives the first-best payment u−1 (c (a∗FB)) with probability
one, i.e. he is completely insured. The hard part of the proof was to
establish that the product sΠ (x̂, a∗FB) converges to zero.

2. The nonexistence result follows from the fact that the limit x̂ = x is
not feasible since u (s (x)) = u (u−1 (−∞)) = u (w) is not defined by
assumption 2.

3. In the limit, the principal knows with certainty that the agent has
shirked. Hence, the limit case is conceptually equivalent to the shift-
ing support environment mentioned earlier where a large penalty in a
probability 1-event also restores the first-best.

4.2 Extensions: Multiple Signals, Multiple
Agents, and Multiple Tasks

Multiple Signals

Suppose that in addition to x, the principal can observe a further verifiable
signal z. In principle, the sharing rule s (·) can then be made a function of
both x and z. The question is therefore under what conditions is it optimal
to include the additional signal z in the sharing rule. It turns out that the
concept of a sufficient statistic plays a central role in answering this question.

Definition 6 (Sufficient Statistic) The variable x is a sufficient statistic
for {x, z} with respect to a if there exist functions G (·) ≥ 0 and H (·) ≥ 0
such that

π (x, z, a) = G (x, z)H (x, a) (4.45)

for all (x, z, a) ∈ X × Z × Λ.

Thus, if x is a sufficient statistic for {x, z} with respect to a, the joint prob-
ability distribution π (x, z, a) can be separated into two functionsG (x, z) and
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H (x, a), where G (x, z) adds pure noise and where only the second function
H (x, a) depends on a. In other words, x carries all the relevant information
about a and the additional signal z is completely uninformative. In statistical
decision theory, G (x, z) is called a garbling or Markov matrix .
With a few exceptions, adding noise to the agent’s pay is never beneficial,

and it is therefore quite plausible that if x is a sufficient statistic for {x, z}
with respect to a, the noise term z should not be included in the optimal
sharing rule. We will now prove this intuition formally. The proof rests on an
extension of the first-order approach to the multi-signal case. In section 4.1,
we have shown that in the case of a single signal x, MLRP and CDFC are
sufficient to render the principal’s first-order condition (4.20) necessary for
optimality. In the multi-signal case, the FOA is valid if the joint distribution
satisfies MLRP and the (marginal) distribution functions of one (!) signal
satisfy FOSD and CDFC (Sinclair-Desgagné (1994)). In what follows, we
simply assume that the FOA is valid.

Theorem 6 Suppose that the FOA is valid. The optimal sharing rule s∗ (x, z)
will not depend on z if and only if x is a sufficient statistic for {x, z} with
respect to a.

Proof (direct) A straightforward extension of the FOA to many signals
yields the first-order condition

V 0 (x− s∗ (x, z))
u0 (s∗ (x, z))

= λ+ δ
πa (x, z, a

∗)
π (x, z, a∗)

(4.46)

for all (x, z) ∈ X × Z. By assumption, the FOA is valid and the optimal
allocation (s∗ (x, z) , a∗) is characterized by (4.46). Equation (4.46) then im-
plies that s∗ (x, z) is not a function of z if and only if the likelihood ratio
πa (x, z, a

∗) /π (x, z, a∗) is independent of z, i.e. if and only if

πa (x, z, a
∗)

π (x, z, a∗)
= h (x, a∗) . (4.47)

In what follows, we need to restrict attention to distributions where (4.47) is
either satisfied for all a or no a (cf. Holmström (1979), fn. 21). Given this
restriction, we can solve the differential equation (4.47) and obtain

π (x, z, a) = G (x, z)H (x, a) , (4.48)

where H (x, a) = exp
©R

Λ
h (x, a) da

ª
. Conversely, (4.48) also implies (4.47)

(take logarithms and differentiate with respect to a). Thus, s∗ (x, z) is not a
function of z iff x is a sufficient statistic for {x, z} with respect to a.
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Remarks

