
American Journal of Software Engineering, 2014, Vol. 2, No. 2, 16-21
Available online at http://pubs.sciepub.com/ajse/2/2/1
© Science and Education Publishing
DOI:10.12691/ajse-2-2-1

Development of Sequential ID3: “An advance Sequential
mining Algorithm”

Swati Singh Lodhi*

Sanghvi Innovative Academy, Indore (MP) India
*Corresponding author: swati.singh0710@gmail.com

Received July 10, 2014; Revised July 17, 2014; Accepted July 21, 2014

Abstract Sequential pattern mining is an important data mining technique which discovers closed frequent sub
sequence from a sequence database. Sequential pattern mining was used in a great spectrum of areas. Some of the
applications of sequential pattern mining are namely bio-informatics, web access traces, system utilization logs etc.
The data is naturally in the form of sequences. However it is very difficult as it generates explosive number of sub
sequence in candidate generator and test approach. Previous sequential pattern mining algorithm like Clospan,
Sequence generator, closed sequence-sequence generator mining (CSGM). In sequential pattern mining and web log
mining a traditional algorithm Apriori is always reminded but due to some performance issues they were replaced
with other algorithms and techniques. Many different techniques for mining frequent sequential patterns from the log
data have been proposed in the recent past but still mining data from weblog files an effective and efficient algorithm
is required that works with high performance. Moreover; it is required to authenticate the algorithm for that purposes
we have used a traditional algorithm for mining sequential pattern from web log data. Thus the aim of the present
work is to bridge these gaps by developing and proposing a new algorithm “Sequential ID3” for sequential pattern
mining and their experimental validation on web log data.

Keywords: Sequential ID3, web log data, CSSGM, algorithm

Cite This Article: Swati Singh Lodhi, “Development of Sequential ID3: “An advance Sequential mining
Algorithm”.” American Journal of Software Engineering, vol. 2, no. 2 (2014): 16-21. doi: 10.12691/ajse-2-2-1.

1. Introduction
Sequential pattern is a sequence of item sets that

frequently occurred in a specific order, all items in the
same item sets are supposed to have the same transaction
time value or within a time gap. Sequence data can be
found at every place. For example, if a customer buys a
car, he/she will eventually buy car insurance. This is
potentially useful in designing personalized marketing
strategy. Sequential pattern mining is used in a great
spectrum of areas. In computational biology, sequential
pattern mining is used to analyze the mutation patterns of
different amino acids. Business organizations use
sequential pattern mining to study customer behaviors.
Sequential pattern mining is also used in system
performance analysis and telecommunication network
analysis. Sequential pattern mining involves discovering
frequent sequences from a database where data to be
mined is in some sequential order. The goal of sequential
pattern mining is to discover all frequent sequences of
item sets in a dataset. Sequential pattern mining identifies
sequential patterns appearing with enough support. It has
potential application in many areas such as analysis of
market data, purchase histories, web logs, etc. Sequential
rules express temporal relationships among patterns. It can
be considered as a natural extension to many spurious
patterns by introducing the notion of confidence to the set

of patterns. Only rules satisfying both support and
confidence thresholds are mined. Sequential rules extend
the usability of patterns beyond the understanding of
sequential data. Usually all the transactions of a customer
are together viewed as a sequence, usually called
customer-sequence, where each transaction is represented
as an item sets in that sequence, all the transactions are list
in a certain order with regard to the transaction-time.
Contain, a sequence <a1, a2,…..,an> is contained in another
sequence <b1, b2,….,bm>, if i1< i2< ….. < in such that a1⊆
bi1,a2⊆ bi2,….., an⊆ bin. For example, the sequence <(3)(6,
7, 9)(7, 9)> is contained in <(2)(3)(6,7, 8, 9)(7)(7, 9)>,
since (3)⊆(3),(6,7,9)⊆(6,7,8,9), (7,9)⊆(7,9). However,
sequence < (2) (3)> is not contained in sequence <(2,3)>
since the former sequence means 3 is bought after 2 being
bought, while the latter represents item 2 and 3 being
bought together. A sequence is maximal if it is not
contained in any other sequences.

