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Abstract  Sequential pattern mining is an important data mining technique which discovers closed frequent sub 
sequence from a sequence database. Sequential pattern mining was used in a great spectrum of areas. Some of the 
applications of sequential pattern mining are namely bio-informatics, web access traces, system utilization logs etc. 
The data is naturally in the form of sequences. However it is very difficult as it generates explosive number of sub 
sequence in candidate generator and test approach. Previous sequential pattern mining algorithm like Clospan, 
Sequence generator, closed sequence-sequence generator mining (CSGM). In sequential pattern mining and web log 
mining a traditional algorithm Apriori is always reminded but due to some performance issues they were replaced 
with other algorithms and techniques. Many different techniques for mining frequent sequential patterns from the log 
data have been proposed in the recent past but still mining data from weblog files an effective and efficient algorithm 
is required that works with high performance. Moreover; it is required to authenticate the algorithm for that purposes 
we have used a traditional algorithm for mining sequential pattern from web log data. Thus the aim of the present 
work is to bridge these gaps by developing and proposing a new algorithm “Sequential ID3” for sequential pattern 
mining and their experimental validation on web log data. 
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1. Introduction 
Sequential pattern is a sequence of item sets that 

frequently occurred in a specific order, all items in the 
same item sets are supposed to have the same transaction 
time value or within a time gap. Sequence data can be 
found at every place. For example, if a customer buys a 
car, he/she will eventually buy car insurance. This is 
potentially useful in designing personalized marketing 
strategy. Sequential pattern mining is used in a great 
spectrum of areas. In computational biology, sequential 
pattern mining is used to analyze the mutation patterns of 
different amino acids. Business organizations use 
sequential pattern mining to study customer behaviors. 
Sequential pattern mining is also used in system 
performance analysis and telecommunication network 
analysis. Sequential pattern mining involves discovering 
frequent sequences from a database where data to be 
mined is in some sequential order. The goal of sequential 
pattern mining is to discover all frequent sequences of 
item sets in a dataset. Sequential pattern mining identifies 
sequential patterns appearing with enough support. It has 
potential application in many areas such as analysis of 
market data, purchase histories, web logs, etc. Sequential 
rules express temporal relationships among patterns. It can 
be considered as a natural extension to many spurious 
patterns by introducing the notion of confidence to the set 

of patterns. Only rules satisfying both support and 
confidence thresholds are mined. Sequential rules extend 
the usability of patterns beyond the understanding of 
sequential data. Usually all the transactions of a customer 
are together viewed as a sequence, usually called 
customer-sequence, where each transaction is represented 
as an item sets in that sequence, all the transactions are list 
in a certain order with regard to the transaction-time. 
Contain, a sequence <a1, a2,…..,an> is contained in another 
sequence <b1, b2,….,bm>, if i1< i2< ….. < in such that a1⊆ 
bi1,a2⊆ bi2,….., an⊆ bin. For example, the sequence <(3)(6, 
7, 9)(7, 9)> is contained in <(2)(3)(6,7, 8, 9)(7)(7, 9)>, 
since (3)⊆(3),(6,7,9)⊆(6,7,8,9), (7,9)⊆(7,9). However, 
sequence < (2) (3)> is not contained in sequence <(2,3)> 
since the former sequence means 3 is bought after 2 being 
bought, while the latter represents item 2 and 3 being 
bought together. A sequence is maximal if it is not 
contained in any other sequences. 