1. An important implication of theorem 6 is that randomization (i.e.
adding noise to the optimal sharing rule) does not pay. This can be
neatly illustrated if we assume that the signals z and x are indepen-
dently distributed and that z is pure noise. The joint density π (x, z, a)
can then be written as the product of the two densities π1 (z) and
π2 (x, a) . Suppose that contrary to our assertion, the optimal sharing
rule s∗ (x, z) is a function of both x and z. Consider now an alternative
sharing rule s (x) that depends only on x and that is defined by

u (s (x)) =

Z
Z

u (s∗ (x, z)) π1 (z) dz (4.49)

holds for all x. Thus, for each x, the certain payment s (x) gives the
agent the same utility as the lottery π1 (z) with outcomes s∗ (x, z) .
Note that u (s (x)) =

R
Z
u (s (x)) π1 (z) dz since u (s (x)) is a constant

with respect to z. Integrating (4.49) with respect to x givesZ
X

Z
Z

u (s (x))π1 (z) π2 (x, a) dzdx (4.50)

=

Z
X

Z
Z

u (s∗ (x, z))π1 (z) π2 (x, a) dzdx,

i.e. for any value of a, the agent receives the same expected utility under
s (x) and s∗ (x, z) , which implies that s (x) satisfies IR and implements
the same actions as s∗ (x, z). Suppose the agent is risk averse. By
Jensen’s inequality and u00 (·) < 0, (4.49) implies

(x− s (x)) >
Z
Z

(x− s∗ (x, z)) π1 (z) dz (4.51)

for all x, and therefore

V (x− s (x)) > V

µZ
Z

(x− s∗ (x, z)) π1 (z) dz
¶

(4.52)

≥
Z
Z

V (x− s∗ (x, z))π1 (z) dz,

where the second inequality follows from Jensen’s inequality and con-
cavity of V (·) . Finally, using V (x− s (x)) = R

Z
V (x− s (x))π1 (z) dz

and integrating with respect to x, we obtainZ
X

Z
Z

V (x− s (x))π1 (z) π2 (x, a) dzdx (4.53)

>

Z
X

Z
Z

V (x− s∗ (x, z))π1 (z) π2 (x, a) dzdx,
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i.e. the principal is strictly better off under s (x), which contradicts op-
timality of s∗ (x, z). As a general rule, randomization is never optimal
when the agent is risk averse and has either additively or multiplica-
tively separable utility (Gjesdal (1982), Grossman and Hart (1983)).

2. A second implication of theorem 6 is that the optimal sharing rule
should condition on any signal that contains information about a, re-
gardless of how noisy it is.

3. In the face of these results, one is once again tempted to believe that
the principal faces a statistical inference problem. Remember that this
is only seemingly the case since in equilibrium, she knows exactly which
action was taken. Hence, no information is extracted from {x, z} .

Multiple Agents I: Relative Performance Evaluation

The analysis of the multi-agent problem depends crucially on whether the
principal can observe the agent’s individual contributions or merely joint out-
put. The former case is examined in this section and constitutes a straight-
forward extension of the multi-signal model. The latter case has a completely
different flavor and yields important implications for the separation of own-
ership and control in organizations. It is studied in the next section.
Consider the following extension of the canonical agency setting.

1. The principal is risk neutral, i.e. V (x− s (x)) = x− s (x).
2. There are n risk averse agents. Each agent takes an unobservable ac-
tion ai which affects the distribution function Πi (xi, ai) of a monetary
outcome xi.

3. The principal can observe the vector of outcomes x = (x1, ..., xn). Total
output x is distributed with distribution function Π (x, a) and density
π (x, a) where a = (a1, ..., an) is a profile of the agents’ actions.

