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Preface

The objective of this book is to present the basic aspects of the theory of
insurance, concentrating on the part of this theory related to life insurance.
An understanding of the basic principles underlying this part of the subject
will form a solid foundation for further study of the theory in a more general
setting.
This is the fourth of a series of books intended to help individuals to pass
actuarial exams. The topics in this manuscript parallel the topics tested on
Course MLC/3L of the Society of Actuaries exam sequence. The primary
objective of the course is to increase students’ understanding of the topics
covered, and a secondary objective is to prepare students for a career in ac-
tuarial science.
The recommended approach for using this book is to read each section, work
on the embedded examples, and then try the problems. Answer keys are
provided so that you check your numerical answers against the correct ones.
Problems taken from previous SOA/CAS exams will be indicated by the
symbol ‡.
A calculator, such as the one allowed on the Society of Actuaries examina-
tions, will be useful in solving many of the problems here. Familiarity with
this calculator and its capabilities is an essential part of preparation for the
examination.
This work has been supported by a research grant from Arkansas Tech Uni-
versity.
This manuscript can be used for personal use or class use, but not for commer-
cial purposes. If you encounter inconsistencies or errors, I would appreciate
hearing from you: mfinan@atu.edu

Marcel B. Finan
Russellville, Arkansas (July 2011)
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Prerequisite Material

Life contingency models are models that deal with the payments (or
benefits) to a policyholder that are contingent on the continued survival (or
death) of the person. We refer to these payments as contingent payments.
The theory of insurance can be viewed as the theory of contingent payments.
The insurance company makes payments to its insureds contingent upon the
occurrence of some event, such as the death of the insured, an auto accident
by an insured, and so on. The insured makes premium payments to the
insurance company contingent upon being alive, having sufficient funds, and
so on.
Two important ingredients in the study of contingent models:
• The first is to represent the contingencies mathematically and this is done
by using probability theory. Probabilistic considerations will, therefore, play
an important role in the discussion that follows. An overview of probability
theory is presented in Chapter 2 of the book.
• The other central consideration in the theory of insurance is the time value
of money. Both claims and premium payments occur at various, possibly
random, points of time in the future. Since the value of a sum of money
depends on the point in time at which the funds are available, a method of
comparing the value of sums of money which become available at different
points of time is needed. This methodology is provided by the theory of
interest. An overview of the theory of interest is presented in Chapter 1.

13



14 PREREQUISITE MATERIAL



Brief Review of Interest Theory

A typical part of most insurance contracts is that the insured pays the in-
surer a fixed premium on a periodic (usually annual or semi-annual) basis.
Money has time value, that is, $1 in hand today is more valuable than $1
to be received one year. A careful analysis of insurance problems must take
this effect into account. The purpose of this chapter is to examine the basic
aspects of the theory of interest. Readers interested in further and thorough
discussions of the topics can refer to [3].
Compound interest or discount will always be assumed, unless specified oth-
erwise.

1 The Basics of Interest Theory

A dollar received today is worth more than a dollar received tomorrow. This
is because a dollar received today can be invested to earn interest. The
amount of interest earned depends on the rate of return that can be earned
on the investment. The time value of money (abbreviated TVM) quanti-
fies the value of a dollar through time.
Compounding is the term used to define computing a future value. Dis-
counting is the term used to define computing a present value. We use the
Discount Rate or Compound Rate to determine the present value or
future value of a fixed lump sum or a stream of payments.
Under compound interest, the future value of $1 invested today over t periods
is given by the accumulation function

a(t) = (1 + i)t.

Thus, $1 invested today worths 1 + i dollars a period later. We call 1 + i the
accumulation factor.

15



16 BRIEF REVIEW OF INTEREST THEORY

The function A(t) = A(0)a(t) which represents the accumulation of an in-
vestment of A(0) for t periods is called the amount function.

Example 1.1
Suppose that A(t) = αt2 + 10β. If X invested at time 0 accumulates to
$500 at time 4, and to $1,000 at time 10, find the amount of the original
investment, X.

Solution.
We have A(0) = X = 10β;A(4) = 500 = 16α + 10β; and A(10) = 1000 =
100α + 10β. Using the first equation in the second and third we obtain the
following system of linear equations

16α +X =500

100α +X =1000.

Multiply the first equation by 100 and the second equation by 16 and subtract
to obtain 1600α + 100X − 1600α − 16X = 50000 − 16000 or 84X = 34000.
Hence, X = 34000

84
= $404.76

Now, let n be a positive integer. The nthperiod of time is defined to be
the period of time between t = n − 1 and t = n. More precisely, the period
normally will consist of the time interval n − 1 ≤ t ≤ n. We next introduce
the first measure of interest which is developed using the accumulation func-
tion. Such a measure is referred to as the effective rate of interest:
The effective rate of interest is the amount of money that one unit invested
at the beginning of a period will earn during the period, with interest being
paid at the end of the period.

Example 1.2
You buy a house for $100,000. A year later you sell it for $80,000. What is
the effective rate of return on your investment?

Solution.
The effective rate of return is

i =
80, 000− 100, 000

100, 000
= −20%

which indicates a 20% loss of the original value of the house
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If in is the effective rate of interest for the nth time period then we can
write

in =
a(n)− a(n− 1)

a(n− 1)
=

(1 + i)n − (1 + i)n−1

(1 + i)n−1
= i.

That is, under compound interest, the effective rate of interest is constant
and is equal to the parameter i appearing in the base of the exponential form
of a(t).

Example 1.3
It is known that $600 invested for two years will earn $264 in interest. Find
the accumulated value of $2,000 invested at the same rate of annual com-
pound interest for three years.

Solution.
We are told that 600(1 + i)2 = 600 + 264 = 864. Thus, (1 + i)2 = 1.44 and
solving for i we find i = 0.2. Thus, the accumulated value of investing $2,000
for three years at the rate i = 20% is 2, 000(1 + 0.2)3 = $3, 456

Example 1.4
At a certain rate of compound interest, 1 will increase to 2 in a years, 2 will
increase to 3 in b years, and 3 will increase to 15 in c years. If 6 will increase
to 10 in n years, find an expression for n in terms of a, b, and c.

Solution.
If the common rate is i, the hypotheses are that

1(1 + i)a =2→ ln 2 = a ln (1 + i)

2(1 + i)b =3→ ln
3

2
= b ln (1 + i)

3(1 + i)c =15→ ln 5 = c ln (1 + i)

6(1 + i)n =10→ ln
5

3
= n ln (1 + i)

But

ln
5

3
= ln 5− ln 3 = ln 5− (ln 2 + ln 1.5).

Hence,

n ln (1 + i) = c ln (1 + i)− a ln (1 + i)− b ln (1 + i) = (c− a− b) ln (1 + i)
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and this implies n = c− a− b

The accumulation function is used to find future values. In order to find
present values of future investments, one uses the discount function de-
fined by the ratio 1

(1+i)t
.

Example 1.5
What is the present value of $8,000 to be paid at the end of three years if
the interest rate is 11% compounded annually?

Solution.
Let FV stand for the future value and PV for the present value. We want
to find PV. We have FV = PV (1 + i)3 or PV = FV (1 + i)−3. Substituting
into this equation we find PV = 8000(1.11)−3 ≈ $5, 849.53

Parallel to the concept of effective rate of interest, we define the effective
rate of discount for the nth time period by

dn =
a(n)− a(n− 1)

a(n)
=

(1 + i)n − (1 + i)n−1

(1 + i)n
=

i

1 + i
= d.

That is, under compound interest, the effective rate of discount is constant.
Now, $1 a period from now invested at the rate i worths ν = 1

1+i
today. We

call ν the discount factor since it discounts the value of an investment at
the end of a period to its value at the beginning of the period.

Example 1.6
What is the difference between the following two situations?
(1) A loan of $100 is made for one year at an effective rate of interest of 5%.
(2) A loan of $100 is made for one year at an effective rate of discount of 5%.

Solution.
In both cases the fee for the use of the money is the same which is $5. That
is, the amount of discount is the same as the amount of interest. However,
in the first case the interest is paid at the end of the period so the borrower
was able to use the full $100 for the year. He can for example invest this
money at a higher rate of interest say 7% and make a profit of $2 at the end
of the transaction. In the second case, the interest is paid at the beginning
of the period so the borrower had access to only $95 for the year. So, if this
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amount is invested at 7% like the previous case then the borrower will make
a profit of $1.65. Also, note that the effective rate of interest is taken as a
percentage of the balance at the beginning of the year whereas the effective
rate of discount is taken as a percentage of the balance at the end of the year

Using the definitions of ν and d we have the following relations among, i, d,
and ν :
• i = d

1−d .

• d = i
1+i
.

• d = iν.
• d = 1− ν.
• id = i− d.

Example 1.7
The amount of interest earned for one year when X is invested is $108. The
amount of discount earned when an investment grows to value X at the end
of one year is $100. Find X, i, and d.

Solution.
We have iX = 108, i

1+i
X = 100. Thus, 108

1+i
= 100. Solving for i we find

i = 0.08 = 8%. Hence, X = 108
0.08

= 1, 350 and d = i
1+i

= 2
27
≈ 7.41%

Nominal Rates of Interest and Discount
When interest is paid (i.e., reinvested) more frequently than once per period,
we say it is “payable” (“convertible”, “compounded”) each fraction of a pe-
riod, and this fractional period is called the interest conversion period.
A nominal rate of interest i(m) payable m times per period, where m is a
positive integer, represents m times the effective rate of compound interest
used for each of the mth of a period. In this case, i(m)

m
is the effective rate

of interest for each mth of a period. Thus, for a nominal rate of 12% com-
pounded monthly, the effective rate of interest per month is 1% since there
are twelve months in a year.
Suppose that 1 is invested at a nominal rate i(m) compounded m times per
measurement period. That is, the period is partitioned into m equal fractions
of a period. At the end of the first fraction of the period the accumulated
value is 1 + i(m)

m
. At the end of the second fraction of the period the accumu-

lated value is
(

1 + i(m)

m

)2

. Continuing, we find that the accumulated value



20 BRIEF REVIEW OF INTEREST THEORY

at the end of the mth fraction of a period, which is the same as the end of

one period, is
(

1 + i(m)

m

)m
and at the end of t years the accumulated value is

a(t) =

(
1 +

i(m)

m

)mt
.

Example 1.8
Find the accumulated value of $3,000 to be paid at the end of 8 years with
a rate of compound interest of 5%
(a) per annum;
(b) convertible quarterly;
(c) convertible monthly.

Solution.
(a) The accumulated value is 3, 000

(
1 + 0.05

1

)8 ≈ $4, 432.37.

(b) The accumulated value is 3, 000
(
1 + 0.05

4

)8×4 ≈ $4, 464.39.

(c) The accumulated value is 3, 000
(
1 + 0.05

12

)8×12 ≈ $4, 471.76

Next we describe the relationship between effective and nominal rates. If
i denotes the effective rate of interest per one measurement period equiva-
lent to i(m) then we can write

1 + i =

(
1 +

i(m)

m

)m
since each side represents the accumulated value of a principal of 1 invested
for one year. Rearranging we have

i =

(
1 +

i(m)

m

)m
− 1

and

i(m) = m[(1 + i)
1
m − 1].

For any t ≥ 0 we have

(1 + i)t =

(
1 +

i(m)

m

)mt
.
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Example 1.9
(a) Find the annual effective interest rate i which is equivalent to a rate of
compound interest of 8% convertible quarterly.
(b) Find the compound interest rate i(2) which is equivalent to an annual
effective interest rate of 8%.
(c) Find the compound interest rate i(4) which is equivalent to a rate of
compound interest of 8% payable semi-annually.

Solution.
(a) We have

1 + i =

(
1 +

0.08

4

)4

⇒ i =

(
1 +

0.08

4

)4

− 1 ≈ 0.08243216

(b) We have

1 + 0.08 =

(
1 +

i(2)

2

)2

⇒ i(2) = 2[(1.08)
1
2 − 1] ≈ 0.07846.

(c) We have(
1 +

i(4)

4

)4

=

(
1 +

i(2)

2

)2

⇒ i(4) = 4[(1.04)
1
2 − 1] ≈ 0.0792

In the same way that we defined a nominal rate of interest, we could also de-
fine a nominal rate of discount, d(m), as meaning an effective rate of discount
of d(m)

m
for each of the mth of a period with interest paid at the beginning of

a mth of a period.
The accumulation function with the nominal rate of discount d(m) is

a(t) =

(
1− d(m)

m

)−mt
, t ≥ 0.

Example 1.10
Find the present value of $8,000 to be paid at the end of 5 years using an
annual compound interest of 7%
(a) convertible semiannually.
(b) payable in advance and convertible semiannually.
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Solution.
(a) The answer is

8, 000(
1 + 0.07

2

)5×2 ≈ $5, 671.35

(b) The answer is

8000

(
1− 0.07

2

)5×2

≈ $5, 602.26

If d is the effective discount rate equivalent to d(m) then

1− d =

(
1− d(m)

m

)m
since each side of the equation gives the present value of 1 to be paid at the
end of the measurement period. Rearranging, we have

d = 1−
(

1− d(m)

m

)m
and solving this last equation for d(m) we find

d(m) = m[1− (1− d)
1
m ] = m(1− ν

1
m ).

Example 1.11
Find the present value of $1,000 to be paid at the end of six years at 6% per
year payable in advance and convertible semiannually.

Solution.
The answer is

1, 000

(
1− 0.06

2

)12

= $693.84

There is a close relationship between nominal rate of interest and nominal
rate of discount. Since 1− d = 1

1+i
, we conclude that(

1 +
i(m)

m

)m
= 1 + i = (1− d)−1 =

(
1− d(n)

n

)−n
. (1.1)

If m = n then the previous formula reduces to(
1 +

i(n)

n

)
=

(
1− d(n)

n

)−1

.
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Example 1.12
Find the nominal rate of discount convertible semiannually which is equiva-
lent to a nominal rate of interest of 12% per year convertible monthly.

Solution.
We have (

1− d(2)

2

)−2

=

(
1 +

0.12

12

)12

.

Solving for d(2) we find d(2) = 0.11591

Note that formula (1.1) can be used in general to find equivalent rates of
interest or discount, either effective or nominal, converted with any desired
frequency.

Force of Interest
Effective and nominal rates of interest and discount each measures interest
over some interval of time. Effective rates of interest and discount measure
interest over one full measurement period, while nominal rates of interest
and discount measure interest over mths of a period.
In this section we want to measure interest at any particular moment of time.
This measure of interest is called the force of interest and is defined by

δt =
d

dt
ln [a(t)]

which under compound interest we have

δt = ln (1 + i) = δ.

Example 1.13
Given the nominal interest rate of 12%, compounded monthly. Find the
equivalent force of interest δ.

Solution.
The effective annual interest rate is

i = (1 + 0.01)12 − 1 ≈ 0.1268250.

Hence, δ = ln (1 + i) = ln (1.1268250) ≈ 0.119404.
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Example 1.14
A loan of $3,000 is taken out on June 23, 1997. If the force of interest is
14%, find each of the following
(a) The value of the loan on June 23, 2002.
(b) The value of i.
(c) The value of i(12).

Solution.
(a) 3, 000(1 + i)5 = 3, 000e5δ = 3, 000e0.7 ≈ $6, 041.26.
(b) i = eδ − 1 = e0.14 − 1 ≈ 0.15027.
(c) We have (

1 +
i(12)

12

)12

= 1 + i = e0.14.

Solving for i(12) we find i(12) ≈ 0.14082

Since

δt =
d

dt
ln (a(t))

we can find δt given a(t). What if we are given δt instead, and we wish to
derive a(t) from it?
From the definition of δt we can write

d

dr
ln a(r) = δr.

Integrating both sides from 0 to t we obtain∫ t

0

d

dr
ln a(r)dr =

∫ t

0

δrdr.

Hence,

ln a(t) =

∫ t

0

δrdr.

From this last equation we find

a(t) = e
∫ t
0 δrdr.

Example 1.15
A deposit of $10 is invested at time 2 years. Using a force of interest of
δt = 0.2− 0.02t, find the accumulated value of this payment at the end of 5
years.
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Solution.
The accumulated value is

A(5) = 10
a(5)

a(2)
= 10e

∫ 5
2 (0.2−0.02t)dt = 10e[0.2t−0.01t2]

5

2 ≈ $14.77



26 BRIEF REVIEW OF INTEREST THEORY

2 Equations of Value and Time Diagrams

Interest problems generally involve four quantities: principal(s), investment
period length(s), interest rate(s), accumulated value(s). If any three of these
quantities are known, then the fourth quantity can be determined. In this
section we introduce equations that involve all four quantities with three
quantities are given and the fourth to be found.
In calculations involving interest, the value of an amount of money at any
given point in time depends upon the time elapsed since the money was
paid in the past or upon time which will elapse in the future before it is
paid. This principle is often characterized as the recognition of the time
value of money. We assume that this principle reflects only the effect of
interest and does not include the effect of inflation. Inflation reduces the
purchasing power of money over time so investors expect a higher rate of
return to compensate for inflation. As pointed out, we will neglect the effect
of inflation when applying the above mentioned principle.
As a consequence of the above principle, various amounts of money payable
at different points in time cannot be compared until all the amounts are
accumulated or discounted to a common date, called the comparison date,
is established. The equation which accumulates or discounts each payment
to the comparison date is called the equation of value.
One device which is often helpful in the solution of equations of value is the
time diagram. A time diagram is a one-dimensional diagram where the
only variable is time, shown on a single coordinate axis. We may show above
or below the coordinate of a point on the time-axis, values of money intended
to be associated with different funds. A time diagram is not a formal part of
a solution, but may be very helpful in visualizing the solution. Usually, they
are very helpful in the solution of complex probems.

Example 2.1
In return for a payment of $1,200 at the end of 10 years, a lender agrees to
pay $200 immediately, $400 at the end of 6 years, and a final amount at the
end of 15 years. Find the amount of the final payment at the end of 15 years
if the nominal rate of interest is 9% converted semiannually.

Solution.
The comparison date is chosen to be t = 0. The time diagram is given in
Figure 2.1.
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Figure 2.1

The equation of value is

200 + 400(1 + 0.045)−12 +X(1 + 0.045)−30 = 1200(1 + 0.045)−20.

Solving this equation for X we find X ≈ $231.11

Example 2.2
Investor A deposits 1,000 into an account paying 4% compounded quarterly.
At the end of three years, he deposits an additional 1,000. Investor B deposits
X into an account with force of interest δt = 1

6+t
. After five years, investors

A and B have the same amount of money. Find X.

Solution.
Consider investor A’s account first. The initial 1,000 accumulates at 4%
compounded quarterly for five years; the accumulated amount of this piece
is

1, 000

(
1 +

0.04

4

)4×5

= 1000(1.01)20.

The second 1,000 accumulates at 4% compounded quarterly for two years,
accumulating to

1, 000

(
1 +

0.04

4

)4×2

= 1000(1.01)8.

The value in investor A’s account after five years is

A = 1000(1.01)20 + 1000(1.01)8.

The accumulated amount of investor B’s account after five years is given by

B = Xe
∫ 5
0

dt
6+t = Xeln ( 11

6 ) =
11

6
X.

The equation of value at time t = 5 is

11

6
X = 1000(1.01)20 + 1000(1.01)8.

Solving for X we find X ≈ $1, 256.21
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3 Level Annuities

A series of payments made at equal intervals of time is called an annuity. An
annuity where payments are guaranteed to occur for a fixed period of time
is called an annuity-certain. In what follows we review the terminology
and notation partained to annuity-certain. By a level-annuity we mean an
annuity with fixed payments.

3.1 Level Annuity-Immediate

An annuity under which payments of 1 are made at the end of each period
for n periods is called an annuity−immediate or ordinary annuity. The
cash stream represented by the annuity can be visualized on a time diagram
as shown in Figure 3.1 .

Figure 3.1

The first arrow shows the beginning of the first period, at the end of which
the first payment is due under the annuity. The second arrow indicates the
last payment date−just after the payment has been made.
The present value of the annuity at time 0 is given by

an = ν + ν2 + · · ·+ νn =
1− νn

i
.

That is, the present value of the annuity is the sum of the present values of
each of the n payments.

Example 3.1
Calculate the present value of an annuity−immediate of amount $100 paid
annually for 5 years at the rate of interest of 9%.

Solution.
The answer is 100a5 = 1001−(1.09)−5

0.09
≈ 388.97
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The accumulated value of an annuity−immediate right after the nth pay-
ment is made is given by

sn = (1 + i)nan =
(1 + i)n − 1

i
.

Example 3.2
Calculate the future value of an annuity−immediate of amount $100 paid
annually for 5 years at the rate of interest of 9%.

Solution.
The answer is 100s5 = 100× (1.09)5−1

0.09
≈ $598.47

With an and sn as defined above we have

1

an
=

1

sn
+ i.

A perpetuity-immediate is an annuity with infinite number of payments
with the first payment occurring at the end of the first period. Since the
term of the annuity is infinite, perpetuities do not have accumulated values.
The present value of a perpetuity-immediate is given by

a∞ = lim
n→∞

an =
1

i
.

Example 3.3
Suppose a company issues a stock that pays a dividend at the end of each
year of $10 indefinitely, and the companies cost of capital is 6%. What is the
value of the stock at the beginning of the year?

Solution.
The answer is 10 · a∞ = 10 · 1

0.06
= $166.67
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3.2 Level Annuity-Due

An annuity−due is an annuity for which the payments are made at the be-
ginning of the payment periods. The cash stream represented by the annuity
can be visualized on a time diagram as shown in Figure 3.2 .

Figure 3.2

The first arrow shows the beginning of the first period at which the first
payment is made under the annuity. The second arrow appears n periods
after arrow 1, one period after the last payment is made.

The present value of an annuity-due is given by

än = 1 + ν + ν2 + · · ·+ νn−1 =
1− νn

d
.

Example 3.4
Find ä

8
if the effective rate of discount is 10%.

Solution.
Since d = 0.10, we have ν = 1− d = 0.9. Hence, ä

8
= 1−(0.9)8

0.1
= 5.6953279

Example 3.5
What amount must you invest today at 6% interest rate compounded annu-
ally so that you can withdraw $5,000 at the beginning of each year for the
next 5 years?

Solution.
The answer is 5000ä

5
= 5000 · 1−(1.06)−5

0.06(1.06)−1 = $22, 325.53

The accumulated value at time n of an annuity-due is given by

s̈n = (1 + i)nän =
(1 + i)n − 1

iν
=

(1 + i)n − 1

d
.
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Example 3.6
What amount will accumulate if we deposit $5,000 at the beginning of each
year for the next 5 years? Assume an interest of 6% compounded annually.

Solution.
The answer is 5000s̈

5
= 5000 · (1.06)5−1

0.06(1.06)−1 = $29, 876.59

With än and s̈n as defined above we have
(i) än = (1 + i)an .
(ii) an = νän .
(iii) s̈n = (1 + i)sn .
(iv) sn = νs̈n .
(v) 1

än
= 1

s̈n
+ d.

A perpetuity-due is an annuity with infinite number of payments with
the first payment occurring at the beginning of the first period. Since the
term of the annuity is infinite, perpetuities do not have accumulated values.
The present value of a perpetuity-due is given by

ä∞ = lim
n→∞

än =
1

d
.

Example 3.7
What would you be willing to pay for an infinite stream of $37 annual pay-
ments (cash inflows) beginning now if the interest rate is 8% per annum?

Solution.
The answer is 37ä∞ = 37

0.08(1.08)−1 = $499.50
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3.3 Level Continuous Annuity

In this section we consider annuities with a finite term and an infinte fre-
quency of payments . Formulas corresponding to such annuities are useful
as approximations corresponding to annuities payable with great frequency
such as daily.
Consider an annuity in which a very small payment dt is made at time t
and these small payments are payable continuously for n interest conversion
periods. Let i denote the periodic interest rate. Then the total amount paid
during each period is ∫ k

k−1

dt = [t]kk−1 = $1.

Let an denote the present value of an annuity payable continuously for n
interest conversion periods so that 1 is the total amount paid during each
interest conversion period. Then the present value can be found as follows:

an =

∫ n

0

νtdt =
νt

ln ν

∣∣∣∣n
0

=
1− νn

δ
.

With an defined above we have

an =
i

δ
an =

d

δ
än =

1− e−nδ

δ
.

Example 3.8
Starting four years from today, you will receive payment at the rate of $1,000
per annum, payable continuously, with the payment terminating twelve years
from today. Find the present value of this continuous annuity if δ = 5%.

Solution.
The present value is PV = 1000ν4 · a

8
= 1000e−0.20 · 1−e−0.40

0.05
= $5, 398.38

Next, let sn denote the accumulated value at the end of the term of an
annuity payable continuously for n interest conversion periods so that 1 is
the total amound paid during each interest conversion period. Then

sn = (1 + i)nan =

∫ n

0

(1 + i)n−tdt =
(1 + i)n − 1

δ
.

It is easy to see that

sn =
enδ − 1

δ
=
i

δ
sn =

d

δ
s̈n .
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Example 3.9
Find the force of interest at which the accumulated value of a continuous
payment of 1 every year for 8 years will be equal to four times the accumulated
value of a continuous payment of 1 every year for four years.

Solution.
We have

s
8

=4s
4

e8δ − 1

δ
=4 · e

4δ − 1

δ
e8δ − 4e4δ + 3 =0

(e4δ − 3)(e4δ − 1) =0

If e4δ = 3 then δ = ln 3
4
≈ 0.0275 = 2.75%. If e4δ = 1 then δ = 0, an extrane-

ous solution

With an and sn as defined above we have

1

an
=

1

sn
+ δ.

The present value of a perpetuity payable continuously with total of 1 per
period is given by

a∞ = lim
n→∞

an =
1

δ
.

Example 3.10
A perpetuity paid continuously at a rate of 100 per year has a present value of
800. Calculate the annual effective interest rate used to calculate the present
value.

Solution.
The equation of value at time t = 0 is

800 =
100

δ
=

100

ln (1 + i)
.

Thus,
i = e

1
8 − 1 = 13.3%
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4 Varying Annuities

In the previous section we considered annuities with level series of payments,
that is, payments are all equal in values. In this section we consider annuities
with a varying series of payments. Annuities with varying payments will be
called varying annuities. In what follows, we assume that the payment
period and interest conversion period coincide.

4.1 Varying Annuity-Immediate

Any type of annuities can be evaluated by taking the present value or the
accumulated value of each payment seperately and adding the results. There
are, however, several types of varying annuities for which relatively simple
compact expressions are possible. The only general types that we consider
vary in either arithmetic progression or geometric progression.

Payments Varying in an Arithmetic Progression
First, let us assume that payments vary in arithmetic progression. The first
payment is 1 and then the payments increase by 1 thereafter, continuing for
n years as shown in the time diagram of Figure 4.1.

Figure 4.1

The present value at time 0 of such annuity is

(Ia)n = ν + 2ν2 + 3ν3 + · · ·+ nνn =
än − nνn

i
.

The accumulated value at time n is given by

(Is)n = (1 + i)n(Ia)n =
s̈n − n
i

=
s
n+1
− (n+ 1)

i
.

Example 4.1
The following payments are to be received: $500 at the end of the first year,
$520 at the end of the second year, $540 at the end of the third year and so
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on, until the final payment is $800. Using an annual effective interest rate of
2%
(a) determine the present value of these payments at time 0;
(b) determine the accumulated value of these payments at the time of the
last payment.

Solution.
In n years the payment is 500 + 20(n− 1). So the total number of payments
is 16. The given payments can be regarded as the sum of a level annuity
immediate of $480 and an increasing annuity-immediate $20, $40, · · · , $320.
(a) The present value at time t = 0 is

480a16 + 20(Ia)16 = 480(13.5777) + 20(109.7065) = $8, 711.43.

(b) The accumulated value at time t = 16 is

480s16 + 20(Is)
16

= 480(18.6393) + 20(150.6035) = $11, 958.93

Next, we consider a decreasing annuity-immediate with first payment n and
each payment decreases by 1 for a total of n payments as shown in Figure
4.2.

Figure 4.2

In this case, the present value one year before the first payment (i.e., at time
t = 0) is given by

(Da)n = nν + (n− 1)ν2 + · · ·+ νn =
n− an

i
.

The accumulated value at time n is given by

(Ds)n = (1 + i)n(Da)n =
n(1 + i)n − sn

i
= (n+ 1)an − (Ia)n .

Example 4.2
John receives $400 at the end of the first year, $350 at the end of the second
year, $300 at the end of the third year and so on, until the final payment of
$50. Using an annual effective rate of 3.5%, calculate the present value of
these payments at time 0.
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Solution.
In year n the payment is 400 − 50(n − 1). Since the final payment is 50 we
must have 400 − 50(n − 1) = 50. Solving for n we find n = 8. Thus, the
present value is

50(Da)
8

= 50 · 8− a8

0.035
= $1, 608.63

Example 4.3
Calculate the accumulated value in Example 4.2.

Solution.
The answer is 50(Ds)

8
= 50 · 8(1.035)8−s8

0.035
= $2, 118.27

Besides varying annuities immediate, it is also possible to have varying
perpetuity−immediate. Consider the perpetuity with first payment of 1 at
the end of the first period and then each successive payment increases by 1.
In this case, the present value is given by

(Ia)∞ = lim
n→∞

(Ia)n =
1

i
+

1

i2
.

Example 4.4
Find the present value of a perpetuity-immediate whose successive payments
are 1, 2, 3, 4,· · · at an effective rate of 6%.

Solution.
We have (Ia)∞ = 1

i
+ 1

i2
= 1

0.06
+ 1

0.062
= $294.44

Remark 4.1
The notion of perpetuity does not apply for the decreasing case.

Payments Varying in a Geometric Progression
Next, we consider payments varying in a geometric progression. Consider an
annuity-immediate with a term of n periods where the interest rate is i per
period, and where the first payment is 1 and successive payments increase
in geometric progression with common ratio 1 + k. The present value of this
annuity is

ν + ν2(1 + k) + ν3(1 + k)2 + · · ·+ νn(1 + k)n−1 =
1−

(
1+k
1+i

)n
i− k

provided that k 6= i. If k = i then the original sum consists of a sum of n
terms of ν which equals to nν.
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Example 4.5
The first of 30 payments of an annuity occurs in exactly one year and is equal
to $500. The payments increase so that each payment is 5% greater than the
preceding payment. Find the present value of this annuity with an annual
effective rate of interest of 8%.

Solution.
The present value is given by

PV = 500 ·
1−

(
1.05
1.08

)30

0.08− 0.05
= $9, 508.28

For an annuity-immediate with a term of n periods where the interest rate
is i per period, and where the first payment is 1 and successive payments
decrease in geometric progression with common ratio 1 − k. The present
value of this annuity is

ν + ν2(1− k) + ν3(1− k)2 + · · ·+ νn(1− k)n−1 =
1−

(
1−k
1+i

)n
i+ k

provided that k 6= i. If k = i then the original sum becomes

ν + ν2(1− i) + ν3(1− i)2 + · · ·+ νn(1− i)n−1 =
1

2i

[
1−

(
1− i
1 + i

)n]
Finally, we consider a perpetuity with payments that form a geometric pro-
gression where 0 < 1 + k < 1 + i. The present value for such a perpetuity
with the first payment at the end of the first period is

ν + ν2(1 + k) + ν3(1 + k)2 + · · · = ν

1− (1 + k)ν
=

1

i− k
.

Observe that the value for these perpetuities cannot exist if 1 + k ≥ 1 + i.

Example 4.6
What is the present value of a stream of annual dividends, which starts at 1
at the end of the first year, and grows at the annual rate of 2%, given that
the rate of interest is 6% ?

Solution.
The present value is 1

i−k = 1
0.06−0.02

= 25
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4.2 Varying Annuity-Due

In this section, we examine the case of an increasing annuity-due. Consider
an annuity with the first payment is 1 at the beginning of year 1 and then the
payments increase by 1 thereafter, continuing for n years. A time diagram
of this situation is given in Figure 4.3.

Figure 4.3

The present value for this annuity-due (at time t = 0) is

(Iä)n = 1 + 2ν + 3ν2 + · · ·+ nνn−1 =
än − nνn

d

and the accumulated value at time n is

(Is̈)n = (1 + i)n(Iä)n =
s̈n − n
d

=
sn+1 − (n+ 1)

d
.

Example 4.7
Determine the present value and future value of payments of $75 at time 0,
$80 at time 1 year, $85 at time 2 years, and so on up to $175 at time 20
years. The annual effective rate is 4%.

Solution.
The present value is 70ä21 + 5(Iä)

21
= $1, 720.05 and the future value is

(1.04)21(1, 720.05) = $3919.60

In the case of a decreasing annuity-due where the first payment is n and
each successive payment decreases by 1, the present value at time 0 is

(Dä)n = n+ (n− 1)ν + · · ·+ νn−1 =
n− an
d

and the accumulated value at time n is

(Ds̈)n = (1 + i)n(Dä)n =
n(1 + i)n − sn

d
.
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Example 4.8
Calculate the present value and the accumulated value of a series of payments
of $100 now, $90 in 1 year, $80 in 2 years, and so on, down to $10 at time 9
years using an annual effective interest rate of 3%.

Solution.
The present value is 10(Dä)10 = 10 · 10−8.530203

0.03/1.03
= $504.63 and the accumu-

lated value is (1.03)10(504.63) = $678.18

A counterpart to a varying perpetuity-immediate is a varying perpetuity-
due which starts with a payment of 1 at time 0 and each successive payment
increases by 1 forever. The present value of such perpetuity is given by

(Iä)∞ = lim
n→∞

(Iä)n =
1

d2
.

Example 4.9
Determine the present value at time 0 of payments of $10 paid at time 0, $20
paid at time 1 year, $30 paid at time 2 years, and so on, assuming an annual
effective rate of 5%.

Solution.
The answer is 10(Iä)∞ = 10

d2
= 10

(
1.05
0.05

)2
= $4, 410.00

Next, we consider payments varying in a geometric progression. Consider
an annuity-due with a term of n periods where the interest rate is i per
period, and where the first payment is 1 at time 0 and successive payments
increase in geometric progression with common ratio 1+k. The present value
of this annuity is

1 + ν(1 + k) + ν2(1 + k)2 + · · ·+ νn−1(1 + k)n−1 = (1 + i)
1−

(
1+k
1+i

)n
i− k

provided that k 6= i. If k = i then the original sum consists of a sum of n
terms of 1 which equals to n.

Example 4.10
An annual annuity due pays $1 at the beginning of the first year. Each
subsequent payment is 5% greater than the preceding payment. The last
payment is at the beginning of the 10th year. Calculate the present value at:
(a) an annual effective interest rate of 4%;
(b) an annual effective interest rate of 5%.
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Solution.

(a) PV = (1.04)

[
1−( 1.05

1.04)
10
]

(0.04−0.05)
= $10.44.

(b) Since i = k, PV = n = $10.00

For an annuity-due with n payments where the first payment is 1 at time
0 and successive payments decrease in geometric progression with common
ratio 1− k. The present value of this annuity is

1 + ν(1− k) + ν2(1− k)2 + · · ·+ νn−1(1− k)n−1 = (1 + i)
1−

(
1−k
1+i

)n
i+ k

provided that k 6= i. If k = i then the original sum is

1 + ν(1− i) + ν2(1− i)2 + · · ·+ νn−1(1− i)n−1 =
1

2d

[
1−

(
1− i
1 + i

)n]
.

Example 4.11 ‡
Matthew makes a series of payments at the beginning of each year for 20
years. The first payment is 100. Each subsequent payment through the tenth
year increases by 5% from the previous payment. After the tenth payment,
each payment decreases by 5% from the previous payment. Calculate the
present value of these payments at the time the first payment is made using
an annual effective rate of 7%.

Solution.
The present value at time 0 of the first 10 payments is

100

[
1−

(
1.05
1.07

)10

0.07− 0.05

]
· (1.07) = 919.95.

The value of the 11th payment is 100(1.05)9(0.95) = 147.38. The present
value of the last ten payments is

147.38

[
1−

(
0.95
1.07

)10

0.07 + 0.05

]
· (1.07)(1.07)−10 = 464.71.

The total present value of the 20 payments is 919.95 + 464.71 = 1384.66

Finally, the present value of a perpetuity with first payment of 1 at time
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0 and successive payments increase in geometric progression with common
ration 1 + k is

1 + ν(1 + k) + ν2(1 + k)2 + · · · = 1

1− (1 + k)ν
=

1 + i

i− k
.

Observe that the value for these perpetuities cannot exist if 1 + k ≥ 1 + i.

Example 4.12
Perpetuity A has the following sequence of annual payments beginning on
January 1, 2005:

1, 3, 5, 7, · · ·
Perpetuity B is a level perpetuity of 1 per year, also beginning on January
1, 2005.
Perpetuity C has the following sequence of annual payments beginning on
January 1, 2005:

1, 1 + r, (1 + r)2, · · ·
On January 1, 2005, the present value of Perpetuity A is 25 times as large as
the present value of Perpetuity B, and the present value of Perpetuity A is
equal to the present value of Perpetuity C. Based on this information, find
r.

Solution.
The present value of Perpetuity A is 1

d
+ 2(1+i)

i2
.

The present value of Perpetuity B is 1
d
.

The present value of Perpetuity C is 1+i
i−r .

We are told that
1 + i

i
+

2(1 + i)

i2
=

25(1 + i)

i
.

This is equivalent to
12i2 + 11i− 1 = 0.

Solving for i we find i = 1
12
. Also, we are told that

1 + i

i
+

2(1 + i)

i2
=

1 + i

i− r
or

25(12)(1 +
1

12
) =

1 + 1
12

1
12
− r

.

Solving for r we find r = 0.08 = 8%
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4.3 Continuous Varying Annuities

In this section we look at annuities in which payments are being made con-
tinuously at a varying rate.
Consider an annuity for n interest conversion periods in which payments are
being made continuously at the rate f(t) at exact moment t and the interest

rate is variable with variable force of interest δt. Then f(t)e−
∫ t
0 δrdrdt is the

present value of the payment f(t)dt made at exact moment t. Hence, the
present value of this n−period continuous varying annuity is

PV =

∫ n

0

f(t)e−
∫ t
0 δrdrdt. (4.1)

Example 4.13
Find an expression for the present value of a continuously increasing annuity
with a term of n years if the force of interest is δ and if the rate of payment
at time t is t2 per annum.

Solution.
Using integration by parts process, we find∫ n

0

t2e−δtdt = −t
2

δ
e−δt

]n
0

+
2

δ

∫ n

0

te−δtdt

=− n2

δ
e−δn −

[
2t

δ2
e−δt

]n
0

+
2

δ2

∫ n

0

e−δtdt

=− n2

δ
e−δn − 2n

δ2
e−δn −

[
2

δ3
e−δt

]n
0

=− n2

δ
e−δn − 2n

δ2
e−δn − 2

δ3
e−δn +

2

δ3

=
2

δ3
− e−δn

[
n2

δ
+

2n

δ2
+

2

δ3

]
Under compound interest, i.e., δt = ln (1 + i), formula (4.1) becomes

PV =

∫ n

0

f(t)νtdt.

Under compound interest and with f(t) = t (an increasing annuity), the
present value is

(Ia)n =

∫ n

0

tνtdt =
an − nνn

δ
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and the accumulated value at time n years is

(Is)n = (1 + i)n(Ia)n =
sn − n
δ

.

Example 4.14
Sam receives continuous payments at an annual rate of 8t+ 5 from time 0 to
10 years. The continuously compounded interest rate is 9%.
(a) Determine the present value at time 0.
(b) Determine the accumulated value at time 10 years.

Solution.
(a) The payment stream can be split into two parts so that the present value
is

8(Ia)
10

+ 5a
10
.

Since

i =e0.09 − 1 = 9.4174%

a
10

=
1− (1.094174)−10

0.09
= 6.59370

(Ia)
10

=
6.59370− 10(1.094174)−10

0.09
= 28.088592

we obtain

8(Ia)
10

+ 5a
10

= 8× 28.088592 + 5× 6.59370 = 257.68.

(b) The accumulated value at time 10 years is

257.68× (1.094174)10 = 633.78

For a continuous payable continuously increasing perpetuity (where f(t) = t),
the present value at time 0 is

(Ia)∞ = lim
n→∞

an − nνn

δ
= lim

n→∞

1−(1+i)−n

δ
− n(1 + i)−n

δ
=

1

δ2
.

Example 4.15
Determine the present value of a payment stream that pays a rate of 5t at
time t. The payments start at time 0 and they continue indefinitely. The
annual effective interest rate is 7%.
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Solution.
The present value is

5(Ia)∞ =
5

[ln (1.07)]2
= 1, 092.25

We conclude this section by considering the case of a continuously decreasing
continuously payable stream in which a continuous payment is received from
time 0 to time n years. The rate of payment at time t is f(t) = n − t, and
the force of interest is constant at δ. The present value is

(Da)n =nan − (Ia)n

=n
1− νn

δ
−
an − nνn

δ

=
n− an
δ

and the accumulated value

(Ds)n =
n(1 + i)n − sn

δ
.

Example 4.16
Otto receives a payment at an annual rate of 10 − t from time 0 to time
10 years. The force of interest is 6%. Determine the present value of these
payments at time 0.

Solution.
Since

i = e0.06 − 1 = 6.184%

a10 =
1− (1.06184)−10

0.06
= 7.5201

the present value is then

(Da)
10

=
10− 7.5201

0.06
= 41.33
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4.4 Continuously Payable Varying Annuities

In this section, we consider annuities where payments are made at a con-
tinuous rate but increase/decrease at discrete times. To elaborate, consider
first an increasing annuity with payments made continuously for n conver-
sion periods with a total payments of 1 at the end of the first period, a total
payments of 2 in the second period,· · · , a total payments of n in the nth
period. The present value of such annuity is

I(a)n = s
1
ν + 2s

1
ν2 + · · ·+ ns

1
νn = s

1
(Ian ) =

än − nνn

δ
.

The accumulated value of this annuity is

I(sn ) = (1 + i)nI(a)n =
s̈n − n
δ

.

Next, we consider a decreasing annuity with payments made continuously
for n conversion periods with a total payments of n at the end of the first
period, a total payments of n−1 for the second period,· · · , a total payments
of 1 for the nth period. The present value at time 0 of such annuity is

D(a)n = ns
1
ν + (n− 1)s

1
ν2 + · · ·+ s

1
νn = s

1
(Dan ) =

n− an
δ

.

The accumulated value at time n of this annuity is

D(s)n = (1 + i)nD(an ) =
n(1 + i)n − sn

δ
.
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5 Annuity Values on Any Date: Deferred An-

nuity

Evaluating annuities thus far has always been done at the beginning of the
term( either on the date of, or one period before the first payment) or at the
end of the term (either on the date of, or one period after the last payment).
In this section, we shall now consider evaluating the
(1) present value of an annuity more than one period before the first payment
date,
(2) accumulated value of an annuity more than one period after the last pay-
ment date,
(3) current value of an annuity between the first and last payment dates.
We will assume that the evaluation date is always an integral number of pe-
riods from each payment date.

(1) Present values more than one period before the first payment
date
Consider the question of finding the present value of an annuity−immediate
with periodic interest rate i and m+ 1 periods before the first payment date.
Figure 5.1 shows the time diagram for this case where “?” indicates the
present value to be found.

Figure 5.1

The present value of an n−period annuity−immediate m+ 1 periods before
the first payment date (called a deferred annuity since payments do not
begin until some later period) is the present value at time m discounted for
m time periods, that is, vman . It is possible to express this answer strictly
in terms of annuity values. Indeed,

a
m+n

− am =
1− νm+n

i
− 1− νm

i
=
νm − νm+n

i
= νm

1− νn

i
= νman .

Such an expression is convenient for calculation, if interest tables are being
used.
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Example 5.1
Exactly 3 years from now is the first of four $200 yearly payments for an
annuity-immediate, with an effective 8% rate of interest. Find the present
value of the annuity.

Solution.
The answer is 200ν2a

4
= 200(a

6
− a

2
) = 200(4.6229− 1.7833) = $567.92

The deferred−annuity introduced above uses annuity−immediate. It is pos-
sible to work with a deferred annuity−due. In this case, one can easily see
that the present value is given by

νmän = ä
m+n

− äm .

Example 5.2
Calculate the present value of an annuity−due paying annual payments of
1200 for 12 years with the first payment two years from now. The annual
effective interest rate is 6%.

Solution.
The answer is 1200(1.06)−2ä12 = 1200(ä14 − ä2 ) = 1200(9.8527− 1.9434) ≈
9, 491.16

(2) Accumulated values more than 1 period after the last payment
date
Consider the question of finding the accumulated value of an annuity−immediate
with periodic interest rate i and m periods after the last payment date. Fig-
ure 5.2 shows the time diagram for this case where “?” indicates the sought
accumulated value.

Figure 5.2

The accumulated value of an n−period annuity−immediate m periods after
the last payment date is the accumulated value at time n accumulated for m
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time periods, that is, (1 + i)msn . Notice that

s
m+n

− sm =
(1 + i)m+n − 1

i
− (1 + i)m − 1

i

=
(1 + i)m+n − (1 + i)m

i
= (1 + i)m

(1 + i)n − 1

i
= (1 + i)msn

Example 5.3
For four years, an annuity pays $200 at the end of each year with an effective
8% rate of interest. Find the accumulated value of the annuity 3 years after
the last payment.

Solution.
The answer is 200(1 + 0.08)3s

4
= 200(s

7
− s

3
) = 200(8.9228 − 3.2464) =

$1135.28

It is also possible to work with annuities−due instead of annuities−immediate.
The reader should verify that

(1 + i)ms̈n = s̈
m+n

− s̈m .

Example 5.4
A monthly annuity−due pays 100 per month for 12 months. Calculate the
accumulated value 24 months after the first payment using a nominal rate of
4% compounded monthly.

Solution.
The answer is 100

(
1 + 0.04

12

)12
s̈12 0.04

12
= 1, 276.28

(3) Current value between the first and last payment date
Next, we consider the question of finding the present value of an n−period
annuity−immediate after the payment at the end of mth period where 1 ≤
m ≤ n. Figure 5.3 shows the time diagram for this case.

Figure 5.3
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The current value of an n−period annuity−immediate immediately upon
the mth payment date is the present value at time 0 accumulated for m time
periods which is equal to the accumulated value at time n discounted for
n−m time periods, that is,

(1 + i)man = νn−msn .

One has the following formula,

(1 + i)man = νn−msn = sm + a
n−m .

Example 5.5
For four years, an annuity pays $200 at the end of each half−year with an
8% rate of interest convertible semiannually. Find the current value of the
annuity immediately upon the 5th payment (i.e., middle of year 3).

Solution.
The answer is 200(1.04)5a8 0.04 = 200(s5 0.04+a3 0.04) = 200(5.4163+2.7751) =
$1, 638.28

For annuity−due we have a similar formula for the current value

(1 + i)män = νn−ms̈n = s̈m + ä
n−m .

Example 5.6
Calculate the current value at the end of 2 years of a 10 year annuity due of
$100 per year using a discount rate of 6%.

Solution.
We have (1+i)−1 = 1−d = 1−0.06 = 0.94 and i = 0.06

0.94
. Thus, 100(.94)−2ä10 =

$870.27

Up to this point, we have assumed that the date is an integral number of
periods. In the case the date is not an integral number of periods from each
payment date, the value of an annuity is found by finding the value on a date
which is an integral number of periods from each payment date and then
the value on this date is either accumulated or discounted for the fractional
period to the actual evaluation date. We illustrate this situation in the next
example.
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Example 5.7
An annuity−immediate pays $1000 every six months for three years. Calcu-
late the present value of this annuity two months before the first payment
using a nominal interest rate of 12% compounded semiannually.

Solution.
The present value at time t = 0 is

1000a6 0.06 = 1000
1− (1.06)−6

0.06
= $4917.32.

Let j be the interest rate per 2-month. Then 1+j = (1+0.06)
1
3 . The present

value two months before the first payment is made is

4917.32(1.06)
2
3 = $5112.10



A Brief Review of Probability
Theory

One aspect of insurance is that money is paid by the company only if some
event, which may be considered random, occurs within a specific time frame.
For example, an automobile insurance policy will experience a claim only if
there is an accident involving the insured auto. In this chapter a brief outline
of the essential material from the theory of probability is given. Almost all
of the material presented here should be familiar to the reader. A more
thorough discussion can be found in [2]. Probability concepts that are not
usually covered in an introductory probability course will be introduced and
discussed in futher details whenever needed.

6 Basic Definitions of Probability

In probability, we consider experiments whose results cannot be predicted
with certainty. Examples of such experiments include rolling a die, flipping
a coin, and choosing a card from a deck of playing cards.
By an outcome or simple event we mean any result of the experiment.
For example, the experiment of rolling a die yields six outcomes, namely, the
outcomes 1,2,3,4,5, and 6.
The sample space Ω of an experiment is the set of all possible outcomes
for the experiment. For example, if you roll a die one time then the exper-
iment is the roll of the die. A sample space for this experiment could be
Ω = {1, 2, 3, 4, 5, 6} where each digit represents a face of the die.
An event is a subset of the sample space. For example, the event of rolling
an odd number with a die consists of three simple events {1, 3, 5}.

51
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Example 6.1
Consider the random experiment of tossing a coin three times.
(a) Find the sample space of this experiment.
(b) Find the outcomes of the event of obtaining more than one head.

Solution.
We will use T for tail and H for head.
(a) The sample space is composed of eight simple events:

Ω = {TTT, TTH, THT, THH,HTT,HTH,HHT,HHH}.

(b) The event of obtaining more than one head is the set

{THH,HTH,HHT,HHH}

The complement of an event E, denoted by Ec, is the set of all possible
outcomes not in E. The union of two events A and B is the event A ∪ B
whose outcomes are either in A or in B. The intersection of two events A
and B is the event A ∩ B whose outcomes are outcomes of both events A
and B. Two events A and B are said to be mutually exclusive if they have
no outcomes in common. Clearly, for any event E, the events E and Ec are
mutually exclusive.

Example 6.2
Consider the sample space of rolling a die. Let A be the event of rolling
an even number, B the event of rolling an odd number, and C the event of
rolling a 2. Find
(a) Ac, Bc and Cc.
(b) A ∪B,A ∪ C, and B ∪ C.
(c) A ∩B,A ∩ C, and B ∩ C.
(d) Which events are mutually exclusive?

Solution.
(a) We have Ac = B, Bc = A and Cc = {1, 3, 4, 5, 6}.
(b) We have

A ∪B = {1, 2, 3, 4, 5, 6}
A ∪ C = {2, 4, 6}
B ∪ C = {1, 2, 3, 5}
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(c)

A ∩B = ∅
A ∩ C = {2}
B ∩ C = ∅

(d) A and B are mutually exclusive as well as B and C

Remark 6.1
The above definitions of intersection, union, and mutually exclusive can be
extended to any number of events.

Probability Axioms
Probability is the measure of occurrence of an event. It is a function Pr(·)
defined on the collection of all (subsets) events of a sample space Ω and which
satisfies Kolmogorov axioms:
Axiom 1: For any event E ⊂ Ω, 0 ≤ Pr(E) ≤ 1.
Axiom 2: Pr(Ω) = 1.
Axiom 3: For any sequence of mutually exclusive events {En}n≥1, that is
Ei ∩ Ej = ∅ for i 6= j, we have

Pr (∪∞n=1En) =
∑∞

n=1 Pr(En). (Countable Additivity)

If we let E1 = Ω, En = ∅ for n > 1 then by Axioms 2 and 3 we have
1 = Pr(Ω) = Pr (∪∞n=1En) =

∑∞
n=1 Pr(En) = Pr(Ω) +

∑∞
n=2 Pr(∅). This

implies that Pr(∅) = 0. Also, if {E1, E2, · · · , En} is a finite set of mutually
exclusive events, then by defining Ek = ∅ for k > n and Axioms 3 we find

Pr (∪nk=1Ek) =
n∑
k=1

Pr(Ek).

Any function Pr that satisfies Axioms 1-3 will be called a probability mea-
sure.

Example 6.3
Consider the sample space Ω = {1, 2, 3}. Suppose that Pr({1, 2}) = 0.5
and Pr({2, 3}) = 0.7. Find Pr(1),Pr(2), and Pr(3). Is Pr a valid probability
measure?
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Solution.
For Pr to be a probability measure we must have Pr(1) + Pr(2) + Pr(3) = 1.
But Pr({1, 2}) = Pr(1) + Pr(2) = 0.5. This implies that 0.5 + Pr(3) = 1
or Pr(3) = 0.5. Similarly, 1 = Pr({2, 3}) + Pr(1) = 0.7 + Pr(1) and so
Pr(1) = 0.3. It follows that Pr(2) = 1− Pr(1)− Pr(3) = 1− 0.3− 0.5 = 0.2.
It can be easily seen that Pr satisfies Axioms 1-3 and so Pr is a probability
measure

Probability Trees
For all multistage experiments, the probability of the outcome along any
path of a tree diagram is equal to the product of all the probabilities along
the path.

Example 6.4
In a state assembly, 35% of the legislators are Democrats, and the other 65%
are Republicans. 70% of the Democrats favor raising sales tax, while only
40% of the Republicans favor the increase.
If a legislator is selected at random from this group, what is the probability
that he or she favors raising sales tax?

Solution.
Figure 6.1 shows a tree diagram for this problem.

Figure 6.1

The first and third branches correspond to favoring the tax. We add their
probabilities.

P (tax) = 0.245 + 0.26 = 0.505

Conditional Probability and Bayes Theorem
We desire to know the probability of an event A conditional on the knowledge
that another event B has occurred. The information the eventB has occurred
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causes us to update the probabilities of other events in the sample space.
To illustrate, suppose you cast two dice; one red, and one green. Then the
probability of getting two ones is 1/36. However, if, after casting the dice,
you ascertain that the green die shows a one (but know nothing about the red
die), then there is a 1/6 chance that both of them will be one. In other words,
the probability of getting two ones changes if you have partial information,
and we refer to this (altered) probability as conditional probability.
If the occurrence of the event A depends on the occurrence of B then the
conditional probability will be denoted by P (A|B), read as the probability of
A given B. Conditioning restricts the sample space to those outcomes which
are in the set being conditioned on (in this case B). In this case,

P (A|B) =
number of outcomes corresponding to event A and B

number of outcomes of B
.

Thus,

P (A|B) =
n(A ∩B)

n(B)
=

n(A∩B)
n(S)

n(B)
n(S)

=
P (A ∩B)

P (B)

provided that P (B) > 0.

Example 6.5
Let A denote the event “student is female” and let B denote the event “stu-
dent is French”. In a class of 100 students suppose 60 are French, and suppose
that 10 of the French students are females. Find the probability that if I pick
a French student, it will be a female, that is, find P (A|B).

Solution.
Since 10 out of 100 students are both French and female, P (A ∩B) = 10

100
=

0.1. Also, 60 out of the 100 students are French, so P (B) = 60
100

= 0.6. Hence,
P (A|B) = 0.1

0.6
= 1

6

It is often the case that we know the probabilities of certain events con-
ditional on other events, but what we would like to know is the “reverse”.
That is, given P (A|B) we would like to find P (B|A).
Bayes’ formula is a simple mathematical formula used for calculating P (B|A)
given P (A|B). We derive this formula as follows. Let A and B be two events.
Then

A = A ∩ (B ∪Bc) = (A ∩B) ∪ (A ∩Bc).
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Since the events A ∩B and A ∩Bc are mutually exclusive, we can write

P (A) = P (A ∩B) + P (A ∩Bc)

= P (A|B)P (B) + P (A|Bc)P (Bc) (6.1)

Example 6.6
The completion of a construction job may be delayed because of a strike. The
probabilities are 0.60 that there will be a strike, 0.85 that the construction job
will be completed on time if there is no strike, and 0.35 that the construction
will be completed on time if there is a strike. What is the probability that
the construction job will be completed on time?

Solution.
Let A be the event that the construction job will be completed on time and B
is the event that there will be a strike. We are given P (B) = 0.60, P (A|Bc) =
0.85, and P (A|B) = 0.35. From Equation (6.1) we find

P (A) = P (B)P (A|B) +P (Bc)P (A|Bc) = (0.60)(0.35) + (0.4)(0.85) = 0.55

From Equation (6.1) we can get Bayes’ formula:

P (B|A) =
P (A ∩B)

P (A)
=

P (A|B)P (B)

P (A|B)P (B) + P (A|Bc)P (Bc)
. (6.2)

Example 6.7
A company has two machines A and B for making shoes. It has been observed
that machine A produces 10% of the total production of shoes while machine
B produces 90% of the total production of shoes. Suppose that 1% of all the
shoes produced by A are defective while 5% of all the shoes produced by B
are defective. What is the probability that a shoe taken at random from a
day’s production was made by the machine A, given that it is defective?

Solution.
We are given P (A) = 0.1, P (B) = 0.9, P (D|A) = 0.01, and P (D|B) = 0.05.
We want to find P (A|D). Using Bayes’ formula we find

P (A|D) =
P (A ∩D)

P (D)
=

P (D|A)P (A)

P (D|A)P (A) + P (D|B)P (B)

=
(0.01)(0.1)

(0.01)(0.1) + (0.05)(0.9)
≈ 0.0217
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7 Classification of Random Variables

By definition, a random variable X is a function with domain the sample
space of an experiment and range a subset of the real numbers. The range
of X is sometimes called the support of X. The notation X(s) = x means
that x is the value associated with the outcome s by the random variable X.
We consider three types of random variables: Discrete, continuous, and mixed
random variables.
A random variable is said to be discrete if the range of the variable as a
function is either finite or a subset of the set of non-negative integers. A
discrete random variable can be either finite or infinite. An example of a
finite discrete random variable is the variable X that represents the age of
students in your class. An example of an infinite random variable is the
variable X that represents the number of times you roll a die until you get a
6.(If you are extremely unlucky, it might take you a million rolls before you
get a 6!).
A random variable X that takes an uncountable number of values is said to
be continuous. An example of a continuous random variable is the random
variable X that measures the depth of a randomly selected location in a
specific lake. The range of X is the interval [0,M ] where M is the maximum
depth of the lake.
A mixed random variable is partially discrete and partially continuous. An
example of a mixed random variable is the random variable that represents
the weight of a tumor when it is possible that there are no tumors (and
consequently the weight would be zero).
We use upper-case letters X, Y, Z, etc. to represent random variables. We use
small letters x, y, z, etc to represent possible values that the corresponding
random variables X, Y, Z, etc. can take. The statement X = x defines an
event consisting of all outcomes with X−measurement equal to x which is
the set {s ∈ Ω : X(s) = x}.

Example 7.1
State whether the random variables are discrete, continuous, or mixed.
(a) A coin is tossed ten times. The random variable X is the number of tails
that are noted.
(b) A light bulb is burned until it burns out. The random variable Y is its
lifetime in hours.
(c) Z is the income of an individual.
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Solution.
(a) X can only take the values 0, 1, ..., 10, so X is a discrete random variable.
(b) Y can take any positive real value, so Y is a continuous random variable.
(c) Z(s) > 0 for a working individual and Z(s) = 0 for a out-of-work indi-
vidual so Z is a mixed random variable

Examples of actuarial related random variables that will be encountered in
the text are:
• the age-at-death from birth
• the time-until-death from insurance policy issue.
• the number of times an insured automobile makes a claim in a one-year
period.
• the amount of the claim of an insured automobile, given a claim is made
(or an accident occurred).
• the value of a specific asset of a company at some future date.
• the total amount of claims in an insurance portfolio.
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8 Discrete Random Variables

Because the value of a random variable is determined by the outcomes of the
experiment, we may assign probabilities to the possible values of the random
variable. The set of all probability values constitutes the distribution of
the random variable.

Probability Mass Function (PMF)
For a discrete random variable X, the distribution of X is described by the
probability distribution or the probability mass function given by the
equation

p(x) = Pr(X = x).

That is, a probability mass function (pmf) gives the probability that a dis-
crete random variable is exactly equal to some value. The pmf can be an
equation, a table, or a graph that shows how probability is assigned to pos-
sible values of the random variable.

Example 8.1
Suppose a variable X can take the values 1, 2, 3, or 4. The probabilities
associated with each outcome are described by the following table:

x 1 2 3 4
p(x) 0.1 0.3 0.4 0.2

Draw the probability histogram.

Solution.
The probability histogram is shown in Figure 8.1



60 A BRIEF REVIEW OF PROBABILITY THEORY

Figure 8.1

Example 8.2
A committee of 4 is to be selected from a group consisting of 5 men and 5
women. Let X be the random variable that represents the number of women
in the committee. Create the probability mass distribution.

Solution.
For x = 0, 1, 2, 3, 4 we have

p(x) =

(
5
x

)(
5

4− x

)
(

10
4

) .

The probability mass function can be described by the table

x 0 1 2 3 4
p(x) 5

210
50
210

100
210

50
210

5
210

Note that if the range of a random variable is Support = {x1, x2, · · · } then

p(x) ≥ 0, x ∈ Support
p(x) = 0, x 6∈ Support
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Moreover, ∑
x∈Support

p(x) = 1.

Expected Value
With the previous sum and the definition of weighted average with the prob-
abilities of Support being the weights, we define the expected value of X
to be

E(X) =
∑

x∈Support

x · p(x).

The expected value of X is also known as the mean value.

Example 8.3
Suppose that an insurance company has broken down yearly automobile
claims for drivers from age 16 through 21 as shown in the following table.

Amount of claim Probability
$ 0 0.80
$ 2000 0.10
$ 4000 0.05
$ 6000 0.03
$ 8000 0.01
$ 10000 0.01

How much should the company charge as its average premium in order to
break even on costs for claims?

Solution.
Let X be the random variable of the amount of claim. Finding the expected
value of X we have

E(X) = 0(.80)+2000(.10)+4000(.05)+6000(.03)+8000(.01)+10000(.01) = 760.

Since the average claim value is $760, the average automobile insurance pre-
mium should be set at $760 per year for the insurance company to break
even

Expectation of a Function of a Random Variable
If we apply a function g(·) to a random variable X, the result is another ran-
dom variable Y = g(X). For example, X2, logX, 1

X
are all random variables

derived from the original random variable X.
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Example 8.4
Let X be a discrete random variable with range {−1, 0, 1} and probabilities
Pr(X = −1) = 0.2,Pr(X = 0) = 0.5, and Pr(X = 1) = 0.3. Compute
E(X2).

Solution.
Let Y = X2. Then the range of Y is {0, 1}. Also, Pr(Y = 0) = Pr(X = 0) =
0.5 and Pr(Y = 1) = Pr(X = −1) + Pr(X = 1) = 0.2 + 0.3 = 0.5 Thus,
E(X2) = 0(0.5)+1(0.5) = 0.5. Note that E(X) = −1(0.2)+0(0.5)+1(0.3) =
0.1 so that E(X2) 6= (E(X))2

Now, if X is a discrete random variable and g(X) = X then we know that

E(g(X)) = E(X) =
∑

x∈Support

xp(x).

This suggests the following result for finding E(g(X)).

Theorem 8.1
If X is a discrete random variable with range D and pmf p(x), then the
expected value of any function g(X) is computed by

E(g(X)) =
∑
x∈D

g(x)p(x).

As a consequence of the above theorem we have the following result.

Corollary 8.1
If X is a discrete random variable, then for any constants a and b we have

E(aX + b) = aE(X) + b.

and

E(aX2 + bX + c) = aE(X2) + bE(X) + c.

Example 8.5
If X is the number of points rolled with a balanced die, find the expected
value of g(X) = 2X2 + 1.
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Solution.
Since each possible outcome has the probability 1

6
, we get

E[g(X)] =
6∑
i=1

(2i2 + 1) · 1

6

=
1

6

(
6 + 2

6∑
i=1

i2

)

=
1

6

(
6 + 2

6(6 + 1)(2 · 6 + 1)

6

)
=

94

3

Now, if g(X) = Xn then we call E(Xn) the nth moment about the origin
of X. Thus, E(X) is the first moment of X. For a discrete random variable
we have

E(Xn) =
∑

x∈Support

xnp(x).

Example 8.6
Let X be a random variable with probability mass function given below

x 0 10 20 50 100
p(x) 0.4 0.3 0.15 0.1 0.05

Calculate the third moment of X.

Solution.
We have

E(X3) =
∑
x

x3p(x)

=03 · 0.4 + 103 · 0.3 + 203 · 0.15 + 503 · 0.1 + 1003 · 0.05

=64000

Variance and Standard Deviation
From the above, we learned how to find the expected values of various func-
tions of random variables. The most important of these are the variance and
the standard deviation which give an idea about how spread out the proba-
bility mass function is about its expected value.
The expected squared distance between the random variable and its mean is
called the variance of the random variable. The positive square root of the
variance is called the standard deviation of the random variable. If σX
denotes the standard deviation then the variance is given by the formula
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Var(X) = σ2
X = E [(X − E(X))2]

The variance of a random variable is typically calculated using the following
formula

Var(X) = E(X2)− (E(X))2.

Example 8.7
We toss a fair coin and let X = 1 if we get heads, X = −1 if we get tails.
Find the variance of X.

Solution.
Since E(X) = 1× 1

2
− 1× 1

2
= 0 and E(X2) = 12 1

2
+ (−1)2 × 1

2
= 1 we find

Var(X) = 1− 0 = 1

A useful identity is given in the following result

Theorem 8.2
If X is a discrete random variable then for any constants a and b we have

Var(aX + b) = a2Var(X)

Example 8.8
This year, Toronto Maple Leafs tickets cost an average of $80 with a variance
of 105 square dollar. Toronto city council wants to charge a 3% tax on all
tickets(i.e., all tickets will be 3% more expensive). If this happens, what
would be the variance of the cost of Toranto Maple Leafs tickets?

Solution.
Let X be the current ticket price and Y be the new ticket price. Then
Y = 1.03X. Hence,

Var(Y ) = Var(1.03X) = 1.032Var(X) = (1.03)2(105) = 111.3945

Example 8.9
Roll one die and let X be the resulting number. Find the variance and
standard deviation of X.

Solution.
We have

E(X) = (1 + 2 + 3 + 4 + 5 + 6) · 1

6
=

21

6
=

7

2
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and

E(X2) = (12 + 22 + 32 + 42 + 52 + 62) · 1

6
=

91

6
.

Thus,

Var(X) =
91

6
− 49

4
=

35

12
The standard deviation is

σ(X) =

√
35

12
≈ 1.7078

Moment Generating Functions (MGF)

One of the applications of Theorem 8.1 is when g(X) = etX . In this case,
the expected value of g(X) is called the moment generating function of
X. For a discrete random variable, the moment generating function of X is
given

MX(t) = E[etX ] =
∑

x∈Support

etxp(x).

Example 8.10
Let X be a discrete random variable with pmf given by the following table

x 1 2 3 4 5
p(x) 0.15 0.20 0.40 0.15 0.10

Find MX(t).

Solution.
We have

MX(t) = 0.15et + 0.20e2t + 0.40e3t + 0.15e4t + 0.10e5t

As the name suggests, the moment generating function can be used to gen-
erate moments E(Xn) for n = 1, 2, · · · . The next result shows how to use
the moment generating function to calculate moments.

Theorem 8.3

E(Xn) = Mn
X(0)

where

Mn
X(0) =

dn

dtn
MX(t) |t=0
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Example 8.11
Consider the random variable X with pmf given by

p(n) =
λn

n!
e−λ, n = 0, 1, 2, · · · .

Find the second moment of X using the above theorem.

Solution.
We can write

MX(t) =E(etX) =
∞∑
n=0

etne−λλn

n!
= e−λ

∞∑
n=0

etnλn

n!

=e−λ
∞∑
n=0

(λet)n

n!
= e−λeλe

t

= eλ(et−1)

Differentiating for the first time we find

M ′
X(t) = λeteλ(et−1).

Differentiating a second time we find

M ′′
X(t) = (λet)2eλ(et−1) + λeteλ(et−1).

Hence,
E(X2) = M ′′

X(0) = λ2 + λ

Cumulative Distribution Function (CDF)
All random variables (discrete and continuous) have a distribution func-
tion or cumulative distribution function, abbreviated cdf. It is a func-
tion giving the probability that the random variable X is less than or equal
to x, for every value x. For a discrete random variable, the cumulative dis-
tribution function is found by summing up the probabilities. That is,

F (a) = Pr(X ≤ a) =
∑
x≤a

p(x).

Example 8.12
Given the following pmf

p(x) =

{
1, if x = a
0, otherwise

Find a formula for F (x) and sketch its graph.
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Solution.
A formula for F (x) is given by

F (x) =

{
0, if x < a
1, otherwise

Its graph is given in Figure 8.2

Figure 8.2

For discrete random variables the cumulative distribution function will al-
ways be a step function with jumps at each value of x that has probability
greater than 0. At the jump points the function is right-continuous.

Example 8.13
Consider the following probability distribution

x 1 2 3 4
p(x) 0.25 0.5 0.125 0.125

Find a formula for F (x) and sketch its graph.

Solution.
The cdf is given by

F (x) =


0, x < 1
0.25, 1 ≤ x < 2
0.75, 2 ≤ x < 3
0.875, 3 ≤ x < 4
1, 4 ≤ x.
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Its graph is given in Figure 8.3

Figure 8.3

Note that the size of the step at any of the values 1,2,3,4 is equal to the
probability that X assumes that particular value. That is, we have

Theorem 8.4
If the range of a discrete random variable X consists of the values x1 < x2 <
· · · < xn then p(x1) = F (x1) and

p(xi) = F (xi)− F (xi−1), i = 2, 3, · · · , n

Example 8.14
If the distribution function of X is given by

F (x) =



0 x < 0
1
16
, 0 ≤ x < 1

5
16
, 1 ≤ x < 2

11
16
, 2 ≤ x < 3

15
16
, 3 ≤ x < 4

1, x ≥ 4

find the pmf of X.

Solution.
Making use of the previous theorem, we get p(0) = 1

16
, p(1) = 1

4
, p(2) =

3
8
, p(3) = 1

4
, and p(4) = 1

16
and 0 otherwise
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9 Continuous Random Variables

In this section, we consider continuous random variables.

Probability Density Function
We say that a random variable is continuous if there exists a nonnega-
tive function f (not necessarily continuous) defined for all real numbers and
having the property that for any set B of real numbers we have

Pr(X ∈ B) =

∫
B

f(x)dx.

We call the function f the probability density function (abbreviated pdf)
of the random variable X.
If we let B = (−∞,∞) = R then∫ ∞

−∞
f(x)dx = Pr[X ∈ (−∞,∞)] = 1.

Now, if we let B = [a, b] then

Pr(a ≤ X ≤ b) =

∫ b

a

f(x)dx.

That is, areas under the probability density function represent probabilities
as illustrated in Figure 9.1.

Figure 9.1

Now, if we let a = b in the previous formula we find

Pr(X = a) =

∫ a

a

f(x)dx = 0.
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It follows from this result that

Pr(a ≤ X < b) = Pr(a < X ≤ b) = Pr(a < X < b) = Pr(a ≤ X ≤ b)

and

Pr(X ≤ a) = Pr(X < a) and Pr(X ≥ a) = Pr(X > a).

Cumulative Distribution Function
The cumulative distribution function (abbreviated cdf) F (t) of the ran-
dom variable X is defined as follows

F (t) = Pr(X ≤ t)

i.e., F (t) is equal to the probability that the variable X assumes values,
which are less than or equal to t. From this definition we can write

F (t) =

∫ t

−∞
f(y)dy.

Geometrically, F (t) is the area under the graph of f to the left of t.

Example 9.1
Find the distribution functions corresponding to the following density func-
tions:

(a)f(x) =
1

π(1 + x2)
, −∞ < x <∞.

(b)f(x) =
e−x

(1 + e−x)2
, −∞ < x <∞.

(c)f(x) =
a− 1

(1 + x)a
, 0 < x <∞.

(d)f(x) =kαxα−1e−kx
α

, 0 < x <∞, k > 0, α > 0.

Solution.
(a)

F (x) =

∫ x

−∞

1

π(1 + y2)
dy

=

[
1

π
arctan y

]x
−∞

=
1

π
arctanx− 1

π
· −π

2

=
1

π
arctanx+

1

2
.
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(b)

F (x) =

∫ x

−∞

e−y

(1 + e−y)2
dy

=

[
1

1 + e−y

]x
−∞

=
1

1 + e−x
.

(c) For x ≥ 0

F (x) =

∫ x

−∞

a− 1

(1 + y)a
dy

=

[
− 1

(1 + y)a−1

]x
0

=1− 1

(1 + x)a−1
.

For x < 0 it is obvious that F (x) = 0, so we could write the result in full as

F (x) =

{
0, x < 0
1− 1

(1+x)a−1 , x ≥ 0.

(d) For x ≥ 0

F (x) =

∫ x

0

kαyα−1e−ky
α

dy

=
[
−e−kyα

]x
0

=1− ke−kxα .

For x < 0 we have F (x) = 0 so that

F (x) =

{
0, x < 0
1− ke−kxα , x ≥ 0

Next, we list the properties of the cumulative distribution function F (t) for
a continuous random variable X.
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Theorem 9.1
The cumulative distribution function of a continuous random variable X
satisfies the following properties:
(a) 0 ≤ F (t) ≤ 1.
(b) F ′(t) = f(t) whenever the derivative exists.
(c) F (t) is a non-decreasing function, i.e. if a < b then F (a) ≤ F (b).
(d) F (t)→ 0 as t→ −∞ and F (t)→ 1 as t→∞.
(e) Pr(a < X ≤ b) = F (b)− F (a).
(f) F is right-continuous.

A pdf needs not be continuous, as the following example illustrates.

Example 9.2
(a) Determine the value of c so that the following function is a pdf.

f(x) =


15
64

+ x
64
, −2 ≤ x ≤ 0

3
8

+ cx, 0 < x ≤ 3
0, otherwise.

(b) Determine Pr(−1 ≤ X ≤ 1).
(c) Find F (x).

Solution.
(a) Observe that f is discontinuous at the points −2 and 0, and is potentially
also discontinuous at the point 3. We first find the value of c that makes f
a pdf.

1 =

∫ 0

−2

(
15

64
+

x

64

)
dx+

∫ 3

0

(
3

8
+ cx

)
dx

=

[
15

64
x+

x2

128

]0

−2

+

[
3

8
x+

cx2

2

]3

0

=
30

64
− 2

64
+

9

8
+

9c

2

=
100

64
+

9c

2

Solving for c we find c = −1
8
.

(b) The probability Pr(−1 ≤ X ≤ 1) is calculated as follows.

Pr(−1 ≤ X ≤ 1) =

∫ 0

−1

(
15

64
+

x

64

)
dx+

∫ 1

0

(
3

8
− x

8

)
dx =

69

128
.
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(c) For −2 ≤ x ≤ 0 we have

F (x) =

∫ x

−2

(
15

64
+

t

64

)
dt =

x2

128
+

15

64
x+

7

16

and for 0 < x ≤ 3

F (x) =

∫ 0

−2

(
15

64
+

x

64

)
dx+

∫ x

0

(
3

8
− t

8

)
dt =

7

16
+

3

8
x− 1

16
x2.

Hence the full cdf is

F (x) =


0, x < −2
x2

128
+ 15

64
x+ 7

16
, −2 ≤ x ≤ 0

7
16

+ 3
8
x− 1

16
x2, 0 < x ≤ 3

1, x > 3.

Observe that at all points of discontinuity of the pdf, the cdf is continuous.
That is, even when the pdf is discontinuous, the cdf is continuous

Remark 9.1
The intuitive interpretation of the p.d.f. is that for small ε > 0 we have

Pr(a ≤ X ≤ a+ ε) = FX(a+ ε)− FX(a) =

∫ a+ε

a

fX(x)dx ≈ εf(a).

In particular,

Pr
(
a− ε

2
≤ X ≤ a+

ε

2

)
≈ εf(a).

This means that the probability that X will be contained in an interval of
length ε around the point a is approximately εf(a). Thus, f(a) is a measure
of how likely it is that the random variable will be near a.

Expected Value and Variance of X
We define the expected value of a continuous random variable X by the
improper integral

E(X) =

∫ ∞
−∞

xf(x)dx

provided that the improper integral converges.
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Example 9.3
Find E(X) when the density function of X is

f(x) =

{
2x, if 0 ≤ x ≤ 1
0, otherwise.

Solution.
Using the formula for E(X) we find

E(X) =

∫ ∞
−∞

xf(x)dx =

∫ 1

0

2x2dx =
2

3

The expected value formula of X is a special case of the formula

E[g(X)] =

∫ ∞
−∞

g(x)f(x)dx.

Example 9.4 ‡
An insurance policy reimburses a loss up to a benefit limit of 10 . The
policyholder’s loss, X, follows a distribution with density function:

f(x) =

{
2
x3
, x > 1

0, otherwise.

What is the expected value of the benefit paid under the insurance policy?

Solution.
Let Y denote the claim payments. Then

Y =

{
X, 1 < X ≤ 10
10, X ≥ 10.

It follows that

E(Y ) =

∫ 10

1

x
2

x3
dx+

∫ ∞
10

10
2

x3
dx

= −2

x

∣∣∣∣10

1

−10

x2

∣∣∣∣∞
10

= 1.9

The variance of a continuous random variable is given by

Var(X) =

∫ ∞
−∞

(x− E(X))2f(x)dx = E(X2)− (E(X))2.

Again, the positive square root of the variance is called the standard devi-
ation of the random variable and is denoted by σ.
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Example 9.5
Let X be a continuous random variable with pdf

f(x) =

{
4xe−2x, x > 0
0, otherwise.

For this example, you might find the identity
∫∞

0
tne−tdt = n! useful.

(a) Find E(X).
(b) Find the variance of X.
(c) Find the probability that X < 1.

Solution.
(a) Using the substitution t = 2x we find

E(X) =

∫ ∞
0

4x2e−2xdx =
1

2

∫ ∞
0

t2e−tdt =
2!

2
= 1.

(b) First, we find E(X2). Again, letting t = 2x we find

E(X2) =

∫ ∞
0

4x3e−2xdx =
1

4

∫ ∞
0

t3e−tdt =
3!

4
=

3

2
.

Hence,

Var(X) = E(X2)− (E(X))2 =
3

2
− 1 =

1

2
.

(c) We have

Pr(X < 1) = Pr(X ≤ 1) =

∫ 1

0

4xe−2xdx =

∫ 2

0

te−tdt = −(t+ 1)e−t
∣∣2
0

= 1−3e−2

Parallel to the nth moment of a discrete random variable, the nth moment of
a continuous random variable is given by

E(Xn) =

∫ ∞
−∞

xnf(x)dx.

The moment generating function for a continuous random variable X is given
by

MX(t) = E(etX) =

∫ ∞
−∞

etxf(x)dx.
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Example 9.6
Let X be the random variable on the interval [a, b] with pdf f(x) = 1

b−a for
x > 0 and 0 otherwise. Find MX(t).

Solution.
We have

MX(t) =

∫ b

a

etx

b− a
dx =

1

t(b− a)
[etb − eta]
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10 Raw and Central Moments

Several quantities can be computed from the pdf that describe simple charac-
teristics of the distribution. These are called moments. The most common
is the mean, the first moment about the origin, and the variance, the second
moment about the mean. The mean is a measure of the centrality of the
distribution and the variance is a measure of the spread of the distribution
about the mean.
The nth moment E(Xn) of a random variable X is also known as the nth

moment about the origin or the nth raw moment.
By contrast, the quantity µn = E[(X − E(X))n] is called the nth central
moment of X or the nth moment about the mean. For a continuous
random variable X we have

µn =

∫ ∞
−∞

(x− E(X))nf(x)dx

and for a discrete random variable we have

µn =
∑
x

(x− E(X))np(x).

Note that Var(X) is the second central moment of X.

Example 10.1
Let X be a continuous random variable with pdf given by f(x) = 3

8
x2 for

0 ≤ x ≤ 2 and 0 otherwise. Find the second central moment of X.

Solution.
We first find the mean of X. We have

E(X) =

∫ 2

0

xf(x)dx =

∫ 2

0

3

8
x3dx =

3

32
x4

∣∣∣∣2
0

= 1.5.

The second central moment is

µ2 =

∫ 2

0

(x− 1.5)2f(x)dx

=

∫ 2

0

3

8
x2(x− 1.5)2dx

=
3

8

[
x5

5
− 0.75x4 + 0.75x3

]2

0

= 0.15
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Departure from Normality: Coefficient of Skewness
The third central moment, µ3, is called the skewness and is a measure of
the symmetry of the pdf. A distribution, or data set, is symmetric if it looks
the same to the left and right of the mean.
A measure of skewness is given by the coefficient of skewness γ1 :

γ1 =
µ3

σ3
.

That is, γ1 is the ratio of the third central moment to the cube of the standard
deviation. Equivalently, γ1 is the third central moment of the standardized
variable

X∗ =
X − µ
σ

.

If γ1 is close to zero then the distribution is symmetric about its mean such as
the normal distribution. A positively skewed distribution has a “tail” which
is pulled in the positive direction. A negatively skewed distribution has a
“tail” which is pulled in the negative direction (See Figure 10.1).

Figure 10.1

Example 10.2
A random variable X has the following pmf:

x 120 122 124 150 167 245
p(x) 1

4
1
12

1
6

1
12

1
12

1
3

Find the coefficient of skewness of X.

Solution.
We first find the mean of X :

µ = E(X) = 120×1

4
+122× 1

12
+124×1

6
+150× 1

12
+167× 1

12
+245×1

3
=

2027

12
.
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The second raw moment is

E(X2) = 1202×1

4
+1222× 1

12
+1242×1

6
+1502× 1

12
+1672× 1

12
+2452×1

3
=

379325

12
.

Thus, the variance of X is

Var(X) =
379325

12
− 4108729

144
=

443171

144

and the standard deviation is

σ =

√
443171

144
= 55.475908183.

The third central moment is

µ3 =

(
120− 2027

12

)3

× 1

4
+

(
122− 2027

12

)3

× 1

12
+

(
124− 2027

12

)3

× 1

6

+

(
150− 2027

12

)3

× 1

12
+

(
167− 2027

12

)3

× 1

12
+

(
245− 2027

12

)3

× 1

3

=93270.81134.

Thus,

γ1 =
93270.81134

55.475908183
= 0.5463016252

Coefficient of Kurtosis
The fourth central moment, µ4, is called the kurtosis and is a measure of
peakedness/flatness of a distribution with respect to the normal distribution.
A measure of kurtosis is given by the coefficient of kurtosis:

γ2 =
E[(X − µ))4]

σ4
− 3.

The coefficient of kurtosis of the normal distribution is 0. A negative value
of γ2 indicates that the distribution is flatter compared to the normal distri-
bution, and a positive value indicates a higher peak (relative to the normal
distribution) around the mean value.(See Figure 10.2)
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Figure 10.2

Example 10.3
A random variable X has the following pmf:

x 120 122 124 150 167 245
p(x) 1

4
1
12

1
6

1
12

1
12

1
3

Find the coefficient of kurtosis of X.

Solution.
We first find the fourth central moment.

µ4 =

(
120− 2027

12

)4

× 1

4
+

(
122− 2027

12

)4

× 1

12
+

(
124− 2027

12

)4

× 1

6

+

(
150− 2027

12

)4

× 1

12
+

(
167− 2027

12

)4

× 1

12
+

(
245− 2027

12

)4

× 1

3

=13693826.62.

Thus,

γ2 =
13693826.62

55.475908183
− 3 = 1.44579641− 3 = −1.55420359

Coefficient of Variation
Some combinations of the raw moments and central moments that are also
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commonly used. One such combination is the coefficient of variation
(CV (X)) of a random variable X which is defined as the ratio of the standard
deviation to the mean:

CV (X) =
σ

µ
, µ = E(X).

It is an indication of the size of the standard deviation relative to the mean,
for the given random variable.
Often the coefficient of variation is expressed as a percentage. Thus, it ex-
presses the standard deviation as a percentage of the sample mean and it is
unitless. Statistically, the coefficient of variation is very useful when com-
paring two or more sets of data that are measured in different units of mea-
surement.

Example 10.4
Let X be a random variable with mean of 4 meters and standard deviation
of 0.7 millimeters. Find the coefficient of variation of X.

Solution.
The coefficient of variation is

CV (X) =
0.7

4000
= 0.0175%

Example 10.5
A random variable X has the following pmf:

x 120 122 124 150 167 245
p(x) 1

4
1
12

1
6

1
12

1
12

1
3

Find the coefficient of variation of X.

Solution.
We know that µ = 2027

12
= 168.9166667 and σ = 55.47590818. Thus, the

coefficient of variation of X is

CV (X) =
55.47590818

168.9166667
= 0.3284217754
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11 Median, Mode, Percentiles, and Quantiles

In addition to the information provided by the moments of a distribution,
some other metrics such as the median, the mode, the percentile, and the
quantile provide useful information.

Median of a Random Variable
The median of a discrete random variable X is the number M such that
Pr(X ≤M) ≥ 0.50 and Pr(X ≥M) ≥ 0.50.

Example 11.1
Let the random variable X represent the number of telephone lines in use by
the technical support center of a software manufacturer at a particular time
of day. Suppose that the probability mass function (pmf) of X is given by:

x 0 1 2 3 4 5
p(x) 0.35 0.20 0.15 0.15 0.10 0.05

Find the median of X.

Solution.
Since Pr(X ≤ 1) = 0.55 and Pr(X ≥ 1) = 0.65, 1 is the median of X

In the case of a continuous random variable X, the median is the number
M such that Pr(X ≤ M) = Pr(X ≥ M) = 0.5. Generally, M is found by
solving the equation F (M) = 0.5 where F is the cdf of X.

Example 11.2
Let X be a continuous random variable with pdf f(x) = 1

b−a for a < x < b
and 0 otherwise. Find the median of X.

Solution.
We must find a number M such that

∫M
a

dx
b−a = 0.5. This leads to the equation

M−a
b−a = 0.5. Solving this equation we find M = a+b

2

Remark 11.1
A discrete random variable might have many medians. For example, let X be
the discrete random variable with pmf given by p(x) =

(
1
2

)x
, x = 1, 2, · · · .

Then any number 1 < M < 2 satisfies Pr(X ≤M) = Pr(X ≥M) = 0.5.
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Mode of a Random Variable
The mode is defined as the value that maximizes the probability mass func-
tion p(x) (discrete case) or the probability density function f(x) (continuous
case.)

Example 11.3
Let X be the discrete random variable with pmf given by p(x) =

(
1
2

)x
, x =

1, 2, · · · and 0 otherwise. Find the mode of X.

Solution.
The value of x that maximizes p(x) is x = 1. Thus, the mode of X is 1

Example 11.4
Let X be the continuous random variable with pdf given by f(x) = 0.75(1−
x2) for −1 ≤ x ≤ 1 and 0 otherwise. Find the mode of X.