Sequential pattern mining was first introduced by 
Agarwal et al. [1]. It is the process of extracting certain 
sequential patterns whose support exceeds a predefined 
minimal support threshold. Since the number of sequences 
can be very large, and users have different interests and 
requirements, to get the most interesting sequential 
patterns usually a minimum support is predefined by the 
users. By using the minimum support we can prune out 
those sequential patterns of no interest, consequently 
making the mining process more efficient. Obviously a 
higher support of a sequential pattern is desired for more 
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useful and interesting sequential patterns. However some 
sequential patterns that do not satisfy the support 
threshold are still interesting. Gaulet al. [2] introduced 
another metric called surprise to measure the 
interestingness of sequences. A sequence s is a surprising 
pattern if its occurrence differs greatly from the expected 
occurrence, when all items are treated equally. In the 
surprise metric the information gain was proposed to 
measure the overall degree of surprise, as detailed by [14]. 
Most of the basic and earlier algorithms for sequential 
pattern mining are based on the Apriori property proposed 
by Agarwal et al. [1]. The property states that any sub-
pattern of a frequent pattern must be frequent. Based on 
this heuristic, a series of Apriori-like algorithms have been 
proposed: AprioriAll, AprioriSome, DynamicSome, GSP 
and SPADE Srikant et al. [3]. Yanet al. [4] a closed 
sequential pattern is a sequential pattern included in no 
other sequential pattern having exactly the same support. 
The first algorithm designed to extract closed sequential 
patterns is CloSpan with a detection of non-closed 
sequential patterns avoiding a large number of recursive 
calls.CloSpan is based on the detection of frequent 
sequences of length 2 such that “A always occurs Before 
after B”. First, it adopts a novel sequence extension, called 
Bi-Directional Extension, which is used both to grow the 
prefix pattern and to check the closure property. Second, 
in order to prune the search space more deeply than 
previous approaches, it proposes a BackScan pruning 
method.Haoet al. [5] had worked on developing CSGM 
algorithmand uses a similar prefix-search-lattice data 
structure and the “projecteddatabase” concept as for 
CloSpan. The CSGM algorithm first scans the sequential 
database once, and finds all frequent length-1 sequences. 
These length-1 sequences are those patterns containing 
only one item. Since the generators of length-1 sequences 
are themselves, we put these sequences and a set of their 
corresponding generators together as sequence-generator 
pairs, and we also find the corresponding project 
databases for these sequences. 

From the broad literature it was observed that the 
previous sequential pattern mining algorithm like Clospan, 
Sequence generator, closed sequence-sequence generator 
mining (CSGM). In sequential pattern mining and web log 
mining a traditional algorithm. Apriori is always reminded 
but due to some performance issues they were replaced 
with other algorithms and techniques. Many different 
techniques for mining frequent sequential patterns from 
the log data have been proposed in the recent past but still 
mining data from weblog files an effective and efficient 
algorithm is required that works with high performance. 
Moreover; it is required to authenticate the algorithm for 
that purposes we use a traditional algorithm for mining 
sequential pattern from web log data. Thus the aim of the 
present work is to bridge these gaps by developing and 
proposing a new algorithm “Sequential ID3” for sequential 
pattern mining and their experimental validation on web 
log data. 

2. Methodology of Proposed Algorithm 
Our project is designed with the main aim to mine log 

files and extract knowledge from the experimental web 
log and after training rules are generated these rules are 

helpful to find out different information related to log file. 
For that purpose we propose architecture to generate the 
rules from the experimental data set. This is done in these 
phases 

1. Data selection  
2. Data processing using selected model 
3. Model building and model evaluation  
4. Performance study 

 

Figure 1. Basic structure of our proposed model 

1. Experimental data selection: In this phase required to 
input log files in to the system for analysis the input 
log files are in w3c format 

2. Data processing: In this phase system clean the data 
and separate them and arrange them. 

3. Model building and evaluation: In this phase of 
system processing using the supplied data is 
converted in to data model using the selection of 
algorithm in other words selected data model is used 
to prepare a navigational model for queries of user. 

4. Performance study: In this phase we calculate the 
performance parameters for results analysis. 

Required Software and Hardware Specification 
Tools-User Interface Design (UI Design) -Net Beans IDE 
6.7.1 
Technology/Framework-Framework-JDK 1.6 
Hardware Specifications- 3 GB storage disk, 512 MB 
RAM (Min), Intel P4 Processor or higher 
Software Specifications- Windows XP or higher 

3. System Architecture 
Figure 2 shows the system architecture of desired system. 

In this diagram we show the different sub systems of the 
complete system. These sub systems are work together and 
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form the complete system. To describe complete systems working we describe each stage of processing one by one. 

 

Figure 2. System architecture 

3.1. Proposed Algorithm for Model Building 
1. Import web log fie 
2. Filter data in row column format 
3. Find user sessions  
4. User sessions defined as a class 
5. Get all unique attribute values 
6. Calculate the threshold according to class values 

using formula 

 n no class in dataset.=  
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7. Calculate info gain for all attributes using formula 

 n = no of attribute in a column.  