Given that x is verifiable, an agent’s compensation can depend on the
entire vector x. We will now derive conditions under which this is optimal.
The principal’s multi-agent problem is to determine a vector of actions a
and a profile of sharing rules s (x) = (s1 (x) , ..., sn (x)) that maximize her
expected utility subject to the constraints that i) IR is satisfied for each agent,
and ii) given s (x), the strategy profile a is a Nash equilibrium. Although the
specific equilibrium concept is inessential, it is clearly reasonable to let the
agents’ action choices depend on one another.
The following definition is a generalization of definition 6.
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Definition 7 (Sufficient Statistic) The function Ti (x) is a sufficient sta-
tistic for x with respect to ai if there exist functions Gi (·) ≥ 0 and Hi (·) ≥ 0
such that

π (x, a) = Gi (x, a−i)Hi (Ti (x) , a) (4.54)

for all (x, a) ∈ X × Λ, where X = ×Xi. Moreover, the vector T (x) =
(T1 (x) , ..., Tn (x)) is a sufficient statistic for x with respect to a if each com-
ponent Ti (x) is a sufficient statistic with respect to ai.

For example, Ti (x) could only comprise a single element xi, or it could
be some average of the individual components x1, ..., xn. We now derive the
analogue of the sufficiency part of theorem 6 for the multi-agent setting.

Theorem 7 If T (x) is a sufficient statistic for x with respect to a, then for
any profile of sharing rules s (x) = (s1 (x) , ..., sn (x)) , there exists a profile
s (T (x)) = {s1 (T1 (x)) , ..., sn (Tn (x))} that conditions only on T (x) and
makes the principal strictly better off.

Proof (direct) First, we show that if a is a Nash equilibrium under s (x) ,
it is also a Nash equilibrium under s (T (x)). Subsequently, we show that the
cost of implementing a under s (T (x)) is strictly less than under s (x).
Suppose a is a Nash equilibrium under s (x). Consider a particular agent

i and take the actions of the remaining n− 1 agents as given. For any Ti in
the range of Ti (x) , define the value of si (Ti (x)) at Ti (x) = Ti by

ui (si (Ti)) =

R
{x|Ti(x)=Ti} ui (si (x))Gi (x, a−i) dxR

{x|Ti(x)=Ti}Gi (x, a−i) dx
. (4.55)

Note that G (·) and therefore also si (Ti (x)) are independent of ai. Moreover,
Gi (x, a−i)R

{x|Ti(x)=Ti}Gi (x, a−i) dx
=

Gi (x, a−i)Hi (Ti, a)R
{x|Ti(x)=Ti}Gi (x, a−i)Hi (Ti, a) dx

(4.56)

=
π (x, a)R

{x|Ti(x)=Ti} π (x, a) dx

is a probability measure on the set {x|Ti (x) = Ti}, which implies that the
right-hand side in (4.55) is agent i’s expected utility under si (x) conditional
on the event that Ti (x) = Ti. Thus, for any Ti, si (Ti) is the certain payment
that yields the same utility as a lottery on the set {x|Ti (x) = Ti} with
density Gi (x, a−i) /

R
{x|Ti(x)=Ti}Gi (x, a−i) dx and outcomes si (x). By (4.55),Z

{x|Ti(x)=Ti}
ui (si (Ti))Gi (x, a−i) dx (4.57)

=

Z
{x|Ti(x)=Ti}

ui (si (x))Gi (x, a−i) dx.
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Multiplying both sides with Hi (Ti, a) and integrating over Ti, we haveZ
X

ui (si (Ti (x))) π (x, a) dx =

Z
X

ui (si (x)) π (x, a) dx, (4.58)

i.e. the agent enjoys the same expected utiliy for any profile a (and conse-
quently for any action ai since a−i is taken as given). This argument can now
be repeated for any of the other n − 1 agents, which implies that s (T (x))
and s (x) implement the same actions.
Finally, let us show that the principal’s expected utility under si (Ti (x))

is at least as great as under si (x). From (4.55), Jensen’s inequality and strict
concavity of u (·) , it follows that

si (Ti) <

R
{x|Ti(x)=Ti} si (x)Gi (x, a−i) dxR

{x|Ti(x)=Ti}Gi (x, a−i) dx
, (4.59)

for all Ti. As in the derivation of (4.57)-(4.58), multiplying both sides of
(4.59) with Hi (Ti, a)

R
{x|Ti(x)=Ti}Gi (x, a−i) dx and integrating over the set of

Ti’s yields Z
X

si (Ti (x)) π (x, a) dx <

Z
X

si (x)π (x, a) dx. (4.60)

Since this is true for any of the n agents, (4.60) impliesZ
X

(x− s (T (x))) π (x, a) dx >
Z
X

(x− s (x))π (x, a) dx, (4.61)

i.e. the principal is strictly better off with s (T (x)).