Solution.
The pdf is maximum for x = 0. Thus, the mode of X is 0

Percentiles and Quantiles

For a random variable X and 0 < p < 1, the 100pth percentile (or the pth

quantile) is the number x such

Pr(X < x) ≤ p ≤ Pr(X ≤ x).

For a continuous random variable, this is the solution to the equation F (x) =
p. For example, the 90th percentile separates the top 10% from the bottom
90%.

Example 11.5
An insurer’s annual weather-related loss, X, is a random variable with density
function

f(x) =

{
2.5(200)2.5

x3.5
x > 200

0 otherwise

Calculate the difference between the 25th and 75th percentiles of X.

Solution.
First, the cdf is given by

F (x) =

∫ x

200

2.5(200)2.5

t3.5
dt
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If Q1 is the 25th percentile then it satisfies the equation

F (Q1) =
1

4

or equivalently

1− F (Q1) =
3

4

This leads to

3

4
=

∫ ∞
Q1

2.5(200)2.5

t3.5
dt = −

(
200

t

)2.5
∣∣∣∣∣
∞

Q1

=

(
200

Q1

)2.5

.

Solving for Q1 we find Q1 = 200(4/3)0.4 ≈ 224.4. Similarly, the third quartile
(i.e. 75th percentile) is given by Q3 = 348.2, The interquartile range (i.e., the
difference between the 25th and 75th percentiles) is Q3−Q1 = 348.2−224.4 =
123.8

Example 11.6
Let X be the random variable with pdf f(x) = 1

b−a for a < x < b and 0

otherwise. Find the pth quantile of X.

Solution.
We have

p = Pr(X ≤ x) =

∫ x

a

dt

b− a
=
x− a
b− a

.

Solving this equation for x, we find x = a+ (b− a)p
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12 Mixed Distributions

Thus far we have only considered distributions that are either discrete or
continuous, the types encountered in most applications. However, on some
occasions, combinations of the two types of random variables are found;
that is, positive probability is assigned to each of certain points and also is
spread over one or more intervals of outcomes, each point of which has zero
probability.

Example 12.1
The distribution function for a random variable with a mixed distribution is
given by

F (x) =


0, for x < 0
1− 0.75e−x, for 0 ≤ x < 1
1, for x ≥ 1.

(a) Sketch the graph of F (x).
(b) What is Pr(0 ≤ x < 1)?

Solution.
(a) For a point x at which a random variable X has positive probability,

F (x)− F (x−) = Pr(X ≤ x)− Pr(X < x) = Pr(X = x) > 0

where

F (x−) = lim
t→x−

F (t).

So to sketch the graph of F (x), let’s look at

F (0−) = lim
x→0−

F (x) = 0

F (0) =1− 0.75 = 0.25

F (1−) = lim
x→1−

F (x) = 1− 0.75e−1 ≈ 0.72

F (1) =1
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The graph is shown in Figure 12.1.

Figure 12.1

Note that for this random variable, X, positive probability is assigned to
the points x = 0 and x = 1 [its discrete part] and to the interval (0, 1) [its
continuous part].
(b) We have

Pr(0 ≤ x < 1) = F (1−)− F (0) = 1− 0.75e−1 − 0.25 ≈ 0.47

Suppose that X has a mixed distribution. Specifically, assume that its range
S is the union of disjoint sets D and C such that the conditional distribution
of X given X in D is discrete with density pD(x) and the conditional distribu-
tion of X given X in C is continuous with density fC(x). Let p = Pr(X in D).
The expected value of X is E(X) = p

∑
x∈D xpx(x) + (1− p)

∫
C
xfC(x)dx =

E[X|X in D]Pr(X in D) + E[X|X in C]Pr(X in C).

Example 12.2
The distribution function for a random variable with a mixed distribution is
given by

F (x) =


0, for x < 0
x2

4
, for 0 ≤ x < 1

1
2
, for 1 ≤ x < 2
x
3
, for 2 ≤ x < 3

1, for x ≥ 3.

(a) Sketch the graph of F (x).
(b) Find the expected value of X.
(c) Find the variance of X.
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Solution.
(a) The graph is shown in Figure 12.2.

Figure 12.2

Note that for this random variable, X, positive probability is assigned to the
points x = 1 and x = 2 [its discrete part] and to the intervals (0, 1) and (2, 3)
[its continuous part].
(b) Basically we need to find the probability mass function of X, p(x) =
Pr(X = x), where X is discrete, and the probability density function of
X, f(x) = F ′(x), where X is continuous; multiply each by x; and then sum
where X is discrete and integrate where X is continuous. Thus,

E(X) =

∫ 1

0

x · x
2
dx+ 1 · p(1) + 2 · p(2) +

∫ 3

2

x · 1

3
dx

=
x3

6

∣∣∣∣1
0

+ 1 · 1

4
+ 2 · 1

6
+
x2

6

∣∣∣∣3
2

=
19

12
.

(c) The second moment of X is

E(X2) =

∫ 1

0

x2 · x
2
dx+ 1 · p(1) + 4 · p(2) +

∫ 3

2

x2 · 1

3
dx

=
x4

8

∣∣∣∣1
0

+ 1 · 1

4
+ 2 · 1

6
+
x3

9

∣∣∣∣3
2

=
227

72
.

Thus,

Var(X) =
227

72
−
(

19

12

)2

=
31

48
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13 A List of Commonly Encountered Discrete

R.V

Next, we review some important discrete random variables that the reader
should be familiar with.

13.1 Discrete Uniform Distribution

Let X be a discrete random variable with support {x1, x2, · · · , xn} such that
each xi has the same probability. Such a random variable is called a discrete
uniform distribution. Its pmf is defined by

p(xi) =
1

n
, i = 1, 2, · · · , n.

The expected value of this random variable is

E(X) =
x1 + x2 + · · ·+ xn

n

and the variance is

Var(X) =
1

n2

 n∑
i=1

x2
i +

(
n∑
i=1

xi

)2
 .

The moment generating function of a discrete uniform distribution is given
by

MX(t) =
1

n

n∑
i=1

etxi .

Example 13.1
Consider the random variable with support equals to {1, 2, · · · , n}.
(a) Find the expected value and the variance of X.
(b) Find the moment generating function of X.

Solution.
(a) The expected value is

E(X) =
n∑
i=1

i

n
=
n(n+ 1)

2n
=
n+ 1

2
.
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The second mooment of X is

E(X2) =
n∑
i=1

i2

n
=

(n+ 1)(2n+ 1)

6
.

The variance of X is

Var(X) = E(X2)− (E(X))2 =
(n+ 1)(2n+ 1)

6
− (n+ 1)2

4
=
n2 − 1

12
.

(b) The moment generating function is

MX(t) =
n∑
i=1

eit

n
=
et

n

n−1∑
i=0

eit =
et

n
· 1− ent

1− et
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13.2 The Binomial Distribution

Binomial experiments are problems that consist of a fixed number of
trials n, with each trial having exactly two possible outcomes: Success and
failure. The probability of a success is denoted by p and that of a failure
by q. Moreover, p and q are related by the formula

p+ q = 1.

Also, we assume that the trials are independent, that is what happens to
one trial does not affect the probability of a success in any other trial.
Let X represent the number of successes that occur in n trials. Then X is
said to be a binomial random variable with parameters (n, p). If n = 1
then X is said to be a Bernoulli random variable.

Example 13.2
Privacy is a concern for many users of the Internet. One survey showed that
79% of Internet users are somewhat concerned about the confidentiality of
their e-mail. Based on this information, we would like to find the probability
that for a random sample of 12 Internet users, 7 are concerned about the
privacy of their e-mail. What are the values of n, p, q, r?

Solutions.
This is a binomial experiment with 12 trials. If we assign success to an In-
ternet user being concerned about the privacy of e-mail, the probability of
success is 79%. We are interested in the probability of 7 successes. We have
n = 12, p = 0.79, q = 1− 0.79 = 0.21, r = 7

The pmf of the binomial distribution is given by

p(x) = Pr(X = r) = C(n, r)pxqn−x.

The expected value is
E(X) = np

and the variance
Var(X) = np(1− p).

The moment generating function of a binomial distribution is

MX(t) = (q + pet)n.
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13.3 The Negative Binomial Distribution

Consider a statistical experiment where a success occurs with probability p
and a failure occurs with probability q = 1− p. If the experiment is repeated
indefinitely and the trials are independent of each other, then the random
variable X, the number of trials at which the xth success occurs, has a neg-
ative binomial distribution with parameters x and p. The probability mass
function of X is

p(n) = Pr(X = n) = C(n− 1, x− 1)px(1− p)n−x,

where n = x, x + 1, · · · (In order to have x successes there must be at least
x trials.)

Example 13.3
A research scientist is inoculating rabbits, one at a time, with a disease until
he finds two rabbits which develop the disease. If the probability of contract-
ing the disease 1

6
, what is the probability that eight rabbits are needed?

Solution.
Let X be the number of rabbits needed until the first rabbit to contract the
disease. Then X follows a negative binomial distribution with x = 2 and
p = 1

6
. Thus,

Pr(8 rabbits are needed) = C(8− 1, 2− 1)

(
1

6

)2(
5

6

)6

≈ 0.0651

The expected value of X is

E(X) =
x

p

and the variance

Var(X) =
x(1− p)

p2
.

The moment generating function of a negative binomial distribution is given
by

MX(t) =

(
p

1− (1− p)et

)n−x
.
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13.4 The Geometric Distribution

A geometric random variable with parameter p, 0 < p < 1 has a probability
mass function

p(n) = p(1− p)n−1, n = 1, 2, · · · .

A geometric random variable models the number of successive Bernoulli trials
that must be performed to obtain the first “success”. For example, the
number of flips of a fair coin until the first head appears follows a geometric
distribution.

Example 13.4
If you roll a pair of fair dice, the probability of getting an 11 is 1

18
. If you roll

the dice repeatedly, what is the probability that the first 11 occurs on the
8th roll?

Solution.
Let X be the number of rolls on which the first 11 occurs. Then X is a
geometric random variable with parameter p = 1

18
. Thus,

Pr(X = 8) =

(
1

18

)(
1− 1

18

)7

= 0.0372

The expected value is

E(X) =
1

p

and the variance

Var(X) =
(1− p)
p2

.

The moment generating function of a geometric distribution is given by

MX(t) =
p

1− (1− p)et
.
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13.5 The Poisson Distribution

A random variable X is said to be a Poisson random variable with parameter
λ > 0 if its probability mass function has the form

p(k) = e−λ
λk

k!
, k = 0, 1, 2, · · ·

where λ indicates the average number of successes per unit time or space.

Example 13.5
The number of false fire alarms in a suburb of Houston averages 2.1 per day.
Assuming that a Poisson distribution is appropriate, what is the probability
that 4 false alarms will occur on a given day?

Solution.
The probability that 4 false alarms will occur on a given day is given by

Pr(X = 4) = e−2.1 (2.1)4

4!
≈ 0.0992

The expected value of X is
E(X) = λ

and the variance
Var(X) = λ.

The moment generating function of the Poisson distribution is given by

MX(t) = eλ(et−1).

Poisson Approximation to the Binomial Random Variable.

Theorem 13.1
Let X be a binomial random variable with parameters n and p. If n→∞ and
p→ 0 so that np = λ = E(X) remains constant then X can be approximated
by a Poisson distribution with parameter λ.
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14 A List of Commonly Encountered Contin-

uous R.V

In this section, we discuss four important continuous distributions: Uniform
distribution, normal distribution, exponential distribution, and Gamma dis-
tribution.

14.1 Continuous Uniform Distribution

The simplest continuous distribution is the uniform distribution. A continu-
ous random variable X is said to be uniformly distributed over the interval
a ≤ x ≤ b if its pdf is given by

f(x) =

{
1
b−a , if a ≤ x ≤ b

0, otherwise.

Since F (x) =
∫ x
−∞ f(t)dt, the cdf is given by

F (x) =


0, if x ≤ a
x−a
b−a , if a < x < b

1, if x ≥ b.

Figure 14.1 presents a graph of f(x) and F (x).

Figure 14.1

If a = 0 and b = 1 then X is called the standard uniform random variable.
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Example 14.1
You are the production manager of a soft drink bottling company. You
believe that when a machine is set to dispense 12 oz., it really dispenses
11.5 to 12.5 oz. inclusive. Suppose the amount dispensed has a uniform
distribution. What is the probability that less than 11.8 oz. is dispensed?

Solution.
Since f(x) = 1

12.5−11.5
= 1,

Pr(11.5 ≤ X ≤ 11.8) = area of rectangle of base 0.3 and height 1 = 0.3

The expected value of X is

E(X) =
a+ b

2

and the variance

Var(X) =
(b− a)2

12
.

The moment generating function of a continuous uniform distribution is given
by

MX(t) =
ebt − eat

t(b− a)
.

Note that the median of X is the same as the expected value (see Example
11.2). Since the pdf of X is constant, the uniform distribution does not have
a mode.
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14.2 Normal and Standard Normal Distributions

A normal random variable with parameters µ and σ2 has a pdf

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 , −∞ < x <∞.

This density function is a bell-shaped curve that is symmetric about µ (See
Figure 14.2).

Figure 14.2

Example 14.2
The width of a bolt of fabric is normally distributed with mean 950mm and
standard deviation 10 mm. What is the probability that a randomly chosen
bolt has a width between 947 and 950 mm?

Solution.
Let X be the width (in mm) of a randomly chosen bolt. Then X is normally
distributed with mean 950 mm and variation 100 mm. Thus,

Pr(947 ≤ X ≤ 950) =
1

10
√

2π

∫ 950

947

e−
(x−950)2

200 dx ≈ 0.118

If X is a normal distribution with parameter (µ, σ2) then its expected value
is

E(X) = µ

and its variance is
Var(X) = σ2.
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Example 14.3
A college has an enrollment of 3264 female students. Records show that
the mean height of these students is 64.4 inches and the standard deviation
is 2.4 inches. Since the shape of the relative histogram of sample college
students approximately normally distributed, we assume the total population
distribution of the height X of all the female college students follows the
normal distribution with the same mean and the standard deviation. Find
Pr(66 ≤ X ≤ 68).

Solution.
If you want to find out the percentage of students whose heights are between
66 and 68 inches, you have to evaluate the area under the normal curve from
66 to 68 as shown in Figure 14.3.

Figure 14.3

Thus,

Pr(66 ≤ X ≤ 68) =
1√

2π(2.4)

∫ 68

66

e
− (x−64.4)2

2(2.4)2 dx ≈ 0.1846

IfX is a normal random variable with parameters (µ, σ2) then the standerdized
random variable Z = X−µ

σ
is a normal distribution with expected value 0 and

variance 1. Such a random variable is called the standard normal random
variable. Its probability density function is given by

fZ(x) =
1√
2π
e−

x2

2 .

Note that

fX(x) =
1

σ
fZ

(
x− µ
σ

)
. (14.1)
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Now, fZ does not have a closed form antiderivative and as a result probability
values can not be found by integrating fz. Instead, numerical integration
techniques are used to find values of FZ(x) that are listed in a table for
look-up as needed. Thus, probabilities involving normal random variables
are reduced to the ones involving standard normal variable. For example

Pr(X ≤ a) = P

(
X − µ
σ

≤ a− µ
σ

)
= FZ

(
a− µ
σ

)
.
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Area under the Standard Normal Curve from −∞ to x

x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
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Example 14.4
Let X be a normal random variable with parameters µ and σ2. Find
(a)Pr(µ− σ ≤ X ≤ µ+ σ).
(b)Pr(µ− 2σ ≤ X ≤ µ+ 2σ).
(c)Pr(µ− 3σ ≤ X ≤ µ+ 3σ).

Solution.
(a) We have

Pr(µ− σ ≤ X ≤ µ+ σ) =Pr(−1 ≤ Z ≤ 1)

=Φ(1)− Φ(−1)

=2(0.8413)− 1 = 0.6826.

Thus, 68.26% of all possible observations lie within one standard deviation
to either side of the mean.
(b) We have

Pr(µ− 2σ ≤ X ≤ µ+ 2σ) =Pr(−2 ≤ Z ≤ 2)

=Φ(2)− Φ(−2)

=2(0.9772)− 1 = 0.9544.

Thus, 95.44% of all possible observations lie within two standard deviations
to either side of the mean.
(c) We have

Pr(µ− 3σ ≤ X ≤ µ+ 3σ) =Pr(−3 ≤ Z ≤ 3)

=Φ(3)− Φ(−3)

=2(0.9987)− 1 = 0.9974.

Thus, 99.74% of all possible observations lie within three standard deviations
to either side of the mean. The above are summarized in Figure 14.4
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Figure 14.4

The moment generating function of a normal distribution with parameters
(µ, σ2) is given by

MX(t) = eµt+
σ2t2

2 .
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14.3 Exponential Distribution

An exponential random variable with parameter λ > 0 is a random variable
with pdf

f(x) =

{
λe−λx, if x ≥ 0
0, if x < 0

and cdf

F (X) = 1− e−λx, x > 0.

The expected value is

E(X) =
1

λ

and the variance is

Var(X) =
1

λ2
.

Exponential random variables are often used to model arrival times, waiting
times, and equipment failure times.

Example 14.5
The time between machine failures at an industrial plant has an exponential
distribution with an average of 2 days between failures. Suppose a failure
has just occurred at the plant. Find the probability that the next failure
won’t happen in the next 5 days.

Solution.
Let X denote the time between accidents. The mean time to failure is 2
days. Thus, λ = 0.5. Now, Pr(X > 5) = 1− Pr(X ≤ 5) =

∫∞
5

0.5e−0.5xdx ≈
0.082085

Example 14.6
The mileage (in thousands of miles) which car owners get with a certain kind
of radial tire is a random variable having an exponential distribution with
mean 40. Find the probability that one of these tires will last at most 30
thousand miles.

Solution.
Let X denote the mileage (in thousdands of miles) of one these tires. Then
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X is an exponential distribution with paramter λ = 1
40
. Thus,

Pr(X ≤ 30) =

∫ 30

0

1

40
e−

x
40dx

= −e−
x
40

∣∣30

0
= 1− e−

3
4 ≈ 0.5276

The moment generating function of an exponential distribution with param-
eter λ is given by

MX(t) =
1

1− λt
.
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14.4 Gamma Distribution

The Gamma function is defined by

Γ(α) =

∫ ∞
0

e−yyα−1dy, α > 0.

For example,

Γ(1) =

∫ ∞
0

e−ydy = −e−y |∞0 = 1.

For α > 1 we can use integration by parts with u = yα−1 and dv = e−ydy to
obtain

Γ(α) =− e−yyα−1 |∞0 +

∫ ∞
0

e−y(α− 1)yα−2dy

=(α− 1)

∫ ∞
0

e−yyα−2dy

=(α− 1)Γ(α− 1)

If n is a positive integer greater than 1 then by applying the previous relation
repeatedly we find

Γ(n) =(n− 1)Γ(n− 1)

=(n− 1)(n− 2)Γ(n− 2)

= · · ·
=(n− 1)(n− 2) · · · 3 · 2 · Γ(1) = (n− 1)!

A Gamma random variable with parameters α > 0 and λ > 0 has a pdf

f(x) =

{
λe−λx(λx)α−1

Γ(α)
, if x ≥ 0

0, if x < 0.

The expected value of the gamma distribution with parameters (λ, α) is

E(X) =
α

λ

and the variance
V ar(X) =

α

λ2
.
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It is easy to see that when the parameter set is restricted to (α, λ) = (1, λ)
the gamma distribution becomes the exponential distribution.
The gamma random variable can be used to model the waiting time until a
number of random events occurs. The number of random events sought is α
in the formula of f(x).

Example 14.7
In a certain city, the daily consumption of electric power in millions of kilo-
watt hours can be treated as a random variable having a gamma distribution
with α = 3 and λ = 0.5.
(a) What is the random variable? What is the expected daily consumption?
(b) If the power plant of this city has a daily capacity of 12 million kWh,
what is the probability that this power supply will be inadequate on a given
day? Set up the appropriate integral but do not evaluate.

Solution.
(a) The random variable is the daily consumption of power in kilowatt hours.
The expected daily consumption is the expected value of a gamma distributed
variable with parameters α = 3 and λ = 1

2
which is E(X) = α

λ
= 6.

(b) The probability is 1
23Γ(3)

∫∞
12
x2e−

x
2 dx = 1

16

∫∞
12
x2e−

x
2 dx

The moment generating function of a gamma distribution with parameters
(λ, α) is given by

MX(t) =

(
λ

λ− t

)α
.
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15 Bivariate Random Variables

There are many situations which involve the presence of several random vari-
ables and we are interested in their joint behavior. For example:
(i) A meteorological station may record the wind speed and direction, air
pressure and the air temperature.
(ii) Your physician may record your height, weight, blood pressure, choles-
terol level and more.
This section is concerned with the joint probability structure of two or more
random variables defined on the same sample space.

15.1 Joint CDFs

Suppose that X and Y are two random variables defined on the same sample
space Ω. The joint cumulative distribution function of X and Y is the
function

FXY (x, y) = Pr(X ≤ x, Y ≤ y) = Pr({e ∈ Ω : X(e) ≤ x and Y (e) ≤ y}).

Example 15.1
Consider the experiment of throwing a fair coin and a fair die simultaneously.
The sample space is

Ω = {(H, 1), (H, 2), · · · , (H, 6), (T, 1), (T, 2), · · · , (T, 6)}.

Let X be the number of head showing on the coin, X ∈ {0, 1}. Let Y be
the number showing on the die, Y ∈ {1, 2, 3, 4, 5, 6}. Thus, if e = (H, 1) then
X(e) = 1 and Y (e) = 1. Find FXY (1, 2).

Solution.

FXY (1, 2) =Pr(X ≤ 1, Y ≤ 2)

=Pr({(H, 1), (H, 2), (T, 1), (T, 2)})

=
4

12
=

1

3

In what follows, individual cdfs will be referred to as marginal distribu-
tions. Relationships between the joint cdf and the marginal distributions as
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well as properties of the joint cdf are listed next:
• FX(x) = limy→∞ FXY (x, y) = FXY (x,∞).
• FY (y) = limx→∞ FXY (x, y) = FXY (∞, y).
• FXY (∞,∞) = Pr(X <∞, Y <∞) = 1.
• FXY (−∞, y) = 0.
• FXY (x,−∞) = 0.

All joint probability statements about X and Y can be answered in terms of
their joint distribution functions. For example,

Pr(X > x, Y > y) =1− Pr({X > x, Y > y}c)
=1− Pr({X > x}c ∪ {Y > y}c)
=1− [Pr({X ≤ x} ∪ {Y ≤ y})
=1− [Pr(X ≤ x) + Pr(Y ≤ y)− Pr(X ≤ x, Y ≤ y)]

=1− FX(x)− FY (y) + FXY (x, y)

Also, if a1 < a2 and b1 < b2 then

Pr(a1 < X ≤ a2, b1 < Y ≤ b2) =Pr(X ≤ a2, Y ≤ b2)− Pr(X ≤ a2, Y ≤ b1)

−Pr(X ≤ a1, Y ≤ b2) + Pr(X ≤ a1, Y ≤ b1)

=FXY (a2, b2)− FXY (a1, b2)− FXY (a2, b1) + FXY (a1, b1)
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15.2 Bivariate Distributions: The Discrete Case

If X and Y are both discrete random variables, we define the joint proba-
bility mass function of X and Y by

pXY (x, y) = Pr(X = x, Y = y).

The marginal probability mass function of X can be obtained from pXY (x, y)
by

pX(x) = Pr(X = x) =
∑

y:pXY (x,y)>0

pXY (x, y).

Similarly, we can obtain the marginal pmf of Y by

pY (y) = Pr(Y = y) =
∑

x:pXY (x,y)>0

pXY (x, y).

This simply means to find the probability that X takes on a specific value we
sum across the row associated with that value. To find the probability that
Y takes on a specific value we sum the column associated with that value as
illustrated in the next example.

Example 15.2
A fair coin is tossed 4 times. Let the random variable X denote the number of
heads in the first 3 tosses, and let the random variable Y denote the number
of heads in the last 3 tosses.
(a) What is the joint pmf of X and Y ?
(b) What is the probability 2 or 3 heads appear in the first 3 tosses and 1 or
2 heads appear in the last three tosses?
(c) What is the joint cdf of X and Y ?
(d) What is the probability less than 3 heads occur in both the first and last
3 tosses?
(e) Find the probability that one head appears in the first three tosses.

Solution.
(a) The joint pmf is given by the following table

X\Y 0 1 2 3 pX(.)
0 1/16 1/16 0 0 2/16
1 1/16 3/16 2/16 0 6/16
2 0 2/16 3/16 1/16 6/16
3 0 0 1/16 1/16 2/16
pY (.) 2/16 6/16 6/16 2/16 1
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(b) Pr((X, Y ) ∈ {(2, 1), (2, 2), (3, 1), (3, 2)}) = p(2, 1) + p(2, 2) + p(3, 1) +
p(3, 2) = 3

8

(c) The joint cdf is given by the following table

X\Y 0 1 2 3
0 1/16 2/16 2/16 2/16
1 2/16 6/16 8/16 8/16
2 2/16 8/16 13/16 14/16
3 2/16 8/16 14/16 1

(d) Pr(X < 3, Y < 3) = F (2, 2) = 13
16

(e) Pr(X = 1) = Pr((X, Y ) ∈ {(1, 0), (1, 1), (1, 2), (1, 3)}) = 1/16 + 3/16 +
2/16 = 3

8
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15.3 Bivariate Distributions: The Continuous Case

Two random variables X and Y are said to be jointly continuous if there
exists a function fXY (x, y) ≥ 0 with the property that for every subset C of
R2 we have

Pr((X, Y ) ∈ C) =

∫∫
(x,y)∈C

fXY (x, y)dxdy

The function fXY (x, y) is called the joint probability density function
of X and Y.
If A and B are any sets of real numbers then by letting C = {(x, y) : x ∈
A, y ∈ B} we have

Pr(X ∈ A, Y ∈ B) =

∫
B

∫
A

fXY (x, y)dxdy

As a result of this last equation we can write

FXY (x, y) =Pr(X ∈ (−∞, x], Y ∈ (−∞, y])

=

∫ y

−∞

∫ x

−∞
fXY (u, v)dudv

It follows upon differentiation that

fXY (x, y) =
∂2

∂y∂x
FXY (x, y)

whenever the partial derivatives exist.

Example 15.3
The cumulative distribution function for the joint distribution of the contin-
uous random variables X and Y is FXY (x, y) = 0.2(3x3y + 2x2y2), 0 ≤ x ≤
1, 0 ≤ y ≤ 1. Find fXY (1

2
, 1

2
).

Solution.
Since

fXY (x, y) =
∂2

∂y∂x
FXY (x, y) = 0.2(9x2 + 8xy)

we find fXY (1
2
, 1

2
) = 17

20



15 BIVARIATE RANDOM VARIABLES 111

Now, if X and Y are jointly continuous then they are individually continuous,
and their probability density functions can be obtained as follows:

Pr(X ∈ A) =Pr(X ∈ A, Y ∈ (−∞,∞))

=

∫
A

∫ ∞
−∞

fXY (x, y)dydx

=

∫
A

fX(x, y)dx

where

fX(x) =

∫ ∞
−∞

fXY (x, y)dy

is thus the probability density function of X. Similarly, the probability den-
sity function of Y is given by

fY (y) =

∫ ∞
−∞

fXY (x, y)dx.

Example 15.4
Let X and Y be random variables with joint pdf

fXY (x, y) =

{
1
4
, −1 ≤ x, y ≤ 1

0, Otherwise.

Determine
(a) Pr(X2 + Y 2 < 1),
(b) Pr(2X − Y > 0),
(c) Pr(|X + Y | < 2).

Solution.
(a)

Pr(X2 + Y 2 < 1) =

∫ 2π

0

∫ 1

0

1

4
rdrdθ =

π

4
.

(b)

Pr(2X − Y > 0) =

∫ 1

−1

∫ 1

y
2

1

4
dxdy =

1

2
.

Note that Pr(2X − Y > 0) is the area of the region bounded by the lines
y = 2x, x = −1, x = 1, y = −1 and y = 1. A graph of this region will help
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you understand the integration process used above.
(c) Since the square with vertices (1, 1), (1,−1), (−1, 1), (−1,−1) is com-
pletely contained in the region −2 < x+ y < 2, we have

Pr(|X + Y | < 2) = 1
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15.4 Independent Random Variables

Let X and Y be two random variables defined on the same sample space S.
We say that X and Y are independent random variables if and only if for
any two sets of real numbers A and B we have

Pr(X ∈ A, Y ∈ B) = Pr(X ∈ A)Pr(Y ∈ B) (15.1)

That is the events E = {X ∈ A} and F = {Y ∈ B} are independent.
The following theorem expresses independence in terms of pdfs.

Theorem 15.1
If X and Y are discrete random variables, then X and Y are independent if
and only if

pXY (x, y) = pX(x)pY (y)

where pX(x) and pY (y) are the marginal pmfs of X and Y respectively.
Similar result holds for continuous random variables where sums are replaced
by integrals and pmfs are replaced by pdfs.

Example 15.5
A month of the year is chosen at random (each with probability 1

12
). Let X

be the number of letters in the month’s name, and let Y be the number of
days in the month (ignoring leap year).
(a) Write down the joint pdf of X and Y. From this, compute the pdf of X
and the pdf of Y.
(b) Find E(Y ).
(c) Are the events “X ≤ 6” and “Y = 30” independent?
(d) Are X and Y independent random variables?

Solution.
(a) The joint pdf is given by the following table

Y\ X 3 4 5 6 7 8 9 pY (y)
28 0 0 0 0 0 1

12
0 1

12

30 0 1
12

1
12

0 0 1
12

1
12

4
12

31 1
12

1
12

1
12

1
12

2
12

1
12

0 7
12

pX(x) 1
12

2
12

2
12

1
12

2
12

3
12

1
12

1
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(b) E(Y ) =
(

1
12

)
× 28 +

(
4
12

)
× 30 +

(
7
12

)
× 31 = 365

12

(c) We have Pr(X ≤ 6) = 6
12

= 1
2
, Pr(Y = 30) = 4

12
= 1

3
, Pr(X ≤ 6, Y =

30) = 2
12

= 1
6
. Since, Pr(X ≤ 6, Y = 30) = Pr(X ≤ 6)Pr(Y = 30), the two

events are independent.
(d) Since pXY (5, 28) = 0 6= pX(5)pY (28) = 1

6
× 1

12
, X and Y are dependent

In the jointly continuous case the condition of independence is equivalent
to

fXY (x, y) = fX(x)fY (y).

It follows from the previous theorem, that if you are given the joint pdf of
the random variables X and Y, you can determine whether or not they are
independent by calculating the marginal pdfs of X and Y and determining
whether or not the relationship fXY (x, y) = fX(x)fY (y) holds.

Example 15.6
The joint pdf of X and Y is given by

fXY (x, y) =

{
4e−2(x+y), 0 < x <∞, 0 < y <∞
0, Otherwise.

Are X and Y independent?

Solution.
Marginal density fX(x) is given by

fX(x) =

∫ ∞
0

4e−2(x+y)dy = 2e−2x

∫ ∞
0

2e−2ydy = 2e−2x, x > 0

Similarly, the mariginal density fY (y) is given by

fY (y) =

∫ ∞
0

4e−2(x+y)dx = 2e−2y

∫ ∞
0

2e−2xdx = 2e−2y, y > 0

Now since

fXY (x, y) = 4e−2(x+y) = [2e−2x][2e−2y] = fX(x)fY (y)

X and Y are independent

The following theorem provides a necessary and sufficient condition for two
random variables to be independent.
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Theorem 15.2
Two continuous random variables X and Y are independent if and only if
their joint probability density function can be expressed as

fXY (x, y) = h(x)g(y), −∞ < x <∞,−∞ < y <∞.

The same result holds for discrete random variables.

Example 15.7
The joint pdf of X and Y is given by

fXY (x, y) =

{
xye−

(x2+y2)
2 , 0 ≤ x, y <∞

0, Otherwise.

Are X and Y independent?

Solution.
We have

fXY (x, y) = xye−
(x2+y2)

2 = xe−
x2

2 ye−
y2

2

By the previous theorem, X and Y are independent

Example 15.8
The joint pdf of X and Y is given by

fXY (x, y) =

{
x+ y, 0 ≤ x, y < 1
0, Otherwise.

Are X and Y independent?

Solution.
Let

I(x, y) =

{
1, 0 ≤ x < 1, 0 ≤ y < 1
0, otherwise.

Then
fXY (x, y) = (x+ y)I(x, y)

which clearly does not factor into a part depending only on x and another
depending only on y. Thus, by the previous theoremX and Y are dependent
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15.5 Conditional Distributions: The Discrete Case

If X and Y are discrete random variables then we define the conditional
probability mass function of X given that Y = y by

pX|Y (x|y) =
pXY (x, y)

pY (y)
(15.2)

provided that pY (y) > 0.

Example 15.9
Suppose you and me are tossing two fair coins independently, and we will
stop as soon as each one of us gets a head.
(a) Find the chance that we stop simultaneously.
(b) Find the conditional distribution of the number of coin tosses given that
we stop simultaneously.

Solution.
(a) Let X be the number of times I have to toss my coin before getting a head,
and Y be the number of times you have to toss your coin before getting a
head. So X and Y are independent identically distributed geometric random
variables with parameter p = 1

2
. Thus,

Pr(X = Y ) =
∞∑
k=1

P (X = k, Y = k) =
∞∑
k=1

P (X = k)P (Y = k)

=
∞∑
k=1

1

4k
=

1

3

(b) Notice that given the event [X = Y ] the number of coin tosses is well
defined and it is X (or Y ). So for any k ≥ 1 we have

Pr(X = k|Y = k) =
Pr(X = k, Y = k)

Pr(X = Y )
=

1
4k

1
3

=
3

4

(
1

4

)k−1

.

Thus given [X = Y ], the number of tosses follows a geometric distribution
with parameter p = 3

4

Sometimes it is not the joint distribution that is known, but rather, for
each y, one knows the conditional distribution of X given Y = y. If one also
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knows the distribution of Y, then one can recover the joint distribution using
(15.2). We also mention one more use of (15.2):

pX(x) =
∑
y

pXY (x, y)

=
∑
y

pX|Y (x|y)pY (y) (15.3)

Thus, given the conditional distribution of X given Y = y for each possible
value y, and the (marginal) distribution of Y, one can compute the (marginal)
distribution of X, using (15.3).
The conditional cumulative distribution of X given that Y = y is defined by

FX|Y (x|y) =Pr(X ≤ x|Y = y)

=
∑
a≤x

pX|Y (a|y)

Note that if X and Y are independent, then the conditional mass function
and the conditional distribution function are the same as the unconditional
ones. This follows from the next theorem.

Theorem 15.3
If X and Y are independent, then

pX|Y (x|y) = pX(x).

Example 15.10
Given the following table.

X\ Y Y=1 Y=2 Y=3 pX(x)
X=1 .01 .20 .09 .3
X=2 .07 .00 .03 .1
X=3 .09 .05 .06 .2
X=4 .03 .25 .12 .4
pY (y) .2 .5 .3 1

Find pX|Y (x|y) where Y = 2.
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Solution.

pX|Y (1|2) =
pXY (1, 2)

pY (2)
=
.2

.5
= 0.4

pX|Y (2|2) =
pXY (2, 2)

pY (2)
=

0

.5
= 0

pX|Y (3|2) =
pXY (3, 2)

pY (2)
=
.05

.5
= 0.1

pX|Y (4|2) =
pXY (4, 2)

pY (2)
=
.25

.5
= 0.5

pX|Y (x|2) =
pXY (x, 2)

pY (2)
=

0

.5
= 0, x > 4
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15.6 Conditional Distributions: The Continuous Case

Let fX|Y (x|y) denote the probability density function of X given that Y = y.
The conditional density function of X given Y = y is

fX|Y (x|y) =
fXY (x, y)

fY (y)

provided that fY (y) > 0.

Example 15.11
Suppose X and Y have the following joint density

fXY (x, y) =

{
1
2
, |X|+ |Y | < 1

0, otherwise.

(a) Find the marginal distribution of X.
(b) Find the conditional distribution of Y given X = 1

2
.

Solution.
(a) Clearly, X only takes values in (−1, 1). So fX(x) = 0 if |x| ≥ 1. Let
−1 < x < 1,

fX(x) =

∫ ∞
−∞

1

2
dy =

∫ 1−|x|

−1+|x|

1

2
dy = 1− |x|.

(b) The conditional density of Y given X = 1
2

is then given by

fY |X(y|x) =
f(1

2
, y)

fX(1
2
)

=

{
1, −1

2
< y < 1

2

0, otherwise.

Thus, fY |X follows a uniform distribution on the interval
(
−1

2
, 1

2

)
Example 15.12
Suppose that X is uniformly distributed on the interval [0, 1] and that, given
X = x, Y is uniformly distributed on the interval [1− x, 1].
(a) Determine the joint density fXY (x, y).
(b) Find the probability Pr(Y ≥ 1

2
).

Solution.
Since X is uniformly distributed on [0, 1], we have fX(x) = 1, 0 ≤ x ≤ 1.
Similarly, since, given X = x, Y is uniformly distributed on [1 − x, 1], the



120 A BRIEF REVIEW OF PROBABILITY THEORY

conditional density of Y given X = x is 1
1−(1−x)

= 1
x

on the interval [1−x, 1];

i.e., fY |X(y|x) = 1
x
, 1− x ≤ y ≤ 1 for 0 ≤ x ≤ 1. Thus

fXY (x, y) = fX(x)fY |X(y|x) =
1

x
, 0 < x < 1, 1− x < y < 1

(b) Using Figure 15.1 we find

Pr(Y ≥ 1

2
) =

∫ 1
2

0

∫ 1

1−x

1

x
dydx+

∫ 1

1
2

∫ 1

1
2

1

x
dydx

=

∫ 1
2

0

1− (1− x)

x
dx+

∫ 1

1
2

1/2

x
dx

=
1 + ln 2

2

Figure 15.1

Note that ∫ ∞
−∞

fX|Y (x|y)dx =

∫ ∞
−∞

fXY (x, y)

fY (y)
dx =

fY (y)

fY (y)
= 1.

The conditional cumulative distribution function of X given Y = y is
defined by

FX|Y (x|y) = Pr(X ≤ x|Y = y) =

∫ x

−∞
fX|Y (t|y)dt.

From this definition, it follows

fX|Y (x|y) =
∂

∂x
FX|Y (x|y).
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Example 15.13
The joint density of X and Y is given by

fXY (x, y) =

{
15
2
x(2− x− y), 0 ≤ x, y ≤ 1

0, otherwise.

Compute the conditional density of X, given that Y = y for 0 ≤ y ≤ 1.

Solution.
The marginal density function of Y is

fY (y) =

∫ 1

0

15

2
x(2− x− y)dx =

15

2

(
2

3
− y

2

)
.

Thus,

fX|Y (x|y) =
fXY (x, y)

fY (y)

=
x(2− x− y)

2
3
− y

2

=
6x(2− x− y)

4− 3y

Theorem 15.4
Continuous random variables X and Y are independent if and only if

fX|Y (x|y) = fX(x).

Example 15.14
Let X and Y be two continuous random variables with joint density function

fXY (x, y) =

{
c, 0 ≤ y < x ≤ 2
0, otherwise.

(a) Find fX(x), fY (y) and fX|Y (x|1).
(b) Are X and Y independent?

Solution.
(a) We have

fX(x) =

∫ x

0

cdy = cx, 0 ≤ x ≤ 2
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fY (y) =

∫ 2

y

cdx = c(2− y), 0 ≤ y ≤ 2

and

fX|Y (x|1) =
fXY (x, 1)

fY (1)
=
c

c
= 1, 0 ≤ x ≤ 1.

(b) Since fX|Y (x|1) 6= fX(x), X and Y are dependent
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15.7 The Expected Value of g(X, Y )

Suppose that X and Y are two random variables taking values in SX and SY
respectively. For a function g : SX × SY → R the expected value of g(X, Y )
is

E(g(X, Y ) =
∑
x∈SX

∑
y∈SY

g(x, y)pXY (x, y).

if X and Y are discrete with joint probability mass function pXY (x, y) and

E(g(X, Y )) =

∫ ∞
−∞

∫ ∞
−∞

g(x, y)fXY (x, y)dxdy

if X and Y are continuous with joint probability density function fXY (x, y).

Example 15.15
Let X and Y be two discrete random variables with joint probability mass
function:

pXY (1, 1) = 1
3
, pXY (1, 2) = 1

8
, pXY (2, 1) = 1

2
, pXY (2, 2) = 1

24

Find the expected value of g(X, Y ) = XY.

Solution.
The expected value of the function g(X, Y ) = XY is calculated as follows:

E(g(X, Y )) =E(XY ) =
2∑

x=1

2∑
y=1

xypXY (x, y)

=(1)(1)(
1

3
) + (1)(2)(

1

8
) + (2)(1)(

1

2
) + (2)(2)(

1

24
)

=
7

4

The following result provides a test of independence for two random variables:
If X and Y are independent random variables then for any function h and g
we have

E(g(X)h(Y )) = E(g(X))E(h(Y )).

In particular, E(XY ) = E(X)E(Y ).
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Example 15.16
Suppose a box contains 10 green, 10 red and 10 black balls. We draw 10
balls from the box by sampling with replacement. Let X be the number of
green balls, and Y be the number of black balls in the sample.
(a) Find E(XY ).
(b) Are X and Y independent? Explain.

Solution.
First we note that X and Y are binomial with n = 10 and p = 1

3
.

(a) Let Xi be 1 if we get a green ball on the ith draw and 0 otherwise, and
Yj be the event that in jth draw we got a black ball. Trivially, Xi and Yj are
independent if 1 ≤ i 6= j ≤ 10. Moreover, XiYi = 0 for all 1 ≤ i ≤ 10. Since
X = X1 +X2 + · · ·X10 and Y = Y1 + Y2 + · · ·Y10 we have

XY =
∑ ∑

1≤i 6=j≤10

XiYj.

Hence,

E(XY ) =
∑ ∑

1≤i 6=j≤10

E(XiYj) =
∑ ∑

1≤i 6=j≤10

E(Xi)E(Yj) = 90×1

3
×1

3
= 10.

(b) Since E(X) = E(Y ) = 10
3
, we have E(XY ) 6= E(X)E(Y ) so X and Y

are dependent

Covariance
Now, when two random variables are dependent one is interested in the
strength of relationship between the two variables. One measure is given by
the covariance:

Cov(X, Y ) = E[(X − E(X))(Y − E(Y ))].

An alternative expression that is sometimes more convenient is

Cov(X, Y ) = E(XY )− E(X)E(Y ).

Recall that for independent X, Y we have E(XY ) = E(X)E(Y ) and so
Cov(X, Y ) = 0. However, the converse statement is false as there exists
random variables that have covariance 0 but are dependent. For example,
let X be a random variable such that

Pr(X = 0) = Pr(X = 1) = Pr(X = −1) =
1

3
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and define

Y =

{
0, if X 6= 0
1, otherwise.

Thus, Y depends on X.
Clearly, XY = 0 so that E(XY ) = 0. Also,

E(X) = (0 + 1− 1)
1

3
= 0

and thus
Cov(X, Y ) = E(XY )− E(X)E(Y ) = 0.

Useful facts are collected in the next result.

Theorem 15.5
(a) Cov(X, Y ) = Cov(Y,X) (Symmetry)
(b) Cov(X,X) = V ar(X)
(c) Cov(aX, Y ) = aCov(X, Y )

(d) Cov
(∑n

i=1Xi,
∑m

j=1 Yj

)
=
∑n

i=1

∑m
j=1Cov(Xi, Yj)

Example 15.17
Given that E(X) = 5, E(X2) = 27.4, E(Y ) = 7, E(Y 2) = 51.4 and Var(X +
Y ) = 8, find Cov(X + Y,X + 1.2Y ).

Solution.
By definition,

Cov(X + Y,X + 1.2Y ) = E((X + Y )(X + 1.2Y ))− E(X + Y )E(X + 1.2Y )

Using the properties of expectation and the given data, we get

E(X + Y )E(X + 1.2Y ) =(E(X) + E(Y ))(E(X) + 1.2E(Y ))

=(5 + 7)(5 + (1.2) · 7) = 160.8

E((X + Y )(X + 1.2Y )) =E(X2) + 2.2E(XY ) + 1.2E(Y 2)

=27.4 + 2.2E(XY ) + (1.2)(51.4)

=2.2E(XY ) + 89.08

Thus,

Cov(X + Y,X + 1.2Y ) = 2.2E(XY ) + 89.08− 160.8 = 2.2E(XY )− 71.72
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To complete the calculation, it remains to find E(XY ). To this end we make
use of the still unused relation Var(X + Y ) = 8

8 =Var(X + Y ) = E((X + Y )2)− (E(X + Y ))2

=E(X2) + 2E(XY ) + E(Y 2)− (E(X) + E(Y ))2

=27.4 + 2E(XY ) + 51.4− (5 + 7)2 = 2E(XY )− 65.2

so E(XY ) = 36.6. Substituting this above gives Cov(X + Y,X + 1.2Y ) =
(2.2)(36.6)− 71.72 = 8.8
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15.8 Conditional Expectation

Since conditional probability measures are probabilitiy measures (that is,
they possess all of the properties of unconditional probability measures),
conditional expectations inherit all of the properties of regular expectations.
Let X and Y be random variables. We define conditional expectation of
X given that Y = y by

E(X|Y = y} =
∑
x

xP (X = x|Y = y)

=
∑
x

xpX|Y (x|y)

where pX|Y is the conditional probability mass function of X, given that
Y = y which is given by

pX|Y (x|y) = P (X = x|Y = y) =
p(x, y)

pY (y)
.

In the continuous case we have

E(X|Y = y) =

∫ ∞
−∞

xfX|Y (x|y)dx

where

fX|Y (x|y) =
fXY (x, y)

fY (y)
.

Example 15.18
Suppose X and Y are discrete random variables with values 1, 2, 3, 4 and
joint p.m.f. given by

f(x, y) =


1
16
, if x = y

2
16
, if x < y

0, if x > y.

for x, y = 1, 2, 3, 4.
(a) Find the joint probability distribution of X and Y.
(b) Find the conditional expectation of Y given that X = 3.

Solution.
(a) The joint probability distribution is given in tabular form
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X \ Y 1 2 3 4 pX(x)
1 1

16
2
16

2
16

2
16

7
16

2 0 1
16

2
16

2
16

5
16

3 0 0 1
16

2
16

3
16

4 0 0 0 1
16

1
16

pY (y) 1
16

3
16

5
16

7
16

1

(b) We have

E(Y |X = 3) =
4∑
y=1

ypY |X(y|3)

=
pXY (3, 1)

pX(3)
+

2pXY (3, 2)

pX(3)
+

3pXY (3, 3)

pX(3)
+

4pXY (3, 4)

pX(3)

=3 · 1

3
+ 4 · 2

3
=

11

3

Example 15.19
Suppose that the joint density of X and Y is given by

fXY (x, y) =
e−

x
y e−y

y
, x, y > 0.

Compute E(X|Y = y).

Solution.
The conditional density is found as follows

fX|Y (x|y) =
fXY (x, y)

fY (y)

=
fXY (x, y)∫∞

−∞ fXY (x, y)dx

=
(1/y)e−

x
y e−y∫∞

0
(1/y)e−

x
y e−ydx

=
(1/y)e−

x
y∫∞

0
(1/y)e−

x
y dx

=
1

y
e−

x
y
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Hence,

E(X|Y = y) =

∫ ∞
0

x

y
e−

x
y dx = −

[
xe−

x
y

∣∣∣∞
0
−
∫ ∞

0

e−
x
y dx

]
=−

[
xe−

x
y + ye−

x
y

]∞
0

= y

Notice that if X and Y are independent then pX|Y (x|y) = p(x) so that
E(X|Y = y) = E(X).
Next, let φX(y) = E(X|Y = y) denote the function of the random variable
Y whose value at Y = y is E(X|Y = y). Clearly, φX(y) is a random variable.
We denote this random variable by E(X|Y ). The expectation of this random
variable is just the expectation of X as shown in the following theorem.

Theorem 15.6 (Double Expectation Property)

E(X) = E(E(X|Y ))

Example 15.20
Suppose that E(X|Y ) = 18 − 3

5
Y and E(Y |X) = 10 − 1

3
X. Find E(X) and

E(Y ).

Solution.
Take the expectation on both sides and use the double expectation theorem
we find E(X) = 18 − 3

5
E(Y ) and E(Y ) = 10 − 1

3
E(X). Solving this system

of two equations in two unknowns we find E(X) = 15 and E(Y ) = 5.

Example 15.21
Let X be an exponential random variable with λ = 5 and Y a uniformly
distributed random variable on (−3, X). Find E(Y ).

Solution.
First note that for given X = x, Y in uniformly distributed on (−3, x) so
that E(Y |X = x) = x−3

2
. Now, using the double expectation identity we find

E(Y ) =

∫ ∞
0

E(Y |X = x)fX(x)dx =

∫ ∞
0

x− 3

2
· 5e−5xdx = −1.4

The Conditional Variance
Next, we introduce the concept of conditional variance. Just as we have
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defined the conditional expectation of X given that Y = y, we can define the
conditional variance of X given Y as follows

Var(X|Y = y) = E[(X − E(X|Y ))2|Y = y].

Note that the conditional variance is a random variable since it is a function
of Y.

Theorem 15.7
Let X and Y be random variables. Then
(a) Var(X|Y ) = E(X2|Y )− [E(X|Y )]2

(b) E(Var(X|Y )) = E[E(X2|Y )− (E(X|Y ))2] = E(X2)− E[(E(X|Y ))2].
(c) Var(E(X|Y )) = E[(E(X|Y ))2]− (E(X))2.
(d) Law of Total Variance: Var(X) = E[Var(X|Y )] + Var(E(X|Y )).

Example 15.22
Suppose that X and Y have joint distribution

fXY (x, y) =

{
3y2

x3
, 0 < y < x < 1

0, otherwise.

Find E(X), E(X2), V ar(X), E(Y |X), V ar(Y |X), E[V ar(Y |X)], V ar[E(Y |X)],
and V ar(Y ).

Solution.
First we find marginal density functions.

fX(x) =

∫ x

0

3y2

x3
dy = 1, 0 < x < 1

fY (y) =

∫ 1

y

3y2

x3
dx =

3

2
(1− y2), 0 < y < 1

Now,

E(X) =

∫ 1

0

xdx =
1

2

E(X2) =

∫ 1

0

x2dx =
1

3

Thus,

V ar(X) =
1

3
− 1

4
=

1

12
.
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Next, we find conditional density of Y given X = x

fY |X(x|y) =
fXY (x, y)

fX(x)
=

3y2

x3
, 0 < x < y < 1

Hence,

E(Y |X) =

∫ x

0

3y3

x3
dx =

3

4
x

and

E(Y 2|X) =

∫ x

0

3y4

x3
dx =

3

5
x2

Thus,

V ar(Y |X) = E(Y 2|X)− [E(Y |X)]2 =
3

5
x2 − 9

16
x2 =

3

80
x2

Also,

V ar[E(Y |X)] = V ar

(
3

4
x

)
=

9

16
V ar(X) =

9

16
× 1

12
=

3

64

and

E[V ar(Y |X)] = E

(
3

80
X2

)
=

3

80
E(X2) =

3

80
× 1

3
=

1

80
.

Finally,

V ar(Y ) = V ar[E(Y |X)] + E[V ar(Y |X)] =
19

320
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16 Sums of Independent Random Variables

In actuarial science one encounters models where a random variable is the
sum of a finite number of mutually independent random variables. For ex-
ample, in risk theory one considers two types of risk models:
(i) The collective risk model represents the total loss random variable S
as a sum of a random number N of the individual payment amounts. That
is,

S = X1 +X2 + · · ·+XN ,

where the X ′is are called the individual or single-loss random variables.
For this model, it is assumed that the subscripted Xs are independent and
identically distributed.
(ii) The individual risk model represents the aggregate loss as a sum,
S = X1 + X2 + · · · + Xn of a fixed number of insurance contracts, N. The
random variables X1, X2, · · · , XN are assumed to be independent but are not
necessarily identically distributed.
In what follows, we will review related properties of the random variable S
from probability theory. We will assume that S is the sum of N mutually
independent random variables.

16.1 Moments of S

Because of independence, the following results hold:

E(X1 +X2 + · · ·+XN) = E(X1) + E(X2) + · · ·+ E(XN)

Var(X1 +X2 + · · ·+XN) = Var(X1) + Var(X2) + · · ·+ Var(XN)

MX1+X2+···+XN = MX1 ·MX2 · · ·MXN .
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16.2 Distributions Closed Under Convolution

When the subscripted independent random variables Xs belong to a same
family of distributions and the resulting sum S belongs to the same family,
we say that the family is closed under convolution.
One way to show that a family is closed under convolutions is to use an im-
portant property of moment generating functions which asserts the existence
of a one-to-one correspondence of cdfs and mgfs. That is, if random vari-
ables X and Y both have moment generating functions MX(t) and MY (t)
that exist in some neighborhood of zero and if MX(t) = MY (t) for all t in
this neighborhood, then X and Y have the same distributions.
We next list examples of families of distributions closed under convolution.

Normal Random Variables
Suppose that X1, X2, · · · , XN are independent normal random variables with
parameters (µ1, σ

2
1), (µ2, σ

2
2), · · · , (µN , σ2

N). Then

MS(t) = e0.5σ2
1t

2+µ1t · · · e0.5σ2
N t

2+µN t = e0.5(σ2
1+···+σ2

N )t2+(µ1+···+µN )t.

Hence, S is a normal random variable with parameters (µ1 + · · ·+ µN , σ
2
1 +

· · ·+ σ2
N).

Poisson Random Variables
Suppose that X1, X2, · · · , XN are independent Poisson random variables with
parameters λ1, · · · , λN . Then

MS(t) = eλ1(et−1) · · · eλN (et−1) = e(λ1+···+λN )(et−1).

Hence, S is a Poisson random variable with parameter λ1 + · · ·+ λN .

Binomial Random Variables
Suppose that X1, X2, · · · , XN are independent binomial random variables
with parameters (n1, p), (n2, p), · · · , (nN , p). Then

MS(t) = (q + pet)n1 · · · (q + pet)nN = (q + pet)n1+n2+···nN .

Hence, S is a binomial random variable with parameters (n1 + · · ·+ nN , p).
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Negative Binomial Random Variables
Suppose that X1, X2, · · · , XN are independent negative binomial random
variables with parameters (r1, p), (r2, p), · · · , (rN , p). Then

MS(t) =

(
p

1− (1− p)et

)n−r1
· · ·
(

p

1− (1− p)et

)n−r2
=

(
p

1− (1− p)et

)n−(r1+r2+···rN )

Hence, S is a negative binomial random variable with parameters (r1 + · · ·+
rN , p). In particular, the family of geometric random variables is closed under
convolution.

Gamma Random Variables
Suppose that X1, X2, · · · , XN are independent gamma random variables with
parameters (λ, α1), (λ, α2), · · · , (λ, αN). Then

MS(t) =

(
λ

λ− t

)α1

· · ·
(

λ

λ− t

)αN
=

(
λ

λ− t

)α1+···αN

Hence, S is a gamma random variable with parameters (λ, α1 + · · · + αN).
In particular, the family of exponential random variables is closed under
convolution.
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16.3 Distribution of S : Convolutions

In this section we turn to the important question of determining the distribu-
tion of a sum of independent random variables in terms of the distributions
of the individual constituents.

Discrete Case
In this subsection we consider only sums of discrete random variables, re-
serving the case of continuous random variables for the next subsection. We
consider here only discrete random variables whose values are nonnegative
integers. Their distribution mass functions are then defined on these inte-
gers.
Suppose X and Y are two independent discrete random variables with pmf
pX(x) and pY (y) respectively. We would like to determine the pmf of the
random variable X + Y. To do this, we note first that for any nonnegative
integer n we have

{X + Y = n} =
n⋃
k=0

Ak

where Ak = {X = k} ∩ {Y = n− k}. Note that Ai ∩ Aj = ∅ for i 6= j. Since
the Ai’s are pairwise disjoint and X and Y are independent, we have

P (X + Y = n) =
n∑
k=0

P (X = k)P (Y = n− k).

Thus,

pX+Y (n) = pX(n) ∗ pY (n)

where pX(n) ∗ pY (n) is called the convolution of pX and pY .

Example 16.1
A die is rolled twice. Let X and Y be the outcomes, and let Z = X + Y be
the sum of these outcomes. Find the probability mass function of Z.

Solution. Note that X and Y have the common pmf :

x 1 2 3 4 5 6
pX 1/6 1/6 1/6 1/6 1/6 1/6



136 A BRIEF REVIEW OF PROBABILITY THEORY

The probability mass function of Z is then the convolution of pX with itself.
Thus,

Pr(Z = 2) =pX(1)pX(1) =
1

36

Pr(Z = 3) =pX(1)pX(2) + pX(2)pX(1) =
2

36

Pr(Z = 4) =pX(1)pX(3) + pX(2)pX(2) + pX(3)pX(1) =
3

36

Continuing in this way we would find Pr(Z = 5) = 4/36,Pr(Z = 6) =
5/36,Pr(Z = 7) = 6/36,Pr(Z = 8) = 5/36,Pr(Z = 9) = 4/36,Pr(Z = 10) =
3/36,Pr(Z = 11) = 2/36, and Pr(Z = 12) = 1/36

Continuous Case
In this subsection we consider the continuous version of the problem posed in
the discrete case: How are sums of independent continuous random variables
distributed?
Let X and Y be two independent continuous random variables with probabil-
ity density functions fX(x) and fY (y), respectively. Assume that both fX(x)
and fY (y) are defined for all real numbers. Then the probability density
function of X + Y is the convolution of fX(x) and fY (y). That is,

fX+Y (a) =

∫ ∞
−∞

fX(a− y)fY (y)dy =

∫ ∞
−∞

fY (a− x)fX(x)dx.

Example 16.2
Let X and Y be two independent random variables uniformly distributed on
[0, 1]. Compute the distribution of X + Y.

Solution.
Since

fX(a) = fY (a) =

{
1, 0 ≤ a ≤ 1
0, otherwise.

we have

fX+Y (a) =

∫ 1

0

fX(a− y)dy.

Now the integrand is 0 unless 0 ≤ a − y ≤ 1(i.e. unless a − 1 ≤ y ≤ a) and
then it is 1. So if 0 ≤ a ≤ 1 then

fX+Y (a) =

∫ a

0

dy = a.



16 SUMS OF INDEPENDENT RANDOM VARIABLES 137

If 1 < a < 2 then

fX+Y (a) =

∫ 1

a−1

dy = 2− a.

Hence,

fX+Y (a) =


a, 0 ≤ a ≤ 1
2− a, 1 < a < 2
0, otherwise
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16.4 Estimating the Distribution of S : The Central
Limit Theorem

If the distribution of S is hard to evaluate analytically, we can use estimation
technique thanks to the Central Limit Theorem which says that the sum of
large number of independent identically distributed random variables is well-
approximated by a normal random variable. More formally, we have

Theorem 16.1
Let X1, X2, · · · be a sequence of independent and identically distributed ran-
dom variables, each with mean µ and variance σ2. Then,

Pr

(√
n

σ

(
X1 +X2 + · · ·+Xn

n
− µ

)
≤ a

)
→ 1√

2π

∫ a

−∞
e−

x2

2 dx

as n→∞.

The Central Limit Theorem says that regardless of the underlying distribu-
tion of the variables Xi, so long as they are independent, the distribution of√
n
σ

(
X1+X2+···+Xn

n
− µ

)
converges to the same, normal, distribution.

The central limit theorem suggests approximating the random variable

√
n

σ

(
X1 +X2 + · · ·+Xn

n
− µ

)
with a standard normal random variable. This implies that the sample mean
has approximately a normal distribution with mean µ and variance σ2

n
.

Also, a sum of n independent and identically distributed random variables
with common mean µ and variance σ2 can be approximated by a normal
distribution with mean nµ and variance nσ2.

Example 16.3
The weight of an arbitrary airline passenger’s baggage has a mean of 20
pounds and a variance of 9 pounds. Consider an airplane that carries 200
passengers, and assume every passenger checks one piece of luggage. Estimate
the probability that the total baggage weight exceeds 4050 pounds.
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Solution.
Let Xi =weight of baggage of passenger i. Thus,

Pr

(
200∑
i=1

Xi > 4050

)
=Pr

(∑200
i=1Xi − 200(20)

3
√

200
>

4050− 20(200)

3
√

200

)
≈Pr(Z > 1.179) = 1− Pr(Z ≤ 1.179)

=1− Φ(1.179) = 1− 0.8810 = 0.119
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17 Compound Probability Distributions

Let N be a random variable. Let X1, X2, · · · , XN be mutually independent
identically distributed (i.e., have the same distribution) random variable with
common expected value E(X) and common variance Var(X). We also assume
that N and all the Xi are independent. Define

S = X1 +X2 + · · ·+XN .

In probability theory, S is said to have a compound distribution. The
variable N is called the primary distribution and the X ′is are called the
secondary distributions.
In the context of risk theory, S will be referred to as a collective risk model.
The variable S stands for the total claim amount of a portfolio regarded as
a collective that produces a random number N of claims in a certain time
period. The Xi is the ith claim.

17.1 Mean and Variance of S

We first calculate the expected value of S by using the double expectation
property: EN [E(S|N)] = E(S). Using the assumptions on the X ′is and N,
we can write

E(S|N) = E(X1|N) + · · ·+ E(XN |N) = E(X1) + · · ·+ E(XN) = N · E(X)

and likewise
Var(S|N) = N · Var(X).

It follows that

E(S) = EN [E(S|N)] = E[N · E(X)] = E(N) · E(X)

since E(X) is constant with respect to the random variable N. Likewise, we
have

Var(S) =EN [Var(S|N)] + VarN [E(S|N)]

=EN [N · Var(X)] + VarN [N · E(X)]

=E(N) · Var(X) + Var(N) · [E(X)]2

since Var(X) and E(X) are constant with respect to the random variable N.
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Example 17.1
Suppose that N has a geometric distribution with parameter p, where 0 <
p < 1 and X has an exponential distribution with parameter 1. Find the
mean and the variance of S.

Solution.
We are given that E(N) = 1

p
and E(X) = 1 so that E(S) = 1

p
. Also, we know

that Var(N) = 1−p
p2

and Var(X) = 1. Thus, Var(S) = 1
p
· 1 + 1−p

p2
· 1 = 1

p2
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17.2 Moment Generating Function of S

Using the double expectation property we can find the moment generating
function of S. Indeed, we have

MS(t) =E(etS) = EN [E(etS|N)]

=EN [MX(t)N ] = EN [eN lnMX(t)]

=EN [erN ] = MN(r)

where r = lnMX(t). Thus, the monent generating function of S can be
expressed in terms of the moment generating function of N and the monent
generating function of X.

Example 17.2
Suppose that N has a geometric distribution with parameter p, where 0 <
p < 1 and X has an exponential distribution with parameter 1. Find the
distribution S.

Solution.
We are given that MN(t) = p

1−qet , q = 1− p, and MX(t) = 1
1−t . Then

MS(t) = MN [lnMX(t)] =
p

1− qelnMX(t)
=

p

1− qMX(t)
= p+ q

p

p− t
,

so S is a combination of the mgfs of the constant 0 and the exponential
distribution with parameter 1

p
. Because of the one-to-one correspondence of

cdfs and mgfs, we conclude that

FS(t) = p+ q(1− e−px) = 1− qe−px, x ≥ 0



Actuarial Survival Models

There are insurance policies that provide a benefit on the death of the pol-
icyholder. Since the death date of the policyholder is unknown, the insurer
when issuing the policy does not know exactly when the death benefit will
be payable. Thus, an estimate of the time of death is needed. For that, a
model of human mortality is needed so that the probability of death at a
certain age can be calculated. Survival models provide such a framework.
A survival model is a special kind of a probability distribution. In the ac-
tuarial context, a survival model can be the random variable that represents
the future lifetime of an entity that existed at time 0. In reliability theory,
an example of a survival model is the distribution of the random variable
representing the lifetime of a light bulb. The light is said to survive as long
as it keeps burning, and fails at the instant it burns out.
In Sections 18 and 20, we develop the basic nomenclature for describing two
actuarial survival models: the distribution age-at-death random variable and
the corresponding time-until-death random variable. We will define these
variables, introduce some actuarial notation, and discuss some properties of
these distributions.
Parametric survival models are models for which the survival function
is given by a mathematical formula. In Section 19, we explore some im-
portant parametric survival models. In Section 21, the central-death-rate is
introduced.

143



144 ACTUARIAL SURVIVAL MODELS

18 Age-At-Death Random Variable

The central difficulty in issuing life insurance is that of determining the time
of death of the insured. In this section, we introduce the first survival model:
The age-at-death distribution. Let time 0 denote the time of birth of an
individual. We will always assume that everyone is alive at birth . The age-
at-death1 of the individual can be modeled by a positive continuous random
variable X.

18.1 The Cumulative Distribution Function of X

The cumulative distribution function (CDF) of X is given by

F (x) = Pr(X ≤ x) = Pr(X < x).

That is, F (x) is the probability that death will occur prior to (or at) age x.
Since X is positive, the event {s : X(s) ≤ 0} is impossible so that F (0) = 0.
Also, from Theorem 9.1, we know that F (∞) = 1, F (x) is nondecreasing,
F (X) is right-continuous, and that F (x) = 0 for x < 0.

Example 18.1
Can the function F (x) = 1

x+1
, x ≥ 0 be a legitimate cumulative distribution

function of an age-at-death random variable?

Solution.
Since F (0) = 1 6= 0, the given function can not be a CDF of an age-at-death
random variable

Example 18.2
Express the following probability statement in terms of F (x) : Pr(a < X ≤
b|X > a).

Solution.
By Bayes’ formula, we have

Pr(a < X ≤ b|X > a) =
Pr[(a < X ≤ b) ∩ (X > a)]

Pr(X > a)

=
Pr(a < X ≤ b)

Pr(X > a)
=
F (b)− F (a)

1− F (a)

1We will consider the terms death and failure to be synonymous. The age-at-death
is used in biological organisms whereas the age-at-failure is used in mechanical systems
(known as reliability theory in engineering.)
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Example 18.3
Let

F (x) = 1−
(

1− x

120

) 1
6
, 0 ≤ x ≤ 120.

Determine the probability that a life aged 35 dies before the age of 55.

Solution.
The probability is given by

Pr(35 < X ≤ 55|X > 35) =
F (55)− F (35)

1− F (35)
= 0.0437

An alternative notation for F (x) used by actuaries is

xq0 = F (x) = Pr(X ≤ x).

Example 18.4
Given that xq0 = 1 − e−0.008x, x ≥ 0. Find the probability that a newborn
baby dies between age 60 and age 70.

Solution.
We have

Pr(60 < X ≤ 70) = 70q0 − 60q0 = e−0.48 − e−0.56 = 0.04757
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Practice Problems

Problem 18.1
Can the function F (x) = x

3x+1
, x ≥ 0 be a legitimate cumulative distribution

function of an age-at-death random variable?

Problem 18.2
Which of the following formulas could serve as a cumulative distribution
function?
(I) F (x) = x+1

x+3
, x ≥ 0.

(II) F (x) = x
2x+1

, x ≥ 0.
(III) F (x) = x

x+1
, x ≥ 0.

Problem 18.3
Determine the constants A and B so that F (x) = A + Be−0.5x, x ≥ 0 is a
CDF.

Problem 18.4
The CDF of a continuous random variable is given by

F (x) = 1− e−0.34x, x ≥ 0.

Find Pr(10 < X ≤ 23).

Problem 18.5
Let

F (x) = 1−
(

1− x

120

) 1
6
, 0 ≤ x ≤ 120.

Determine the probability that a newborn survives beyond age 25.

Problem 18.6
The CDF of an age-at-death random variable is given by F (x) = 1 −
e−0.008x, x ≥ 0. Find the probability that a newborn baby dies between
age 60 and age 70.
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18.2 The Survival Distribution Function of X

In many life insurance problems, one is interested in the probability of sur-
vival rather than death, and so we define the survival distribution func-
tion (abbreviated SDF) by

s(x) = 1− F (x) = Pr(X > x), x ≥ 0.

Thus, s(x) is the probability that a newborn will survive to age x. From the
properties of F we see that s(0) = 1, (everyone is alive at birth), s(∞) = 0
(everyone dies eventually), s(x) is right continuous, and that s(x) is non-
increasing. These four conditions are necessary and sufficient so that any
nonnegative function s(x) that satisfies these conditions serves as a survival
function.
In actuarial notation, the survival function is denoted by xp0 = s(x) =
Pr(X > x) = 1− xq0.

Example 18.5
A survival distribution is defined by s(x) = ax2 +b for 0 ≤ x ≤ ω. Determine
a and b.

Solution.
We have 1 = s(0) = b and 0 = s(ω) = aω2 +1. Solving for a we find a = − 1

ω2 .

Thus, s(x) = − x2

ω2 + 1

Example 18.6
Consider an age-at-death random variable X with survival distribution de-
fined by

s(x) =
1

10
(100− x)

1
2 , 0 ≤ x ≤ 100.

(a) Explain why this is a suitable survival function.
(b) Find the corresponding expression for the cumulative probability func-
tion.
(c) Compute the probability that a newborn with survival function defined
above will die between the ages of 65 and 75.

Solution.
(a) We have that s(0) = 1, s′(x) = − 1

20
(100− x)−

1
2 ≤ 0, s(x) is right contin-

uous, and s(100) = 0. Thus, s satisfies the properties of a survival function.
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(b) We have F (x) = 1− s(x) = 1− 1
10

(100− x)
1
2 .

(c) We have

Pr(65 < X ≤ 75) = s(65)−s(75) =
1

10
(100−65)

1
2 − 1

10
(100−75)

1
2 ≈ 0.092

Example 18.7
The survival distribution function for an individual is determined to be

s(x) =
75− x

75
, 0 ≤ x ≤ 75.

(a) Find the probability that the person dies before reaching the age of 18.
(b) Find the probability that the person lives more than 55 years.
(c) Find the probability that the person dies between the ages of 25 and 70.

Solution.
(a) We have

Pr(X < 18) = Pr(X ≤ 18) = F (18) = 1− s(18) = 0.24.

(b) We have
Pr(X > 55) = s(55) = 0.267.

(c) We have

Pr(25 < X < 70) = F (70)− F (25) = s(25)− s(70) = 0.60
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Practice Problems

Problem 18.7
Show that the function s(x) = e−0.34x can serve as a survival distribution
function, where x ≥ 0.

Problem 18.8
Consider an age-at-death random variable X with survival distribution de-
fined by

s(x) = e−0.34x, x ≥ 0.

Compute Pr(5 < X < 10).

Problem 18.9
Consider an age-at-death random variable X with survival distribution

xp0 = e−0.34x, x ≥ 0.

Find xq0.

Problem 18.10
Find the cumulative distribution function corresponding to the survival func-
tion s(x) = 1− x2

100
for x ≥ 0 and 0 otherwise.

Problem 18.11
Which of the following is a SDF?
(I) s(x) = (x+ 1)e−x, x ≥ 0.
(II) s(x) = x

2x+1
, x ≥ 0.

(III) s(x) = x+1
x+2

, x ≥ 0.

Problem 18.12
The survival distribution is given by s(x) = 1 − x

100
for 0 ≤ x ≤ 100 and 0

otherwise.
(a) Find the probability that a person dies before reaching the age of 30.
(b) Find the probability that a person lives more than 70 years.

Problem 18.13
The mortality pattern of a certain population may be described as follows:
Out of every 108 lives born together one dies annually until there are no
survivors. Find a simple function that can be used as s(x) for this population.
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18.3 The Probability Density Function of X

The probability density function of an age-at-death random variable X
measures the relative likelihood for death to occur for a given age. Values of
the age-at-death random variable in regions with higher density values are
more likely to occur than those in regions with lower values. See Figure 18.1.

Figure 18.1

The PDF of X relates to a point and is considered as an instantaneous
measure of death at age x compared to F (x) and s(x) which are probabilities
over time intervals so they are considered as time-interval measures.
Mathematically, the probability density function, denoted by f(x), is given
by

f(x) =
d

dx
F (x) = − d

dx
s(x), x ≥ 0

whenever the derivative exists. Note that f(x) ≥ 0 for x ≥ 0 since F is
nondecreasing for x ≥ 0.
The PDF can assume values greater than 1 and therefore is not a probability.
While the density function does not directly provide probabilities, it does
provide relevant information. Probabilities for intervals, the cumulative and
survival functions can be recovered by integration. That is, when the density
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function is defined over the relevant interval, we have

Pr(a < X ≤ b) =

∫ b

a
f(x)dx, F (x) =

∫ x

−∞
f(t)dt =

∫ x

0
f(t)dt

s(x) =1− F (x) =

∫ ∞
0

f(t)dt−
∫ x

0
f(t)dt =

∫ ∞
x

f(t)dt.

Using laws of probability, we can use either F (x) or s(x) to answer proba-
bility statements.

Example 18.8
Explain why the function f(x) = 1

(x+1)
5
2
, x ≥ 0 and 0 otherwise can not be

a PDF.

Solution.
If f(x) is a PDF then we must have

∫∞
0
f(x)dx = 1. But∫ ∞

0

dx

(x+ 1)
5
2

= − 2

3(x+ 1)
3
2

∣∣∣∣∣
∞

0

=
2

3
6= 1

Example 18.9
Suppose that the survival function of a person is given by

s(x) =
80− x

80
, 0 ≤ x ≤ 80.

Calculate
(a) F (x).
(b) f(x).
(c) Pr(20 < X < 50).

Solution.
(a) We have

F (x) = 1− s(x) =
x

80
, x ≥ 0.

(b) We have

f(x) = −s′(x) =
1

80
, x > 0.

(c) We have

Pr(20 < X < 50) = s(20)− s(50) = 0.375
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Example 18.10
Find a formula both in terms of F (x) and s(x) for the conditional probability
that an entity will die between the ages of x and z, given that the entity is
survived to age x.

Solution.
We have

Pr(x < X ≤ z|X > x) =
Pr[(x < X ≤ z) ∩ (X > x)]

Pr(X > x)

=
Pr(x < X ≤ z)

Pr(X > x)

=
F (z)− F (x)

1− F (x)

=
s(x)− s(z)

s(x)

Example 18.11
An age-at-death random variable is modeled by an exponential random vari-
able with PDF f(x) = 0.34e−0.34x, x ≥ 0. Use the given PDF to estimate
Pr(1 < X < 1.02).

Soltution.
We have (See Remark 2.2)

Pr(1 < X < 1.02) ≈ 0.02f(1) = 0.005
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Practice Problems

Problem 18.14
Determine which of the following functions is a probability density function
of an age-at-death:
(a) f(x) = 2

(2x+1)2
, x ≥ 0.

(b) f(x) = 1
(x+1)4

, x ≥ 0.

(c) f(x) = (2x− 1)e−x, x ≥ 0.

Problem 18.15
The density function of a random variable X is given by f(x) = xe−x for
x ≥ 0. Find the survival distribution function of X.

Problem 18.16
Consider an age-at-death random variable X with survival distribution de-
fined by

s(x) = e−0.34x, x ≥ 0.

Find the PDF and CDF of X.

Problem 18.17
Find the probability density function of a continuous random variable X
with survival function s(x) = e−λx, λ > 0, x ≥ 0.

Problem 18.18
The cumulative distribution function of an age-at-death random variable X
is given by

F (x) =


0, x < 0
7x
16
, 0 ≤ x < 1

3x2+4
16

, 1 ≤ x < 2
1, 2 ≤ x.

Find the PDF of X.
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18.4 Force of Mortality of X

The probability density function at x can be used to estimate the probability
that death occurs in the itnerval (x, x + dx] for small dx given only that
the entity existed at age x = 0. That is, f(x) can be considered as the
unconditional death rate at age x. In this section, we want to define the
conditional death rate at age x. That is, the conditional death rate at age x
conditioned on the survival to age x. Let us denote it by µ(x).
By Example 18.10, the probability of a newborn will die between the ages of
x and x + h (where h is small) given that the newborn survived to age x is
given by

Pr(x < X ≤ x+ h|X > x) =
F (x+ h)− F (x)

1− F (x)
.

Since f(x) = F ′(x), whenever the derivative exists, we can write

F (x+ h)− F (x)

h
≈ f(x).

Thus,
Pr(x < X ≤ x+ h|X > x)

h
≈ f(x)

s(x)
.

The death rate at age x given survival to age x is defined by

µ(x) = lim
h→0

Pr(x < X ≤ x+ h|X > x)

h
=
f(x)

s(x)
.

In demography theory and actuarial science, µ(x) is called the force of mor-
tality or death rate; in reliability theory the term hazard rate function2

is used. Using the properties of f(x) and s(x) we see that µ(x) ≥ 0 for every
x ≥ 0.

Example 18.12
A life aged 50 has a force of mortality at age 50 equal to 0.0044. Estimate
the probability that the person dies on his birthday.

Solution.
From the above definition with x = 50, µ(50) = 0.0044, and h = 1

365
=

2Also knwon as the hazard rate or failure rate.
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0.00274 we can write

Pr(50 < X < 50 + 0.00274|X > 50) ≈µ(50)× 0.0044

=(0.00274)(0.0044) = 1.2× 10−5

We can relate the mortality function to the survival function from birth as
shown in the next example.

Example 18.13
Show that

µ(x) = −s
′(x)

s(x)
= − d

dx
[ln s(x)]. (18.1)

Solution.
The equation follows from f(x) = −s′(x) and d

dx
[ln s(x)] = s′(x)

s(x)

Example 18.14
Find the hazard rate function of an exponential random variable with pa-
rameter µ.

Solution.
We have

µ(x) =
f(x)

s(x)
=
µe−µx

e−µx
= µ.

The exponential random variable is an example of a constant force model

Example 18.15
Show that

s(x) = e−Λ(x)

where

Λ(x) =

∫ x

0

µ(s)ds.

Solution.
Integrating equation (18.1) from 0 to x, we have∫ x

0

µ(s)ds = −
∫ x

0

d

ds
[ln s(s)]ds = ln s(0)−ln s(x) = ln 1−ln s(x) = − ln s(x).

Now the result follows upon exponentiation

The function Λ(x) is called the cumulative hazard function or the in-
tegrated hazard function (CHF). The CHF can be thought of as the
accumulation of hazard up to time x.
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Example 18.16
Find the cumulative hazard function of the exponential random variable with
parameter µ.

Solution.
We have

Λ(x) =

∫ x

0

µ(s)ds =

∫ x

0

µdx = µx

Summarizing, if we know any one of the functions µ(x),Λ(x), s(x) we can
derive the other two functions:
•µ(x) = − d

dx
ln s(x)

•Λ(x) = − ln (s(x))
•s(x) = e−Λ(x).

Now, for a function µ(x) to be an acceptable force of mortality, the func-
tion s(x) = e−Λ(x) must be an acceptable survival function.

Example 18.17
Which of the following functions can serve as a force of mortality?
(I) µ(x) = BCx, B > 0, 0 < C < 1, x ≥ 0.

(II) µ(x) = B(x+ 1)−
1
2 , B > 0, x ≥ 0.

(III) µ(x) = k(x+ 1)n, n > 0, k > 0, x ≥ 0.

Solution.
(I) Finding s(x), we have

s(x) = e−
∫ x
0 µ(t)dt = e

B
lnC

(1−Cx).

We have s(x) ≥ 0, s(0) = 1, s(∞) = e
B

lnC 6= 0. Thus, the given function
cannot be a force of mortality.
(II) Finding s(x), we have

s(x) = e−
∫ x
0 µ(t)dt = e−2B[(x+1)

1
2−1].

We have, s(x) ≥ 0, s(0) = 1, s(∞) = 0, s′(x) < 0, and s(x) is right-
continuous. Thus, µ(x) is a legitimate force of mortality.
(III) Finding s(x), we have

s(x) = e−
∫ x
0 µ(t)dt = e−

kxn+1

n+1 .

We have, s(x) ≥ 0, s(0) = 1, s(∞) = 0, s′(x) < 0, and s(x) is right-
continuous. Thus, µ(x) is a legitimate force of mortality



18 AGE-AT-DEATH RANDOM VARIABLE 157

Practice Problems

Problem 18.19
Describe in words the difference between the two functions f(x) and µ(x)?

Problem 18.20
An age-at-death random variable has a survival function

s(x) =
1

10
(100− x)

1
2 , 0 ≤ x ≤ 100.

Find the force of mortality of this random variable.

Problem 18.21
Show that f(x) = µ(x)e−Λ(x).

Problem 18.22
Show that the improper integral

∫∞
0
µ(x)dx is divergent.

Problem 18.23
Consider an age-at-death random variable X with survival distribution de-
fined by

s(x) = e−0.34x, x ≥ 0.

Find µ(x).

Problem 18.24
Consider an age-at-death random variable X with force of mortality µ(x) =
µ > 0. Find s(x), f(x), and F (x).

Problem 18.25
Let

F (x) = 1−
(

1− x

120

) 1
6
, 0 ≤ x ≤ 120.

Find µ(40).

Problem 18.26
Find the cumulative hazard function if µ(x) = 1

x+1
, x ≥ 0.

Problem 18.27
The cumulative hazard function for an age-at-death random variable X is
given by Λ(x) = ln

(
4

4−x2
)
, 0 ≤ x < 2. Find the hazard rate function µ(x).
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Problem 18.28
The cumulative hazard function for an age-at-death random variable X is
given by Λ(x) = µx, x ≥ 0, µ > 0. Find s(x), F (x), and f(x).

Problem 18.29 ‡
Given: The survival function s(x), where

s(x) =


1, 0 ≤ x < 1
1− ex

100
, 1 ≤ x < 4.5

0, 4.5 ≤ x.

Calculate µ(4).

Problem 18.30 ‡
Given the following information:
(i) µ(x) = F + e2x

(ii) 0.4p0 = 0.5.
Determine the value of F.

Problem 18.31 ‡
Which of the following formulas could serve as a force of mortality?
(I) µ(x) = BCx, B > 0, C > 1, x ≥ 0
(II) µ(x) = a(b+ x)−1, a > 0, b > 0, x ≥ 0
(III) µ(x) = (1 + x)−3, x ≥ 0.

Problem 18.32 ‡
For a loss distribution X where x ≥ 2, you are given:

(i) µ(x) = A2

2x
, x ≥ 0 and (ii) F (5) = 0.84.

Determine the value of A.

Problem 18.33
The force of mortality of a survival model is given by µ(x) = 3

x+2
, x ≥ 0.

Find Λ(x), s(x), F (x), and f(x).
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18.5 The Mean and Variance of X

Recall from Chapter 2 that for a continuous random variable X, the mean
of X, also known as the (unconditional) first moment of X, is given by

E(X) =

∫ ∞
0

xf(x)dx

provided that the integral is convergent.
The following technical result is required in finding the mean and variance
of X.

Theorem 18.1
If both the integrals

∫∞
0
xf(x)dx and

∫∞
0
x2f(x)dx are convergent then

lim
x→∞

xns(x) = 0, n = 1, 2.

Proof
A proof for the case n = 1 is given. The case when n = 2 is left for the
reader. Since

∫∞
0
xf(x)dx <∞, we have for all x > 0∫ ∞

x

xf(x)dx ≤
∫ ∞

0

xf(x)dx <∞.

Thus,

lim
x→∞

xs(x) = lim
x→∞

x

∫ ∞
x

f(y)dy

= lim
x→∞

∫ ∞
x

xf(y)dy

≤ lim
x→∞

∫ ∞
x

yf(y)dy = 0.

Thus, 0 ≤ limx→∞ xs(x) ≤ 0 and the Squeeze Rule of Calculus imply

lim
x→∞

xs(x) = 0

For the random variable X representing the death-at-age, we can use inte-
gration by parts and Theorem 18.1 above to write

E(X) =

∫ ∞
0

xf(x)dx = −
∫ ∞

0

xs′(x)dx

=− xs(x)]∞0 +

∫ ∞
0

s(x)dx =

∫ ∞
0

s(x)dx.
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In the actuarial context, E(X) is known as the life expectancy or the

complete expectation of life at birth and is denoted by
◦
e0 .

Likewise, the mean of X2 or the (unconditional) second moment of X is given
by

E(X2) =

∫ ∞
0

x2f(x)dx

provided that the integral is convergent.
Using integration by parts and Theorem 18.1 we find

E(X2) = 2

∫ ∞
0

xs(x)dx.

The variance of X is given by

Var(X) = E(X2)− [E(X)]2.

Example 18.18
An actuary models the lifetime in years of a random selected person as a

random variable X with survival function s(x) =
(
1− x

100

) 1
2 , 0 ≤ x ≤ 100.

Find
◦
e0 and Var(X).

Solution.
The mean is

◦
e0= E(X) =

∫ 100

0

(
1− x

100

) 1
2
dx = −2

3

(
1− x

100

) 3
2

∣∣∣∣100

0

=
200

3
.

The second moment of X is

E(X2) =

∫ 100

0

x2f(x)dx =
1

200

∫ 100

0

x2
(

1− x

100

)− 1
2
dx =

16000

3
.

Thus,

Var(X) = E(X2)− [E(X)]2 =
16000

3
− 40000

9
=

80000

9

Two more important concepts about X are the median and the mode. In
Chapter 2, the median of a continuous random variable X is defined to be
the value m satisfying the equation

Pr(X ≤ m) = Pr(X ≥ m) =
1

2
.
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Thus, the median age-at-death m is the solution to

F (m) = 1− s(m) =
1

2
.

We define the mode of X to be the value of x that maximizes the PDF f(x).

Example 18.19
Consider an age-at-death random variable X with cumulative distribution
defined by

F (x) = 1−
(

1− x

100

) 1
2
, 0 ≤ x ≤ 100.

Find the median and the mode of X.

Solution.
To find the median, we have to solve the equation

(
1− m

100

) 1
2 = 0.5 which

gives m = 75.

To find the mode, we first find f(x) = F ′(x) = − 1
200

(
1− x

100

)− 1
2 . The max-

imum of this function on the interval [0, 100] occurs when x = 0 (you can
check this either analytically or graphically) so that the mode of X is 0
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Practice Problems

Problem 18.34
Consider an age-at-death random variable X with survival function s(x) =
(1 + x)e−x, x ≥ 0. Calculate E(X).

Problem 18.35
The age-at-death random variable has the PDF f(x) = 1

k
, 0 ≤ x ≤ k. Suppose

that the expected age-at-death is 4. Find the median age-at-death.