Sequential pattern mining was first introduced by
Agarwal et al. [1]. It is the process of extracting certain
sequential patterns whose support exceeds a predefined
minimal support threshold. Since the number of sequences
can be very large, and users have different interests and
requirements, to get the most interesting sequential
patterns usually a minimum support is predefined by the
users. By using the minimum support we can prune out
those sequential patterns of no interest, consequently
making the mining process more efficient. Obviously a
higher support of a sequential pattern is desired for more

17 American Journal of Software Engineering

useful and interesting sequential patterns. However some
sequential patterns that do not satisfy the support
threshold are still interesting. Gaulet al. [2] introduced
another metric called surprise to measure the
interestingness of sequences. A sequence s is a surprising
pattern if its occurrence differs greatly from the expected
occurrence, when all items are treated equally. In the
surprise metric the information gain was proposed to
measure the overall degree of surprise, as detailed by [14].
Most of the basic and earlier algorithms for sequential
pattern mining are based on the Apriori property proposed
by Agarwal et al. [1]. The property states that any sub-
pattern of a frequent pattern must be frequent. Based on
this heuristic, a series of Apriori-like algorithms have been
proposed: AprioriAll, AprioriSome, DynamicSome, GSP
and SPADE Srikant et al. [3]. Yanet al. [4] a closed
sequential pattern is a sequential pattern included in no
other sequential pattern having exactly the same support.
The first algorithm designed to extract closed sequential
patterns is CloSpan with a detection of non-closed
sequential patterns avoiding a large number of recursive
calls.CloSpan is based on the detection of frequent
sequences of length 2 such that “A always occurs Before
after B”. First, it adopts a novel sequence extension, called
Bi-Directional Extension, which is used both to grow the
prefix pattern and to check the closure property. Second,
in order to prune the search space more deeply than
previous approaches, it proposes a BackScan pruning
method.Haoet al. [5] had worked on developing CSGM
algorithmand uses a similar prefix-search-lattice data
structure and the “projecteddatabase” concept as for
CloSpan. The CSGM algorithm first scans the sequential
database once, and finds all frequent length-1 sequences.
These length-1 sequences are those patterns containing
only one item. Since the generators of length-1 sequences
are themselves, we put these sequences and a set of their
corresponding generators together as sequence-generator
pairs, and we also find the corresponding project
databases for these sequences.

From the broad literature it was observed that the
previous sequential pattern mining algorithm like Clospan,
Sequence generator, closed sequence-sequence generator
mining (CSGM). In sequential pattern mining and web log
mining a traditional algorithm. Apriori is always reminded
but due to some performance issues they were replaced
with other algorithms and techniques. Many different
techniques for mining frequent sequential patterns from
the log data have been proposed in the recent past but still
mining data from weblog files an effective and efficient
algorithm is required that works with high performance.
Moreover; it is required to authenticate the algorithm for
that purposes we use a traditional algorithm for mining
sequential pattern from web log data. Thus the aim of the
present work is to bridge these gaps by developing and
proposing a new algorithm “Sequential ID3” for sequential
pattern mining and their experimental validation on web
log data.

2. Methodology of Proposed Algorithm
Our project is designed with the main aim to mine log

files and extract knowledge from the experimental web
log and after training rules are generated these rules are

helpful to find out different information related to log file.
For that purpose we propose architecture to generate the
rules from the experimental data set. This is done in these
phases

1. Data selection
2. Data processing using selected model
3. Model building and model evaluation
4. Performance study

Figure 1. Basic structure of our proposed model

1. Experimental data selection: In this phase required to
input log files in to the system for analysis the input
log files are in w3c format

2. Data processing: In this phase system clean the data
and separate them and arrange them.

3. Model building and evaluation: In this phase of
system processing using the supplied data is
converted in to data model using the selection of
algorithm in other words selected data model is used
to prepare a navigational model for queries of user.

4. Performance study: In this phase we calculate the
performance parameters for results analysis.

Required Software and Hardware Specification
Tools-User Interface Design (UI Design) -Net Beans IDE
6.7.1
Technology/Framework-Framework-JDK 1.6
Hardware Specifications- 3 GB storage disk, 512 MB
RAM (Min), Intel P4 Processor or higher
Software Specifications- Windows XP or higher

3. System Architecture
Figure 2 shows the system architecture of desired system.

In this diagram we show the different sub systems of the
complete system. These sub systems are work together and

 American Journal of Software Engineering 18

form the complete system. To describe complete systems working we describe each stage of processing one by one.

Figure 2. System architecture

3.1. Proposed Algorithm for Model Building
1. Import web log fie
2. Filter data in row column format
3. Find user sessions
4. User sessions defined as a class
5. Get all unique attribute values
6. Calculate the threshold according to class values

using formula

 n no class in dataset.=

() ()

() ()

class a class a
Entropy log

no. of row no. of row
class b class b

log
no. of row no. of row

n

n

= −

−

7. Calculate info gain for all attributes using formula

 n = no of attribute in a column.