Remarks

1. An immediate implication of theorem 7 is that the optimal sharing rule
must have the form s∗ (T (x)).

2. The reverse of theorem 7 also holds when the notion of a sufficient
statistic is replaced with that of a globally sufficient statistic. T (x) is
globally sufficient if for all a, i, Ti, and x0, x00 ∈ {x|Ti (x) = Ti} ,

πai (x
0, a)

π (x0, a)
=
πai (x

00, a)
π (x00, a)

. (4.62)

See Holmström (1982), theorem 6, for details.
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We will now illustrate theorem 7 with two examples. In the first example,
outputs are independently distributed. Hence, agent j’s output contains no
information about the action taken by agent i. In the light of our results, we
would then expect that rewarding agents on the basis of peer performance is
pointless. The following corollary confirms this intuition.

Corollary 4 If outputs are independently distributed, the optimal sharing
rule for agent i depends on xi alone, i.e. s∗i (x) = s

∗
i (xi).

Proof (direct) By independence,

π (x, a) =
Yn

i=1
πi (xi, ai) . (4.63)

Thus, Ti (x) = xi is a sufficient statistic for x with respect to ai. By theorem
7, the optimal sharing rule must then be of the form s∗i (xi).

Remarks

1. With a little more structure, it can be shown that the reverse of corol-
lary 4 is also true (see Holmström (1982), theorem 7). Thus, when
output is not independently distributed, relative performance evalua-
tion is generally optimal.

2. An important implication of corollary 4 is that competition (i.e. re-
warding agents according to their relative perfomance) is valueless when
there is no common underlying uncertainty. This implies that rank-
order tournaments which award prizes (e.g. promotions, pay raises,
etc.) on the basis of ordinal rankings are suboptimal in the presence of
idiosyncratic risks. But even if outputs are interdependent, rank-order
tournaments are informationally wasteful and perform worse than in-
centive schemes based on cardinal measures since ordinal rankings are
typically not a sufficient statistic.

3. In some situations, the principal may want to base wages on peer per-
formance even if output is independently distributed. For instance, if
actions are complementary, i.e. if a higher action by one agent im-
proves the marginal productivity of his co-workers, rewarding agents
on the basis of group performance fosters teamwork and can be overall
beneficial (Itoh (1991)).

The second example illustrates that it can be sometimes sufficient to
relate individual output to some aggregate measure of team performance.
Consider the following simple technology:

xi = ai + η + ²i, (4.64)
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where η is a common uncertainty parameter and the ²i’s are idiosyncratic
shocks. In addition, assume that η, ²1, ..., ²n are all independent and normally
distributed. Define τi = 1

Var(²i)
as the precision of ²i and let x =

P
i αixi be a

weighted average of the agent’s outcomes with weights defined as αi = τiP
i τi
.

Corollary 5 Given the technology xi = ai+ η+ ²i, the optimal sharing rule
for agent i is of the form s∗i (xi, x) .

For a proof, see Holmström (1982), theorem 8. As in corollary 4, the proof
shows that the density π (x, a) is multiplicatively separable into functions
that allow the interpretation that for all i, Ti (x) = (xi, x) is a sufficient
statistic for x with respect to ai.

Remarks

1. Note that corollary 5 does not claim that the optimal sharing rule
should depend on xi − x (for instance, by paying agent i less if xi falls
short of x and more if it exceeds x). Also, the fact that x captures
all the relevant information about the common uncertainty η is a pure
artefact of the normal distribution.