Problem 18.36
Given 0 < p < 1, the 100p−percentile (or p−th quantile) of a random
variable X is a number αp such that Pr(X ≤ αp) = p. Let X be an age-
at-death random variable with PDF f(x) = 1

k
, 0 ≤ x ≤ k. Find the p−th

quantile of X.

Problem 18.37
The first quartile of a random variable X is the 25−th percentile. Likewise,
we define the second quartile to be the 50−th percentile, and the third quar-
tile to be the 75−th percentile. Let X be an age-at-death random variable
with PDF f(x) = 1

k
, 0 ≤ x ≤ k. Find the third quartile of X.

Problem 18.38
The survival distribution of an age-at-death random variable is given by
s(x) = −x2

k2
+ 1, 0 ≤ x ≤ k. Given that E(X) = 60, find the median of X.

Problem 18.39
An actuary models the lifetime in years of a random selected person as a
random variable X with survival function s(x) = 1 − x2

8100
, 0 ≤ x ≤ 90.

Calculate
◦
e0 and Var(X).

Problem 18.40
A survival distribution has a force of mortality given by µ(x) = 1

720−6x
, 0 ≤

x < 120.
(a) Calculate

◦
e0 .

(b) Find Pr(30 ≤ X ≤ 60).

Problem 18.41
The PDF of a survival model is given by f(x) = 24

2+x
. Find the median and

the mode of X.
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19 Selected Parametric Survival Models

Parametric survival models are models for which the survival function
s(x) is given by a mathematical formula. In this section, we explore some
important parametric survival models.

19.1 The Uniform or De Moivre’s Model

Let X be a uniform random variable on the interval [a, b]. It is easy to see3

that the PDF of this random variable is f(x) = 1
b−a for a ≤ x ≤ b and

zero elsewhere. This model is an example of a two-parameter model with
parameters a and b.
If X is the age-at-death random variable, we take a = 0 and b = ω where
ω is the maximum or terminal age by which all people have died then the
PDF is f(x) = 1

ω
for 0 ≤ x ≤ ω and 0 otherwise. In the actuarial context,

this survival model is known as De Moivre’s Law.

Example 19.1
Consider the uniform distribution model as defined above. Find F (x), s(x),
and µ(x).

Solution.
We have

F (x) =

∫ x

0

f(s)ds =
x

ω

s(x) =1− F (x) =
ω − x
ω

µ(x) =
f(x)

s(x)
=

1

ω − x

Example 19.2

Consider the uniform distribution model as defined above. Find
◦
e0 and

Var(X).

Solution.
We have

◦
e0= E(X) =

∫ ω

0

xf(x)dx =
ω

2

3See Section 24 of [2].
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and

E(X2) =

∫ ω

0

x2f(x)dx =
ω2

3
.

Thus,

Var(X) =
ω2

3
− ω2

4
=
ω2

12

Example 19.3
Suppose that X is uniformly distributed in [0, ω]. For 0 ≤ x ≤ ω, define
T (x) = X − x. Let FT (x)(t) = Pr(T (x) ≤ t|X > x). That is, FT (x)(t) is the
probability that a person alive at age x to die by the age of x+ t.
(a) Find a formula for FT (x)(t).
(b) Find sT (x)(t), fT (x)(t), and µT (x)(t). Conclude that T (x) is uniform on
[0, ω − x].

Solution.
(a) We have

FT (x)(t) =Pr(T (x) ≤ t|X > x) =
Pr(x < X ≤ x+ t)

Pr(X > x)

=
F (x+ t)− F (x)

1− F (x)
=

t

ω − x
.

(b) We have

sT (x)(t) =1− FT (x)(t) =
(ω − x)− t
ω − x

fT (x)(t) =
d

dt
[FT (x)(t)] =

1

ω − x

µT (x)(t) =−
s′T (x)(t)

sT (x)(t)
=

1

(ω − x)− t
.

It follows that T (x) is uniform on [0, ω − x]
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Practice Problems

Problem 19.1
Suppose that the age-at-death random variable X is uniform in [0, ω]. Find

Var(X) if
◦
e0= 45.

Problem 19.2
Suppose that the age-at-death random variable X is uniform in [0, ω] with
Var(X) = 625

3
. Find ω.

Problem 19.3
The survival function in De Moivre’s Law is given by s(x) = 1− x

90
, 0 ≤ x ≤

90. Calculate
(a) µ(x) (b) F (x) (c) f(x) (d) Pr(20 < X < 50).

Problem 19.4
A modified De Moivre’s Law is defined by the survival function

s(x) =
(

1− x

ω

)α
, 0 ≤ x ≤ ω, α > 0.

Find (a) F (x) (b) f(x) and (c) µ(x).

Problem 19.5
A mortality model is uniformly distributed in [0, ω]. Find the probability
that a life aged x will die within t years beyond x. That is, find Pr(x < X ≤
x+ t|X > x).

Problem 19.6
A mortality model is uniformly distributed in [0, ω]. Find the probability that
a life aged x will attain age x+ t. That is, find Pr(X > x+ t|X > x).

Problem 19.7
A mortality model is uniformly distributed in [0, 80]. Find the median of an
age-at-death.

Problem 19.8 ‡
The actuarial department for the SharpPoint Corporation models the lifetime
of pencil sharpeners from purchase using a generalized De Moivre model with

s(x) =
(

1− x

ω

)α
, α > 0, 0 ≤ x ≤ ω.
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A senior actuary examining mortality tables for pencil sharpeners has deter-
mined that the original value of α must change. You are given:
(i) The new complete expectation of life at purchase is half what it was pre-
viously.
(ii) The new force of mortality for pencil sharpeners is 2.25 times the previ-
ous force of mortality for all durations.
(iii) ω remains the same.

Calculate the value of α.

Problem 19.9
A survival random variable is uniform on [0, ω]. Find the cumulative hazard
function.



19 SELECTED PARAMETRIC SURVIVAL MODELS 167

19.2 The Exponential Model

In this survival model, the age-at-death random variable follows an exponen-
tial distribution with survival function given by

s(x) = e−µx, x ≥ 0, µ > 0.

This is an example of one-parameter model. This model is also known as the
constant force model since the force of mortality is constant as shown in
the next example.

Example 19.4
Consider the exponential model. Find F (x), f(x), and µ(x).

Solution.
We have

F (x) =1− s(x) = 1− e−µx

f(x) =F ′(x) = µe−µx

µ(x) =
f(x)

s(x)
= µ

Example 19.5

Consider the exponential model. Find
◦
e0 and Var(X).

Solution.
We have

◦
e0= E(X) =

∫ ∞
0

xf(x)dx =

∫ ∞
0

µxe−µxdx =
1

µ

and

E(X2) =

∫ ∞
0

x2f(x)dx =

∫ ∞
0

µx2e−µxdx =
2

µ2
.

Thus,

Var(X) =
2

µ2
− 1

µ2
=

1

µ2

Example 19.6 (Memory less property)
Show that

Pr(X > x+ t|X > x) = Pr(X > t).
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Solution.
Let A denote the event X > x+t and B the event X > x. Using the definition
of conditional probability, we have

Pr(X > x+ t|X > x) =Pr(A|B) =
Pr(A ∩B)

Pr(B)

=
Pr(A)

Pr(B)
=
s(x+ t)

s(x)

=
e−µ(x+t)

e−µx
= e−µt

=s(t) = Pr(X > t).

In words, given the survival to time x, the chance of surviving a further time
t is the same as the chance of surviving to time t in the first place

Example 19.7
Consider an exponentail model with density function f(x) = 0.01e−0.01x, x >
0. Calculate xq0 and xp0.

Solution.
We have

xq0 =Pr(X ≤ x) = F (x) = 1− e−0.01x

xp0 =1− xq0 = e−0.01x

Example 19.8
Let the age-at-death be exponential with density function f(x) = 0.01e−0.01x.
Find Pr(1 < x < 2).

Solution.
We have

Pr(1 < X < 2) = s(1)− s(2) = 1p0 − 2p0 = e−0.01 − e−0.02 = 0.00985

Example 19.9 ‡
Given the survival function

s(x) =


1, 0 ≤ x ≤ 1
1− 0.01ex 1 < x < 4.5
0. x ≥ 4.5

Find µ(4).
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Solution.
We have

µ(4) = −s
′(4)

s(4)
=

0.01e4

1− 0.01e4
= 1.203
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Practice Problems

Problem 19.10
Consider an exponential survival model with s(x) = e−0.04x where x in years.
Find the probability that a newborn survives beyond 20 years.

Problem 19.11
An exponential model has a force of mortality equals to 0.04. Find the
probability that a newborn dies between the age of 20 and 30.

Problem 19.12
An exponential model has a survival function s(x) = e−

x
2 , x ≥ 0. Calculate

µ(40).

Problem 19.13
Find the value of µ and the median survival time for an exponential survival
function if s(3) = 0.4.

Problem 19.14
A mortality model is exponentially distributed with parameter µ. Find the
probability that a life aged x will die within t years beyond x. That is, find
Pr(x < X ≤ x+ t|X > x).

Problem 19.15
The lifetime X of a device is described as follows:
• For 0 ≤ x < 40, X is uniformly distributed on [0, 80).
• For X ≥ 40, X is exponentially distributed with parameter 0.03.
Find the expected lifetime of the device.

Problem 19.16
The age-at-death random variable is described by the PDF f(x) = 1

60
e−

x
60 .

Find
◦
e0 and Var(X).
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19.3 The Gompertz Model

One of the very first attempt to develop a parametric model was Gompertz
model (1825). He conjectured that the hazard function for human mortality
should increase at a rate proportional to the function itself. That is,

dµ(x)

dx
= Kµ(x).

Solving this differential equation, we find that the force of mortality of this
model is given by

µ(x) = Bcx,

where B > 0, c > 1, x ≥ 0. This model is a two-parameter model.

Example 19.10
Find the survival function of Gompertz model.

Solution.
We have

s(x) = e−
∫ x
0 µ(s)ds = e−

∫ x
0 Bcsds = e

B
ln c

(1−cx)

Example 19.11
Under Gompertz’ Law, evaluate e−

∫ x+t
x µ(y)dy.

Solution.
We have ∫ x+t

x

µ(y)dy =

∫ x+t

x

Bcydy =
B

ln c
cy
∣∣∣∣x+t

x

=
Bcx

ln c
(ct − 1)

and

e−
∫ x+t
x µ(y)dy = e

Bcx

ln c
(1−ct)

Under Gompertz’ Law, the parameter values B and c can be determined
given the value of the force of mortality at any two ages.

Example 19.12
Under Gompertz’ Law, you are given that µ(20) = 0.0102 and µ(50) = 0.025.
Find µ(x).
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Solution.
The given hypotheses lead to the two equations Bc20 = 0.0102 and Bc50 =
0.025. Thus, taking ratios we find c30 = 0.025

0.0102
. Solving for c we find c =

1.03. Thus, B = 0.0102
1.0320

= 0.0056. The force of mortality is given by µ(x) =
0.0056(1.03)x

Example 19.13
You are given that mortality follows Gompertz with B = 0.01 and c = 1.1.
Calculate
(i) µ(10)
(ii) the probability of a life aged 20 to attain age 30
(iii) the probability of a life aged 20 to die within 10 years.

Solution.
(i) We have

µ(10) = BC10 = 0.01(1.1)10 = 0.025937

(ii) We have

Pr(X > 30|X > 20) =
Pr(X > 30)

Pr(X > 20)
=
s(30)

s(20)

=
e

0.01
ln 1.1

(1−1.130)

e
0.01
ln 1.1

(1−1.120)
= 0.32467.

(iii) We have

Pr(X < 30|X > 20) = 1− Pr(X > 30|X > 20) = 1− 0.32467 = 0.67533



19 SELECTED PARAMETRIC SURVIVAL MODELS 173

Practice Problems

Problem 19.17
Which of the following statement is true about Gompertz’ Law?
(I) µ(x) is linear
(II) µ(x) is logarithmic
(III) µ(x) is log-linear.

Problem 19.18
Consider a Gompertz model with the following information:
• c = 1.03.
• s(40) = 0.65.
Calculate µ(40).

Problem 19.19
Find the survival and the cumulative distribution functions for the Gompertz
model.

Problem 19.20
Find the probability density function for the Gompertz model.

Problem 19.21
Find the cumulative hazard function for the Gompertz model.

Problem 19.22
Suppose that the lives of a certain species follow Gompertz’s Law. It is given
that µ(0) = 0.43 and µ(1) = 0.86. Determine µ(4).

Problem 19.23
Suppose that Gompertz’ Law applies with µ(30) = 0.00013 and µ(50) =

0.000344. Find s′(x)
s(x)

.

Problem 19.24
A survival model follows Gompertz’ Law with parameters B = 0.0004 and
c = 1.07. Find the cumulative distribution function.



174 ACTUARIAL SURVIVAL MODELS

19.4 The Modified Gompertz Model: The Makeham’s
Model

The Gompertz function is an age-dependent function. That is, age was con-
sidered the only cause of death. It has been observed that this model was
not a good fit for a certain range of ages. In 1867, Makeham proposed a
modification of the model by adding a positive constant that covers causes
of deaths that were age-independent, such as accidents. In this model, the
death rate or the force of mortality is described by

µ(x) = A+Bcx,

where B > 0, A ≥ −B, c > 1, x ≥ 0. In words, the model states that death
rate or the force of mortality is the sum of an age-independent component
(the Makeham term or the accident hazard) and an age-dependent com-
ponent (the Gompertz function or the hazard of aging) which increases
exponentially with age. Note that the Makeham’s model is a three-parameter
model.

Example 19.14
Find the survival function of Makeham’s model.

Solution.
We have

s(x) = e−
∫ x
0 µ(s)ds = e−

∫ x
0 (A+Bcs)ds = e−Ax−

B
ln c

(cx−1)

Example 19.15
Using Makeham’s model, find an expression for tpx = e−

∫ x+t
x µ(y)dy.

Solution.
We have∫ x+t

x

µ(y)dy =

∫ x+t

x

(A+Bcy)dy =

[
Ay +

B

ln c
cy
]x+t

x

= At+
Bcx

ln c
(ct − 1).

Thus,

tpx = e−
∫ x+t
x µ(y)dy = e−At−

Bcx

ln c
(ct−1)

Assuming that the underlying force of mortality follows Makeham’s Law, the
parameter values A, B and c can be determined given the value of the force
of mortality at any three ages.
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Example 19.16
A survival model follows Makeham’s Law. You are given the following infor-
mation:
• 5p70 = 0.70.
• 5p80 = 0.40.
• 5p90 = 0.15.
Determine the parameters A,B, and c.

Solution.
Let α = e−A and β = e

B
ln c in the previous problem so that tpx = αtβc

x(1−ct).
From the given hypotheses we can write

α5βc
70(1−c5) =0.70

α5βc
80(1−c5) =0.40

α5βc
90(1−c5) =0.15.

Hence,

ln

(
0.40

0.70

)
= c70(1− c5)(c10 − 1) ln β (19.1)

and

ln

(
0.15

0.40

)
= c80(1− c5)(c10 − 1) ln β.

From these two last equations, we find

c10 = ln

(
0.15

0.40

)
÷ ln

(
0.40

0.70

)
=⇒ c = 1.057719.

Substituting this into (19.1) we find

ln β = ln

(
0.40

0.70

)
÷ c70(1− c5)(c10 − 1) =⇒ β = 1.04622.

Solving the equation

e
B

ln 1.057719 = 1.04622

we find B = 0.002535. Also,

A = −0.2 ln
[
0.70βc

70(c5−1)
]

= −0.07737.

Finally, the force of mortality is given by

µ(x) = −0.07737 + 1.04622(1.057719)x, x ≥ 0
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Practice Problems

Problem 19.25
Suppose that the lives of a certain species follow Makeham’s Law. Find a
formula for the PDF f(x).

Problem 19.26
Suppose that the lives of a certain species follow Makeham’s Law. Find a
formula for the CDF F (x).

Problem 19.27
The force of mortality of Makeham’s model is given by µ(x) = 0.31 +
0.43(2x), x ≥ 0. Find f(x) and F (x).

Problem 19.28
The force of mortality of Makeham’s model is given by µ(x) = 0.31 +
0.43(2x), x ≥ 0. Calculate s(3).

Problem 19.29
The following information are given about a Makeham’s model:
• The accident hazard is 0.31.
• The hazard of aging is 1.72 for x = 2 and 3.44 for x = 3.
Find µ(x).

Problem 19.30
The force of mortality of a Makeham’s Law is given by µ(x) = A+0.1(1.003)x, x ≥
0. Find µ(5) if s(35) = 0.02.
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19.5 The Weibull Model

The Weibull law of mortality is defined by the hazard function

µ(x) = kxn,

where k > 0, n > 0, x ≥ 0. That is, the death rate is proportional to a power
of age. Notice that the exponential model is a special case of Weibull model
where n = 0.

Example 19.17
Find the survival function corresponding to Weibull model.

Solution.
We have

s(x) = e−
∫ x
0 µ(s)ds = e−

∫ x
0 ksnds = e−

kxn+1

n+1

Example 19.18
Suppose that X follows an exponential model with µ = 1. Define the ran-
dom variable Y = h(X) = X

1
3 . Show that Y follows a Weibull distribution.

Determine the values of k and n.

Solution.
We need to find the force of mortality of Y using the formula µY (y) = fY (y)

sY (y)
.

We first find the CDF of Y. We have

FY (y) = Pr(Y ≤ y) = Pr(X
1
3 ≤ y) = Pr(X ≤ y3) = 1− e−y3 .

Thus,

sY (y) = 1− FY (y) = e−y
3

and

fY (y) = F ′Y (y) = 3y2e−y
3

.

The force of mortality of Y is

µY (y) =
fY (y)

sY (y)
= 3y2.

It follows that Y follows a Weibull distribution with n = 2 and k = 3
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Example 19.19
You are given that mortality follows Weibull with k = 0.00375 and n = 1.5.
Calculate
(i) µ(10)

(ii) 10p20 = e−
∫ 30
20 µ(x)dx.

(iii) 10q20 = 1− 10p20.

Solution.
(i) µ(10) = kxn = 0.00375(10)1.5 = 0.11859

(ii) 10p20 = e−
∫ 30
20 0.00375x1.5dx = 0.089960

(iii) 10q20 = 1− 10p20 = 1− 0.089960 = 0.99100
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Practice Problems

Problem 19.31
Find the PDF corresponding to Weibull model.

Problem 19.32
Suppose that X follows an exponential model with µ = 1. Define the ran-
dom variable Y = h(X) = X

1
2 . Show that Y follows a Weibull distribution.

Determine the values of k and n.

Problem 19.33
Consider a Weibull model with k = 2 and n = 1. Calculate µ(15).

Problem 19.34
Consider a Weibull model with k = 2 and n = 1. Calculate s(15).

Problem 19.35
Consider a Weibull model with k = 3. It is given that µ(2) = 12. Calculate
s(4).

Problem 19.36
Consider a Weibull model with n = 1. It is given that s(20) = 0.14.Determine
the value of k.

Problem 19.37
A survival model follows a Weibull Law with mortality function µ(x) = kxn.
It is given that µ(40) = 0.0025 and µ(60) = 0.02. Determine the parameters
k and n
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20 Time-Until-Death Random Variable

Up to this point, we explored the random variable that represents the age-at-
death of a newborn that existed at time 0. In this section, we introduce the
random variable representing the time-until-death past a certain age where
the person is known to be alive.
First, we let (x) to indicate that a newborn is known to be alive at age
x or simply a life aged x. We let T (x) be the continuous random variable
that represents the additional time (x) might survive beyond the age of x.
We refer to this variable as the time-until-death or the future-lifetime
random variable. From this definition, we have a relationship between the
age-at-death random variable X and the time-until-death T (x) given by

X = x+ T (x).

A pictorial representation of X, x and T (x) is shown in Figure 20.1.

Figure 20.1

Note that if Support(X) = [0, ω) then Support(T (x)) = [0, ω − x].

20.1 The Survival Function of T (x)

We next calculate the survival function of T (x). For t ≥ 0, the actuarial
notation of the survival function of T (x) is tpx. Thus, tpx is the probability
of a life aged x to attain age x + t. That is, tpx is a conditional probability.
In symbol,

tpx = sT (x)(t) = Pr(X > x+ t|X > x) = Pr[T (x) > t]. (20.1)

In the particular case of a life aged 0, we have T (0) = X and xp0 = s(x), x ≥
0. The next example explores a relationship between the survival functions
of both X and T (x).
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Example 20.1
Show that

tpx =
s(x+ t)

s(x)
=

x+tp0

xp0

, t ≥ 0. (20.2)

Solution.
Using the fact that the event {X > x+ t} is a subset of the event {X > x}
and the conditional probability formula Pr(E|F ) = Pr(E∩F )

Pr(F )
we find

tpx =Pr(X > x+ t|X > x) =
Pr[(X > x+ t) ∩ (X > x)]

Pr(X > x)

=
Pr(X > x+ t)

Pr(X > x)
=
s(x+ t)

s(x)

Example 20.2
Find tpx in the case X is exponentially distributed with parameter µ.

Solution.
We have

tpx =
s(x+ t)

s(x)
=
e−µ(x+t)

e−µx
= e−µt

Example 20.3
Suppose that tpx = 75−x−t

75−x , 0 ≤ t ≤ 75 − x. Find the probability that a
35-year-old reaches age 70.

Solution.
We have

70−35p35 =
75− 35− 35

75− 35
=

5

35
= 0.143

Example 20.4 ‡
You are given:

(i) R = 1− e−
∫ 1
0 µ(x+t)dt

(ii) S = 1− e−
∫ 1
0 (µ(x+t)+k)dt

(iii) k is a constant such that S = 0.75R.
Determine an expression for k.
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Solution.
We have

R =1− e−
∫
0 1µ(x+t)dt = 1− px

S =1− e−
∫
0 1(µ(x+t)+k)dt = 1− e−

∫
0 1µ(x+t)dte−

∫
0 1kdt = 1− pxe−k.

Hence,

S =0.75R

1− pxe−k =0.75(1− px)
pxe
−k =0.25 + 0.75px

e−k =
0.25 + 0.75px

px

k = ln

[
px

0.25 + 0.75px

]
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Practice Problems

Problem 20.1
Show that if X is uniform on [0, ω] then T (x) is uniform in [0, ω − x].

Problem 20.2
You are given the survival function s(x) = 1 − x

75
, 0 ≤ x ≤ 75. Find the

survival function and the probability density function of T (x).

Problem 20.3
Show: m+npx = mpx · npx+m.

Problem 20.4
Suppose that the probability of a 50-year old person to reach age 60 is 0.97
and the probability of a 45-year old to reach 60 is 0.95. Find the probability
that a 45-year old to reach 70.

Problem 20.5
Show that npx = pxpx+1px+2 · · · px+n−1, where n is a positive integer.

Problem 20.6
The survival function is given by s(x) = 1− x

100
, x ≥ 0.

(a) Express the probability that a person aged 35 will die between the ages
of 52 and 73 using the p notation.
(b) Calculate the probability in (a).

Problem 20.7
The PDF of X is given by f(x) = 1

(x+1)2
, x ≥ 0. Find tp3.

Problem 20.8
You are given the survival function s(x) = 1

x
, x > 1. What is the probability

that a newborn that has survived to age 65 will survive to age 68?

Problem 20.9
Show that tpx = e−

∫ x+t
x µ(y)dy. That is, all death probabilities can be expressed

in terms of the force of mortality.

Problem 20.10
Given that µ(x) = kx and 10p35 = 0.81. Determine the value of k and find

20p40.
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Problem 20.11
The mortality pattern of a certain population may be described as follows:
Out of every 108 lives born together one dies annually until there are no
survivors.
(a) Find 10p25.
(b) What is the probability that a life aged 30 will survive to attain age 35?

Problem 20.12
Show that ∂

∂t t
px = −tpxµ(x+ t).

Problem 20.13
Assume that a survival random variable obeys Makeham’s Law µ(x) = A +
Bcx. You are given that 5p70 = 0.73, 5p75 = 0.62, and 5p80 = 0.50. Determine
the parameters A,B, and c.
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20.2 The Cumulative Distribution Function of T (x)

From the survival function we can find the cumulative distribution function
of T (x) which we denote by tqx = FT (x)(t). Thus,

tqx = Pr[T (x) ≤ t] = 1− tpx.

Note that tqx is the probability of (x) does not survive beyond age x + t or
the conditional probability that death occurs not later than age x+ t, given
survival to age x. It follows from (20.2) that

tqx = 1− s(x+ t)

s(x)
.

Example 20.5
Express tqx in terms of the cumulative distribution function of X.

Solution.
Since s(x) = 1− F (x), we obtain

tqx =
s(x)− s(x+ t)

s(x)
=
F (x+ t)− F (x)

1− F (x)

In actuarial notation, when t = 1 year we will suppress the subscript to the
left of p and q and use the notation px and qx. Thus, the probability that (x)
will die within one year beyond age x is qx and the probability that (x) will
survive an additional year is px.

Example 20.6
Find 3p5 and 4q7 if s(x) = e−0.12x.

Solution.
We have

3p5 =
s(3 + 5)

s(5)
=
e−0.12(8)

e−0.12(5)
= 0.69768.

Likewise,

4q7 = 1− s(4 + 7)

s(7)
= 1− e−0.12(11)

e−0.12(7)
= 0.38122
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Example 20.7
Consider the two events A = [T (x) ≤ t] and B = [t < T (x) ≤ 1] where
0 < t < 1. Rewrite the identity

Pr(A ∪B) = Pr(A) + Pr(Ac)Pr(B|Ac)

in actuarial notation.

Solution.
We have

Pr(A ∪B) =Pr(T (x) ≤ 1) = qx

Pr(A) =Pr(T (x) ≤ t) = tqx

Pr(Ac) =1− Pr(A) = 1− tqx = tpx

Pr(B|Ac) =
Pr(B ∩ Ac)

Pr(Ac)

=
Pr(B)

Pr(Ac)

=
tpx − 1px

tpx

=1−
s(x+1)
s(x)

s(x+t)
s(x)

=
s(x+ t)− s(x+ 1)

s(x+ t)

=1−tqx+t.

Thus, we have
qx = tqx + tpx1−tqx+t



20 TIME-UNTIL-DEATH RANDOM VARIABLE 187

Practice Problems

Problem 20.14
The probability that (x) will survive additional t years and die within the
following u years is denoted by t|uqx. That is, t|uqx is the probability that (x)
will die between the ages of x+ t and x+ t+u. In the case u = 1 we will use
the notation t|qx. Show that

t|uqx = t+uqx − tqx = tpx − t+upx.

Problem 20.15
With the notation of the previous problem, show that t|uqx = tpx · uqx+t.

Problem 20.16
An age-at-death random variable has the survival function s(x) = 1− x

100
, 0 ≤

x < 100. Calculate 20q65.

Problem 20.17
You are given the cumulative distribution function F (x) = (0.01x)2, 0 ≤ x ≤
100. What is the probability that a newborn who survived to age 55 will
survive to age 56?

Problem 20.18
You are given the survival function s(x) = 1 − x

75
, 0 ≤ x < 75. What is the

probability of a newborn who lived to age 35 to die within one year?

Problem 20.19
Show that ∂

∂t t
qx = tpxµ(x+ t).

Problem 20.20
The survival function for (x) is given by

sT (x)(t) =

(
α

α + t

)β
, α, β > 0.

Find an expression for tqx.

Problem 20.21
Given the survival function s(x) =

(
100

100+x

)1.1
. What is the probability of a

newborn who lived to age 25 to survive an additional year?
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Problem 20.22
Write in words the meaning of 2|q1.

Problem 20.23
The survival function is given by

s(x) = (1− 0.01x)0.5, 0 ≤ x ≤ 1.

What is the probability that a life aged 40 to die between the ages of 60 and
80?

Problem 20.24
You are given the hazard rate function

µ(x) =
1.1

100 + x
, x ≥ 0.

Find a formula for tq20.

Problem 20.25
The probability that a life aged 20 to live to age 30 is 0.9157. The probability
of a life aged 30 to live to age 50 is 0.7823. What is the probability for a life
aged 20 to die between the ages of 30 and 50?

Problem 20.26 ‡
The graph of a piecewise linear survival function, s(x), consists of 3 line seg-
ments with endpoints (0, 1), (25, 0.50), (75, 0.40), (100, 0).

Calculate 20|55q15

55q35
.
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20.3 Probability Density Function of T (x)

Now, from the CDF of T (x) we can find an expression for the probability
density function of T (x). Indeed, we have

fT (x)(t) =
d

dt
[tqx] = − d

dt

(
s(x+ t)

s(x)

)
=
f(x+ t)

s(x)
.

In words, fT (x)(t) is the conditional density of death at time t given survival
to age x or the conditional density at age x+ t, given survival to age x.

Example 20.8
An age-at-death random variable has the survival function s(x) = 1 − x2

10000

for 0 ≤ x < 100.
(a) Find the survival function of T (x).
(b) Find the PDF of T (x).

Solution.
(a) The survival function of T (x) is

tpx =
s(x+ t)

s(x)
=

1− (x+t)2

10000

1− x2

10000

=
10000− (x+ t)2

10000− x2
, 0 ≤ t ≤ 100− x.

(b) The PDF of T (x) is

fT (x)(t) = − d

dt

(
s(x+ t)

s(x)

)
=

2(x+ t)

10000− x2
, 0 ≤ t ≤ 100− x

Example 20.9 ‡
A Mars probe has two batteries. Once a battery is activated, its future
lifetime is exponential with mean 1 year. The first battery is activated when
the probe lands on Mars. The second battery is activated when the first fails.
Battery lifetimes after activation are independent. The probe transmits data
until both batteries have failed.
Calculate the probability that the probe is transmitting data three years after
landing.

Solution.
Let X and Y denote the future liftimes of the first and second batteries
respectively. We are told that X and Y are independent exponential random
variables with common parameter 1. Thus,



190 ACTUARIAL SURVIVAL MODELS

fX(x) = e−x and fY (x) = e−y.

Let Z = X + Y. Since both X and Y are positive random variables, we have
0 < X < Z and 0 < Y < Z. By Section 16.3, the distribution of Z is given
by

fZ(z) =

∫ z

0

fX(z − y)fY (y)dy =

∫ z

0

ey−ze−ydy =

∫ z

0

e−zdy = ze−z.

Hence,

Pr(X + Y > 3) =

∫ ∞
3

fZ(z)dz =

∫ ∞
3

ze−zdz

=
[
−ze−z + e−z

]∞
3

=3e−3 + e−3 = 4e−3 = 0.20

Example 20.10 ‡
For the future lifetimes of (x) and (y) :
(i) With probability 0.4, T (x) = T (y) (i.e., deaths occur simultaneously).
(ii) With probability 0.6, the joint density function is

fT (x),T (y)(t, s) = 0.0005, 0 < t < 40, 0 < s < 50.

Calculate Pr[T (x) < T (y)].

Solution.
Define the indicator random variable

I =

{
0 T (x) = T (y)
1 T (x) 6= T (y)

Then

Pr[T (x) < T (y)] =Pr[T (x) < T (y)|I = 0]Pr(I = 0) + Pr[T (x) < T (y)|I = 1]Pr(I = 1)

=(0)(0.4) + (0.6)Pr[T (x) < T (y)|I = 1] = 0.6Pr[T (x) < T (y)|I = 1].



20 TIME-UNTIL-DEATH RANDOM VARIABLE 191

Using the figure below, we can write

Pr[T (x) < T (y)|I = 1] =

∫ 50

0

∫ y

0

0.0005dxdy +

∫ 50

40

∫ 40

0

0.0005dxdy

=
0.0005

2
y2

∣∣∣∣50

0

+ 0.02y|50
40

=0.40 + 0.20 = 0.60.

Hence,
Pr[T (x) < T (y)] = (0.6)(0.6) = 0.36
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Practice Problems

Problem 20.27
Consider the survival function s(x) = 1− x

90
, 0 ≤ x ≤ 90. Find the survival

function and the probability density function of T (x).

Problem 20.28
Suppose that tpx = 1 − t

90−x , 0 ≤ t ≤ 90 − x. Find the density function of
T (x).

Problem 20.29
T (x), the future lifetime of (x), has the following distribution:

fT (x)(t) =

{
kf1(t), 0 ≤ t ≤ 50
1.2f2(t), t > 50

where f1(t) is exponentially distributed with parameter 0.02 and f2(t) follows
DeMoivre’s Law of mortality. Determine the value of k.

Problem 20.30
An age-at-death random variable has the CDF F (x) = 1 − 0.10(100 − x)

1
2

for 0 ≤ x ≤ 100. Find fT (36)(t).

Problem 20.31
Let age-at-death random variable X have density function:

f(x) =
x

50
, 0 ≤ x ≤ 10.

Find fT (2)(t).

Problem 20.32
A survival model is described by the mortality µ(x) = 0.015. Find fT (20)(3).
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20.4 Force of Mortality of T (x)

Recall that the hazard rate function µ(x) is the death rate at age x given
survival to age x. That is,

µ(x) = lim
h→0

Pr(x < X ≤ x+ h|X > x)

h
.

Likewise, we have

µT (x)(t) = lim
h→0

Pr(t < T (x) ≤ t+ h|T (x) > t)

h

= lim
h→0

Pr(x+ t < X ≤ x+ t+ h|X > x+ t)

h
=µ(x+ t).

That is, µT (x)(t) is the death rate at age x+ t given survival to age x+ t.
The PDF of T (x) can be expressed in terms of the distribution of X as shown
in the next example.

Example 20.11
Show that fT (x)(t) = tpxµ(x+ t), x ≥ 0, t ≥ 0.

Solution.
We have

fT (x)(t) =
d

dt
FT (x)(t) =

d

dt
tqx

=
d

dt

[
1− s(x+ t)

s(x)

]
=
s(x+ t)

s(x)

[
−s
′(x+ t)

s(x+ t)

]
= tpxµ(x+ t)

Example 20.12
Find the hazard rate function of T (x) if X is uniformly distributed in [0, ω].

Solution.
The hazard rate function of X is given by

µ(x) =
1

ω − x
.

Thus,

µ(x+ t) =
1

ω − t− x
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Example 20.13
You are given

µ(x) =

{
0.06, 35 ≤ x ≤ 45
0.07, 45 < x.

Find sT (35)(t), FT (35)(t), and fT (35)(t).

Solution.
Look at Figure 20.2.

Figure 20.2

If 0 ≤ t ≤ 10 we have

sT (35)(t) = tp35 = e−
∫ t
0 0.06ds = e−0.06t.

If 10 < t then

sT (35)(t) = 10p35 · t−10p45 = e−10(0.06)e−0.07(t−10).

Hence,

sT (35)(t) =

{
e−0.06t, 0 ≤ t ≤ 10
e−0.6e−0.07(t−10), t > 10.

FT (35)(t) =

{
1− e−0.06t, 0 ≤ t ≤ 10
1− e−0.6e−0.07(t−10), t > 10.

fT (35)(t) =

{
0.06e−0.06t, 0 ≤ t < 10
0.07e−0.6e−0.07(t−10), t > 10

Example 20.14 ‡
For a population of individuals, you are given: (i) Each individual has a con-
stant force of mortality. (ii) The forces of mortality are uniformly distributed
over the interval (0,2). Calculate the probability that an individual drawn
at random from this population dies within one year.
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Solution.
This is a mixed distribution problem. Let M be the force of mortality of
an individual drawn at random; and T the future lifetime of the individual.
Then we have

fT |M(t|µ) = µe−µt, t > 0

fM(µ) =
1

2
, 0 < µ < 2.

fT,M(t, µ) = fT |M(t|µ)fM(µ) =
1

2
µe−µt, t > 0, 0 < µ < 2.

fT (t) =

∫ 2

0

1

2
µe−µtdµ.

Hence,

Pr(T ≤ 1) =

∫ 1

0

tfT (t)dt =

∫ 1

0

∫ 2

0

1

2
µe−µtdµdt

=
1

2

∫ 2

0

∫ 1

0

µe−µtdtdµ

=
1

2

∫ 2

0

[−e−µt]10dµ =
1

2

∫ 2

0

(1− e−µ)dµ

=
1

2
[µ+ e−µ]20 = 0.568

Example 20.15 ‡
A population has 30% who are smokers (s) with a constant force of mortality
0.2 and 70% who are non-smokers (ns) with a constant force of mortality 0.1.
Calculate the 75th percentile of the distribution of the future lifetime of an
individual selected at random from this population.

Solution.
This is a mixed distribution problem. LetX be an individual random variable
with domain {s, ns} such that Pr(X = s) = 0.3 Pr(X = ns) = 0.7; and let
T denote the future lifetime of the individual. Then we have

fT |X(t|s) = 0.2e−0.2t and fT |X(t|ns) = 0.1e−0.1t

fX(s) = 0.3 and fX(ns) = 0.7.
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fT,X(t, s) = fT |X(t|s)fX(s) = 0.06e−0.2t and
fT,X(t, ns) = fT |X(t|ns)fX(ns) = 0.07e−0.1t

fT (t) = 0.06e−0.2t + 0.07e−0.1t.

FT (t) = Pr(T ≤ t) =

∫ t

0

[0.06e−0.2s + 0.07e−0.1s]ds = 1− 0.3e−0.2t − 0.7e−0.1t.

Let t denote the 75th percentile. Then t satisfies the equation FT (t) = 0.75
or 0.3e−0.2t + 0.7e−0.1t = 0.25. Letting x = e−0.1t we obtain the quadratic
equation 0.3x2 + 0.7x − 0.25 = 0 whose solutions are x = 0.3147 and x =
−2.3685. The negative root is to be discarded since x > 0. Hence,

e−0.1t = 0.3147 =⇒ t =
ln 0.3147

−0.1
= 11.56

Example 20.16 ‡
For a group of lives aged 30, containing an equal number of smokers and
non-smokers, you are given:
(i) For non-smokers, µN(x) = 0.08, x ≥ 30
(ii) For smokers, µS(x) = 0.16, x ≥ 30
Calculate q80 for a life randomly selected from those surviving to age 80.

Solution.
We have

ST (30)(t) = Pr(T (30) > t|S)Pr(S)+Pr(T (30) > t|N)Pr(N) = 0.5e−0.16t+0.5e−0.08t.

Hence,

q80 =1− P80 = 1−
ST (30)(51)

ST (30)(50)

=1− 0.5e−0.16(51) + 0.5e−0.08(51)

0.5e−0.16(50) + 0.5e−0.08(50)

=1− 0.922 = 0.078
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Practice Problems

Problem 20.33
Show that d

dt
(1− tpx) = tpxµ(x+ t).

Problem 20.34
Show that

∫∞
0 tpxµ(x+ t)dx = 1.

Problem 20.35
Show that

µT (x)(t) =
F ′T (x)(t)

1− FT (x)(t)
.

Problem 20.36
The CDF of T (x) is given by

FT (x)(t) =

{
t

100−x , 0 ≤ t < 100− x
1, t ≥ 100− x.

Calculate µ(x+ t) for 0 ≤ t < 100− x.

Problem 20.37
Find the hazard rate function of T (x) if X is exponentially distributed with
parameter µ.

Problem 20.38
You are given the following information: fT (x)(t) = 0.015e−0.015t and tpx =
e−0.015t. Find µ(x+ t).

Problem 20.39 ‡
You are given µ(x) = (80 − x)−

1
2 , 0 ≤ x < 80. Calculate the median future

lifetime of (20).

Problem 20.40 ‡
You are given:

µ(x) =

{
0.05 50 ≤ x < 60
0.04 60 ≤ x < 70.

Calculate 4|14q50.
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20.5 Mean and Variance of T (x)

In this section, we find expressions for the expected value and the variation
of the time-until-death random variable T (x). Like any random variable, the
expected value is defined (using actuarial notation) by

◦
ex= E[T (x)] =

∫ ∞
0

tfT (x)(t)dt.

◦
ex is called the complete expectation of life at age x. We next derive an

expression for
◦
ex in terms of the survival function of X. Indeed, we have

◦
ex=

∫ ∞
0

tfT (x)(t)dt =

∫ ∞
0

t
f(x+ t)

s(x)
dt

=
1

s(x)

∫ ∞
0

tf(x+ t)dt

=
1

s(x)

[
−ts(x+ t)|∞0 +

∫ ∞
0

s(x+ t)dt

]
=

∫ ∞
0

s(x+ t)

s(x)
dt =

∫ ∞
0

tpxdt

where we used integration by parts and Theorem 18.1.

Example 20.17
The age-at-death random variable is uniformly distributed in [0, 90]. Find
◦
e30 .

Solution.
Since X is uniform on [0, 90], T (30) is uniform on [0, 60] and

◦
e30= E(T (30)) =

0 + 60

2
= 30

Next, the variance of T (x) is given by

Var(T (x)) = E[(T (x)2]− [E(T (x)]2

where

E[T (x)] =

∫ ∞
0

s(x+ t)

s(x)
dt =

∫ ∞
0

tpxdt
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and

E[(T (x))2] =

∫ ∞
0

t2fT (x)(t)dt =

∫ ∞
0

t2
f(x+ t)

s(x)
dt

=
1

s(x)

∫ ∞
0

t2f(x+ t)dt

=
1

s(x)

[
−t2s(x+ t)

∣∣∞
0

+

∫ ∞
0

2ts(x+ t)dt

]
=

∫ ∞
0

2ts(x+ t)

s(x)
dt = 2

∫ ∞
0

t · tpxdt.

Example 20.18
Let the age-at-deathX be exponential with density function f(x) = 0.05e−0.05x, x ≥
0. Calculate the variance of T (x).

Solution.
The CDF is given by

F (x) = 1− e−0.05x

and the SDF

s(x) = e−0.05x.

Thus,

E(T (x)) =

∫ ∞
0

e−0.05tdt = 20

E[(T (x))2] =

∫ ∞
0

2te−0.05tdt = 80

Hence,

Var(T (x)) = 80− 202 = 40

Example 20.19 ‡
For a given life age 30, it is estimated that an impact of a medical break-
through will be an increase of 4 years in e̊30, the complete expectation of life.
Prior to the medical breakthrough, s(x) followed de Moivre’s Law with
ω = 100 as the limiting age.
Assuming De Moivre’s Law still applies after the medical breakthrough, cal-
culate the new limiting age.
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Solution.
The complete expectation of life for age 30 under De Moivre’s Law is given
by

e̊30 =

∫ ω−30

0

(
1− t

ω − 30

)
dt

=

[
t− t2

2(ω − 30)

]ω−30

0

=
ω − 30

2
.

Prior to medical breakthrough, the limiting age is ω = 100 so that the
complete life expectancy of life aged 30 is

e̊30 =
100− 30

2
= 35.

This qunatity increases by 4 after a medical breakthrough so that the new
complete life expectancy is

ω′ − 30

2
= e̊30 + 4 = 39 =⇒ ω′ = 108

Example 20.20 ‡
You are given:
(i) T is the future lifetime random variable.
(ii) µ(x+ t) = µ, t ≥ 0
(iii) Var[T ] = 100.
(iv) X = min{(T, 10)}.
Calculate E[X].

Solution.
By (ii), T is an exponential distribution with parameter µ. Thus, E(T ) = 1

µ

and E(T 2) = 2
µ2
. Hence, Var(T ) = 2

µ2
− 1

µ2
= 1

µ2
= 100. Solving for µ we find

µ = 0.1. Now, we have

E[X] =

∫ 10

0

tfT (t)dt+

∫ ∞
10

10fT (t)dt

=

∫ 10

0

te−0.1t(0.1)dt+

∫ ∞
10

10e−0.1t(0.1)dt

=
[
−te−0.1t − 10e−0.1t

]10

0
− 10e−0.1t

∣∣∞
10

= 6.3
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Practice Problems

Problem 20.41
The SDF of an age-at-death random variable X is given by

s(x) = 0.1(100− x)
1
2 , 0 ≤ x ≤ 100.

Find the expected value of T (25).

Problem 20.42
The CDF of an age-at-death random variable X is given by

F (x) = 1− 0.1(100− x)
1
2 , 0 ≤ x ≤ 100.

Find the variance of T (25).

Problem 20.43
The age-at-death random variable is uniformly distributed in [0, 90]. Find
Var(T (30)).

Problem 20.44 ‡
For T, the future lifetime random variable for (0):
(i) ω > 70
(ii) 40p0 = 0.6
(iii) E(T ) = 62
(iv) E[min (T, t)] = t− 0.005t2, 0 < t < 60
Calculate the complete expectation of life at 40.



202 ACTUARIAL SURVIVAL MODELS

20.6 Curtate-Future-Lifetime

For a given (x), there is a positive integer k such that k− 1 < T (x) ≤ k. We
define the discrete random variable Kx = k which we call the time interval
of death of a life aged x. Thus, Kx = k means that death of a life aged x
occurred in the kth interval. That is the interval (k − 1, k].

Example 20.21
Suppose that a life aged 30 dies at age 67.25. Find K30.

Solution.
Since T (x) = 67.25− 30 = 37.25, we have K30 = 38

The curtate-future-lifetime of a life aged x, denoted by K(x), is the ran-
dom variable representing the number of full years lived after age x. That
is, K(x) is the integer part of T (x), in symbol, K(x) = bT (x)c. Thus, if
T (x) = 67.35 then K(x) = 67. Clealry, K(x) is a discrete random variable
taking values in the set {0, 1, 2, · · · }. Also, note that K(x) = Kx − 1.
We can use the distribution function of T (x) to derive the probability mass
function of K(x) as follows:

pK(x)(k) =Pr(K(x) = k) = Pr(k ≤ T (x) < k + 1)

=FT (x)(k + 1)− FT (x)(k) = (1− k+1px)− (1− kpx)

=kpx − k+1px = kpx · (1− px+k) = kpx · qx+k = k|qx

where we used Problems 20.3 and 20.9. This result is intuitive. If the random
variable K(x) takes the value k, then a life aged x must live for k complete
years after age x. Therefore, the life must die in the year of age x + k to
x+ k + 1. But the probability of death in the year of age x+ k to x+ k + 1
is just k|qx.
The CDF of K(x) is given by

FK(x)(y) =Pr(K(x) ≤ y) =

byc∑
k=0

pK(x)(k)

=

byc∑
k=0

(kpx − k+1px) = 1− byc+1px

=byc+1qx.
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In particular, for k = 0, 1, 2, · · · , we have

sK(x)(k) = Pr(K(x) > k) = 1− Pr(K(x) ≤ k) = 1− k+1qx = k+1px.

Example 20.22
A survival model has the survival function s(x) = 0.01(10−x)2, 0 ≤ x ≤ 10.
Find the probability mass function of K(x).

Solution.
We have

tpx =
s(x+ t)

s(x)
=

(
10− x− t

10− x

)2

, 0 ≤ t ≤ 10− x.

Now, for k = 0, · · · , 10− x, we have

pK(x)(k) = kpx − k+1px =

(
10− x− k

10− x

)2

−
(

10− x− k − 1

10− x

)2

Now, the expected value of the random variable K(x), denoted by ex, is
known as the curtate expectation of life for a life of age x. Thus, we
have:

ex =E[K(x)] =
∞∑
k=0

kPr(K(x) = k)

=(1px − 2px) + 2(2px − 3px) + 3(3px − 4px) + · · ·

=1px + 2px + 3px + · · · =
∞∑
k=1

kpx.

Example 20.23

Suppose that s(x) = e−µx, x ≥ 0. Find ex and
◦
ex .

Solution.
We have

tpx =
s(x+ t)

s(x)
= e−µt

◦
ex=

∫ ∞
0

tpxdt =

∫ ∞
0

e−µtdt =
1

µ

ex =
∞∑
k=1

kpx =
∞∑
k=1

e−µk

=
e−µ

1− e−µ
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Example 20.24
Using the trapezoid rule, show that

◦
ex≈

1

2
+ ex.

Solution.
We have

◦
ex=

∫ ∞
0

kpxdt

≈
∞∑
k=0

∫ k+1

k
kpxdt

=
1

2
(0px + 1px) +

1

2
(1px + 2px) +

1

2
(2px + 3px) + · · ·

=
1

2
0px +

∞∑
k=1

tpx

=
1

2
+ ex.

Thus, the complete expectation of life at age x is approximately equal to the
curtate expectation of life plus one-half of a year. This is equivalent to the
assumption that lives dying in the year of age x + k to x + k + 1 do so, on
average, half-way through the year at age x+ k + 1

2

To get the variance of K(x), we need an expression for the second moment
of K(x). Thus, we have

E[K(x)2] =
∞∑
k=0

k2Pr(K(x) = k)

=(1px − 2px) + 4(2px − 3px) + 9(3px − 4px) + · · ·
=1px + 32px + 53px + 74px + · · ·

=
∞∑
k=1

(2k − 1)kpx.

Example 20.25
Consider a mortality model with the property pk = 1

2
for all k = 1, 2, · · · .

Find E[K(x)2].
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Solution.
First, notice that kpx = pxpx+1 · · · px+k−1 =

(
1
2

)k
.

We have,

E[K(x)2] =
∞∑
k=1

(2k − 1)kpx =
∞∑
k=1

(2k − 1)0.5k

=2
∞∑
k=1

k(0.5)k −
∞∑
k=1

(0.5)k

=2 · 0.5

(1− 0.5)2
− 0.5

1− 0.5
= 3

where we use the fact that for |x| < 1 we have

x

(
∞∑
n=0

xn

)′
= x

(
1

1− x

)′
=

x

(1− x)2

Finally, the variance of K(x) is given by

Var(K(x)) =
∞∑
k=1

(2k − 1)kpx −

(
∞∑
k=0

kpx

)2

.

Example 20.26
You are given px = 99−x

100
, x = 90, 91, · · · , 99. Calculate Var[K(96)].

Solution.
First note that q99 = 1 so that the limiting age is 99. We have

E[K(96)] =e96 =
99−96∑
k=1

kp96 = p96 + 2p96 + 3p96

=p96 + p96p97 + p96p97p98

=0.3 + 0.3× 0.2 + 0.3× 0.20× 0.10 = 0.366

E[K(96)2] =
99−96∑
k=1

(2k − 1)kp96 = 1(1p96) + 3(2p96) + 5(3p96)

=0.3 + 3(0.3× 0.2) + 5(0.3× 0.20× 0.10) = 0.51

Var[K(96)] =E[K(96)2]− (E[K(96)])2

=0.51− 0.3662 = 0.376044
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Practice Problems

Problem 20.45
Find the probability mass function of the random variable Kx.

Problem 20.46
Show that Pr(Kx ≥ k) = k−1px.

Problem 20.47
A survival model has the survival function s(x) = 0.1(100 − x)0.5, 0 ≤ x ≤
100. Find the probability mass function of K(x).

Problem 20.48
A survival model has the survival function s(x) = 1− x

100
, 0 ≤ x ≤ 100. Find

ex and
◦
ex .

Problem 20.49
Consider a mortality model with the property pk = 1

2
for all k = 1, 2, · · · .

Find ex.

Problem 20.50
Consider a mortality model with the property pk = 1

2
for all k = 1, 2, · · · .

Find Var(K(x)).

Problem 20.51
Show that ex = px(1 + ex+1).

Problem 20.52
Define the continous random variable Sx to represent the fractional part of
the time interval lived through in the interval of death of an entity alive at
age x. Thus, for a life aged 30 if death occur at 56.5, then Sx = 0.5.. Express
Sx in terms of Kx and Tx.

Problem 20.53 ‡
For (x) :
(i) K is the curtate future lifetime random variable.
(ii) qx+k = 0.1(k + 1), k = 0, 1. · · · , 9.
(iii) X = min (K, 3).
Calculate Var(X).
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Problem 20.54 ‡
Given:
(i) Superscripts M and N identify two forces of mortality and the curtate
expectations of life calculated from them. (ii)

µN(25 + t) =

{
µM(25 + t) + 0.1(1− t) 0 ≤ t ≤ 1
µM(25 + t) t > 1

(iii) eM25 = 10.0
Calculate eN25. Hint: Problem 20.50.
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21 Central Death Rates

We study central death rates because they play an important role in the con-
struction of life tables. In order to understand the concept of central rate of
mortality, an understanding of the concept of weighted average is necessary.
The weighted average of a discrete set of data {x1, x2, · · · , xn} with nonneg-
ative weights {w1, w2, · · · , wn} is the number

x =
w1x1 + w2x2 + · · ·+ wnxn

w1 + w2 + · · ·+ wn
.

Therefore data elements with a high weight contribute more to the weighted
mean than do elements with a low weight.
In the continuous setting, the continuous weighted average of a function f(x)
on the interval [a, b] with a nonnegative weight function w(x) is the number

x =

∫ b
a
w(x)f(x)dx∫ b
a
w(x)dx

.

The central rate of death or the average hazard on the interval [x, x+1]
is the continuous weighted average of the force of mortality µ(y) with weight
function

w(y) =
s(y)∫ x+1

x
s(t)dt

.

We denote the weighted average by

mx =

∫ x+1

x
s(y)µ(y)dy∫ x+1

x
s(y)dy

.

Equivalently we can express mx in terms of f(x) and s(x) by using the fact
that f(x) = µ(x)s(x) :

mx =

∫ x+1

x
f(y)dy∫ x+1

x
s(y)dy

.

Example 21.1
Find mx if X is exponentially distributed with parameter µ.

Solution.
For the type of distribution under consideration we have
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s(x) = e−µx and µ(x) = µ.

Thus,

mx =

∫ x+1

x
µe−µtdt∫ x+1

x
e−µtdt

= µ

Example 21.2
Assume that the force of mortality follows the DeMoivre’s Law, where µ(x) =

1
80−x for 0 ≤ x < 80. Calculate m20.

Solution.
We have

m20 =

∫ 21

20
s(y)µ(y)dy∫ 21

20
s(y)dy

=

∫ 21

20
dy
80∫ 21

20

(
1− y

80

)
dy

=
1

80y − 0.5y2|21
20

= 0.01681

The central death rate can be extended to an interval of the form [x, x+ n].
In this case, we define the central death rate to be

nmx =

∫ x+n

x
s(y)µ(y)dy∫ x+n

x
s(y)dy

=

∫ n
0
s(x+ t)µ(x+ t)dt∫ n

0
s(x+ t)dt

where the second equality is the result of the change of variable y = x + t.
Note that mx = 1mx.

Example 21.3
Show that

nmx =

∫ n
0 tpxµ(x+ t)dt∫ n

0 tpxdt
.

Solution.
We have

nmx =

∫ n
0
s(x+ t)µ(x+ t)dt∫ n

0
s(x+ t)dt

=

∫ n
0

s(x+t)
s(x)

µ(x+ t)dt∫ n
0

s(x+t)
s(x)

dt

=

∫ n
0 tpxµ(x+ t)dt∫ n

0 tpxdt
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Example 21.4
You are given that µ = 0.02. Calculate 10m75.

Solution.
We have

10m75 = µ = 0.02

Example 21.5
You are given that mortality follows De Moivre’s Law with limiting age ω.
Calculate nmx.

Solution.
We have

s(x) = 1− x
ω

and µ(x) = 1
ω−x .

Thus,

nmx =

∫ n
0
s(x+ t)µ(x+ t)dt∫ n

0
s(x+ t)dt

=

∫ n
0

dt
ω∫ n

0
(ω−x−t)

ω
dt

=
2

2(ω − x)− n

Example 21.6
You are given xq0 = x2

10,000
, 0 < x < 100. Calculate nmx.

Solution.
We have

s(x) = 1− x2

10,000
and µ(x) = 2x

10,000−x2

Thus,

nmx =

∫ n
0

x+t
5,000

dt∫ n
0

(10,000−(x+t)2)
10,000

dt

=

∫ n
0

2(x+ t)dt∫ n
0

[10, 000− (x+ t)2]dt

=
(x+ n)2 − x2

10, 000n− 1
3
(x+ n)3 + x3

3

=
2x+ n

10, 000− 1
3
(3x2 + 3nx+ n2)
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Further discussion of central death rates will be considered in Section 23.9.
There a verbal interpretation of nmx is given: the central rate of death is the
rate of deaths per life year lived on the interval from x to x+ n.
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Practice Problems

Problem 21.1
Suppose that X is uniform on [0, 100]. Find mx.

Problem 21.2
Show that

nmx =
s(x)− s(x+ n)∫ x+n

x
s(t)dt

.

Problem 21.3
For the survival function s(x) = 1− x

100
, 0 ≤ x ≤ 100, find nmx.

Problem 21.4
You are given µ(x) = 3

2+x
. Find 2m3.

Problem 21.5
An age-at-death random variable follows De Moivre’s Law on the interval
[0, 100]. Find 10m20.

Problem 21.6
You are given xq0 = x2

10,000
, 0 < x < 100. Calculate m40 and 10m75.



The Life Table Format

Life tables, also known as mortality tables, existed in the actuarial world
before the survival model theory discussed previously in this book were fully
developed. Mortality functions were represented in tabular form from which
probabilities and expectations were derived. In this chapter, we describe the
nature of the traditional life table and show how such a table has the same
properties of the survival models discussed in the previous chapter.

213
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22 The Basic Life Table

To create the basic life table, we start with a group of newborns known in the
actuarial terminology as the cohort. The original number of individuals `0

in the cohort is called the radix. Let L (x) denote the number of survivors
from the cohort at age x. For j = 1, 2, · · · , `0 define the indicator function

Ij =

{
1 if life j survives to age x
0 otherwise.

Then

L (x) =

`0∑
j=1

Ij

and E(Ij) = s(x).
Now, the expected number of individuals alive at that age x from the `0

newborns is defined by

`x = E[L (x)] =

`0∑
j=1

E(Ij) = `0s(x).

Likewise, let nDx denote the number of deaths between ages x and x + n
from among the initial `0 lives. In a similar fashion to `x we have

ndx = E[nDx] = `0× probability that a new born dies between the ages of x
and x+ n = (s(x)− s(x+ n))`0 = `x − `x+n.

That is, ndx is the expected number of deaths in the interval [x, x+n). When
n = 1, we will use the notation dx.
A portion of a typical life table is shown below.

Age `x dx
0 100,000 501
1 99,499 504
2 98,995 506
3 98,489 509
4 97,980 512
5 97,468 514

We can convert the life table into a survival function table by using the
formula `x = `0 · s(x). Thus, obtaining
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Age s(x)
0 1.00000
1 0.99499
2 0.98995
3 0.98489
4 0.97980
5 0.97468

Example 22.1
Consider a survival model with survival function s(x) = e−0.005x. Create a
life table showing the survivorship of a cohort of 1000 newborns up to age 7.

Solution.
We generate the entries of `x using the formula `x = 1000e−0.005x.

Age 0 1 2 3 4 5 6 7
`x 1000 995 990 985 980 975 970 965

We next redefine probabilities explored in the previous chapter in terms of
the terminology of life tables introduced above. Namely,

tqx =
s(x)− s(x+ t)

s(x)
=
`0(s(x)− s(x+ t))

`0s(x)
=

tdx
`x
.

In particular,

qx =
dx
lx
.

Likewise,

tpx = 1− tqx =
`x − tdx
`x

=
`x+t

`x
and

px =
`x+1

`x
.

Example 22.2
Consider the life table

Age `x dx
0 100,000 501
1 99,499 504
2 98,995 506
3 98,489 509
4 97,980 512
5 97,468 514
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(a) Find the number of individuals who die between ages 2 and 5.
(b) Find the probability of a life aged 2 to survive to age 4.

Solution.
(a) 2d3 = `2 − `5 = 98, 995− 97, 468 = 1527.
(b) 2p2 = `4

`2
= 97,980

98,995
= 0.98975

Example 22.3
Suppose the radix is 100. Draw a possible sketch of `x.

Solution.
Since `x = `0s(x) = 100s(x), we see that `x decreases from 100 to 0. Thus,
a possible sketch of `x is given in Figure 22.1.

Figure 22.1

Example 22.4
You are given px = 99−x

10
, x = 90, 91, · · · , 99. Calculate d92 if `90 = 100, 000.

Solution.
We have

d92 =`92 − `93 = (`90)(2p90)− (`90)(3p90)

=`90[p90p91 − p90p91p92]

=100000(0.9× 0.8− 0.9× 0.8× 0.7) = 21, 600
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Example 22.5
Assume that mortality follows the Illustrative Life Table. Calculate the prob-
ability that a life (65) will die between ages 80 and 90.

Solution.
We have

15|10q65 =15p65 − 25p65 =
`80

`65

− `90

`65

=
`80 − `90

`65

=
3914365− 1058491

7533964
= 0.3791

Example 22.6
You are given:

`x = 10000(100− x)2, 0 ≤ x ≤ 100.

Calculate the probability that a person now aged 20 will reach retirement
age of 65.

Solution.
We have

45p20 =
`65

`20

=
10000(100− 65)2

10000(100− 20)2
= 0.1914
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Practice Problems

Problem 22.1
Suppose that s(x) = 1− x

10
, 0 ≤ x ≤ 10.

(a) Find `x.
(b) Using life table terminology, find p2, q3, 3p7, and 2q7.

Problem 22.2
Let X be an age-at-death random variable. Express the CDF of X in terms
of life table terminology.

Problem 22.3
Express t|uqx in terms of life table terminology.

Problem 22.4
Complete the entries in the following table:

x `x dx px qx
0 100,000
1 99,499
2 98,995
3 98,489
4 97,980
5 97,468

Problem 22.5
Simplify `tptpt+1 · · · pt+x−1 where k, x ≥ 0.

Problem 22.6
The following is an extract from a life table.

Age `x
30 10,000
31 9965
32 9927
33 9885
34 9839
35 9789
36 9734
37 9673
38 9607
39 9534
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Using the table above, find
(a) `36.
(b) d34.
(c) 3d36.
(d) 5q30.
(e) the probability that a life aged 30 dies between the ages 35 and 36.
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23 Mortality Functions in Life Table Notation

In Section 22, we have seen how to express some survival models functions
such as px, qx, tpx, etc. in terms of life table terms such as `x and dx. In this
section, we continue to express more functions in the life table form. A word
of caution must be made first regarding the function `x. Although, a life table
does not show values of `x for non-integer numbers, we are going to make
the assumption that the values of `x listed in a life table are produced by a
continuous and differentiable `x. Thus, `x is defined for any nonnegative real
number and not just integers.

23.1 Force of Mortality Function

With the differentiability assumption of `x we can express the force of mor-
tality in terms of `x. Indeed, we have

µ(x) = −s
′(x)

s(x)
= −`0s

′(x)

`0s(x)
= −

d`x
dx

`x
. (23.1)

Example 23.1
Suppose you are given `x = 1000(100− x)0.95. Find µ(x).

Solution.
We first find the derivative of `x :

d`x
dx

= 1000(0.95)(−1)(100− x)0.95−1 = −950(100− x)−0.05.

Thus,

µ(x) = −−950(100− x)−0.05

1000(100− x)0.95
= 0.95(100− x)−1

By integrating (23.1) from 0 to x, we can express `x in terms of the force of
mortality as follows: ∫ x

0

d`t
dt

`t
dt =−

∫ x

0

µ(t)dt

ln `t|x0 =−
∫ x

0

µ(t)dt

ln

(
`x
`0

)
=−

∫ x

0

µ(t)dt

`x =`0e
−

∫ x
0 µ(t)dt
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Thus, the exponential term, known as a decremental factor, reduces the
original size of the cohort to size `x at age x.

Example 23.2
Show that

`x+n = `xe
−

∫ x+n
x µ(y)dy.

Solution.
This follows from Problem 20.9 and npx = `x+n

`x

Example 23.3 ‡
For a population which contains equal numbers of males and females at birth:
(i) For males, µ(m)(x+ t) = 0.10, x ≥ 0
(ii) For females, µ(f)(x+ t) = 0.08, x ≥ 0
Calculate q60 for this population.

Solution.
We have

q60 =
d

(m)
60 + d

(f)
60

`
(m)
60 + `

(f)
60

=
`

(m)
60 − `

(m)
61 + `

(f)
60 − `

(f)
61

`
(m)
60 + `

(f)
60

=1− `
(m)
61 + `

(f)
61

`
(m)
60 + `

(f)
60

=1− `
(m)
0 e−0.10(61) + `

(f)
0 e−0.08(61)

`
(m)
0 e−0.10(60) + `

(f)
0 e−0.08(60)

=1− e−0.10(61) + e−0.08(61)

e−0.10(60) + e−0.08(60)
= 0.08111477

Example 23.4 ‡
The following graph is related to current human mortality:
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Which of the following functions of age does the graph most likely show?
(a) µ(x+ t) (b) `xµ(x+ t) (c) `xpx (d) `x (e) `2

x

Solution.
Since `x = `0s(x), `xpx = `x+1 and s(x) is decreasing, we find that `x and `xpx
are everywhere decreasing. Since d

dx
(`2
x) = 2`0s(x)s′(x) < 0, `2

x is everywhere

decreasing. Since µ(x + t) = − s′(x)
s(x)

> 0, µ(x + t) is increasing. According

to Figure 22.1 and the fact that `xµ(x + t) = − d
dx
`x, we conclude that the

graph most likely represents the function `xµ(x+ t)

Example 23.5
The mortality in a certain life table is such that:

`x = `0

(
1− x

110

) 1
2
.

(a) Determe the limiting age, ω.
(b) Obtain an expression for µ(x).

Solution.
(a) ω is the lowest age for which `x = 0. Solving this equation, we find
ω = 110.
(b) We have

µ(x) =− 1

`x

d

dx
(`x) = − 1

`0

(
1− x

110

)− 1
2
`0

(
− 1

220

)(
1− x

110

)− 1
2

=
1

2(110− x)
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Practice Problems

Problem 23.1
Let `x = ω − x, 0 ≤ x ≤ ω. Find µ(x).

Problem 23.2
The radix of a cohort of newborns is 100,000 and mortality is described by
an exponential distribution with parameter 0.05. Find the mortality hazard
function using the life table notation.

Problem 23.3
Show that

µ(x+ t) = −
d`x+t
dt

`x+t

.

Problem 23.4
Given the force of mortality µ(x) = 1

100−x , 0 ≤ x ≤ 100. Find `x.

Problem 23.5
Suppose you are given

`x = 1000(27− 0.3x)
1
3 , 0 ≤ x ≤ 90.

Find the mortality function µ(x).

Problem 23.6
Show that

`x − `x+n =

∫ x+n

x

`yµ(y)dy.

Problem 23.7
Show that the local extreme points of `xµ(x) correspond to points of inflection
of `x.
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23.2 The Probability Density Function of X

In Section 18.4, we established the following formula for the HRF

µ(x) =
f(x)

s(x)
.

This and the actuarial notation s(x) = xp0 lead to

f(x) = s(x)µ(x) = xp0µ(x) =

(
`x
`0

)
µ(x) = −

d`x
dx

`0

.

Example 23.6
Consider a survival model defined by

`x = 1000(x+ 1)−3, x ≥ 0.

Derive an expression for f(x).

Solution.
We have

f(x) = −
d`x
dx

`0

=
3000(1 + x)−4

1000
= 3(1 + x)−4

Example 23.7
Show that

∫∞
0
f(x)dx = 1.

Solution.
We have ∫ ∞

0

f(x)dx = − 1

`0

∫ ∞
0

`′xdx = − 1

`0

(`∞ − `0) = 1

since
`∞ = `0s(∞) = `0 × 0 = 0

Example 23.8

Suppose `x = `0

(
1− x2

ω2

)
, 0 ≤ xω. Find f(x).

Solution.
We have

f(x) = − 1

`0

d

dx
`x =

2x

ω2
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Practice Problems

Problem 23.8
Consider a survival model defined by

`x = 1000(100− x)0.95, 0 ≤ x ≤ 100.

Derive an expression for f(x).

Problem 23.9
You are given `x = 100, 000e−0.05x, x ≥ 0. Find the value of f(0)`0 without
finding the expression for f(x).

Problem 23.10
Show that

∫∞
0
xf(x) = 1

`0

∫∞
0
`xdx.

Problem 23.11
Show that

∫∞
0
x2f(x) = 2

`0

∫∞
0
x`xdx.

Problem 23.12
Let T (x) denote the future lifetime random variable of (x). Express fT (x)(t)
in terms of the function `x.
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23.3 Mean and Variance of X

Up to this point, we have seen that the mean of an age-at-death random
variable is given by

◦
e0= E(X) =

∫ ∞
0

s(x)dx =

∫ ∞
0

xp0dx.

Now, we can express the mean in terms of life table terms. By Problem
23.10, we can write

◦
e0=

1

`0

∫ ∞
0

`xdx. (23.2)

Example 23.9
Let X be uniform in [0, ω].
(a) Find `x.

(b) Find
◦
e0 using (23.2).

Solution.
(a) The survival function of X is given by s(x) = 1− x

ω
so that

`x = `0s(x) = `0 −
`0

ω
x.

(b) We have
◦
e0=

1

`0

∫ ∞
0

`xdx =

∫ ω

0

(
1− x

ω

)
dx =

ω

2

Now, define

Tx =

∫ ∞
x

`ydy.

For the special case x = 0 we have

T0 =

∫ ∞
0

`xdx

so that (23.2) can be expressed in the form

◦
e0=

T0

`0

.
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In actuarial term, Tx is known as the exposure. The actuarial interpretation
of Tx is that it represents the expected total life years lived after age x by

the `x individuals alive at age x. Thus, the average lifetime
◦
e0 is obtained by

dividing expected total life years lived by the number of individuals born at
time x = 0.

Example 23.10
Let X be exponential with `x = 100, 000e−0.05x. Find Tx.

Solution.
We have

Tx =

∫ ∞
x

`ydy =

∫ ∞
x

100, 000e−0.05ydy

=− 2, 000, 000 e−0.05y
∣∣∞
x

= 2, 000, 000e−0.05x

Example 23.11
Given Tx = x3 − 300x+ 2000, 0 ≤ x ≤ 10. Find `x.

Solution.
We have

`x = − d

dx
Tx = 300− 3x2

Our next task for this section is finding the variance. Since we already have
an expression for the first moment of X, we need to find the expression for
the second moment. For this, we have

E(X2) =

∫ ∞
0

x2f(x)dx = − 1

`0

∫ ∞
0

x2`′xdx

=− 1

`0

[
x2`x

∣∣∞
0
−
∫ ∞

0

2x`xdx

]
=

2

`0

∫ ∞
0

x`xdx

Example 23.12
Let X be exponential with `x = 100, 000e−0.05x. Find E(X2).
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Solution.
We have

E(X2) =
2

`0

∫ ∞
0

x`xdx

=
2

100, 000

∫ ∞
0

100, 000xe−0.05xdx

=− 2 20xe−0.05x + 400e−0.05x
∣∣∞
0

=800

Now, with the expressions of E(X) and E(X2), the variance of X is

Var(X) = E(X2)− [E(X)]2 =
2

`0

∫ ∞
0

x`xdx−
◦
e

2

0 .

Example 23.13
Let X be exponential with `x = 100, 000e−0.05x. Find Var(X).

Solution.
We have

◦
e0=

T0

`0

=
2, 000, 000

100, 000
= 20

and
E(X2) = 800.

Thus,
Var(X) = 800− 202 = 400
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Practice Problems

Problem 23.13
Let `x = 100(10− x)0.85, 0 ≤ x ≤ 10. Find Tx.

Problem 23.14
Let `x = 100(10− x)0.85. Find

◦
e0 .

Problem 23.15
Let `x = 100− x2, 0 ≤ x ≤ 10. Find Var(X).

Problem 23.16
A survival function is defined by `x = 10, 000(1 + x)−3, x ≥ 0. Find Tx.

Problem 23.17
A survival function is defined by `x = 10, 000(1 + x)−3, x ≥ 0. Find E(X2).

Problem 23.18
A survival function is defined by `x = 10, 000(1 + x)−3, x ≥ 0. Find Var(X).
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23.4 Conditional Probabilities

The probability of a life aged x to die between the ages of x+n and x+m+n
is denoted by n|mqx. That is,

n|mqx = Pr(x+ n < X < x+m+ n|X > x).

Several formulas has been established for n|mqx, namely

n|mqx = n+mqx − nqx = npx − n+mpx = npx · mqx+n.

See Problems 20.14 and 20.15.

Example 23.14
Interpret the meaning of npx · mqx+n

Solution.

npx · mqx+n is the probability of a life aged x will survive n years, but then
die within the next m years

Example 23.15
Interpret the meaning of n+mqx − nqx

Solution.

n+mqx is the probability of dying within x+ n+m years. If we remove nqx,
which is the probability of dying within x+n years, then we have the proba-
bility of surviving to age x+n but dying by the age of x+n+m which is n|mqx

Now, we can express n|mqx in terms of life table functions as follows:

n|mqx =npx · mqx+n

=
`x+n

`x
· mdx+n

`x+n

=
mdx+n

`x

=
`x+n − `x+n+m

`x
.

In the special case when m = 1 we have

n|qx =
dx+n

`x

which is the probability of a life aged x to survive to age x+n but die within
the following year.
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Example 23.16
Consider a survival model defined by

`x = 1000(x+ 1)−3, x ≥ 0.

Find 5|4q20.

Solution.
We have

5|4q20 =
`25 − `29

`20

=
26−3 − 30−3

21−3
= 0.1472
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Practice Problems

Problem 23.19
Interpret the meaning of npx − n+mpx.

Problem 23.20
Using nqx notation, write down the probability of a life aged 64 to live to age
70 but not beyond the age of 80.

Problem 23.21
You are given `x = ω − x, 0 ≤ x ≤ ω. Find n|mqx.

Problem 23.22
You are given `x = `0e

−µx, x ≥ 0. Find n|mqx.

Problem 23.23
Given the survival function s(x) = e−0.05x, x ≥ 0. Calculate 5|10q30.
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23.5 Mean and Variance of T (x)

In this section, we find expressions for the expected value and the variation
of the time-until-death random variable T (x) in terms of life table functions.
Recall from Section 20.5 the formula for the mean of T (x) :

◦
ex=

∫ ∞
0

tpxdt.

Now substituting

tpx =
`x+t

`x
we find

◦
ex=

1

`x

∫ ∞
0

`x+tdt =
1

`x

∫ ∞
x

`ydy =
Tx
`x
.

In words, this says that the average remaining lifetime is the expected total
number of years lived by the `x individuals divided by the expected number
of individuals alive at age x.

Example 23.17

You are given `x = ω − x, 0 ≤ x ≤ ω. Find
◦
ex .

Solution.
We have

Tx =

∫ ω

x

(ω − y)dy =
ω2

2
− ωx+

x2

2
=

1

2
(x− ω)2.

Thus,
◦
ex=

Tx
`x

=
0.5(x− ω)2

ω − x
= 0.5(ω − x)

Next, we recall from Section 20.5 the second moment of T (x) given by

E[T (x)2] = 2

∫ ∞
0

t · tpxdt.

Again, substituting

tpx =
`x+t

`x
and using integration by parts and the change of variable y = x+ t, we find

E[T (x)2] =
2

`x

∫ ∞
0

t`x+tdt =
2

`x

∫ ∞
x

Tydy.
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Thus, the variance of T (x) is given by

Var(T (x)) =
2

`x

∫ ∞
x

Tydy −
(
Tx
`x

)2

.

Example 23.18
You are given `x = ω − x, 0 ≤ x ≤ ω. Find Var(T (x)).

Solution.
We have ∫ ω

x

1

2
(ω − y)2dy =

1

6
(ω − x)3

and

E[T (x)2] = 2

( 1
6
(ω − x)3

ω − x

)
=

1

3
(ω − x)2.

Hence,

Var(T (x)) =
1

3
(ω − x)2 − 1

4
(ω − x)2 =

1

12
(ω − x)2

Example 23.19
Assume that the force of mortality follows the DeMoivre’s Law, where µ(x) =

1
80−x , 0 ≤ x < 80 and `0 = 800. Calculate e̊20 and T20.

Solution.
We have

s(x) =1− x

80

tpx =1− t

80− x

e̊20 =

∫ 60

0
tp20dt =

∫ 60

0

(
1− t

60

)
dt

=30

T20 =`0e̊20 = 800(30) = 24000
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Practice Problems

Problem 23.24
Consider a survival model described by `x = 100e−0.05x, x ≥ 0. Find

◦
ex .

Problem 23.25
Consider a survival model described by `x = 100e−0.05x, x ≥ 0. Find E[T (x)2].

Problem 23.26
Consider a survival model described by `x = 100e−0.05x, x ≥ 0. Find Var(T (x)).

Problem 23.27
Suppose that a lifetime model is defined in a life-table form, with `x =

3000(1 + x)−4, x ≥ 0. Find
◦
ex .

Problem 23.28
Suppose that a lifetime model is defined in a life-table form, with `x =
3000(1 + x)−4, x ≥ 0. Find E[T (x)2].

Problem 23.29
Suppose that a lifetime model is defined in a life-table form, with `x =
3000(1 + x)−4, x ≥ 0. Find Var(T (x)).

Problem 23.30 ‡
You are given the following information:

(i)
◦
e0= 25

(ii) `x = ω − x, 0 ≤ x ≤ ω
(iii) T (x) is the future lifetime random variable.
Calculate Var(T (10)).
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23.6 Temporary Complete Life Expectancy

Now, recall that
◦
ex is the expected future lifetime of a life aged x where the

number of years of survival beyond age x is unknown. In some instances,
one is interested in knowing the expected future lifetime over a determined
number of years beyond x. That is, what is the expected number of years
lived between age x and age x + n by a life aged x from the `x group? Let

us denote such expected value by
◦
ex:n . A formula of

◦
ex:n is derived next.

◦
ex:n =

∫ n

0

sT (x)(t)dt

=

∫ n

0
tpxdt

=
1

`x

∫ n

0

`x+tdt

=
1

`x

∫ x+n

x

`ydy

=
1

`x

[∫ ∞
x

`ydy −
∫ ∞
x+n

`ydy

]
=
Tx − Tx+n

`x
.

We call
◦
ex:n the n−year temporary expectation of life of (x).

Example 23.20

Let `x = ω − x, 0 ≤ x ≤ ω. Find
◦
ex:n .

Soltuion.
We have

◦
ex:n =

∫ n

0

ω − x− t
ω − x

dt =

∫ n

0

(
1− t

ω − x

)
dt

= t− t2

2(ω − x)

∣∣∣∣n
0

= n− n2

2(ω − x)

Example 23.21
You are given:

(i)
◦
e30:40 = 27.692

(ii) s(x) = 1− x
ω
, 0 ≤ x ≤ ω.

Determine the value of ω.
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Soltuion.
Using the previous example with n = 40 and x = 30, we can write

40− 402

2(ω − 30)
= 27.692.

Solving this equation for ω and rounding the answer we find

ω ≈ 95

Example 23.22 ‡
Mortality for Audra, age 25, follows De Moivre’s Law with ω = 100. If she
takes up hot air ballooning for the coming year, her assumed mortality will
be adjusted so that for the coming year only, she will have a constant force
of mortality of 0.1.
Calculate the decrease in the 11-year temporary complete life expectancy for
Audra if she takes up hot air ballooning.

Soltuion.
In case Audra did not take hot air ballooning, the standard 11-year temporary
complete life expectancy is

e̊25:11 =

∫ 11

0

(
1− t

75

)
dt =

[
t− t2

150

]11

0

= 10.1933.

If Audra decides to take the hot air ballooning the coming year only, then
revised 11-year temporary complete life expectancy is (See Problem 23.33)

e̊Revised
25:11 =e̊25:1 + p25e̊26:10

=

∫ 1

0
tp25dt+ p25

∫ 10

0

(
1− t

75

)
dt

=

∫ 1

0

e−0.1tdt+ e−0.1

∫ 10

0

(
1− t

75

)
dt

=0.95163 + 0.90484(9.32432) = 9.3886.

Hence, the original value of the 11-year temporary complete life expectancy
decreased by

10.1933− 9.3886 = 0.8047
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Example 23.23 ‡
You are given the survival function

s(x) = 1− (0.01x)2, 0 ≤ x ≤ 100.

Calculate e̊30:50 , the 50-year temporary complete expectation of life of (30).

Soltuion.
We have

e̊30:50 =
1

s(30)

∫ 50

0

s(30 + t)dt =
1

s(30)

∫ 80

30

s(t)dt

=

∫ 80

30

(
1− t2

10,000

)
dt

1− 0.32

=
x− x3

30,000

∣∣∣80

30

0.91
=

33.833

0.91
= 37.18
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Practice Problems

Problem 23.31 ‡
You are given:

(i)
◦
e30:40 = 27.692

(ii) s(x) = 1− x
ω
, 0 ≤ x ≤ ω

(iii) T (x) is the future lifetime random variable for (x).
Determine the value of Var(T (10)).

Problem 23.32
You are given the survival function

s(x) =
(

1− x

ω

) 3
2
, 0 ≤ x ≤ ω.

If µ(70) = 0.03, calculate
◦
e50:25 and interpret its value.

Problem 23.33
Show that:

◦
ex:m+n =

◦
ex:m +mpx·

◦
ex+m:n .

Problem 23.34
Show that:

◦
ex=

◦
ex:n +npx·

◦
ex+n .

Problem 23.35
A survival model is defined by `x = 3000(1+x)−4, x ≥ 0. Find an expression

for
◦
e40:12 .

Problem 23.36 ‡
You are given:

µ(x) =

{
0.04, 25 < x < 40
0.05, 40 < x.

Calculate
◦
e25:25 . Hint: Problem 23.33.
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23.7 The Curtate Expectation of Life

Recall from Section 20.6 the discrete random variable K(x) which represents
the number of full years lived by (x). In terms of life-table functions the
probability mass function can be written as

pK(x)(k) = kpxqx+k =
`x+k

`x
· dx+k

`x+k

=
dx+k

`x
=
`x+k − `x+k+1

`x
.

The expected number of whole years of future live for an individual aged x
is given by the curtate expectation of life at age x

ex =
∞∑
k=1

kpx =
1

`x

∞∑
k=1

`x+k.

Restricting the sum to a certain number of years n we get

ex:n =
n∑
k=1

kpx =
1

`x

n∑
k=1

`x+k

which represents the expected (average) number of full years lived by (x) in
the interval (x, x+ n].

Example 23.24
Consider the extract from a life table

x 80 81 82 83 84 85 86
`x 250 217 161 107 62 28 0

Calculate
(a) dx for x = 80, · · · , 86.
(b) The p.m.f. of the curtate life K(80).
(c) The expected curtate life e80.
(d) The expected number of whole years lived in the interval (80, 83] by (80).

Solution.
(a) We have

x 80 81 82 83 84 85 86
`x 250 217 161 107 62 28 0
dx 33 56 54 45 34 28 0



23 MORTALITY FUNCTIONS IN LIFE TABLE NOTATION 241

(b) We have

k 0 1 2 3 4 5
pK(80)(k) 33

250
56
250

54
250

45
250

34
250

28
250

(c) We have

e80 = (0)
33

250
+ (1)

56

250
+ (2)

54

250
+ (3)

45

250
+ (4)

34

250
+ (5)

28

250
= 2.3

(d) We have

e80:3 =
3∑

k=1

`80+k

`80

=
217 + 161 + 107

250
= 1.64

Example 23.25 ‡
You are given 3 mortality assumptions:
(i) Illustrative Life Table (ILT),
(ii) Constant force model (CF), where sx) = e−µx, x ≥ 0
(iii) DeMoivre model (DM), where s(x) = 1− x

ω
, 0 ≤ x ≤ ω, ω ≥ 72

For the constant force and DeMoivre models, 2p70 is the same as for the
Illustrative Life Table.
Rank e70:2 for these models from smallest to largest.

Solution.
For the ILT model, we have

eILT70:2 =p70 + 2p70 =
`71

`70

+
`72

`70

=
6, 396, 609

6, 616, 155
+

6, 164, 663

6, 616, 155
= 0.96682 + 0.93176 = 1.89858.

For the CF model, we have

eCF70:2 = p70 + 2p70 = e−µ + e−2µ.

But

e−2µ =
6, 164, 663

6, 616, 155
= 0.91376 =⇒ µ = 0.03534.

Thus,
eCF70:2 = e−0.03534 + 0.91376 = 1.89704.



242 THE LIFE TABLE FORMAT

For the DM model, we have

0.93176 = 2p70 =
`DM72

`DM71

=
ω − 72

ω − 70
=⇒ ω = 99.30796.

Thus,

eILT70:2 =p70 + 2p70 =
ω − 71

ω − 70
+
ω − 72

ω − 70

=
99.30796− 71

99.30796− 70
+ 0.93176 = 1.89763.

Hence,
eCF70:2 < eDML

70:2 < eILT70:2
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Practice Problems

Problem 23.37
Express the second moment of K(x) in life-table terms.

Problem 23.38
Consider the extract from a life table

x 80 81 82 83 84 85 86
`x 250 217 161 107 62 28 0

Calculate E[K(80)2].

Problem 23.39
Consider the extract from a life table

x 80 81 82 83 84 85 86
`x 250 217 161 107 62 28 0

Calculate Var(K(80)).

Problem 23.40
For a survival model, we have `x = 100e−0.05x, x ≥ 0. Find an expression for
pK(20)(k).

Problem 23.41
For a survival model, we have `x = 100e−0.05x, x ≥ 0. What is the probability
that the curtate-lifetime of (20) exceeds 1?
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23.8 The nLx Notation

In Section 23.3, we introduced the exposure Tx defined by

Tx =

∫ ∞
x

`ydy.

In words, Tx is the expected total life years lived after age x by the `x
individuals alive at age x. Thus, the difference Tx − Tx+n is the expected
total life years lived over the next n years only by the `x individuals alive at
age x. We denote such a number by the symbol nLx. That is,

nLx = Tx − Tx+n.

But
◦
ex:n =

Tx − Tx+n

`x
from which it follows

nLx = `x
◦
ex:n .

Example 23.26
Show that nLx =

∫ n
0
`x+tdt.

Solution.
We have

nLx =Tx − Tx+n =

∫ ∞
x

`ydy −
∫ ∞
x+n

`ydy

=

∫ x+n

x

`ydy

=

∫ n

0

`x+tdt

where we used the change of variable t = y − x

Example 23.27
Let `x = ω − x, 0 ≤ x ≤ ω. Calculate nLx.

Solution.
We have

Tx =

∫ ω

x

(ω − y)dy =
1

2
(x− ω)2.
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Thus,

nLx = Tx − Tx+n =
1

2
(x− ω)2 − 1

2
(x+ n− ω)2 = −n(x− ω)− n2

2

Example 23.28
Assume that the force of mortality follows the DeMoivre’s Law, where µ(x) =

1
80−x , 0 ≤ x < 80 and `0 = 800. Calculate 10L20.

Solution.
We have

s(x) =1− x

80
`x =`0s(x) = 800− 10x

10L20 =

∫ 10

0

`20+tdt =

∫ 10

0

(600− 10t)dt

=5500

Example 23.29
Given Tx = x3 − 300x+ 2000, 0 ≤ x ≤ 10. Find 3L2.