Gain(S, A) is information gain of example set S on attribute
A is defined as Gain(S, A) = Entropy(S) – Σ ((|Sv| / |S|) *
Entropy (Sv))
Where:
Σ is each value v of all possible values of attribute A
Sv = subset of S for which attribute A has value v
|Sv| = number of elements in Sv
|S| = number of elements in S

8. Sort all attribute value accordingly to best attribute
values.

9. Create Sub, Sets of all sorted data set.
10. Repeat till all attribute get a unique value.

Example

Table 1. Input data set
S.No IP address Method URL Agent
1 151.48.123.70 GET http://www.smsync.com Mozilla/4.0
2 151.48.123.70 GET http://www.smsync.com Mozilla/4.0
3 200.88.101.168 HEAD http://www.123loganalyzer.com Mozilla/5.0
4 200.88.101.168 GET http://www.smsync.com Mozilla/5.0
5 86.132.136.211 GET http://www.123loganalyzer.com Mozilla/4.0
6 151.48.123.70 HEAD http://www.google.com/source Mozilla/4.0
Unique values of IP address is =3
Unique values of Method is =2
Unique values of URL is =3
Unique values of IP address is =3
Unique values of Agent =2
If there is assume target value is agent.
Entropy of Input data set is

S = - (4/6) log2 (4/6)-(2/6) log2 (2/6)=0.39+.52=0.91
Notice entropy is 0 if all members of S belong to the same
class (the data is perfectly classified). The range of
entropy is 0 ("perfectly classified") to 1 ("totally random").

Suppose S is a set of 6 examples in which one of the
attributes is Method. The values of Method can be GET
and HEAD. The classifications of these 6 examples are 4

19 American Journal of Software Engineering

Mozilla/4.0 and 2 Mozilla/5.0. For attribute GET, suppose
there are 4 occurrences of Method = GET and 2 occurrences
of Method = Head. For Method = GET, 3 of the examples
are Mozilla/4.0 and 1 are Mozilla/5.0. For Method = Head,
1 are Mozilla/4.0 and 1 are Mozilla/5.0.
Therefore
Gain(S,Method) = entropy(s) – 4/6*EntropyGet -
2/6*EntropyMethod
EntropyGet = - (3/4) log2 (3/4)-(1/4) log2(1/4)=0.311+0.5
=0.811
EntropyHead=-(1/2)log2(1/2)-(1/2)log2(1/2)=0.15+0.15=0.3
Gain(s,Method)= 0.91-0.540-0.1 =0.27
For each attribute, the gain is calculated and the highest
gain is used in the decision node.
Output:
Relation Name: Server Log File
Number of Instances: 24
Attributes:
Method
Requested_Value
Requested_Value = /images/download.gif
| Method = GET: http://www.123loganalyzer.com/
| Method = HEAD: http://www.123loganalyzer.com/
| Method = POST: null
Requested_Value = /images/samle.gif
| Method = GET: http://www.123loganalyzer.com/

| Method = HEAD: http://www.123loganalyzer.com/
| Method = POST: null

Requested_Value = /images/contact.gif
| Method = GET: http://www.123loganalyzer.com/
| Method = HEAD: null
| Method = POST: http://www.123loganalyzer.com/

4. Results and Discussion
To study the significance of the developed algorithm

accuracy based testing is performed, for proving the
utilization of new developed and improved sequential ID3
algorithm the results of the implementations were
compared with the CSSGM algorithm.

Accuracy of the system is defined by the actually
predicted values verses wrong values predicted. The
accuracy of system is calculated using the cross validation
in this method we calculate the values using given formula

 100totalvalues wrongvaluesAccuracy X
totalvalues

−
=

Accuracy of the system is derived using above formula,
Table 2 demonstrates the results obtained by the system in
six experiments conducted using the same parameters on
CSSGM and developed Sequential ID3 algorithm.

Table 2. Comparative study of Accuracy of both CSSGM and Sequential ID3
Exp. no CSSGM Sequential ID3 No. of attributes

1 83.42 (support=2) 87.85%(No.of fold=2) 4
2 83.45%(support=3) 98.77%(No.of fold=3) 4
3 71.24%(support=4) 86.81%(No.of fold=4) 4
4 71.26%(support=5) 99.25%(No.of fold=5) 4
5 71.26%(support=5) 99.91%(No.of fold=5) 4
6 71.26%(support=6) 95.93%(No.of fold=6) 4

Figure 3 depicts the accuracy of the system using
CSSGM and Sequential ID3 algorithm, and it can be seen

from the figure that when as we minimize the support and
increase the parameters accuracy of system decreases.

1 2 3 4 5 6

70

75

80

85

90

95

100

Ac
cu

ra
cy

 P
er

ce
nt

ag
e

(%
)

Experiment number

 CSSGM
 Sequential ID3

Figure 3. Graphical representation of Accuracy

Moreover it proposed method include all parameters
and thus simulate better results for the evaluation of such
kind of data.

Execution Time: To find the execution time we
calculate the time required to build model results evaluation
time included and we found that below given results.