2. If a particular noise term ²j has low variance (i.e. high precision), then
xj is a fairly good predictor of the common parameter η (recall that the
ai’s are known in equilibrium) and receives more weight in the average
x. Thus, by including x in the optimal sharing rule, the principal ”filters
out” as much as possible of the systematic risk η, which in turn reduces
the risk premia she must pay to the agents. Using the strong law of
large numbers, Holmström also shows that as n → ∞, the parameter
η can be determined with arbitrary precision.

Multiple Agents II: Team Incentives

In the previous section, our starting point was a setting with n agents and
one principal. In many multi-agent situations, however, a principal does not
exist. A group of agents is called a team or partnership if the joint output x
is fully distributed among the agents themselves. That is, a team is defined
by the budget-balancing conditionX

i
si (x) = x (4.65)

for all x ∈ X. We will now investigate a simple model of team production in
which the efficient outcome x∗FB cannot be attained. Subsequently, we show
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that by relaxing the budget-balancing condition and introducing a residual
claimant (the principal), the first-best can be restored. Hence, we provide a
rationale for the existence of a principal in a multi-agent framework. Consider
the following model:

1. There are n risk neutral agents with preferences over wealth and actions
defined by Ui (wi, ai) = wi − ci (ai), where c0i (·) > 0, c00i (·) > 0, ci (0) =
0, and lim

ai→0+
c0i (ai) = 0.

2. Each agent takes an unobservable action ai ≥ 0 which affects a deter-
ministic monetary outcome x (a), where a = (a1, ..., an). The function
x (·) is strictly increasing, concave, and differentiable with x (0) = 0.

If a is observable and verifiable, the first-best problem is

max
a
x (a)−

X
i
c (ai) (4.66)

with first order condition

∂x (a∗FB)
∂ai

= c0 (a∗iFB) (4.67)

for all i = 1, ..., n. Thus, the first-best equates marginal productivity and
marginal cost for each agent. Note that the first-best problem is strictly
concave and has a unique interior solution a∗iFB > 0 for all i.
When a is unobservable, the fact that x cannot be split up into individual

contributions creates a free-rider problem: For each additional unit of ai,
agent i bears the full cost but must share part of the marginal output with
his co-workers. This suggests that in the presence of externalities, the second-
best solution entails an underprovision of effort.

Theorem 8 There exists no profile of differentiable sharing rules that is
budget-balanced and yields a∗FB as a Nash equilibrium.

Proof (by contradiction) Suppose such a profile exists. Since a∗FB is a
Nash equilibrium, a∗iFB satisfies

a∗iFB ∈argmax
ai

si
¡
x
¡
ai, a

∗
−iFB

¢¢− ci (ai) (4.68)

for all i. Moreover, since a∗iFB > 0 and si (·) is differentiable, a∗iFB also
satisfies the first-order necessary condition

s0i (x (a
∗
FB))

∂x (a∗FB)
∂ai

= ci (a
∗
iFB) . (4.69)
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This is consistent with (4.67) if and only if

s0i (x (a
∗
FB)) = 1 (4.70)

for all i. But budget-balancing implies
P

i s
0
i (x) ≡ 1, a contradiction.

Remarks

1. If the differentiability assumption is dropped, theorem 8 continues to
hold, albeit the proof becomes more complicated. See Holmström
(1982), theorem 1.

2. Under risk aversion, theorem 8 breaks down. As is shown by Rasmusen
(1987), a ”scapegoat” contract in which a randomly selected agent is
punished if x < x∗FB, and a ”massacre” contract in which all but a
randomly selected agent are punished if x < x∗FB both implement a

∗
FB

and are budget-balancing (in either case, the penalty is distributed to
the remaining agent(s)). This is at odds with our results from the
single-agent model where the first-best is implementable if the agent is
risk neutral but not if he is risk averse.