Solution.
We have

3L2 = T2 − T5 = 1408− 625 = 783
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Practice Problems

Problem 23.42
Show that Tx =

∑∞
k=x Lk where Lk = 1Lk =

∫ 1

0
`k+tdt.

Problem 23.43
Consider the survival model with `x = 100e−0.05x, x ≥ 0. Find nLx.

Problem 23.44
Consider the survival model with Tx = 1000(1 + x)−3. Find nLx.

Problem 23.45
You are given `x = 1000e−0.1x. Find L5.

Problem 23.46
Consider the survival model with `x = ω − x, 0 ≤ x ≤ ω. Show that∑n

k=1 Lk = n.
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23.9 Central Death Rate

In Section 21, we showed that the central death rate on the interval [x, x+n]
is given by

nmx =

∫ n
0 tpxµ(x+ t)dt∫ n

0 tpxdt
.

Using the fact that

tpx =
`x+t

`x

we can write

nmx =

∫ n
0
`x+tµ(x+ t)dt∫ n

0
`x+tdt

.

Since ∫ n

0

`x+tµ(x+ t)dt = −`x+t|n0 = `x − `x+n = ndx

and

nLx =

∫ n

0

`x+tdt

we obtain

nmx =
ndx

nLx
.

That is, the central rate of death is the rate of deaths per life year lived on
the interval from x to x+ n.

Example 23.30
You are given `x = 1000e−0.1x and L5 = 577.190. Find m5.

Solution.
We have

m5 =
d5

L5

=
`5 − `6

L5

=
1000(e−0.5 − e−0.6)

577.190
= 0.1

Example 23.31
Let `x = 90− x, 0 ≤ x ≤ 90.
(a) Find 4L15 and 4d15.
(b) Find 4m15.
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Solution.
(a) We have

4L15 =

∫ 4

0

`15+tdt =

∫ 4

0

(90− 15− t)dt = 75t− t2

2

∣∣∣∣4
0

= 292

and

4d15 = `15 − `19 = 4.

(b) The answer is

4m15 =
4d15

4L15

=
4

292
= 0.0137

Example 23.32
Assume that the force of mortality follows the DeMoivre’s Law, where µ(x) =

1
80−x , 0 ≤ x < 80 and `0 = 800. Find
(a) L20

(b) 1m20.

Solution.
We have

s(x) =1− x

80
`x =`0s(x) = 800− 10x

`20 =800− 10(20) = 600

`21 =800− 10(21) = 590

(a) We have Lx =
∫ 1

0
`x+tdt = 795− 10x so that L20 = 795− 10(20) = 595.

(b) We have

1m20 =
`20 − `21

L20

=
600− 590

595
= 0.01681

Example 23.33
Given that `x = ke−x. Show that mx is constant for all x.
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Solution.
We have

dx =`x − `x+1 = ke−x(1− e−1)

Lx =

∫ 1

0

`x+tdt =

∫ 1

0

ke−xe−tdt = ke−x(1− e−1)

mx =
dx
Lx

= 1

Example 23.34
Given Tx = x3 − 300x+ 2000, 0 ≤ x ≤ 10. Find 3m2.

Solution.
We have

`x = − d

dx
Tx = 300− 3x2.

Thus,

3m2 =
3d2

3L2

=
`2 − `5

T2 − T5

=
288− 225

1408− 625
= 0.08046
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Practice Problems

Problem 23.47
Show that d

dx
Lx = −dx.

Problem 23.48
Show that Lx+1 = Lxe

−
∫ x+1
x mydy.

Problem 23.49
Let `x = ω − x, 0 ≤ x ≤ ω.
(a) Find dx, Lx, and mx.
(b) Find µ(x).
(c) Show that µ(x) = mx

1+0.5mx
.

Problem 23.50
Black swans always survive until age 16. After age 16, the lifetime of a
black swan can be modeled by the cumulative distribution function F (x) =
1− 4√

x
, x > 16. There is a cohort of 3511 newborn black swans.

(a) How many years will members of this group in aggregate live between
the ages of 31 and 32?
(b) Find the central death rate at age 31.

Problem 23.51
LetX be the age-at-death random variable. Assume thatX obeys DeMoivre’s
Law with ω = 100. Also, assume a cohort of 100 newborn individuals.
(a) Find 10L20 and 10d20.
(b) Find 10m20.

Problem 23.52
Let X be uniform on [0, ω]. Given that m50 = 0.0202, find ω.
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24 Fractional Age Assumptions

Life tables are tabulated at integer ages only (aggregate tables) and there-
fore probabilities such as npx and nqx can be calculated from `x for x a
nonnegative integer. However, in many probability computations, one needs
to know `x for each x ≥ 0 and not just for integral values. Given `x at integer
ages together with some additional assumptions (i.e. interpolations) we will
be able to calculate probabilities for non-integral ages such as 0.75q0.25. In this
section, we describe three most useful assumptions.

24.1 Linear Interpolation: Uniform Distribution of Deaths
(UDD)

The uniform distribution of deaths assumes a uniform distribution of
deaths within each year of age, that is, between integer-valued years x and
x + 1 the function s(x + t) is linear for 0 ≤ t ≤ 1. See Figure 24.1. Hence,
we have

s(x+ t) = (1− t)s(x) + ts(x+ 1).

Figure 24.1

Thus, we can also write

`x+t = (1− t)`x + t`x+1

or alternatively,
`x+t = `x − tdx.
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This says, at time x+ t, you have the `x individuals with which you started,
less the deaths that occurred between time x and x + t. Thus, given `x and
`x+1 we can find `x+t by linear interpolation.
The UDD assumption gives us the helpful formulas below.

tpx = sT (x)(t) =
`x+t

`x
=
`x − tdx
`x

= 1− tdx
`x

= 1− tqx.

tqx = FT (x)(t) = 1− tpx = tqx.

fT (x)(t) = F ′T (x)(t) = qx, 0 < t < 1.

µ(x+ t) =
− d
dt
`x+t

`x+t

=
− d
dt t
px

tpx
=

qx
1− tqx

.

Lx =

∫ 1

0

`x+tdt =

∫ 1

0

(`x − tdx)dt = `x −
1

2
dx = `x+1 +

1

2
dx.

Tx =
∞∑
y=x

Ly =
∞∑
y=x

`y+1 +
1

2
`x.

mx =
dx
Lx

=
dx

`x − 1
2
dx

=
qx

1− 1
2
qx
.

◦
ex=

Tx
`x

=

∑∞
y=x `y+1

`x
+

1

2
= ex +

1

2
.

Example 24.1
Given that q80 = 0.02, calculate 0.6p80.3 under the assumption of a uniform
distribution of deaths.

Solution.
We have

0.6p80.3 =
`80.9

`80.3

=
0.9p80

0.3p80

=
1− 0.9q80

1− 0.3q80

=
1− 0.9(0.02)

1− 0.3(0.02)
= 0.9879
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Example 24.2
Consider the following life table.

Age `x dx
0 100,000 501
1 99,499 504
2 98,995 506
3 98,489 509
4 97,980 512
5 97,468 514

Under the uniform distribution of deaths assumption, calculate (a) 1.4q3 and
(b) 1.4q3.5.

Solution.
(a) We have

1.4q3 =1− 1.4p3 = 1− (p3)(0.4p4)

=1− `4

`3

· (1− 0.4q4)

=1− `4

`3

·
(

1− 0.4
d4

`4

)
=1− 97980

98489
·
(

1− 0.4× 512

97980

)
= 0.0072

(b) We have

1.4q3.5 =1− 1.4p3.5

=1− `4.9

`3.5

=1− `4 − 0.9d4

`3 − 0.5d3

=0.007281

Example 24.3
Under the assumption of a uniform distribution of deaths, calculate
(a) limt→1− µ(80 + t) if q80 = 0.02
(b) limt→0+ µ(81 + t) if q81 = 0.04
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Solution.
(a) We have

lim
t→1−

µ(80 + t) =
q80

1− q80

= 0.0204

(b) We have
lim
t→0+

µ(81 + t) = q81 = 0.04

Example 24.4 ‡
For a 4-year college, you are given the following probabilities for dropout
from all causes:

q0 =0.15

q1 =0.10

q2 =0.05

q3 =0.01

Dropouts are uniformly distributed over each year.
Compute the temporary 1.5-year complete expected college lifetime of a stu-
dent entering the second year, e̊1:1.5 .

Solution.
We have

e̊1:1.5 =

∫ 1.5

0
tp1dt =

∫ 1

0
tp1dt+

∫ 1.5

1
tp1dt

=

∫ 1

0
tp1dt+

∫ 0.5

0
t+1p1dt

=

∫ 1

0
tp1dt+ p1

∫ 0.5

0
tp2dt

=

∫ 1

0

(1− 0.10t)dt+ (1− 0.10)

∫ 0.5

0

(1− 0.05t)dt

=0.95 + 0.444 = 1.394

The following results are of theoretical importance.

Example 24.5
Assume that mortality follows the Illustrative Life Table for integral ages.
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Assume that deaths are linearly distributed (UDD) between integral ages.
Calculate:

(a)0.5q80 (e)1.5q80

(b)0.5p80 (f)0.5q80.5

(c)µ(80.5) (g)0.5q80.25

(d)1.5p80

Solution.
(a) 0.5q80 = 0.5q80 = 0.5(0.08030) = 0.04015
(b) 0.5p80 = 1− 0.5q80 = 1− 0.04015 = 0.95985
(c) µ(80.5) = q80

1−0.5q80
= 0.08030

1−0.5(0.08030)
= 0.08366

(d) 1.5p80 = 1p800.5p81 = (1− 0.08030)(0.5)(1− 0.08764) = 0.87940
(e) 1.5q80 = 1− 1.5p80 = 1− 0.87940 = 0.12060
(f) We have

0.5q80.5 =1− 0.5p80.5 = 1− `81

`80.5

=1− `81

0.5`80 + 0.5`81

= 1− 3, 600, 038

0.5(3, 914, 365) + 0.5(3, 600, 038)

=0.04183.

(g) We have

0.5q80.25 =1− 0.5p80.25 = 1− `80.75

`80.25

=1− 0.25`80 + 0.75`81

0.75`80 + 0.25`81

= 1− 0.25(3, 914, 365) + 0.75(3, 600, 038)

0.75(3, 914, 365) + 0.25(3, 600, 038)

=0.04097

Theorem 24.1
Under the assumption of uniform distribution of deaths in the year of death,
(i) the random variable S(x) = T (x) − K(x) has the uniform distribution
on the interval [0, 1). S(x) is the random variable representing the fractional
part of a year lived in the year of death. Clearly, 0 ≤ S(x) ≤ 1.
(ii) K(x) and T (x)−K(x) are independent random variables.
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Proof.
(i) We have

Pr([K(x) = k]∩[S(x) ≤ t]) = Pr(k < T (x) ≤ k+t) =
`x+t − `x+t+k

`x
=
tdx+k

`x
.

Letting t→ 1 we find

Pr(K(x) = k) =
dx+k

`x
.

Now, for 0 ≤ t < 1 we have

Pr(S(x) ≤ t]) =
∞∑
k=0

Pr([K(x) = k] ∩ [S(x) ≤ t]) =
∞∑
k=0

tdx+k

`x
= t.

This shows that S(x) has a unitorm distribution on [0, 1).
(ii) For 0 ≤ t < 1, we have

Pr([K(x) = k] ∩ [S(x) ≤ t]) =Pr(k ≤ T (x) ≤ k + t)

=kpxtqx+k

=kpxtqx+k = tPr(K(x) = k)

=Pr(K(x) = k)Pr(S(x) ≤ t).

This shows that the random variables K(x) and S(x) are independent
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Practice Problems

Problem 24.1
Consider the following extract from a life table.

Age `x dx
0 100,000 501
1 99,499 504
2 98,995 506
3 98,489 509
4 97,980 512
5 97,468 514

Under the uniform distribution of deaths assumption, calculate `t, 0 ≤ t ≤ 6.

Problem 24.2
Using the previous problem and the UDD assumption, calculate tp0, 0 ≤ t ≤
6.

Problem 24.3
Using the life table of Problem 24.1 and UDD assumption, calculate e0 and
◦
e0 .

Problem 24.4
Show that under the uniform distribution of deaths assumption, we have

tqx+s = tqx
1−sqx , 0 ≤ s+ t < 1.

Problem 24.5 ‡
You are given qx = 0.1. Find

◦
ex:1 under the uniform distribution of deaths

assumption.

Problem 24.6 ‡
You are given that deaths are uniformly distributed over each year of age,
and 0.75px = 0.25. Which of the following are true?
(I) 0.25qx+0.5 = 0.5 (II) 0.5qx = 0.5 (III) µ(x+ 0.5) = 0.5.

Problem 24.7 ‡
You are given:
(i) for dx = k, x = 0, 1, , 2, · · · , ω − 1
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(ii)
◦
e20:20 = 18

(iii) Deaths are uniformly distributed over each year of age.

Calculate 30|10q30.

Problem 24.8
Show that under UDD assumption, we have

r|hqx = rpxhqx+r = hqx, r + h < 1.

Problem 24.9 ‡
T, the future lifetime of (0), has the following distribution.
(i) f1(t) follows the Illustrative Life Table, using UDD in each year.
(ii)f2(t) follows DeMoivre’s law with ω = 100.
(iii)

fT (t) =

{
kf1(t) 0 ≤ t ≤ 50
1.2f2(t) 50 < t

Calculate 10p40.
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24.2 Constant Force of Mortality Assumption: Expo-
nential Interpolation

The second fractional age assumption says that the force of mortality is
constant between integer ages. That is, for integer x ≥ 0 we have µ(x+ t) =
µx for all 0 ≤ t < 1. The constant µx can be expressed in terms of px as
follows:

px = e−
∫ 1
0 µ(x+t)dt = e−µx =⇒ µx = − ln px.

Further, under the constant force of mortality assumption we can write

tpx = sT (x)(t) = e−
∫ t
0 µ(x+s)ds = e−µxt = eln ptx = ptx, 0 ≤ t < 1.

tqx = FT (x)(t) = 1− tpx = 1− ptx = 1− (1− qx)t.

fT (x)(t) =
d

dt
FT (x)(t) = − ln pxp

t
x = µxp

t
x = tpxµ(x+ t).

`x+t = `xtpx = `xp
t
x.

µ(x+ t) = µx = − ln px.

Lx =

∫ 1

0

`x+tdt = `x
ptx

ln px

∣∣∣∣1
0

= − `x
−µx

qx =
dx
µx
.

mx =
dx
Lx

= µx.

Tx =
∞∑
y=x

Ly =
∞∑
y=x

(
dy
µy

)
.

◦
ex=

Tx
`x

=
∞∑
y=x

dy
`xµy

.

Example 24.6
Consider the following extract from a life table.

Age `x dx
0 100,000 501
1 99,499 504
2 98,995 506
3 98,489 509
4 97,980 512
5 97,468 514
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Under the constant force of mortality assumption, find (a) 0.75p2 and (b)

1.25p2.

Solution.
(a) We have

0.75p2 = p0.75
2 =

(
`2

`1

)0.75

=

(
98, 995

99, 499

)0.75

= 0.9962.

(b) We have

1.25p2 =p2 · 0.25p3 =

(
`3

`2

)(
`4

`3

)0.25

=

(
98, 489

98, 995

)(
97, 980

98, 489

)0.25

= 0.9936

Example 24.7
You are given
(i) qx = 0.02
(ii) The force of mortality is constant between integer ages.
Calculate 0.5qx+0.25.

Solution.
In general, for s, t > 0 and s+ t < 1 we have

spx+t = e−
∫ s
0 µxdy = psx.

Thus,

0.5qx+0.25 = 1− 0.5px+0.25 = 1− p0.5
x = 1− (1− 0.02)0.5 = 0.01

Example 24.8 ‡
You are given the following information on participants entering a special
2-year program for treatment of a disease:
(i) Only 10% survive to the end of the second year.
(ii) The force of mortality is constant within each year.
(iii) The force of mortality for year 2 is three times the force of mortality for
year 1.
Calculate the probability that a participant who survives to the end of month
3 dies by the end of month 21.
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Solution.
If µ denote the force of mortality of the first year, then the force of mortality
of the second year is 3µ. We have

0.10 = Pr(surviving two years) = pxpx+1 = e−4µ =⇒ µ = 0.5756.

The probability we are looking for is (time counted in years):

1.5qx+0.25 =1− 1.5px+0.25 = 1− (0.75px+0.25)(0.75px+1)

=1− e−0.75µe−0.75(3µ) = 1− e−3µ = 1− e−3(0.5756)

=0.8221

Example 24.9
Assume that mortality follows the Illustrative Life Table for integral ages.
Assume constant force (CF) between integral ages. Calculate:

(a)0.5q80 (e)1.5q80

(b)0.5p80 (f)0.5q80.5

(c)µ(80.5) (g)0.5q80.25

(d)1.5p80

Solution.
(a) 0.5q80 = 1− p0.5

80 = 1− (1− 0.08030)0.5 = 0.04099.
(b) 0.5p80 = 1− q0.5

80 = 1− 0.04099 = 0.95901.
(c) µ(80.5) = − ln p80 = − ln (1− q80) = − ln (1− 0.08030) = 0.08371.
(d) 1.5p80 = 1p800.5p81 = (1− q80)(1− q81)0.5 = (1−0.08030)(1−0.08764)0.5 =
0.87847
(e) 1.5q80 = 1− 1.5p80 = 1− 0.87847 = 0.12153.
(f) We have

0.5q80.5 =1− 0.5p80.5 = 1− `81

`80.5

=1− `81

`800.5p80

= 1− 3, 600, 038

3, 914, 365(1− 0.0803)0.5

=0.04099.
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(g) We have

0.5q80.25 =1− 0.5p80.25 = 1− `80.75

`80.5

=1− `80p
0.75
80

`80p0.25
80

= 1− p0.5
80

=1− (1− 0.8030)0.5 = 0.04099
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Practice Problems

Problem 24.10
You are given:
(i) qx = 0.16
(ii) The force of mortality is constant between integer ages.
Calculate t such that tpx = 0.95.

Problem 24.11
You are given:
(i) qx = 0.420
(ii) The force of mortality is constant between integer ages.
Calculate mx.

Problem 24.12
Show that, under a constant force of mortality, we have t−sqx+s = 1 −
e−(t−s)µx , 0 < s, t < 1.

Problem 24.13
You are given:
(i) p90 = 0.75
(ii) a constant force of mortality between integer ages.
Calculate 1

12
q90 and 1

12
q90+ 11

12
.

Problem 24.14
You are given:
(i) qx = 0.1
(ii) a constant force of mortality between integer ages.
Calculate 0.5qx and 0.5qx+0.5.
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24.3 Harmonic (Balducci) Assumption

The harmonic or Balducci assumption consists of assuming the function
1

`x+t
to be linear in t and therefore `x+t is a hyperbolic function. Hence,

`x+t = 1
a+bt

. In this case, we have `x = 1
a

and `x+1 = 1
a+b

. Thus, a = 1
`x

and

b = 1
`x+1
− 1

`x
. Therefore,

1

`x+t

=
1

`x
+

(
1

`x+1

− 1

`x

)
t = t · 1

`x+1

+ (1− t) · 1

`x

or

`x+t =
`x+1

px + tqx
.

Under the harmonic assumption, we derive the following:

1

tpx
=
`x
`x+t

= t · `x
`x+1

+ (1− t) · `x
`x

=
t

px
+ (1− t) =

t+ (1− t)px
px

tpx =
px

t+ (1− t)px

tqx =1− px
t+ (1− t)px

=
tqx

1− (1− t)qx

µ(x+ t) =
− d
dt
`x+t

`x+t

=
qx

1− (1− t)qx

fT (x)(t) =
px(1− px)

(t+ (1− t)px)2
.

Example 24.10
Find a formula for Lx under the harmonic assumption.
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Solution.
We have

Lx =

∫ 1

0

`x+tdt =

∫ 1

0

[
1

`x
+

(
1

`x+1

− 1

`x

)
t

]−1

dt

=
ln
(

1
`x

+
(

1
`x+1
− 1

`x

)
t
)

1
`x+1
− 1

`x

∣∣∣∣∣∣
1

0

= − ln px
1

`x+1
− 1

`x

=− `x+1 ln px
qx

Example 24.11
Find a formula for mx under the harmonic assumption.

Solution.
We have

mx =
dx
Lx

=
`x − `x+1

− ln px
1

`x+1
− 1
`x

= −(`x − `x+1)2

`x`x+1 ln px
= − (qx)

2

px ln px

Example 24.12
Graph µ(x + t) under uniform distribution assumption, constant force of
mortality assumption, and harmonic assumption.

Solution.
We have

UD CF BAL
µ(x) qx − log (1− qx) qx

1−qx
µ(x+ 1

2
) qx

1− 1
2
qx
− log (1− qx) qx

1− 1
2
qx

µ(x+ 1) qx
1−qx − log (1− qx) qx
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The graph of µ(x+ t) under the three assumptions is shown below

Example 24.13
Graph s(x + t) under uniform distribution assumption, constant force of
mortality assumption, and harmonic assumption.

Solution.
We have

s(x+ t) s(x)(1− tqx) s(x)(1− qx)t s(x) 1−qx
1−(1−t)qx

The graph of s(x+ t) under the three assumptions is shown below
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Example 24.14
The life table is given as follows

x qx
26 0.0213
27 0.0232
28 0.0254

Find the probability that (26.5) will survive to age 28.25 under
(i)) the UDD assumption
(ii) the constant-force assumption
(iii) the Balducci’s assumption.

Solution.
We have

28.25−26.5p26.5 = 1.75p26.5 = 0.5p26.5p270.25p28.

(i) Under the UDD assumption, we have

0.5p26.5 =1− 0.5q26.5 = 1− 0.5q26

1− 0.5q26

= 1− 0.5(0.0213)

1− 0.5(0.0213)
= 0.989235

p27 =1− q27 = 1− 0.0232 = 0.9768

0.25p28 =1− 0.25q28 = 1− 0.25q28 = 1− 0.25(0.0254) = 0.99365

1.75p26.5 =(0.989235)(0.9768)(0.99365) = 0.960149.

(ii) Under the constant force of mortality, we have

0.5p26.5 =1− 0.5q26.5 = 1− (1− p0.5
26 ) = p0.5

26 = (1− q26)0.5 = 0.989293

p27 =1− q27 = 1− 0.0232 = 0.9768

0.25p28 =(1− q28)0.25 = (1− 0.0254)0.25 = 0.993589

1.75p26.5 =(0.989293)(0.9768)(0.993589) = 0.960145.

(ii) Under the harmonic assumption, we have

0.5p26.5 =1− 0.5q26.5 =
1− 0.5q26

1− (1− 0.5− 0.5)q26)
= 1− 0.5q26 = 0.98935

p27 =1− q27 = 1− 0.0232 = 0.9768

0.25p28 =
p28

1− (1− 0.25)q28

=
1− 0.0254

1− 0.75(0.0254)
= 0.993527

1.75p26.5 =(0.98935)(0.9768)(0.993527) = 0.960141
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Example 24.15
Assume that mortality follows the Illustrative Life Table for integral ages.
Assume Balducci between integral ages. Calculate:

(a)0.5q80 (e)1.5q80

(b)0.5p80 (f)0.5q80.5

(c)µ(80.5) (g)0.5q80.25

(d)1.5p80

Solution.
(a) 0.5q80 = 0.5q80

1−(1−0.5)q80
= 0.5(0.08030)

1−0.5(0.08030)
= 0.04183.

(b) 0.5p80 = 1− 0.5q80 = 1− 0.04183 = 0.95817.
(c) µ(80.5) = q80

1−(1−0.5)q80
= 0.08030

1−0.5(0.08030)
= 0.08366

(d) 1.5p80 = 1p800.5p81 = (1−q80)
(

1− 0.5q81
1−(1−0.5)q81

)
= (1−0.08030)

(
1− 0.5(0.08764)

1−0.5(0.08764)

)
=

0.87755.
(e) 1.5q80 = 1− 1.5p80 = 1− 0.87755 = 0.12245.
(f) We have

0.5q80.5 =1− `81

`80.5

= 1− `81

`800.5p80

=1− 3, 600, 038

3, 914, 365
(

1− 0.5(0.08030)
1−0.5(0.08030)

)
=0.04015.

(g) We have

0.5q80.25 =1− `80.75

`80.25

= 1− `800.75p80

`800.25p80

=1−
1− 0.75q80

1−0.25q80

1− 0.25q80
1−0.75q80

= 1−
1− 0.75(0.08030)

1−0.25(0.08030)

1− 0.25(0.08030)
1−0.75(0.08030)

=0.04097
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Practice Problems

Problem 24.15
Given `95 = 800 and `96 = 600. Calculate L95 and m95 under the harmonic
assumption.

Problem 24.16
Show that under the Balduci assumption we have s−tqx+t = (s−t)qx

1−(1−s)qx .

Problem 24.17
You are given the following extract from a life table.

x `x
80 53925
81 50987
82 47940
83 44803

Estimate 0.75p80 and 2.25p80 under the harmonic assumption.

Problem 24.18
If `x = 15, 120 and qx = 1

3
, find `x+0.25 under the harmonic assumption.

Problem 24.19 ‡
You are given:
(i) µ(x) = (80− x)−

1
2 , 0 ≤ x < 80.

(ii) F is the exact value of s(10.5).
(iii) G is the value of s(10.5) using the Balducci assumption.
Calculate F −G.

Problem 24.20
The life table is given as follows

x qx
26 0.0213
27 0.0232
28 0.0254

Find e̊26:1.5 under
(i) the constant-force assumption
(ii) the Balducci’s assumption.
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25 Select-and-Ultimate Mortality Tables

A common practice of underwriters of life or health insurance policies is to
request medical records of the potential policyholders in order to make sure
that these candidates are in a satisfactory health conditions. As a result of
this filtering, lives who have recently been accepted for cover can be expected
to be in better health (and, thus, experience lighter mortality) than the
general (or ultimate) population at the same age. Thus, a person who has
just purchased life or health insurance has a lower probability of death than
a person the same age in the general population. If we let q[x] denote the
probability of death of the select individual and qx the probability of death
of the ultimate individual then we clearly have

q[x] < qx.

Now, the extent of the lighter mortality experienced by the select group of
lives can be expected to reduce as the duration of time increases (as previ-
ously healthy individuals are exposed to the same medical conditions as the
general population). In practice, select lives are often assumed to experience
lighter mortality for a period of, say, k years (known as the select period).
However, once the duration since selection exceeds the select period, the lives
are assumed to experience the ultimate mortality rates appropriate for the
general population at the same age. Thus, we can write

q[x]+k = qx+k.

Actuaries use special tables called select-and-ultimate mortality tables
to reflect the effects of selection. An extract of such a table (known as AF80)
with two-year selection period is shown in Table 25.1.

[x] 1000q[x] 1000q[x]+1 1000qx+2 `[x] `[x]+1 `x+2 x+ 2
30 0.222 0.330 0.422 9,907 9,905 9,901 32
31 0.234 0.352 0.459 9,903 9,901 9,897 33
32 0.250 0.377 0.500 9,899 9,896 9,893 34
33 0.269 0.407 0.545 9,894 9,892 9,888 35
34 0.291 0.441 0.596 9,889 9,887 9,882 36

Table 25.1

Example 25.1
Using Table 25.1, compute the following probabilities:
(i) 2p[32] (ii) 2q[30]+1 (iii) 2|q[31] (iv) 2q32 (v) 2|2q[30].
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Solution.
We have
(i)

2p[32] =
`34

`[32]

=
9893

9899
= 0.9994.

(ii)

2q[30]+1 = 1− 2p[30]+1 = 1− `33

`[30]+1

= 1− 9897

9905
= 8.0767× 10−4.

(iii)

2|q[31] =
`33 − `34

`[31]

=
9897− 9893

9903
= 4.039× 10−4.

(iv)

2q32 = 1− 2p32 = 1− `34

`32

= 1− 9893

9901
= 8.08× 10−4.

(v)

2|2q[30] =
`32 − `34

`[30]

=
9901− 9893

9907
= 8.075× 10−4

Example 25.2 ‡
For a 2-year select and ultimate mortality table, you are given:
(i) Ultimate mortality follows the Illustrative Life Table
(ii) q[x] = 0.5qx for all x
(iii) q[x]+1 = 0.5qx+1 for all x
(iv) `[96]10, 000.

Calculate `[97].

Solution.
The following is an extract from the Illustrative Life Table needed for our
problem

x `x 1000qx
96 213,977 304.45
97 148,832 328.34
98 99,965 353.60
99 64,617 380.20
100 40,049 408.12
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From the table, we have

q96 =0.30445

q97 =0.32834

q98 =0.35360

Thus,

`[96]+1 =`[96]p[96] = `[96](1− q[96])

=10, 000(1− 0.5× 0.30445) = 8478

`98 =`[96]+2 = `[96]+1p[96]+1

=8478(1− 0.5× 0.32834) = 7086

`99 =`98p98 = 7086(1− 0.5360) = 4580

`[97]+1 =
`99

p[97]+1

=
4580

1− 0.5× 0.35360
= 5564

`[97] =
`[97]+1

p[97]

=
5564

1− 0.5× 0.32834
= 6657

Example 25.3 ‡
For a select-and-ultimate table with a 2-year select period:

[x] p[x] p[x]+1 p[x]+2 = px+2 x+ 2
48 0.9865 0.9841 0.9713 50
49 0.9858 0.9831 0.9698 51
50 0.9849 0.9819 0.9682 52
51 0.9838 0.9803 0.9664 53

Keith and Clive are independent lives, both age 50. Keith was selected at
age 45 and Clive was selected at age 50.
Calculate the probability that exactly one will be alive at the end of three
years.

Solution.
We have

Pr(Only 1 survives) =1− Pr(Both survive)− Pr(Neither survives)

=1− 3p503p[50] − (1− 3p50)(1− 3p[50])

=1− (0.9713)(0.9698)(0.9682)(0.9849)(0.9819)(0.9682)

−(1− (0.9713)(0.9698)(0.9682))(1− (0.9849)(0.9819)(0.9682))

=0.140461.
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Example 25.4 ‡
You are given the following extract from a select-and-ultimate mortality table
with a 2-year select period:

[x] `[x] `[x]+1 `x+2 x+ 2
60 80,625 79,954 78,839 62
61 79,137 78,402 77,252 63
62 77,575 76,770 75,578 64

Assume that deaths are uniformly distributed between integral ages.

Calculate 10000.7q[60]+0.8.

Solution.
We have

`[60]+0.8 =`[60] + 0.8(`[60]+1 − `[60])

=80, 625 + 0.8(79, 954− 80, 625) = 80, 088.20

`[60]+1.5 =`[60]+1 + 0.5(`62 − `[60]+1)

=79, 954 + 0.5(78, 839− 79, 954) = 79, 396.50

10000.7q[60]+0.8 =1000
`[60]+0.8 − `[60]+1.5

`[60]+0.8

=1000
80, 088.20− 79, 396.50

80, 088.20
= 8.637
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Practice Problems

Problem 25.1 ‡
For a 2-year select and ultimate mortality table, you are given:
(i) q[x] = (1− 2k)qx
(ii) q[x]+1 = (1− k)qx+1

(iii) `[32] = 90
(iv) `32 = 100
(v) `33 = 90
(vi) `34 = 63.

Calculate `[32]+1.

Problem 25.2 ‡
For a life table with a one-year select period, you are given:
(i)

[x] `[x] d[x] `x+1
◦
e[x]

80 1000 90 8.5
81 920 90

(ii) Deaths are uniformly distributed over each year of age.

Calculate
◦
e[81] .

Problem 25.3 ‡
You are given the following extract from a 2-year select-and-ultimate mor-
tality table:

[x] `[x] `[x]+1 `x+2 x+ 2
65 8200 67
66 8000 68
67 7700 69

The following relationships hold for all x :
(i) 3q[x]+1 = 4q[x+1]

(ii) 4qx+2 = 5q[x+1]+1.

Calculate `[67].
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Problem 25.4 ‡
For a select-and-ultimate mortality table with a 3-year select period:
(i)

[x] q[x] q[x]+1 q[x]+2 qx+3 x+ 3
60 0.09 0.11 0.13 0.15 63
61 0.10 0.12 0.14 0.16 64
62 0.11 0.13 0.15 0.17 65
63 0.12 0.14 0.16 0.18 66
64 0.13 0.15 0.17 0.19 67

(ii) White was a newly selected life on 01/01/2000.
(iii) White’s age on 01/01/2001 is 61.
(iv) P is the probability on 01/01/2001 that White will be alive on 01/01/2006.

Calculate P.

Problem 25.5 ‡
You are given the following extract from a select-and-ultimate mortality table
with a 2-year select period:

[x] `[x] `[x]+1 `x+2 x+ 2
60 80,625 79,954 78,839 62
61 79,137 78,402 77,252 63
62 77,575 76,770 75,578 64

Assume that deaths are uniformly distributed between integral ages.

Calculate 0.9q[60]+0.6.
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Life Insurance: Contingent
Payment Models

In this chapter we look at models where a single payment will occur in the
future based on the occurrence of a defined random event. Such models are
referred to as contingent payment models. For example, a life insurance
policy has a face value to be paid to the policyholder upon his death. Thus,
the single payment (benefit to the policyholder) is known as a contingent
payment (since this payment is contingent on the death of the policyholder).
If we let t denote the length of the time interval from issue to death, bt
the benefit function, and νt the interest discount factor from the time of
payment back to the time of policy issue then the present value function
btνt is known as the contingent payment random variable. Actuaries look at
the expected value of this variable which is defined as a probability adjusted
present value of the benefit. That is,

E(btνt) = btνtPr(benefit).

We call this expected value as the actuarial present value4 and we denote
it by APV.

Example 26.1
Consider a policy which consists of a payment of $50,000 contingent upon
retirement in 15 years (if the person is still alive). Suppose that the prob-
ability of a 45-year old to retire in 15 years is 0.82. That is, 15p45 = 0.82.
Find the actuarial present value of the contingent payment. Assume, a 6%
interest compounded annually.

4Also known as the expected present value or the net single premium.

277
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Solution.
The actuarial present value is

APV = 50, 000(1.06)−15(0.82) = 17, 107.87

Example 26.2 ‡
A maintenance contract on a hotel promises to replace burned out light bulbs
at the end of each year for three years. The hotel has 10,000 light bulbs. The
light bulbs are all new. If a replacement bulb burns out, it too will be replaced
with a new bulb.
You are given: (i) For new light bulbs, q0 = 0.10, q1 = 0.30, q2 = 0.50
(ii) Each light bulb costs 1.
(iii) i = 0.05
Calculate the actuarial present value of this contract.

Solution.
At age 0, there are 10,000 new bulbs. At the end of year 1, there are
10,000(0.1) = 1000 bulbs to be replaced. So we have a total of 10,000 with
1,000 new and 9,000 1-year old.
At the end of year 2, there are 9, 000(0.3) + 1, 000(0.1) = 2, 800 bulbs to be
replaced. Again, we have 10,000 bulbs with 2,800 new, 900 1-year old and
6,300 2-year old.
At the end of year 3, there are 6,300(0.50) + 900(0.30) + 2,800(0.10) = 3700
bulbs to be replaced. In this case, we have 10,000 bulbs with 3700 new, 2520
1-year old, 630 2-year old and 3150 3-year old.
The actuarial present value is

1, 000

1.05
+

2, 800

1.052
+

3, 700

1.053
= 6, 688.26
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26 Insurances Payable at the Moment of Death

Benefit payments can be either made at the time the contingent event oc-
curred or at some set time like the end of the year in which the contingent
event occurred. In this section, we consider four conventional insurance mod-
els where the benefit payment is made at the time the contingent event oc-
curred. In life insurance terms, this means the time of death of the insured.
The models will be developed with a benefit function, bt, and a discount
function, νt, where t is length of time from issue to death. We define the
present-value function, zt, by

zt = btν
t.

But the elapsed time from policy issue to the death of the insured is just the
future-lifetime random variable T = T (x). Thus, the present value , at policy
issue, of the benefit payment is just the random variable

Z = zT = bTν
T .

We will follow the practice, used in the theory of interest, of assuming that
the benefit amount is equal to 1 (called unit insurance). For a benefit of k
dollars, one multiplies the present value of 1 dollar by k.

26.1 Level Benefit Whole Life Insurance

By a whole life insurance we mean an insurance that makes a benefit
payment at the time of death of the insured person, no matter when that
time might be. The whole life insurance is an example of level benefit
insurance.5

For this type of life insurance, bt = 1 and νt = νt so that the present value
randon variable is given by

Z̄x = νT , T > 0.

The average cost of a whole life insurance is defined as the actuarial present
value of the random variable Z̄x. For a life aged x, this average cost will be
denoted by Āx = E(Z̄x).

6 A formula for Āx is derived next.

Āx = E(νT ) =

∫ ∞
0

z̄xfZ̄x(t)dt =

∫ ∞
0

νtfT (t)dt =

∫ ∞
0

νttpxµ(x+ t)dt.

5A level benefit insurance pays the same amount at death, regardless of the time.
6The bar over the A indicates that this average cost is calculated on a continuous basis.

The bar is omitted for the discrete version.
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The expression under the integral symbol is the benefit of 1 discounted to
time t = 0 and multiplied by the probability of death in the interval [t, t+dt]
for small dt.
In order to compute the variability in cost of a whole life insurance, we need
the second moment of Z̄x, denoted by 2Āx, and is given by

2Āx =

∫ ∞
0

ν2tfT (t)dt =

∫ ∞
0

ν2t
tpxµ(x+ t)dt.

Now, the variance of Z̄x is given by

Var(Z̄x) = 2Āx − Ā2
x.

Example 26.3
The age-at-death random variable obeys De Moivre’s Law on the interval
[0, ω]. Let Z̄x be the contingent payment random variable for a life aged x.
Assume a constant force of interest δ, find
(i) Āx
(ii) 2Āx
(iii) Var(Z̄x).

Solution.
T obeys DeMoivre’s Law on the interval [0, ω − x], we have fT (t) = 1

ω−x .
(i)

Āx =

∫ ω−x

0

e−δt

ω − x
dt = − e−δt

δ(ω − x)

∣∣∣∣ω−x
0

=
1

ω − x

[
1− e−δ(ω−x)

δ

]
=

āω−x
ω − x

.

(ii)

2Āx =

∫ ω−x

0

e−2δt

ω − x
dt

= − e−2δt

2δ(ω − x)

∣∣∣∣ω−x
0

=

[
1− e−2δ(ω−x)

2δ(ω − x)

]
.
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(iii)

Var(Z̄x) =

[
1− e−2δ(ω−x)

2δ(ω − x)

]
−

ā2
ω−x

(ω − x)2

Example 26.4
The PDF of a future-lifetime random variable for a life aged x is given by

fT (t) = µe−µt, t ≥ 0.

Assume a constant force of interest δ, find Āx,
2Āx, and Var(Z̄x).

Solution.
We have

Āx =

∫ ∞
0

e−δte−µtµdt

= −µe
−(µ+δ)t

µ+ δ

∣∣∣∣∞
0

=
µ

µ+ δ
.

2Āx =

∫ ∞
0

e−2δte−µtµdt

= −µe
−(µ+2δ)t

µ+ 2δ

∣∣∣∣∞
0

=
µ

µ+ 2δ
.

Var(Z̄x) =
µ

µ+ 2δ
−
(

µ

µ+ δ

)2

Example 26.5
A whole life insurance of 1 issued to (20) is payable at the moment of death.
You are given:
(i) The time-at-death random variable is exponential with µ = 0.02.
(ii) δ = 0.14.

Calculate Ā20,
2Ā20, and Var(Z̄x).
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Solution.
We have

Ā20 =
µ

µ+ δ
=

0.02

0.02 + 0.14
=

1

8

2Ā20 =
µ

µ+ 2δ
=

0.02

0.02 + 0.28
=

1

15

Var(Z̄x) =
1

15
−
(

1

8

)2

= 0.0510

Finally, if the benefit payment is a constant b 6= 1 then Z̄x = bνt and one can
easily derive the following moments

E(Z̄x) = bĀx

E(Z̄2
x) = b2

(
2Āx
)
.

Example 26.6
You are currently 45 years old. It is found that your mortality follows De
Moivre’s Law with ω = 90. You purchase a whole life insurance policy that
pays a benefit of $1,000,000 at the moment of death. Calculate the actuarial
present value of your death benefits. Assume an annual effective interest rate
of 10%.

Solution.
Since X is uniform on [0, 90], T = T (45) is uniform on [0, 45]. Thus, fT (t) =
1
45
. The actuarial present value of your death benefits is given by

Ā45 = 1, 000, 000

∫ 45

0

(1.1)−t· 1

45
dt = −1, 000, 000

1

45

(1.1)−t

ln 1.1

∣∣∣∣45

0

= 229, 958.13

Example 26.7
A whole life insurance of 1 issued to (x) is payable at the moment of death.
You are given:
(i) µ(x+ t) = 0.02
(ii) δ = 0.1.
Calculate the 95th percentile of the present value random variable for this
insurance.
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Solution.
We want to find c such that Pr(Z̄x ≤ c) = 0.95 where Z̄x = e−0.1T . See Figure
26.1.

Figure 26.1

We have

0.95 = Pr(Z̄x ≤ c) = Pr(T > t) = tpx = e−
∫ t
0 0.02dt = e−0.02t.

Solving for t we find

t = − ln 0.95

0.02
.

Thus,

c = e0.1× ln 0.95
0.02 = 0.7738

Example 26.8 ‡
For a group of individuals all age x, of which 30% are smokers (S) and 70%
are non-smokers (NS), you are given:
(i) δ = 0.10
(ii) ĀSx = 0.444
(iii) ĀNSx = 0.286
(iv) T is the future lifetime of (x).
(v) Var[āS

T
] = 8.8818

(vi) Var[āNS
T

] = 8.503
Calculate Var[āT ] for an individual chosen from this group.
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Solution.
We have

8.8818 = Var[āST ] =
2ĀSx − [ĀSx ]2

δ2
=⇒ 2ĀSx = 0.285316.

Likewise,

8.503 = Var[āNST ] =
2ĀNSx − [ĀNSx ]2

δ2
=⇒ 2ĀNSx = 0.166826.

Hence,

Āx = ĀSxPr(S) + ĀNSx Pr(NS) = (0.285316)(0.3) + (0.166826)(0.70) = 0.3334

and

2Āx = 2ĀSxPr(S)+2ĀNSx Pr(NS) = (0.3)(0.285316)+(0.7)(0.166826) = 0.202373.

Finally,

Var[āT ] =
2Āx − (Āx)

2

δ2
= 9.121744
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Practice Problems

Problem 26.1 ‡
A whole life insurance of 1 issued to (20) is payable at the moment of death.
You are given:
(i) µ(20 + t) = 0.02
(ii) δ = 0.1.
Calculate the median of the present value random variable for this insurance.

Problem 26.2
A whole life insurance of 1 issued to (20) is payable at the moment of death.
You are given:
(i) The time-at-death random variable is uniform with ω = 100.
(ii) δ = 0.02.

Calculate Ā20,
2Ā20, and Var(Z̄20).

Problem 26.3 ‡
Z̄x is the present-value random variable for a whole life insurance of b payable
at the moment of death of (x). You are given:
(i) δ = 0.04
(ii) µ(x+ t) = 0.02, t ≥ 0
(iii) The actuarial present value of the single benefit payment is equal to
var(Z̄x).

Find the value of b.

Problem 26.4
Z̄x is the present-value random variable for a whole life insurance of 1 payable
at the moment of death of (x). You are given:
(i) δ = 0.06
(ii) The force of mortality is constant,say µ.
(iii) 2Āx = 0.25.

Calculate the value of µ.

Problem 26.5
For a whole life insurance of 1,000 on (x) with benefit payable at the moment
of death, you are given:



286 LIFE INSURANCE: CONTINGENT PAYMENT MODELS

(i) δ = 0.05
(ii) µ(x+ t) = 0.06 for 0 ≤ t ≤ 10 and µ(x+ t) = 0.07 otherwise.
Calculate the actuarial present value for this insurance.

Problem 26.6
For a group of individuals all age x, you are given:
(i) 30% are smokers and 70% are non-smokers.
(ii) The constant force of mortality for smokers is 0.06.
(iii) The constant force of mortality for non-smokers is 0.03.
(iv) δ = 0.08
Calculate Var(āT (x) ) for an individual chosen at random from this group.
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26.2 Finite Term Insurance Payable at the Moment of
Death

A cheaper life insurance than the whole life insurance is a finite term life
insurance. An n−year term life insurance is a policy where the payment
is made only when the insured person dies within n years of the policy’s
issue. That is, if the insured survives n years, no benefit is paid.
For a unit benefit, the cost of the policy is the actuarial present value of the
contingent payment random variable

Z̄1
x:n =

{
νT , 0 ≤ T ≤ n
0, T > n.

where T is the random variable for the time left to live. This cost is denoted
by Ā1

x:n for a life aged x. In the symbol Ā1
x:n , the superscript “1” means that

1 unit of money is paid for a life currently aged x if that life dies prior to
reaching the age of x+ n.
We next develop a formula for the actuarial present value. We have

Ā1
x:n =E(νT ) =

∫ ∞
0

zfZ̄1
x:n

(t)dt

=

∫ n

0

νtfT (t)dt =

∫ n

0

νttpxµ(x+ t)dt.

In order to find the variance of Z̄1
x:n we need also to find E[(Z̄1

x:n )2] which
we denote by 2Ā1

x:n and is given by the following formula

2Ā1
x:n =

∫ n

0

ν2t
tpxµ(x+ t)dt.

The variance of Z̄1
x:n is

Var(Z̄1
x:n ) = 2Ā1

x:n − (Ā1
x:n )2.

Example 26.9
You are given the following information:
(i) A unit benefit n−year term life insurance policy.
(ii) The age-at-death random variable is uniform on [0, ω].
(iii) The constant force of interest δ.
(iv) Z̄1

x:n is the contingent payment random variable for a life aged x.
Find Ā1

x:n ,
2Ā1

x:n , and Var(Z̄1
x:n ).
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Solution.
Since X is uniform on [0, ω], the future-lifetime random variable T = T (x)
is uniform on [0, ω − x]. Thus, fT (t) = 1

ω−x .
We have

Ā1
x:n =

∫ n

0

e−δt

ω − x
dt =

1

δ(ω − x)
(1− e−nδ)

2Ā1
x:n =

∫ n

0

e−2δt

ω − x
dt =

1

2δ(ω − x)
(1− e−2nδ)

Var(Z̄1
x:n ) =

1

2δ(ω − x)
(1− e−2nδ)− 1

δ2(ω − x)2
(1− e−nδ)2

Example 26.10
You are given the following information:
(i) A unit benefit n−year term life insurance policy.
(ii) The age-at-death random variable is exponential with parameter µ.
(iii) The constant force of interest δ.
(iv) Z̄1

x:n is the contingent payment random variable for a life aged x.
Find Ā1

x:n ,
2Ā1

x:n , and Var(Z̄1
x:n ).

Solution.
Since X is exponential with parameter µ, by the memoryless property, the
future-lifetime random variable T = T (x) is also exponential with parameter
µ. Thus, fT (t) = µe−µt.
We have

Ā1
x:n =

∫ n

0

e−δte−µtµdt =
µ

µ+ δ
(1− e−(µ+δ)n)

2Ā1
x:n =

∫ n

0

e−2δte−µtµdt =
µ

µ+ 2δ
(1− e−(µ+2δ)n)

Var(Z̄1
x:n ) =

µ

µ+ 2δ
(1− e−(µ+2δ)n)− µ2

(µ+ δ)2
(1− e−(µ+δ)n)2

Example 26.11
The age-at-death random variable is exponential with parameter 0.05. A life
aged 35 buys a 25-year life insurance policy that pays 1 upon death. Assume
an annual effective interest rate of 7%, find the actuarial present value of this
policy.
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Solution.
We have

Ā 1
35:25 =

∫ 25

0

(1.07)−te−0.05t(0.05)dt = 0.4025

Example 26.12
You are given the following information:
(i) A unit benefit n−year term life insurance policy.
(ii) The future-lifetime random variable is uniform on [0, 80].
(iii) The constant force of interest δ.
(iv) Z̄1

x:n is the contingent payment random variable for a life aged x.
Find the 90th percentile of the distribution of the present value of benefit
payment.

Solution.
We are looking for m such that Pr(Z̄1

x:n ≤ m) = 0.90. Since Z̄1
x:n is a

decreasing exponential function of T we can find time α such that e−δα = m
and

Pr(Z̄1
x:n ≤ m) = Pr(T > α) = 0.90

which implies that α is the 10th percentile of T. In this case,

α

80
= 0.10 =⇒ α = 8 =⇒ m = e−8δ
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Practice Problems

Problem 26.7
You are given the following information:
(i) A unit benefit 10−year term life insurance policy.
(ii) The age-at-death random variable is uniform on [0, 110].
(iii) The constant force of interest δ = 0.06.
(iv) Z̄ 1

25:10
is the contingent payment random variable for a life aged 25.

Find Ā 1
25:10

, 2Ā 1
25:10

, and Var(Z̄ 1
25:10

).

Problem 26.8
You are given the following information:
(i) A unit benefit 20−year term life insurance policy.
(ii) The age-at-death random variable is exponential with µ = 0.05.
(iii) The constant force of interest δ = 0.10.
(iv) Z̄1

x:n is the contingent payment random variable for a life aged 30.
Find Ā1

x:n ,
2Ā1

x:n , and Var(Z̄ 1
30:20

).

Problem 26.9
Consider a 25-year term insurance for a life aged 40, with payment due upon
death. Assume that this person belongs to a population, whose lifetime has
a probability distribution tp0 = 1 − t

100
, t ∈ [0, 100]. Assume that the force

of interest is δ = 0.05. Calculate the actuarial present value of this policy.

Problem 26.10
Consider a 20-year term insurance with constant force of mortality µ = 0.01
and force of interest δ = 0.08. Find the 90th percentile of the distribution of
the present value benefit.

Problem 26.11

Simplify
Ā1
x:1

Ā1
x:2

if the force of mortality µ is constant.

Problem 26.12
You are given the following information:
(i) Ā1

x:n = 0.4275
(ii) µ(x+ t) = 0.045 for all t.
(iii) δ = 0.055.
Calculate e−0.1n.
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26.3 Endowments

An n−year term life insurance pays the insured only if death occurs before
n years. In contrast, endowment policies pay the insured only if he is still
alive after n years. In this section, we discuss two types of endowments: a
pure endowment and endowment insurance.

26.3.1 Pure Endowments

An n− year pure endowment makes a payment at the conclusion of n years
if and only if the insured person is alive n years after the policy has been
issued. For example, a 20-year pure endowment with face amount $100,000,
issued to (x), will pay $100,000 in 20 years if (x) is still alive at that time,
and will pay nothing if (x) dies before age x+ 20.
The pure endowment of $1, issued to (x), with a term of n years has the
present value given by

Z̄ 1
x:n =

{
0, T (x) ≤ n
νn, T (x) > n.

The expected value of Z̄ 1
x:n is

E(Z̄ 1
x:n ) = 0× Pr(T ≤ n)) + νn × Pr(T > n) = νnnpx.

There are two actuarial notations for the actuarial present value: It may be
denoted by A 1

x:n . Note that there is no bar over the A, because this is a single
discrete payment at time T = n. A more convenient notation is nEx. Thus,
we can write

A 1
x:n = nEx = νnnpx.

In order to find the variance of Z̄ 1
x:n , we need to know the second monent of

Z̄ 1
x:n which is given by

2A 1
x:n = ν2n

npx.

Hence, the variance is given by

Var(Z̄ 1
x:n ) = 2A 1

x:n − (A 1
x:n )2 = ν2n

npx − ν2n(npx)
2 = ν2n

npx · nqx.

Example 26.13
Suppose that the age-at-death random variable is uniform on [0, ω]. Let Z̄ 1

x:n

be the present value of an n−year pure endowment for a life aged (x) with
benefit payment of 1. Assume a force of interest δ, find A 1

x:n ,
2A 1

x:n , and
Var(Z̄ 1

x:n ).
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Solution.
We have

npx =
s(x+ n)

s(x)
=

1− x+n
ω

1− x
ω

=
ω − x− n
ω − x

A 1
x:n =nEx = νnnpx =

(
ω − x− n
ω − x

)
e−nδ

2A 1
x:n =

(
ω − x− n
ω − x

)
e−2nδ

Var(Z̄ 1
x:n ) =

(
n(ω − x− n)

(ω − x)2

)
e−2nδ

Example 26.14
Suppose that the age-at-death random variable is exponential with constant
force of mortality µ. Let Z̄ 1

x:n be the present value of an n−year pure en-
dowment for a life aged (x) with benefit payment of 1. Assume a force of
interest δ, find A 1

x:n ,
2A 1

x:n , and Var(Z̄ 1
x:n ).

Solution.
We have

npx =
s(x+ n)

s(x)
=
e−µ(n+x)

e−µx
= e−µn

A 1
x:n =nEx = νnnpx = e−nδe−µn = e−n(µ+δ)

2A 1
x:n =e−n(µ+2δ)

Var(Z̄ 1
x:n ) =e−n(µ+2δ)(1− e−nµ)
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Practice Problems

Problem 26.13
Suppose that the age-at-death random variable is uniform on [0, 100]. Let
Z̄ 1

30:20
be the present value of a 20−year pure endowment for a life aged

(30) with benefit payment of 1. Assume a force of interest δ = 0.05 find
A 1

30:20
, 2A 1

30:20
, and Var(Z̄ 1

30:20
).

Problem 26.14
Suppose that the age-at-death random variable is exponential with constant
force of mortality µ = 0.05. Let Z̄ 1

30:10
be the present value of a 10−year

pure endowment for a life aged (30) with benefit payment of 1. Assume a
force of interest δ = 0.10, find A 1

30:10
, 2A 1

30:10
, and Var(Z̄ 1

30:10
).

Problem 26.15 ‡
Z is the present value random variable for a 15-year pure endowment of 1 on
(x) :
(i) The force of mortality is constant over the 15-year period.
(ii) ν = 0.9.
(iii) Var(Z) = 0.065A 1

x:15
.

Calculate qx.

Problem 26.16
Consider the following extract of a life table based on an annual effective rate
of interest of 6%.

x `x
30 9,501,381
31 9,486,854
32 9,471,591
33 9,455,522
34 9,438,571
35 9,420,657

Find the net single premium for a 5 year pure endowment policy for (30)
assuming an interest rate of 6%.

Problem 26.17
Consider a pure endowment policy for a boy, effected at his birth, which
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provides $6,000 for the boy on his 18th birthday. You are given the following
information:
(i) `0 = 100, 000 and `18 = 96514.
(ii) The annual effective interest rate of i = 10%.
Write down the present value of the benefit payment under this policy, re-
garding it as a random variable. Calculate its mean value and standard
deviation (the square root of variance) to 2 decimal places.
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26.3.2 Endowment Insurance

A policy of n−year endowment insurance makes a payment either upon
the beneficiary’s death or upon the beneficiary’s survival to the end of a
term of n years. The earliest of these two times is the payment of death. For
n-year endowment insurance that pays one unit in benefits upon death, the
contingent payment random variable is given by

Z̄x:n =

{
νT , T (x) ≤ n
νn, T (x) > n.

Clealry, an n−year endowment insurance can be expressed as a sum of an
n−year pure endowment and an n−year term life insurance policy. That is,

Z̄x:n = Z̄1
x:n + Z̄ 1

x:n .

Taking expectation of both sides we see

E(Z̄x:n ) = E(Z̄1
x:n ) + E(Z̄ 1

x:n ).

If we denote the actuarial present value of Z̄x:n by Āx:n we can write

Āx:n = Ā1
x:n + A 1

x:n .

Example 26.15
Find Cov(Z̄1

x:n , Z̄
1

x:n ).

Solution.
We have

Z̄1
x:n =

{
νT , T (x) ≤ n
0, T (x) > n.

and Z̄ 1
x:n =

{
0, T (x) ≤ n
νn, T (x) > n.

so that

Cov(Z̄1
x:n , Z̄

1
x:n ) = E(Z̄1

x:n Z̄
1

x:n )−E(Z̄1
x:n )E(Z̄ 1

x:n ) = 0−Ā1
x:n ·A 1

x:n = −Ā1
x:n ·A 1

x:n

It follows from the above example,

Var(Z̄x:n ) =Var(Z̄1
x:n ) + Var(Z̄ 1

x:n ) + 2Cov(Z̄1
x:n , Z̄

1
x:n )

=2Ā1
x:n − (Ā1

x:n )2 + 2A 1
x:n − (A 1

x:n )2 − 2Ā1
x:n · A 1

x:n

=2Ā1
x:n + 2A 1

x:n − (Ā1
x:n + A 1

x:n )2.
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Example 26.16
The lifetime of a group of people has the following survival function associated
with it: s(x) = 1 − x

100
, 0 ≤ x ≤ 100. Paul, a member of the group, is

currently 40 years old and has a 15-year endowment insurance policy, which
will pay him $50,000 upon death. Find the actuarial present value of this
policy. Assume an annual force of interest δ = 0.05.

Solution.
Since X is uniform on [0, 100], T is uniform on [0, 60] so that the density
function of T is fT (t) = 1

60
. We have

50, 000Ā40:15 =50, 000(Ā 1
40:15 + A 1

40:15 )

=50, 000

[∫ 15

0

e−0.05t

60
dt+ e−0.05×15

15p40

]
=50, 000

[∫ 15

0

e−0.05t

60
dt+ e−0.05×15

(
45

60

)]
=50, 000(0.5302) = $26, 510

Example 26.17
Find the standard deviation of the present value of the benefit of the life
insurance policy discussed in the previous example.

Solution.
The variance is

50, 0002Var(Z̄x:n ) = 50, 0002[2Ā 1
40:15 + 2A 1

40:15 − (Ā 1
40:15 + A 1

40:15 )2]

where

2Ā 1
40:15 =

1

2δ(ω − x)
(1− e−2nδ) =

1

120(0.05)
(1− e−30(0.05)) = 0.1295

2A 1
40:15 =

(
ω − x− n
ω − x

)
e−2nδ =

45

60
e−1.5 = 0.1673.

Thus, the standard deviation is

50, 000
√

Var(Z̄x:n ) = 50, 000
√

[0.1295 + 0.1673− 0.53022] = 6262.58
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Practice Problems

Problem 26.18
Consider a 20-year endowment insurance for a life aged 45 with face amount
of 1000. Assume an annual effective interest rate i = 0.05.
(a) What is the net single premium if the policyholder’s dies at age 55.8?
(b) What is the net single premium if the policyholder’s dies at age 70.2?

Problem 26.19
Let the remaining lifetime at birth random variable X be exponential with
µ = 0.05. Let Z̄x:n be the contingent payment random variable for a life aged
x under a 15-year endowment insurance that pays 1 upon death. Find Āx:15

if the force of interest is δ = 0.06.

Problem 26.20
You are given the following information:
(i) Ā1

x:n = 0.4275
(ii) µ(x+ t) = 0.045 for all t.
(iii) δ = 0.055.
Calculate Āx:n .

Problem 26.21
Let the remaining lifetime at birth random variable X be exponential with
µ = 0.02. Let Z̄45:20 be the contingent payment random variable for a life aged
45 with a 20-year endowment insurance that pays 1000 upon death. Suppose
that Ā45:20 = 0.46185 and that the annual force of interest is δ = 0.05. Find
FZ̄

45:20
(E(Z̄45:20 )).

Problem 26.22
Let 2Āx:n be the second moment of Z̄x:n under the n−year endowment in-
surance. Find a formula for 2Āx:n .
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26.4 Deferred Life Insurance

An m−year deferred insurance policy pays a benefit to the insured only if
the insured person dies at least m years from the time the policy was issued.
The random variable m|Z̄x for an m−year deferred insurance with a benefit
of 1 payable at the moment of death is

m|Z̄x =

{
0, T (x) ≤ m
νT , T (x) > m.

The actuarial present value of an m−year deferred insurance policy that pays
one unit in benefits is denoted by m|Āx and can be found

m|Āx =E(m|Z̄x) = E(νT ) =

∫ ∞
m

νtfT (t)dt

=

∫ ∞
m

νttpxµ(x+ t)dt

=νmmpx

∫ ∞
m

νt−mt−mpx+mµ(x+ t)dt

=νmmpx

∫ ∞
0

νuupx+mµ(x+ u+m)du

=νmmpxĀx+m

where u = t−m.
The left subscript, m, indicates the length of the deferral period. This nota-
tion is misleading and one has to be careful: The blank after the “|” symbol
does not mean the period of evaluation is 1 period immediately after the m
periods of deferral. For m|Āx, the period of evaluation is the time until death
after age x+m.
Now, recall that A 1

x:m = mEx = νmmpx so that

m|Āx = A 1
x:m Āx+m.

Example 26.18
Let the remaining lifetime at birth random variable X be uniform on [0, ω].
Let m|Z̄x be the contingent payment random variable for a life aged x. Find

m|Āx if the force of interest is δ.
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Solution.
We have

mpx =
ω − x−m
ω − x

Āx+m =
1

ω − x−m

[
1− e−δ(ω−x−m)

δ

]
m|Āx =νm

1− e−δ(ω−x−m)

δ(ω − x)

Example 26.19
Let the remaining lifetime at birth random variable X be exponential with
parameter µ. Let m|Z̄x be the contingent payment random variable for a life
aged x. Find m|Āx if the force of interest is δ.

Solution.
We have

mpx =e−mµ

Āx+m =
µ

µ+ δ

m|Āx =e−mδ
µ

µ+ δ
e−mµ

The second moment of m|Z̄x is denoted by 2
m|Āx. The variance of m|Z̄x is

given by
Var(m|Z̄x) = 2

m|Āx − (m|Āx)
2.

Example 26.20
Let Z1 denote the present value random variable of anm−year term insurance
of $1, while Z2 that of an m−year deferred insurance of $1, with death benefit
payable at the moment of death of (x).
You are given:
(i) Ā1

x:n = 0.01 and 2Ā1
x:n = 0.0005

(ii) m|Āx = 0.10 and 2
m|Āx = 0.0136.

Calculate the coefficient of correlation given by

Corr(Z1, Z2) =
Cov(Z1, Z2)√

Var(Z1)Var(Z2)
.
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Solution.
We have

Z1 =

{
νT , T (x) ≤ n
0, T (x) > n.

and Z2 =

{
0, T (x) ≤ n
νT , T (x) > n.

so that

Cov(Z1, Z2) = E(Z1Z2)−E(Z1)E(Z2) = 0−Ā1
x:n ·m|Āx = −0.01×0.10 = −0.001.

Also, we have

Var(Z1) = 2Ā1
x:n − (Ā1

x:n )2 = 0.0005− 0.012 = 0.0004

and
Var(Z2) = 2

m|Āx − (m|Āx)
2 = 0.0136− 0.102 = 0.0036.

Thus,

Corr(Z1, Z2) = − 0.0001√
0.0004

√
0.0036

= −5

6

Example 26.21
Show that: m|Āx + Ā1

x:m = Āx.

Solution.
We have

m|Āx+Ā
1
x:m =

∫ ∞
m

νttpxµ(x+t)dt+

∫ m

0

νttpxµ(x+t)dt =

∫ ∞
0

νttpxµ(x+t)dt = Āx

The above identity has the following verbal interpretation: Purchasing an
m−year term policy and an m−year deferred policy is equivalent to pur-
chasing a whole life policy.

Example 26.22 ‡
For a whole life insurance of 1000 on (x) with benefits payable at the moment
of death: (i)

δt =

{
0.04 0 < t ≤ 10
0.05 10 < t

(ii)

µ(x+ t) =

{
0.06 0 < t ≤ 10
0.07 10 < t

Calculate the single benefit premium for this insurance.
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Solution.
We have

1000Āx =1000[Ā1
x:10 + 10|Āx]

=1000

[∫ 10

0

e−0.04te−0.06t(0.06)dt+

∫ ∞
10

e−0.07te−0.05t(0.05)dt

]
=1000

[∫ 10

0

e−0.04te−0.06t(0.06)dt+ e−0.07e−0.05

∫ ∞
0

e−0.07te−0.05t(0.07)dt

]
=1000

[
0.06

∫ 10

0

e−0.10tdt+ 0.07e−0.12

∫ ∞
0

e−0.12tdt

]
=1000

[
0.06

[
−e−0.10t

0.10

]10

0

+ 0.07e−12

[
−e−0.12t

0.12

]∞
0

]
=593.87
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Practice Problems

Problem 26.23
Give an expression for the second moment of m|Z̄x, denoted by 2

m|Āx.

Problem 26.24
Suppose you are 30 years old and you buy a 10-year deferred life insurance
that pays 1 at the time of death. The remaining lifetime at birth random
variable has a survival function s(x) = 1 − x

100
, 0 ≤ x ≤ 100. Find 10|Ā30 if

the force of interest is δ = 0.05.

Problem 26.25
Find the variance in the previous problem.

Problem 26.26
Let the remaining lifetime at birth random variable X be exponential with
parameter µ = 0.05. Let m|Z̄x be the contingent payment random variable
for a life aged x. Find 15|Āx if the force of interest is δ = 0.06.

Problem 26.27
Find the variance in the previous problem.
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27 Insurances Payable at the End of the Year

of Death

Although in practice insurance is payable at the moment of death, tradition-
ally actuarial work has been done with a life table which in turn is based
on annual census data. Therefore discrete formulas are needed for net single
premiums of insurances payable at the end of the year of death.
The continuous analysis of Section 26 was based on the continuous random
variable T (x) that represents the future lifetime. The discrete version is
based on the discrete random variable K(x) which is the curtate future life-
time. As we progress you will notice that the discrete versions of insurance
look just like their continuous counterparts with the integrals being replaced
by summations.
Now, recall from Section 20.6, that the notation K(x) = k means that death
occurred in the interval [x + k, x + k + 1). The probability of death in that
interval is given by Pr(K(x) = k) = kpxqx+k. We can use the curtate prob-
abilities of death to define expected values of contingent payments made at
year end.
Next, we develop expected values of the four life insurances discussed in Sec-
tion 26.

Whole Life Insurance
Consider a whole life insurance with benefit 1 paid at the end of the year of
death. The present value random variable for this benefit is

Zx = νK+1, K = K(x) ≥ 0.

The actuarial present value of this policy for life (x) with one unit in benefits
payable at the end of the year of death is denoted by Ax and is given by the
formula

Ax =
∞∑
k=0

νk+1
kpxqx+k.

The second moment of Zx is denoted by 2Ax and is given by

2Ax =
∞∑
k=0

ν2(k+1)
kpxqx+k.

The variance of Zx is then

Var(Zx) = 2Ax − (Ax)
2.
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Example 27.1
Let the remaining lifetime at birth random variable X be uniform on [0,100].
Let Z30 be the contingent payment random variable for a life aged x = 30.
Find A30,

2A30, and Var(Z30) if δ = 0.05.

Solution.
For this problem, recall

s(x) = 1− x
100
.

We have

kp30 =
s(30 + k)

s(30)
=

1− 30+k
100

1− 30
100

= 1− k

70

q30+k =1− s(31 + k)

s(30 + k)
=

1

70− k

A30 =
∞∑
k=0

e−0.05(k+1)

70
=

e−0.05

70(1− e−0.05)
= 0.2786

2A30 =
∞∑
k=0

e−0.10(k+1)

70
=

e−0.10

70(1− e−0.10)
= 0.1358

Var(Z30) =0.1358− 0.27862 = 0.0582

Term Life Insurance
Consider an n−year term life insurance with benefit 1 paid at the end of the
year of death. The present value random variable for this benefit is

Z1
x:n =

{
νK+1, K = 0, 1, · · · , n− 1
0, K ≥ n.

The actuarial present value of this policy for life (x) with one unit in benefits
payable at the end of the year of death is denoted by A1

x:n and is given by
the formula

A1
x:n =

n−1∑
k=0

νk+1
kpxqx+k.

The second moment of Z1
x:n is denoted by 2A1

x:n and is given by

2A1
x:n =

n−1∑
k=0

ν2(k+1)
kpxqx+k.
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The variance of Z1
x:n is then

Var(Z1
x:n ) = 2A1

x:n − (A1
x:n )2.

Example 27.2
Let the remaining lifetime at birth random variable X be uniform on [0,100].
Let Z 1

30:10
be the contingent payment random variable for a life aged x = 30.

Find A 1
30:10

, 2A 1
30:10

, and Var(Z 1
30:10

) if δ = 0.05.

Solution.
For this problem, recall

s(x) = 1− x
100
.

We have

kp30 =
s(30 + k)

s(30)
=

1− 30+k
100

1− 30
100

= 1− k

70

q30+k =1− s(31 + k)

s(30 + k)
=

1

70− k

A 1
30:10 =

9∑
k=0

e−0.05(k+1)

70
=
e−0.05(1− e−0.50)

70(1− e−0.05)
= 0.1096

2A 1
30:10 =

9∑
k=0

e−0.10(k+1)

70
=
e−0.10(1− e−1)

70(1− e−0.10)
= 0.0859

Var(Z 1
30:10 ) =0.0859− 0.10962 = 0.0739

Deferred Life Insurance
Consider an m−year deferred life insurance with benefit 1 paid at the end of
the year of death. The present value random variable for this benefit is

m|Zx =

{
0, K = 0, 1, · · · ,m− 1
νK+1, K = m,m+ 1, · · ·

The actuarial present value of this policy for life (x) with one unit in benefits
payable at the end of the year of death is denoted by m|Ax and is given by
the formula

m|Ax =
∞∑
k=m

νk+1
kpxqx+k.
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The second moment of m|Zx is denoted by 2
m|Ax and is given by

2
m|Ax =

∞∑
k=m

ν2(k+1)
kpxqx+k.

The variance of m|Zx is then

Var(m|Zx) = 2
m|Ax − (m|Ax)

2.

As in the continuous case, we have the following identity

Ax = A1
x:n + m|Ax

Example 27.3
Let the remaining lifetime at birth random variable X be uniform on [0,100].
Let 10|Z30 be the contingent payment random variable for a life aged x = 30.
Find 10|A30,

2
10|A30 and Var(10|Z30) if δ = 0.05.

Solution.
For this problem, recall

s(x) = 1− x
100
.

We have

kp30 =
s(30 + k)

s(30)
=

1− 30+k
100

1− 30
100

= 1− k

70

q30+k =1− s(31 + k)

s(30 + k)
=

1

70− k

10|A30 =
∞∑

k=10

e−0.05(k+1)

70
=

e−0.55

70(1− e−0.05)
= 0.1690

2
10|A30 =

∞∑
k=10

e−0.10(k+1)

70
=

e−1.1

70(1− e−0.10)
= 0.04997

Var(10|Z30) =0.04997− 0.16902 = 0.0214



27 INSURANCES PAYABLE AT THE ENDOF THE YEAROF DEATH307

Endowment Life Insurance
Consider an n−year endowment insurance with benefit 1 paid at the end of
the year of death. The present value random variable for this benefit is

Zx:n =

{
νK+1, K = 0, 1, · · · , n− 1
νn, K = n, n+ 1, · · ·

The actuarial present value of this policy for life (x) with one unit in benefits
payable at the end of the year of death is denoted by Ax:n and is given by
the formula

Ax:n =
n−1∑
k=0

νk+1
kpxqx+k + νnnpx.

The second moment of Zx:n is denoted by 2Ax:n and is given by

2Ax:n =
n−1∑
k=0

ν2(k+1)
kpxqx+k + ν2n

npx.

The variance of Zx:n is then

Var(Zx:n ) = 2Ax:n − (Ax:n )2.

As in the continuous case, an endowment insurance is the sum of a pure
endowment and a term insurance

Ax:n = A1
x:n + nEx = A1

x:n + A 1
x:n .

Example 27.4
Let the remaining lifetime at birth random variable X be uniform on [0,100].
Let Z30:10 be the contingent payment random variable for a life aged x = 30.
Find A30:10 ,

2A30:10 and Var(Z30:10 ) if δ = 0.05.

Solution.
For this problem, recall

s(x) = 1− x
100
.
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We have

kp30 =
s(30 + k)

s(30)
=

1− 30+k
100

1− 30
100

= 1− k

70

q30+k =1− s(31 + k)

s(30 + k)
=

1

70− k

A30:10 =
9∑

k=0

e−0.05(k+1)

70
+ e−10(0.05)

10p30 = 0.1096 + 0.5199 = 0.6295

2A30:10 =
9∑

k=0

e−0.10(k+1)

70
+ e−20(0.05)

10p30 = 0.0859 + 0.3153 = 0.4012

Var(Z30:10 ) =0.4012− 0.62952 = 0.0049

Example 27.5
Complete the following extract of a life table:

k `k qk kp0 kp0 · qk
0 125
1 100
2 75
3 50
4 25
5 0

Find (i) A0, (ii) 2A0, (iii) A1
0:2
, (iv) 2A1

0:2
, (v) 3|A0, (vi) 2

3|A0, (vii) A0:2 ,

(viii) 2A0:2 . Assume an annual effective interest rate of 6%.

Solution.
We have

k `k qk kp0 kp0 · qk
0 125 0.200 1.000 0.200
1 100 0.250 0.800 0.200
2 75 0.333 0.600 0.200
3 50 0.500 0.400 0.200
4 25 1.000 0.200 0.200
5 0
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(i) A0 =
∑∞

k=0 ν
k+1

kp0qk = 0.2[(1.06)−1 + (1.06)−2 + (1.06)−3 + (1.06)−4 +
(1.06)−5] = 0.8425.
(ii) 2A0 =

∑∞
k=0 ν

2(k+1)
kp0qk = 0.2[(1.06)−2 +(1.06)−4 +(1.06)−6 +(1.06)−8 +

(1.06)−10] = 0.7146.
(iii) A1

0:2
= 0.2[(1.06)−1 + (1.06)−2] = 0.3667.

(iv) 2A1
0:2

= 0.2[(1.06)−2 + (1.06)−4] = 0.3364.

(v) 3|A0 = 0.2[(1.06)−4 + (1.06)−5] = 0.3079.
(vi) 2

3|A0 = 0.2[(1.06)−8 + (1.06)−10] = 0.2372.
(vii) A0:2 = A1

0:2
+ ν2

2p0 = 0.3667 + 0.534 = 0.9007.

(viii) 2A0:2 = 2A1
0:2

+ ν4
2p0 = 0.3364 + 0.4753 = 0.8117

Example 27.6 ‡
For a whole life insurance of 1000 on (80), with death benefits payable at the
end of the year of death, you are given:
(i) Mortality follows a select and ultimate mortality table with a one-year
select period.
(ii) q[80] = 0.5q80

(iii) i = 0.06
(iv) 1000A80 = 679.80
(v) 1000A81 = 689.52
Calculate 1000A[80].

Solution.
From the identity

A80 = νq80 + νp80A81

we find

q80 =
(1 + i)A80 − A81

1− A81

=
1.06(0.67980)− 0.68952

1− 0.68952
= 0.1000644.

Using the fact that the select period is 1 year and (ii), we find

1000A[80] =1000νq[80] + 1000νp[80]A[80]+1

=1000(1.06)−1(0.5q80) + 1000ν(1− 0.5q80)A81

=1000(1.06)−1[0.5(0.1000644)] + (1.06)−1[1− 0.5− 0.1000644](689.52)

=665.15
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Practice Problems

Problem 27.1
Let the remaining lifetime at birth random variable X be exponential with
µ = 0.05. Let Z30 be the contingent payment random variable for a life aged
x = 30. Find A30,

2A30, and Var(Z30) if δ = 0.10.

Problem 27.2
Let the remaining lifetime at birth random variable X be expomemtial with
µ = 0.05. Let Z 1

30:10
be the contingent payment random variable for a life

aged x = 30. Find A 1
30:10

, 2A 1
30:10

, and Var(Z 1
30:10

) if δ = 0.10.

Problem 27.3
Let the remaining lifetime at birth random variable X be exponential with
µ = 0.05. Let 10|Z30 be the contingent payment random variable for a life
aged x = 30. Find 10|A30,

2
10|A30 and Var(10|Z30) if δ = 0.10.

Problem 27.4
Let the remaining lifetime at birth random variable X be exponential with
µ = 0.05. Let Z30:10 be the contingent payment random variable for a life
aged x = 30. Find A30:10 ,

2A30:10 and Var(Z30:10 ) if δ = 0.10.

Problem 27.5 ‡
For a group of individuals all age x, you are given:
(i) 25% are smokers (s); 75% are nonsmokers (ns).
(ii)

k qsx+k qnsx+k

0 0.10 0.05
1 0.20 0.10
2 0.30 0.15

(iii) i = 0.02.
Calculate 10, 000A1

x:2
for an individual chosen at random from this group.

Problem 27.6 ‡
You are given:
(i) the following select-and-ultimate mortality table with 3-year select period:
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x q[x] q[x]+1 q[x]+2 q[x]+3 = qx+3 x+ 3
60 0.09 0.11 0.13 0.15 63
61 0.10 0.12 0.14 0.16 64
62 0.11 0.13 0.15 0.17 65
63 0.12 0.14 0.16 0.18 66
64 0.13 0.15 0.17 0.19 67

(ii) i = 0.03
Calculate 2|2A[60], the actuarial present value of a 2-year deferred 2-year term
insurance on [60].

Problem 27.7 ‡
Oil wells produce until they run dry. The survival function for a well is given
by:

t(years) 0 1 2 3 4 5 6 7
S(t) 1.00 0.90 0.80 0.60 0.30 0.10 0.05 0.00

An oil company owns 10 wells age 3. It insures them for 1 million each
against failure for two years where the loss is payable at the end of the year
of failure.
You are given:
(i) R is the present-value random variable for the insurers aggregate losses
on the 10 wells.
(ii) The insurer actually experiences 3 failures in the first year and 5 in the
second year.
(iii) i = 0.10
Calculate the ratio of the actual value of R to the expected value of R.
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28 Recursion Relations for Life Insurance

By a recursion relation we mean an equation where the value of a function
at a certain value of the independent variable can be determined from the
value(s) of the function at different values of the variable. The application
of recursion formulas in this book involves one of the two forms:
Backward Recursion Formula

u(x) = c(x) + d(x)u(x+ 1)

or

Forward Recursion Formula

u(x+ 1) = − c(x)

d(x)
+

1

d(x)
u(x).

In this section, we consider recursive relations involving the actuarial present
values and second moments of the types of life insurance covered in Section
27.
The first relation is for the actuarial present value of a discrete whole live
insurance. We have

Ax =
∞∑
k=0

νk+1
kpxqx+k

=νqx + ν
∞∑
k=1

νkkpxqx+k

=νqx + ν

∞∑
k=1

νkpxk−1px+1qx+k

=νqx + νpx

∞∑
k=0

νk+1
kpx+1qx+k+1

=νqx + νpxAx+1.

This recursion relation says that a whole life insurance policy for (x) is the
same thing as a 1-year term policy with payment at year end, plus, if x
survives an additional year, a whole life policy starting at age x+ 1.
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Next, we have

Ax =
∞∑
k=0

νk+1
kpxqx+k = νqx +

∞∑
k=1

νk+1
kpxqx+k = A1

x:1 + 1|Ax.

This relation says that a whole life insurance policy for (x) is the same thing
as a 1-year term policy with payment at year end, plus a 1-year deferred
whole live insurance.
A more genereal relation of the previous one is the following:

Ax =
∞∑
k=0

νk+1
kpxqx+k =

n−1∑
k=0

νk+1
kpxqx+k +

∞∑
k=n

νk+1
kpxqx+k = A1

x:n + n|Ax.

That is, a whole life insurance that pays 1 at the end year of death is equiv-
alent to an n−year term policy plus an n−year deferred policy.

Example 28.1
Show that

A1
x:n = νqx + νpxA

1
x+1:n−1 .

Interpret the result verbally.

Solution.
We have

A1
x:n =

n−1∑
k=0

νk+1
kpxqx+k

=νqx +
n−1∑
k=1

νk+1
kpxqx+k

=νqx + ν

n−1∑
k=1

νkpxk−1px+1qx+k

=νqx + νpx

n−2∑
k=0

νk+1
kpx+1qx+k+1

=νqx + νpxA
1

x+1:n−1 .

This relation says that an n−year term policy is the same thing as a 1-year
term policy and an (n− 1)−year term policy at age x+ 1, provided that the
insured is still alive at x+ 1
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Example 28.2 ‡
For a given whole life insurance of 1 on (41) with death benefit payable at
the end of year of death, you are given:
(i) i = 0.05.
(ii) p40 = 0.9972.
(iii) A41 − A40 = 0.00822.
(iv) Z is the present value random variable for this insurance.
Calculate A41.

Solution.
From the recursion relation

Ax = νqx + νpxAx+1

we obtain
A40 = νq40 + νp40A41.

Substituting, we find

A(41)− 0.00822 = (1.05)−1(1− 0.9972) + (1.05)−1(0.9972)A41.

Solving this equation for A41 we find A41 = 0.2165

The following recursive relations about second moments can be easily es-
tablished:

2Ax = ν2qx + ν2px
2Ax+1

and
2A1

x:n = ν2qx + ν2px
2A 1

x+1:n−1 .

Example 28.3 ‡
Using the information of the previous example together with the condition
2A41 − 2A40 = 0.00433, find Var(Z).

Solution.
We use the recursive relation

2Ax = ν2qx + ν2px
2Ax+1

to obtain
2A40 = ν2q40 + ν2p40

2A41.
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After substitution, we find

2A41 − 0.00433 = (1.05)−2(1− 0.9972) + (1.05)−2(0.9972)2A41.

Solving this equation for 2A41 we find 2A41 = 0.0719 and therefore

Var(Z) = 0.0719− 0.21652 = 0.025

Example 28.4
Consider the following extract from the Illustrative Life Table.

x `x 1000qx 1000Ax 10002Ax

36 9,401,688 2.14 134.70 37.26
37 9,381,566 2.28 140.94 39.81
38 9,360,184 2.43 147.46 42.55
39 9,337,427 2.60 154.25 45.48
40 9,313,166 2.78 161.32 48.63

Calculate the actuarial present value of a 3-year term policy for a life aged
(36). The annual interest rate is i = 6%.

Solution.
Using Problem 28.2 we have

A 1
36:3 = A36 − ν3

3p36A(39).

But

3p36 =
`39

`36

=
9, 337, 427

9, 401, 688
= 0.9932.

Therefore,

A 1
36:3 = 0.1347− (1.06)−3(0.9932)(0.15425) = 0.0061
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Practice Problems

Problem 28.1
You are given:
(i) i = 0.05.
(ii) px = 0.90.
(iii) Ax = 0.670
Find Ax+1.

Problem 28.2
Show that

Ax = A1
x:n + νnnpxAx+n.

Problem 28.3
Consider the following extract from the Illustrative Life Table.

x `x 1000qx 1000Ax 10002Ax

36 9,401,688 2.14 134.70 37.26
37 9,381,566 2.28 140.94 39.81
38 9,360,184 2.43 147.46 42.55
39 9,337,427 2.60 154.25 45.48
40 9,313,166 2.78 161.32 48.63

Calculate the actuarial present value of a 4-year term policy for a life aged
(36). The annual interest rate is i = 6%.

Problem 28.4
Given A38 = 0.1475, A39 = 0.1543, find q38 if i = 0.06.

Problem 28.5 ‡
For a sequence, u(k) is defined by the following recursion formula

u(k) = α(k) + β(k)× u(k − 1) for k = 1, 2, 3, · · ·

where
i) α(k) =

(
qk−1

pk−1

)
.

ii) β(k) = 1+i
pk−1

.

iii) u(70) = 1.0.
Show that u(40) = A40:30 .
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Problem 28.6
Show that

2Ax:n = 2Ax − νnnEx2Ax+n + νnnEx.

Problem 28.7 ‡
For a given whole life insurance of 1 on (41) with death benefit payable at
the end of year of death, you are given:
(i) i = 0.05.
(ii) p40 = 0.9972.
(iii) A41 − A40 = 0.00822.
(iv) 2A41 − 2A40 = 0.00433.
(v) Z is the present value random variable for this insurance.
Calculate Var(Z).

Problem 28.8 ‡
Lee, age 63, considers the purchase of a single premium whole life insurance
of 10,000 with death benefit payable at the end of the year of death.
The company calculates benefit premiums using:
(i) mortality based on the Illustrative Life Table,
(ii) i = 0.05
The company calculates contract premiums as 112% of benefit premiums.
The single contract premium at age 63 is 5233.
Lee decides to delay the purchase for two years and invests the 5233.
Calculate the minimum annual rate of return that the investment must earn
to accumulate to an amount equal to the single contract premium at age 65.
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29 Variable Insurance Benefit

So far we have been studying level-benefit life insurance policies, i.e., policies
that pay the same amount either at the moment of death (continuous models)
or at the end of year of death (discrete models). Symbolically, bt is constant.
In practice, the amount of benefit received at death is not $1 nor constant,
but often a function of time. In this section, we consider a variable bt.

29.1 Non-level Payments: A Simple Example

The following is a simple example of a variable benefit problem that has only
a few cash flows and therefore can be directly computed.

Example 29.1 ‡
For a special discrete 3-year term on (x) you are given:
(i) Z is the present value random variable for the death benefits
(ii)

k qx+k bk+1

0 0.02 300
1 0.04 350
2 0.06 400

(iii) i = 0.06.
Calculate E(Z).

Solution.
We have

E(Z) =300νqx + 350ν2pxqx+1 + 400ν3
2pxqx+2

=300νqx + 350ν2pxqx+1 + 400ν3pxpx+1qx+2

=300νqx + 350ν2(1− qx)qx+1 + 400ν3(1− qx)(1− qx+1)qx+2

=300(1.06)−1(0.02) + 350(1.06)−2(0.98)(0.04) + 400(1.06)−3(0.98)(0.96)(0.06)

=36.8291

Example 29.2 ‡
For a special whole life insurance on (x), payable at the moment of death:
(i) µ(x+ t) = 0.05, t > 0
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(ii) δx = 0.08
(iii) The death benefit at time t is bt = e0.06t, t > 0.
(iv) Z is the present value random variable for this insurance at issue.
Calculate Var(Z).