Gain(S, A) is information gain of example set S on attribute 
A is defined as Gain(S, A) = Entropy(S) – Σ ((|Sv| / |S|) * 
Entropy (Sv)) 
Where: 
Σ is each value v of all possible values of attribute A 
Sv = subset of S for which attribute A has value v 
|Sv| = number of elements in Sv 
|S| = number of elements in S 

8. Sort all attribute value accordingly to best attribute 
values. 

9. Create Sub, Sets of all sorted data set. 
10. Repeat till all attribute get a unique value. 

Example 

Table 1. Input data set 
S.No IP address Method URL Agent 
1 151.48.123.70 GET http://www.smsync.com Mozilla/4.0  
2 151.48.123.70 GET http://www.smsync.com Mozilla/4.0  
3 200.88.101.168 HEAD http://www.123loganalyzer.com Mozilla/5.0  
4 200.88.101.168 GET http://www.smsync.com Mozilla/5.0  
5 86.132.136.211 GET http://www.123loganalyzer.com Mozilla/4.0  
6 151.48.123.70 HEAD http://www.google.com/source Mozilla/4.0  
Unique values of IP address is =3 
Unique values of Method is =2 
Unique values of URL is =3 
Unique values of IP address is =3 
Unique values of Agent =2 
If there is assume target value is agent. 
Entropy of Input data set is 

S = - (4/6) log2 (4/6)-(2/6) log2 (2/6)=0.39+.52=0.91 
Notice entropy is 0 if all members of S belong to the same 
class (the data is perfectly classified). The range of 
entropy is 0 ("perfectly classified") to 1 ("totally random"). 

Suppose S is a set of 6 examples in which one of the 
attributes is Method. The values of Method can be GET 
and HEAD. The classifications of these 6 examples are 4 
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Mozilla/4.0 and 2 Mozilla/5.0. For attribute GET, suppose 
there are 4 occurrences of Method = GET and 2 occurrences 
of Method = Head. For Method = GET, 3 of the examples 
are Mozilla/4.0 and 1 are Mozilla/5.0. For Method = Head, 
1 are Mozilla/4.0 and 1 are Mozilla/5.0.  
Therefore 
Gain(S,Method) = entropy(s) – 4/6*EntropyGet -
2/6*EntropyMethod 
EntropyGet = - (3/4) log2 (3/4)-(1/4) log2(1/4)=0.311+0.5 
=0.811 
EntropyHead=-(1/2)log2(1/2)-(1/2)log2(1/2)=0.15+0.15=0.3 
Gain(s,Method)= 0.91-0.540-0.1 =0.27 
For each attribute, the gain is calculated and the highest 
gain is used in the decision node. 
Output: 
Relation Name: Server Log File 
Number of Instances: 24 
Attributes:  
Method 
Requested_Value 
Requested_Value = /images/download.gif 
| Method = GET: http://www.123loganalyzer.com/ 
| Method = HEAD: http://www.123loganalyzer.com/ 
| Method = POST: null 
Requested_Value = /images/samle.gif 
| Method = GET: http://www.123loganalyzer.com/ 

| Method = HEAD: http://www.123loganalyzer.com/ 
| Method = POST: null 

Requested_Value = /images/contact.gif 
| Method = GET: http://www.123loganalyzer.com/ 
| Method = HEAD: null 
| Method = POST: http://www.123loganalyzer.com/ 

4. Results and Discussion 
To study the significance of the developed algorithm 

accuracy based testing is performed, for proving the 
utilization of new developed and improved sequential ID3 
algorithm the results of the implementations were 
compared with the CSSGM algorithm. 

Accuracy of the system is defined by the actually 
predicted values verses wrong values predicted. The 
accuracy of system is calculated using the cross validation 
in this method we calculate the values using given formula 

 100totalvalues wrongvaluesAccuracy X
totalvalues

−
=  

Accuracy of the system is derived using above formula, 
Table 2 demonstrates the results obtained by the system in 
six experiments conducted using the same parameters on 
CSSGM and developed Sequential ID3 algorithm. 

Table 2. Comparative study of Accuracy of both CSSGM and Sequential ID3 
Exp. no CSSGM Sequential ID3 No. of attributes 

1 83.42 (support=2) 87.85%(No.of fold=2) 4 
2 83.45%(support=3) 98.77%(No.of fold=3) 4 
3 71.24%(support=4) 86.81%(No.of fold=4) 4 
4 71.26%(support=5) 99.25%(No.of fold=5) 4 
5 71.26%(support=5) 99.91%(No.of fold=5) 4 
6 71.26%(support=6) 95.93%(No.of fold=6) 4 

Figure 3 depicts the accuracy of the system using 
CSSGM and Sequential ID3 algorithm, and it can be seen 

from the figure that when as we minimize the support and 
increase the parameters accuracy of system decreases. 
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Figure 3. Graphical representation of Accuracy 

Moreover it proposed method include all parameters 
and thus simulate better results for the evaluation of such 
kind of data. 