3. Theorem 8 also breaks down if the action space Λ is finite and if a 6= â
implies x (a) 6= x (â) (Legros and Matthews (1993)). This case is trivial
as it implies that actions are not perfect substitutes. For example, if
there are three agents, x (3, 1, 1) 6= x (1, 1, 3). Thus, shirkers can be
unambiguously identified and a heavy penalty levied upon a shirker
restores the first-best. However, Legros and Matthews also show that
in some less trivial cases, the first-best can be approximated arbitrarily
closely if unbounded penalties are feasible.

Let us now replace budget-balancing with the feasibility conditionX
i
si (x) ≤ x (4.71)

and introduce a principal who receives the surplus x −Pi si (x) (note that
the principal does not engage in any productive activity). Unlike in the pure
partnership model, a∗FB can now be sustained as a Nash equilibrium.

Theorem 9 There exist profiles of sharing rules that are feasible and yield
a∗FB as a Nash equilibrium.

Proof (direct) Consider the following family of profiles indexed by the
vector (s1, ..., sn) :

si (x) =

½
si if x ≥ x (a∗FB)
0 otherwise,

(4.72)
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where
P

i si = x (a
∗
FB) and si > ci (a

∗
iFB) > 0 for all i = 1, ..., n (note that

such si’s exist since
P

i si = x (a
∗
FB) >

P
i ci (a

∗
iFB)).

Consider agent i and take the actions of the remaining agents a∗−iFB as
given. If agent i selects ai < a∗iFB, his utility is −ci (ai) ≤ 0, if he selects
ai = a∗iFB, his utility is si − ci (a∗iFB) > 0, and if he selects ai > a∗iFB, his
utility is si − ci (ai), which is less than under ai = a∗iFB. Repeating the
argument for all i proves that a∗FB is a Nash equilibrium.

Remarks

1. Note that the equilibrium a∗FB is not unique. Clearly, the profile a =
(0, ..., 0) is another Nash equilibrium under the sharing rule (4.72).

2. Under uncertainty (i.e. if x is generated by a probability distribution
π (x, a)), the first-best solution can be attained by ”selling the firm” to
each (!) agent, i.e. si (x) = x−K, where the constant K ensures that
budget-balancing is satisfied (in expectations) on the equilibrium path.

3. What is the role of the principal? If the agents can commit to the
sharing rules (4.72), the principal is not needed. Here, commitment
means that off the equilibrium path, any output that is not distributed
(i.e. x < x (a∗FB)) must be destroyed. Clearly, this is a very strong
assumption. However, if we allow for renegotiation, the scheme (4.72)
is no longer credible. Once an agent deviates and chooses ai < a∗iFB,
it is strictly Pareto-improving to distribute x among the agents. This
argument can be stated more formally: From earlier discussions of
renegotiation, we know that the optimal renegotiation-proof contract
can be found using backwards induction. That is, for any x, we must
first ascertain the set of contracts that are ex-post efficient. But ex-
post efficiency implies

P
i si (x) = x, which in turn implies that a∗FB

cannot be sustained as a Nash equilibrium. These considerations are no
longer true once we introduce a principal. Since the principal receives
the remaining output x −Pi si (x) , any distribution of x is ex-post
efficient. In particular, the sharing rule (4.72) is now renegotiation-
proof and a∗FB can be supported as a Nash equilibrium. Hence, the sole
role of the principal is to break the budget, i.e. to make

P
i si (x) ≤ x

credible in the presence of renegotiation.

4. In a seminal paper, Alchian and Demsetz (1972) suggest that the free-
rider problem can be alleviated by hiring a principal to monitor the
agents’ actions. But this creates a new problem: Who monitors the
monitor? Alchian and Demsetz’s solution is to align the principal’s
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interests with that of the firm by making her the residual claimant
to the firm’s net earnings. Hence, the partnership is transformed into
a capitalistic firm with the monitor acting effectively as the owner.
What makes this story unappealing is that in large corporations, the
owners are typically widely dispersed shareholders who delegate the
monitoring to the board of directors. In this regard, the present story
of the principal as a budget breaker is more appealing as it allows for
the separation of ownership and control.