Solution.
We have

E[Z] =

∫ ∞
0

btν
t
tpxµ(x+ t)dt =

∫ ∞
0

e0.06te−0.08te−0.05t(0.05)dt

=0.05

∫ ∞
0

e−0.07tdt = 0.05

[
−e
−0.07t

0.07

]∞
0

=
5

7

E[Z2] =

∫ ∞
0

(bt)
2ν2t

tpxµ(x+ t)dt =

∫ ∞
0

e0.12te−0.16te−0.05t(0.05)dt

=0.05

∫ ∞
0

e−0.09tdt = 0.05

[
−e
−0.09t

0.09

]∞
0

=
5

9

Var(Z) =
5

9
−
(

5

7

)2

= 0.04535
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Practice Problems

Problem 29.1 ‡
For a special discrete 3-year term on (x) you are given:
(i) Z is the present value random variable for the death benefits
(ii)

k qx+k bk+1

0 0.02 300
1 0.04 350
2 0.06 400

(iii) i = 0.06.
Calculate E(Z2). Recall that Z2 = b2

tν
2t.

Problem 29.2 ‡
Find Var(Z) in the previous problem.

Problem 29.3
For a special discrete 3-year term on (x) you are given:
(i) Z is the present value random variable for the death benefits
(ii)

k qx+k bk+1

0 0.03 200
1 0.06 150
2 0.09 100

(iii) i = 0.06.
Calculate E(Z), E(Z2), and Var(Z).

Problem 29.4
For a special type of whole life insurance issued to (40), you are given:
(i) death benefits are 1,000 for the first 5 years and 500 thereafter.
(ii) death benefits are payable at the end of the year of death.
(iii) mortality follows the Illustrative Life table.
(iv) i = 0.06.
Calculate the actuarial present value of the benefits for this policy.
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Problem 29.5
Two life insurance policies to be issued to (40) are actuarially equivalent:

(I) A whole life insurance of 10 payable at the end of the year of death.
(II) A special whole life insurance, also payable at the end of the year of

death, that pays 5 for the first 10 years and B thereafter.

You are given:
(i) i = 0.04
(ii) 10A40 = 3.0
(iii) 10A50 = 3.5
(iv) 10A 1

40:10
= 0.9

(v) 10E40 = 0.6
Calculate the value of B.
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29.2 Increasing or Decreasing Insurances Payable at the
Moment of Death

In this section, we look at increasing and decreasing insurances with benefits
made at the moment of death.
We first consider the increasing ones. The two types of increasing life insur-
ance are: Annually increasing and continuously increasing life insurance.
An annually increasing whole life insurance for a life aged x pays n
if death occurs in year n. It follows that the more a person lives the more
valuable is the policy. The present value of the contingent payment is given
by

Z = bT + 1cνT , T ≥ 0.

The actuarial present value of such a policy is denoted by (IĀ)x and is derived
as follows:

(IĀ)x =E(Z) =

∫ ∞
0

bt+ 1cνtfT (x)(t)dt

=

∫ ∞
0

bt+ 1cνttpxµ(x+ t)dt

Example 29.3
You are given that T (x) is uniform on [0, 3]. Calculate (IĀ)x if the force of
interest is δ = 0.05.

Solution.
T (x) is uniform on [0, 3], we have

fT (t) =
1

3
, 0 ≤ t ≤ 3.

Also,

bt+ 1c =


1, 0 < t < 1
2, 1 ≤ t < 2
3, 2 ≤ t < 3.

Thus,

(IĀ)x =
1

3

[∫ 1

0

e−0.05tdt+ 2

∫ 2

1

e−0.05tdt+ 3

∫ 3

2

e−0.05tdt

]
= 1.8263
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Now, a continuously increasing whole life insurance for a life aged x
pays t in benefits if death occurs at time x+ t, irrespective of whether t is a
whole number or not. The present value of the contingent payment random
variable is given by

Z = TνT , T ≥ 0.

The actuarial present value of Z, denoted by (IA)x or (ĪĀ)x is given via the
formula

(ĪĀ)x =

∫ ∞
0

tνttpxµ(x+ t)dt.

Example 29.4
You are given that T (x) is uniform on [0, 3]. Calculate (ĪĀ)x if the force of
interest is δ = 0.05.

Solution.
We have

(ĪĀ)x =
1

3

∫ 3

0

te−0.05tdt =
1

3

[
−20te−0.05t − 400e−0.05t

]3
0

= 1.3581

The above discussion works as well for an annually or continuously increasing
n−year term life insurance. In the case of an annually increasing type, the
present value of the contingent payment is

Z =

{
bT + 1cνT T ≤ n
0, T > n

and the actuarial present value is

(IĀ)1
x:n =

∫ n

0

bt+ 1cνttpxµ(x+ t)dt.

In the continuous case, the present value of contingent payment is

Z =

{
TνT T ≤ n
0, T > n

and the actuarial present value is and

(ĪĀ)1
x:n =

∫ n

0

tνttpxµ(x+ t)dt.

The I here stands for increasing and the bar over the I denotes that the
increases are continuous.
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Example 29.5
The age-at-death random variable X is described by the survival function
s(x) = 1− x

100
for 0 ≤ x ≤ 100 and 0 otherwise. A life aged 65 buys a 3-year

annually increasing life insurance. Find the actuarial present value of the
contingent payment random variable if δ = 0.05.

Solution.
We have

tp65 =
s(t+ 65)

s(65)
= 1− t

35
.

µ(65 + t) = −s
′(65 + t)

s(65 + t)
=

1

35− t
Thus,

tp65µ(65 + t) =
1

35
.

Hence,

(IĀ) 1
65:3 =

1

35

[∫ 1

0

e−0.05tdt+ 2

∫ 2

1

e−0.05tdt+ 3

∫ 3

2

e−0.05tdt

]
= 0.1565

As for decreasing insurances, first they must be term insurances, since they
cannot decrease forever without becoming negative. An annually decreas-
ing n−year term life insurance policy will pay n unit in benefits if death
occurs during year 1, n − 1 units in benefits if death occurs during year 2,
and n − k + 1 in benefits if death occurs in year k. For such a policy, the
present value of the contingent payment is given by

Z =

{
(n− bT c)νT , 0 ≤ T ≤ n
0, T > n.

The actuarial present value of Z is given by

(DĀ)1
x:n =

∫ n

0

(n− btc)νttpxµ(x+ t)dt.

Example 29.6
Let the remaining life time for (5) be exponential with µ = 0.34. Find (DĀ)1

5:2

if δ = 0.09.
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Solution.
We have

(DĀ)1
5:2 =

∫ 2

0

(2− btc)e−0.09te−0.34t(0.34)dt

=

∫ 1

0

2e−0.43t(0.34)dt+

∫ 2

1

e−0.43(0.34)dt = 0.7324

For a continuously decreasing n−year term for (x), the present value of the
death benefit is

Z =

{
(n− T )νT , 0 ≤ T ≤ n
0, T > n.

The actuarial present value of Z is given by

(D̄Ā)1
x:n =

∫ n

0

(n− t)νttpxµ(x+ t)dt.

Example 29.7
Show that: (ĪĀ)1

x:n + (D̄Ā)1
x:n = nĀ1

x:n .

Solution.
We have

(ĪĀ)1
x:n + (D̄Ā)1

x:n =

∫ n

0

tνttpxµ(x+ t)dt+

∫ n

0

(n− t)νttpxµ(x+ t)dt

=n

∫ n

0

νttpxµ(x+ t)dt = nĀ1
x:n



326 LIFE INSURANCE: CONTINGENT PAYMENT MODELS

Practice Problems

Problem 29.6 ‡
For a continuously increasing whole life insurance on (x), you are given:
(i) The force of mortality is constant.
(ii) δ = 0.06.
(iii) 2Āx = 0.25.
Calculate (ĪĀ)x.

Problem 29.7
The age-at-death random variable X is described by the survival function
s(x) = 1 − x

94
for 0 ≤ x ≤ 94 and 0 otherwise. A life aged 77 buys a 3-year

annually increasing life insurance. Find (ĪĀ) 1
77:3

if δ = 0.02.

Problem 29.8
The remaining lifetime random variable for a life aged (40) has the following
density function

fT (t) = 0.05e−0.05t.

Suppose that (40) buys an annually increasing whole life policy where the
present discount factor is given by νt = 1

bt+1c , t > 0. Find the actuarial
present value of such a policy.

Problem 29.9
Write (IĀ)30 as a sum if δ = 0.02 and X follows De Moivre’s Law with
ω = 100. Do not evaluate the sum.

Problem 29.10
Suppose that X is exponential with parameter µ. Assume a force of interest
δ, show that (ĪĀ)x = (µ+ δ)−1Āx.

Problem 29.11
Let the remaining life time for (91) be uniform on [0, 3]. Find (DĀ) 1

91:3
if

δ = 0.02.

Problem 29.12
Show that: (ĪĀ)x =

∫∞
0 s|Āxds.

Problem 29.13
Show that: (IĀ)1

x:n + (DĀ)1
x:n = (n+ 1)Ā1

x:n .
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29.3 Increasing and Decreasing Insurances Payable at
the End of Year of Death

Parallel to the discussion of the previous section, we can define increasing
and decreasing insurances with benefits payable at the end of year of death.
Consider an n−year term insurance for a life aged x that pays k+ 1 if death
occurs in the interval (x + k, x + k + 1] for k = 0, 1, 2, · · · , n − 1. Then if
the benefit is paid at time k + 1 (i.e., at age x+ k + 1), the benefit amount
is k + 1. The discount factor is νk+1 and the probability that the benefit is
paid at that date is the probability that the policy holder died in the year
(k, k + 1], which is k|qx, so the actuarial present value of the death benefit is

APV =
n−1∑
k=0

(k + 1)νk+1
k|qx.

In actuarial notation the above APV is denoted by (IA)1
x:n . Note that the

present value of the random variable of the death benefit is defined by

Z =

{
(K + 1)νK+1, K ≤ n− 1
0, K ≥ n.

Example 29.8
Find the second moment and the variance of Z.

Solution.
We have

E(Z2) =
n−1∑
k=0

(k + 1)2ν2(k+1)
k|qx

and

Var(Z) =
n−1∑
k=0

(k + 1)2ν2(k+1)
k|qx −

(
(IA)1

x:n

)2

If the term n is infinite, so that this is a whole life version of the increasing
annual policy, with benefit k + 1 following death in the year k to k + 1, the
APV of the death benefit is denoted by (IA)x where

(IA)x =
∞∑
k=0

(k + 1)νk+1
k|qx.
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The corresponding present value random variable of the benefit is given by

Z = (K + 1)νK+1, K ≥ 0.

Example 29.9
Show that

(IA)x = Ax + νpx(IA)x+1 = νqx + νpx[(IA)x+1 + Ax+1].

Solution.
We have

(IA)x =
∞∑
k=0

(k + 1)νk+1
k|qx =

∞∑
k=0

(k + 1)νk+1
kpxqx+k

=
∞∑
k=0

kνk+1
kpxqx+k +

∞∑
k=0

νk+1
kpxqx+k

=
∞∑
k=0

νk+1
kpxqx+k + ν

∞∑
k=1

kνkpxk−1px+1qx+k

=
∞∑
k=0

νk+1
kpxqx+k + νpx

∞∑
k=0

(k + 1)νk+1
kpx+1qx+k+1

=
∞∑
k=0

νk+1
kpxqx+k + νpx

∞∑
k=0

(k + 1)νk+1
k|qx+1

=Ax + νpx(IA)x+1 = νqx + νpx[(IA)x+1 + Ax+1].

In the last row, we used the recursion relation Ax = νqx + νpxAx+1

Also, one can show (See Problem 29.14) that

(IA)1
x:n = A1

x:n + νpx(IA) 1
x+1:n−1 .

Consider an n−year term insurance for a life aged x that pays n− k if death
occurs in the interval (x+ k, x+ k+ 1] for k = 0, 1, 2, · · · , n− 1. That is, the
death benefit is n at the end of year 1, n− 1 at the end of year 2, etc., then
if the benefit is paid at time k+ 1 (i.e., at age x+ k+ 1), the benefit amount
is n − k. The discount factor is νk+1 and the probability that the benefit is
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paid at that date is the probability that the policy holder died in the year
(k, k + 1], which is k|qx, so the actuarial present value of the death benefit is

APV =
n−1∑
k=0

(n− k)νk+1
k|qx.

In actuarial notation the above APV is denoted by (DA)1
x:n . Note that the

present value of the random variable of the death benefit is defined by

Z =

{
(n−K)νK+1, K ≤ n− 1
0, K ≥ n.

Example 29.10
Show that: (DA)1

x:n = nνqx + νpx(DA) 1
x+1:n−1

.

Solution.
We have

(DA)1
x:n =

n−1∑
k=0

(n− k)νk+1
k|qx

=nνqx + ν
n−1∑
k=1

(n− k)νkkpxqx+k

=nνqx + νpx

n−1∑
k=1

(n− k)νkk−1px+1qx+k

=nνqx + νpx

n−2∑
k=0

(n− k − 1)νk+1
kpx+1qx+1+k

=nνqx + νpx

n−2∑
k=0

(n− k − 1)νk+1
k|qx+1

=nνqx + νpx(DA) 1
x+1:n−1
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Practice Problems

Problem 29.14
Show that :

(IA)1
x:n = A1

x:n + νpx(IA) 1
x+1:n−1 .

Problem 29.15
You are given (IA)50 = 4.99675, A 1

50:1
= 0.00558, A51 = 0.25961, q50 =

0.00592, and i = 0.06. Find (IA)51.

Problem 29.16
Show that: (IA)1

x:n = νqx + νpx

(
(IA) 1

x+1:n−1
+ A 1

x+1:n−1

)
.

Problem 29.17
Show that: (IA)1

x:n + (DA)1
x:n = (n+ 1)A1

x:n .

Problem 29.18 ‡
A decreasing term life insurance on (80) pays (20− k) at the end of the year
of death if (80) dies in year k + 1, for k = 0, 1, 2, · · · , 19. You are given:
(i) i = 0.06
(ii) For a certain mortality table with q80 = 0.2, the single benefit premium
for this insurance is 13.
(iii) For this same mortality table, except that q80 = 0.1, the single benefit
premium for this insurance is P.
Calculate P.
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30 Expressing APV’s of Continuous Models in

Terms of Discrete Ones

In this section, we will discuss ways of evaluating continuous APVs using life
tables. But first we look at a numerical example where the continuous APV
is different from the corresponding discrete case.

Example 30.1
(a) Consider a whole life insurance where the remaining lifetime random
variable has a continuous uniform distribution on the interval [0, 5]. Assume
a pay benefit of $1000 at the time of death and that the effective annual
interest rate is i = 0.06. Find 1000Ā0.
(b) Now consider the 5-year life table which is discrete uniform and uses an
interest rate of 6%. Find 1000A0.

k `k qk kp0 kp0 · qk
0 125 0.200 1.000 0.200
1 100 0.250 0.800 0.200
2 75 0.333 0.600 0.200
3 50 0.500 0.400 0.200
4 25 1.000 0.200 0.200
5 0

Solution.
(a) We have

1000Ā0 = 1000
1− e−δω

δω
= 1000

1− e−5 ln 1.06

5 ln 1.06
= 867.50.

(b) We have

1000A0 =1000
∞∑
k=0

νk+1
kp0qk

=1000(0.2)[(1.06)−1 + (1.06)−2 + (1.06)−3 + (1.06)−4 + (1.06)−5]

=842.50.

It follows that 1000Ā0 − 1000A0 = 867.50 − 842.50 = 25. Also, we have
Ā0 ≈ i

δ
A0
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Now, for most insurances and under certain assumptions, it is possible to
adjust the discrete calculation to model continuous payments. Under the
uniform distribution of deaths (UDD) assumption formulas relating the net
single premium for insurance payable at the time of death to the correspond-
ing net single premium for insurance payable at the end of the year of death
can be easily found. For example, in the case of a whole life policy, we have

Example 30.2
Assuming a uniform distribution of deaths between integral ages. Show that

Āx =
i

δ
Ax.

Solution.
We have

Āx =E[νT ] = E[νK+1νS−1]

=E[νK+1]E[eδ(1−S)]

=E[νK+1]

∫ 1

0

eδ(1−s)ds

=
i

δ
E[νK+1] =

i

δ
Ax

where the third equality springs from the independence of K(x) and S(x)
under UDD, and the fourth equality comes from the fact that under UDD
the random variable S(x) has the uniform distribution on the unit interval
(See Theorem 24.1)

Example 30.3
Assuming a uniform distribution of deaths between integral ages. Show that

Ā1
x:n =

i

δ
A1
x:n .

Solution.
First, let’s define the indicator function

I(T ≤ n) =

{
1, 0 ≤ T ≤ n
0, T > n.
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For n−year term insurance with payment paid at the moment of death we
have

Ā1
x:n =E[I(T ≤ n)νT ] = E[I(T ≤ n)νK+1νS−1]

=E[I(K ≤ n− 1)νK+1]E[eδ(1−S)]

=E[I(K ≤ n− 1)νK+1]

∫ 1

0

eδ(1−s)ds

=
i

δ
E[I(K ≤ n− 1)νK+1] =

i

δ
A1
x:n

Example 30.4
Assuming a uniform distribution of deaths between integral ages. Show that

(IĀ)1
x:n =

i

δ
(IA)1

x:n .

Solution.
The present value of the annually increasing n−year term insurance payable
at the moment of death is

Z =

{
bT + 1cνT , T ≤ n
0, T > n.

Since bT + 1c = K + 1, we can write

Z =

{
(K + 1)νK+1νS−1, T ≤ n
0, T > n.

If we let W be the annually increasing n−year term insurance with benefit
payable at the end of the year of death, then

W =

{
(K + 1)νK+1νS−1, 0 ≤ K ≤ n− 1
0, K ≥ n.

Thus,
Z = WνS−1.

One can proceed as in the previous two examples to show that

(IĀ)1
x:n =

i

δ
(IA)1

x:n
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Likewise, one can show that

(DĀ)1
x:n =

i

δ
(DA)1

x:n .

In the last three examples, the term i
δ

is called the adjustment factor.
The process in the above examples does not apply for endowment insurance.

Example 30.5
Show that Āx:n = i

δ
A1
x:n + A 1

x:n .

Solution.
We know from Section 26.3.2 that

Āx:n = Ā1
x:n + A 1

x:n .

But

Ā1
x:n =

i

δ
A1
x:n .

Thus,

Āx:n =
i

δ
A1
x:n + A 1

x:n
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Practice Problems

Problem 30.1
For a special type of whole life insurance issued to (30), you are given:
• death benefits are 1,000;
• death benefits are payable at the moment of death;
• deaths are uniformly distributed between integral ages;
• i = 0.05; and
• the following table of actuarial present values:

x 1000Ax
30 112.31
35 138.72
40 171.93

Calculate the actuarial present value of the benefits for this policy.

Problem 30.2
For a special type of whole life insurance issued to (30), you are given:
• death benefits are 1,000 for the first 10 years and 5,000 thereafter;
• death benefits are payable at the moment of death;
• deaths are uniformly distributed between integral ages;
• i = 0.05; and
• the following table of actuarial present values:

x 1000Ax 10005Ex
30 112.31 779.79
35 138.72 779.20
40 171.93 777.14

Calculate the actuarial present value of the benefits for this policy.

Problem 30.3
You are given the following:
• a 30-year endowment with payment of 10,000, providing death benefit at
the moment of death, issued to a life aged 35;
• i = 0.05;
• deaths are uniformly distributed between integral ages;
• A 1

35:30
= 0.0887;

• A 1
35:30

= 0.1850.
Calculate the net single premium of this contract.
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Problem 30.4
Show algebraically that under UDD, we have: (IĀ)x = i

δ
(IA)x.

Problem 30.5
Show that E[(S − 1)νS−1] = −

(
1+i
δ
− i

δ2

)
.

Problem 30.6
Show algebraically that under UDD, we have: (ĪĀ)x = i

δ
(IA)x−

(
1+i
δ
− i

δ2

)
Ax.
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31 mthly Contingent Payments

In this section, we consider models where benefit payments are made at the
end of a period. We assume the year is divived into m periods and that
benefits are paid mthly.
Consider first a whole life insurance that is paid at the end of the mthly time
interval in which death occurs. See Figure 31.1.

Figure 31.1

Recall that K is the number of complete insurance years lived prior to death.
Let J be the number of complete m−ths of a year lived in the year of death.
Then J = b(T − K)mc. For example, for quarterly payments with T (x) =
36.82, we have J = b(36.82− 36)(4)c = 3.
The present value of a whole life insurance paid at the end of the mthly time
interval in which death occurs is

Z(m)
x = νK+J+1

m .

Let A
(m)
x denote the actuarial present value of such a policy. Then

A(m)
x =

∞∑
k=0

νk+1

m−1∑
j=0

ν
j+1
m

k+ j
m
px 1

m
qx+k+ j

m

=
∞∑
k=0

νk+1

m−1∑
j=0

ν
j+1
m νk+ j+1

m kpx · j
m
px+k 1

m
qx+k+ j

m

=
∞∑
k=0

νk+1
kpx

m−1∑
j=0

ν
j+1
m
−1

j
m
px+k 1

m
qx+k+ j

m
.

Under UDD assumption, we have from Problem 24.8

j
m
px+k 1

m
qx+k+ j

m
=

1

m
qx+k.
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Thus,

A(m)
x =

∞∑
k=0

νk+1
kpxqx+k

m−1∑
j=0

ν
j+1
m
−1

m

=
i

i(m)

∞∑
k=0

νk+1
kpxqx+k

=
i

i(m)
Ax.

Now, for an n−year term insurance we have

Z(m)1
x:n =

{
νK+J+1

m , K + J+1
m
≤ nm

0, otherwise.

and

A(m)1
x:n =

n−1∑
k=0

νk+1
kpx

m−1∑
j=0

ν
j+1
m
−1

j
m
px+k 1

m
qx+k+ j

m
.

Under the UDD assumption, we obtain

A(m)1
x:n =

i

i(m)
A1
x:n .

For an n−year deferred insurance, we have

n|Z
(m)
x =

{
νK+J+1

m , K + J+1
m

> nm
0, otherwise.

and

n|A
(m)
x =

∞∑
k=n

νk+1
kpx

m−1∑
j=0

ν
j+1
m
−1

j
m
px+k 1

m
qx+k+ j

m

so that under the UDD assumption we find

n|A
(m)
x =

i

i(m) n|Ax.

Finally, for an endowment insurance we have

Z
(m)
x:n =

{
νK+J+1

m , K + J+1
m
≤ nm

νn, otherwise.
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so that
A

(m)
x:n = A(m)1

x:n + nEx

and under the UDD assumption, we find

A
(m)
x:n =

i

i(m)
A1
x:n + A 1

x:n .

Example 31.1
Consider the following extract from the Illustrative Life Table

x `x 1000Ax

30 9,501.381 102.48
31 9,486,854 107.27
32 9,471,591 112.28
33 9,455,522 117.51
34 9,438,571 122.99
35 9,420,657 128.72

Under the uniform distribution of deaths and with i = 0.06, find A
(4)
30 .

Solution.
We have

A
(4)
30 =

i

i(4)
A30 =

0.06

4[(1.06)
1
4 − 1]

(0.10248) = 0.1048
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Practice Problems

Problem 31.1
You are given:
• deaths are uniformly distributed between integral ages;
• i = 0.06;
• q69 = 0.02; and
• Ā70 = 0.53.
Calculate A

(2)
69 and interpret this value.

Problem 31.2
• deaths are uniformly distributed between integral ages
• i = 0.06;
• A40 = 0.16
• 20E20 = 0.30
• A20:20 = 0.32.

Calculate A
(4)
20 .

Problem 31.3
Consider the life table

x 95 96 97 98 99 100
`x 520 350 150 80 20 0

Assume uniform distribution of deaths between integral ages i = 0.06. Cal-
culate A

(12)

95:3
.

Problem 31.4
Suppose that Ā50 = 0.53 and i = 0.065. Assume that death is uniformly
distributed between integral ages. Find A

(2)
50 .

Problem 31.5
Assume that death is uniformly distributed between integral ages. Suppose
that x is an integer, µ(x + 0.3) = 0.02012 and µ(x + 1.6) = 0.02538. Find

A
(12)

x:2
if d = 0.08.
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32 Applications of Life Insurance

In this section, we consider some applications of the topics discussed in this
chapter.

Sufficient Funds for Paying Claims
An insurance company writes 100 single premium whole life insurances of 10
payable at the moment of death. The insureds are assumed to have identi-
cally independent remaining lifetime random variable. Also, we assume that
this random variable is exponential with µ = 0.04 and the force of interest is
δ = 0.06. In this case, the contingent payment random variable is given by

Zi = 10e−0.06t, i = 1, 2, · · · , 100.

Let S be the present value of all future claims. Then

S = Z1 + Z2 + · · ·+ Z100.

We would like to know the amount of fund F that the insurer must have now
to assure that the probability of having sufficient funds to pay all claims is
0.95. That is, we want F such that

Pr(S ≤ F ) = 0.95.

In probability language, F is the 95th percentile of the random variable S.
Now, using normal approximation, we can write

Pr

(
Z0.95 ≤

F − µS
σS

)
= 0.95.

But Z0.95 = 1.645 from which we find

F = µS + 1.645σS.

We find µS and σS as follows:

E(Zi) =10Āx = 10

(
µ

µ+ δ

)
= 4

E(Z2
i ) =[(102)]2Āx = 100

(
µ

µ+ 2δ

)
= 25

Var(Zi) =25− 42 = 9

µS =E(S) = 100E(Zi) = 400

σS =
√

100Var(Zi) = 30
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Finally,
F = 400 + 1.645(30) = 449.35.

Example 32.1 ‡
A fund is established to pay annuities to 100 independent lives age x. Each
annuitant will receive 10,000 per year continuously until death. You are
given:
(i) δ = 0.06
(ii) Āx = 0.40
(iii) 2Āx = 0.25
Calculate the amount (in millions) needed in the fund so that the probability,
using the normal approximation, is 0.90 that the fund will be sufficient to
provide the payments.

Solution.
Let

Y = 10, 000

(
1− νT

δ

)
denote the contingent random variable and S the present value of all future
payments. We would like to know the amount of fund F that the insurer
must have now to assure that the probability of having sufficient funds to
make all payments is 0.90. That is, we want F such that

Pr(S ≤ F ) = 0.90.

We have

E(Y ) =10, 000āx = 10, 000

(
1− Āx
δ

)
= 100, 000

E(S) =100E(Y ) = 10, 000, 000

Var(Y ) =
10, 0002

δ2
(2Āx − Ā2

x)) = 50, 0002

Var(S) =100Var(Y ) = 100(50, 000)2

σS =500, 000.

Thus, we have

Pr

(
S − 10, 000, 000

500, 000
≤ F − 10, 000, 000

500, 000

)
= Pr

(
Z0.90 ≤

F − 10, 000, 000

500, 000

)
.
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But Z0.90 = 1.282 from which we find

F = E(S) + 1.282σS = 10, 000, 000 + 1.282(500, 000) = 10, 641, 000

Distributions of Z
In this section, we try to find PDF, SF and CDF of actuarial present values.
We will look at the case of a whole life insurance where the remaining future
lifetime random variable is exponential.

Example 32.2
Let the remaining lifetime random variable be exponential with µ = 0.05.
Let Z̄x be the contingent payment random variable for a continuous whole
life insurance on (30). The force of interest is δ = 0.10. Find the cumulative
distribution function for Z̄x.

Solution.
Recall the survival function of T given by

sT (30)(t) = e−0.05t, t ≥ 0.

We are told that
Z̄x = e−0.10t, t ≥ 0.

Now, we have

FZ̄x(t) =Pr(Z̄x ≤ t)

=Pr(e−0.10T ≤ t)

=Pr

(
T >

ln t

−0.10

)
=S

(
ln t

−0.10

)
=t2
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Practice Problems

Problem 32.1 ‡
Each of 100 independent lives purchase a single premium 5-year deferred
whole life insurance of 10 payable at the moment of death. You are given:
(i) µ = 0.04;
(ii) δ = 0.06;
(iii) F is the aggregate amount the insurer receives from the 100 lives.
Using the normal approximation, calculate F such that the probability the
insurer has sufficient funds to pay all claims is 0.95.

Problem 32.2
Each of 100 independent lives purchase a single premium 10-year deferred
whole life insurance of 10 payable at the moment of death. You are given:
(i) The remaining lifetime is uniform on [0, 70];
(ii) δ = 0.05;
(iii) F is the aggregate amount the insurer receives from the 100 lives.
Using the normal approximation, calculate F such that the probability the
insurer has sufficient funds to pay all claims is 0.95.

Problem 32.3 ‡
For a whole life insurance of 1 on (x) with benefits payable at the moment
of death:
(i)

δt =

{
0.02, 0 < t < 12
0.03, t ≥ 12.

(ii)

µ(x+ t) =

{
0.04, 0 < t < 5
0.05, t ≥ 5.

Calculate the actuarial present value of this insurance.

Problem 32.4
Let the remaining lifetime random variable be uniform with [0, 80]. Let Z̄x be
the contingent payment random variable for a continuous whole life insurance
on (20). The force of interest is δ = 0.05. Find the cumulative distribution
function for Z̄x.
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Problem 32.5
Let the remaining lifetime random variable be uniform with [0, 80]. Let Z̄x be
the contingent payment random variable for a continuous whole life insurance
on (20). The force of interest is δ = 0.05. Find the 95th percentile of Z̄x.

Problem 32.6 ‡
For a group of 250 individuals age x, you are given:
(i) The future lifetimes are independent.
(ii) Each individual is paid 500 at the beginning of each year, if living.
(iii) Ax = 0.369131
(iv) 2Ax = 0.1774113
(v) i = 0.06
Using the normal approximation, calculate the size of the fund needed at
inception in order to be 90% certain of having enough money to pay the life
annuities.
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Contingent Annuity Models

Life insurances discussed in the previous chapter provide a single payment
upon death of the insured. In contrast, life annuities are annuities that
provide a sequence of payments contingent on the survival of the insured.
That is, the insured will stop receiving payments at the time of death. Life
annuities are also known as contingent annuities. The goal of this chapter
is to understand the concept of life annuities and to become familiar with
the related actuarial notation.
Three different life annuity models will be introduced in this section: whole
life, temporary and deferred whole life annuities.

347
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33 Continuous Whole Life Annuities

A whole life annuity is an annuity with payments made while the insured is
alive. The payments can be made either at the beginning of the year (whole
life due annuity), the end of the year (whole life discrete immediate
annuity), or continuously (whole life continuous annuity). In this sec-
tion, we consider continuous whole life annuity with a continuous flow of
payments with constant rate of 1 per year made while an individual is alive.
Recall from Section 3.3, that the present value of an annuity payable contin-
uously for n interest conversion periods so that 1 is the total amount paid
during each interest conversion period is given by the formula

ān =
1− νn

δ
.

For a whole life continuous annuity for (x) with unit rate, the length of
time over which the payments are made is a random variable T, which is
the remaining lifetime. Thus, the present value of the life annuity is also a
random variable

Ȳx = āT =
1− νT

δ
.

The actuarial present value of a whole life continuous annuity for (x) with
unit rate is denoted by āx. That is,

āx = E(Ȳx) =

∫ ∞
0

āT fT (t)dt =

∫ ∞
0

āt tpxµ(x+ t)dt.

An alternative formula for finding āx is given in the next example.

Example 33.1
Show that āx =

∫∞
0 tExdt =

∫∞
0
νttpxdt. Interpret this result.

Solution.
First notice that

d
dt
āt = e−δt and d

dt
(tpx) = −tpxµ(x+ t).
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Now, using integration by parts we find

āx =

∫ ∞
0

āt
d

dt
(−tpx)dt

= −āt tpx|∞0 +

∫ ∞
0

e−δttpxdt

=

∫ ∞
0

e−δttpxdt =

∫ ∞
0

tExdt

where we used the fact that
∫∞

0
µ(x+ t)dt =∞.

This integral says that a continuous annuity of 1 pays 1dt in the interval
[t, t+dt] if the annuitant is alive in that interval. The actuarial present value
of that 1dt is νttpxdt = tExdt. The integral continuously adds up all those
present values to give the total actuarial present value of the annuity

Example 33.2
Suppose that δ = 0.05 and tpx = e−0.34t, t ≥ 0. Calculate āx.

Solution.
We have

āx =

∫ ∞
0

e−0.05te−0.34tdt =

∫ ∞
0

e−0.39tdt = −e
−0.39t

0.39

∣∣∣∣∞
0

=
100

39

If Āx is known then we can use the following formula for determining āx.

Example 33.3
Show that āx = 1−Āx

δ
.

Solution.
We have

Ȳx =
1− Z̄x
δ

.

Taking expectation of both sides, we find

āx = E

(
1− νT

δ

)
=

1

δ
[E(1)− E(Z̄x)] =

1− Āx
δ

Example 33.4
Suppose that the remaining lifetime random variable is exponential with
parameter µ. Find an expression for āx if the force of interest is δ.
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Solution.
Recall that Āx = µ

µ+δ
. Therefore,

āx =
1− Āx
δ

=
1− µ

µ+δ

δ
=

1

µ+ δ

Example 33.5
Find the variance of Ȳx.

Solution.
We have

Var(Ȳx) =Var

(
1− Z̄x
δ

)
= Var

(
1

δ
− Z̄x

δ

)
=

1

δ2
Var(Z̄x) =

2Āx − (Āx)
2

δ2

Example 33.6
For a continuous whole life annuity of 1 on (x) :
• T (x) is the future lifetime random variable for (x).
• The force of interest is δ.
• The constant force of mortality µ.
Find an expression for FȲx(y).

Solution.
We have the following calculation

FȲx(y) =Pr(Ȳx ≤ y)

=Pr

(
1− e−δT

δ
≤ y

)
=Pr(1− e−δT ≤ δy)

=Pr(e−δT ≥ 1− δy)

=Pr

(
T ≤ − ln (1− δy)

δ

)
=1− sT (x)

(
− ln (1− δy)

δ

)
=1− e

µ
δ

ln (1−δy)

=1− (1− δy)
µ
δ
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Example 33.7 ‡
For a disability insurance claim:
(i) The claimant will receive payments at the rate of 20,000 per year, payable
continuously as long as she remains disabled.
(ii) The length of the payment period in years is a random variable with pdf
f(t) = te−t, t > .
(iii) Payments begin immediately.
(iv) δ = 0.05
Calculate the actuarial present value of the disability payments at the time
of disability.

Solution.
We have

20, 000āx =20, 000

∫ ∞
0

āT fT (t)dt

=20, 000

∫ ∞
0

(
1− νt

δ

)
te−tdt

=400, 000

∫ ∞
0

(te−t − te−1.05t)dt

=400, 000

[
−(t+ 1)e−t +

(
t

1.05
+

1

1.052

)
e−1.05t

]∞
0

=37, 188.20

Example 33.8 ‡
For a group of lives age x, you are given:
(i) Each member of the group has a constant force of mortality that is drawn
from the uniform distribution on [0.01, 0.02].
(ii) δ = 0.01
For a member selected at random from this group, calculate the actuarial
present value of a continuous lifetime annuity of 1 per year.
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Solution.
We have

āx =EY [Ȳx] = Eµ[EY [Ȳx|µ]] =

∫ 0.02

0.01

E[Ȳx|µ]fµ(µ)dµ

=

∫ 0.02

0.01

1

µ+ δ

1

0.02− 0.01
dµ

= 100 ln (0.01 + µ)|0.02
0.01 = 40.55
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Practice Problems

Problem 33.1
You are given that δ = 0.05 and Āx = 0.4. Calculate āx.

Problem 33.2
Find an expression for E(Ȳ 2

x ).

Problem 33.3
Find Var(Ȳ30) if Ā30 = 0.4, 2Ā30 = 0.3, and δ = 0.05.

Problem 33.4 ‡
For a continuous whole life annuity of 1 on (x) :
(i) T (x) is the future lifetime random variable for (x).
(ii) The force of interest and force of mortality are equal and constant.
(iii) āx = 12.50.
Calculate the standard deviation of āT (x) .

Problem 33.5
For a continuous whole life annuity of 1 on (x) :
• T (x) is the future lifetime random variable for (x).
• The force of interest is δ.
• The constant force of mortality is µ.
Find Pr(Ȳx > āx).

Problem 33.6 ‡
You are given:
(i)

µ(x+ t) =

{
0.01, 0 ≤ t < 5
0.02, 5 ≤ t.

(ii) δ = 0.06.
Calculate āx.

Problem 33.7 ‡
You are given:
(i) T (x) is the random variable for the future lifetime of (x);
(ii) µ(x+ t) = µ;
(iii) δ = µ.
Determine Var(āT ) in terms of µ.
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Problem 33.8 ‡
You are given:
(i) T (x) is the random variable for the future lifetime of (x);
(ii) µ(x+ t) = µ;
(iii) δ = 0.08.
(iv) Āx = 0.3443.
Determine Var(āT ).

Problem 33.9 ‡
You are given:
(i) µ(x+ t) = 0.03;
(ii) δ = 0.05;
(iii) T (x) is the future lifetime random variable;
(iv) g =

√
Var(āT .

Calculate Pr(āT > āx − g).

Problem 33.10 ‡
For a whole life insurance of 1 on (x), you are given:
(i) The force of mortality is µ(x+ t).
(ii) The benefits are payable at the moment of death.
(iii) δ = 0.06
(iv) Āx = 0.60.
Calculate the revised actuarial present value of this insurance assuming µ(x+
t) is increased by 0.03 for all t and δ is decreased by 0.03.

Problem 33.11 ‡
Your company sells a product that pays the cost of nursing home care for
the remaining lifetime of the insured.
(i) Insureds who enter a nursing home remain there until death.
(ii) The force of mortality, µ, for each insured who enters a nursing home is
constant.
(iii) µ is uniformly distributed on the interval [0.5, 1].
(iv) The cost of nursing home care is 50,000 per year payable continuously.
(v) δ = 0.045
Calculate the actuarial present value of this benefit for a randomly selected
insured who has just entered a nursing home.

Problem 33.12 ‡
You are given:
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(i) Y is the present value random variable for a continuous whole life annuity
of 1 per year on (40).
(ii) Mortality follows DeMoivre’s Law with ω = 120.
(iii) δ = 0.05
Calculate the 75th percentile of the distribution of Y.
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34 Continuous Temporary Life Annuities

A (continuous) n-year temporary life annuity pays 1 per year continu-
ously while (x) survives during the next n years. If the annuitant dies before
time n then the total money collected is āT . If the annuitant dies at time n
the total money collected is ān .
The present value of this annuity is the random variable

Ȳx:n =

{
āT , 0 ≤ T < n
ān , T ≥ n.

The actuarial present value of this annuity is

āx:n =E(Ȳx:n ) =

∫ n

0

āt fT (t)dt+

∫ ∞
n

ān fT (t)dt

=

∫ n

0

āt tpxµ(x+ t)dt+ ān

∫ ∞
n

tpxµ(x+ t)dt

=

∫ n

0

āt tpxµ(x+ t)dt+ ān npx.

An alternative formula for finding āx:n is given in the next example.

Example 34.1
Show that āx:n =

∫ n
0 tExdt =

∫ n
0
νttpxdt.

Solution.
We have

āx:n =
1

δ

[∫ n

0

(1− νt)tpxµ(x+ t)dt+ (1− νn)npx

]
=

1

δ

[
npx − νnnpx +

∫ n

0
tpxµ(x+ t)dt−

∫ n

0

νttpxµ(x+ t)dt

]
But ∫ n

0
tpxµ(x+ t)dt =

∫ n

0

fT (t)dt = FT (n) = nqx = 1− npx
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and using integration by parts we have∫ n

0

νttpxµ(x+ t)dt =

∫ n

0

νt
d

dt
(−tpx)dt

= −νttpx
∣∣n
0
− δ

∫ n

0

e−δttpxdt

=1− νnnpx − δ
∫ ∞

0

νttpxdt.

By substitution, we find

āx:n =

∫ n

0
tExdt

Example 34.2
You are given the following:
• T (x) is exponential with µ = 0.34.
• A continuous 4-year temporary annuity.
• δ = 0.06.
Calculate āx:4 .

Solution.
We have

āx:4 =

∫ 4

0

e−0.06te−0.34tdt = −e
−0.4t

0.4

∣∣∣∣4
0

= 1.9953

Next, notice that

Ȳx:n =
1− Z̄x:n

δ

where Z̄x:n is the contingent payment random variable of a n−year endow-
ment life insurance. Thus,

E(Ȳx:n ) =
1− E(Z̄x:n )

δ
=⇒ āx:n =

1− Āx:n

δ
.

The variance of the n−year temporary annuity random variable Ȳx:n also
works like the variance of the continuous whole life annuity. That is,

Var(Ȳx:n ) =
1

δ2
Var(Z̄x:n ) =

2Āx:n − (Āx:n )2

δ2
.
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Example 34.3
Find Var(Ȳx:20 ) if δ = 0.06 and µ(x+ t) = 0.04 for all t ≥ 0.

Solution.
From the formula

Āx:n = Ā1
x:n + νnnpx

we find

Āx:20 =
1− e−20(0.04+0.06)

0.04 + 0.06
+ e−20(0.06+0.04) = 0.781982451.

Likewise,

2Āx:20 =
1− e−20(0.04+2(0.06))

0.04 + 2(0.06)
+ e−20(0.04+2(0.06)) = 0.7859984291.

Hence,

Var(Ȳx:20 =
0.7859984291− 0.7819824512

0.062
= 48.4727

Actuarial Accumulated Value
In the theory of interest, the relationship between accumulated value AV
and present value PV at time n is given by PV = νnFV. The term νn is
known as the discount factor. In the actuarial context, what is parallel to
the discount factor is the term nEx = νnnpx. That is, we have a relation like
PV = nExFV. For example, the actuarial accumulated value at time n of
an n−year temporary annuity of 1 per year payable continuously while (x)
survives is given by

s̄x:n =
āx:n

nEx
.

Example 34.4
Show that

s̄x:n =

∫ n

0

dt

n−tEx+t

.
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Solution.
We have

s̄x:n =
āx:n

nEx

=

∫ n
0
νttpxdt

νnnpx

=

∫ n

0

1

νn−tn−tpx+t

dt

=

∫ n

0

1

n−tEx+t

dt
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Practice Problems

Problem 34.1
Find āx:n under a constant force of mortality and constant force of interest.

Problem 34.2
You are given:
• µ(x+ t) = 0.34
• δ = 0.06.
Find āx:5 .

Problem 34.3
Show thar āx = āx:n + νntpxāx+n.

Problem 34.4
Seven-finned jumping fish can take out continuous whole and temporary life
annuities. Each annuity pays 1dt in benefits at each time t. A 5-year-old
seven-finned jumping fish can get either a one-year temporary life annuity
with present value 0.67 or a whole life annuity with present value 5.6. The
annual force of interest among seven-finned jumping fish is 0.2, and a 5-year-
old seven-finned jumping fish has a probability of 0.77 of surviving to age 6.
Find the actuarial present value of a continuous whole life annuity available
to a 6-year-old seven-finned jumping fish.

Problem 34.5
Show that āx:m+n = āx:m + mExāx+m:n .
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35 Continuous Deferred Life Annuities

A n−year deferred continuous annuity guarantees a continuous flow of
payments at the rate of 1 per year while the individual is alive starting in n
years. The present value random variable of this annuity is defined by

n|Ȳx =

{
0, T < n
āT−n ν

n, T ≥ n

where T is the remaining lifetime random variable.
The actuarial present value of an n−year deferred life annuity of 1 for (x) is
denoted by n|āx. Since an n−year deferred life annuity of 1 for (x) is a whole
life annuity starting at age x + n discounted back to the date of purchase,
we can write

n|āx = E(n|Ȳx) = νnnpxāx+n = nExāx+n.

Example 35.1
Let the remaining lifetime at birth random variable X be uniform on [0, 100].
Find 20|ā40 if ν = 0.91.

Solution.
We have

20E40 =(0.91)20
20p40 = (0.91)20 40

60
= 0.1010966087

Ā60 =

∫ 40

0

νt

40
dt = 0.2589854685

ā60 =
1− Ā60

δ
=

1− 0.2589854685

− ln 0.91
= 7.857164593

20|ā40 =20E40ā60 = (0.1010966087)(7.857164593) = 0.7943

Example 35.2
Show that

n|āx =

∫ ∞
n

νnāt−n tpxµ(x+ t)dt.
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Solution.
We have

n|āx =

∫ ∞
0

n|yxfT (t)dt

=

∫ ∞
n

νnāt−n fT (t)dt

=

∫ ∞
n

νnāt−n tpxµ(x+ t)dt

Example 35.3
Show that

n|āx =

∫ ∞
n

νttpxdt.

Solution.
We have

n|āx =

∫ ∞
n

νnāt−n
d

dt
(−tpx)dt

=− νnāt−n tpx
∣∣∞
n

+

∫ ∞
n

e−δne−δ(t−n)
tpxdt

=

∫ ∞
n

e−δttpxdt =

∫ ∞
n

νttpxdt

Finally, from the equality∫ ∞
0

νttpxdt =

∫ n

0

νttpxdt+

∫ ∞
n

νttpxdt

we can write
āx = āx:n + n|āx.

This says that if you purchase an n−year temporary annuity to cover the
next n years, and an n−year deferred annuity to cover the remainder of your
lifetime work the same as if you purchase a continuous whole life annuity.
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Practice Problems

Problem 35.1
Show that under a constant force of mortality µ and a constant force of
interest δ we have

n|āx =
e−n(µ+δ)

µ+ δ
.

Problem 35.2
Let the remaining lifetime at birth random variable X be exponential with
µ = 0.05. Find 20|ā50 if δ = 0.1.

Problem 35.3
Show that

n|Ȳx =
Z 1
x:n − n|Z̄x

δ

where Z 1
x:n is the present value of a pure endowment and n|Z̄x that of an

n−year deferred insurance.

Problem 35.4
Show that

E[(n|Ȳx)
2] = 2ν2n

npx

∫ ∞
0

νtāt tpx+ndt.

Problem 35.5
Suppose that ν = 0.92, and the force of mortality is µ(x + t) = 0.02, for
t ≥ 0. Find 20|āx and Var(n|Ȳx).
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36 The Certain-and-Life Annuity

A continuous n−year certain and life annuity of a life aged x makes
continuous payments at the rate of 1 per year for n years, and if the annu-
itant survives more than n years, makes contingent payments until his/her
death. Under this annuity, the payments up to year n are guaranteed. If the
annuitant dies before the completion of n years, payments would be made to
his/her estate until n years were up.
The present value random variable of the benefits is defined by

Ȳx:n =

{
ān , T (x) < n
āT , T (x) ≥ n.

Example 36.1
Show that

Ȳx:n = ān + n|Ȳx.

Solution.
If T (x) < n we have n|Ȳx = 0 and Ȳx:n = ān . If T (x) ≥ n then

ān + n|Ȳx = ān + āT−n ν
n = āT = Ȳx:n

The actuarial present value of Ȳx:n is denoted by āx:n . Thus, we have

āx:n = E(Ȳx:n ) = E(ān ) + E(n|Ȳx) = ān + n|āx.

This says that the n−year certain and life annuity gives you the present value
of an n−year annuity certain plus the present value of a deferred annuity
covering the years after year n.

Example 36.2
Let the remaining lifetime at birth random variable X be uniform [0, 100].
Find 20|ā40 and ā

40:20
if ν = 0.91.

Solution.
We have

ā20 =
1− (0.91)20

− ln 0.91
= 8.9953

and by Example 35.1,

20|ā40 = 0.7943.

Hence,
Ȳ

40:20
= 8.9953 + 0.7943 = 9.7896
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Practice Problems

Problem 36.1
Let the remaining lifetime at birth random variable X be exponential with
µ = 0.05. Find 20|ā50 and ā

50:20
if δ = 0.1.

Problem 36.2
Show that

āx:n = ān nqx +

∫ ∞
n

āt tpxµ(x+ t)dt.

Problem 36.3
Use the previous problem and integration by parts to show that

āx:n = ān +

∫ ∞
n

νttpxdt.

Problem 36.4
Show that

Var(Ȳx:n ) = Var(n|Ȳx).

Problem 36.5
Show that

āx:n = ān + nExāx+n.

Problem 36.6
Show that

āx:n = ān + (āx − āx:n ).
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37 Discrete Life Annuities

In this section we look at discrete annuities where payments are either made
at the beginning of the year (annuity due) or at the end of the year (annuity
immediate). You will notice that the theory and formulas developed in this
section will parallel what has already been developed for the continuous case.

37.1 Whole Life Annuity Due

A whole life annuity due is a series of payments made at the beginning of
the year while an annuitant is alive. If death occurs in the interval [x+k, x+
k + 1), then k + 1 payments have already been made at times 0, 1, · · · , k.
The present value of a whole life annuity due for (x) with unit payment is
denoted by Ÿx and is given by

Ÿx = äK(x)+1 =
1− νK(x)+1

d
=

K(x)∑
j=0

νj.

The actuarial present value is denoted by äx.

Example 37.1
You are given the following probability mass function of K(x).

k 0 1 2
Pr(K(x) = k) 0.2 0.3 0.5

Find äx and 2äx = E(Ÿ 2
x ) if i = 0.05.

Solution.
We want to find

äx = ä1 Pr(K(x) = 0) + ä2 Pr(K(x) = 1) + ä3 Pr(K(x) = 2)

where

ä1 =
1− ν
d

= 1

ä2 =
1− ν2

d
= 1.9524

ä3 =
1− ν3

d
= 2.8594.
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Thus,

äx =(1)(0.2) + (1.9524)(0.3) + (2.8594)(0.5) = 2.21542
2äx =(1)2(0.2) + (1.9524)2(0.3) + (2.8594)2(0.5) = 5.4316

Next, it is easy to see that

Ÿx =
1− Zx
d

where Zx is the discrete whole life insurance paying 1 at the end of year of
death.
Thus, if we know Ax we can find äx as follows:

äx = E(Ÿx) = E

(
1− Zx
d

)
=

1− Ax
d

.

A third way for computing äx is shown in the next example.

Example 37.2
Show that

äx =
∞∑
k=0

äk+1 k|qx =
∞∑
k=0

äk+1 kpxqx+k.

Solution.
We have

äx =E(äK(x)+1 ) =
∞∑
k=0

äk+1 Pr(K(x) = k)

=
∞∑
k=0

äk+1 kpxqx+k

The above can have a different form as shown next.

Example 37.3
Show that

äx =
∞∑
k=0

νkkpx =
∞∑
k=0

kEx.
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Solution.
Using Problem 20.14, We have

äx =
∞∑
k=0

äk+1 kpxqx+k =
1

d

[
∞∑
k=0

kpxqx+k −
∞∑
k=0

νk+1
kpxqx+k

]

=
1

d

[
∞∑
k=0

Pr(K(x) = k)−
∞∑
k=0

νk+1(kpx − k+1px)

]
=

1

d
[1− (ν − νpx + ν2px − ν2

2px + ν3
2px − ν3

3px + · · · )]

=
1

d
[(1− ν) + ν(1− ν)px + ν2(1− ν)2px + · · · ]

=
1

d
(d+ νdpx + ν2d2px + ν3d3px + · · · )

=1 + νpx + ν2
2px + ν3

3px + · · · =
∞∑
k=0

νkkpx

The above formula is knwon as the current payment technique formula
for computing life annuities.

Example 37.4
Consider the following extract from a life table.

x 75 76 77 78 79 80
`x 120 100 70 40 10 0

Assume i = 0.05, find
(a) the present value of the random variable Ÿ75;
(b) the expected value of Ÿ75.

Solution.
(a) We have

Ÿ75 = äK(75)+1 .
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(b) We have

ä75 =
∞∑
k=0

(1.05)−k
`75+k

`75

=1 + (1.05)−1

(
100

120

)
+ (1.05)−2

(
70

120

)
+(1.05)−3

(
40

120

)
+ (1.05)−4

(
10

120

)
=2.6793

Next, the variance of Ÿx can be expressed in terms of the variance of Zx :

Var(Ÿx) = Var

(
1− Zx
d

)
=

Var(Zx)

d2
=

2Ax − (Ax)
2

d2
.

Example 37.5
You are given the following:
• i = 0.06
• Ax = 0.369131
• 2Ax = 0.1774113.
Find Var(Ÿx).

Solution.
We have

Var(Ÿx) =
2Ax − (Ax)

2

d2
=

0.1774113− 0.3691312

(0.06)2(1.06)−2
= 12.8445

Example 37.6
Let Ÿx denote the present value of a whole life annuity-due for (x). Suppose
that qx+k = 0.11 for all nonnegative integer k. Find the expected value of Ÿx
if i = 0.25.
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Solution.
Using the current payment method formula we can write

äx =E(Ÿx) =
∞∑
k=0

νkkpx

=
∞∑
k=0

(0.8)k(px)
k

=
∞∑
k=0

(0.8)k(1− 0.11)k

=
∞∑
k=0

(0.712)k

=
1

1− 0.712
= 3.4722

Example 37.7 ‡
A government creates a fund to pay this year’s lottery winners.
You are given:
(i) There are 100 winners each age 40.
(ii) Each winner receives payments of 10 per year for life, payable annually,
beginning immediately.
(iii) Mortality follows the Illustrative Life Table.
(iv) The lifetimes are independent.
(v) i = 0.06
(vi) The amount of the fund is determined, using the normal approximation,
such that the probability that the fund is sufficient to make all payments is
95%.
Calculate the initial amount of the fund.

Solution.
Let Yi denote the present value random variable for payments on the ith life,
where i = 1, 2, · · · , 100. That is,

Yi = 10
1− νK+1

d
.



37 DISCRETE LIFE ANNUITIES 371

Then

E[Yi] =10ä40 = 10(14.8166) = 148.166

Var(Yi) =100
2A40 − A2

40

d2
= 100

0.04863− 0.161322

0.06(1.06)−1
= 705.55.

The present value random variable for all payments is

S = Y1 + Y2 + · · ·+ Y100.

Hence,

E[S] =100E[Yi] = 14, 816.60

Var(S) =100Var(Yi) = 70, 555

σS =
√

70, 555 = 265.62.

We would like to know the amount of fund F that the insurer must have now
to assure that the probability of having sufficient funds to pay all claims is
0.95. That is, we want F such that

Pr(S ≤ F ) = 0.95.

In probability language, F is the 95th percentile of the random variable S.
Now, using normal approximation, we can write

Pr

(
Z0.95 ≤

F − E[S]

σS

)
= 0.95.

But Z0.95 = 1.645 from which we find

F = E[S] + 1.645σS = 14, 816.60 + 1.645(265.62) = 15, 254 .
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Practice Problems

Problem 37.1
You are given the following probability mass function of K(x).

k 0 1 2
Pr(K(x) = k) 0.2 0.3 0.5

Find Var(Ÿx) if i = 0.05.

Problem 37.2
You are given Ax = 0.22 and i = 0.06. Calculate äx.

Problem 37.3
Show that äx = 1 + νpxäx+1.

Problem 37.4 ‡
You are given:
(i) äx = 8 for all integral values x.
(ii) i = 0.08.
Calculate 8q30 for all integral values x.

Problem 37.5
You are given

x qx äx
75 0.03814 7.4927
76 0.04196 7.2226

Calculate the interest rate i.

Problem 37.6 ‡
Your company currently offers a whole life annuity product that pays the
annuitant 12,000 at the beginning of each year. A member of your product
development team suggests enhancing the product by adding a death benefit
that will be paid at the end of the year of death.
Using a discount rate, d, of 8%, calculate the death benefit that minimizes
the variance of the present value random variable of the new product.
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Problem 37.7 ‡
Your company is competing to sell a life annuity-due with an actuarial present
value of 500,000 to a 50-year old individual.
Based on your company’s experience, typical 50-year old annuitants have
a complete life expectancy of 25 years. However, this individual is not as
healthy as your company’s typical annuitant, and your medical experts esti-
mate that his complete life expectancy is only 15 years.
You decide to price the benefit using the issue age that produces a complete
life expectancy of 15 years. You also assume:
(i) For typical annuitants of all ages, mortality follows De Moivre’s Law with
the same limiting age, ω
(ii) i = 0.06
Calculate the annual benefit that your company can offer to this individual.

Problem 37.8 ‡
For a pension plan portfolio, you are given:
(i) 80 individuals with mutually independent future lifetimes are each to
receive a whole life annuity-due.
(ii) i = 0.06
(iii)

Age # of Annuitants Annual Payment äx Ax
2Ax

65 50 2 9.8969 0.43980 0.23603
75 30 1 7.2170 0.59149 0.38681

Using the normal approximation, calculate the 95th percentile of the distri-
bution of the present value random variable of this portfolio.
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37.2 Temporary Life Annuity-Due

An n−year temporary life annuity-due pays 1 at the beginning of each
year so long as the annuitant (x) survives, for up to a total of n years, or n
payments otherwise. Thus, for k < n there are k+ 1 payments made at time
0, 1, · · · , k and for k ≥ n there are n payments made at time 0, 1, · · · , n− 1.
The present value random variable of this life annuity is given by

Ÿx:n =

{
äK+1 , K < n
än , n ≤ K.

Example 37.8
Show that

Ÿx:n =
1− Zx:n

d

where Zx:n is the present value random variable of an n−year endowment
insurance.

Solution.
We have

Ÿx:n = ämin (K+1,n) =
1− νmin (K+1,n)

d
=

1− Zx:n

d

The actuarial present value of the annuity is

äx:n =
n−1∑
k=0

äk+1 Pr(K(x) = k)+än Pr(K(x) ≥ n) =
n−1∑
k=0

äk+1 kpxqx+k+än npx.

A more convenient formula is given by the current payment technique formula
described in the next example.

Example 37.9
Show that

äx:n =
n−1∑
k=0

νkkpx =
n−1∑
k=0

kEx.
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Solution.
We have

äx:n =
n−1∑
k=0

äk+1 kpxqx+k + än npx

=
1

d

[
n−1∑
k=0

kpxqx+k −
n−1∑
k=0

νk+1
kpxqx+k + (1− νn)npx

]

=
1

d

[
1− npx + (1− νn)npx −

n−1∑
k=0

νk+1
kpxqx+k

]
.

But

n−1∑
k=0

νk+1
kpxqx+k =

n−1∑
k=0

νk+1(kpx − k+1px)

=ν − νpx + ν2px − ν2
2px + ν3

2px − ν3
3px + · · ·+ νnn−1px − νnnpx

=ν − ν(1− ν)px − ν2(1− ν)2px − · · · − νn−1(1− ν)n−1px − νnnpx
=ν − dνpx − dν2

2px − · · · − dνn−1
n−1px − νnnpx.

Thus,

äx:n =
1

d

[
1− npx + (1− νn)npx −

n−1∑
k=0

νk+1
kpxqx+k

]
=

1

d
[1− npx + (1− νn)npx − ν + νdpx + ν2d2px + · · ·+ νn−1dn−1px + νnnpx]

=1 + νpx + ν2
2px + · · ·+ νn−1

n−1px =
n−1∑
k=0

νkkpx

Example 37.10
For a 3-year temporary life annuity-due on (30), you are given:
(i) s(x) = 1− x

80
, 0 ≤ x < 80.

(ii) i = 0.05.
(iii)

Y =

{
äK+1 , K = 0, 1, 2
ä3 , K = 3, 4, · · · .

Calculate Var(Y ).
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Solution.
We have

Y Pr(K(30) = k)
ä1 = 1 q30

ä2 = 1.95238 p30q31

ä3 = 2.85941 2p30

Finding the probabilities in the table we find

q30 =1− p30 = 1− s(31)

s(30)
=

1

60

p30q31 =
59

60

(
1− s(32)

s(31)

)
=

59

60
· 1

59
=

1

60

2p30 =p30p31 =
59

60
· 58

59
=

58

60
.

Thus,

E(Y ) =
1

60
+ (1.95238)× 1

60
+ (2.85941)× 58

60
= 2.81330

and

E(Y 2) =
1

60
+ (1.95238)2 × 1

60
+ (2.85941)2 × 58

60
= 7.98388.

The final answer is

Var(Y ) = 7.98388− 2.813302 = 0.069223

In the case Ax:n is known then we can find äx:n using the formula

äx:n = E(Ÿx:n ) =
1− Ax:n

d
.

We can also find the variance of Ÿx:n . Indeed, we have

Var(Ÿx:n ) =
1

d2
Var(Zx:n ) =

2Ax:n − (Ax:n )2

d2
.

Finally, the actuarial accumulated value at the end of the term of an n−year
temporary life annuity-due is

s̈x:n =
äx:n

nEx
.
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Example 37.11
You are given that µ = 0.02 and δ = 0.05. Let Y be the present value random
variable for an 20-year temporary life annuity due of 1 per year issued to (75).
Calculate s̈75:20 .

Solution.
We have

ä75:20 =1 + νp75 + ν2
2p75 + · · ·+ ν19

19p75

=1 + e−0.05e−0.02 + e−2(0.05)e−2(0.02) + · · ·+ e−19(0.05)e−19(0.02)

=1 + e−0.07 + e−2(0.07) + · · ·+ e−19(0.07)

=
1− e−20(0.07)

1− e−0.07
.

Also, we have

20E75 = e−20(0.05)e−20(0.02) = e−20(0.07).

Hence,

s̈75:20 =
e20(0.07)(1− e−20(0.07))

1− e−0.07
= 45.19113

Example 37.12
Show that

s̈x:n =
n−1∑
k=0

1

n−kEx+k

.

Solution.
We have

s̈x:n =
äx:n

nEx

=
n−1∑
k=0

νkkpx
νnnpx

=
n−1∑
k=0

1

νn−kn−kpx+k

=
n−1∑
k=0

1

n−kEx+k
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Practice Problems

Problem 37.9
Show that

äx:n = 1 + νpxäx+1:n−1 .

Problem 37.10 ‡
For a three-year temporary life annuity due of 100 on (75), you are given:
(i) i = 0.11
(ii)

∫ x
0
µ(t)dt = 0.01x1.2, x > 0.

Calculate the actuarial present value of this annuity.

Problem 37.11 ‡
For a special 3-year temporary life annuity-due on (x), you are given:
(i)

k Annuity Payment px+k

0 15 0.95
1 20 0.90
2 25 0.85

(ii) i = 0.06.
Calculate the variance of the present value random variable for this annuity.

Problem 37.12 ‡
Y is the present-value random variable for a special 3-year temporary life
annuity-due on (x). You are given:
(i) tpx = 0.9t, t ≥ 0;
(ii) K is the curtate-future-lifetime random variable for (x).
(iii)

Y =


1.00 K = 0
1.87 K = 1
2.72 K = 2, 3, · · ·

Calculate Var(Y ).

Problem 37.13
John is currently age 50. His survival pattern follows DeMoivre’s law with
ω = 100. He purchases a three-year temporary life annuity that pays a benefit
of 100 at the beginning of each year. Compute the actuarial present value of
his benefits if i = 0.05.
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Problem 37.14
You are given that mortality follows DeMoivre’s law with ω = 125 and
δ = 0.05. Y is the present value random variable for an 20-year certain and
life annuity due of 1 per year issued to (75). Calculate ä

75:20
.

Problem 37.15
You are given the following mortality table:

x `x
90 1000
91 900
92 720
93 432
94 216
95 0

Suppose i = 0.04. Calculate s̈91:3 .

Problem 37.16
Show that

äx = äx:n + nExäx+n.
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37.3 Discrete Deferred Life Annuity-Due

An n−year deferred whole life annuity-due of 1 payable at the beginning
of each year while (x) survives from age x + n onward is described by the
following random variable

n|Ÿx =

{
0, K ≤ n− 1
νnäK+1−n , K ≥ n.

Example 37.13
Show that

n|Ÿx = Ÿx − Ÿx:n .

Solution.
Recall that Ÿx = äK(x)+1 and

Ÿx:n =

{
äK+1 , K < n
än , n ≤ K.

Thus, if K < n then n|Ÿx = 0, Ÿx − Ÿx:n = 0 so that the equality holds. If

K ≥ n then n|Ÿx = νnäk+n−1 , Ÿx − Ÿx:n = äK(x)+1 − än = νnäk+n−1

The actuarial present value of the deferred life annuity-due is denoted by

n|äx. From the previous example, we can write

n|äx =E(n|Ÿx) = E(Ÿx)− E(Ÿx:n ) = äx − äx:n

=
∞∑
k=0

νkkpx −
n−1∑
k=0

νkkpx

=
∞∑
k=n

νkkpx = nExäx+n.

Example 37.14
For a 5-year deferred whole life annuity due of 1 on (x), you are given:
(i) µ(x+ t) = 0.01
(ii) i = 0.04
(iii) äx:5 = 4.542.
(iv) The random variable S denotes the sum of the annuity payments.
(a) Calculate 5|äx.
(b) Calculate Pr(S > 5|äx).
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Solution.
(a) We will use the formula

n|äx = äx − äx:n .

For that we need to find

äx =
1− Ax
d

.

But

Ax =
∞∑
k=0

e− ln 1.04(k+1)e−0.01k(1− e−0.01)

=(1.04)−1(1− e−0.01)
∞∑
k=0

e−k(0.01+ln 1.04)

=
(1.04)−1(1− e−0.01)

1− e−(ln 1.04+001)
= 0.199202.

Thus,

äx =
1− 0.199202

0.04(1.04)−1
= 20.821

and

5|äx = 20.821− 4.542 = 16.279.

(b) Let K be the curtate future lifetime of (x). Then the sum of the payments
is 0 if K ≤ 4 and is K − 4 if K ≥ 20. For S > 16.279, we make 17 or more
payments with the first payment at time t = 5 and the 17th payment at time
t = 21. Thus

Pr(S ≥ 16.279) = Pr(K − 4 ≥ 17) = Pr(T ≥ 21) = 21px = e−21(0.01) = 0.81
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Practice Problems

Problem 37.17
Show that

n|Ÿx =
Z 1
x:n − n|Zx

d
.

Problem 37.18
Show that

n|äx =
A 1
x:n − n|Ax

d
.

Problem 37.19
Find n|äx under a constant force of mortality µ.

Problem 37.20
Suppose that ν = 0.91 and the force of mortality is µ = 0.05. Find 20|äx.

Problem 37.21 ‡
For a 20-year deferred whole life annuity-due of 1 per year on (45), you are
given:
(i) Mortality follows De Moivre’s Law with ω = 105.
(ii) i = 0.
Calculate the probability that the sum of the annuity payments actually
made will exceed the actuarial present value at issue of the annuity.
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37.4 Discrete Certain and Life Annuity-Due

A discrete n−year certain and life annuity of a life aged x makes unit
payments at the beginning of the year for n years, and if the annuitant sur-
vives more than n years, makes contingent payments until his death. Under
this annuity, the payments up to year n are guaranteed. If the annuitant dies
before the completion of n years, payments would be made to his/her estate
until n years were up.
The present value random variable of the benefits is defined by

Ÿx:n =

{
än , K < n
äK+1 , K ≥ n.

The actuarial present value of this annuity is denoted by äx:n . Thus, we have

äx:n =E(Zx:n ) =
n−1∑
k=0

än npxqx+k +
∞∑
k=n

äK+1 kpxqx+k

=än nqx +
∞∑
k=n

äK+1 kpxqx+k.

Example 37.15
Show that

äx:n = än +
∞∑
k=n

νkkpx = än + äx − äx:n .

Solution.
We have

äx:n =än nqx +
∞∑
k=n

äK+1 kpxqx+k

=än −
1

d
npx +

νn

d
npx +

1

d
[npx − νn+1

npx + νn+1
n+1px − · · · ]

=än + νnnpx + νn+1
n+1px + · · ·

=än +
∞∑
k=n

νkkpx

=än + n|äx

=än + äx − äx:n
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Example 37.16
Show that Var(Ÿx:n ) = Var(n|Ÿx).

Solution.
We have

Ÿx:n =

{
än , K < n
äK+1 , K ≥ n.

= än +

{
0, K < n
äK+1 − än , K ≥ n.

Since äK+1 − än = äK+1−n ν
n, we have

Ÿx:n = än + n|Ÿx.

Taking the variance of both sides, we obtain

Var(Ÿx:n ) = Var(n|Ÿx)

since än is a constant

Example 37.17
Consider a 5-year certain-and-life annuity due for (60) that pays $1000 guar-
anteed at the beginning of the year for five years and continuing thereafter
for life. You are given the following:
(i) i = 0.06
(ii) A65 = 0.43980
(iii) `60 = 8188 and `65 = 7534.
Calculate the actuarial present value of this life annuity.

Solution.
From the given information in the problem, we have

ä5 =
1− 1.06−5

0.06(1.06)−1
= 4.4651

ä65 =
1− 0.43980

0.06(1.06)−1
= 9.8969

5E60 =(1.06)−5

(
7534

8188

)
= 0.6876

5ä60 =(0.6876)(9.8969) = 6.8051.

Hence, the APV of the given life annuity is

1000(ä5 + 5ä60) = 1000(4.4651 + 6.8051) = 11, 270.20
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Practice Problems

Problem 37.22
You are given that µ = 0.02 and δ = 0.05. Y is the present value random
variable for an 20-year certain and life annuity due of 1 per year issued to
(75). Calculate E(Y ).

Problem 37.23
You are given that mortality follows DeMoivre’s law with ω = 125 and
δ = 0.05. Y is the present value random variable for an 20-year certain and
life annuity due of 1 per year issued to (75). Calculate ä

75:20
.

Problem 37.24 ‡
A person age 40 wins 10,000 in the actuarial lottery. Rather than receiving
the money at once, the winner is offered the actuarially equivalent option of
receiving an annual payment of K (at the beginning of each year) guaranteed
for 10 years and continuing thereafter for life.
You are given:
(i) i = 0.04
(ii) A40 = 0.30
(iii) A50 = 0.35
(iv) A 1

40:10
= 0.09.

Calculate K.

Problem 37.25
You are given the following:
(i) s(x) = e−0.34x, x ≥ 0.
(ii) δ = 0.06
Calculate ä

5:2
.

Problem 37.26 ‡
At interest rate i, you are given:
(i) äx = 5.6
(ii) The actuarial present value of a 2-year certain and life annuity-due of 1
on (x) is ä

x:2
= 5.6459.

(iii) ex = 8.83
(iv) ex+1 = 8.29.
(a) Show that ex = px(1 + ex+1).
(b) Calculate i.
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37.5 Life Annuity-Immediate

Immediate Life annuities are annuities where payments are made at the end
of the year. Immediate annuities can be handled fairly simply in terms of
the results we have already obtained for annuities due

Whole Life Discrete Annuity Immediate
A whole life discrete immediate annuity is a series of payments made
at the end of the year as long as the annuitant is alive. The present value
of a whole life immediate annuity for (x) with unit payment is the random
variable Yx. Clearly, Yx = Ÿx − 1 where Ÿx is the present value of the whole
life annuity due.
The actuarial present value of a whole life immediate annuity for (x) with
unit payment is denoted by ax. Clearly, ax = äx − 1.
All the following can be easily checked by the reader

Yx =äK

Yx =
ν − Zx
d

ax =
ν − Ax
d

Var(Yx) =
2Ax − (Ax)

2

d2

ax =
∞∑
k=1

νkkpx.

Example 37.18
Suppose mortality follows De Moivre’s Law with ω = 100. Find a30 if i = 0.06.

Solution.
We have

A30 =
70∑
k=0

(1.06)−(k+1)

70
=

1

70
(1.06)−1

(
1− (1.06)−70

1− (1.06)−1

)
= 0.2341

a30 =
(1.06)−1 − 0.2341

(1.06)−1(0.06)
= 12.531

Example 37.19
Suppose that px+k = 0.97, for each integer k ≥ 0, and i = 0.065. Find
Var(Yx).
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Solution.
We have

Ax =
∞∑
k=0

νk+1
kpxqx+k = ν(1− 0.97)

∞∑
k=0

(νpx)
k =

(1− 0.97)ν

1− νpx
= 0.3158

2Ax =
∞∑
k=0

ν2(k+1)
kpxqx+k = ν2(1− 0.97)

∞∑
k=0

(ν2px)
k =

(1− 0.97)ν2

1− ν2px
= 0.1827

Var(Yx) =
0.1827− 0.31582

(1.065)−2(0.065)2
= 22.2739

n−year Deferred Annuity Immediate
An immediate n−year deferred annuity guarantees payments made at
the end of the year while an individual is alive starting n years from now.
We denote the present value random variable of this annuity by n|Yx and is
given by

n|Yx =

{
0, K ≤ n
νnaK−n , K > n.

The actuarial present value of an immediate n−year deferred annuity for
(x) with unit payment is denoted by n|ax. The reader can easily verify the
following results

n|ax =
∞∑

k=n+1

νnak−n kpxqx+k

=
∞∑

k=n+1

νkkpx = nExax+n

=νpxn−1|ax.

Example 37.20
Find n|ax under a constant force of mortality µ and a constant force of interest
δ.
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Solution.
We have

n|ax =
∞∑

k=n+1

e−kδe−µk =
∞∑

k=n+1

e−k(µ+δ)

=e−(n+1)(µ+δ)

∞∑
k=0

e−k(µ+δ) =
e−(n+1)(µ+δ)

1− e−(µ+δ)

Immediate n−year Temporary Annuity
An n−year temporary life annuity-due pays 1 at the end of each year so
long as the annuitant (x) survives, for up to a total of n years, or n payments
otherwise. Thus, for k < n there are k+1 payments made at time 1, · · · , k+1
and for k ≥ n there are n payments made at time 1, · · · , n.
The present value random variable of this life annuity is given by

Yx:n =

{
äK , K < n
än , n ≤ K.

The actuarial present value of an n−year term life immediate annuity for
(x) with unit payment is denoted by ax:n . The reader can easily check the
following results

Yx:n =
ν − Zx:n+1

d
= Ÿx:n+1 − 1

ax:n =
n∑
k=1

ak kpxqx+k + an npx =
n∑
k=1

νkkpx

=
ν − Ax:n+1

d
= äx:n+1 − 1

Var(Yx:n ) =
2Ax:n+1 − (Ax:n+1 )2

d2
= Var(Ÿx:n+1 )

Example 37.21
You are given the following:
(i) px = 0.82, px+1 = 0.81, and px+2 = 0.80.
(ii) ν = 0.78
(a) Find ax:3 .
(b) Find Var(Yx:3 ).
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Solution.
(a) We have

ax:3 =νpx + ν2
2px + ν3

3px

=νpx + ν2pxpx+1 + ν3pxpx+1px+2

=(0.78)(0.82) + (0.78)2(0.82)(0.81)

+(0.78)3(0.82)(0.81)(0.80) = 1.2959.

(b) We have

Ax:4 =νqx + ν2pxqx+1 + ν3
2pxqx+2 + ν4

3px

=(0.78)(1− 0.82) + (0.78)2(0.82)(1− 0.81)

+(0.78)3(0.82)(0.81)(1− 0.80) + (0.78)4(0.82)(0.81)(0.80)

=0.4949
2Ax:4 =ν2qx + ν4pxqx+1 + ν6

2pxqx+2 + ν8
3px

=(0.78)2(1− 0.82) + (0.78)4(0.82)(1− 0.81)

+(0.78)6(0.82)(0.81)(1− 0.80) + (0.78)8(0.82)(0.81)(0.80)

=0.2699

Var(Yx:3 ) =
0.2699− 0.49492

(0.22)2
= 0.516

The actuarial accumulated value at time n of an n−year term immediate
annuity is

sx:n =
ax:n

nEx
.

Example 37.22
Show that

sx:n =
n∑
k=1

1

n−kEx+k

.

Solution.
We have

sx:n =

∑n
k=1 ν

k
kpx

νnnpx
=

∑n
k=1 kpx

νn−kkpxn−kpx+1

=
n∑
k=1

1

νn−kn−kpx+k

=
n∑
k=1

1

n−kEx+k
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Certain-and-Life Annuity Immediate
A discrete n−year certain and life annuity of a life aged x makes unit
payments at the end of the year for n years, and if the annuitant survives
more than n years, makes contingent payments until his death. Under this
annuity, the payments up to year n are guaranteed. If the annuitant dies
before the completion of n years payments would be made to his/her estate
until n years were up.
The present value random variable of the benefits is defined by

Yx:n =

{
an , K ≤ n
aK , K > n.

The actuarial present value of this annuity is denoted by ax:n . The reader
can easily prove the following results:

Yx:n =an + n|Yx = Ÿx:n − 1

ax:n =äx:n − 1 = an nqx +
∞∑
k=n

ak kpxqx+k

=an + n|ax = an +
∞∑

k=n+1

νkkpx

Var(Yx:n ) =Var(n|Yx).
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Practice Problems

Problem 37.27
Find a formula for ax under a constant force of mortality.

Problem 37.28
Show that ax = νpx(1 + ax+1).

Problem 37.29
Suppose that px+k = 0.95, for each integer k ≥ 0, and i = 0.075. Find ax.

Problem 37.30
Suppose that px+k = 0.97, for each integer k ≥ 0, and ν = 0.91. Find 30ax.

Problem 37.31
Find ax:n under a constant force of mortality µ and a constant force of
interest δ.

Problem 37.32 ‡
You are given:
(i) Ax = 0.28
(ii) Ax+20 = 0.40
(iii) A 1

x:20
= 20Ex = 0.25

(iv) i = 0.05
Calculate ax:20 .
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38 Life Annuities with mthly Payments

In practice, life annuities are often payable on a monthly, quarterly, or semi-
annual basis. In this section, we will consider the case life annuities paid
m times a year. An mthly life annuity-due makes a payment of 1

m
at the

beginning of every mthly period so that in one year the total payment is 1.
Here, m = 12 for monthly, m = 4 for quarterly, and m = 2 for semi-annual.
We remind the reader of the following concerning a period of length 1

m
:

• The interest factor is given by (1 + i)
1
m = 1 + i(m)

m
.

• The effective interest rate is (1 + i)
1
m − 1 = i(m)

m
.

• The discount factor is (1 + i)−
1
m = (1− d)

1
m = 1− d(m)

m
.

• The effective discount rate is 1− ν 1
m = d(m)

m
.

Consider a whole life annuity-due with payments made at the beginning
m−thly time interval while an individual is alive. Let J be the number of
complete m−ths of a year lived in the year of death. Then J = b(T −K)mc.
See Figure 38.1. For example, for quarterly payments with T (x) = 36.82, we
have J = b(36.82− 36)(4)c = 3.

Figure 38.1

Let Ÿ
(m)
x denote the present value of a whole life annuity-due for (x) with

unit annual payment paid m times a year. Then we can write

Ÿ (m)
x =

mK+J∑
j=0

1

m
ν
j
m =

1

m

(
1− νK+J+1

m

1− ν 1
m

)

=
1

m

(
1− νK+J+1

m

d(m)

m

)
=

1− νK+J+1
m

d(m)
= ä

(m)

K+J+1
m

.

The actuarial present value of a whole life due annuity for (x) with unit
annual payment paid m times a year ( with each payment of 1

m
) is denoted



38 LIFE ANNUITIES WITH MTHLY PAYMENTS 393

by ä
(m)
x . Using the current payment technique formula we can write

ä(m)
x =

∞∑
n=0

1

m
ν
n
m n
m
px.

Note that, if Z
(m)
x denote the present value of a whole life insurance that is

paid at the end of the mthly time interval in which death occurs then

Ÿ (m)
x =

1− Z(m)
x

d(m)
.

Taking expectation of both sides we obtain the formula

ä(m)
x =

1− A(m)
x

d(m)
.

Also, it is easy to see that

Var(Ÿ (m)
x ) =

2A
(m)
x − (A

(m)
x )2

(d(m))2
.

Now, if deaths are assumed to have uniform distribution in each year of age
then from Section 30 we can write

A(m)
x =

i

i(m)
Ax.

Example 38.1
Under UDD assumption, find ä

(12)
60 using the Illustrative Life Table.

Solution.
From the Illustrative Life Table we have i = 0.06 and A60 = 0.36913. Now,

i

i(12)
=

0.06

12[(1.06)
1
12 − 1]

= 1.02721

and
d(12) = m[1− ν

1
12 ] = 12[1− (1.06)−

1
12 ] = 0.05813.

Hence,

ä
(12)
60 =

1− (1.02721)(0.36913)

0.05813
= 10.68
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Example 38.2
Show that, under UDD assumption, we have

ä(m)
x = α(m)äx − β(m)

for some functions α(m) and β(m) to be determined. The values of these
functions are given in the Illustrative Life Tables.

Solution.
Recall from Section 37.1, the formula

Ax = 1− däx.

Thus,

ä(m)
x =

1− i
i(m) (1− däx)
d(m)

=
i(m) − i+ idäx

i(m)d(m)

=
i

i(m)

d

d(m)
äx −

i− i(m)

i(m)d(m)

=α(m)äx − β(m)

where

α(m) = i
i(m)

d
d(m) and β(m) = i−i(m)

i(m)d(m)

We next try to find an approximation of ä
(m)
x . The approximation is based on

the fact that k+ j
m
Ex is a linear function j where j = 0, 1, · · · ,m − 1. Thus,

we assume that

k+ j
m
Ex ≈ kEx +

j

m
(k+1Ex − kEx).
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With this assumption, we have

ä(m)
x =

1

m

∞∑
k=0

ν
k
m k
m
px

=
1

m

∞∑
k=0

m−1∑
j=0

νk+ j
m
k+ j

m
px

≈ 1

m

∞∑
k=0

m−1∑
j=0

(
kEx +

j

m
(k+1Ex − kEx)

)

=
1

m

∞∑
k=0

(
mkEx +

m− 1

2
(k+1Ex − kEx)

)
=
m+ 1

2m

∞∑
k=0

kEx +
m− 1

2m

∞∑
k=0

k+1Ex

=
m+ 1

2m

∞∑
k=0

kEx +
m− 1

2m

∞∑
k=1

kEx

=
m+ 1

2m

∞∑
k=0

kEx +
m− 1

2m

∞∑
k=0

kEx −
m− 1

2m

=
∞∑
k=0

kEx −
m− 1

2m

=äx −
m− 1

2m
.

Example 38.3
Use the above approximation to estimate ä

(12)
60 from Example 38.1.

Solution.
From the Illustrative Life Table, we have ä60 = 11.1454. Thus,

ä
(12)
60 ≈ 11.1454− 11

24
= 10.6871

Now, if the payments are made at the end of each
(

1
m

)th
of a year then the

actuarial present value of this annuity is

a(m)
x =

1

m

∞∑
k=1

ν
k
m k
m
px = ä(m)

x − 1

m
.
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Now, for an n−year temporary annuity-due we have

ä
(m)
x:n =

1

m

mn−1∑
k=0

ν
k
m k
m
px

and for the annuity-immediate case we have

a
(m)
x:n =

1

m

mn∑
k=1

ν
k
m k
m
px.

For an n−year deferred whole life annuity-due we have

n|ä
(m)
x =

1

m

∞∑
k=mn

ν
k
m k
m
px

and for the annuity-immediate case we have

n|a
(m)
x =

1

m

∞∑
k=mn+1

ν
k
m k
m
px.

An analogous set of identities to those developed in the annual payment case
exist in the mth payment case as well, namley

n|a
(m)
x =nExa

(m)
x+n

n|ä
(m)
x =nExä

(m)
x+n

a(m)
x =a

(m)
x:n + n|a

(m)
x

ä(m)
x =ä

(m)
x:n + n|ä

(m)
x

Example 38.4
(a) Show that n|ä

(m)
x = n|a

(m)
x + 1

m
· nEx.

(b) Show that under UDD assumption we have: n|a
(m)
x ≈ i

i(m)
d

d(m) n|äx −
i−i(m)

i(m)d(m) nEx.

(c) Show that under UDD assumption we have: n|a
(m)
x ≈ i

i(m)
d

d(m) n|ax +
d(m)−d
i(m)d(m) nEx.

(d) Show that n|a
(m)
x ≈ n|äx − m−1

2m nEx.
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Solution.
(a) We have

n|ä
(m)
x =

1

m

∞∑
k=mn

ν
k
m k
m
px

=n|a
(m)
x +

1

m
νnnpx = n|a

(m)
x +

1

m
· nEx

(b) As in the case of a mthly whole life insurance, we have

n|a
(m)
x =

1− n|A
(m)
x

d(m)
.

But with the UDD assumption, we have

n|A
(m)
x ≈ i

i(m) n|Ax.

Now, recall from Problem 37.15

n|Ax = nEx − dn|äx.

Thus,

n|a
(m)
x =

1− n|A
(m)
x

d(m)

≈
1− i

i(m) n|Ax

d(m)

=
1− i

i(m) (nEx − dn|äx)
d(m)

=
i

i(m)

d

d(m) n|äx −
i− i(m)

i(m)d(m) n
Ex.

(c) We have

n|a
(m)
x =n|ä

(m)
x − 1

m
nEx

≈ i

i(m)

d

d(m) n|äx −
i− i(m)

i(m)d(m) n
Ex −

1

m
nEx

=
i

i(m)

d

d(m)
(n|ax + nEx)−

i− i(m)

i(m)d(m) n
Ex −

1

m
nEx

=
i

i(m)

d

d(m) n|ax +
d(m) − d
i(m)d(m) n

Ex.
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(d) From the approximation ä
(m)
x ≈ äx − m−1

2m
we can write that

n|ä
(m)
x =nExä

(m)
x+n

≈nEx(äx+n −
m− 1

2m
)

=nExäx+n −
m− 1

2m
nEx

=n|äx −
m− 1

2m
nEx



38 LIFE ANNUITIES WITH MTHLY PAYMENTS 399

Practice Problems

Problem 38.1
Under UDD assumption, find ä

(4)
50 using the Illustrative Life Table.

Problem 38.2
Using the previous problem, find a

(4)
50 .

Problem 38.3
You are given the following:
(i) i = 0.065

(ii) ä
(12)
80 = 2.5437

(iii) Uniform distribution of deaths between integral ages.
Find A80 and ā80.

Problem 38.4
You are given:
(i) ä

(4)
∞ = limn→∞

1−νn
d(4)

= 1
d(4)

= 12.287.
(ii) Ax = 0.1025.
(iii) Deaths are uniformly distributed between integral ages.

Calculate ä
(4)
x .

Problem 38.5 ‡
You are given:
• deaths are uniformly distributed between integral ages;
• i = 0.06;
• q69 = 0.03; and
• Ā70 = 0.53.
Calculate ä

(2)
69 .

Problem 38.6
Show that ä

(m)
x:n = a

(m)
x:n + 1

m
(1− nEx).

Problem 38.7
Show that under UDD assumption we have the following approximation:

ä
(m)
x:n ≈

i

i(m)

d

d(m)
äx:n −

i− i(m)

i(m)d(m)
(1− nEx).
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Problem 38.8
Show that under UDD assumption we have the following approximations:
(a) a

(m)
x ≈ i

i(m)
d

d(m)ax + d(m)−d
i(m)d(m)

(b) a
(m)
x:n ≈ i

i(m)
d

d(m)ax:n + d(m)−d
i(m)d(m) (1− nEx).

Problem 38.9
Using the approximation

ä(m)
x ≈ äx −

m− 1

2m

derive the following approximations:
(a) ä

(m)
x:n ≈ äx:n − m−1

2m
(1− nEx).