Execution Time: To find the execution time we 
calculate the time required to build model results evaluation 
time included and we found that below given results. 
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Table 3.  
Exp. no CSSGM Sequential ID3 No. of attribute 

1 0.77 (support=2) 0.521 (No. of fold=2) 4 
2 1.53 (support=3) 1.063 (No. of fold=3) 4 
3 1.36 (support=4) 0.575 (No. of fold=4) 4 
4 1.03 (support=5) 1.113 (No. of fold=5) 4 
5 2.17 (support=5) 1.94 (No. of fold=5) 4 
6 2.17(support=6) 0.873(No. of fold=6) 4 

From Figure 4 its can be seen that execution time 
simulated by sequential ID3 algorithm is better than 
CSSGM. Because the CSSGM time consumption graph is 

more uneven than proposed algorithm. And it is also 
considered that most of the time our model is much 
efficient then CSSGM. 
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Figure 4. Graphical representation of Execution time 

Memory uses: In any software system the major 
concern for developer is to reduce the use of the memory, 
thus main memory testing is performed to find the 

memory used by the sequential ID3 algorithm in 
comparison to the present CSSGM algorithm. The results 
simulate the memory used in terms of MB. 

Table 4. Comparison of Memory Consumption of both CSSGM and Sequential ID3 
Exp. no CSSGM Sequential ID3 No. of attribute 

1 20.051(support=2) 81.49(No. of fold=2) 4 
2 85.74(support=3) 104.79(No. of fold=3) 4 
3 55.41(support=4) 51.49(No. of fold=4) 4 
4 16.82(support=5) 47.18(No. of fold=5) 4 
5 98.52(support=5) 57.50(No. of fold=5) 4 
6 78.60(support=6) 119.64(No. of fold=6) 4 
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Figure 5. Graphical representation of Memory Consumption 
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Figure 5 depicts the memory consumptions using above 
results we can clearly see that CSGM algorithm consumes 
less memory then our proposed algorithm. 

5. Conclusion 
The aim of the present research work is to develop an 

algorithm to overcome the limitation of the old CSSGM 
algorithm and the results obtained in terms of accuracy, 
time consumption, and memory use clearly support that 
the new developed sequential ID# algorithm has the 
potential as an alternate algorithm. The obtained results 
can summaries as follows: 

1. Accuracy of proposed algorithm 75%-85% is better 
than CSGM algorithm. 

2. Memory uses of proposed algorithm found higher 
than Apriori. 

3. Time required to execute model is 85%-95% less 
than CSGM algorithm 

4. Proposed algorithm is good algorithm but when 
where required less resource it is fail to work with 
low configuration system. 

5. Memory Uses of proposed algorithm is 80%-85% is 
higher than CSGM. 

6. Thus the new developed algorithm sequential ID3 is 
useful and far better than the existing algorithms in 
terms of time consumption and accuracy but it lacks 
in memory consumption only. 

References 
[1] Agarwal, R., and Srikant, R. Mining sequential patterns. 

Proceedings of the Eleventh International Conference on Data 
Engineering, 1995. 

[2] Gaul, W., and Schmidt-Thieme, L. Mining Generalized 
Association Rules for Sequential and Path Data. Proceedings of 
the 2001 IEEE International Conference on Data Mining, 2001. 

[3] Srikant, R., and Agarwal, R. Mining Sequential Patterns: 
Generalizations and Performance Improvements. Proceedings of 
the 5th International Conference on Extending Database 
Technology: Advances in Database Technology, 1996. 

[4] Yan, X., Han, J., and Afshar, R. CloSpanMining Closed 
Sequential Patterns in Large Datasets. Proceedings of the SIAM 
International Conference on Data Mining (SDM'03)2003. 

[5] Hao zang, and yue xu. Non redundant Sequential association rule 
mining and application in recommender System.IEEE/WIC/ACM 
International Conference on Web Intelligence and Intelligent 
Agent Technology, 2010. 

[6] Xu, Y., & Li, Y. Concise representations for approximate 
association rules. Proceedings of the IEEE International 
Conference on Systems, Man and Cybernetics, SMC, 2008. 

[7] Li, J., Li, H., Wong, L., Pei, J., & Dong, G. Minimum description 
length principle: generators are preferable to closed patterns. 
Proceedings of the21st National Conference on Artificial 
Intelligence, 2006. 

[8] Desikan, P., Pathak, N., Srivastava, J., and Kumar, V. Incremental 
page rank computation on evolving graphs. Paper presented at the 
Special interest tracks and posters of the 14th International 
Conference on World Wide Web, 2005. 

[9] Cooley, R. Web Mining: Information and Pattern Discovery on the 
World Wide Web. Proceedings of the 9th International Conference 
on Tools with Artificial Intelligence.1997. 

 