 American Journal of Software Engineering 20

Table 3.
Exp. no CSSGM Sequential ID3 No. of attribute

1 0.77 (support=2) 0.521 (No. of fold=2) 4
2 1.53 (support=3) 1.063 (No. of fold=3) 4
3 1.36 (support=4) 0.575 (No. of fold=4) 4
4 1.03 (support=5) 1.113 (No. of fold=5) 4
5 2.17 (support=5) 1.94 (No. of fold=5) 4
6 2.17(support=6) 0.873(No. of fold=6) 4

From Figure 4 its can be seen that execution time
simulated by sequential ID3 algorithm is better than
CSSGM. Because the CSSGM time consumption graph is

more uneven than proposed algorithm. And it is also
considered that most of the time our model is much
efficient then CSSGM.

1 2 3 4 5 6
0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Ti
m

e
Co

ns
um

tio
n

(m
in

)

Experiment number

 CSSGM
 Sequential ID3

Figure 4. Graphical representation of Execution time

Memory uses: In any software system the major
concern for developer is to reduce the use of the memory,
thus main memory testing is performed to find the

memory used by the sequential ID3 algorithm in
comparison to the present CSSGM algorithm. The results
simulate the memory used in terms of MB.

Table 4. Comparison of Memory Consumption of both CSSGM and Sequential ID3
Exp. no CSSGM Sequential ID3 No. of attribute

1 20.051(support=2) 81.49(No. of fold=2) 4
2 85.74(support=3) 104.79(No. of fold=3) 4
3 55.41(support=4) 51.49(No. of fold=4) 4
4 16.82(support=5) 47.18(No. of fold=5) 4
5 98.52(support=5) 57.50(No. of fold=5) 4
6 78.60(support=6) 119.64(No. of fold=6) 4

1 2 3 4 5 6

20

40

60

80

100

120

140

M
ai

n
M

em
or

y
(M

B)

Experiment number

 CSSGM
 Sequential ID3

Figure 5. Graphical representation of Memory Consumption

21 American Journal of Software Engineering

Figure 5 depicts the memory consumptions using above
results we can clearly see that CSGM algorithm consumes
less memory then our proposed algorithm.

5. Conclusion
The aim of the present research work is to develop an

algorithm to overcome the limitation of the old CSSGM
algorithm and the results obtained in terms of accuracy,
time consumption, and memory use clearly support that
the new developed sequential ID# algorithm has the
potential as an alternate algorithm. The obtained results
can summaries as follows:

1. Accuracy of proposed algorithm 75%-85% is better
than CSGM algorithm.

2. Memory uses of proposed algorithm found higher
than Apriori.

3. Time required to execute model is 85%-95% less
than CSGM algorithm

4. Proposed algorithm is good algorithm but when
where required less resource it is fail to work with
low configuration system.

5. Memory Uses of proposed algorithm is 80%-85% is
higher than CSGM.

6. Thus the new developed algorithm sequential ID3 is
useful and far better than the existing algorithms in
terms of time consumption and accuracy but it lacks
in memory consumption only.

References
[1] Agarwal, R., and Srikant, R. Mining sequential patterns.

Proceedings of the Eleventh International Conference on Data
Engineering, 1995.

[2] Gaul, W., and Schmidt-Thieme, L. Mining Generalized
Association Rules for Sequential and Path Data. Proceedings of
the 2001 IEEE International Conference on Data Mining, 2001.

[3] Srikant, R., and Agarwal, R. Mining Sequential Patterns:
Generalizations and Performance Improvements. Proceedings of
the 5th International Conference on Extending Database
Technology: Advances in Database Technology, 1996.

[4] Yan, X., Han, J., and Afshar, R. CloSpanMining Closed
Sequential Patterns in Large Datasets. Proceedings of the SIAM
International Conference on Data Mining (SDM'03)2003.

[5] Hao zang, and yue xu. Non redundant Sequential association rule
mining and application in recommender System.IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent
Agent Technology, 2010.

[6] Xu, Y., & Li, Y. Concise representations for approximate
association rules. Proceedings of the IEEE International
Conference on Systems, Man and Cybernetics, SMC, 2008.

[7] Li, J., Li, H., Wong, L., Pei, J., & Dong, G. Minimum description
length principle: generators are preferable to closed patterns.
Proceedings of the21st National Conference on Artificial
Intelligence, 2006.

[8] Desikan, P., Pathak, N., Srivastava, J., and Kumar, V. Incremental
page rank computation on evolving graphs. Paper presented at the
Special interest tracks and posters of the 14th International
Conference on World Wide Web, 2005.

[9] Cooley, R. Web Mining: Information and Pattern Discovery on the
World Wide Web. Proceedings of the 9th International Conference
on Tools with Artificial Intelligence.1997.