(b) a
(m)
x ≈ ax + m−1

2m
.

(c) n|a
(m)
x ≈ n|ax + m−1

2m nEx.

(d) a
(m)
x:n ≈ ax:n + m−1

2m
(1− nEx).

Problem 38.10
The approximation

ä(m)
x ≈ äx −

m− 1

2m

is also knwon as the 2-term Woolhouse formula. A 3-term Woolhouse
formula is given by

ä(m)
x ≈ äx −

m− 1

2m
− m2 − 1

12m
(µ(x) + δ).

Using the 3-term Woolhouse formula, show the following:
(a)

ä
(m)
x:n ≈ äx:n −

(
m− 1

m

)
(1− nEx)−

m2 − 1

12m
(δ + µ(x)− nEx(δ + µ(x+ n))).

(b) āx ≈ äx − 1
2
− 1

12
(δ + µ(x)).

(c) āx:n ≈ äx:n − 1
2
(1− nEx)− 1

12
(δ + µ(x)− nEx(δ + µ(x+ n))).
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39 Non-Level Payments Annuities

Up to this point, we have considered annuities with level payments. In this
section, we consider annuities with non-level payments. Our approach for
calculating the actuarial present value of such annuities consists of summing
over all the payment dates the product with factors the amount of the pay-
ment, the probability that the annuitant survives to the payment date, and
the appropriate discount factor.

39.1 The Discrete Case

Consider a non-level annuity-due with payment rk at time k. A time line
showing the payment, probability associated with the payment while (x) is
alive, and the discount factor is shown in Figure 39.1.

Figure 39.1

From this time diagram, the actuarial present value of this annuity is given
by

APV =
∞∑
k=0

rkν
k
kpx.

As an example, consider an increasing whole life annuity-due with a payment
of rk = k + 1 at time k provided that (x) is alive at time k where k =
0, 1, 2, · · · . The actuarial present value of this annuity is given by

(Iä)x =
∞∑
k=0

(k + 1)νkkpx.
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If the above annuity is restricted to n payments, then the actuarial present
value is given by

(Iä)x:n =
n−1∑
k=0

(k + 1)νkkpx.

Example 39.1
Consider a special 3-year annuity due with payments rk−1 = 9, 000 + 1, 000k
for k = 1, 2, 3. You are given:
(i) Effective interest rate is 6% for the first year and 6.5% for the second
year.
(ii) px+k = 0.98− 0.03k for k = 0, 1.
Calculate (Iä)x:3 .

Solution.
We have

(Iä)x:3 = 10, 000+11, 000(1.06)−1(0.98)+12, 000(1.065)−2(0.98)(0.95) = 30, 019.71

Likewise, for a unit arithmetically decreasing n−year temporary annuity-due
contingent, the actuarial present value is given by

(Dä)x:n =
n−1∑
k=0

(n− k)νkkpx.

If the annuity-due is replaced by an annutiy-immediate, the actuarial present
value is given by

(Ia)x =
∞∑
k=1

kνkkpx

for a whole life annuity and

(Ia)x:n =
n∑
k=1

kνkkpx

for an n−year temporary annuity.
The unit decreasing n−year temporary annuity immediate has the actuarial
present value

(Da)x:n =
n∑
k=1

(n+ 1− k)νkkpx.
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Example 39.2
You are given:
(i) µ(x+ t) = 0.02
(ii) δ = 0.05.
Find (Ia)x.

Solution.
First, recall from Calculus the following result about infinite series:

∞∑
k=1

kxk−1 =
d

dx

(
∞∑
k=0

xk

)
=

d

dx

(
1

1− x

)
=

1

(1− x)2

where |x| < 1.
Now, we have

(Ia)x =
∞∑
k=1

kνkkpx =
∞∑
k=1

ke−0.05ke−0.02k

=
∞∑
k=1

ke−0.07k = e−0.07

∞∑
k=1

ke−0.07(k−1)

=
e−0.07

(1− e−0.07)2
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Practice Problems

Problem 39.1
You are given:
(i) µ(x+ t) = 0.02
(ii) δ = 0.05.
Find (Iä)x.

Problem 39.2
Using Life Illustrative Table, calculate the value of an arithmetically in-
creasing term annuity payable in advance for a term of 4 years issued to an
individual aged 64, assuming that i = 0.06.

Problem 39.3
You are given:
(i) µ(x+ t) = 0.02
(ii) δ = 0.05.
Find (Ia)x:3 .

Problem 39.4
You are given:
(i) µ(x+ t) = 0.02
(ii) δ = 0.05.
Find (Dä)x:3 .

Problem 39.5
You are given:
(i) µ(x+ t) = 0.02
(ii) δ = 0.05.
Find (Da)x:3 .
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39.2 The Continuous Case

Consider a continuous whole life annuity with continuous rate rt at time t.
Then the present value function of the payment at time t is∫ t

0

rsν
sds.

Thus, the actuarial present value of this annuity is

APV =

∫ ∞
0

(∫ t

0

rsν
sds

)
fT (x)(t)dt

=

∫ ∞
0

∫ t

0

rsν
sdstpxµ(x+ t)dt

=

∫ ∞
0

∫ ∞
s

rsν
s
tpxµ(x+ t)dtds

=

∫ ∞
0

rsν
s

(∫ ∞
s

tpxµ(x+ t)dt

)
ds

=−
∫ ∞

0

rsν
s

(∫ ∞
s

d

dt
(tpx)dt

)
ds

=

∫ ∞
0

rsν
s
spxds.

For an n−year temporary annuity, we have the formula

APV =

∫ n

0

rtν
t
tpxdt.

In particular, if rt = t we have a continuously increasing continuous whole
life annuity with actuarial present value

(Ī ā)x =

∫ ∞
0

tνttpxdt.

For a continuously increasing continuous nyear term life annuity with rate of
payments t, the actuarial present value is

(Ī ā)x:n =

∫ n

0

tνttpxdt.
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Finally, for a continuously decreasing continuous n−year temporary life an-
nuity with rate of payments n− t, the actuarial present value is

(D̄ā)x:n =

∫ n

0

(n− t)νttpxdt.

Example 39.3
You are given:
(i) µ(x+ t) = 0.02
(ii) δ = 0.05.
Find (D̄ā)x:3 .

Solution.
We have, using integration by parts,

(D̄ā)x:3 =

∫ 3

0

(3− t)e−0.05te−0.02tdt

=

∫ 3

0

3e−0.07tdt− 1

(0.07)2

∫ 3(0.07)

0

te−tdt

= − 3

0.07
e−0.07t

∣∣∣∣3
0

− 1

(0.07)2

[
−(1 + t)e−t

]3(0.07)

0

=4.2

Example 39.4
You are given:
(i) Continuous payment rate r(t) = 5000 for t ≥ 0
(ii) µ = 0.01
(iii) The force of interest

δt =

{
0.08 0 ≤ t < 10
0.06 10 ≤ t <∞.

Calculate the actuarial present value of this annuity.

Solution.
We have

νt = e−
∫ t
0 δsds =

{
e−0.08t 0 ≤ t < 10
e−0.08(10)e−0.06(t−10) 10 ≤ t <∞.
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We have

APV =

∫ ∞
0

rtν
t
tpxdt =

∫ ∞
0

50, 000e−δte−0.01tdt

=

∫ 10

0

50, 000e−0.09tdt+

∫ ∞
10

50, 000e0.2−0.07tdt

=
50, 000(1− e0.09(10))

0.09
+

50, 000e−0.09

0.07
= 620, 090.40

Example 39.5 ‡
For a special increasing whole life annuity-due on (40), you are given:
(i) Y is the present-value random variable.
(ii) Payments are made once every 30 years, beginning immediately.
(iii) The payment in year 1 is 10, and payments increase by 10 every 30 years.
(iv) Mortality follows DeMoivre’s Law, with ω = 110.
(v) i = 0.04
Calculate Var(Y ).

Solution.
Let T (40) denote the age-at-death of (40). Then T (40) has uniform distribu-
tion on [0, 70]. Moreover,

Pr(T (40) ≤ t) =
t

70
.

We have

Event Y Pr(Event)
T (40) ≤ 30 10 30

70

30 < T (40) ≤ 60 10 + 20ν30 = 16.1664 30
70

T (40) ≥ 60 10 + 20ν30 + 30ν60 = 19.0182 10
70

Hence,

E(Y ) =10

(
30

70

)
+ 16.1664

(
30

70

)
+ 19.0182

(
10

70

)
= 13.9311

E(Y 2) =102

(
30

70

)
+ 16.16642

(
30

70

)
+ 19.01822

(
10

70

)
= 206.536

Var(Y ) =E(Y 2)− [E(Y )]2 = 206.536− 13.93112 = 12.46
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Practice Problems

Problem 39.6
You are given:
(i) µ(x+ t) = 0.02
(ii) δ = 0.05.
Find (Ī ā)x.

Problem 39.7
You are given:
(i) µ(x+ t) = 0.02
(ii) δ = 0.05.
Find (Ī ā)x:3 .

Problem 39.8
Let (Iā)x be the actuarial present value of an annually increasing continuous
whole life annuity with rate of payments rt = dte. Find a formula for (Iā)x.

Problem 39.9
Let (Iā)x:n be the actuarial present value of an annually increasing contin-
uous n−year temporary life annuity with rate of payments rt = dte. Find a
formula for (Iā)x:n .

Problem 39.10
Let (Dā)x:n be the actuarial present value of an annually decreasing contin-
uous n−year temporary life annuity with rate of payments rt = dn− te. Find
a formula for (Dā)x:n .



Calculating Benefit Premiums

Recall that a life insurance involves an insurance company (the issuer) and an
insured. When an insurance policy is issued the insurance company assumes
its liability. That is, the insurance company will have to make payments to
the insured in the future. In this chapter, we discuss the question of how
much premium should an insurance company charges the insured for the
policy.
If the insured wants a policy with a single payment at the time the policy
begins, then the insurer should charge the actuarial present value (also known
as the net single premium) of the policy at the time of issue.
Usually, the insurance company charges the insured with periodical payments
for the policy. There is a loss if the actuarial present value at issue of the
contingent benefits is larger than the actuarial present value of the periodic
charges. That is, the loss of an insurance contract is the actuarial present
value at issue of the net cashflow for this contract. Hence, the loss is a
random variable.
The insurance company determines the premiums based on the equivalence
principle which says that the expected loss of an insurance contract must
be zero. This, occurs when the actuarial present value of charges to the
insured is equal to the actuarial present value of the benefit payments. In
this case, we refer to each charge to the insured as the benefit premium or
net premium. 3 These premiums are usually made annually.

3In practice, the insurer includes in the premium expenses and profits. Such premiums
are called contract premiums to be discussed in Section 70.

409
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40 Fully Continuous Premiums

In this section, we will first work with fully continuous premiums, where
level annual benefit premiums (i.e., of the same amount per year) are paid
on a continuous basis.

40.1 Continuous Whole Life Policies

Consider a continuous whole life policy for a life (x) with benefit of 1 and
with an annual premium of P̄ which is paid with a continuous annuity while
the insured is alive. The loss random variable for this policy is given by

L̄x = νT − P̄ āT = Z̄x − P̄ Ȳx.

That is, L̄x is just the present value of the benefit minus the present value
of the stream of premiums. Now, applying the equivalence principle, i.e.,
E(L̄x) = 0, we find

0 = E(L̄x) = E(νT − P̄ āT ) = Āx − P̄ āx =⇒ P̄ =
Āx
āx
.

The continuous premium P̄ will be denoted by P̄ (Āx). That is,

P̄ (Āx) =
Āx
āx
.

Example 40.1
Show that

āx =
1

P̄ (Āx) + δ
.

Solution.
Using the definition of P̄ (Āx) and the relation Āx + δāx = 1 we can write

P̄ (Āx) =
Āx
āx

=
1− δāx
āx

P̄ (Āx)āx =1− δāx
āx(P̄ (Āx) + δ) =1

āx =
1

P̄ (Āx) + δ
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Example 40.2
Find the annual benefit premium under a constant force of mortality µ and
a constant force of interest δ.

Solution.
We have

Āx =
µ

µ+ δ

āx =
1

µ+ δ

P̄ (Āx) =
Āx
āx

= µ

The variance of the loss Var(L) under this kind of benefit premium can be
found as follows:

Var(L̄x) =Var(νT − P̄ āT ) = Var

(
νT − P̄ 1− νT

δ

)
=Var

[
νT
(

1 +
P̄

δ

)
− P̄

δ

]
=

(
1 +

P̄

δ

)2

Var(νT )

=[2Āx − (Āx)
2]

(
1 +

P̄

δ

)2

.

Example 40.3
Show that

Var(L̄x) =
2Āx − (Āx)

2

(δāx)2
.

Solution.
We will use the relations δāx + 1 = Āx and P̄ = Āx

āx
. In this case, we have(

1 +
P̄

δ

)2

=

(
1 +

1− δāx
āxδ

)2

=

(
1 +

1

āxδ
− 1

)2

=
1

(δāx)2
.
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Thus,

Var(L̄x) == [2Āx − (Āx)
2]

(
1 +

P̄

δ

)2

=
2Āx − (Āx)

2

(δāx)2

Example 40.4
You are given the following information regarding the type of policy discussed
in this section:
(i) µ = 0.02
(ii) δ = 0.06.
Find P̄ (Āx) and Var(L̄x).

Solution.
We have

P̄ (Āx) =µ = 0.02

Āx =
µ

µ+ δ
=

0.02

0.02 + 0.06
=

1

4

2Āx =
µ

µ+ 2δ
=

0.02

0.02 + 0.12
=

1

7

āx =
1

µ+ δ
=

1

0.02 + 0.06
=

25

2

Var(L̄x) =

(
1

7
−
(

1

4

)2
)

1

[(0.06)(12.5)]2
=

1

7

Example 40.5
You are given:
(i) Mortality follows De Moivre’s Law with ω = 100.
(ii) δ = 0.03.
(iii) L̄x is the loss-at-issue random variable for a fully continuous whole life
insurance on (60) with premiums determined based on the equivalence prin-
ciple.
Calculate Var(L̄x).
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Solution.
We have

Ā60 =

∫ 40

0

e−0.03t

40
dt = 0.58234

2A60 =

∫ 40

0

e−0.06t

40
dt = 0.37887

ā60 =
1− Ā60

δ
= 13.922

Var(L̄x) =
0.37887− 0.582342

(0.03× 13.922)2
= 0.22787

Now, suppose that the premiums of the above policy are paid at an annual
rate of P̄ with a t−year temporary annuity. In other words, payments are
made for t years in exchange for whole life coverage. In this case, the loss
random variable is

tL̄x = νT − P̄ āmin (T,t) = Z̄x − P̄ Ȳx:t .

The benefit premium which satisfies the equivalence principle is

tP̄ (Āx) =
Āx
āx:t

.

Example 40.6
You are given µ = 0.02 and δ = 0.05. Find 10P̄ (Ā75).

Solution.
We have

10P̄ (Ā75) =
Ā75

ā75:10

=
δĀ75

1− Ā 1
75:10

− 10E75

=

δµ
µ+δ

1− µ
µ+δ

(1− e−10(µ+δ))− e−10(µ+δ)

=

0.05(0.02)
0.02+0.05

1− 0.02
0.02+0.05

(1− e−10(0.02+0.05))− e−10(0.02+0.05)

=0.03973
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In the preceding examples the insurance’s benefits and the payments annuity
are level with amounts of 1. In the next example, we consider a situation
where the benefits are variable.

Example 40.7 ‡
For a special fully continuous whole life insurance on (x) :
(i) The level premium is determined using the equivalence principle.
(ii) Death benefits are given bt = (1 + i)t where i is the interest rate.
(iii) L is the loss random variable at t = 0 for the insurance.
(iv) T is the future lifetime random variable of (x).
Which of the following expressions is equal to L?

(A)
νT − Āx
1− Āx

(B) (νT − Āx)(1 + Āx)

(C)
νT − Āx
1 + Āx

(D) (νT − Āx)(1− Āx)

(E)
νT + Āx
1 + Āx

Solution.
The loss random variable of this type of policy is

L̄′x = bTν
T − P̄ āT = 1− P̄ āT .

Under the equivalence principle, we have

0 = E(L̄′x) = 1− P̄ āx =⇒ P̄ =
1

āx
.

Thus,

L̄′x =1−
āT
āx

= 1− 1
1−Āx
δ

· 1− νT

δ

=1− δ

1− Āx
· 1− νT

δ
= 1− 1− νT

1− Āx

=
νT − Āx
1− Āx

.

So the answer is (A)
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Practice Problems

Problem 40.1 ‡
For a fully continuous whole life insurance of 1:
(i) µ = 0.04
(ii) δ = 0.08
(iii) L is the loss-at-issue random variable based on the benefit premium.
Calculate Var(L).

Problem 40.2
You are given that Mortality follows De Moivre’s Law with ω = 125 and δ =
0.05. Calculate: P̄ (Ā75) and Var(L̄x), where L̄x is the loss-at-issue random
variable based on the benefit premium.

Problem 40.3 ‡
For a fully continuous whole life insurance of 1 on (x), you are given:
(i) The forces of mortality and interest are constant
(ii) 2Āx = 0.20
(iii) P̄ (Āx) = 0.03
(iv) L is the loss-at-issue random variable based on the benefit premium.
Calculate Var(L).

Problem 40.4 ‡
For a fully continuous whole life insurance of 1 on (x) :
(i) π is the benefit premium.
(ii) L is the loss-at-issue random variable with the premium equal to π.
(iii) L∗ is the loss-at-issue random variable with the premium equal to 1.25π.
(iv) āx = 5.0.
(v) δ = 0.08
(vi) Var(L) = 0.5625.
Calculate the sum of the expected value and the standard deviation of L∗.

Problem 40.5 ‡
For a fully continuous whole life insurance of 1 on (x) :
(i) Āx = 1

3

(ii) δ = 0.10
(iii) L is the loss at issue random variable using the premium based on the
equivalence principle.
(iv) Var(L) = 1

5
.
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(v) L′ is the loss at issue random variable using the premium π.
(vi) Var(L′) = 16

45
.

Calculate π.

Problem 40.6
You are given that Mortality follows De Moivre’s Law with ω = 125 and
δ = 0.05. Calculate 10P̄ (Ā75).
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40.2 n−year Term Policies

Consider an n−year term life policy for a life (x) with benefit of 1 and with
an annual premium of P̄ which is paid with a continuous n−year temporary
annuity while the insured is alive. The loss random variable for this policy
is given by

L̄1
x:n = νT I(T ≤ n)− P̄ āmin (T,n) = Z̄1

x:n − P̄ Ȳx:n .

Applying the equivalence principle, i.e., E(L̄1
x:n ) = 0, we find

0 = E(L̄1
x:n ) = E(Z̄1

x:n − P̄ Ȳx:n ) = Ā1
x:n − P̄ āx:n =⇒ P̄ =

Ā1
x:n

āx:n

.

The continuous premium P̄ will be denoted by P̄ (Ā1
x:n ).

The variance of the loss Var(L̄1
x:n ) under this kind of benefit premium can

be found as follows:

Var(L̄1
x:n ) =Var(Z̄1

x:n − P̄ Ȳx:n )

=Var

(
Z̄1
x:n − P̄

1− Z̄1
x:n

δ

)
=Var

[(
1 +

P̄

δ

)
Z̄1
x:n −

P̄

δ

]
=

(
1 +

P̄

δ

)2

Var(Z̄1
x:n )

=[2Ā1
x:n − (Ā1

x:n )2]

(
1 +

P̄

δ

)2

=
2Ā1

x:n − (Ā1
x:n )2

(δāx:n )2

where in the last line we used the relation δāx:n + Ā1
x:n = 1.

Example 40.8
You are given:
(i) Mortality is exponential with parameter µ.
(ii) Constant force of interest δ.
(iii) L̄1

x:n is the loss-at-issue random variable for a fully continuous n−year
term life insurance on (x) with premiums determined based on the equiva-
lence principle.
Calculate P̄ (Ā1

x:n ) and Var(L̄1
x:n ).
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Solution.
We have

Ā1
x:n =

µ

µ+ δ
(1− e−n(µ+δ))

2Ā1
x:n =

µ

µ+ 2δ
(1− e−n(µ+2δ))

P̄ (Ā1
x:n ) =µ

Var(L̄1
x:n ) =

(
1 +

µ

δ

)2
[

µ

µ+ 2δ
(1− e−n(µ+2δ))−

(
µ

µ+ δ

)2

(1− e−n(µ+δ))2

]

Now, if the premiums are paid with a continuous t−year temporary annuity
(where t ≤ n)then the loss random variable is given by

tL̄
1
x:n = νT I(T ≤ n)− P̄ āmin (T,t) = Z̄1

x:n − P̄ Ȳx:t .

The benefit premium for this insurance is given by

tP̄ (Ā1
x:n ) =

Ā1
x:n

āx:t

.

Example 40.9
You are given that µ = 0.02 and δ = 0.05. Calculate 10P̄ (Ā 1

75:20
).

Solution.
We have

Ā 1
75:20 =

µ

µ+ δ
(1− e−n(µ+δ)) = 0.215258

Ā 1
75:10 =

µ

µ+ δ
(1− e−n(µ+δ)) = 0.143833

10P̄ (Ā 1
75:20 ) =

δĀ 1
75:20

1− Ā 1
75:10

= 0.012571
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Practice Problems

Problem 40.7
You are given:
(i) Mortality is exponential with parameter µ = 0.02.
(ii) Constant force of interest δ = 0.05.
(iii) L̄ 1

75:20
is the loss-at-issue random variable for a fully continuous 20−year

term life insurance on (75) with premiums determined based on the equiva-
lence principle.
Calculate P̄ (Ā 1

75:20
) and Var(L̄ 1

75:20
).

Problem 40.8
You are given:
(i) Mortality follows De Moivre’s Law with parameter ω.
(ii) Constant force of interest δ.
(iii) L̄1

x:n is the loss-at-issue random variable for a fully continuous n−year
term life insurance on (x) with premiums determined based on the equiva-
lence principle.
Calculate P̄ (Ā1

x:n ) and Var(L̄1
x:n ).

Problem 40.9
You are given:
(i) Mortality follows De Moivre’s Law with parameter ω = 125.
(ii) Constant force of interest δ = 0.05.
(iii) L̄ 1

75:20
is the loss-at-issue random variable for a fully continuous 20−year

term life insurance on (75) with premiums determined based on the equiva-
lence principle.
Calculate P̄ (Ā 1

75:20
) and Var(L̄ 1

75:20
).

Problem 40.10
You are given the following information:
(i) δ = 0.05
(ii) 20E75 = 0.2207
(iii) P̄ (Ā 1

75:20
) = 0.02402

(iv) L̄ 1
75:20

is the loss-at-issue random variable for a fully continuous 20−year
term life insurance on (75) with premiums determined based on the equiva-
lence principle.
Calculate Ā 1

75:20
.
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Problem 40.11
You are given the following information:
(i) δ = 0.05
(ii) 20E75 = 0.2207
(iii) P̄ (Ā 1

75:20
) = 0.02402

(iv) L̄ 1
75:20

is the loss-at-issue random variable for a fully continuous 20−year
term life insurance on (75) with premiums determined based on the equiva-
lence principle.
Calculate Ā75:20 .
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40.3 Continuous n−year Endowment Insurance

Consider an n−year endowment policy for a life (x) with benefit of 1 and with
an annual premium of P̄ which is paid with a continuous n−year temporary
annuity. The loss random variable for this policy is given by

L̄x:n = νmin (T,n) − P̄ āmin(T,n) = Z̄x:n − P̄ Ȳx:n .

Applying the equivalence principle, i.e., E(L̄x:n ) = 0, we find

0 = E(L̄x:n ) = E(Z̄x:n − P̄ Ȳx:n ) = Āx:n − P̄ āx:n =⇒ P̄ =
Āx:n

āx:n

.

The continuous premium P̄ will be denoted by P̄ (Āx:n ).
The variance of the loss Var(L̄x:n ) under this kind of benefit premium can
be found as follows:

Var(L̄x:n ) =Var(Z̄x:n − P̄ Ȳx:n )

=Var

(
Z̄x:n − P̄

1− Z̄x:n

δ

)
=Var

[(
1 +

P̄

δ

)
Z̄x:n −

P̄

δ

]
=

(
1 +

P̄

δ

)2

Var(Z̄x:n )

=[2Āx:n − (Āx:n )2]

(
1 +

P̄

δ

)2

=
2Āx:n − (Āx:n )2

(δāx:n )2

=
2Āx:n − (Āx:n )2

(1− Āx:n )2

where in the last line we used the formula δāx:n + Āx:n = 1.

Example 40.10
You are given:
(i) Mortality is exponential with parameter µ.
(ii) Constant force of interest δ.
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(iii) L̄x:n is the loss-at-issue random variable for a fully continuous n−year
endowment insurance on (x) with premiums determined based on the equiv-
alence principle.
Calculate P̄ (Āx:n ) and Var(L̄x:n ).

Solution.
We have

Āx:n =Ā1
x:n + nEx

=
µ

µ+ δ
(1− e−n(µ+δ)) + e−n(µ+δ)

2Āx:n =
µ

µ+ 2δ
(1− e−n(µ+2δ)) + e−n(µ+2δ)

āx:n =
1− e−(µ+δ)n

µ+ δ

P̄ (Āx:n ) =µ+
(µ+ δ)e−n(µ+δ)

1− e−(µ+δ)n

Var(L̄x:n ) =

µ
µ+2δ

(1− e−n(µ+2δ)) + e−n(µ+2δ) −
(

µ
µ+δ

(1− e−n(µ+δ)) + e−n(µ+δ)
)2

[
δ(1−e−(µ+δ)n)

µ+δ

]2

Now, if the premiums are paid with a continuous t−year temporary annuity
(where t ≤ n) then the loss random variable is given by

tL̄x:n = νmin (T,n) − P̄ āmin(T,t) = Z̄x:n − P̄ Ȳx:t .

The benefit premium for this insurance is given by

tP̄ (Āx:n ) =
Āx:n

āx:t

.

Example 40.11
You are given that µ = 0.02 and δ = 0.05. Calculate 10P̄ (Ā75:20 ).
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Solution.
We have

Ā75:20 =
µ

µ+ δ
(1− e−n(µ+δ)) + e−n(µ+δ) = 0.461855

Ā75:10 =
µ

µ+ δ
(1− e−n(µ+δ)) + e−n(µ+δ) = 0.640418

10P̄ (Ā75:20 ) =
δĀ75:20

1− Ā75:10

= 0.064221
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Practice Problems

Problem 40.12
You are given:
(i) Mortality is exponential with parameter µ = 0.02.
(ii) Constant force of interest δ = 0.05.
(iii) L̄75:20 is the loss-at-issue random variable for a fully continuous 20−year
endowment insurance on (75) with premiums determined based on the equiv-
alence principle.
Calculate P̄ (Ā75:20 )

Problem 40.13
Find Var(L̄75:20 ) in the previous problem.

Problem 40.14
You are given:
(i) Mortality follows De Moivre’s Law with parameter ω.
(ii) Constant force of interest δ.
(iii) L̄x:n is the loss-at-issue random variable for a fully continuous n−year
endowment insurance on (x) with premiums determined based on the equiv-
alence principle.
Calculate P̄ (Āx:n ) and Var(L̄x:n ).

Problem 40.15
You are given:
(i) Mortality follows De Moivre’s Law with parameter ω = 125.
(ii) Constant force of interest δ = 0.05.
(iii) L̄75:20 is the loss-at-issue random variable for a fully continuous 20−year
endowment insurance on (75) with premiums determined based on the equiv-
alence principle.
Calculate P̄ (Ā75:20 ).

Problem 40.16
Find the variance in the previous problem.

Problem 40.17
You are given that mortality follows De Moivre’s Law with ω = 125 and
δ = 0.05. Calculate 10P̄ (Ā75:20 ).
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40.4 Continuous n−year Pure Endowment

For this type of insurance, the insurance benefit is an n−year pure endow-
ment and the payments are made as a continuous n−year temporary annuity.
The loss random variable is given by

L̄ 1
x:n = νnI(T > n)− P̄ āmin (T,n) = Z̄ 1

x:n − P̄ Ȳx:n .

Applying the equivalence principle, i.e., E(L̄ 1
x:n ) = 0, we find

0 = E(L̄ 1
x:n ) = E(Z̄ 1

x:n − P̄ Ȳx:n ) = A 1
x:n − P̄ āx:n =⇒ P̄ =

A 1
x:n

āx:n

.

The continuous premium P̄ will be denoted by P̄ (A 1
x:n ).

Example 40.12
You are given:
(i) Mortality is exponential with parameter µ.
(ii) Constant force of interest δ.
(iii) L̄ 1

x:n is the loss-at-issue random variable for a fully continuous n−year
pure endowment insurance on (x) with premiums determined based on the
equivalence principle.
Calculate P̄ (A 1

x:n ).

Solution.
We have

A 1
x:n =nEx = e−n(µ+δ)

āx:n =
1− e−(µ+δ)n

µ+ δ

P̄ (A 1
x:n ) =

(µ+ δ)e−n(µ+δ)

1− e−n(µ+δ)

Now, if the premiums are paid with a continuous t−year temporary annuity,
where t < n, then the loss random variable is given by

tL̄
1

x:n = νnI(T > n)− P̄ āmin(T,t) = Z̄ 1
x:n − P̄ Ȳx:t .

The benefit premium for this insurance is given by

tP̄ (A 1
x:n ) =

A 1
x:n

āx:t

.
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Example 40.13
You are given that µ = 0.02 and δ = 0.05. Calculate 10P̄ (A 1

75:20
).

Solution.
We have

A 1
75:20 =20E75 = e−n(µ+δ) = 0.2466

ā75:10 =
1− e−(µ+δ)n

µ+ δ
= 7.19164

10P̄ (A 1
75:20 ) =

A 1
75:20

ā75:10

= 0.03429
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Practice Problems

Problem 40.18
You are given that mortality follows De Moivre’s Law with ω = 125 and
δ = 0.05. Calculate P̄ (A 1

75:20
).

Problem 40.19
You are given that µ = 0.02 and δ = 0.05. Calculate P̄ (A 1

75:20
).

Problem 40.20
You are given that mortality follows De Moivre’s Law with ω = 125 and
δ = 0.05. Calculate 10P̄ (A 1

75:20
).

Problem 40.21
Show that: nP̄ (Āx) = P̄ (Ā1

x:n ) + P̄ (A 1
x:n )Āx+n.

Problem 40.22
Show that: P̄ (Āx:n ) + P̄ (Ā1

x:n ) = P̄ (A 1
x:n ).
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40.5 Continuous n−year Deferred Insurance

For this insurance, the benefit is a n−year deferred whole life insurance and
the payments are made as a continuous whole life annuity. The loss random
variable is

n|L̄x = νT I(T > n)− P̄ āT = n|Z̄x − P̄ Ȳx.

The benefit premium is

P̄ (n|Āx) =
n|Āx
āx

.

Example 40.14
You are given that µ = 0.02 and δ = 0.05. Calculate P̄ (10|Ā75)

Solution. We have

10|Ā75 =
µ

µ+ δ
e−n(µ+δ) =

0.02

0.07
e−10(0.07) = 0.14188

ā75 =
1

µ+ δ
=

1

0.07
= 14.28571

P̄ (10|Ā75) =
0.14188

14.28571
= 0.0099

Now, if the premiums are paid with a continuous t−year temporary annuity,
where t < n, then the loss random variable is given by

t(n|L̄x) = νT I(T > n)− P̄ āmin(T,t) = n|Z̄x − P̄ Ȳx:t .

The benefit premium for this insurance is given by

tP̄ (n|Āx) =
n|Āx
āx:t

.
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Practice Problems

Problem 40.23
You are given that mortality follows De Moivre’s Law with ω = 125 and
δ = 0.05. Calculate P̄ (10|Ā75).

Problem 40.24
You are given that µ = 0.02 and δ = 0.05. Calculate 5P̄ (10|Ā75)

Problem 40.25
You are given that mortality follows De Moivre’s Law with ω = 125 and
δ = 0.05. Calculate 5P̄ (10|Ā75).
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40.6 Continuous n−year Deferred Whole Life Annuity

A continuous n−year deferred whole life contingent annuity contract with
net single premium n|āx is often funded by annual premiums paid over the
n−year deferred period, subject to the continued survival of (x). The loss
random variable for this contract is

L̄(n|āx) = āT−n ν
nI(T (x) > n)− P̄ āmin{T,n)} = n|Ȳx − P̄ Ȳx:n .

Applying the equivalence principle, i.e., E[n|āx] = 0, we find

0 = E[n|āx] = n|āx − P̄ āx:n =⇒ P̄ =
n|āx
āx:n

.

The continuous benefit premium will be denoted by P̄ (n|āx). Thus,

P̄ (n|āx) =
n|āx
āx:n

=
nExāx+n

āx:n

.

Example 40.15
You are given that µ = 0.02 and δ = 0.05. Calculate P̄ (10|ā75)

Solution.
We have

P̄ (10|ā75) =
10|ā75

ā75:10

=
10E75ā85

1−Ā
75:10
δ

=
e−10(0.02+0.05)ā85

1−[Ā 1
75:10

+10E75]

δ

=
e−10(0.07)(0.02 + 0.05)−1

1−[ 0.02
0.07

(1−e−10(0.07))+e−10(0.07)]

0.05

=0.98643

Now, if the premiums are paid with a continuous t−year temporary annuity,
where t < n, then the loss random variable is given by

tL̄(āx) = āT−n ν
nI(T (x) > n)− P̄ āmin{T,t)} = n|Ȳx − P̄ Ȳx:t .

The benefit premium for this insurance is given by

tP̄ (n|āx) =
n|āx
āx:t

.
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Example 40.16
You are given that µ = 0.02 and δ = 0.05. Calculate 5P̄ (10|ā75)

Solution.
We have

5P̄ (10|ā75) =
10|ā75

ā75:5

=
10E75ā85

1−Ā
75:5
δ

=
e−10(0.02+0.05)ā85

1−[Ā 1
75:5

+5E75]

δ

=
e−10(0.07)(0.02 + 0.05)−1

1−[ 0.02
0.07

(1−e−5(0.07))+e−5(0.07)]

0.05

=1.6816

Example 40.17 ‡
Company ABC sets the contract premium for a continuous life annuity of 1
per year on (x) equal to the single benefit premium calculated using:
(i) δ = 0.03
(ii) µ(x+ t) = 0.02, t ≥ 0
However, a revised mortality assumption reflects future mortality improve-
ment and is given by

µRev(x+ t) =

{
0.02 t ≤ 10
0.01 t > 10.

Calculate the expected loss at issue for ABC (using the revised mortality
assumption) as a percentage of the contract premium.

Solution.
The loss at issue is the present value of benefit to be paid minus the present
value of premium to be received. Since this is a single premium policy, the
premium received is a single payment equal to the contract premium. Let π
denote the contract premium. Then

π = āx =
1

δ + µ
=

1

0.03 + 0.02
= 20.



432 CALCULATING BENEFIT PREMIUMS

Let L denote the random variable of loss at issue using the revised mortality
assumption. Then L = Ȳx−20 where Ȳx is the present value of the continuous
life annuity under the revised mortality. Hence,

E(L) = āRevx − 20.

We have

āRevx =āx:10 + ν10
10pxāx+10

=

∫ 10

0

e−0.03te−0.02tdt+ e−0.3e−0.2 1

0.03 + 0.01

=
(1− e−0.5)(0.02)

0.05
+
e−0.5

0.04
= 23.03.

Thus,
E(L) = 23.03− 20 = 3.03

and
E(L)

π
=

3.03

20
= 15.163%
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Practice Problems

Problem 40.26
For a 10-year deferred whole life annuity of 1 on (35) payable continuously:
(i) Mortality follows De Moivre’s Law with ω = 85.
(ii) i = 0
(iii) Level benefit premiums are payable continuously for 10 years.
Calculate P̄ (10|ā35).

Problem 40.27
For a 10-year deferred whole life annuity of 1 on (35) payable continuously:
(i) Mortality follows De Moivre’s Law with ω = 85.
(ii) δ = 0.05
(iii) Level benefit premiums are payable continuously for 10 years.
Calculate P̄ (10|ā35).

Problem 40.28
For a 10-year deferred whole life annuity of 1 on (75) payable continuously:
(i) µ = 0.02
(ii) δ = 0.05
(iii) P̄ (10|ā75) = 0.98643
(iv) Level benefit premiums are payable continuously for 10 years.
Calculate L̄(10|ā75) given that death occurred at the end of twelfth year.

Problem 40.29
For a 10-year deferred whole life annuity of 1 on (75) payable continuously:
(i) µ = 0.02
(ii) δ = 0.05
(iii) P̄ (10|ā75) = 0.98643
(iv) Level benefit premiums are payable continuously for 10 years.
Calculate L̄(10|ā75) given that death occurred at the end of the 9th year.

Problem 40.30
For a 10-year deferred whole life annuity of 1 on (75) payable continuously:
(i) 10|ā75 = 7.0941
(ii) Ā75:10 = 0.6404
(iii) P̄ (10|ā75) = 0.98643
(iv) Level benefit premiums are payable continuously for 10 years.
Calculate δ.
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41 Fully Discrete Benefit Premiums

In this section, we study fully discrete policies in which benefit premiums
are paid at the beginning of the year and the insurance benefits are paid at
the end of the year of death. The benefit premiums are made as far as the
individual is alive and the term of the insurance has not expired.

41.1 Fully Discrete Whole Life Insurance

For this type of policy the benefit insurance is a discrete whole life insurance
and the payments are made as a discrete whole life annuity-due. For example,
suppose that death occurred between the years 2 and 3. Then annual benefit
premium P was made at time t = 0, 1, and 2 and the insurance benefit of 1
was paid at time t = 3.
The loss random variable for this insurance is given by

Lx = νK+1 − P äK+1 = Zx − PŸx.

Example 41.1
Show that

Lx =

(
1 +

P

d

)
Zx −

P

d
.

Solution.
We have

Lx =Zx − PŸx = Zx − P
(

1− Zx
d

)
=

(
1 +

P

d

)
Zx −

P

d

The actuarial present value of the loss Lx is

E(Lx) =

(
1 +

P

d

)
Ax −

P

d
.

Applying the equivalence principle we find that

P (Ax) = P =
Ax
äx

=
dAx

1− Ax
.
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The variance of Lx under the equivalence principle is found as follows:

Var(Lx) =var

[(
1 +

P (Ax)

d

)
Zx −

P (Ax)

d

]
=

(
1 +

P (Ax)

d

)2

Var(Zx)

=[2Ax − (Ax)
2]

(
1 +

P (Ax)

d

)2

=
2Ax − (Ax)

2

(däx)2

=
2Ax − (Ax)

2

(1− Ax)2
.

Example 41.2
Consider the following extract from the Illustrative Life Table.

x `x 1000qx äx 1000Ax 10002Ax

36 9,401,688 2.14 15.2870 134.70 37.26
37 9,381,566 2.28 15.1767 140.94 39.81
38 9,360,184 2.43 15.0616 147.46 42.55
39 9,337,427 2.60 14.9416 154.25 45.48
40 9,313,166 2.78 14.8166 161.32 48.63

Assuming UDD, find P (A36) and Var(L36).

Solution.
We have

P (A36) =
A36

ä36

=
0.13470

15.2870
= 0.008811

Var(L36) =
2A36 − (A36)2

(dä36)2

=
0.03726− 0.134702[(

0.06
1.06

)
(15.2870)

]2 = 0.02553

Suppose now that the premiums charged to the insured are paid at the be-
ginning of the year for the next t years while the insured is alive. In this
case, the loss random variable is

tLx = νK+1 − P ämin (K+1,t) = Zx − PŸx:t .
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The benefit premium for a fully discrete whole life insurance funded for the
first t years that satisfies the equivalence principle is

tP (Ax) =
Ax
äx:t

.

Example 41.3
Consider a fully discrete whole life insurance for (30) with a face value of
50000 paid at the end of year of death and with annual premium paid at the
beginning of the year for the next 30 years while the insured is alive. Find
the annual benefit premium of this policy if mortality is exponential with
µ = 0.03 and the force of interest is δ = 0.05.

Solution.
We have

A30 =
q30

q30 + i
=

1− e−0.03

1− e−0.03 + e0.05 − 1
= 0.3657

ä30:30 =
1− e−n(µ+δ)

1− e−(µ+δ)
=

1− e−30(0.08)

1− e−0.08
= 11.8267

5000030P (A30) =50000
A30

ä30:30

= 50000
0.3657

11.8267
= 1545.89
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Practice Problems

Problem 41.1
Peter buys a fully discrete whole life insurance with benefit of $20,000 at
the end of year of death. The annual benefit premium is $50. Assume that
δ = 0.05. Find the insurer’s loss at the time of the issue of the policy if Peter
dies in 8 years and 3 months after the issue of this policy.

Problem 41.2
Peter buys a fully discrete whole life insurance with benefit of $20,000 at
the end of year of death. The annual benefit premium is $50. Assume that
δ = 0.05. Find the insurer’s loss at the time of the issue of the policy if Peter
dies in 62 years and 9 months after the issue of this policy.

Problem 41.3
Show that P (Ax) = νqx under a constant force of mortality.

Problem 41.4 ‡
For a fully discrete whole life insurance of 150,000 on (x), you are given:
(i) 2Ax = 0.0143
(ii) Ax = 0.0653
(iii) The annual premium is determined using the equivalence principle.
(iv) L is the loss-at-issue random variable.
Calculate the standard deviation of L.

Problem 41.5
For a fully discrete whole life insurance of 1000 on (60) you are given:
• i = 0.06
• 1000A60 = 369.33.
Calculate the annual benefit premium.

Problem 41.6
For a fully discrete whole life insurance on (x), you are given the following:
(i) i = 0.05
(ii) P (K(x) = k) = 0.04(0.96)k, k = 0, 1, 2, · · · .
Calculate the annual benefit premium for this policy.

Problem 41.7
Show that

ax =
1

P (Ax) + d
.
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Problem 41.8 ‡
For a fully discrete whole life insurance of 1000 on (60), you are given:
(i) i = 0.06
(ii) Mortality follows the Illustrative Life Table, except that there are extra
mortality risks at age 60 such that q60 = 0.015.
Calculate the annual benefit premium for this insurance.
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41.2 Fully Discrete n−year Term

For this type of insurance, the benefit insurance is a discrete n−year term
and the payments are made as a discrete n−year temporary annuity-due.
The loss random variable is given by

L1
x:n = νK+1I(K ≤ n− 1)− P ämin (K+1,n) = Z1

x:n − PŸx:n .

The actuarial present value of this policy is given by

E(L1
x:n ) = A1

x:n − P äx:n .

The benefit premium for this policy obtained using the equivalence principle
(i.e., E(L1

x:n ) = 0) is

P (A1
x:n ) =

A1
x:n

äx:n

.

Example 41.4
You are given that mortality follows the Illustrative Life Table with i = 6%.
Calculate P (A 1

50:20
).

Solution.
We have

P (A 1
50:20 ) =

A 1
50:20

ä50:20

=
A50 − 20E50A70

ä50 − 20E50ä70

=
0.24905− (0.23047)(0.51495)

13.2668− (0.23407)(8.5693)
= 0.01155

Next, consider a policy where the benefit is a discrete n−year term insurance
and the payments are made as a discrete t−year temporary annuity-due. For
such a policy the loss random variable is

tL
1
x:n = νK+1I(K ≤ n− 1)− P ämin (K+1,t) = Z1

x:n − PŸx:t .

The actuarial present value of this policy is given by

E(tL
1
x:n ) = A1

x:n − P äx:t .
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The benefit premium for this policy obtained using the equivalence principle
(i.e., E(tL

1
x:n ) = 0) is

tP (A1
x:n ) =

A1
x:n

äx:t

.

Example 41.5
For a fully discrete 10−year life insurance of 5000 on (x), you are given:
(i) δ = 0.10
(ii) µ = 0.05.
(iii) Benefit payment is made at the end of the year of death.
(iv) Annual benefit premium are paid at the beginning of the next 5 years
while (x) is alive.
Calculate 50005P (A1

x:10
).

Solution.
We have

A1
x:10 =e−δ(1− e−µ)

(
1− e−n(µ+δ)

1− e−(µ+δ)

)
=
e−0.10(1− e−0.05)(1− e−1.5)

1− e−0.15
= 0.2461

äx:5 =
1− e−5(0.05+0.10)

1− e−(0.10+0.05)
= 3.788

50005P (A1
x:10 ) =5000

(
0.2461

3.788

)
= 324.84
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Practice Problems

Problem 41.9
Show that

L1
x:n =

(
1 +

P

d

)
Z1
x:n +

P

d
Z 1
x:n −

P

d
.

Problem 41.10
You are given the following mortality table.

x px qx
90 0.90 0.10
91 0.80 0.20
92 0.60 0.40
93 0.50 0.50

Calculate P (A 1
91:3

) if i = 0.04.

Problem 41.11
An insurer offers a four-year life insurance of 90 years old. Mortality is given
by the table:

x 90 91 92 93
qx 0.10 0.20 0.40 0.50

This life insurance is funded by benefit payments at the beginning of the
year. The benefit payment is 10000. Calculate the annual benefit premium
using the equivalence principle if i = 0.04.

Problem 41.12
You are given:
• 15P (A45) = 0.038
• A60 = 0.0625

•
A

45:15
ä
45:15

= 0.056.

Calculate P (A 1
45:15

) and interpret this value.

Problem 41.13
For a special fully discrete 10-payment 20−year term life insurance on (x),
you are given:
(i) The death benefit of 10000 payable at the end of the year of death.
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(ii) The benefit premiums for this insurance are made at the beginning of
the next 10 years while (x) is alive.
(iii) µ = 0.02
(iv) δ = 0.05.
Find the annual benefit premium for this policy.
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41.3 Fully Discrete n−year Pure Endowment

For this policy the benefit is a discrete n−year pure endowment insurance
and the payments are made as an n−year temporary annuity-due. The loss
random variable of this type of insurance is

L 1
x:n = νnI(K > n− 1)− P ämin (K+1,n) = Z 1

x:n − PŸx:n .

The actuarial present value is

E(L 1
x:n ) = A 1

x:n − P äx:n .

The benefit premium which satisfies the equivalence principle is

P (A 1
x:n ) =

A 1
x:n

äx:n

.

Example 41.6
For a special fully discrete 20−year pure endowment insurance on (40), you
are given:
(i) The death benefit of 50000 payable at the end of the year of death.
(ii) Mortality follows De Moivre’s Law with ω = 110
(iii) ν = 0.94.
(iv) Annual benefit premium are paid at the beginning of the next 20 years
while (40) is alive.
(a) What is the net single premium?
(b) Find the annual benefit premium of this policy.

Solution.
(a) The net single premium is

50000A 1
40:20 = 50000ν20

20p40 = 50000(0.94)20

(
70− 20

70

)
= 10360.94.

(b) We have

A40:20 =A 1
40:20 + A 1

40:20

=
a20 6

94

70
+ (0.94)20

(
70− 20

70

)
= 0.3661

ä40:20 =
1− A40:20

d
= 10.565.



444 CALCULATING BENEFIT PREMIUMS

Thus, the annual benefit premium is

50000P (A40:20 ) =
10360.94

10.565
= 980.69

If the payments for an n−year pure endowment are made as a discrete t−year
temporary annuity where 0 ≤ t ≤ n, then the loss random variable is

tL
1

x:n = νnI(K > n− 1)− P ämin (K+1,t) = Z 1
x:n − PŸx:t .

The actuarial present value is

E(tL
1

x:n ) = A 1
x:n − P äx:t .

The benefit premium which satisfies the equivalence principle is

tP (A 1
x:n ) =

A 1
x:n

äx:t

.

Example 41.7
For a fully discrete 20−year pure endowment of 50000 on (40), you are given:
(i) The death benefit of 50000 payable at the end of the year of death.
(ii) Mortality follows De Moivre’s Law with ω = 110
(iii) ν = 0.94.
(iv) Annual benefit premium are paid at the beginning of the next 10 years
while (40) is alive.
Find the annual benefit premium of this policy.

Solution.
We have

A40:10 =A 1
40:10 + A 1

40:10

=
a10 6

94

70
+ (0.94)10

(
70− 10

70

)
= 0.5649

ä40:10 =
1− A40:10

d
= 7.2517

Thus, the annual benefit premium is

50000P (A40:20 ) =
10360.94

7.2517
= 1420.76
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Practice Problems

Problem 41.14
For a fully discrete 20−year pure endowment of 50000 on (40), you are given:
(i) The death benefit of 50000 payable at the end of the year of death.
(ii) Mortality follows De Moivre’s Law with ω = 110
(iii) ν = 0.94.
(iv) Annual premiums of 1500 are payable at the beginning of each year for
10 years.
(v) L is the loss random variable at the time of issue.
Calculate the minimum value of L.

Problem 41.15
For a special fully discrete 2-year pure endowment of 1000 on (x), you are
given:
(i) ν = 0.94
(ii) px = px+1 = 0.70.
Calculate the benefit premium.

Problem 41.16
You are given:
(i) d = 0.08
(ii) Ax:n = 0.91488
(iii) A1

x:n = 0.70152.
Calculate P (A 1

x:n ).

Problem 41.17
You are given:
(i) A1

x:n = 0.70152.
(ii) A 1

x:n = 0.21336.
(iii) P (A 1

x:n ) = 0.2005.
Calculate i.

Problem 41.18
Define P (Ax:n ) =

Ax:n
äx:n

. Show that

P (Ax:n ) = P (A1
x:n ) + P (A 1

x:n ).
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41.4 Fully Discrete n−year Endowment Insurance

For this policy the benefit is a discrete n−year endowment insurance and the
payments are made as an n−year temporary annuity-due. The loss random
variable of this type of insurance is

Lx:n = νmin (n,K+1) − P ämin (K+1,n) = Zx:n − PŸx:n .

The actuarial present value is

E(Lx:n ) = Ax:n − P äx:n .

The benefit premium which satisfies the equivalence principle is

P (Ax:n ) =
Ax:n

äx:n

.

Example 41.8
Find an expresssion for Var(Lx:n ).

Solution.
We have

Var(Lx:n ) =Var(Zx:n − PŸx:n )

=Var

(
Zx:n − P

(
1− Zx:n

d

))
=Var

[(
1 +

P

d

)
Zx:n −

P

d

]
=

(
1 +

P

d

)2

Var(Zx:n )

=

(
1 +

P

d

)2

[2Ax:n − (Ax:n )2]

Example 41.9
For a fully discrete 20−year endowment of 10000 on (x), you are given:
(i) The death benefit of 10000 payable at the end of the year of death.
(ii) The constant force of mortality µ = 0.02.
(iii) δ = 0.05.
(iv) Annual benefit premium are paid at the beginning of the next 20 years
while (x) is alive.
(a) Find the annual benefit premium of this policy.
(b) Calculate the variance for the loss at-issue random variable.
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Solution.
(a) We have

Ax:20 =(1− e−n(µ+δ))
qx

qx + i
+ e−n(µ+δ) = 0.4565

äx:20 =(1− e−n(µ+δ))

(
1

1− νqx

)
=

1− e−20(0.02+0.05)

1− e−(0.02+0.05)
= 11.144

10000P (Ax:20 ) =10000

(
0.4565

11.144

)
= 409.6375.

(b) We have

2Ax:20 =(1− e−n(µ+2δ))
qx

qx + i
+ e−n(µ+2δ) = 0.2348

Var(Lx:20 ) =[0.2348− 0.45652]

(
10000 +

409.6375

1− e−0.05

)2

=8939903.78

If the payments for an n−year endowment are made as a discrete t−year
temporary annuity where 0 ≤ t ≤ n, then the loss random variable is

tLx:n = νmin (n,K+1) − P ämin (K+1,t) = Zx:n − PŸx:t .

The actuarial present value is

E(tLx:n ) = Ax:n − P äx:t .

The benefit premium which satisfies the equivalence principle is

tP (Ax:n ) =
Ax:n

äx:t

.

Example 41.10
For a fully discrete 20−year endowment of 50000 on (40), you are given:
(i) The death benefit of 50000 payable at the end of the year of death.
(ii) The constant force of mortality µ = 0.02.
(iii) δ = 0.05.
(iv) Annual benefit premium are paid at the beginning of the next 10 years
while (40) is alive.
Find the annual benefit premium of this policy.
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Solution.
We have

Ax:20 =(1− e−n(µ+δ))
qx

qx + i
+ e−n(µ+δ) = 0.4565

äx:10 =(1− e−n(µ+δ))

(
1

1− νqx

)
=

1− e−10(0.02+0.05)

1− e−(0.02+0.05)
= 7.4463

Thus, the annual benefit premium is

5000010P (A40:20 ) = 50000
0.4565

7.4463
= 3065.28
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Practice Problems

Problem 41.19
Show that

nP (Ax) = P (A1
x:n ) + P (A 1

x:n )Ax+n.

Problem 41.20
You are given:
(i) P (Ax:n ) = 0.00646
(ii) P (A 1

x:n ) = 0.00211.
Calculate P (A1

x:n ).

Problem 41.21
You are given that mortality follows the Illustrative Life Table with i = 6%.
Calculate P (A50:20 ).

Problem 41.22
You are given that mortality follows the Illustrative Life Table with i = 6%.
Calculate Var(L50:20 ).

Problem 41.23
You are given the following mortality table.

x px qx
90 0.90 0.10
91 0.80 0.20
92 0.60 0.40
93 0.50 0.50
94 0.00 1.00

Calculate P (A90:3 ) if i = 0.04.
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41.5 Fully Discrete n−year Deferred Insurance

For this policy the benefit is a discrete n−year deferred whole life insurance
and the payments are made as a discrete whole life annuity-due. The loss
random variable of this type of insurance is

n|Lx = νK+1I(K ≥ n)− P äK+1 = n|Zx − PŸx.

The actuarial present value is

E(n|Lx) = n|Ax − P äx.

The benefit premium which satisfies the equivalence principle is

P (n|Ax) =
n|Ax
äx

.

Example 41.11
You are given that mortality follows the Illustrative Life Table with i = 6%.
Calculate P (20|A50).

Solution.
We have

20|A50 =20E50A70 = (0.23047)(0.51495) = 0.11868

ä50 =13.2668

P (20|A50) =
0.11868

13.2668
= 0.00895

If the funding scheme is a t−year temporary annuity then the loss random
variable is

t(n|Lx) = νK+1I(K ≥ n)− P ämin{(K+1,t)} = n|Zx − PŸx:t .

The actuarial present value is

E(t(n|Lx)) = n|Ax − P äx:t .

The benefit premium which satisfies the equivalence principle is

tP (n|Ax) =
n|Ax
äx:t

.
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Example 41.12
You are given that mortality follows the Illustrative Life Table with i = 6%.
Calculate 10P (20|A50).

Solution.
We have

20|A50 =20E50A70 = (0.23047)(0.51495) = 0.11868

ä50:10 =ä50 − 10E50ä60

=13.2668− (1.06)−10

(
`60

`50

)
ä60

=13.2668− (1.06)−10

(
8, 188, 074

8, 950, 901

)
(11.1454)

=7.5749.

Thus,

10P (20|A50) =
20|A50

ä50:10

=
0.11868

7.5749
= 0.01567
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Practice Problems

Problem 41.24
Show that

n|Lx =

(
1 +

P

d

)
n|Zx +

P

d
Z1
x:n −

P

d
.

Problem 41.25
Show that

E

[(
n|Lx +

P

d

)2
]

=

(
P

d

)2
2A1

x:n +

(
1 +

P

d

)2
2
n|Ax.

Problem 41.26
Connsider an insurance where the benefit is an n−year deferred insurance
and the payments are made as t−year temporary annuity-due. Write an
expression for the loss random variable for this policy and then find the
actuarial present value.

Problem 41.27
Find the annual benefit premium for a t−payments, n−year deferred insur-
ance.

Problem 41.28
You are given that mortality follows the Illustrative Life Table with i = 6%.
Calculate 10P (20|A50).
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41.6 Fully Discrete n−year Deferred Annuity-Due

A fully discrete n−year deferred whole life contingent annuity contract with
net single premium n|äx is often funded by annual premiums paid over the
n−year deferred period, subject to the continued survival of (x). The loss
random variable for this contract is

L(n|äx) = äK+1−n ν
nI(K ≥ n)− P ämin{K+1,n)} = n|Ÿx − PŸx:n .

Applying the equivalence principle, i.e., E[L(n|äx)] = 0, we find

0 = E[L(n|äx)] = n|äx − P äx:n =⇒ P =
n|äx
äx:n

.

The continuous benefit premium will be denoted by P (n|äx). Thus,

P (n|äx) =
n|äx
äx:n

=
nExäx+n

äx:n

.

Example 41.13
You are given that Mortality follows the Illustrative Life Table with i = 6%.
Calculate P (10|ä75)

Solution.
We have

P (10|ä75) =
10|ä75

ä75:10

=
10E75ä85

ä75 − 10E75ä85

=
0.01722(4.6980)

7.2170− 0.01722(4.6980)
= 0.01134

Now, if the premiums are paid with a discrete t−year temporary life annuity-
due, where t < n, then the loss random variable is given by

tL(n|äx) = äK+1−n ν
nI(K ≥ n)− P ämin{K+1,t)} = n|Ÿx − PŸx:t .

The benefit premium for this insurance is given by

tP (n|äx) =
n|äx
äx:t

.
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Example 41.14
You are given that Mortality follows the Illustrative Life Table with i = 6%.
Calculate 5P (10|ä75)

Solution.
We have

5P (10|ä75) =
10|ä75

ä75:5

=
10E75ä85

ä75 − 5E75ä80

=
0.01722(4.6980)

7.2170− 0.54207(5.9050)
= 0.02014

Example 41.15 ‡
For a special 30-year deferred annual whole life annuity-due of 1 on (35):
(i) If death occurs during the deferral period, the single benefit premium is
refunded without interest at the end of the year of death.
(ii) ä65 = 9.90
(iii) A35:30 = 0.21
(iv) A 1

35:30
= 0.07

Calculate the single benefit premium for this special deferred annuity.

Solution.
Letπ denote the single benefit premium. Then actuarial present value of
the refund of premium without interest if death occurs during the deferral
period is πA 1

30:35
. The single benefit premium for the deferred annuity is

30|ä35. Thus, π satisfies the equation

π = πA 1
30:35 + 30|ä35 = πA 1

30:35 + ν30
30p35ä65.

We have

π =π(0.07) + 30E35(9.90)

=0.07π + (A35:35 − A 1
30:35 )(9.90)

=0.07π + (0.21− 0.07)(9.90)

π =1.49
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Practice Problems

Problem 41.29
Consider a 20-year deferred annuity-due of 40000 on (45). You are given:
(i) Force of mortality is 0.02
(ii) δ = 0.05
Calculate the annual benefit premium of this policy.

Problem 41.30
For (x), you are given:
(1) The premium for a 20-year endowment of 1 is 0.0349.
(2) The premium for a 20-year pure endowment of 1 is 0.023.
(3) The premium for a 20-year deferred whole life annuity-due of 1 per year
is 0.2087.
(4) All premiums are fully discrete net level premiums.
(5) i = 0.05
Calculate the premium for a 20-payment whole life insurance of 1.
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42 Benefit Premiums for Semicontinuous Mod-

els

A Semicontinuous insurance is a policy with a continuous benefit and pay-
ments made with a discrete annuity due. That is, the benefit is paid at the
moment of death and the premiums are paid at the beginning of the year
while the insured is alive.

42.1 Semicontinuous Whole Life Insurance

For this policy, the benefit is a continuous whole life insurance and the pay-
ments are made as a discrete whole life annuity-due. The loss random variable
of this policy is

SLx = νT − P äK+1 = Z̄x − PŸx.
The actuarial present value of the loss is

E(SLx) = Āx − P äx.
The benefit premium that satisfies the equivalence principle is given by

P (Āx) =
Āx
äx
.

Example 42.1
You are given that mortality follows De Moivre’s Law with ω = 125 and
δ = 0.05. Calculate P (Ā75).

Solution.
We have

Ā75 =
ā50

50
=

1− e−0.05(50)

0.05(50)
= 0.36717

ä75 =1 + ν1p75 + ν2
2p75 + · · ·+ ν49

49p75

=
50

50
+

49

50
ν +

48

50
ν2 + · · ·+ 1

50
ν49

=
1

50
(Dä)50 =

50− a50

50
= 13.16238

P (Ā75) =
Ā75

ä75

=
0.36717

13.16238
= 0.0279
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Now, for a continuous benefit and payments that are made with a t−year
temporary annuity-due the loss random variable is

tSLx = νT − P ämin (K+1,t) = Z̄x − PŸx:t .

The actuarial present value of the loss is

E[tSLx] = Āx − P äx:t

and the benefit premium is

tP (Āx) =
Āx
äx:t

.

Example 42.2
You are given that mortality follows De Moivre’s Law with ω = 125 and
δ = 0.05. Calculate 20P (Ā75).

Solution.
We have

ä75:20 =1 + ν1p75 + ν2
2p75 + · · ·+ ν19

19p75

=
50

50
+

49

50
ν +

48

50
ν2 + · · ·+ 31

50
ν19

=
30

50
ä20 +

1

50
(Dä)20

=
30

50

(
1− e−20(0.05)

e0.05 − 1

)
e0.05 +

1

50

(
20− 1−e−20(0.05)

e0.05−1

e0.05 − 1

)
e0.05

=10.92242

20P (Ā75) =
0.36717

10.92242
= 0.03362

If uniform distribution of deaths is assumed over each year of age then

P (Āx) =
Āx
äx

=
i

δ

Ax
äx

=
i

δ
P (Ax).

Example 42.3
You are given that mortality follows the Illustrative Life Table with i =
6%. Assume that mortality is uniformly distributed between integral ages.
Calculate P (Ā50).
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Solution.
We have

P (Ā50) =
i

δ

A50

ä50

=
0.06

ln 1.06

0.24905

13.2668
= 0.01933
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Practice Problems

Problem 42.1
You are given that µ = 0.02 and δ = 0.05. Calculate P (Ā75).

Problem 42.2
You are given that µ = 0.02 and δ = 0.05. Calculate 20P (Ā75).

Problem 42.3
You are given:
(i) i = 0.06
(ii) A60 = 0.36913.
Find P (Ā60).

Problem 42.4
Interpret the meaning of 1000020P (Ā40).

Problem 42.5
You are given that mortality follows the Illustrative Life Table with i =
6%. Assume that mortality is uniformly distributed between integral ages.
Calculate P (Ā65).
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42.2 Semicontinuous n−year Term Insurance

For this type of insurance, the benefit is a continuous n−year term insurance
and the payments are made as a discrete n−year temporary life annuity-due.
The loss random variable of this insurance is

SL1
x:n = νT I(T ≤ n)− P ämin (K+1,n) = Z̄1

x:n − PŸx:n .

The actuarial present value of the loss is

E(SL1
x:n ) = Ā1

x:n − P äx:n .

The benefit premium that satisfies the equivalence principle is given by

P (Ā1
x:n ) =

Ā1
x:n

äx:n

.

Example 42.4
You are given that mortality follows De Moivre’s Law with ω = 125 and
δ = 0.05. Calculate P (Ā 1

75:20
).

Solution.
We have

Ā 1
75:20 =

ā20

50
=

1− e−0.05(20)

0.05(50)
= 0.25285

ä75:20 =10.92242

P (Ā 1
75:20 ) =

0.25285

10.92242
= 0.0231

For an n−year term insurance with payments made as a discrete t−year
temporary annuity-due, the loss random variable is given by

tSL
1
x:n = νT I(T ≤ n)− P ämin (K+1,t) = Z̄1

x:n − PŸx:t .

The actuarial present value of the loss is

E(tSL
1
x:n ) = Ā1

x:n − P äx:t .

The benefit premium that satisfies the equivalence principle is given by

tP (Ā1
x:n ) =

Ā1
x:n

äx:t

.
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Example 42.5
You are given that mortality follows De Moivre’s Law with ω = 125 and
δ = 0.05. Calculate 10P (Ā 1

75:20
).

Solution.
We have

Ā 1
75:20 =

ā20

50
=

1− e−0.05(20)

0.05(50)
= 0.25285

ä75:10 =1 + ν1p75 + ν2
2p75 + · · ·+ ν9

9p75

=
50

50
+

49

50
ν +

48

50
ν2 + · · ·+ 41

50
ν9

=
40

50
ä10 +

1

50
(Dä)10

=
40

50

(
1− e−10(0.05)

e0.05 − 1

)
e0.05 +

1

50

(
10− 1−e−10(0.05)

e0.05−1

e0.05 − 1

)
e0.05

=7.4079

10P (Ā 1
75:20 ) =

0.25285

7.4079
= 0.0341

If uniform distribution of deaths is assumed over each year of age then

P (Ā1
x:n ) =

Ā1
x:n

äx:n

=
i

δ

A1
x:n

äx:n

=
i

δ
P (A1

x:n ).

Example 42.6
You are given that mortality follows the Illustrative Life Table with i =
6%. Assume that mortality is uniformly distributed between integral ages.
Calculate P (Ā 1

50:20
).

Solution.
We have

P (Ā 1
50:20 ) =

i

δ

A 1
50:20

ä50:20

=
i

δ

A50 − 20E50A70

ä50 − 20E50ä70

=
0.06

ln 1.06
· 0.24905− (0.23047)(0.51495)

13.2668− (0.23407)(8.5693)

=0.0119
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Practice Problems

Problem 42.6
You are given that µ = 0.02 and δ = 0.05. Calculate P (Ā 1

75:20
).

Problem 42.7
You are given that µ = 0.02 and δ = 0.05. Calculate 10P (Ā 1

75:20
).

Problem 42.8
You are given that mortality follows the Illustrative Life Table with i =
6%. Assume that mortality is uniformly distributed between integral ages.
Calculate P (Ā 1

75:20
).

Problem 42.9
For a semicontinuous 20-year term insurance on (x) you are given:
(i) Āx:20 = 0.4058
(ii) A 1

x:20
= 0.3195

(iii) äx:20 = 12.522.
Calculate P (A1

x:20
).

Problem 42.10
You are given:
(i) Āx − Ā1

x:n = 0.07045
(ii) nP (Āx)− P (Ā1

x:n ) = 0.0063.
Calculate äx:n .

Problem 42.11 ‡
For a 10-payment, 20-year term insurance of 100,000 on Pat:
(i) Death benefits are payable at the moment of death.
(ii) Contract premiums of 1600 are payable annually at the beginning of each
year for 10 years.
(iii) i = 0.05
(iv) L is the loss random variable at the time of issue.
Calculate the minimum value of L as a function of the time of death of Pat.
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42.3 Semicontinuous n−year Endowment Insurance

For this type of insurance, the benefit is a continuous n−year endowment
and the payments are made as a discrete n−year temporary life annuity-due.
The loss random variable of this insurance is

SLx:n = νmin (n,T ) − P ämin (K+1,n) = Z̄x:n − PŸx:n .

The actuarial present value of the loss is

E(SLx:n ) = Āx:n − P äx:n .

The benefit premium that satisfies the equivalence principle is given by

P (Āx:n ) =
Āx:n

äx:n

.

Example 42.7
You are given that mortality follows De Moivre’s Law with ω = 125 and
δ = 0.05. Calculate P (Ā75:20 ).

Solution.
We have

Ā75:20 =Ā 1
75:20 + A 1

75:20 = 0.25285 + 0.22073 = 0.47358

ä75:20 =10.92242

P (Ā75:20 ) =
0.47358

10.92242
= 0.0434

Now, if the benefit is a continuous n−year endowment and the payments are
made as a discrete t−year temporary life annuity-due then the loss random
variable of this insurance is

tSLx:n = νmin (n,T ) − P ämin (K+1,t) = Z̄x:n − PŸx:t .

The actuarial present value of the loss is

E(tSLx:n ) = Āx:n − P äx:t .

The benefit premium that satisfies the equivalence principle is given by

tP (Āx:n ) =
Āx:n

äx:t

.
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Example 42.8
You are given that mortality follows De Moivre’s Law with ω = 125 and
δ = 0.05. Calculate 10P (Ā75:20 ).

Solution.
We have

Ā75:20 =Ā 1
75:20 + A 1

75:20 = 0.25285 + 0.22073 = 0.47358

ä75:10 =7.4079

10P (Ā75:20 ) =
0.47358

7.4079
= 0.064

If uniform distribution of deaths is assumed over each year of age then

P (Āx:n ) =
i

δ
P (A1

x:n ) + P (A 1
x:n ).

Example 42.9
You are given that mortality follows the Illustrative Life Table with i =
6%. Assume that mortality is uniformly distributed between integral ages.
Calculate P (Ā50:20 ).

Solution.
We have

P (Ā50:20 ) =
i
δ
A50:20 + 20E50

ä50:20

=
i
δ
[A50 − 20E50A70] + 20E50

ä50 − 20E50ä70

=
(1.02791)[0.24905− (0.23047)(0.51495)] + 0.23047

13.2668− (0.23047)(8.5693)
= 0.03228

Remark 42.1
There is no need for a semicontinuous annual premium n−year pure endow-
ment since no death benefit is involved.
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Practice Problems

Problem 42.12
You are given that µ = 0.02 and δ = 0.05. Calculate P (Ā75:20 ).

Problem 42.13
You are given that µ = 0.02 and δ = 0.05. Calculate 10P (Ā75:20 ).

Problem 42.14
You are given that mortality follows the Illustrative Life Table with i =
6%. Assume that mortality is uniformly distributed between integral ages.
Calculate P (Ā75:20 ).

Problem 42.15
Simplify

P (Āx:n −nP (Āx)

P (A 1
x:n )

.

Problem 42.16
Show that tP (Āx:n )− tP (A 1

x:n ) = tP (Ā1
x:n ).
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42.4 Semicontinuous n−year Deferred Insurance

For this type of insurance, the benefit is a continuous n−year deferred insur-
ance and the payments are made as a discrete whole life annuity-due. The
loss random variable of this insurance is

n|SLx = νT I(T > n)− P äK+1 = n|Z̄x − PŸx.

The actuarial present value of the loss is

E(n|SLx) = n|Āx − P äx.

The benefit premium that satisfies the equivalence principle is given by

P (n|Āx) =
n|Āx
äx

.

Example 42.10
You are given that mortality follows De Moivre’s Law with ω = 125 and
δ = 0.05. Calculate P (10|Ā75).

Solution.
We have

10|Ā75 =ν10
10p75Ā85 = e−10δ ā40

50

=e−10(0.05) 1− e−40(0.05)

50(0.05)
= 0.20978

ä75 =13.16238

P (10|Ā75) =
0.20978

13.16238
= 0.0159

If uniform distribution of deaths is assumed over each year of age then

P (n|Āx) =
i

δ
P (n|Ax).

Now, if the benefit is a continuous n−year deferred insurance and the pay-
ments are made as a discrete t−year temporary annuity-due, then the loss
random variable of this insurance is

t(n|SLx) = νT I(T > n)− P äx:min{(K+1,t)} = n|Z̄x − PŸx:t .
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The actuarial present value of the loss is

E(t(n|SLx)) = n|Āx − P äx:t .

The benefit premium that satisfies the equivalence principle is given by

tP (n|Āx) =
n|Āx
äx:t

.
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Practice Problems

Problem 42.17
You are given that µ = 0.02 and δ = 0.05. Calculate P (10|Ā75).

Problem 42.18
You are given that mortality follows the Illustrative Life Table with i =
6%. Assume that mortality is uniformly distributed between integral ages.
Calculate P (20|Ā50).

Problem 42.19
Show that

P (n|Āx) =
A 1
x:n

äx:n + nExäx+n

Āx+n.

Problem 42.20 ‡
On January 1, 2002, Pat, age 40, purchases a 5-payment, 10-year term in-
surance of 100,000:
(i) Death benefits are payable at the moment of death.
(ii) Contract premiums of 4000 are payable annually at the beginning of each
year for 5 years.
(iii) i = 0.05
(iv) L is the loss random variable at time of issue.
Calculate the value of L if Pat dies on June 30, 2004.
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43 mthly Benefit Premiums

In this section we consider life insurances where either the benefit is paid at
the moment of death or at the end of the year of death and mthly premium

payments paid at the beginning of each 1
m

th
of a period while the individual

is alive. Typically, m is 2, 4, or 12.

43.1 mthly Payments with Benefit Paid at Moment of
Death

In this subsection, we consider insurance paid at time of death and funded
with level payments made at the beginning of each m−thly period while the
individual is alive. Such premiums are called true fractional premiums.
The notation P (m) stands for the true level annual benefit premium
payable in m−thly installments at the beginning of each m−thly period
while the individual is alive so that the m−thly payment is P (m)

m
. We assume

the equivalence principle is used.
For a whole life insurance on (x), the loss random variable is

L̄(m)
x = νT − PŸ (m)

x .

The actuarial present value of the loss is

E(L̄(m)
x ) = Āx − P ä(m)

x .

The true level annual benefit premium is

P (m)(Āx) =
Āx

ä
(m)
x

.

For a whole life insurance to (x) funded for t years, the loss random variable
is

tL̄
(m)
x = νT − PŸ (m)

x:t
,

where

Ÿ
(m)

x:t
=

1− Z(m)
x:n

d(m)
.

The actuarial present value of the loss is

E(tL̄
(m)
x ) = Āx − P ä(m)

x:t
.
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The true level annual benefit premium is

tP
(m)(Āx) =

Āx

ä
(m)

x:t

.

For an n−year term insurance on (x), the loss random variable is

L̄(m)1
x:n = νT I(0 ≤ T ≤ n)− PŸ (m)

x:n .

The actuarial present value of the loss is

E(L̄(m)1
x:n ) = Ā1

x:n − P ä
(m)
x:n .

The true level annual benefit premium is

P (m)(Ā1
x:n ) =

Ā1
x:n

ä
(m)
x:n

.

For an n−year term insurance on (x), funded for t−years, the loss random
variable is

tL̄
(m)1

x:n = νT I(0 ≤ T ≤ n)− PŸ (m)

x:t
.

The actuarial present value of the loss is

E(tL̄
(m)1

x:n ) = Ā1
x:n − P ä

(m)

x:t
.

The true level annual benefit premium is

tP
(m)(Ā1

x:n ) =
Ā1
x:n

ä
(m)

x:t

.

For an n−year endowment insurance on (x), the loss random variable is

L̄
(m)
x:n = νmin (T,n) − PŸ (m)

x:n .

The actuarial present value of the loss is

E(L̄
(m)
x:n ) = Āx:n − P ä(m)

x:n .

The true level annual benefit premium is

P (m)(Āx:n ) =
Āx:n

ä
(m)
x:n

.
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For an endowment insurance to (x) funded for t years, the loss random vari-
able is

tL̄
(m)
x:n = νmin (T,n) − PŸ (m)

x:t
.

The actuarial present value of the loss is

E(tL̄
(m)
x:n ) = Āx:n − P ä(m)

x:t
.

The true level annual benefit premium is

tP
(m)(Āx:n ) =

Āx:n

ä
(m)

x:t

.

For an n−year deferred insurance on (x), the loss random variable is

n|L̄
(m)
x = νT I(T > n)− PŸ (m)

x .

The actuarial present value of the loss is

E(n|L̄
(m)
x ) = n|Āx − P ä(m)

x .

The true level annual benefit premium is

P (m)(n|Āx) =
n|Āx

ä
(m)
x

.

For an n−year deferred insurance on (x) funded for t years the loss random
variable is

t(n|L̄
(m)
x ) = νT I(T > n)− PŸ (m)

x:t
.

The actuarial present value of the loss is

E(t(n|L̄
(m)
x )) = n|Āx − P ä(m)

x:t
.

The true level annual benefit premium is

tP
(m)(n|Āx) =

n|Āx

ä
(m)

x:t

.

Example 43.1
Calculate the true level annual benefit premium payable quarterly for a whole
life insurance on (50) with benefits of 10,000 paid at the moment of death.
Assume a uniform distribution of deaths in each year of age.
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Solution.
Under the uniform distribution of deaths assumption we have

Ā50 =
i

δ
A50 =

0.06

ln (0.06)
(0.24905) = 0.2564

ä
(4)
50 =

id

i(4)d(4)
ä50 −

i− i(4)

i(4)d(4)

=
(0.06)2(1.06)−1

16[(1.06)
1
4 − 1][1− (1.06)−

1
4 ]

(13.2668)− 0.06− 4[(1.06)
1
4 − 1]

16[(1.06)
1
4 − 1][1− (1.06)−

1
4 ]

=12.8861

The true level annual benefit premium is

10000P (4)(A50) = 10000
A50

ä
(4)
50

= 10000

(
0.2564

12.8861

)
= 198.97
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Practice Problems

Problem 43.1
Calculate the true level annual benefit premium payable quarterly for a 20-
year payments whole life insurance on (50) with benefits of 10,000 paid at
the moment of death. Assume a uniform distribution of deaths in each year
of age.

Problem 43.2
Calculate the true level annual benefit premium payable quarterly for a 20-
year term life insurance on (50) with benefits of 10,000 paid at the moment
of death. Assume a uniform distribution of deaths in each year of age.

Problem 43.3
Calculate the true level annual benefit premium payable quarterly for a 20-
year endowment life insurance on (50) with benefits of 10,000 paid at the
moment of death. Assume a uniform distribution of deaths in each year of
age.

Problem 43.4
Calculate the true level annual benefit premium payable quarterly for a 10-
year funded 20-year endowment life insurance on (50) with benefits of 10,000
paid at the moment of death. Assume a uniform distribution of deaths in
each year of age.

Problem 43.5
Calculate the true level annual benefit premium payable quarterly for a 20-
year deferred life insurance on (50) with benefits of 10,000 paid at the moment
of death. Assume a uniform distribution of deaths in each year of age.
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43.2 mthly Payments with Benefit Paid at End of Year of
Death

In this subsection, we consider insurance paid at the end of year of death and
funded with level payments made at the beginning of each m−thly period
while the individual is alive. We assume the equivalence principle is used.
For a whole life insurance on (x), the loss random variable is

L(m)
x = νK+1 − PŸ (m)

x .

The actuarial present value of the loss is

E(L(m)
x ) = Ax − P ä(m)

x .

The true level annual benefit premium is

P (m)(Ax) =
Ax

ä
(m)
x

.

For a whole life insurance to (x) funded for t years the annual benefit pre-
mium is

tP
(m)(Ax) =

Ax

ä
(m)

x:t

.

For an n−year term insurance on (x), the loss random variable is

L(m)1
x:n = νK+1I(0 ≤ K ≤ n− 1)− PŸ (m)

x:n .

The actuarial present value of the loss is

E(L(m)1
x:n ) = A1

x:n − P ä
(m)
x:n .

The true level annual benefit premium is

P (m)(A1
x:n ) =

A1
x:n

ä
(m)
x:n

.

For an n−year endowment insurance on (x), the loss random variable is

Lx:n = νmin (K+1,n) − PŸ (m)
x:n .
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The actuarial present value of the loss is

E(Lx:n ) = Ax:n − P ä(m)
x:n .

The true level annual benefit premium is

P (m)(Ax:n ) =
Ax:n

ä
(m)
x:n

.

For an endowment insurance to (x) funded for t years the annual benefit
premium is

tP
(m)(Ax:n ) =

Ax:n

ä
(m)

x:t

.

For an n−year pure endowment insurance on (x), the loss random variable
is

L 1
x:n = νnI(K ≥ n)− PŸ (m)

x:n .

The actuarial present value of the loss is

E(L 1
x:n ) = A 1

x:n − P ä
(m)
x:n .

The true level annual benefit premium is

P (m)(A 1
x:n ) =

A 1
x:n

ä
(m)
x:n

.

For a pure endowment insurance to (x) funded for t years the annual benefit
premium is

tP
(m)(A 1

x:n ) =
A 1
x:n

ä
(m)

x:t

.

Example 43.2
Calculate the true level annual benefit premium payable semi-annually for a
whole life insurance on (50) with benefits of 10,000 paid at the end of year
of death. Assume a uniform distribution of deaths in each year of age.
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Solution.
Under the uniform distribution of deaths assumption we have

A50 =0.24905

ä
(2)
50 =

id

i(2)d(2)
ä50 −

i− i(2)

i(2)d(2)

=
(0.06)2(1.06)−1

4[(1.06)
1
2 − 1][1− (1.06)−

1
2 ]

(13.2668)− 0.06− 2[(1.06)
1
2 − 1]

4[(1.06)
1
2 − 1][1− (1.06)−

1
2 ]

=13.0122

The true level annual benefit premium is

10000P (2)(Ā50) = 10000
Ā50

ä
(2)
50

= 10000

(
0.24905

13.0122

)
= 191.40
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Practice Problems

Problem 43.6
Calculate the true level annual benefit premium payable semi-annually for a
20-year payments whole life insurance on (50) with benefits of 10,000 paid
at the end of year of death. Assume a uniform distribution of deaths in each
year of age.

Problem 43.7
Calculate the true level annual benefit premium payable semi-annually for a
20-year term life insurance on (50) with benefits of 10,000 paid at the end of
year of death. Assume a uniform distribution of deaths in each year of age.

Problem 43.8
Calculate the true level annual benefit premium payable semi-annually for a
20-year endowment life insurance on (50) with benefits of 10,000 paid at the
end of year of death. Assume a uniform distribution of deaths in each year
of age.

Problem 43.9
Calculate the true level annual benefit premium payable semi-annually for
a 10-year funded 20-year endowment life insurance on (50) with benefits of
10,000 paid at the end of year of death. Assume a uniform distribution of
deaths in each year of age.
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44 Non-Level Benefit/Premium Payments and

the Equivalence Principle

Some of the problems that appeared on the MLC actuarial exam involve
the application of the equivalence principle to variable benefits or premiums.
The goal of this section is to address these problems.

Example 44.1 ‡
A fund is established by collecting an amount P from each of 100 independent
lives age 70. The fund will pay the following benefits:
• 10 payable at the end of the year of death, for those who die before the age
of 72, or
• P, payable at age 72, to those who survive.
You are given:
(i) Mortality follows the Illustrative Life Table.
(ii) i = 0.08
Calculate P using the equivalence principle.

Solution.
By the equivalence principle, we must have

APV (Payments) = APV(Benefits)

From the information in the problem, we have that APV(Payments) = P.
For the actuarial present value of the benefits, recall that for a benefit of bt
at time t, the actuarial present value is

btν
tPr(Benefit).

The set of benefits consists of a benefit of 10 if the individual aged 70 dies
before reaching age 71, another 10 if the individual dies before reaching age
72, and a benefit of P if the individual is alive at age 72. Hence,

APV(Benefit)
= 10νPr(K(70) = 0) + 10ν2Pr(K(70) = 1) + Pν2Pr(K(70) ≥ 2)

which can be expressed mathematically as

APV(Benefit) = 10νq70 + 10ν2p70q71 + Pν2
2p70.
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Using the equivalence principle and the Illustrative Life Table, we have

P =10νq70 + 10ν2p70q71 + P 2p70

=10νq70 + 10ν2p70q71 + Pν2p70p71

P =
10νq70 + 10ν2p70q71

1− ν2p70p71

=
10(1.08)−1(0.03318) + 10(1.08)−2(1− 0.03318)(0.03626)

1− (1.08)−2(1− 0.03318)(1− 0.03626)

=3.02132

Example 44.2 ‡
Two actuaries use the same mortality table to price a fully discrete 2-year
endowment insurance of 1000 on (x).
(i) Kevin calculates non-level benefit premiums of 608 for the first year and
350 for the second year.
(ii) Kira calculates level annual benefit premiums of π.
(iii) d = 0.05
Calculate π.

Solution.
We have:
Kevin:

APVB =1000Ax:2 = 1000(1− däx:2 )

=1000[1− 0.05(1 + νpx)] = 950− 47.5px

APVP =608 + 350νpx = 608 + 332.50px.

Using the equivalence principle, we have

608 + 332.50px = 950− 47.5px =⇒ px = 0.90.

Kira:

APVB =950− 47.5px = 907.25

APVP =π + νπpx = 1.855π.

Using the equivalence principle, we have

1.855π = 907.25 =⇒ π = 489.08



480 CALCULATING BENEFIT PREMIUMS

Example 44.3 ‡
For a special 3-year deferred whole life annuity-due on (x) :
(i) i = 0.04
(ii) The first annual payment is 1000.
(iii) Payments in the following years increase by 4% per year.
(iv) There is no death benefit during the three year deferral period.
(v) Level benefit premiums are payable at the beginning of each of the first
three year.
(vi) ex = 11.05 is the curtate expectation of life for (x).
(vii)

k 1 2 3

kpx 0.99 0.98 0.97

Calculate the annual benefit premium.

Solution.
The actuarial present value of benefits is

APVB =0.97ν3[1000 + 1000(1.04)νpx+3 + 1000(1.04)2ν2
2px+3

+1000(1.04)3ν3
3px+3 + · · · ]

=970ν3[1 + px+3 + 2px+3 + 3px+3 + · · · ]
= 970ν3(1 + ex+3).

Now, using Problem 20.50 repeatedly, we can derive the formula

ex = px + 2px + 3px + 3pxex+3.

Substituting, we find

11.05 = 0.99 + 0.98 + 0.97 + (0.97)ex+3 =⇒ ex+3 = 8.360825.

Hence, the actuarial present value of benefits is

APVB = 970ν3(1 + ex+3) = 970(1.04)3(8.360825) = 8072.09.

Now, let π be the annual benefit premium. Than the actuarial present value
of premiums is

APVP = πäx:3 = π(1 + νpx + 2pxν
2) = 2.857988π.

By the equivalence principle, we have

2.857988π = 8072.09 =⇒ π = 2824.39
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Example 44.4 ‡
For a special fully discrete 3-year term insurance on (x) :
(i)

k qx+k bk+1

0 0.200 0
1 0.100 10,000
2 0.097 9,000

(ii) i = 0.06.
Calculate the level annual benefit premium for this insurance.

Solution.
Let π denote the level annual benefit premium. We have

APVB =10, 000pxqx+1ν
2 + 9, 0002pxqx+2

=10, 000(0.8)(0.1)(1.06)−2 + 9, 000(0.8)(0.9)(0.97)(1.06)−3

=1, 239.75

äx:3 =1 + νpx + ν2
2px

=1 + (0.8)(1.06)−1 + (0.8)(0.9)(1.06)−2 = 2.3955

π =
1, 239.75

2.3955
= 517.53

Example 44.5 ‡
For a special fully discrete 35-payment whole life insurance on (30):
(i) The death benefit is 1 for the first 20 years and is 5 thereafter.
(ii) The initial benefit premium paid during the each of the first 20 years is
one fifth of the benefit premium paid during each of the 15 subsequent years.
(iii) Mortality follows the Illustrative Life Table.
(iv) i = 0.06
(v) A30:20 = 0.32307
(vi) ä30:35 = 14.835
Calculate the initial annual benefit premium.

Solution.
Let π denote the intitial benefit premium. The actuarial present value of
benefits is

APVB =5A30 − 4A 1
30:20 = 5A30 − 4(A30:20 − 20E30)

=5(0.10248)− 4(0.32307− 0.29347) = 0.39508.
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The actuarial present value of premiums is

APVP =π[5ä30:35 − 4ä30:20 ] = π

[
5ä30:35 − 4

(
1− A30:20

d

)]
=π

[
5(14.835)− 4

(
1− 0.32307

0.06(1.06)−1

)]
= 26.339π.

By the equivalence principle, we have

26.339π = 0.39508 =⇒ π = 0.015
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Practice Problems

Use the following information to answer Problems 44.1 - 44.5:
For a special fully discrete 10-payment whole life insurance on (30) with level
annual benefit premium π :
(i) The death benefit is equal to 1000 plus the refund, without interest, of
the benefit premiums paid
(ii) A30 = 0.102
(iii) 10|A30 = 0.088.
(iv) (IA) 1

30:10
= 0.078

(v) ä30:10 = 7.747.

Problem 44.1
Write an expression for the actuarial present value of the premiums in terms
of π.

Problem 44.2
What is the actuarial present value of the death benefit without the refund?

Problem 44.3
Up to year 10, the return on premiums is a (discrete) increasing 10−year term
insurance on (30). What is the actuarial present value of this insurance?

Problem 44.4
Starting in ten years, the return of premium is just a discrete deferred whole
life insurance. Find an expression for the actuarial present value of this
insurance.

Problem 44.5
Apply the equivalence principle to determine the value of π.

Problem 44.6 ‡
For a special fully discrete whole life insurance of 1000 on (40):
(i) The level benefit premium for each of the first 20 years is π.
(ii) The benefit premium payable thereafter at age x is 1000νqx, x = 60, 61, 62, · · ·
(iii) Mortality follows the Illustrative Life Table.
(iv) i = 0.06
Calculate π.
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Problem 44.7 ‡
For a fully discrete whole life insurance of 1,000 on (40), you are given:
(i) i = 0.06
(ii) Mortality follows the Illustrative Life Table.
(iii) ä40:10 = 7.70
(iv) ä50:10 = 7.57
(v) 1000A 1

40:20
= 60

At the end of the 10th year, the insured elects an option to retain the coverage
of 1,000 for life, but pay premiums for the next 10 years only.
Calculate the revised annual benefit premium for the next 10 years.

Problem 44.8 ‡
For a special whole life insurance on (35), you are given:
(i) The annual benefit premium is payable at the beginning of each year.
(ii) The death benefit is equal to 1000 plus the return of all benefit premiums
paid in the past without interest.
(iii) The death benefit is paid at the end of the year of death.
(iv) A35 = 0.42898
(v) (IA)35 = 6.16761
(vi) i = 0.05
Calculate the annual benefit premium for this insurance.

Problem 44.9 ‡
For a special 2-payment whole life insurance on (80):
(i) Premiums of π are paid at the beginning of years 1 and 3.
(ii) The death benefit is paid at the end of the year of death.
(iii) There is a partial refund of premium feature:
If (80) dies in either year 1 or year 3, the death benefit is 1000+ π

2
. Otherwise,

the death benefit is 1000.
(iv) Mortality follows the Illustrative Life Table.
(v) i = 0.06
Calculate π, using the equivalence principle.

Problem 44.10 ‡
For a special 3-year term insurance on (30), you are given:
(i) Premiums are payable semiannually.
(ii) Premiums are payable only in the first year.
(iii) Benefits, payable at the end of the year of death, are:
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k bk+1

0 1000
1 500
2 250

(iv) Mortality follows the Illustrative Life Table.
(v) Deaths are uniformly distributed within each year of age.
(vi) i = 0.06
Calculate the amount of each semiannual benefit premium for this insurance.

Problem 44.11 ‡
For a special fully discrete 2-year endowment insurance of 1000 on (x), you
are given:
(i) The first year benefit premium is 668.
(ii) The second year benefit premium is 258.
(iii) d = 0.06
Calculate the level annual premium using the equivalence principle.

Problem 44.12 ‡
For a special fully discrete 5-year deferred whole life insurance of 100,000 on
(40), you are given:
(i) The death benefit during the 5-year deferral period is return of benefit
premiums paid without interest.
(ii) Annual benefit premiums are payable only during the deferral period.
(iii) Mortality follows the Illustrative Life Table.
(iv) i = 0.06
(v) (IA) 1

40:5
= 0.04042.

Calculate the annual benefit premiums.

Problem 44.13 ‡
A group of 1000 lives each age 30 sets up a fund to pay 1000 at the end
of the first year for each member who dies in the first year, and 500 at the
end of the second year for each member who dies in the second year. Each
member pays into the fund an amount equal to the single benefit premium
for a special 2-year term insurance, with: (i) Benefits:

k bk+1

0 1000
1 500
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(ii) Mortality follows the Illustrative Life Table.
(iii) i = 0.06
The actual experience of the fund is as follows:

k Interest Rate Earned Number of Deaths

0 0.070 1
1 0.069 1

Calculate the difference, at the end of the second year, between the expected
size of the fund as projected at time 0 and the actual fund.

Problem 44.14 ‡
For a special fully discrete 30-payment whole life insurance on (45), you are
given:
(i) The death benefit of 1000 is payable at the end of the year of death.
(ii) The benefit premium for this insurance is equal to 1000P (A45) for the
first 15 years followed by an increased level annual premium of π for the
remaining 15 years.
(iii) Mortality follows the Illustrative Life Table.
(iv) i = 0.06
Calculate π.

Problem 44.15 ‡
For a special fully discrete 20-year term insurance on (30):
(i) The death benefit is 1000 during the first ten years and 2000 during the
next ten years.
(ii) The benefit premium, determined by the equivalence principle, is π for
each of the first ten years and 2π for each of the next ten years.
(iii) ä30:20 = 15.0364
(iv)

x äx:10 1000A1
x:10

30 8.7201 16.66
40 8.6602 32.61

Calculate π.

Problem 44.16 ‡
For an increasing 10-year term insurance, you are given:
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(i) bk+1 = 100, 000(1 + k), k = 0, 1, · · · , 9
(ii) Benefits are payable at the end of the year of death.
(iii) Mortality follows the Illustrative Life Table.
(iv) i = 0.06
(v) The single benefit premium for this insurance on (41) is 16,736.
Calculate the single benefit premium for this insurance on (40).
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45 Percentile Premium Principle

Besides the equivalence principle, there are other premium principles that
are sometimes considered. In this section, we introduce the percentile pre-
mium principle. With the percentile premium principle, premium is assessed
to ensure the insurer suffers financial loss with sufficiently low probability.
If we denote the insurer’s loss random variable by L, then the percentile
premium is the smallest premium π so that Pr(L > 0) ≤ α for some prede-
termined α ∈ (0, 1), i.e., the probability of a positive loss or simply loss is at
most α. We call π the 100α−percentile premium of the policy.
We will restrict our discussion to whole life insurance. The other types of
insurance can be treated similarly.
Now, for a fully continuous whole life insurance the loss random variable is

L̄x = νT − πāT , T ≥ 0.

If we graph L̄x versus T , we find a decreasing graph starting from 1 at time
T = 0 and decreasing to −π

δ
< 0. Thus, there is a t such that L̄x(t) = 0.

Hence, we can write

Pr(L̄x > 0) = Pr(T ≤ t) ≤ α.

But this implies that t is the 100α−th percentile of the remaining lifetime
random variable. Since T is continuous, we find t by solving the equation

FT (x)(t) = α.

Once t is found, the premium π satisfies the equation

0 = L̄x(t) = νt − πāt

Example 45.1
Consider the fully-continuous whole life insurance on (x) with a constant
force of mortality µ and a constant force of interest δ. Derive an expression
for the premium π using the percentile premium principle with α = 0.5. That
is, find the 50-th percentile premium of the policy.

Solution.
First, we find t :

e−µt = 0.5 =⇒ t = − ln 0.5

µ
.
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The percentile premium satisfies the equation

e−δ×
− ln 0.5
µ − π

(
1− e−δ×

− ln 0.5
µ

δ

)
= 0.

Solving this equation, we find

π =
δ(0.5)

δ
µ

1− (0.5)
δ
µ

Next, for a fully discrete whole life insurance, the loss random variable is
given by

Lx = νK+1 − πäK+1 .

Clearly, Lx is a decreasing function of K and Lx crosses the K−axis, say at
k. Hence, we can write

Pr(Lx > 0) = Pr(K ≤ k) ≤ α.

To determine k, we first note that

Pr(K ≤ k) = 1− Pr(K > k) = 1− k+1px = 1− `x+k+1

`x
.

We want to find the largest k such that

`x+k+1

`x
> 1− α or `x+k+1 > (1− α)`x.

This is accomplished by using the Illustrative Life table. Once, k is found,
the percentile premium is the solution to the equation

0 = Lx(k) = νk+1 − πäk+1 .

Example 45.2
Using the Illustrative Life Table for (35), find the smallest premium such
that the probability of loss of a discrete whole life insurance issued to (35) is
less than 0.5.

Solution.
We first find k such that

`35+k+1 > 0.5`35 = 0.5(9, 420, 657) = 4, 710, 328.50.
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From the Illustrative Life Table, we see that `78 = 4, 530, 360 < 4, 710, 328.50 <
4, 828, 182 = `77 so that k = 42. Now, we find the premium by solving the
equation

ν43 − πä43 = 0 =⇒ π =
1

s̈43

= 0.005031

Now, consider a fully continuous whole life insurance with annual premium
π and benefit payment b. Then the loss random variable is given by

L̄x = bνT − πāT .

The actuarial present value is given by

E(L̄x) = bĀx − πāx.

Note that this expected value is no longer necessarily equal to 0. The variance
of this type of policy is found as follows

Var(L̄x) =Var(bνT − πāT )

=Var

(
bνT − π1− νT

δ

)
=Var

(
νT
(
b+

π

δ

)
− π

δ

)
=
(
b+

π

δ

)2

Var(νT )

=
(
b+

π

δ

)2

[2Āx − (Āx)
2].

Example 45.3 ‡
For a fully discrete whole life insurance of 100,000 on each of 10,000 lives age
60, you are given:
(i) The future lifetimes are independent.
(ii) Mortality follows the Illustrative Life Table.
(iii) i = 0.06.
(iv) π is the premium for each insurance of 100,000. Using the normal ap-
proximation, calculate π, such that the probability of a positive total loss is
1%.
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Solution.
The loss at issue for a single policy is

L =100, 000νK+1 − πäK+1 = 100, 000νK+1 − π 1− νK+1

0.06(1.06)−1

=

(
100, 000 +

53

3
π

)
νK+1 − 53π

3
.

Thus,

E(L) =

(
100, 000 +

53

3
π

)
A60 −

53π

3
=

(
100, 000 +

53

3
π

)
(0.36913)− 53π

3

=36913− 11.14537π

and

Var(L) =

(
100, 000 +

53

3
π

)2

[2A60 − A2
60] =

(
100, 000 +

53

3
π

)2

[0.17741− 0.369132]

σL =20, 286.21 + 3.5838976π

The total loss on 10, 000 policies is S = L1 +L2 + · · ·+L10,000. Hence, E(S) =
10, 000E(L) = 10, 000(36913 − 11.14537π) and σS =

√
10, 000(20, 286.21 +

3.5838976π). Thus, the probability of positive total loss is:

Pr(S > 0) =Pr

(
S − 10, 000(36913− 11.14537π)√
10, 000(20, 286.21 + 3.5838976π)

> − 10, 000(36913− 11.14537π)√
10, 000(20, 286.21 + 3.5838976π)

)
=Pr

(
Z > − 10, 000(36913− 11.14537π)√

10, 000(20, 286.21 + 3.5838976π)

)
=1− Pr

(
Z < − 10, 000(36913− 11.14537π)√

10, 000(20, 286.21 + 3.5838976π)

)
=0.01.

That is,

Pr

(
Z < − 10, 000(36913− 11.14537π)√

10, 000(20, 286.21 + 3.5838976π)

)
= 0.99

and according to the Standard Normal distribution table, we must have

− 10, 000(36913− 11.14537π)√
10, 000(20, 286.21 + 3.5838976π)

= 2.326 =⇒ π = 3379.57
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Practice Problems

Problem 45.1
Consider a fully continuous whole life insurance on (x) with µ = 0.04 and
δ = 0.05. Find the smallest premium π such that the probability of a loss is
less than 50%.

Problem 45.2
Given δ = 0.06. T (20) follows De Moivre’s Law with ω = 100. Find the
25-th percentile fully continuous premium for a whole life insurance payable
at death.

Problem 45.3
Consider a fully continuous 30-year term insurance on (50) with unit pay-
ment. Assume that mortality follows De Moivre’s Law with ω = 120.
δ = 0.05. Find the smallest premium π such that the probability of a loss is
less than 20% if δ = 0.05.

Problem 45.4
You are given that mortality follow De Moivre’s Law with ω = 125 and
δ = 0.05. Calculate the premium that must be charged for a continuous
whole life issued to (75) so that the probability of a loss is less than 20

Problem 45.5
You are given that mortality follows the Illustrative Life Table with i = 6%.
Calculate the premium for a fully curtate whole life issued to (50) such that
the probability of a loss is less than 30%.

Problem 45.6
Consider a fully discrete whole life insurance with benefit payment b and
annual premium of π.
(a) Find the actuarial present value of this insurance.
(b) Find the variance of the loss random variable of this policy.

Problem 45.7
For a fully discrete whole life insurance of 1000 issues to (x), you are given
the following:
(i) i = 0.06
(ii) Ax = 0.24905
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(iii) 2Ax = 0.09476
(iv) äx = 13.267
(v) The contract annual premium is π = 0.25
(vi) Losses are based on the contract premium.
Find the actuarial present value and the variance of this policy.

Problem 45.8 ‡
For a block of fully discrete whole life insurances of 1 on independent lives
age x, you are given:
(i) i = 0.06
(ii) Ax = 0.24905
(iii) 2Ax = 0.09476
(iv) π = 0.025, where π is the contract premium for each policy.
(v) Losses are based on the contract premium.
Using the normal approximation, calculate the minimum number of policies
the insurer must issue so that the probability of a positive total loss on the
policies issued is less than or equal to 0.05.

Problem 45.9 ‡
For a fully discrete 2-year term insurance of 1 on (x) :
(i) 0.95 is the lowest premium such that there is a 0% chance of loss in year
1.
(ii) px = 0.75
(iii) px+1 = 0.80
(iv) Z is the random variable for the present value at issue of future benefits.
Calculate Var(Z).

Problem 45.10 ‡
For a fully discrete whole life insurance of 10,000 on (30):
(i) π denotes the annual premium and L(π) denotes the loss-at-issue random
variable for this insurance.
(ii) Mortality follows the Illustrative Life Table.
(iii) i = 0.06
Calculate the lowest premium, π′, such that the probability is less than 0.5
that the loss L(π′) is positive.
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Benefit Reserves

The “benefit reserve” of an insurance policy stands for the amount of money
the insurance company must have saved up to be able to provide for the
future benefits of the policy. This chapter covers the calculation of benefit
reserves.
The two methods that will be used for calculating reserves are the prospective
and retrospective methods. Under the prospective method, the reserve at
time t is the conditional expectation of the difference between the present
value of future benefits and the present value of future benefit premiums, the
conditional event being survivorship of the insured to time t. That is, the
reserve tV is the conditional expected value of the prospective loss random
variable

tL = PV(Future benefit at t)− PV(Future premiums at t).

We write

tV = E(tL|T > t) = APV of future benefits− APV of future premiums.

Note that the reserve is zero at time 0 (since the level premium is determined
by the equivalence principle at issue of the policy).
The use of the word prospective is due to the fact that the calculation of
reserve involves future benefits and premiums. In contrast calculation of
reserves based only on past activity is known as the retrospectvie method.
Under this method, the reserve at time t is the conditional expectation of
the difference between the accumulated value of past benefits paid and the
accumulated value of past premiums received, the conditional event being
survivorship of the insured to time t. That is, the reserve is the conditional
expectation of the excess random variable

tE = AV(premiums received)− AV(benefits paid).

495
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The sections of this chapter parallel sections of the previous chapter on ben-
efit premiums.
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46 Fully Continuous Benefit Reserves

In this section, we will analyze the benefit reserve at time t for various types
of continuous contingent contracts.

46.1 Fully Continuous Whole Life

Consider a unit fully continuous whole life insurance with an annual contin-
uous benefit premium rate of P̄ (Āx).

46.1.1 Reserves by the Prospective Method

The insurer’s prospective loss at time t (or at age x+ t) is:

tL̄(Āx) = νT−t − P̄ (Āx)āT−t = Z̄x+t − P̄ (Āx)Ȳx+t, T > t.

Example 46.1
Show that

tL̄(Āx) = Z̄x+t

(
1 +

P̄ (Āx)

δ

)
− P̄ (Āx)

δ
, T > t.

Solution.
We have

tL̄(Āx) =Z̄x+t − P̄ (Āx)Ȳx+t

=Z̄x+t − P̄ (Āx)

(
1− Z̄x+t

δ

)
=Z̄x+t

(
1 +

P̄ (Āx)

δ

)
− P̄ (Āx)

δ

The prospective formula for the whole life reserve at time t is:

tV̄ (Āx) = E(tL̄(Āx)|T (x) > t) = Āx+t − P̄ (Āx)āx+t.

Example 46.2
Find tV̄ (Āx) under a constant force of mortality µ and a constant force of
interest δ.
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Solution.
We have from Example 40.2,

tV̄ (Āx) =Āx+t − P̄ (Āx)āx+t

=
µ

µ+ δ
− µ

(
1

µ+ δ

)
= 0.

The exponential random variable is memoryless. Thus you might expect
that no reserves are required for it, since the initial expected loss was 0 and
subsequent times have the same exponential distribution

Example 46.3
You are given:
(i) Mortality follows De Moivre’s Law with ω = 100.
(ii) δ = 0.03.
(iii) tL̄(Āx) is the prospective loss random variable at time t for a fully
continuous whole life insurance on (40) with premiums determined based on
the equivalence principle.
Calculate 20V̄ (Ā40).

Solution.
We have

Ā40 =

∫ 60

0

e−0.03t

60
dt = 0.46372 ā40 =

1− Ā40

δ
= 17.876

Ā60 =

∫ 40

0

e−0.03t

40
dt = 0.58234 ā60 =

1− Ā60

δ
= 13.922

P̄ (Ā40) =
Ā40

ā40

= 0.02594

Thus,

20V̄ (Ā40) = Ā60 − P̄ (Ā40)ā60 = 0.58234− 0.02594(13.922) = 0.2212
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The variance of tL̄(Āx) is

Var(tL̄(Āx)) =Var

(
Z̄x+t

(
1 +

P̄ (Āx)

δ

)
− P̄ (Āx)

δ

)
=Var

(
Z̄x+t

(
1 +

P̄ (Āx)

δ

))
=

(
1 +

P̄ (Āx)

δ

)2

Var(Z̄x+t)

=

(
1 +

P̄ (Āx)

δ

)2

[2Āx+t − (Āx+t)
2].

Example 46.4
Find Var(20L̄(Ā40)) for the previous example.

Solution.
We have

2Ā60 =

∫ 40

0

e−0.06t

40
dt = 0.37887.

Thus,

Var(20L̄(Ā40)) =

(
1 +

P̄ (Ā40)

δ

)2

[2Ā60 − (Ā60)2]

=

(
1 +

0.02594

0.03

)2

[0.37887− (0.58234)2] = 0.13821

Now, in the case of a limited payment funding patterns such as an h−payment
whole life contract, the loss random variable is

h
t L̄(Āx) =

{
νT−t − hP̄ (Āx)āmin{(T−t,h−t)} t ≤ h

νT−t, t > h.

Thus, the prospective benefit reserve is

h
t V̄ (Āx) = Āx+t − tP̄ (Āx)āx+t:h−t

for t ≤ h, since the future premium stream continues only to the hth year.
For t > h there are no future premiums so that the prospective reserve is
simply

h
t V̄ (Āx) = Āx+t.
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In summary, we have

h
t V̄ (Āx) =

{
Āx+t − tP̄ (Āx)āx+t:h−t , t ≤ h
Āx+t, t > h.

Example 46.5
You are given that mortality follows De Moivre’s Law with ω = 125 and
δ = 0.05. Calculate 10

5 V̄ (Ā75).

Solution.
We have

Ā80 =
ā45

45
=

1− e−0.05(45)

0.05(45)
= 0.39760

Ā75 =
ā50

50
=

1− e−0.05(50)

0.05(50)
= 0.36717

Ā 1
75:10 =

ā10

50
=

1− e−0.05(10)

0.05(50)
= 0.157388

10E75 =e−0.05(10)

(
125− 75− 10

125− 75

)
= 0.48522

Ā75:10 =0.157388 + 0.48522 = 0.642608

ā75:10 =
1− Ā75:10

δ
= 7.14784

5P̄ (Ā75) =
Ā75

ā75:10

=
0.36717

7.14784
= 0.05137

Ā80:5 =
ā5

45
+ 5E80 = 0.79058

ā80:5 =
1− Ā80:5

δ
= 4.1884.

Thus,
10
5 V̄ (Ā75) = 0.39760− 0.05137(4.1884) = 0.1824
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Practice Problems

Problem 46.1
Show that

tV̄ (Āx) = 1− āx+t

āx
.

Problem 46.2
For a fully continuous whole life policy of $1 issued to (30), you are given:
(i) ā50 = 7.5
(ii) 20V̄ (Ā30) = 0.1.
Calculate ā30.

Problem 46.3
For a fully continuous whole life policy of $1 issued to (30), you are given:
(i) ā40 = 8.0
(ii) ā50 = 7.5
(iii) 20V̄ (Ā30) = 0.1.
Calculate 10V̄ (Ā30).

Problem 46.4
For a fully continuous whole life policy of $1 issued to (40), you are given:
(i) Mortality follows De Moivre’s Law with ω = 100.
(ii) The following annuity-certain values: ā50 = 16.23, ā60 = 16.64.
Calculate 10V̄ (Ā40).

Problem 46.5
For a fully continuous whole life policy of 1 issued to (x), you are given:
(i) tV̄ (Āx) = 0.100
(ii) δ = 0.03
(iii) P̄ (Āx) = 0.105
Calculate āx+t.

Problem 46.6
You are given that µ = 0.02 and δ = 0.05. Calculate var(tL̄(Āx)).

Problem 46.7
You are given that mortality follows De Moivre’s Law with ω = 125 and
δ = 0.05. Calculate 10

15V̄ (Ā75).
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Problem 46.8 ‡
For a fully continuous whole life insurance of 1 on (x), you are given: (i) The
forces of mortality and interest are constant.
(ii) 2Āx = 0.20
(iii) P̄ (Āx) = 0.03
(iv) 0L is the loss-at-issue random variable based on the benefit premium.
Calculate Var(0L).

Problem 46.9 ‡
For a fully continuous whole life insurance of 1 on (30), you are given:
(i) The force of mortality is 0.05 in the first 10 years and 0.08 thereafter.
(ii) δ = 0.08
Calculate the benefit reserve at time 10 for this insurance.
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46.1.2 Other Special Formulas for the Prospective Reserve

In this section, we derive some equivalent forms of the prospective reserve
formula for a continuous whole life contract.

Example 46.6
Show that

tV̄ (Āx) = 1− āx+t

āx
.

Solution.
We have

tV̄ (Āx) =Āx+t − P̄ (Āx)āx+t

=(1− δāx+t)−
(

1− δāx
āx

)
āx+t

=1− δāx+t −
āx+t

āx
+ δāx+t

=1− āx+t

āx

This formula for the reserve involves only annuity functions and so is known
as the annuity reserve formula. Note that āx+t > āx so that tV̄ (Āx) < 1.

Example 46.7
Show that

tV̄ (Āx) =
Āx+t − Āx

1− Āx
.

Solution.
Using the relation Āx + δāx = 1 we can write

tV̄ (Āx) =1− āx+t

āx
= 1− δ−1(1− Āx+t)

δ−1(1− Āx)

=
Āx+t − Āx

1− Āx

This formula for the reserve involves only insurance costs. It is known as the
benefit formula.
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Example 46.8
Show that

tV̄ (Āx) = Āx+t

(
1− P̄ (Āx)

P̄ (Āx+t)

)
.

Solution.
We have

tV̄ (Āx) =Āx+t − P̄ (Āx)āx+t

=Āx+t

(
1− P̄ (Āx)

āx+t

Āx+t

)
=Āx+t

(
1− P̄ (Āx)

P̄ (Āx+t)

)
This expression is known as the paid-up insurance formula.

Example 46.9
Show that

tV̄ (Āx) =
P̄ (Āx+t)− P̄ (Āx)

P̄ (Āx+t) + δ
.

Solution.
We have

P̄ (Āx+t) =
Āx+t

δ−1(1− Āx+t)
=⇒ Āx+t

P̄ (Āx+t)
=

1

P̄ (Āx+t) + δ
.

Thus, we have

tV̄ (Āx) =Āx+t

(
1− P̄ (Āx)

P̄ (Āx+t)

)
=

[P̄ (Āx+t)− P̄ (Āx)]Āx+t

P̄ (Āx+t)

=
P̄ (Āx+t)− P̄ (Āx)

P̄ (Āx+t) + δ
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Practice Problems

Problem 46.10
For a fully continuous whole life policy with unit benefit issued to (x), you
are given:
(i) āx = 12
(ii) āx+t = 8.4.
Calculate tV̄ (Āx).

Problem 46.11
For a fully-continuous whole life insurance of unit benefit issued to (40), you
are given:
(i) Mortality follows De Moivre’s Law with ω = 100
(ii) δ = 0.05.
Calculate 15V̄ (Ā40) using the benefit formula.

Problem 46.12
You are given:
(i) 1000Āx = 400
(ii) 1000Āx+t = 500
Calculate tV̄ (Āx).

Problem 46.13
For a fully-continuous whole life insurance of unit benefit issued to (40), you
are given:
(i) Mortality follows De Moivre’s Law with ω = 100
(ii) δ = 0.05.
Calculate 15V̄ (Ā40) using the paid-up insurance formula.

Problem 46.14
For a fully-continuous whole life insurance of unit benefit issued to (40), you
are given:
(i) Mortality follows De Moivre’s Law with ω = 100
(ii) δ = 0.05.
Calculate 15V̄ (Ā40) using the formula of Example 46.9.

Problem 46.15
Show that

tV̄ (Āx) = āx+t[P̄ (Āx+t)− P̄ (Āx)].

This formula is known as the premium difference formula.
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Problem 46.16
For a fully-continuous whole life insurance of unit benefit issued to (40), you
are given:
(i) Mortality follows De Moivre’s Law with ω = 100
(ii) δ = 0.05.
Calculate 15V̄ (Ā40) using the difference premium formula.
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46.1.3 Retrospective Reserve Formula

The prospective method uses future benefits and premiums to calculate the
policy’s reserve at a given time. An alternative to finding the reserve at time
t is to look back at past activities between the ages of x and x+ t. We refer
to this approach as the retrospective method.
Consider the reserves at time t of the fully continuous whole life insurance
issued to (x) with benefit 1. Then

tV̄ (Āx) =Āx+t − P̄ (Āx)āx+t

=Āx+t − P̄ (Āx)āx+t +
P̄ (Āx)āx − Āx

tEx

=P̄ (Āx)

(
āx − tExāx+t

tEx

)
−
(
Āx − tExĀx+t

tEx

)
=P̄ (Āx)

(
āx:t

tEx

)
−

(
Ā1
x:t

tEx

)
=P̄ (Āx)s̄x:t − tk̄x.

The first term

P̄ (Āx)

(
āx:t

tEx

)
= P̄ (Āx)s̄x:t

is the (actuarial) accumulated value of the premiums paid during the first t
years.
The second term

tk̄x =
Ā1
x:t

tEx

is the actuarial accumulated value of past benefits or the accumulated cost
of insurance.

Remark 46.1
The prospective and retrospective reserve methods should always yield the
same result provided the same assumptions and basis (mortality, interest)
are used in the calculations.

Example 46.10
You are given:
(i) Mortality follows De Moivre’s Law with ω = 100.
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(ii) δ = 0.03.
(iii) tĒ(Āx) is the retrospective excess random variable at time t for a fully
continuous whole life insurance on (40) with premiums determined based on
the equivalence principle.
Calculate 20V̄ (Ā40) using the retrospective formula.

Solution.
We have

Ā 1
40:20 =

ā20

60
=

1− e−0.03(20)

0.03(60)
= 0.25066

ā40:20 =
1− Ā40:20

δ

=
1− [Ā 1

40:20
− ν20

20p40]

δ

=
1−

[
0.25066 + e−0.03(20)

(
100−40−20

100−40

)]
0.03

= 12.7822

20E40 =e−0.03(20)

(
100− 40− 20

100− 40

)
= 0.36587

Ā40 =

∫ 60

0

e−0.03t

60
dt = 0.46372

ā40 =
1− Ā40

δ
= 17.876

P̄ (Ā40) =
Ā40

ā40

= 0.02594

Thus,

20V̄ (Ā40) =
0.02594(12.7822)− 0.25066

0.36587
= 0.2211.

Compare this answer to the answer in Example 46.3
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Practice Problems

Problem 46.17
You are given:
(i) Mortality follows De Moivre’s Law with ω = 100.
(ii) i = 0.06.
Calculate 10V̄ (Ā40) using the retrospective formula.

Problem 46.18
Write prospective and retrospective formulas for 10V̄ (Ā50), the reserve at
time 10 for a continuous whole life insurance with unit benefit issued to (50).

Problem 46.19
Write the retrospective formula of a continuous whole life insurance entirely
in terms of benefit premiums.

Problem 46.20
True or false?
The benefit reserve at duration t is a measure of liability for a policy issued
at age x that is still in force at age x+ t. It is equal to the APV at age x+ t
of the future benefits less the APV at age x+ t of the future premiums.

Problem 46.21
You are given:
(i) tV̄ (Āx) = 0.563
(ii) P̄ (Āx) = 0.090
(iii) P̄ (A 1

x:n ) = 0.00864.
Calculate P̄ (Ā1

x:n ).
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46.2 Fully Continuous n−year Term

For other types of insurances, similar development of prospective and ret-
rospective formulas can be made. The fundamental principles always hold:
when developing the reserves, the prospective formula is always the actuarial
present value of future benefits minus the actuarial present value of future
premiums. For the retrospective formula, the actuarial accumulated value of
past premiums minus the actuarial accumulated value of past benefits.
Consider a fully continuous n−year term insurance with unit benefit. The
insurer’s prospective loss at time t (or at age x+ t) is:

tL̄(Ā1
x:n ) =νT−tI(T ≤ n)− P̄ (Ā1

x:n )āmin{(T−t,n−t)}

=Z 1
x+t:n−t − P̄ (Ā1

x:n )Ȳx+t:n−t , t < n.

If t = n then nL̄(Ā1
x:n ) = 0. Thus, the prospective formula of the reserve at

time t for this contract is

tV̄ (Ā1
x:n ) =

{
Ā 1
x+t:n−t − P̄ (Ā1

x:n )āx+t:n−t , t < n

0, t = n.

Note that the reserve is 0 at time t = n since the contract at that time is
expired without value.

Example 46.11
You are given:
(i) Mortality follows De Moivre’s Law with ω = 100.
(ii) δ = 0.05.
(iii) tL̄(Ā 1

30:n ) is the prospective loss random variable at time t for a fully
continuous n−year life insurance on (30) with premiums determined based
on the equivalence principle.
Calculate 5V̄ (Ā 1

30:10
).

Solution.
We have

Ā 1
35:5 =

ā5

65
=

1− e−0.05(5)

0.05(65)
= 0.0681

ā35:5 =
1− Ā35:5

δ
=

1− [Ā 1
35:5
− ν5

5p35]

δ

=
1−

[
0.0681 + e−0.05(5)

(
100−35−5

100−35

)]
0.05

= 4.2601
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Ā 1
30:10 =

ā10

70
=

1− e−0.05(10)

0.05(70)
= 0.1125

ā30:10 =
1− Ā30:10

δ
=

1− [Ā 1
30:10

− ν10
10p30]

δ

=
1−

[
0.1125 + e−0.05(10)

(
100−30−10

100−30

)]
0.05

= 7.3523

P̄ (Ā 1
30:10 ) =

0.1125

7.3523
= 0.0153.

Thus,

5V̄ (Ā 1
30:10 ) = 0.0681− 0.0153(4.2601) = 0.0029

Example 46.12 ‡
For a 5-year fully continuous term insurance on (x) :
(i) δ = 0.10
(ii) All the graphs below are to the same scale.
(iii) All the graphs show µ(x+ t) on the vertical axis and t on the horizontal
axis.
Which of the following mortality assumptions would produce the highest
benefit reserve at the end of year 2?

Solution.
The prospective benefit reserve of a 5-year fully continuous term insurance
on (x) is

2V̄ (Ā1
x:5 ) =

∫ 3

0

νttpx+2µ(x+ t+ 2)dt−
∫ 5

0
νttpxµ(x+ t)dt∫ 5

0
νttpxdt

∫ 3

0

νttpx+2dt.

It follows that if µ(x + t) = µ for all 0 ≤ t ≤ 5 then 2V̄ (Ā1
x:5

) = 0. That is,
the benefit reserve under (E) is zero.
Now, prospectively, the actuarial present value at time t = 2 of the future
benefits under (B) is larger than the actuarial present value of the future
benefits under (C) since people will be dying faster and therefore collecting
their benefits. Also, because people are dying faster under (B) than under
(C), the actuarial present value of future premiums under (B) is smaller than
actuarial present value of future premiums under (C). Hence, the benefit re-
serve under (B) is larger than the one under (C). In the same token, the
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benefit reserve under (B) is larger than the one under (C).
Now, retrospectively, before time t = 2, less premiums were received under
(D) than under (B). Thus, the actuarial accumulated value at time t = 2 of
all past premiums under (B) is larger than the actuarial accumulated value
of all past premiums under (D). Moreover, more benefits were paid under
(D) than under (B) so that the actuarial accumulated value at time t = 2 of
past benefits paid under (B) is less than the actuarial accumulated value of
past benefits paid under (D). Hence, the benefit reserve under (B) is larger
than the one under (D).
In conclusion, the mortality given in (B) produce the highest benefit reserve
at the end of year 2
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Practice Problems

Problem 46.22
Show that under constant mortality µ and constant force of interest δ, we
have tV̄ (Ā1

x:n ) = 0.

Problem 46.23
You are given that µ = 0.02 and δ = 0.05. Calculate 5V̄ (Ā 1

75:20
).

Problem 46.24
You are given that Mortality follows De Moivre’s Law with ω = 125 and
δ = 0.05. Calculate 10V̄ (Ā 1

75:20
).

Problem 46.25
Write the premium difference reserve formula for an n−year term insurance.

Problem 46.26
Write the paid-up insurance formula for an n−year term insurance.
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46.3 Fully Continuous n−year Endowment Insurance

For this policy, the insurer’s prospective loss at time t (or at age x+ t) is:

tL̄(Āx:n ) =νmin{(T−t,n−t)} − P̄ (Āx:n )āmin{(T−t,n−t)}

=Z̄x+t:n−t − P̄ (Āx:n )Ȳx+t:n−t , t < n

and nL̄(Āx:n ) = 1. The prospective formula of the reserve at time t is

tV̄ (Āx:n ) =

{
Āx+t:n−t − P̄ (Āx:n )āx+t:n−t , t < n
1, t = n.

Note that the reserve at time t = n is 1 because the contract matures at
duration n for the amount of unit endowment benefit.

Example 46.13
You are given:
(i) Mortality follows De Moivre’s Law with ω = 125.
(ii) δ = 0.05.
Calculate 10V̄ (Ā75:20 ).

Solution.
We have

Ā 1
85:10 =

ā10

40
=

1− e−0.05(10)

0.05(40)
= 0.1967

10E85 =e−0.05(10)

(
125− 85− 10

125− 85

)
= 0.4549

Ā85:10 =0.1967 + 0.4549 = 0.6516

Ā75:20 =
ā20

50
+ 20E75 = 0.4736

ā75:20 =
1− Ā75:20

δ
= 10.528

ā85:10 =
1− Ā85:10

δ
= 6.968.

Thus.

10V̄ (Ā75:20 ) = 0.6516−
(

0.4736

10.528

)
(6.968) = 0.3381
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Now, in the case of a limited payment funding patterns such as an h−year
temporary annuity: If t ≤ h < n, we have

h
t L̄(Āx:n ) =


νT−t − hP̄ (Āx:n )āT−t , T ≤ h
νT−t − hP̄ (Āx:n )āh−t , h < T ≤ n
νn−t − hP̄ (Āx:n )āh−t , T > n.

If h < t < n, we have

h
t L̄(Āx:n ) =

{
νT−t, T ≤ n
νn−t, T > n.

If t = n then h
nL̄(Āx:n ) = 1. Thus, the prospective benefit reserve is

h
t V̄ (Āx:n ) = Āx+t:n−t − hP̄ (Āx:n )āx+t:h−t

for t ≤ h < n, since the future premium stream continues only to the hth

year. For h < t < n, there are no future premiums so that the prospective
reserve is simply

h
t V̄ (Āx:n ) = Āx+t:n−t .

Fot t = n, the contract matures at duration n for the amount of unit endow-
ment benefit so that the reserve is 1. In summary, we have

h
t V̄ (Āx:n ) =


Āx+t:n−t − hP̄ (Āx:n )āx+t:h−t , 0 < t ≤ h < n
Āx+t:n−t , h < t < n
1, t = n.

Example 46.14
You are given:
(i) Mortality follows De Moivre’s Law with ω = 125.
(ii) δ = 0.05.
Calculate 10

5 V̄ (Ā75:20 ).
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Solution.
We have

Ā80:15 =
ā15

45
+ 15E80 = 0.5494

Ā80:5 =
ā5

45
+ 5E80 = 0.7906

ā80:5 =
1− Ā80:5

δ
= 4.188

Ā75:10 =
ā10

50
+ 10E75 = 0.6426

ā75:10 =
1− Ā75:10

δ
= 7.148

Ā75:20 =
ā20

50
+ 20E75 = 0.4736

10P̄ (Ā75:20 ) =
0.4736

7.148
= 0.0663.

Thus,
10
5 V̄ (Ā75:20 ) = 0.5494− 0.0663(4.188) = 0.2717
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Practice Problems

Problem 46.27
You are given:
(i) Mortality follows De Moivre’s Law with ω = 100.
(ii) δ = 0.05.
Calculate 5V̄ (Ā30:10 ).

Problem 46.28
You are given µ = 0.02 and δ = 0.05. Calculate 10V̄ (Ā75:20 ).

Problem 46.29
Show that

tV̄ (Āx:n ) =
Āx+t:n−t − Āx:n

1− Āx:n

.

Problem 46.30
You are given:
(i) Ā50:10 = 0.6426
(ii) Ā40:10 = 0.4559
Calculate 10V̄ (Ā40:20 ).

Problem 46.31
Find the prospective reserve formula for an n−year pure endowment of 1
issued to (x).

Problem 46.32
You are given:
(i) Mortality follows De Moivre’s Law with ω = 125.
(ii) δ = 0.05.
Calculate 10

15V̄ (Ā75:20 ).

Problem 46.33
You are given:
(i) Mortality follows De Moivre’s Law with ω = 125.
(ii) δ = 0.05.
Calculate 10

20V̄ (Ā75:20 ).
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46.4 Fully Continuous n−year Pure Endowment

For a fully continuous n−year pure endowment, the insurer’s prospective loss
at time t (or at age x+ t) is:

tL̄(A 1
x:n ) = νn−tI(T > n)− P̄ (A 1

x:n )āmin{(T−t,n−t)} , t < n

and nL̄(A 1
x:n ) = 1. The prospective benefit reserve is

tV̄ (A 1
x:n ) =

{
A 1
x+t:n−t − P̄ (A 1

x:n )āx+t:n−t t < n

1 t = n.

Example 46.15
You are given µ = 0.02 and δ = 0.05. Calculate 5V̄ (A 1

75:20
).

Solution.
We have

A 1
75:20 =e−20(0.02+0.05) = 0.24660

ā75:20 =
1− Ā75:20

δ

=
1−

[
µ
µ+δ

(1− e−20(µ+δ)) + e−20(µ+δ)
]

δ
=10.76290

P̄ (A 1
75:20 ) =

0.24660

10.76290
= 0.0229

A 1
80:15 =e−15(0.02+0.05) = 0.3499

ā80:15 =9.2866.

Thus,

5V̄ (A 1
75:20 ) = 0.3499− 0.0229(9.2866) = 0.1372
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Practice Problems

Problem 46.34
You are given:
(i) Mortality follows De Moivre’s Law with ω = 125.
(ii) δ = 0.05.
Calculate 10V̄ (A 1

75:20
).

Problem 46.35
For a fully continuous 20-year pure endowment of unit benefit on (75), you
are given:
(i) tL̄(A 1

75:20
) is the prospective loss random variable at time t.

(ii) δ = 0.05.
(iii) P̄ (A 1

75:20
) = 0.0229.

(iv) Premiums are determined by the equivalence principle.
Calculate 5L̄(A 1

75:20
) given that (x) dies in the 25th year after issue.

Problem 46.36
Interpret the meaning of 10V̄ (A 1

75:20
).

Problem 46.37
Show that

tV̄ (Ā 1
x:n ) = tV̄ (Āx:n )− tV̄ (Ā1

x:n ).

Problem 46.38
Show that under constant force of mortality µ and constant δ, we have

tV̄ (Ā 1
x:n ) = tV̄ (Āx:n ).
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46.5 n−year Deferred Whole Life Annuity

For an n−year deferred contingent annuity-due contract funded continuously
over the deferred period, the prospective loss at time t is

tL̄(n|āx) = āT−n ν
n−tI(T > n)− P̄ (n|āx)āmin{(T−t,n−t)} , t ≤ n

and

tL̄(n|āx) = āT−n , t > n.

The prospective benefit reserve for this contract is

tV̄ (n|āx) =

{
n−t|āx+t − P̄ (n|āx)āx+t:n−t t ≤ n
āx+t t > n.

Example 46.16 ‡
For a 10-year deferred whole life annuity of 1 on (35) payable continuously:
(i) Mortality follows De Moivre’s Law with ω = 85.
(ii) i = 0
(iii) Level benefit premiums are payable continuously for 10 years.
Calculate the benefit reserve at the end of five years.

Solution.
We want to find

5V̄ (10|ā35) = 5|ā40 − P̄ (10|ā35)ā40:5 .

We have

5E40 =
40

45
=

8

9
ā45 =

∫ 40

0

(
1− t

40

)
dt = 20

5|ā40 =
8

9
(20) =

160

9

10E35 =
40

50
=

4

5
ā45 =

∫ 40

0

(
1− t

40

)
dt = 20

10|ā35 =
4

5
(20) = 16 ā35:10 =

∫ 10

0

(
1− t

50

)
dt = 9

P̄ (10|ā35) =
16

9
= 1.778

ā40:5 =

∫ 5

0

(
1− t

45

)
dt = 4.722
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Thus,

5V̄ (10|ā35) =
160

9
− 1.778(4.722) = 9.38
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Practice Problems

Problem 46.39
For a 10-year deferred whole life annuity of 1 on (35) payable continuously:
(i) Mortality follows De Moivre’s Law with ω = 85.
(ii) i = 0
(iii) Level benefit premiums are payable continuously for 10 years.
Calculate the benefit reserve at the end of 12 years.

Problem 46.40
For a 10-year deferred whole life annuity of 1 on (35) payable continuously:
(i) Mortality follows De Moivre’s Law with ω = 85.
(ii) δ = 0.05
(iii) Level benefit premiums are payable continuously for 10 years.
Calculate the benefit reserve at the end of five years.

Problem 46.41
For a 10-year deferred whole life annuity of 1 on (75) payable continuously:
(i) µ = 0.02
(ii) δ = 0.05
(iii) Level benefit premiums are payable continuously for 10 years.
Calculate the benefit reserve at the end of five years.

Problem 46.42
For a 10-year deferred whole life annuity of 1 on (75) payable continuously:
(i) µ = 0.02
(ii) δ = 0.05
(iii) Level benefit premiums are payable continuously for 10 years.
Calculate the benefit reserve at the end of the twelfth year.

Problem 46.43
For a 10-year deferred whole life annuity of 1 on (75) payable continuously:
(i) µ = 0.02
(ii) δ = 0.05
(iii) Level benefit premiums are payable continuously for 10 years.
Calculate 12L̄(10|ā75) given that death occurred at the end of the thirteenth
year.
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47 Fully Discrete Benefit Reserves

Two important concepts are in order before starting the discussion of discrete
benefit reserves. Let nV denote the terminal benefit reserve for year n,
that is the reserve at the instant year n ends. Let πn be the premium paid at
the beginning of year n+1. Then the quantity nV +πn is the initial benefit
reserve for year n+ 1. See Figure 47.1.

Figure 47.1

The benefit reserves of this section are for discrete insurances with premiums
paid at the beginning of the year and benefit paid at the end of the year of
death.

47.1 Fully Discrete Whole Life Insurance

Consider a whole life insurance of unit benefit issued to (x) and with benefit
premium P (Ax). The loss random variable of (x) surviving k years is defined
by

kL(Ax) = νK(x)−k+1 − P (Ax)äK(x)−k+1 .

The conditional expectation of the loss function, conditioned on surviving k
years, is known as the prospective kth terminal reserve of the policy and
is given by

kV (Ax) = E[kL|K(x) ≥ k] = Ax+k − P (Ax)äx+k.

As before, this formula is the actuarial present value at time k of future
benefits from age x + k minus the actuarial present value of future benefit
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premiums.
Now, the variance of the loss random variable can be found as follows:

Var(kL|K(x) ≥ k) =Var[νK(x)−k+1 − P (Ax)äK(x)−k+1 |K(x) ≥ k]

=Var

[
νK(x)−k+1

(
1 +

P (Ax)

d

)
− P (Ax)

d
|K(x) ≥ k

]
=Var

[
νK(x)−k+1

(
1 +

P (Ax)

d

)
|K(x) ≥ k

]
=

(
1 +

P (Ax)

d

)2

Var[νK(x)−k+1|K(x) ≥ k]

=

(
1 +

P (Ax)

d

)2

[2Ax+k − (Ax+k)
2].

Example 47.1
You are given that Mortality follows the Illustrative Life Table with i = 6%.
Calculate:
(a) 10V (A60).
(b) Var(10L(Ax)|K(x) ≥ 10).

Solution.
(a) We have

A60 =0.36913 ä60 =11.1454

P (A60) =
0.36913

11.1454
= 0.03312

A70 =0.51495 ä70 =8.5693.

Thus, the prospective benefit reserve is

10V (A60) = 0.51495− 0.03312(8.5693) = 0.2311.

(b) The variance is

Var(10L(Ax)) =

(
1 +

P (A60)

d

)2

[2A70 − (A70)2]

=

(
1 +

0.03312

0.06(1.06)−1

)2

[0.30642− 0.514952] = 0.10364
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Now, in the case of a limited payment funding patterns such as an h−payment
whole life contract, the loss random variable is

h
kL(Ax) =

{
νK−k+1 − hP (Ax)ämin{(K−k+1,h−k)} k < h

νK−k+1, k ≥ h.

Thus, the prospective benefit reserve is

h
kV (Ax) =

{
Ax+k − hP (Ax)äx+k:h−k , k < h
Ax+k, k ≥ h.

Example 47.2
You are given that Mortality follows the Illustrative Life Table with i = 6%.
Calculate:
(a) 10

5 V (A60).
(b) 10

15V (A60).

Solution.
(a) We have

A65 =0.43980

ä60 =11.1454

10E60 =ν10 `70

`60

= (1.06)−10

(
6, 616, 155

8, 188, 074

)
= 0.4512

ä60:10 =ä60 − 10E60ä70 = 11.1454− 0.4512(8.5693) = 7.28

10P (A60) =
A60

ä60:10

=
0.36913

7.28
= 0.0507

ä65:5 =ä65 − 5E65ä70 = 9.8969− 0.6562(8.5693) = 4.2737.

The prospective benefit reserve is

10
5 V (A60) = A65 − 10P (A65)ä65:5 = 0.43980− 0.0612(4.2737) = 0.1782.

(b) Since k = 15 > h = 10, the prospective benefit reserve is just A75 =
0.59149

Example 47.3
You are given:
(i) i = 0.04
(ii) 20

23V (A15) = 0.585
(iii) 20

24V (A15) = 0.600.
Calculate p38.
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Solution.
Since k = 23 > h = 20, the prospective benefit reserve 20

23V (A15) is just A38.
Likewise, 20

24V (A15) = A39. Thus,

0.585 =20
23V (A15) = A38 = νq38 + νp38A39 = (1.04)−1[q38 + p38(0.600)]

0.6084 =1− p38 + p38(0.600) = 1− 0.4p38

p38 =
1− 0.6084

0.4
= 0.979

Example 47.4 ‡
Lottery Life issues a special fully discrete whole life insurance on (25):
(i) At the end of the year of death there is a random drawing. With proba-
bility 0.2, the death benefit is 1000. With probability 0.8, the death benefit
is 0.
(ii) At the start of each year, including the first, while (25) is alive, there is
a random drawing. With probability 0.8, the level premium π is paid. With
probability 0.2, no premium is paid.
(iii) The random drawings are independent.
(iv) Mortality follows the Illustrative Life Table.
(v) i = 0.06
(vi) π is determined using the equivalence principle.
Calculate the benefit reserve at the end of year 10.

Solution.
By the equivalence principle, we must have

APVFB = APVFP

which in our case is

(0.2)(1000)A25 = π(0.8)ä25 =⇒ (0.2)(1000)(81.65) = (0.8)(16.2242)π =⇒ π = 1.258.

Hence, the reserve at the end of year 10 is

10V =(0.2)(1000)A35 − 1.258(0.8)ä35

=(0.2)(1000)(0.12872)− 1.258(0.8)(15.3926) = 10.25
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Practice Problems

Problem 47.1
You are given that Mortality follows the Illustrative Life Table with i = 6%.
Calculate:
(a) 2V (A65).
(b) Var(2L(A65)).

Problem 47.2
Show that

kV (Ax) = 1− äx+k

äx
.

This formula is known as the discrete reserve annuity formula.

Problem 47.3
You are given that Mortality follows the Illustrative Life Table with i = 6%.
Calculate 2V (A65) using the discrete reserve annuity formula.

Problem 47.4
Show that

kV (Ax) = (P (Ax+k)− P (Ax))äx+k.

This formula is known as the discrete premium difference formula.

Problem 47.5
You are given that Mortality follows the Illustrative Life Table with i = 6%.
Calculate 2V (A65) using the discrete premium difference formula.

Problem 47.6
Show that

kV (Ax) = Ax+k

(
1− P (Ax)

P (Ax+k)

)
.

This formula is known as the discrete paid-in insurance formula.

Problem 47.7
You are given that Mortality follows the Illustrative Life Table with i = 6%.
Calculate 2V (A65) using the discrete paid-in insurance formula.
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Problem 47.8
Show that

kV (Ax) =
Ax+k − Ax

1− Ax
.

This formula is known as the discrete benefit formula.

Problem 47.9
You are given that Mortality follows the Illustrative Life Table with i = 6%.
Calculate 2V (A65) using the discrete benefit formula.

Problem 47.10
Show that

kV (Ax) =
P (Ax)äx:k − A1

x:k

kEx
.

This formula is known as the discrete retrospective formula.

Problem 47.11
You are given that Mortality follows the Illustrative Life Table with i = 6%.
Calculate 2V (A65) using the discrete retrospective formula.

Problem 47.12
Show that

kV (Ax) =
P (Ax+k)− P (Ax)

P (Ax+k) + d
.

Problem 47.13 ‡
For a fully discrete whole life insurance of 1000 on (40), the contract premium
is the level annual benefit premium based on the mortality assumption at
issue. At time 10, the actuary decides to increase the mortality rates for ages
50 and higher. You are given:
(i) d = 0.05
(ii) Mortality assumptions:
• At issue: k|q40 = 0.02, k = 0, 1, 2, · · · , 49
• Revised prospectively at time 10: k|q50 = 0.04, k = 0, 1, 2, · · · , 24
(iii) 10L is the prospective loss random variable at time 10 using the contract
premium.
Calculate E[10L|K(40) ≥ 10] using the revised mortality assumption.
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Problem 47.14 ‡
For a fully discrete whole life insurance of 1000 on (60), the annual benefit
premium was calculated using the following:
(i) i = 0.06
(ii) q60 = 0.01376
(iii) 1000A60 = 369.33
(iv) 1000A61 = 383.00
A particular insured is expected to experience a first-year mortality rate ten
times the rate used to calculate the annual benefit premium. The expected
mortality rates for all other years are the ones originally used.
Calculate the expected loss at issue for this insured, based on the original
benefit premium.

Problem 47.15 ‡
You are given:
(i) P (Ax) = 0.090
(ii) nV (Ax) = 0.563
(iii) P (A 1

x:n ) = 0.00864.
Calculate P (A1

x:n ). Hint: Problem 47.10.

Problem 47.16 ‡
For a fully discrete whole life insurance of 1000 on (50), you are given:
(i) 1000P (A50) = 25
(ii) 1000A61 = 440
(iii) 1000q60 = 20
(iv) i = 0.06
Calculate 100010V50.

Problem 47.17 ‡
For a fully discrete whole life insurance of 25,000 on (25), you are given:
(i) P (A25) = 0.01128
(ii) P (A 1

25:15
) = 0.05107

(iii) P (A25:15 ) = 0.05332.
Calculate 25, 00015V25. Hint: Problem 47.10.
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47.2 Fully Discrete n−year Term Insurance

For other types of insurances, similar development of prospective formulas
can be made. The fundamental principle always hold: when developing the
reserves, the prospective formula is always the actuarial present value of fu-
ture benefits minus the actuarial present value of future premiums.
Consider a fully discrete n−year term insurance with unit benefit. The
prospective loss at time k (or at age x+ k) is:

kL(A1
x:n ) = νK−k+1I(K < n)− P (A1

x:n )ämin{(K−k+1,n−k)}

for k < n. If k = n then nL(A1
x:n ) = 0. The prospective kth terminal reserve

for this contract is

kV (A1
x:n ) =

{
A 1
x+k:n−k − P (A1

x:n )äx+k:n−k , k < n

0, k = n.

Example 47.5
You are given that Mortality follows the Illustrative Life Table with i = 6%.
Calculate 5V (A 1

75:20
).

Solution.
We have

A80 =0.66575

A95 =0.84214

15E80 =ν15

(
`95

`80

)
= (1.06)−15

(
297, 981

3, 914, 365

)
= 0.0318

A 1
80:15 =A80 − 15E80A95 = 0.66575− 0.0318(0.84214) = 0.636

ä80:15 =ä80 − 15E80ä95 = 5.9050− 0.0318(2.7888) = 5.8163

A75 =0.59149

A95 =0.84214

20E75 =ν20

(
`95

`75

)
= (1.06)−20

(
297, 981

5, 396, 081

)
= 0.0172

A 1
75:20 =A75 − 20E75A95 = 0.59149− 0.0172(0.84214) = 0.577

ä75:20 =ä75 − 20E75ä95 = 7.2170− 0.0172(2.7888) = 7.169

P (A 1
75:20 ) =

0.577

7.169
= 0.0805
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Thus, the prospective benefit reserve of this contract is

5V (A 1
75:20 ) = A 1

80:15 − P (A 1
75:20 )ä80:15 = 0.636− 0.0805(5.8163) = 0.1678
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Practice Problems

Problem 47.18
You are given that Mortality follows the Illustrative Life Table with i = 6%.
Calculate 2V (A 1

65:4
).

Problem 47.19
You are given i = 0.05 and the following life table

x 95 96 97 98 99 100
`x 1000 920 550 120 50 0

Calculate 1V (A 1
97:3

) i.e. the benefit reserve at the end of the first policy year
of a fully discrete 3-year term insurance issued to (97).

Problem 47.20
You are given the following:
(i) A 1

101:2
= A 1

100:3
= 0

(ii) ä101:2 = 1.2381 and ä100:3 = 1.4717
(iii) d = 0.05.
Calculate 1V (A 1

100:3
).

Problem 47.21
You are given the force of interest δ = 0.04 and the following life table

x 100 101 102 103
`x 100 70 30 0

Calculate 1V (A 1
100:3

) i.e. the benefit reserve at the end of the first policy
year of a fully discrete 3-year term insurance issued to (100).

Problem 47.22
You are given that Mortality follows the Illustrative Life Table with i = 6%.
Find the benefit reserve at the end of the 10-th year for a 20-year term
contract issued to (35).
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47.3 Fully Discrete n−year Endowment

For this policy, the insurer’s prospective loss at time k (or at age x+ k) is:

kL(Ax:n ) = νmin{(K−k+1,n−k)} − P (Ax:n )ämin{(K−k+1,n−k)} , k < n

and nL(Ax:n ) = 1. The prospective formula of the reserve at time k is

kV (Ax:n ) =

{
Ax+k:n−k − P (Ax:n )äx+k:n−k , k < n
1, k = n.

Note that the reserve at time k = n is 1 because the contract matures at
duration n for the amount of unit endowment benefit.

Example 47.6
You are given that Mortality follows the Illustrative Life Table with i = 6%.
Calculate 10V (A60:20 ).

Solution.
We want

10V (A60:20 ) = A70:10 − P (A60:20 )ä70:10 .

We have

A 1
70:10 =A70 − 10E70A80 = 0.51495− 0.33037(0.66575) = 0.295

A70:10 =A 1
70:10 + 10E70 = 0.295 + 0.33037 = 0.8254

A 1
60:20 =A60 − 20E60A80 = 0.36913− 0.14906(0.66575) = 0.2699

A60:20 =A 1
60:20 + 20E60 = 0.2699 + 0.14906 = 0.41896

ä60:20 =ä60 − 20E60ä80 = 11.1454− 0.14906(5.9050) = 10.2652

P (A60:20 ) =
0.41896

10.2652
= 0.0408

ä70:10 =ä70 − 10E70ä80 = 8.5693− 0.33037(5.9050) = 6.6185.

Thus,

10V (A60:20 ) = 0.8254− 0.0408(6.6185) = 0.5554

Now, in the case of a limited payment funding patterns such as an h−payment
years: If k ≤ h < n, we have

h
kL(Ax:n ) =


νK−k+1 − hP (Ax:n )äK−k+1 , K ≤ h
νK−k+1 − hP (Ax:n )äh−k , h ≤ K < n
νn−k − hP (Ax:n )äh−k , K ≥ n.
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If h ≤ k < n, we have

h
kL(Ax:n ) =

{
νK−k+1, K < n
νn−k, K ≥ n.

If k = n then h
nL(Ax:n ) = 1. Thus, the prospective benefit reserve is

h
kV (Ax:n ) = Ax+k:n−k − hP (Ax:n )äx+k:h−k

for k ≤ h < n, since the future premium stream continues only to the hth

year. For h ≤ k < n, there are no future premiums so that the prospective
reserve is simply

h
kV (Ax:n ) = Ax+k:n−k .

Fot k = n, the contract matures at duration n for the amount of unit en-
dowment benefit so that the reserve is 1. In summary, we have

h
kV (Ax:n ) =


Ax+k:n−k − hP (Ax:n )äx+k:h−k , k ≤ h < n
Ax+k:n−k , h ≤ k < n
1, k = n.

Example 47.7
You are given that Mortality follows the Illustrative Life Table with i = 6%.
Calculate 15

10V (A60:20 ).

Solution.
We want

15
10V (A60:20 ) = A70:10 − 15P (A60:20 )ä70:5 .

We have

A 1
70:10 =A70 − 10E70A80 = 0.51495− 0.33037(0.66575) = 0.295

A70:10 =A 1
70:10 + 10E70 = 0.295 + 0.33037 = 0.8254

A 1
60:20 =A60 − 20E60A80 = 0.36913− 0.14906(0.66575) = 0.2699

A60:20 =A 1
60:20 + 20E60 = 0.2699 + 0.14906 = 0.41896

ä60:15 =ä60 − 15E60ä75 = 11.1454− 0.275(7.2170) = 9.1607

15P (A60:20 ) =
0.41896

9.1607
= 0.04573

ä70:5 =ä70 − 5E70ä75 = 8.5693− 0.60946(7.2170) = 4.1708.

Thus,
15
10V (A60:20 ) = 0.8254− 0.04573(4.1708) = 0.6347
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Example 47.8 ‡
For a fully discrete three-year endowment insurance of 10,000 on (50), you
are given:
(i) i = 0.03
(ii) 1000q50 = 8.32
(iii) 1000q51 = 9.11
(iv) 10, 0001V (A50:3 ) = 3209
(v) 10, 0002V (A50:3 ) = 6539
(vi) 0L is the prospective loss random variable at issue, based on the benefit
premium.
Calculate the variance of 0L.

Solution.
We have

0L =


10, 000ν − 10, 000P (A50:3 )ä1 K = 0
10, 000ν2 − 10, 000P (A50:3 )ä2 K = 1
10, 000ν3 − 10, 000P (A50:3 )ä3 K > 1.

But

P (A50:3 ) = 10, 000ν − 2V (A50:3 ) = 9708.74− 6539 = 3169.74.

Thus,

0L =


6539 K = 0
3178.80 K = 1
−83.52 K > 1.

Also,

Pr(K = 0) =q50 = 0.00832

Pr(K = 1) =p50q51 = (0.99168)(0.00911) = 0.0090342

Pr(K > 1) =1− 0.00832− 0.0090432 = 0.98265.

Thus,

Var(0L) =E[0L
2]− [E(0L)]2 = E[0L

2]

=0.00832× 65392 + 0.00903× 3178.802 + 0.98265× (−83.52)2

=453, 895
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Practice Problems

Problem 47.23 ‡
For a fully discrete 3-year endowment insurance of 1000 on (x), you are given:
(i) kL is the prospective loss random variable at time k.
(ii) i = 0.10
(iii) äx:3 = 2.70182
(iv) Premiums are determined by the equivalence principle.
Calculate 1L, given that (x) dies in the second year after issue.

Problem 47.24 ‡
For a fully discrete 3-year endowment insurance of 1000 on (x) :
(i) i = 0.05
(ii) px = px+1 = 0.7.
Calculate the second year terminal benefit reserve.

Problem 47.25
Consider a fully discrete n−year pure endowment contract.
(a) Find an expression for the insurer’s prospectice loss random variable at
time k or age x+ k.
(b) Find the prospective benefit reserve for this policy.

Problem 47.26
You are given that Mortality follows the Illustrative Life Table with i = 6%.
Calculate 10V (A 1

60:20
).

Problem 47.27 ‡
For a fully discrete 20-year endowment insurance of 10,000 on (45) that has
been in force for 15 years, you are given:
(i) Mortality follows the Illustrative Life Table.
(ii) i = 0.06
(iii) At issue, the benefit premium was calculated using the equivalence prin-
ciple.
(iv) When the insured decides to stop paying premiums after 15 years, the
death benefit remains at 10,000 but the pure endowment value is reduced
such that the expected prospective loss at age 60 is unchanged.
Calculate the reduced pure endowment value.
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47.4 Fully n−year Deferred Whole Life Annuity

For an n−year deferred contingent annuity-due contract funded by annual
premiums over the deferred period, the prospective loss at time k or age x+k
is

kL(n|äx) = äK−n+1 ν
n−kI(K < n)− P (n|äx)ämin{(K−k+1,n−k)} , k < n

and

kL(n|äx) = äK−n+1 , k ≥ n.

The prospective benefit reserve for this contract is

kV (n|äx) =

{
n−k|äx+k − P (n|äx)äx+k:n−k k < n
äx+k k ≥ n.

Example 47.9
You are given that Mortality follows the Illustrative Life Table with i = 6%.
Calculate 10V (20|ä55).

Solution.
We want

10V (20|ä55) = 10|ä65 − P (20|ä55)ä65:10 .

We have

10|ä65 =10E65ä75 = (0.39994)(7.2170) = 2.8864

20|ä55 =20E55ä75 = (0.19472)(7.2170) = 1.4053

ä55:20 =ä55 − 20E55ä75

=12.2758− 0.19472(7.2170) = 10.8705

P (20|ä55) =
1.4053

10.8705
= 0.1293

ä65:10 =ä65 − 10E65ä75

=9.8969− (0.39994)(7.2170) = 7.0105.

Thus,

10V (20|ä55) = 2.8864− 0.1293(7.0105) = 1.98
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Practice Problems

Problem 47.28
You are given that Mortality follows the Illustrative Life Table with i = 6%.
Calculate 20V (20|ä55).

Problem 47.29
Consider a fully discrete 15-year deferred whole life annuity to (65). In this
insurance contract, benefits will be paid at the beginning of each year at an
annual amount of 1, starting from the end of the 15th year if (65) is still alive
at the end of the 15th year, until (65) dies. Premiums are payable during the
15-year period at the beginning of each year at an annual amount of P (15|ä65)
as long as (65) survives during the 15-year period.
(a) Write the prospective formula for 3V (15|ä65), i.e. the benefitt reserve at
the end of the 3rd policy year.
(b) Write the retrospective formula for 3V (15|ä65).

Problem 47.30
Find the retrospective formula of the reserve for an n−year deferred annuity
due.

Problem 47.31
Find the 10th year terminal reserve on a fully discrete 20-year deferred
annuity-due of 1 per year to (40) using retrospective reserve formula.
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48 Semicontinuous Reserves

We have had encounter with semicontinuous contracts in Section 42. Recall
that the types of semicontinuous contracts we consider here are those with
benefits payable at the moment of death and premium payments made at
the beginning of the year while the insured is alive.
For a semicontinuous whole life insurance, the prospective loss random vari-
able at time k or age x+ k is

kL(Āx) = Z̄x+k − P (Āx)Ÿx+k.

The kth terminal prospective benefit reserve is given by

kV (Āx) = Āx+k − P (Āx)äx+k.

If the contract involves a limited funding pattern over the first h years only,
then the loss random variable is

h
kL(Āx) = Z̄x+k − hP (Āx)Ÿx+k:h−k

for k ≤ h and h
kL(Āx) = Z̄x+k for k > h. Thus, the kth terminal reserve is

given by
h
kV (Āx) = Āx+k − hP (Āx)äx+k:h−k

for k ≤ h and h
kV (Āx) = Āx+k for k > h.

Now, suppose that we wanted to use the Illustrative Life Table to find either

kV (Āx) or h
kV (Āx). If we assume UDD, then we have

Āx+k =
i

δ
Ax+k

and

P (Āx) =
i

δ
P (Ax).

Hence, we obtain for example

kV (Āx) =
i

δ
Ax+k −

i

δ
P (Ax)äx+k.

Other terminal reserve expressions for contracts with immediate payment
of claims and premium payments made at the beginning of the year are
developed in the exercises.
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Example 48.1
You are given that Mortality follows the Illustrative Life Table with i =
6%. Assume that mortality is uniformly distributed between integral ages.
Calculate 10V (Ā60).

Solution.
We want

10V (Ā60) = Ā70 − P (Ā60)ä70.

Under UDD, we have

Ā70 =
i

δ
A70 =

0.06

ln 1.06
(0.51495) = 0.5302

P (Ā60) =
i

δ
P (A60) =

0.06

ln 1.06
× 0.36913

11.1454
= 0.0341.

Thus,

10V (Ā60) = 0.5302− 0.0341(8.5693) = 0.238

Example 48.2
You are given that Mortality follows the Illustrative Life Table with i =
6%. Assume that mortality is uniformly distributed between integral ages.
Calculate 20

10V (Ā60).

Solution.
We want

20
10V (Ā60) = Ā70 − 20P (Ā60)ä70:10 .

We have

Ā70 =
i

δ
A70 =

0.06

ln 1.06
(0.51495) = 0.5302

ä60:20 =ä60 − 20E60ä80

=11.1454− 0.14906(5.9050) = 10.2652

20P (Ā60) =
i

δ

A60

ä60:20

=
0.06

ln 1.06
× 0.36913

10.2652
= 0.0370

ä70:10 =ä70 − 10E70ä80

=8.5693− 0.33037(5.9050) = 6.6185.

Thus,
20
10V (Ā60) = 0.5032− 0.0370(6.6185) = 0.2583
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Example 48.3 ‡
A large machine in the ABC Paper Mill is 25 years old when ABC purchases
a 5-year term insurance paying a benefit in the event the machine breaks
down.
Given:
(i) Annual benefit premiums of 6643 are payable at the beginning of the year.
(ii) A benefit of 500,000 is payable at the moment of breakdown.
(iii) Once a benefit is paid, the insurance contract is terminated.
(iv) Machine breakdowns follow De Moivre’s Law with `x = 100− x.
(v) i = 0.06
Calculate the benefit reserve for this insurance at the end of the third year.

Solution.
We have

3V (Ā 1
25:5 ) =500, 000Ā 1

28:2 − 6643ä28:2 = 500, 000
ā2

72
− 6643[1 + νp28]

=
500, 000

72

(
1− e−2 ln 1.06

ln 1.06

)
− 6643

[
1 + (1.06)−1

(
71

72

)]
=287.20

Example 48.4 ‡
For a whole life insurance of 1 on (x), you are given:
(i) Benefits are payable at the moment of death.
(ii) Level premiums are payable at the beginning of each year.
(iii) Deaths are uniformly distributed over each year of age.
(iv) i = 0.10
(v) äx = 8
(vi) äx+10 = 6
Calculate the 10th year terminal benefit reserve for this insurance.
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Solution.
We have

Ax =1− däx = 1− 0.1

1.1
(8) =

3

11

Ax+10 =1− däx+10 = 1− 0.1

1.1
(6) =

5

11

Āx =
i

δ
Ax =

3

11

0.10

ln 1.10
= 0.2861

Āx+10 =
i

δ
Ax+10 =

5

11

0.10

ln 1.10
= 0.4769

10V =Āx+10 − P (Āx)äx+10 = 0.4769−
(

0.2861

8

)
(6) = 0.2623
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Practice Problems

Problem 48.1
You are given the Illustrative Life Table with i = 0.06. Assume UDD, calcu-
late 3V (Ā65).

Problem 48.2
Consider an n−year term insurance contract.
(a) Find an expression for the kth terminal prospective loss random variable.
(b) Find the kth terminal prospective reserve for this contract.

Problem 48.3
Consider an n−year term insurance contract with limited funding over the
first h years.
(a) Find an expression for the kth terminal prospective loss random variable.
(b) Find the kth terminal prospective reserve for this contract.

Problem 48.4
Consider an n−year endowment insurance contract.
(a) Find an expression for the kth terminal prospective loss random variable.
(b) Find the kth terminal prospective reserve for this contract.

Problem 48.5
Consider an n−year endowment insurance contract with limited funding over
the first h years.
(a) Find an expression for the kth terminal prospective loss random variable.
(b) Find the kth terminal prospective reserve for this contract.

Problem 48.6
Show that, under UDD, we have

h
kV (Āx:n ) =

i

δ
h
kV (A1

x:n ) + h
kV (A 1

x:n ).

Problem 48.7
Show that the retrospective reserve formula for a semicontinuous whole life
insurance is given by

kV (Āx) = P (Āx)s̈x:k −
Ā1
x:k

kEx
.
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49 Reserves Based on True mthly Premiums

In this section we consider contracts with benefits paid either at the moment
of death or at the end of year of death but with premiums paid mthly at the
beginning of the period with annual premium denoted by P (m). See Section
43.
Under the whole life model with immediate payment of claims and with an-
nual premium rate of P (m)(Āx), the kthly terminal prospective reserve formula
for this contract is

kV
(m)(Āx) = Āx+k − P (m)(Āx)ä

(m)
x+k.

If the contract involves a limited funding pattern over the first h years only,
then the kthly terminal prospective reserve formula is

h
kV

(m)(Āx) = Āx+k − hP
(m)(Āx)ä

(m)

x+k:h−k

for k ≤ h and h
kV

(m)(Āx) = Āx+k for k > h.
For an n−year term insurance model, the kthly terminal prospective reserve
formula is

kV
(m)(Ā1

x:n ) = Ā 1
x+k:n−k − P

(m)(Ā1
x:n )ä

(m)

x+k:n−k , k < n.

In the case of a limited funding over the first h years, the kthly terminal
prospective reserve formula is

h
kV

(m)(Ā1
x:n ) =

{
Ā 1
x+k:n−k − hP

(m)(Ā1
x:n )ä

(m)

x+k:h−k k < h < n

Ā 1
x+k:n−k h < k < n.

For an n−year endowment insurance contract, the kthly terminal prospective
reserve formula is

kV
(m)(Āx:n ) = Āx+k:n−k − P (m)(Āx:n )ä

(m)

x+k:n−k , k < n.

In the case of a limited funding over the first h years, the kthly terminal
prospective reserve formula is

h
kV

(m)(Āx:n ) =


Āx+k:n−k − hP

(m)(Āx:n )ä
(m)

x+k:h−k k < h < n

Āx+k:n−k h ≤ k < n
1 k = n.
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Likewise, we can define prospective reserve formulas for contracts with ben-
efits paid at the end of year of death but with premiums paid mthly at the
beginning of the period. For a whole life insurance contract, the prospective
reserve is

kV
(m)(Ax) = Ax+k − P (m)(Ax)ä

(m)
x+k.

If the contract involves a limited funding pattern over the first h years only,
then the kthly terminal prospective reserve formula is

h
kV

(m)(Ax) = Ax+k − hP
(m)(Ax)ä

(m)

x+k:h−k

for k ≤ h and h
kV

(m)(Ax) = Ax+k for k > h.
For an n−year endowment insurance model, we have

kV
(m)(A1

x:n ) = A 1
x+k:n−k − P

(m)(A1
x:n )ä

(m)

x+k:n−k , k < n.

In the case of a limited funding over the first h years, the kthly terminal
prospective reserve formula is

h
kV

(m)(A1
x:n ) =

{
A 1
x+k:n−k − hP

(m)(A1
x:n )ä

(m)

x+k:h−k k < h < n

A 1
x+k:n−k h < k < n.

For an n−year endowment insurance contract, the kthly terminal prospective
reserve formula is

kV
(m)(Ax:n ) = Ax+k:n−k − P (m)(Ax:n )ä

(m)

x+k:n−k , k < n.

In the case of a limited funding over the first h years, the kthly terminal
prospective reserve formula is

h
kV

(m)(Ax:n ) =


Ax+k:n−k − hP

(m)(Ax:n )ä
(m)

x+k:h−k k < h < n

Ax+k:n−k h ≤ k < n
1 k = n.

For an n−year pure endowment insurance model, we have

kV
(m)(A 1

x:n ) = A 1
x+k:n−k − P

(m)(A 1
x:n )ä

(m)

x+k:n−k , k < n.

Example 49.1
You are given that Mortality follows the Illustrative Life Table with i =
6%. Assume that mortality is uniformly distributed between integral ages.
Calculate 10V

(4)(A60).
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Solution.
We have

10V
(4)(A60) =A70 − P (4)(A60)ä

(4)
70 = A70 −

A60

ä
(4)
60

ä
(4)
70

=A70 −
A60

1− i

i(4)
A60

d(4)

1− i
i(4)
A70

d(4)

=A70 −
A60(1− i

i(4)
A70)

1− i
i(4)
A60

=0.51495− 0.36913[1− 1.0223(051495)]

1− 1.0223(0.36913)
= 0.23419

Example 49.2
You are given that Mortality follows the Illustrative Life Table with i =
6%. Assume that mortality is uniformly distributed between integral ages.
Calculate 10V

(12)(Ā60).

Solution.
We have

10V
(12)(Ā60) =Ā70 − P (12)(Ā60)ä

(12)
70

=
i

δ
A70 −

i
δ
A60(1− i

i(12)
A70)

1− i
i(12)

A60

=(1.02971)(0.51495)− (1.02971)(0.36913)(1− 1.02721(0.51495))

1− 1.02721(0.36913)

=0.24916
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Practice Problems

Problem 49.1
You are given that Mortality follows the Illustrative Life Table with i =
6%. Assume that mortality is uniformly distributed between integral ages.
Calculate 20V

(12)(Ā30:35 ).

Problem 49.2
You are given that Mortality follows the Illustrative Life Table with i =
6%. Assume that mortality is uniformly distributed between integral ages.
Calculate 3V

(12)(Ā65).

Problem 49.3
Show that, under UDD, we have
(a) kV

(m)(Āx)− kV (Āx) = β(m)P (m)(Āx)kV (Āx).
(b) kV

(m)(Ax)− kV (Ax) = β(m)P (m)(Ax)kV (Ax).

Problem 49.4
Show that, under UDD, we have

kV
(m)(Ax)− kV (Ax)

kV (m)(Āx)− kV (Āx)
=
δ

i
.

Problem 49.5
Find the retrospective formula for a whole life contract with benefit payment
at the end of the year of death and with premiums paid mthly.
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Reserves for Contracts with
Nonlevel Benefits and
Premiums

Up to this point, we have only discussed reserves for insurances with a level
contingent benefit and a level benefit premium. In this chapter, the concept
of reserves is extended to general insurances which include contracts with
nonlevel benefits and/or premiums.

549
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50 Reserves for Fully Discrete General Insur-

ances

Consider a general fully discrete insurance issued to (x) with the following
features:
(i) Let bj be the death benefit payable at the end of year if death occurs in
the j−th policy year, where j = 1, 2, · · · .
(ii) Let πj−1 be the benefit premium payable at the beginning of the j−th
policy year, where j = 1, 2, · · · .
This is illustrated in the following diagram.

Figure 50.1

From this diagram we see that the actuarial present value of the benefits at
issue is

APVB =
∞∑
k=0

bk+1ν
k+1Pr(K(x) = k) =

∞∑
k=0

bk+1ν
k+1

kpxqx+k.

From Section 39.1, the actuarial present value of the benefit premium stream

APVP =
∞∑
k=0

πkν
k
kpx.

Using the equivalence principle at time 0 we have

∞∑
k=0

bk+1ν
k+1

kpxqx+k =
∞∑
k=0

πkν
k
kpx.

Given the benefit payments, we can solve this equation for the benefit pre-
miums. We illustrate this in the next example.
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Example 50.1
You are given the following mortality table:

x 90 91 92 93 94 95
`x 1000 900 720 432 216 0

For a special fully discrete 4 year term issued to (91), you are given:
(i) i = 4%
(ii) The death benefit during the first two years is 1000
(iii) The death benefit during the second two years is 500
(iv) The annual benefit premium for the first two years is twice the annual
benefit premium for the last two years.
Calculate the annual premium for this contract.

Solution.
Let π be the premium for each of the third and fourth years. Then we have,

APFB =1000νq91 + 1000ν2p91q92 + 500ν3
2p91q93 + 500ν4

3p91

=1000(1.04)−1

(
180

900

)
+ 1000(1.04)−2

(
720

900

)(
288

720

)
+500(1.04)−3

(
432

900

)(
216

432

)
+ 500(1.04)−4

(
216

900

)
=697.4217

APFP =2P + 2Pνp91 + Pν2
2p91 + Pν3

3p91

=P

[
2 + 2(1.04)−1

(
720

900

)
+ (1.04)−2

(
432

900

)
+ (1.04)−3

(
216

900

)]
=4.1956P.

By the equivalence principle, we must have

4.1956P = 697.4217 =⇒ P = 166.2269

Now, the prospective formula for the hth terminal reserve for this contract
at integral duration h is the present value of all future benefits minus the
present value of all future premiums, given that the contract has not yet
failed, is given by

hV =
∞∑
k=0

bk+1+hν
k+1

kpx+hqx+h+k −
∞∑
k=0

πh+kν
k
kpx+h.
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Example 50.2
In Example 50.1, calculate 2V, the reserve at the end of the second year for
this special term insurance.

Solution.
The reserve at the end of the second year for this special term insurance is

2V =(b3νq93 + b4ν
2p93q94)− (π2 + π3νp93)

=500(1.04)−1

(
216

432

)
+ 500(1.04)−2

(
216

432

)
− 166.2269

(
1 + (1.04)−1

(
216

432

))
=225.38

The retrospective formula for the above contract is derived in the next ex-
ample.

Example 50.3
Write the general retrospective formula corresponding to the prospective for-
mula given above.

Solution.
Recall the retrospective method:

hV = Accumulated Value of the profit from 0 to h, given that K(x) < h
= 1

hEx
[APV at time 0 of premiums over [0, h] minus the APV at time 0

of benefits over [0, h]].

It follows that

hV =
1

hEx

[
h−1∑
j=0

πjν
j
jpx −

h−1∑
j=0

bj+1ν
j+1

jpxqx+j

]

Example 50.4 ‡
For a fully discrete 5-payment 10-year decreasing term insurance on (60),
you are given:
(i) , bk+1 = 1000(10− k), k = 0, 1, · · · , 9
(ii) Level benefit premiums are payable for five years and equal 218.15 each
(iii) q60+k = 0.02 + 0.001k, k = 0, 1, · · · , 9
(iv) i = 0.06.
Calculate 2V, the benefit reserve at the end of year 2.
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Solution.
Applying the retrospective formula, we find

2V =
1

2E60

[218.15 + 218.15νp60 − (10000νq60 + 9000ν2p60q61]

=
1

ν2p60p61

[218.15 + 218.15νp60 − (10000νq60 + 9000ν2p60q61]

=
1

(1.06)−2(0.98)(0.979)
[218.15 + 218.25(1.06)−1(0.98)

−(10000(1.06)−1(0.02) + 9000(1.06)−2(0.98)(0.021))] = 77.66
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Practice Problems

Problem 50.1
Write down the formula for the insurer’s prospective loss random variable for
the insurance given at the beginning of this section.

Problem 50.2
A special fully discrete 2-year endowment insurance with a maturity value of
1000 is issued to (x). You are given:
(i) The death benefit in each year is 1000 plus the benefit reserve at then
end of the year
(ii) π is the net level annual premium.
(iii) i = 0.05
(iv) qx+k = 0.10(1.10)k, k = 0, 1.
Calculate π.

Problem 50.3 ‡
For a special fully discrete 2-year endowment insurance on (x) :
(i) The maturity value is 2000.
(ii) The death benefit for year k is (1000k) plus the benefit reserve at the
end of year k, k = 1, 2.
(iii) π is the level annual benefit premium.
(iv) i = 0.08
(v) px+k−1 = 0.9, k = 1, 2.
Calculate π.

Problem 50.4
For a special 20-year endowment policy issued to age 45, you are given:
(i) Death benefit is payable at the end of the year of death with benefit
amount equal to:
• $10 if death is within the first 10 years,
• $20 if death is within the next 10 years, and
• $50 if alive at the end of 20 years.
(ii) Mortality follows the Illustrative Life table with i = 6%.
(iii) The level annual benefit premium is payable at the beginning of each
year and is determined according to the actuarial equivalence principle.
Using a prospective formula, calculate the 15th year benefit reserve.
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Problem 50.5
You are given the following for a special fully discrete whole life issued to
(55):
(i) Mortality follows the Illustrative Life Table.
(ii) i = 0.06.
(iii) The death benefit is a level 1000 for all years.
(iv) The annual premiums are reduced by 50% at age 65.
Calculate:
(a) The benefit premium during the first 10 years.
(b) The reserve at the end of year 5.
(c) The reserve at the end of year 15.

Problem 50.6 ‡
For a special fully discrete whole life insurance on (40):
(i) The death benefit is 1000 for the first 20 years; 5000 for the next 5 years;
1000 thereafter.
(ii) The annual benefit premium is 1000P40 for the first 20 years; 5000P40 for
the next 5 years; π thereafter.
(iii) Mortality follows the Illustrative Life Table.
(iv) i = 0.06.
Calculate 21V, the benefit reserve at the end of year 21 for this insurance.
Hint: Example 50.3.

Problem 50.7 ‡
For a special fully discrete whole life insurance of 1000 on (42):
(i) The contract premium for the first 4 years is equal to the level benefit
premium for a fully discrete whole life insurance of 1000 on (40).
(ii) The contract premium after the fourth year is equal to the level benefit
premium for a fully discrete whole life insurance of 1000 on (42).
(iii) Mortality follows the Illustrative Life Table.
(iv) i = 0.06
(v) 3L is the prospective loss random variable at time 3, based on the contract
premium.
(vi) K(42) is the curtate future lifetime of (42) .
Calculate E[3L|K(42) ≥ 3].

Problem 50.8 ‡
For a special fully discrete 20-year endowment insurance on (40):
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(i) The death benefit is 1000 for the first 10 years and 2000 thereafter. The
pure endowment benefit is 2000.
(ii) The annual benefit premium, determined using the equivalence principle,
is 40 for each of the first 10 years and 100 for each year thereafter.
(iii) q40+k = 0.001k + 0.001, k = 8, 9, · · · , 13
(iv) i = 0.05
(v) ä51:9 = 7.1
Calculate the 10th year terminal reserve using the benefit premiums.
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51 Reserves for Fully Continuous General In-

surances

Consider a general fully continuous insurance issued to (x) with the following
features:
(i) Let bt be the death benefit payable at the moment of death t.
(ii) Let πt be the annual rate of benefit premiums at time t and payable
continuously.
The actuarial present value of benefits at issue is

APVB =

∫ ∞
0

btν
t
tpxµ(x+ t)dt.

The actuarial present value of benefit premiums at issue (See Section 39.2)
is

APVP =

∫ ∞
0

πtν
t
tpxdt.

Using the equivalence principle at time 0 we have∫ ∞
0

btν
t
tpxµ(x+ t)dt =

∫ ∞
0

πtν
t
tpxdt.

Given the benefit payments, we can solve this equation for the benefit pre-
miums. We illustrate this in the next example.

Example 51.1 ‡
For a special fully continuous whole life on (65) :
(i) The death benefit at time t is bt = 1000e0.04t, t ≥ 0
(ii) Level benefit premiums are payable for life.
(iii) µ(t+ 65) = 0.02, t ≥ 0
(iv) δ = 0.04.
Calculate the level premium π.

Solution.
We have

APVB at issue =

∫ ∞
0

buν
u
upxµ(x+ u)du

=

∫ ∞
0

1000e−0.04te−0.02t(0.02)dt = 1000

APVP at issue =πā65 =
π

0.06
.
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By the equivalence principle, we have

π

0.06
= 1000 =⇒ π = 60

The prospective formula for the reserve at the end of year t is the present
value of all future benefits minus the present value of all future premiums,
given that the contract has not yet failed, is given by (See Problem 51.2)

tV̄ = E[tL̄|T (x) > t] =

∫ ∞
0

bu+tν
u
upx+tµ(x+ t+ u)du−

∫ ∞
0

πt+rν
r
rpx+tdr.

The retrospective formula of benefit reserve of this contract at time t is

tV̄
R =

1

tEx

[∫ t

0

πrν
r
rpxdr −

∫ t

0

brν
r
rpxµ(x+ r)dr

]
.

Example 51.2
For the special insurance of the example above, calculate 2V̄ , the benefit
reserve at the end of year 2.

Solution.
We have

2V̄ =

∫ ∞
0

1000e−0.04(t+2)e−0.02t(0.02)dt− 60ā67

=1000e0.08 − 60

0.06
= 83.29
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Practice Problems

Problem 51.1
Find the formula for the prospective loss random variable tL̄ for a general
fully continuous insurance issued to (x).

Problem 51.2
Show that under the assumption that the distribution of T (x) − t|T (x) > t
is equal to the distribution of T (x+ t), we have

2V̄ =

∫ ∞
0

bu+tν
u
upx+tµ(x+ t+ u)du−

∫ ∞
0

πt+rν
r
upx+tdr.

Problem 51.3 ‡
For a fully continuous whole life insurance on (40), you are given:
(i) The level annual premium is 66, payable for the first 20 years.
(ii) The death benefit is 2000 for the first 20 years and 1000 thereafter.
(iii) δ = 0.06.
(iv) 1000Ā50 = 333.33.
(v) 1000Ā 1

50:10
= 197.81.

(vi) 100010E50 = 406.57.
Calculate 10V̄ , the benefit reserve for this insurance at time 10.

Problem 51.4
For a fully continuous whole life insurance issued to (40), you are given:
(i) The death benefit of 100,000 is payable at the time of death.
(ii) Benefit premiums are paid continuously at time t at the annual rate of
πt = πe0.05t.
(iii) Mortality follows De Moivre’s Law with µ(x) = 1

100−x .
(iv) δ = 0.05.
Calculate π.

Problem 51.5
Show that, for a general fully continuous whole life insurance, the retrospec-
tive formula equals the prospective formula.
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52 Recursive Formulas for Fully Discrete Ben-

efit Reserves

We derive our basic recursive reserve formula based on general intuition. An
elegant discussion is found in Section 8.3 of Bowers [1]. Consider the time
interval of the n + 1st year, that is, [x + n, x + n + 1]. At the instant year
n + 1 starts, the initial benefit reserve for the policy year n + 1 is nV + πn.
(Recall Figure 47.1). This amount is supposed to pay a death benefit if the
insured dies within the year plus provide a reserve at the end of the year,
i.e., at time n+ 1, if the insured lives. Hence,

(1 + i)(nV + πn) = E[death benefit] + n+1V px+n = bn+1qx+n + n+1V px+n.

From this equation, we can find the following backward recursion formula for
computing the terminal reserve at the end of policy year n:

nV = bn+1νqx+n + n+1V νpx+n − πn.

Also, a forward recursion formula can be derived for computing the terminal
reserve at the end of policy year n+ 1:

n+1V =
(1 + i)(nV + πn)− bn+1qx+n

px+n

.

A formula giving the premium at the beginning of policy year n+ 1 can also
be found:

πn = (bn+1 − n+1V )νqx+n + (νn+1V − nV ).

The expression bn+1− n+1V is known as the net amount at risk. In insur-
ance terms, n+1V is to be available at the end of policy year n + 1 to offset
the death benefit payment bn+1. Therefore, the net amount at risk is the
amount of money the insurer will have to produce from sources other than
the insured’s benefit reserve if the insured dies in policy year n+ 1.

Example 52.1
You are given the following mortality table:

x 90 91 92 93 94 95
`x 1000 900 720 432 216 0
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For a special fully discrete 4 year term issued to (91), you are given:
(i) i = 4%
(ii) The death benefit during the first two years is 1000
(iii) The death benefit during the second two years is 500
(iv) The annual benefit premium for the first two years is twice the annual
benefit premium for the last two years.
Calculate 2V using
(a) the forward recursion formula of reserves;
(b) the backward recursion formula of reserves.

Solution.
(a) First note that 0V is the expected loss at time 0, and the equivalence
principle is designed to make that expected loss 0. Now, we have

1V =
(1 + i)(0V + π0)− b1q91

p91

=
1.04(2× 166.2269)− 1000(180/900)

720/900
= 182.18994

2V =
(1 + i)(1V + π1)− b2q92

p92

=
1.04(182.18994 + 2× 166.2266)− 1000(288/720)

432/720

=225.38.

(b) Note that at age 95 the entire population is deceased and no reserve is
necessary. That is, 4V = 0. We have

3V =b4νq94 + 4V νp94 − π3

=
500

1.04
− 166.2269 = 314.54233

2V =b3νq93 + 3V νp93 − π2

=500(1.04)−1

(
216

432

)
+ 314.54233(1.04)−1

(
216

432

)
− 166.2269

=225.38

Example 52.2
A discrete 10-pay $2,000 whole life insurance for (40) is based on the Illus-
trative Life Table. Find
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(a) the premium P ,
(b) the reserve 1V, and
(c) the reserve 30V.

Solution.
(a) We have

P =
2000A40

ä40:10

.

But

A40 =0.16132

ä40:30 =ä40 − 10E40ä50

=14.8166− 0.53667(0.24905) = 14.6829.

Hence,

P =
2000(0.16132)

14.6829
= 21.9739.

(b) We will use a one year forward recursion.

1V =
(0V + π0)(1 + i)− b1q40

p40

=
21.9739(1.06)− 2000(0.00278)

1− 0.00278
= 17.7818.

(c) Since all future premiums are 0, the reserve is the APV of future benefits.
That is,

30V = 2000A60 = 2000(0.36913) = 738.26

Example 52.3 ‡
For a fully discrete 20-payment whole life insurance of 1000 on (x), you are
given:
(i) i = 0.06
(ii) qx+19 = 0.01254
(iii) The level annual benefit premium is 13.72.
(iv) The benefit reserve at the end of year 19 is 342.03.
Calculate 1000Px+20, the level annual benefit premium for a fully discrete
whole life insurance of 1000 on (x+ 20).
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Solution.
We have

100020
20V (Ax) =1000Ax+20 =

1000(20
19V (Ax) + 20P (Ax))(1 + i)− 1000qx+19

px+19

=
(342.03 + 13.72(1.06)− 1000(0.01254)

1− 0.01254
= 369.18

äx+20 =
1− Ax+20

d
=

1− 0.36918

0.06(1.06)−1
= 11.1445

1000P (Ax+20) =
1000Ax+20

äx+20

=
369.18

11.1445
= 33.1

Example 52.4 ‡
You are given:
(i) kV

A is the benefit reserve at the end of year k for type A insurance, which
is a fully discrete 10-payment whole life insurance of 1000 on (x).
(ii) kV

B is the benefit reserve at the end of year k for type B insurance,
which is a fully discrete whole life insurance of 1000 on (x).
(iii) qx+10 = 0.004
(iv) The annual benefit premium for type B is 8.36.
(v) 10V

A − 10V
B = 101.35

(vi) i = 0.06
Calculate 11V

A − 11V
B.

Solution.
We have

11V
A =

(10V
A + 0)(1 + i)− 1000qx+10

px+10

11V
B =

(10V
B + πB)(1 + i)− 1000qx+10

px+10

11V
A − 11V

B =
(10V

A − 10V
B − πB)(1 + i)

px+10

=
(101.35− 8.36)(1.06)

1− 0.004
= 98.97
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Practice Problems

Problem 52.1
You are given the following mortality table:

x 90 91 92 93 94 95
`x 1000 900 720 432 216 0

For a special fully discrete 3 year endowment insurance issued to (90), you
are given:
(i) i = 4%
(ii) The death benefit and the endowment amount are 2000
(iii) The annual benefit premium for the first year is twice the annual benefit
premium for the second year which is twice the annual benefit premium for
the third year.
(a) Calculate each of the three premiums.
(b) Calculate the benefit reserves using the recursive formula.

Problem 52.2 ‡
For a fully discrete 3-year endowment insurance of 1000 on (x) :
(i) qx = qx+1 = 0.20
(ii) i = 0.06
(iii) 1000P (Ax:3 ) = 373.63.
Calculate 1000(2V (Ax:3 )− 1V (Ax:3 )) using a recursive formula.

Problem 52.3 ‡
For a fully discrete 5-payment 10-year decreasing term insurance on (60),
you are given:
(i) , bk+1 = 1000(10− k), k = 0, 1, · · · , 9
(ii) Level benefit premiums are payable for five years and equal 218.15 each
(iii) q60+k = 0.02 + 0.001k, k = 0, 1, · · · , 9
(iv) i = 0.06.
Calculate 2V, the benefit reserve at the end of year 2, using a recursive
formula.

Problem 52.4
A fully discrete 10-year decreasing term insurance is issued to (40) and pays
a death benefit of 10,000 in the first year, 9,000 in the second year, and so
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on. The level annual premium is 80. You are given:
(i) 2V = 0.
(ii) ν = 0.95
(iii) q40 = q41.
Calculate the benefit reserve at the end of the first policy year.

Problem 52.5
For a fully discrete whole life insurance on (50), you are given:
(i) i = 0.06
(ii) b10 = 2500
(iii) 9V + π9 = 10V = 500.
Calculate q59.

Problem 52.6 ‡
For a fully discrete 10-payment whole life insurance of 100,000 on (x), you
are given:
(i) i = 0.05
(ii) qx+9 = 0.011
(iii) qx+10 = 0.012
(iv) qx+11 = 0.014
(v) The level annual benefit premium is 2078.
(vi) The benefit reserve at the end of year 9 is 32,535.
Calculate 100, 000Ax+11.

Problem 52.7 ‡
Michel, age 45, is expected to experience higher than standard mortality only
at age 64. For a special fully discrete whole life insurance of 1 on Michel, you
are given:
(i) The benefit premiums are not level.
(ii) The benefit premium for year 20, Π19, exceeds P45 for a standard risk by
0.010.
(iii) Benefit reserves on his insurance are the same as benefit reserves for a
fully discrete whole life insurance of 1 on (45) with standard mortality and
level benefit premiums.
(iv) i = 0.03 (v) 20V45 = 0.427
Calculate the excess of q64 for Michel over the standard q64.

Problem 52.8 ‡
For a fully discrete whole life insurance of 1000 on (20), you are given:
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(i) 1000P20 = 10
(ii) 100020V20 = 490
(iii) 100021V20 = 545
(iv) 100022V20 = 605
(v) q40 = 0.022
Calculate q41.

Problem 52.9 ‡
For a special fully discrete 3-year endowment insurance on (75), you are
given:
(i) The maturity value is 1000.
(ii) The death benefit is 1000 plus the benefit reserve at the end of the year
of death.
(iii) Mortality follows the Illustrative Life Table.
(iv) i = 0.05
Calculate the level benefit premium for this insurance.

Problem 52.10 ‡
For a deferred whole life annuity-due on (25) with annual payment of 1
commencing at age 60, you are given:
(i) Level benefit premiums are payable at the beginning of each year during
the deferral period.
(ii) During the deferral period, a death benefit equal to the benefit reserve is
payable at the end of the year of death.
Show that

20V =

(
ä60

s̈35

)
s̈20 .

Problem 52.11 ‡
For a special fully discrete 20-year endowment insurance on (55):
(i) Death benefits in year k are given by bk = 21− k, k = 1, 2, · · · , 20
(ii) The maturity benefit is 1.
(iii) Annual benefit premiums are level.
(iv) kV denotes the benefit reserve at the end of year k, k = 1, 2, · · · , 20.
(v) 10V = 5.0
(vi) 19V = 0.6
(vii) q65 = 0.10
(viii) i = 0.08
Calculate 11V.
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Problem 52.12 ‡
For a special fully discrete 3-year term insurance on (x) :
(i) Level benefit premiums are paid at the beginning of each year.
(ii)

k qx+k bk+1

0 0.03 200,000
1 0.06 150,000
2 0.09 100,000

(iii) i = 0.06.
Calculate the initial benefit reserve for year 2.

Problem 52.13 ‡
For a fully discrete whole life insurance of b on (x), you are given:
(i) qx+9 = 0.02904
(ii) i = 0.03
(iii) The initial benefit reserve for policy year 10 is 343.
(iv) The net amount at risk for policy year 10 is 872.
(v) ȧx = 14.65976.
Calculate the terminal benefit reserve for policy year 9.

Problem 52.14 ‡
For a special fully discrete 2-year endowment insurance on (x) :
(i) The pure endowment is 2000.
(ii) The death benefit for year k is 1000k plus the benefit reserve at the end
of year k, k = 1, 2.
(iii) π is the level annual benefit premium.
(iv) i = 0.08
(v) px+k−1 = 0.9, k = 1, 2.
Calculate π.

Problem 52.15 ‡
For a fully discrete whole life insurance of 1000 on (45), you are given:

t 1000tV45 q45+t

22 235 0.015
23 255 0.020
24 272 0.025



568RESERVES FOR CONTRACTSWITH NONLEVEL BENEFITS AND PREMIUMS

Calculate 100025V45.

Problem 52.16 ‡
For a special fully whole life insurance on (x), you are given:
(i) Deaths are distributed according to the Balducci assumption over each
year of age.
(ii)

k Net annual premium Death benefit at Interest rate used qx+k−1 kV
at beginning of year k end of year k during year k

2 84
3 18 240 0.07 96
4 24 360 0.06 0.101

(a) Calculate qx+2.
(b) Calculate 4V.



53 MISCELLANEOUS EXAMPLES 569

53 Miscellaneous Examples

In this section we present several examples to illustrate additional applica-
tions of the material presented in this chapter.
We first consider a policy with changes in the first policy year so that the
policy is a standard policy (i.e., whole life policy) starting from year 2. We
illustrate this idea in the next example.

Example 53.1 ‡
For a special fully discrete whole life insurance on (x) :
(i) The death benefit is 0 in the first year and 5000 thereafter.
(ii) Level benefit premiums are payable for life.
(iii) qx = 0.05
(iv) ν = 0.90
(v) äx = 5.00
(vi) 10Vx = 0.20, where 10Vx is the benefit reserve for a fully discrete whole
life insurance issued to (x).
Calculate 10V, the benefit reserve at the end of year 10 for this special insur-
ance.

Solution.
Let P be tne level benefit premium. For this special insurance, we have

10V =
∞∑
k=0

bk+11ν
k+1

kpx+10qx+10+k −
∞∑
k=0

πk+10ν
k
kpx+10

=5000
∞∑
k=0

νk+1
kpx+10qx+10+k − P

∞∑
k=0

νkkpx+10

=5000Ax+10 − P äx+10.

Thus, 10V is fully determined once we have Ax+10, äx+10 and P.
Now, using the annuity benefit formula for a fully discrete whole life insur-
ance, we have

10V x = 1− äx+10

äx
=⇒ äx+10 = (1− 10Vx)äx = 4.
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Using the equivalence principle at time 0 we have

∞∑
k=0

bk+1ν
k+1

kpxqx+k =
∞∑
k=0

πkν
k
kpx

5000
∞∑
k=1

νk+1
kpxqx+k =P

∞∑
k=0

νkkpx

5000νpx

∞∑
k=0

νk+1
kpx+1qx+1+k =P

∞∑
k=0

νkkpx

5000νpxAx+1 = P äx.

From the recursion formula

Ax = νqx + νpxAx+1

we obtain νpxAx+1 = Ax − νqx = 1 − däx − νqx = 1 − (1 − 0.90)(5.00) −
(0.90)(0.05) = 0.455. Hence,

P =
5000(0.455)

5.00
= 455.

Next, we have

Ax+10 = 1− däx+10 = 1− 0.10(4) = 0.60.

Finally, we have

10V = 5000(0.60)− 455(4) = 1180

Another popular type of problems is one in which the benefit or the payment
is doubled or tripled at some point in time.

Example 53.2
You are given the following mortality table:

x 90 91 92 93 94 95
`x 1000 900 720 432 216 0
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For a special fully discrete 3 year endowment insurance issued to (90), you
are given:
(i) i = 4%
(ii) The death benefit and the endowment amount are 2000
(iii) The annual benefit premium for the first year is twice the annual benefit
premium for the second year which is twice the annual benefit premium for
the third year.
(a) Calculate each of the three premiums.
(b) Calculate the benefit reserves using the recursive formula.

Solution.
(a) Let π2 be the benefit premium for the third year. By the equivalence
principle, we have

4π2 + 2π2νp90 + π2ν
2

2p90 = 2000νq90 + 2000ν2p90q91 + 2000ν3
2p90q92.

Thus,

π2 = 2000(1.04)−1

(
0.10 + (1.04)−1(0.9)(0.20) + (1.04)−2(0.72)(0.4)

4 + 2(1.04)−1(0.9) + (1.04)−2(0.72)

)
= 282.23511.

Hence, π0 = 4(282.23511) = 1128.940 and π1 = 2(282.23511) = 564.470.
(b) We have

0V =0

1V =
(0V + π0)(1 + i)− b1q90

p90

= 1082.33

2V =
(1V + π1)(1 + i)− b2q91

p91

= 1640.84

3V =
(2V + π2)(1 + i)− b3q92

p92

= 2000
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Practice Problems

Problem 53.1
A fully discrete whole life insurance with a unit benefit issued to (x) has its
first year benefit premium equal to the actuarial present value of the first
year’s benefit, and the remaining benefit premiums are level and determined
by the equivalence principle. Calculate the benefit reserve at the end of the
first policy year, i.e., 1V.



54 BENEFIT RESERVES AT FRACTIONAL DURATIONS 573

54 Benefit Reserves at Fractional Durations

In this section we seek a formula for h+sV , where h is a non-negative integer
and 0 < s < 1, for the general insurance introduced in Section 50. See Figure
54.1. We will refer to h+sV as the interim benefit reserve.

Figure 54.1

Using the above diagram and the basic prospective approach, we can write

h+sV =APVBx+h+s − APVPx+h+s

=ν1−sbh+11−sqx+h+s + ν1−s
1−spx+h+sAPVBx+h+1 − ν1−s

1−spx+h+sAPVPx+h+1

=ν1−sbh+11−sqx+h+s + ν1−s
1−spx+h+s(h+1V ).

Now, if we multiply both sides of the above equation by νsspx+h we obtain

νsspx+hh+sV = νbh+1s|1−sqx+h + νs|1−spx+h(h+1V ). (54.-3)

From Section 52, we have

hV + πh = bh+1νqx+h + h+1V νpx+h

so that
bh+1νqx+h = hV + πh − h+1V νpx+h.

Substituting this into equation () and rearranging, we find

νsspx+hh+sV = (hV + πh)

(
s|1−sqx+h

qx+h

)
+ h+1V νpx+h

(
1− s|1−sqx+h

qx+h

)
.

(54.-3)
This expression shows that the expected present value at duration h of the
interim benefit reserve is the weighted average of the initial reserve hV + πh
and the expected present value of the terminal reserve with weights r and
1− r respectively, where

r =
s|1−sqx+h

qx+h

.
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Now, under the assumption of uniform distribution of deaths over the age
interval (x+ h, x+ h+ 1), (see Section 24.1), we have

s|1−sqx+h = qx+h − sqx+h = qx+h − sqx+h = (1− s)qx+h.

It follows that r = 1− s and using this in Equation () we obtain

νs(1− sqx+h)h+sV = (hV + πh)(1− s) + h+1V νpx+hs.

Furthermore, if we let i = qx+h = 0 in the interval (x + h, x + h + 1), the
previous equation becomes

h+sV = (hV + πh)(1− s) + h+1V s

which can be written as

h+sV = hV (1− s) + h+1V s+ (1− s)πh.

The first component of this equation hV (1 − s) + h+1V s is the interpolated
reserve and the second component (1 − s)πh is the unearned premium
reserve.

Example 54.1
A fully discrete 20 year endowment insurance of 1 is issued on (50). Mortal-
ity follows the Illustrative Life Table with interest at 6%. Benefit premiums
are paid annually. Determine 10.7V (A50:20 ) using both UDD and linear in-
terpolation.

Solution.
We have

10V (A50:20 ) =
A60:10 − A50:20

1− A50:20

where

A50:20 =A50 − 20E50A70 + 20E50

=0.24905− 0.23047(0.51495) + 0.23047 = 0.36084

A60:10 =A60 − 10E60A70 + 10E60

=0.36913− 0.45120(0.51495) + 0.45120 = 0.58798.
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and

P (A50:20 ) =
dA50:20

1− A50:20

=
0.36804(0.06)(1.06)−1

1− 0.36804
= 0.031956.

Thus,

10V (A50:20 ) =
0.58798− 0.36084

1− 0.36084
= 0.35537

11V (A50:20 ) =
(10V + π)(1 + i)− b11(qx+10)

px+10

=
(0.35537 + 0.031956)(1.06)− (1)(0.01376)

1− 0.01376
= 0.40234.

Using linear interpolation of reserve, we find

10.7V (A50:20 ) =(1− 0.7)10V + 0.711V + (1− 0.7)π

=0.3(0.35537) + 0.7(0.40234) + 0.3(0.031956) = 0.39784.

Using UDD, we have

10.7V (A50:20 ) =
(10V + π)(1− 0.7) + 11V νpx+10(0.7)

ν0.7
0.7px+10

=
(0.35537 + 0.031956)(0.3) + 0.40234(1.06)−1(0.98624)(0.7)

(1.06)−0.7(0.3)(0.01376)

=0.39782
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Practice Problems

Problem 54.1
For a fully discrete whole life insurance on (65), you are given
(i) 10V65 = 0.23114
(ii) 11V65 = 0.25540
(iii) π65 = 0.03300.
Calculate 10 7

12
V 65, under the assumptions of a uniform distribution of deaths

between integral ages and i = 0 and q75 = 0.

Problem 54.2
Consider a fully discrete whole insurance on (60). You are given:
(i) bh = 5000 + 90h for h = 1, 2, · · · .
(ii) delta = 0.06
(ii) µ = 0.02
(iv) 4V = 240.
Calculate the benefit reserve at the end of the 39th month.

Problem 54.3
Consider a special fully discrete whole life policy issued to (97). You are
given:
(i) Death benefit of $1000 in the first year, increasing by $1000 in each
subsequent year.
(ii) Level annual benefit premium of $839.
(iii) Mortality follows De Moivre’s Law with ω = 100.
(iv) ν = 0.90.
Calculate the benefit reserve at age 98.5 using linear interpolation.

Problem 54.4
A fully discrete whole life insurance with face amount 100,000 and level pre-
miums is issued at age 80. Mortality follows the Illustrative Life Table with
interest 6%.
Let 10.5V

UDD denote the benefit reserve at time 10.5 assuming UDD over the
age interval. Let 10.5V

LIN denote the benefit reserve at time 10.5 using linear
interpolation (i.e., i = q90 = 0.).
Calculate 10.5V

UDD − 10.5V
LIN (the difference between the two approxima-

tions).
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Problem 54.5
Consider a fully discrete whole life policy issued to (x) on January 1, 2007.
You are given:
(i) bh = 1000 for h = 1, 2, · · ·
(ii) Initial benefit reserve on January 1, 2009 is 500.
Assuming i = 6%, qx+2 = 0.1 and uniform distribution of deaths over each
year of age, find 2.25V.

Problem 54.6 ‡
For a special fully whole life insurance on (x), you are given:
(i) Deaths are distributed according to the Balducci assumption over each
year of age.
(ii)

k Net annual premium Death benefit at Interest rate used qx+k−1 kV
at beginning of year k end of year k during year k

2 84
3 18 240 0.07 96
4 24 360 0.06 0.101 101.05

(a) Calculate 0.5qx+3.5.
(b)Calculate 3.5V.
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55 Calculation of Variances of Loss Random

Variables: The Hattendorf’s Theorem

In this section we consider the question of calculating Var(hL|K(x) ≥ h)
where hL is the loss random variable of the fully discrete general insurance
of Section 50. By Problem 50.1, we have

hL =

{
0 K(x) < h

bK(x)+1+hν
K(x)+1−h −

∑K(x)
j=h πjν

j−h K(x) ≥ h.

We first look at an example where the mean and variance of hL are found
directly from its distribution function.

Example 55.1
You are given the following mortality table:

x 90 91 92 93 94
`x 100 75 50 25 0

Consider a fully discrete 4-year term policy issued to (90) with unit benefit,
level premium and interest i = 0.06. Mortality follows De Moivre’s Law.
Find the expected value and variance of 1L given that the life is alive at time
1.

Solution.
The formula for 1L is

1L = νK(90) − P äK(90) .

Let’s find the level premium of this policy. We have

APFB =νq90 + ν2p90q91 + ν3
2p90q92 + ν4

3p90

=(1.06)−1

(
25

100

)
+ (1.06)−2

(
75

100

)(
25

75

)
+(1.06)−3

(
50

100

)(
25

50

)
+ (1.06)−4

(
25

100

)
=0.86628

APFP =P + Pνp90 + Pν2
2p90 + Pν3

3p90

=P [1 + (1.06)−1(0.75) + (1.06)−2(0.5) + (1.06)−3(0.25)]

=2.36245P.
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By the equivalence principle, we must have

2.36245P = 0.86628 =⇒ P = 0.36669.

Now, let’s find the distribution function of 1L. We have

K(90) =1 =⇒1L = ν − 0.36669ä1 = (1.06)−1 − 0.36669(1) = 0.57671

K(90) =2 =⇒1L = ν2 − 0.36669ä2 = (1.06)−2 − 0.36669(1.9434) = 0.17737

K(90) =3 =⇒1L = ν3 − 0.36669ä3 = (1.06)−3 − 0.36669(2.83339) = −0.19936

Thus, the distribution function of 1L is summarized in the table below.

K(90) Probability 1L
1 1

3
0.57671

2 1
3

0.17737
3 1

3
-0.19936

From this distribution function, we can find

E(1L|K(90) ≥ 1) =
1

3
(0.57671 + 0.17737− 0.19936) = 0.18491

E((1L)2|K(90) ≥ 1) =
1

3
(0.576712 + 0.177372 + 0.199362) = 0.13460

Var(1L|K(90) ≥ 1) =0.13460− 0.184912 = 0.10041

An alternative way for finding the variance of hL is by means of a result
known as Hattendorf theorem which we discuss next.
Let h be a non-negative integer. For the year interval (h, h+ 1), we let Λh be
the random variable representing the present value at time h of the accrued
loss4 for the (h+ 1)−policy year. Then for Λh is given explicitly by

Λh =


0 K(x) < h
νbh+1 − πh − hV K(x) = h
νh+1V − πh − hV K(x) ≥ h+ 1.

It follows that the distribution of the random variable {Λh|K(x) ≥ h} is a
two-point distribution with probability distribution

4With cashflow, an inflow will be assigned a negative sign while an outflow will be
assigned a positive flow.
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t Pr(Λh = t|K(x) ≥ h)
νbh+1 − πh − hV qx+h

νh+1V − πh − hV px+h

Thus,

E[Λh|K(x) ≥ h) =(νbh+1 − πh − hV )qx+h + (νh+1V − πh − hV )px+h

=νbh+1qx+h + νh+1V px+h − (πh + hV ).

But, from the forward recursion formula of reserves, the right-hand side is 0.
Now, recall the following formula from Section 50,

πh + hV = νbh+1qx+h + νh+1V px+h.

Using this formula twice, we can write

νbh+1 − πh − hV =ν(bh+1 − h+1V )px+h

νh+1V − πh − hV =ν(bh+1 − h+1V )qx+h.

Hence, the second moment of the random variable {Λh|K(x) ≥ h} is

Var(Λh|K(x) ≥ h) =(νbh+1 − πh − hV )2qx+h + (νh+1V − πh − hV )2px+h

=[ν(bh+1 − h+1V )]2p2
x+hqx+h + [ν(bh+1 − h+1V )]2px+hq

2
x+h

=[ν(bh+1 − h+1V )]2px+hqx+h(px+h + qx+h)

=[ν(bh+1 − h+1V )]2px+hqx+h.

Example 55.2
Let Λ11 denote the accrued cost random variable in the 11th year for a discrete
whole life insurance of amount 1000 issued to (40). Calculate the value of
Var(Λ11|K(x) > 10), given the following values:
(i) i = 0.06
(ii) ä40 = 14.8166
(iii) ä50 = 13.2669
(iv) ä51 = 13.0803.

Solution.
We are asked to find

Var(Λ11|K(x) > 10) = Var(Λ11|K(x) ≥ 11) = ν2(1000− 11V )2p50q50
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where

11V = 100011V40 = 1000

(
1− ä51

ä50

)
= 1000

(
1− 13.0803

13.2669

)
= 117.19.

Using the relation ä50 = 1 + νp50ä51 we can write

p50 =
ä50 − 1

νä51

= 0.99408.

Hence,

Var(Λ11|K(x) > 10) = 1.06−2(1000−117.19)2(0.99408)(1−0.99408) = 4081.93

Next, the loss random variable hL can be expressed in terms of the Λ′js.
Indeed, it can be shown that

hL =
∞∑
j=h

νj−hΛj + hV

which is valid for K(x) ≥ h. Taking the variance of both sides, we find

Var(hL|K(x) ≥ h) =
∞∑
j=h

ν2(j−h)Var[Λj|K(x) ≥ h]

=
∞∑
j=h

ν2(j−h)
j−hpx+hVar[Λj|K(x) ≥ j]

=Var[Λh|K(x) ≥ h] +
∞∑

j=h+1

ν2(j−h)
j−hpx+hVar[Λj|K(x) ≥ j]

=[ν(bh+1 − h+1V )]2px+hqx+h + ν2px+hVar(h+1L).

This recursion formula for Var(hL|K(x) ≥ h) is part of the Haddentorf The-
orem. The formula says that the variance at time h of all future losses is
equal to the variance of the losses of the next year discounted to time h plus
the variance of all subsequent years discounted to time h.

Example 55.3
Evaluate Var(1L|K(90) ≥ 1) in Example 55.1 by means of Haddentorf theo-
rem.
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Solution.
We have

1V =
(1 + i)(0V + π0)− b1q90

p90

=
1.06(0 + 0.36669)− 0.25

0.75
= 0.18492

2V =
(1 + i)(1V + π1)− b2q91

p91

=
1.06(0.18492 + 0.36669)− 1/3

2/3

=0.37706.

Thus, using Problem 55.1

[ν(bh+1 − h+1V )]2px+hqx+h =ν2(1− 2V )2p91q91

=(1.06)−2(1− 0.37706)2(2/9) = 0.07675

ν2px+hVar(h+1L) =ν2p91Var(2L)

=(1.06)−2(2/3)(0.03987) = 0.02366.

Hence,
Var(1L|K(90) ≥ 1) = 0.07675 + 0.02366 = 0.10041
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Practice Problems

Problem 55.1
You are given the following mortality table:

x 90 91 92 93 94
`x 100 75 50 25 0

Consider a fully discrete 4-year term policy issued to (90) with unit benefit,
level premium and interest i = 0.06. Mortality follows De Moivre’s Law.
Find the expected value and variance of 2L using the distribution function
of 2L.

Problem 55.2
A fully discrete $1000 whole life policy is issued to (40). The mean and the
standard deviation of the prospective loss random variable after 2 years are
$100 and $546.31, respectively. The mean and the standard deviation of the
prospective loss random variable after 11 years are $100 and $100 respec-
tively. You are given:
(i) q41 = 0.40
(ii) q41+t = (1.01)tq41

(iii) d = 0.06.

Calculate: Var(10L|K(40)≥10)
Var(1L|K(40)≥1)

.

Problem 55.3
Let L denote the insurer’s loss for a fully discrete annual premium two-year
endowment of $10 issued to (x). Premiums are determined by the equivalence
principle, but are not necessarily level. You are given
(i) d = 10%
(ii) Var(L) = 3.24
(iii) 1V = 5.00
(iv) px > qx.
Calculate the first year premium.

Problem 55.4 ‡
For a fully discrete 2-year term insurance of 1 on (x) :
(i) qx = 0.1 and qx+1 = 0.2
(ii) ν = 0.9
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(iii) 1L is the prospective loss random variable at time 1 using the premium
determined by the equivalence principle.
Calculate Var(1L|K(x) > 0).



Multiple Life Models

The actuarial mathematics theory that we have developed for the death
benefit of a single life can be extended to multiple lives. The models that
we discuss in this chapter involve two lives. Unless otherwise stated, we will
assume that the two future lifetime random variables are independent.
The survival of the two lives is referred to as the status of interest or
simply the status. There are two common types of status:
(1) The joint-life status is one that requires the survival of both lives.
Accordingly, the status terminates upon the first death of one of the two
lives.
(2) The last-survivor status is one that ends upon the death of both lives.
That is, the status survives as long as at least one of the component members
remains alive.

585



586 MULTIPLE LIFE MODELS

56 The Joint-Life Status Model

A joint-life status of two lives (x) and (y) will be denoted by (xy) as of time
0. At time n, we will use the notation (x+n : y+n). The remaining lifetime
random variable of the status will be denoted by T (xy). Since the status
terminates upon the first death, we have

T (xy) = min{T (x), T (y)}.

All the theory of the previous chapters applies to the status (xy).

56.1 The Joint Survival Function of T (xy)

For the joint survival function of T (xy), we have

ST (xy)(t) =tpxy = Pr(T (xy) > t) = Pr(min{T (x), T (y)} > t)

=Pr([T (x) > t] and [T (y) > t]) = Pr(T (x) > t)Pr(T (y) > t)

=tpx tpy.

Example 56.1
You are given:
(i) T (50) and T (75) are independent
(ii) Mortality for both lives follows De Moivre’s Law with ω = 100.
Calculate: tp50:75.

Solution.
We know that

tp50 =1− t

50
, 0 ≤ t ≤ 50

tp75 =1− t

25
, 0 ≤ t ≤ 25.

Thus,

tp50:75 =tp50tp75

=
(50− t)(25− t)

1250

=1−
(

75t− t2

1250

)
, 0 ≤ t ≤ 25
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Example 56.2
You are given that mortality follows the Illustrative Life Table with i = 0.06.
Assuming that T (50) and T (60) are independent, calculate 10p50:60.

Solution.
We have

10p50:60 = 10p5010p60 =
`60

`50

`70

`60

=
`70

`50

=
6, 616, 155

8, 950, 901
= 0.73916

Example 56.3 ‡
A 30-year term insurance for Janet age 30 and Andre age 40 provides the
following benefits:
• A death benefit of $140,000 if Janet dies before Andre and within 30 years
• A death benefit of $180,000 if Andre dies before Janet and within 30 years
You are given:
(i) Mortality follows De Moivre’s Law with ω = 100
(ii) i = 0
(iii) The death benefit is Payable at the moment of the first death.
(iv) Premiums, P̄ , are paid continuously while both are alive for a maximum
of 20 years.
Calculate the probability that at least one of Janet or Andre will die within
10 years.

Solution.
The probability that both will survive 10 years is 10p30:40. Thus, the proba-
bility that at least one of Janet or Andre will die within 10 years is

1− 10p30:40 = 1− 10p3010p40 = 1−
(

1− 10

70

)(
1− 10

60

)
=

2

7
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Practice Problems

Problem 56.1
Define tqx = 1− tpy. Show that

tqxy = tqx + tqy − tqx tqy.

Problem 56.2
Suppose that T (x) and T (y) are independent. Show that

Pr[(T (x) > n) ∪ (T (y) > n)] = npx + npy − npxy.

Problem 56.3
You are given:
(i) T (25) and T (50) are independent
(ii) 50p25 = 0.2.
Calculate 25p25:50.

Problem 56.4
You are given:
(i) Mortality follows De Moivre’s Law with ω = 100
(ii) T (80) and T (85) are independent
Find the probability that the first death occurs after 5 and before 10 years
from now.

Problem 56.5
You are given:
(i) 3p40 = 0.990
(ii) 6p40 = 0.980
(iii) 9p40 = 0.965
(iv) 12p40 = 0.945
(v) 15p40 = 0.920
(vi) 18p40 = 0.890.
For two independent lives aged 40, calculate the probability that the first
death occurs after 6 years, but before 12 years.
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56.2 The Joint CDF/PDF of T (xy)

For the joint cumulative distribution function of T (xy), we have

FT (xy)(t) = tqxy = 1− ST (xy)(t) = 1− tpx tpy.

Example 56.4
You are given:
(i) T (50) and T (75) are independent
(ii) Mortality for both lives follows De Moivre’s Law with ω = 100.
Calculate: tq50:75.

Solution.
We have

tq50:75 = 1−
[
1−

(
75t− t2

1250

)]
=

75t− t2

1250
, 0 ≤ t ≤ 25

Example 56.5
You are given that mortality follows the Illustrative Life Table with i = 0.06.
Assuming that T (50) and T (60) are independent, calculate 10q50:60.

Solution.
We have

10q50:60 = 1− 10p50:60 = 1− 0.73916 = 0.26084

Example 56.6
The probability that the time of death of the joint status occurs in the interval
(n, n+1] will be denoted by n|qxy. Thus. n|qxy is the probability that the first
death occurs in the interval (n, n+1]. Derive an expresion for this probability.

Solution.
We have

n|qxy =Pr(n < T (xy) ≤ n+ 1) = Pr(n ≤ T (xy) < n+ 1)

=ST (xy)(n)− ST (xy)(n+ 1) = npxy − n+1pxy

=npxy − npxyp(x+n:y+n) = npxy(1− p(x+n:y+n))

=npxyq(x+n:y+n).
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Note that if K(xy) is the curtate lifetime of the joint-life status (xy) then

n|qxy = Pr(K(xy) = n)

The joint probability density function of T (xy) is found as follows:

fT (xy)(t) =− d

dt
ST (xy)(t) = − d

dt
(tpxtpy)

=−
[
tpx

d

dt
(tpy) +

d

dt
(tpx)tpy

]
=− [tpx(−tpyµ(y + t) + (−tpxµ(x+ t))tpy]

=tpx tpy[µ(x+ t) + µ(y + t)] = tpxy[µ(x+ t) + µ(y + t)].

Example 56.7
You are given:
(i) T (50) and T (75) are independent
(ii) Mortality for both lives follows De Moivre’s Law with ω = 100.
Calculate: f50:75(t).

Solution.
We know that

µ(x+ 50) = 1
50−t and µ(y + 75) = 1

25−t .

It follows that

f50:75(t) =

[
1−

(
75t− t2

1250

)][
1

50− t
+

1

25− t

]
, 0 ≤ t ≤ 25
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Practice Problems

Problem 56.6
Show that: tqxy = tqx + tqy − tqx tqy.

Problem 56.7 ‡
For independent lives T (x) and T (y) :
(i) qx = 0.05
(ii) qy = 0.10
(iii) Deaths are uniformly distributed over each year of age.
Calculate 0.75qxy.

Problem 56.8
Find an expression for n|mqxy.

Problem 56.9
You are given that mortality follows the Illustrative Life Table with i = 0.06.
Assuming that T (50) and T (60) are independent, calculate 10|q50:60.

Problem 56.10
T (x) and T (y) are independent and each is uniformly distributed over each
year of age. Show that

18 1
3
qxy − 12 1

2
qxy = qxqy.
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56.3 The Force of Mortality of T (xy)

For the force of mortality of T (xy), we have

µxy(t) =µx+t:y+t = µT (xy)(t) =
fT (xy)(t)

ST (xy)(t)

=
tpxy[µ(x+ t) + µ(y + t)]

tpxy
= µ(x+ t) + µ(y + t).

Example 56.8
You are given:
(i) T (50) and T (75) are independent
(ii) Mortality for both lives follows De Moivre’s Law with ω = 100.
Calculate: µ50:75(t).

Solution.
We know that

µ(x+ 50) = 1
50−t and µ(y + 75) = 1

25−t .

It follows that

µ50:75(t) =
1

50− t
+

1

25− t
=

75− 2t

(50− t)(25− t)
, 0 ≤ t ≤ 25

Example 56.9
Suppose that (x) has a constant mortality µx and (y) has a constant mortality
µy. Show that the joint-life status has a constant mortality µx + µy.

Solution.
We know that

tpx = e−µxt and tpy = e−µyt.

It follows that

tpxy = tpxtpy = e−(µx+µy)t
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Practice Problems

Problem 56.11
You are given:
(i) T (x) and T (y) are independent
(ii) µ(x+ t) = 0.03
(iii) µ(y + t) = 0.05
Calculate: µxy(t).

Problem 56.12
You are given µ(x) = 1

100−x , 0 ≤ x ≤ 100. Suppose that T (40) and T (50) are
independent. Calculate 10p40:50.

Problem 56.13
You are given that mortality follows Gompertz Law

µ(x) = Bcx

where B = 10−3 and c10 = 3. Suppose that T (40) and T (50) are independent.
Calculate 10p40:50.

Problem 56.14
Three lives (40), (50), and (60), with indepent future lifetimes, are each sub-
ject to a constant force of mortality with

µ(40 + t) = 0.01 µ(50 + t) = 0.02 µ(60 + t) = 0.03.

Calculate µ40:50:60.

Problem 56.15
You are given:
(i) T (x) and T (y) are independent
(ii)

∫∞
0 tpx = 10

(iii) T (x) and T (y) are exponential with hazard rates µx and µy respectively.
Find µxy(t).
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56.4 Mean and Variance of T (xy)

The complete expectation of the future lifetime of the joint-life status is

e̊xy = E[T (xy)] =

∫ ∞
0

tfT (xy)(t)dt =

∫ ∞
0

tpxydt.

The second moment of T (xy) is

E[T (xy)2] =

∫ ∞
0

t2fT (xy)(t)dt = 2

∫ ∞
0

ttpxydt.

The variance is

Var[T (xy)] = 2

∫ ∞
0

ttpxydt− e̊2
xy.

The curtate expectation of future lifetime of the joint-life status is

exy =
∞∑
k=1

kpxy

and the n−year curtate lifetime of the joint-life status is

exy:n =
n∑
k=1

kpxy.

Example 56.10
Suppose that T (x) and T (y) are exponential with hazard rates µx and µy
respectively. Find an expression for e̊xy.

Solution.
We know that tpxy = e−(µx+µy)t. Thus,

e̊xy =

∫ ∞
0

e−(µx+µy)tdt = − 1

µx + µy
e−(µx+µy)t

∣∣∞
0

=
1

µx + µy

Example 56.11 ‡
In a population, non-smokers have a force of mortality equal to one half that
of smokers. For non-smokers,

`x = 500(110− x), 0 ≤ x ≤ 110.

Calculate e̊20:25 for a smoker (20) and a non-smoker (25) with independent
future lifetimes.
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Solution.
We have

µNS(x) =
1

ω − x
=

1

110− x
; µS(x) =

2

ω − x
=

2

110− x

sS(x) =e−
∫ x
0

2
110−sds =

(
1− x

110

)2

; sNS(x) = e−
∫ x
0

1
110−sds =

(
1− x

110

)

tp
S
20 =

`S20+t

`S20

=
sS(20 + t)

sS(20)
=

(
1− t

90

)2

tp
NS
25 =

`NS20+t

`S20

=
sNS(25 + t)

sNS(25)
=

(
1− t

85

)
e̊20:25 =

∫ 85

0
tp20:25dt =

∫ 85

0
tp
S
20tp

NS
25 dt

=

∫ 85

0

(
1− t

90

)2(
1− t

85

)
dt =

1

688, 500

∫ 85

0

(90− t)2(85− t)dt

=
1

688, 500

∫ 85

0

u(u+ 5)2du =
1

688, 500

[
1

4
u4 +

10

3
u3 +

25

2
u2

]85

0

=22.059

Example 56.12 ‡
You are given:
(i) (30) and (50) are independent lives, each subject to a constant force of
mortality µ = 0.05.
(ii) δ = 0.03.
Calculate Var(T (30 : 50)).

Solution.
We have

Var(T (30 : 50)) =2

∫ ∞
0

te−0.1tdt− [̊e30:50]2

=2

(
1

2µ

)2

−
(

1

2µ

)2

=

(
1

2µ

)2

=
1

0.01
= 100
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Practice Problems

Problem 56.16
You are given:
(i) T (50) and T (75) are independent
(ii) Mortality for both lives follows De Moivre’s Law with ω = 100
Calculate e̊50:75.

Problem 56.17
You are given:
(i) T (x) and T (y) are independent
(ii) µ(x+ t) = 0.03
(iii) µ(y + t) = 0.05
Calculate: e̊xy.

Problem 56.18
You are given:
(i) T (x) and T (y) are independent
(ii) µ(x+ t) = 0.03
(iii) µ(y + t) = 0.05
Calculate: 3qxy.

Problem 56.19
You are given:
(i) T (x) and T (y) are independent
(ii) µ(x+ t) = 0.03
(iii) µ(y + t) = 0.05
Calculate: 5|10qxy.

Problem 56.20
In a certain population, smokers have a force of mortality twice that of non-
smokers at each age x. For non-smokers, `x = 1000(100− x), 0 ≤ x ≤ 100. If
life x is an 80-year old non-smoker and life y is a 90-year old smoker, calculate
e̊xy. Assume T (x) and T (y) are independent.

Problem 56.21
You are given:
(i) T (40) and T (50) are independent
(ii) Mortality for both lives follows De Moivre’s Law with ω = 100.
Calculate Var[T (40 : 50)].
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57 The Last-Survivor Status Model

For lives (x) and (y), the last-survivor status continues so long as either of
the lives remain alive. Accordingly, the status terminates when both lives
die. Thus, the time of failure of the status is the time the second life dies.
We denote the last-survivor status by (xy).
The future lifetime of the status is given by

T (xy) = max{T (x), T (y)}.

The cumulative distribution function of this random variable is

FT (xy)(t) =tqxy = Pr(T (xy) ≤ t) = Pr([T (x) ≤ t] ∩ [T (y) ≤ t])

=Pr([T (x) ≤ t])Pr([T (y) ≤ t])

=tqx tqy.

The survival function of T (xy) is

ST (xy)(t) = tpxy = 1− tqxy.

Example 57.1
You are given:
(i) (50) and (75) are independent
(ii) Mortality for both lives follows De Moivre’s Law with ω = 100.
Calculate tq50:75 and tp50:75.

Solution.
We have

tq50 = t
50
, 0 ≤ t ≤ 50 and tq75 =

{
t

25
0 ≤ t < 25

1 25 ≤ t ≤ 50.

Thus,

tq50:75 =

{
t2

1250
0 ≤ t < 25

t
25

25 ≤ t ≤ 50.

and

tp50:75 =

{
1− t2

1250
0 ≤ t < 25

1− t
25

25 ≤ t ≤ 50
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Example 57.2
Show that

tpxy = tpx + tpy − tpxtpy.

Solution.
We have

tpxy = 1− tqxy = 1− tqx tqy = 1− (1− tpx)(1− tpy) = tpx + tpy − tpxtpy

The PDF of T (xy) is found as follows

fT (xy)(t) =− d

dt
(ST (xy)(t)) = − d

dt
[tpx + tpy − tpxy]

=tpxµ(x+ t) + tpyµ(y + t)− tpxy[µ(x+ t) + µ(y + t)].

The mortality function of T (xy) is

µxy =
fT (xy)(t)

ST (xy)(t)
=

tpxµ(x+ t) + tpyµ(y + t)− tpxy[µ(x+ t) + µ(y + t)]

tpx + tpy − tpxtpy
.

The conditional probability of death in the (n+ 1)st time interval (i.e. in the
time interval (n, n+ 1]) is given by

n|qxy =Pr(n < T (xy) ≤ n+ 1)

=ST (xy)(n)− ST (xy)(n+ 1)

=npx + npy − npxnpy − (n+1px + n+1py − n+1pxn+1py)

=npxy − n+1pxy = n+1qxy − nqxy

=n|qx + n|qy − n|qxy.

Example 57.3
You are given the following:
(i) 3px = 0.92 and 3py = 0.90
(ii) 4px = 0.91 and 4py = 0.85
(iii) The two lives are independent.
Calculate the probability that the second death occurs in the fourth year.

Solution.
We have

3|qxy =3px + 3py − 3px3py − (4px + 4py − 4px4py)

=0.92 + 0.90− (0.92)(0.90)− (0.91 + 0.85− (0.91)(0.85)) = 0.0055
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The complete expectation of T (xy) is

e̊xy =

∫ ∞
0

tfT (xy)(t)dt =

∫ ∞
0

tpxydt.

Example 57.4
Show that e̊xy = e̊x + e̊y − e̊xy.

Solution.
We have

e̊xy =

∫ ∞
0

tpxydt =

∫ ∞
0

(tpx + tpy − tpxtpy)dt = e̊x + e̊y − e̊xy

The curtate expectation of T (xy) is

exy =
∞∑
k=1

kpxy

and the temporary curtate expectation is

exy:n =
n∑
k=1

kpxy.

Example 57.5
You are given:
(i) (50) and (75) are independent
(ii) Mortality for both lives follows De Moivre’s Law with ω = 100.
Calculate e̊50:75.

Solution.
We have

e̊x =
ω − x

2

tpx =1− t

ω − x

e̊50 =
100− 50

2
= 25 e̊75 =

100− 75

2
= 12.5

e̊50:75 =

∫ 25

0
tp50:75dt =

∫ 25

0
tp50tp75dt =

∫ 25

0

(
50− t

50

)(
25− t

25

)
dt

=

∫ 25

0

1250− 75t+ t2

1250
dt =

1

1250

[
1250t− 75

2
t2 +

t3

3

]25

0

= 10.42.
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Thus,

e̊50:75 = e̊50 + e̊75 − e̊50:75 = 25 + 12.5− 10.42 = 27.08

Example 57.6 ‡
XYZ Co. has just purchased two new tools with independent future lifetimes.
Each tool has its own distinct De Moivre survival pattern. One tool has a
10-year maximum lifetime and the other a 7-year maximum lifetime.
Calculate the expected time until both tools have failed.

Solution.
Let x represent the tool with the 10-year maximum lifetime and y that of the
7-year. We are asked to find e̊xy. For that we are going to use the formula

e̊xy = e̊x + e̊y − e̊xy.

We have

e̊x =

∫ 10

0
tpxdt =

∫ 10

0

(
1− t

10

)
dt = t− t2

20

∣∣∣∣10

0

= 5

e̊y =

∫ 10

0
tpydt =

∫ 7

0

(
1− t

7

)
dt = t− t2

14

∣∣∣∣7
0

= 3.5

e̊xy =

∫ 7

0
tpxydt =

∫ 7

0

(
1− t

10

)(
1− t

7

)
dt

= t− t2

20
− t2

14
+

t3

210

∣∣∣∣7
0

= 2.683

e̊xy =5 + 3.5− 2.683 = 5.817

Example 57.7 ‡
For independent lives (35) and (45):
(i) 5p35 = 0.90
(ii) 5p45 = 0.80
(iii) q40 = 0.03
(iv) q50 = 0.05
Calculate the probability that the last death of (35) and (45) occurs in the
6th year.
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Solution.
We have

5|q35:45 =5|q35 + 5|q45 − 5|q35:45 = 5p35q40 + 5p45q50 − 5p35:45q40:50

=5p35q40 + 5p45q50 − 5p355p45(1− p40:50)

=5p35q40 + 5p45q50 − 5p355p45(1− p40p50)

=(0.9)(0.3) + (0.8)(0.5)− (0.9)(0.8)[1− (0.97)(0.95)] = 0.01048

Example 57.8 ‡
Kevin and Kira are in a history competition:
(i) In each round, every child still in the contest faces one question. A child
is out as soon as he or she misses one question. The contest will last at least
5 rounds.
(ii) For each question, Kevin’s probability and Kira’s probability of answering
that question correctly are each 0.8; their answers are independent.
Calculate the conditional probability that both Kevin and Kira are out by
the start of round five, given that at least one of them participates in round
3.

Solution.
Let T (x) denote the round where child x is still in the context. We are
looking for Pr(Txy < 4|Txy > 2). We have

Pr(Txy < 4|Txy > 2) =
Pr(2 < Txy < 4)

Pr(Txy > 2)

=
2|2qxy

2pxy
=

4qxy − 2qxy
1− 2qxy

.

Let kp0 denote the probability that either Kevin or Kira answers the first k
questions correctly, in other words, either Kevin or Kira wins round k. Let
x stands for Keving and y for Kira. We have

4qxy =(4q0)2 = (1− 4p0)2 = [1− (0.8)4]2 = 0.34857216

2qxy =(2q0)2 = (1− 2p0)2 = [1− (0.8)2]2 = 0.1296.

Hence,

Pr(Txy < 4|Txy > 2) =
0.34857216− 0.1296

1− 0.1296
= 0.2516
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Practice Problems

Problem 57.1
You are given:
(i) (x) and (y) are independent
(ii) µ(x+ t) = 0.02 and µ(y + t) = 0.06.
Calculate e̊xy.

Problem 57.2
You are given:
(i) Mortality follows De Moivre’s Law with ω = 100
(ii) T (80) and T (85) are independent
Find the probability that the second death occurs more than 5 years from
now.

Problem 57.3
You are given:
(i) T (90) and T (95) are independent
(ii) Both lives have mortality that follows De Moivre’s Law with ω = 100.
Calculate e̊90:95.

Problem 57.4
Given:
(i) T (x) and T (y) are independent
(ii)

k 0 1 2
qx+k 0.08 0.09 0.10
qy+k 0.10 0.15 0.20

Calculate 2|qxy.

Problem 57.5
You are given the following mortality rates for two independent lives, (x)
and (y) :

k 0 1 2 3
qx+k 0.08 0.09 0.10 0.11
qy+k 0.10 0.15 0.20 0.26
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Calculate 2pxy.

Problem 57.6 ‡
For two independent lives now age 30 and 34, you are given:

x 30 31 32 33 34 35 36 37
qx 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Calculate the probability that the last death of these two lives will occur
during the 3rd year from now, i.e., 2|q30:34.

Problem 57.7 ‡
You are given:
(i) (45) and (65) are independent
(ii) Mortality for both lives follows De Moivre’s Law with ω = 105.
Calculate e̊45:65.

Problem 57.8
You are given:
(i) (x) and (y) are independent
(ii) µ(x+ t) = 0.03
(iii) µ(y + t) = 0.05
(iv) δ = 0.05.
Calculate e̊xy.

Problem 57.9 ‡
For (80) and (84), whose future lifetimes are independent:

x 80 81 82 83 84 85 86
px 0.5 0.4 0.6 0.25 0.20 0.15 0.10

Calculate the change in the value of 2|q80:84 if p82 is decreased from 0.60 to
0.30.

Problem 57.10
Show that

µxy(t) = −
d
dt t
pxy

tpxy
=

tpxtqyµ(x+ t) + tpytqxµ(y + t)

1− tqxtqy
.
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Problem 57.11 ‡
You are given:
(i) The future lifetimes of (50) and (50) are independent.
(ii) Mortality follows the Illustrative Life Table.
(iii) Deaths are uniformly distributed over each year of age.
Calculate the force of failure at duration 10.5 for the last survivor status of
(50) and (50).

Problem 57.12 ‡
You are given:
(i) The survival function for males is s(x) = 1− x

75
, 0 < x < 75.

(ii) Female mortality follows De Moivre’s Law.
(iii) At age 60, the female force of mortality is 60% of the male force of
mortality.
For two independent lives, a male age 65 and a female age 60, calculate the
expected time until the second death.

Problem 57.13 ‡
For independent lives (50) and (60):

µ(x) =
1

100− x
, 0 ≤ x < 100.

Calculate e̊50:60.

Problem 57.14 ‡
For a population whose mortality follows DeMoivre’s law, you are given:
(i) e̊40:40 = 3̊e60:60

(ii) e̊20:20 = ke̊60:60.
Calculate k.

Problem 57.15 ‡
You are given:
(i) T (x) and T (y) are not independent.
(ii) qx+k = qy+k = 0.05, k = 0, 1, 2, · · ·
(iii) kpxy = 1.02kpxkpy.
Calculate exy.
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Problem 57.16 ‡
A 30-year term insurance for Janet age 30 and Andre age 40 provides the
following benefits:
• A death benefit of $140,000 if Janet dies before Andre and within 30 years
• A death benefit of $180,000 if Andre dies before Janet and within 30 years
You are given:
(i) Mortality follows De Moivre’s Law with ω = 100
(ii) i = 0
(iii) The death benefit is Payable at the moment of the first death.
(iv) Premiums, P̄ , are paid continuously while both are alive for a maximum
of 20 years.
Calculate the probability that the second death occurs between times t = 10
and t = 20.

Problem 57.17 ‡
You are given:
(i) (30) and (50) are independent lives, each subject to a constant force of
mortality µ = 0.05.
(ii) δ = 0.03.
(a) Calculate 10q30:50.
(b) Calculate e̊30:50.

Problem 57.18 ‡
You are given:
(i) Mortality follows De Moivre’s Law with ω = 100
(ii) T (80)and T (85) are independent.
(iii) G is the probability that (80) dies after (85) and before 5 years from
now.
(iv) H is the probability that the first death occurs after 5 and before 10
years from now.
Calculate G+H.
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58 Relationships Between T (xy) and T (xy)

Recall that T (xy) = min{T (x), T (y)} and T (xy) = max{T (x), T (y)}. Thus,
if T (xy) assumes one of the two values T (x) or T (y) then T (xy) assumes the
other value. Hence, we can write

T (xy) + T (xy) = T (x) + T (y)

and

T (xy) · T (xy) = T (x) · T (y).

Example 58.1
Find a formula for Cov(T (xy), T (xy)) for independent T (x) and T (y).

Solution.
We have

Cov(T (xy), T (xy)) =E[T (xy) · T (xy)]− E[T (xy)]E[T (xy)]

=E[T (x)T (y)]− E[T (xy)]E[T (x) + T (y)− T (xy)]

=E[T (x)]E[T (y)]− E[T (xy)](E[T (x)] + E[T (y)]− E[T (xy)])

=e̊xe̊y − e̊xy (̊ex + e̊y − e̊xy)
=e̊xe̊y − e̊xye̊x − e̊xye̊y + (̊exy)

2

=(̊ex − e̊xy)(̊ey − e̊xy)

Example 58.2
In a certain population, smokers have a force of mortality twice that of non-
smokers at each age x. For non-smokers, `x = 1000(100− x), 0 ≤ x ≤ 100. If
life x is an 80-year old non-smoker and life y is a 90-year old smoker, calculate
Cov(T (xy), T (xy)). Assume T (x) and T (y) are independent.

Solution.
We know that

µN(x) = 1
100−x and µS = 2

100−x .

tp
N
80 = 20−t

20
and tp

S
90 =

(
10−t

10

)2
.
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Thus,

e̊xy =

∫ 10

0
tpxydt =

∫ 10

0
tpxtpydt

=

∫ 10

0

(
20− t

20

)(
10− t

10

)2

dt

=
1

2000

∫ 10

0

(20− t)(10− t)2dt =
1

2000

[
−10

(10− t)3

3
− (10− t)4

4

]10

0

=2.916667.

Also,

e̊x =
ω − x

2
=

100− 80

2
= 10

e̊y =
ω − x

3
=

100− 90

3
=

10

3
.

By substitution, we find

Cov(T (xy), T (xy)) = (10− 2.916667)(10/3− 2.916667) = 2.9514

Example 58.3 ‡
You are given:
(i) (30) and (50) are independent lives, each subject to a constant force of
mortality µ = 0.05.
(ii) δ = 0.03.
Calculate Cov(T (30 : 50), T (30 : 50)).

Solution.
We have

e̊30 =e̊50 =

∫ ∞
0

e−0.05tdt = 20

e̊30:50 =

∫ ∞
0

e−0.1tdt = 10

Cov(T (30 : 50), T (30 : 50)) =(̊e30 − e̊30:50)(̊e50 − e̊30:50)

=(20− 10)(20− 10) = 100
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Practice Problems

Problem 58.1
Show that, in general, we have

Cov(T (xy), T (xy)) = Cov(T (x), T (y)) + (̊ex − e̊xy)(̊ey − e̊xy).

Problem 58.2
You are given:
(i) E[T (x)] = E[T (y)] = 4.0
(ii) Cov(T (x), T (y)) = 0.01
(iii) Cov(T (xy), T (xy)) = 0.10.
Calculate e̊xy.

Problem 58.3
You are given:
(i) E[T (x)] = E[T (y)] = 4.0
(ii) Cov(T (x), T (y)) = 0.01
(iii) Cov(T (xy), T (xy)) = 0.10.
Calculate e̊xy.

Problem 58.4
You are given:
(i) T (x) and T (y) are independent
(ii) µ(x+ t) = 0.02 and µ(x+ t) = 0.03.
Calculate the covariance between the first and the second death times.

Problem 58.5
Show that, for T (x) and T (y) independent, we have

Cov(T (xy), T (xy)) = e̊xe̊y − e̊xye̊xy.
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59 Contingent Probability Functions

Consider two lives aged (x) and (y) respectively. Let Bxy be the event that
(x) dies before (y). Thus, t ∈ Bxy means that (x) dies at time t while (y)
is alive at that time. The probability of such an event is referred to as
contingent probability. In the case T (x) and T (y) are independent, we
can write

∞q
1
xy =Pr(Bxy) =

∫ ∞
0

∫ ∞
t

fT (x)T (y)(t, s)dsdt

=

∫ ∞
0

∫ ∞
t

fT (x)(t)fT (y)(s)dsdt =

∫ ∞
0

(∫ ∞
t

fT (y)(s)ds

)
fT (x)(t)dt

=

∫ ∞
0

fT (x)(t)ST (y)(t)dt

=

∫ ∞
0

tpxµ(x+ t)tpydt =

∫ ∞
0

tpxyµ(x+ t)dt.

The pre-subscript ∞ indicates that the event is satisfied within unlimited
time. If we require the event to be satisfied within n−year period then we
will use the notation nq

1
xy. In this case,

nq
1
xy =

∫ n

0
tpxyµ(x+ t)dt.

Now, the “upper one” in the notation stands for the fact that (x) will die

first. In the case (y) will die first, we will adopt the notation ∞
1

qxy . Clearly,

∞
1

qxy=

∫ ∞
0

tpxyµ(y + t)dt.

Example 59.1
You are given:
(i) T (x) and T (y) are independent
(ii) µ(x+ t) = 0.02
(iii) µ(y + t) = 0.04. Calculate ∞q

1
xy and 10q

1
xy.

Solution.
We have

∞q
1
xy =

∫ ∞
0

tpxyµ(x+ t)dt =

∫ ∞
0

e−0.02te−0.04t(0.02)dt =
1

3
.
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Also,

10q
1
xy =

∫ 10

0
tpxyµ(x+ t)dt =

∫ 10

0

e−0.02te−0.04t(0.02)dt = 0.15040

Now, let Axy denote the event that (x) dies after (y). That is, t ∈ Axy means
that (x) dies at time t after (y) is already dead at that time. We have

∞q
2
xy =Pr(Axy) =

∫ ∞
0

∫ t

0

fT (x)T (y)(t, s)dsdt

=

∫ ∞
0

∫ t

0

fT (x)(t)fT (y)(s)dsdt =

∫ ∞
0

(∫ t

0

fT (y)(s)ds

)
fT (x)(t)dt

=

∫ ∞
0

fT (x)(t)FT (y)(t)dt

=

∫ ∞
0

tpxµ(x+ t)tqydt =

∫ ∞
0

tpx(1− tpy)µ(x+ t)dt

=

∫ ∞
0

tpxµ(x+ t)dt−
∫ ∞

0
tpxyµ(x+ t)dt = 1− ∞q1

xy.

The probability that (x) dies after (y) and within n years is

nq
2
xy =

∫ n

0
tpx(1− tpy)µ(x+ t)dt = nqx − nq

1
xy.

Example 59.2
You are given:
(i) T (x) and T (y) are independent
(ii) µ(x+ t) = 0.02

(iii) µ(y + t) = 0.04. Calculate ∞
2

qxy and 10
2

qxy .

Solution.
We have

∞
2

qxy=

∫ ∞
0

tpytqxµ(y + t)dt

=

∫ ∞
0

e−0.04t(1− e−0.02t)(0.04)dt =
1

3

10
2

qxy

=

∫ 10

0

e−0.04t(1− e−0.02t)(0.04)dt = 0.028888
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Example 59.3 ‡
You are given:
(i) The future lifetimes of (40) and (50) are independent.
(ii) The survival function for (40) is based on a constant force of mortality,
µ = 0.05.
(iii) The survival function for (50) follows DeMoivre’s law with ω = 110.
Calculate the probability that (50) dies within 10 years and dies before (40).

Solution.
We are looking for

10q
1

50:40 =

∫ 10

0
tp50:40µ(50 + t)dt =

∫ 10

0
tp50tp40µ(50 + t)dt.

We have

tp40 =e−µt = e−0.05t

tp50µ(50 + t) =fT (50)(t) =
1

110− 50
=

1

60
.

Hence,

10q
1

50:40 =

∫ 10

0

e−0.05t

60
dt =

1

60

(
1− e−0.05(10)

0.05

)
= 0.1311

Example 59.4 ‡
A 30-year term insurance for Janet age 30 and Andre age 40 provides the
following benefits:
• A death benefit of $140,000 if Janet dies before Andre and within 30 years
• A death benefit of $180,000 if Andre dies before Janet and within 30 years
You are given:
(i) Mortality follows De Moivre’s Law with ω = 100
(ii) i = 0
(iii) The death benefit is Payable at the moment of the first death.
(iv) Premiums, P̄ , are paid continuously while both are alive for a maximum
of 20 years.
Calculate 10q

2
30:40.
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Solution.
We have

10q
2
30:40 =

∫ 10

0

(1− tp40)tp30µ(30 + t)dt

=

(
1

70

)(
1

60

)(
t2

2

)∣∣∣∣10

0

= 0.012

Example 59.5 ‡
You are given:
(i) (x) and (y) are independent lives
(ii) µ(x+ t) = 5t, t ≥ 0
(iii) µ(y + t) = t, t ≥ 0.
Calculate q1

xy.

Solution.
We have

q1
xy =

∫ 1

0
tpxtpyµ(x+ t)dt

tpy =e−
∫ t
0 sds = e−

t2

2

tpx =e−
∫ t
0 5sds = e−

5t2

2

q1
xy =

∫ 1

0

e−
t2

2 e−
5t2

2 (5t)dt

=

∫ 1

0

e−3t2(5t)dt

=
5

6

∫ 0

−3

eudu =
5

6
(1− e−3) = 0.7918
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Practice Problems

Problem 59.1
You are given:
(i) T (x) and T (y) are independent
(ii) T (x) is uniform on [0, 40]
(iii) T (y) is uniform on [0, 50]
Calculate Pr(T (x) < T (y)).

Problem 59.2
You are given:
(i) T (x) and T (y) are independent
(ii) µ(x+ t) = 0.02
(iii) µ(y + t) = 0.04.
Calculate ∞q

2
xy and 10q

2
xy.

Problem 59.3
Show that nq

1
xy + n

1
qxy= nqxy.

Problem 59.4
Assuming the uniform distribution of deaths for each life, and given
(i) q1

xy = 0.039
(ii) qxy = 0.049.
Calculate qx.

Problem 59.5
You are given:
(i) Mortality follows the Illustrative Life Table.
(ii) All lives are independent.
(iii) Deaths are uniformly distributed over each year of age.

Calculate
2

q60:65 .

Problem 59.6 ‡
You are given:
(i) (x) is a subject to a uniform distribution of deaths over each year.
(ii) (y) is a subject to a constant force of mortality of 0.25.
(iii) q1

xy = 0.125
(iv) T (x) and T (y) are independent.
Calculate qx.
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Problem 59.7 ‡
You are given:
(i) T (x) and T (y) are independent.
(ii) (x) follows De Moivre’s Law with ω = 95
(iii) (y) is a subject of a constant force of mortality µ.
(iv) n < 95− x.
Calculate the probability that (x) dies within n years and predeceases (y).

Problem 59.8 ‡
You are given:
(i) T (30) and T (40) are independent.
(ii) Deaths are uniformly distributed over each year of age.
(iii) q30 = 0.4
(iv) q40 = 0.6.

Calculate 0.25
2

q30.5:40.5 .
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60 Contingent Policies for Multiple Lives

All the previous material presented so far about insurances and annuities
carries to multiple lives statuses. Therefore the genenral concept of a single
life (x) can now represent the joint-life status (xy) or the last-survivor status
(xy). It is therefore unecessary to duplicate the general theory presented
in earlier chapters simply substituting (xy) or (xy) for (x). Rather we will
list only a selection of the relationships we developed earlier, now recast in
joint or last-survivor notation. We illustrate this point through a series of
examples

Example 60.1
You are given:
(i) (x) and (y) are independent
(ii) µ(x+ t) = 0.03
(iii) µ(y + t) = 0.05
(iv) δ = 0.05.
Calculate the following:
(a) Āxy (b) āxy (c)P̄ (Āxy).

Solution.
(a) We have

Āxy =
µxy(t)

µxy(t) + δ
=

0.08

0.08 + 0.04
= 0.66667.

(b) We have

āxy =
1

µxy(t) + δ
=

1

0.08 + 0.04
= 8.3333.

(c) We have

P̄ (Āxy) =
Āxy
āxy

= 0.08

Example 60.2
Show that
(a) Axy = Ax + Ay − Axy,
(b) Āxy = Āx + Āy − Āxy.
(c) äxy = äx + äy − äxy.
(d) āxy = āx + āy − āxy.
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Solution.
(a) We have

Axy =
∞∑
k=0

νk+1
k|qxy

=
∞∑
k=0

νk+1(k|qx + k|qy − k|qxy)

=Ax + Ay − Axy.

(b) We have

Āxy =

∫ ∞
0

νtfT (xy)(t)dt

=

∫ ∞
0

νt[tpxµ(x+ t) + tpyµ(y + t)− (tpxy)µxy(t)]dt

=Āx + Āy − Āxy.

(c) We have

äxy =
∞∑
k=0

νkkpxy

=
∞∑
k=0

νk[tpx + tpy − tpxy]

=äx + äy − äxy.

(d) We have

āxy =

∫ ∞
0

νttpxydt

=

∫ ∞
0

νt[tpx + tpy − tpxy]dt

=āx + āy − āxy

Example 60.3
You are given that mortality follows the Illustrative Life Table with i = 0.06.
Assuming that (50) and (60) are independent and that deaths are uniformly
distributed between integral ages, calculate:
(a) A60:70 (b) Ā60:70 (c) ä60:70 (d) P (A60:70) (e) P (Ā60:70)
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Solution.
(a) We have

A60:70 = A60 + A70 − A60:70 = 0.36913 + 0.51495− 0.57228 = 0.31180.

(b) We have

Ā60:70 =
i

δ
A60:70 =

0.06

ln 1.06
(0.57228) = 0.58928.

(c) We have from the table ä60:70 = ä60:60+10 = 7.5563.
(d) We have

P (A60:70) =
A60:70

ä60:70

=
0.57228

7.5563
= 0.07574.

(e) We have

P (Ā60:70) =
Ā60:70

ä60:70

=
0.58928

7.5563
= 0.07799

Example 60.4
You are given that mortality follows the Illustrative Life Table with i = 0.06.
Assuming that (50) and (60) are independent. Calculate ä50:60.

Solution.
We have

ä50:60 =ä50 + ä60 − ä50:60

=13.2668 + 11.1454− 10.1944 = 14.2178

Example 60.5
You buy a couple of expensive puppets. You decide to buy an insurance that
insures the puppets. The death benefit is 1000 payable at the moment of the
second death. The puppets has a constant mortality of µx = µy = 0.2. You
decide to pay for the insurance through a continuous annuity-certain, ān ,
the time length in which is based upon the expected time until the second
death. You are given that δ = 0.05.
Assuming the future lifetimes are independent, calculate the annual premium
that you will pay for this insurance.
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Solution.
We are asked to compute

P̄ (Āxy) =
Āxy
ān

where n is to be determined.
We have

Āx =
µx

µx + δ
=

0.2

0.2 + 0.05
= 0.08

Āy =
µy

µy + δ
=

0.2

0.2 + 0.05
= 0.08

and

Āxy =
µxy

µxy + δ
=

0.4

0.4 + 0.05
= 0.8888.

Thus,

Āxy = Āx + Āy − Āxy = 0.8 + 0.8− 0.8888 = 0.71111.

Also,

e̊x =e̊y =
1

0.2
= 5

e̊xy =
1

µx + µy
=

1

0.4
= 2.5

e̊xy =e̊x + e̊y − e̊xy = 5 + 5− 2.5 = 7.5

ā7.5 =
1− e−0.05(7.5)

0.05
= 6.2542

1000P̄ (Āxy) =
1000(0.71111)

6.2542
= 113.70

Example 60.6 ‡
For a temporary life annuity-immediate on independent lives (30) and (40):
(i) Mortality follows the Illustrative Life Table.
(ii) i = 0.06
Calculate a30:40:10 .
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Solution.
We have

a30:40:10 =a30:40 − 10E30:40a40:50

=(ä30:40 − 1)− [ν10
10p30:40](ä40:50 − 1)

=(ä30:40 − 1)− [ν10
10p3010p40](ä40:50 − 1)

=(ä30:40 − 1)− (1 + i)10[ν10
10p30][ν10

10p40](ä40:50 − 1)

=(ä30:40 − 1)− (1 + i)10(10E30)(10E40)(ä40:50 − 1)

=(14.2068− 1)− (1.06)10(0.54733)(0.53667)(12.4784− 1)

=7.1687

Example 60.7 ‡
For an insurance on (x) and (y) :
(i) Upon the first death, the survivor receives the single benefit premium
for a whole life insurance of 10,000 payable at the moment of death of the
survivor.
(ii) µ(x+ t) = µ(y + t) = 0.06 while both are alive.
(iii) µ(xy + t) = 0.12
(iv) After the first death, µ(t) = 0.10 for the survivor.
(v) δ = 0.04
Calculate the actuarial present value of this insurance on (x) and (y).

Solution.
The actuarial present value of the death benefit is

10, 000

∫ ∞
0

νtfT (t)dt = 10, 000
µ

µ+ δ
= 10, 000

(
0.10

0.10 + 0.04

)
= 7142.86.

The actuarial present value of this insurance is

7142.86Āxy = 7142.86

(
µ(xy + t)

µ(xy + t) + δ

)
= 7142.86

(
12

16

)
= 5357.15
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Practice Problems

Problem 60.1
A fully discrete last-survivor insurance of 1000 is issued on two lives (30) and
(40), whose mortality follows the Illustrative Life Table with i = 0.06. Net
annual premiums are reduced by 25% after the first death. Calculate the
initial net annual premium.

Problem 60.2
Z is the present value random variable for a special discrete whole life insur-
ance issued to (x) and (y) which pays 1 at the end of the year of the first
death and 1 at the end of the year of the second death. You are given:
(i) ax = 11
(ii) ay = 15
(iii) i = 0.04.
Calculate E(Z).

Problem 60.3
For a fully continuous last-survivor whole life insurance of 1 issued to (x)
and (y), you are given:
(i) T (x) and T (y) are independent
(ii) µ(x+ t) = µ(y + t) = µ
(iii) δ = 0.04.
(iv) Premiums of 0.072 per year, set using the equivalence principle, are
payable until the first death.
Calculate µ.

Problem 60.4
You are given:
(i) (x) is subject to a uniform distribution of deaths over each year of age.
(ii) (y) is subject to a constant force of mortality of 0.25
(iii) q1

xy = 0.125
(iv) T (x) and T (y) are independent
(v) i = 0.05.
Calculate A1

x:1
.

Problem 60.5
You are given:
(i) δ = 0.04
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(ii) µ(x+ t) = 0.01
(iii) µ(y + t) = 1

100−t , 0 ≤ t ≤ 100
(iv) T (x) and T (y) are independent
(a) Calculate Āxy.
(b) Calculate āxy.
(c) Calculate Cov(āT (xy) , āT (xy) ).

Problem 60.6 ‡
For a special fully continuous last survivor insurance of 1 on (x) and (y), you
are given:
(i) T (x) and T (y) are independent.
(ii) µ(x+ t) = 0.08, t > 0
(iii) µ(y + t) = 0.04, t > 0
(iv) δ = 0.06
(v) π is the annual benefit premium payable until the first of (x) and (y)
dies.
Calculate π.

Problem 60.7 ‡
For a special fully continuous last survivor insurance of 1 on (x) and (y), you
are given:
(i) T (x) and T (y) are independent.
(ii) µ(x+ t) = µ(y + t) = 0.07, t > 0
(iii) δ = 0.05
(iv) Premiums are payable until the first of (x) and (y) dies.
Calculate the level annual benefit premium π for this insurance.

Problem 60.8 ‡
(x) and (y) are two lives with identical expected mortality.
You are given:
(i) P (Ax) = P (Ay) = 0.1
(ii) P (Axy = 0.06, where P (Axy is the annual benefit premium for a fully
discrete insurance of 1 on xy.
(iii) d = 0.06
Calculate the premium P (Axy), the annual benefit premium for a fully dis-
crete insurance of 1 on (xy).

Problem 60.9 ‡
You are pricing a special 3-year temporary life annuity-due on two lives each
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age x, with independent future lifetimes, each following the same mortality
table. The annuity pays 10,000 if both persons are alive and 2000 if exactly
one person is alive.
You are given:
(i) qxx = 0.04
(ii) qx+1:x+1 = 0.01
(iii) i = 0.05
Calculate the actuarial present value of this annuity.

Problem 60.10 ‡
A 30-year term insurance for Janet age 30 and Andre age 40 provides the
following benefits:
• A death benefit of $140,000 if Janet dies before Andre and within 30 years
• A death benefit of $180,000 if Andre dies before Janet and within 30 years
You are given:
(i) Mortality follows De Moivre’s Law with ω = 100
(ii) i = 0
(iii) The death benefit is Payable at the moment of the first death.
(iv) Premiums, P̄ , are paid continuously while both are alive for a maximum
of 20 years.
(a) Calculate the actuarial present value at issue of the death benefits.
(b) Calculate the actuarial present value at issue of the premiums in terms
of P̄ .

Problem 60.11 ‡
You are given:
(i) (30) and (50) are independent lives, each subject to a constant force of
mortality µ = 0.05.
(ii) δ = 0.03.
Calculate Ā 1

30:50.

Problem 60.12 ‡
Z is the present value random variable for an insurance on the lives of Bill
and John. This insurance provides the following benefits.
• 500 at the moment of Bill’s death if John is alive at that time, and
• 1000 at the moment of Johns death if Bill is dead at that time.
You are given:
(i) Bill’s survival function follows De Moivre’s Law with ω = 85
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(ii) John’s survival function follows De Moivre’s Law with ω = 84
(iii) Bill and John are both age 80
(iv) Bill and John are independent lives
(v) i = 0
Calculate E[Z].

Problem 60.13 ‡
(i) Z is the present value random variable for an insurance on the lives of (x)
and (y) where,

Z =

{
νT (y) T (x) ≤ T (y)
0 T (x) > T (y).

(ii) (x) is subject to a constant force of mortality m(x+ t) = 0.07.
(iii) (y) is subject to a constant force of mortality m(y + t) = 0.09.
(iv) δ = 0.06
(v) (x) and (y) are independent lives
Calculate E(Z).
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61 Special Two-life Annuities: Reversionary

Annuities

A reversionary annuity is a special type of two-life annuities. This annuity
pays benefit only when one of the lives has failed and then for as long as the
other continues to survive.
Commonly reversionary annuities are found in the pensions world - a pen-
sioner will have a pension of (say) $10,000 per year, and upon his/her death,
his/her spouse will receive (say) $5,000 per year for the rest of their life. Note
here that the reversionary benefit requires that the pensioner dies before the
spouse. If the spouse dies before the pensioner, there is no reversionary ben-
efit payable.
Let Z̄ denote the present value of a continuously-payable reversionary an-
nuity, which pays 1 per year to (y) for the rest of (y)’s lifetime beginning
immediately on the death of (x) (note (y) must outlive (x) for this benefit
to be payable). Then

Z̄ =

{
āT (y) − āT (x) if T (y) > T (x)

0 if T (y) ≤ T (x).

This can be written as

Z̄ =

{
āT (y) − āT (x) if T (y) > T (x)

āT (y) − āT (y) if T (y) ≤ T (x)

or
Z̄ = āT (y) − āT (xy) .

The actuarial present value of this benefit is denoted by

āx|y = E(Z̄) = āy − āxy.

Likewise, in the discrete case, we have

ax|y = ay − axy.

Example 61.1 ‡
A continuous two-life annuity pays

100 while both (30) and (40) are alive
70 while (30) is alive but (40) is dead
50 while (40) is alive but (30) is dead.
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The actuarial present value of this annuity is 1180. Continuous single life
annuities paying 100 per year are available for (30) and (40) with APV’s of
1200 and 1000 respectively.
Calculate the APV of a continuous two-life annuity that pays 100 while at
least one of them is alive.

Solution.
We want to find

100ā30:40 = 100(ā30 + ā40 − ā30:40).

We have

1180 =100ā30:40 + 70(ā30 − ā30:40) + 50(ā40 − ā30:40)

=− 20ā30:40 + 70ā30 + 50ā40

=− 20ā30:40 + 70(12) + 50(10)

ā30:40 =
840 + 500− 1180

20
= 8.

Hence,

100ā30:40 = 100(12 + 10− 8) = 1400

Example 61.2
For a special fully continuous last-survivor insurance of 1 on two independent
lives (x) and (y), you are given:
(i) Deaths benefits are payable at the moment of the second death
(ii) Level benefit premiums,π, are payable only while (x) is alive and (y) is
dead. No premiums are payable while both are alive or if (x) dies first.
(iii) δ = 0.05
(iv) µ(x+ t) = 0.03 and µ(y + t) = 0.04.
Calculate π.

Solution.
APV of premiums = π(āx− āxy). Under constant force of mortality, we have

āx =
1

µ(x+ t) + δ
=

1

0.03 + 0.05
= 12.5

āxy =
1

µ(x+ t) + µ(y + t) + δ
=

1

0.03 + 0.04 + 0.05
= 8.3333.
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Now, APV of benefits = Āxy = Āx + Āy − Āxy where

Āx =
µ(x+ t)

µ(x+ t) + δ
=

0.03

0.03 + 0.05
= 0.375

Āy =
µ(y + t)

µ(y + t) + δ
=

0.04

0.04 + 0.05
= 0.444

Āxy =
µ(x+ t) + µ(y + t)

µ(x+ t) + µ(y + t) + δ
=

0.03 + 0.04

0.03 + 0.04 + 0.05
= 0.58333.

Thus,

π(āx − āxy) = Āx + Āy − Āxy =⇒ π =
0.375 + 0.444 + 0.58333

12.5− 8.3333
= 0.566

Example 61.3 ‡
You are pricing a special 3-year annuity-due on two independent lives, both
age 80. The annuity pays 30,000 if both persons are alive and 20,000 if only
one person is alive.
You are given:
(i)

k kp80

1 0.91
2 0.82
3 0.72

(ii) i = 0.05
Calculate the actuarial present value of this annuity.

Solution.
We want

APV = 30, 000ä80:80:3 + 20, 000(ä80:3 − ä80:80:3 ) + 20, 000(ä80:3 − ä80:80:3 )

where

ä80:3 =1 + νp80 + ν2
2p80 = 1 + 0.91(1.05)−1 + 0.82(1.05)−2 = 2.61043

ä80:80:3 =1 + νp80:80 + ν2
2p80:80 = 1 + ν(p80)2 + ν2(2p80)2

=1 + (0.91)2(1.05)−1 + (0.82)2(1.05)−2 = 2.39855.

Hence,

APV = 30, 000(2.39855) + (2)(20, 000)(2.61043− 2.39855) = 80, 431.70
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Practice Problems

Problem 61.1
A special two-life annuity on (50) and (60) pays a benefit of 1 at the beginning
of each year if both annuitants are alive. The annuity pays a benefit of 2

3
at

the beginning of each year if one annuitant is alive.
You are given:
(i) Mortality follows the Illustrative Life Table.
(ii) (50) and (60) are independent lives.
(iii) i = 0.06.
Calculate the actuarial present value of this annuity

Problem 61.2
An special two-life annuity on (50) and (60) pays a benefit of 1 at the be-
ginning of each year if both annuitants are alive. The annuity pays a benefit
of 2

3
at the beginning of each year if only (50) is alive. The annuity pays a

benefit of 1
2

at the beginning of each year if only (60) is alive.
You are given:
(i) Mortality follows the Illustrative Life Table.
(ii) (50) and (60) are independent lives.
(iii) i = 0.06.
Calculate the actuarial present value of this annuity.

Problem 61.3
A reversionary annuity pays a continuous benefit at a rate of 100 per year to
(50) upon the death of (60) provided (50) is alive.
You are given:
(i) (50) and (60) are independent
(ii) µ(50 + t) = 0.03
(iii) µ(60 + t) = 0.05
(iv) δ = 0.04.
Calculate the actuarial present value of this reversionary annuity.

Problem 61.4
You are given:
(i) an = 12.1
(ii) ax = 10.3
(iii) ax:n = 7.4.
Calculate the reversionary annuity ax|n .
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Problem 61.5
Show that

āx|y =
Āxy − Āy

δ
.
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62 Dependent Future Lifetimes Model: The

Common Shock

When two lives are exposed to a common hazard factor on a regular basis
then their future lifetimes are dependent. We refer to this common hazard
as a commom shock. For example, a natural disaster such as an earth-
quake or a hurricane can be considered as a common shock. The presence
of the common shock introduces dependence into what would otherwise be
independent future lifetimes.
To model a common shock situation, consider a joint-life status involving
two lives (x) and (y) with remaining independent lifetimes without common
shock T ∗(x) and T ∗(y). Let Z be the random variable representing the time
the common shock occurs. It follows that the time until failure T (x) will
occur at either time T ∗(x) or time Z, whichever is earlier. That is,

T (x) = min{T ∗(x), Z}.

Likewise, we have
T (y) = min{T ∗(y), Z}.

Note that T ∗(x), T ∗(y) and Z are independent random variables. However,
T (x) and T (y) are not independent since both depend on the future common
random variable Z.
Next, we assume that the common shock, that both (x) and (y) are subject
to, can be represented by a constant hazard function which we denote by
λ = µ(z + t). Then, by independence, we have

tpx = sT (x)(t) = sT ∗(x)Z(t) = sT ∗(x)(t)sZ(t) = tp
∗
xe
−λt.

Likewise,

tpy = sT (y)(t) = sT ∗(y)Z(t) = sT ∗(y)(t)sZ(t) = tp
∗
ye
−λt.

Now, if we let T = min{T ∗(x), T ∗(y), Z} denote the time of first failure, then
we can write

tpxy =sT (t) = sT ∗(x)T ∗(y)Z(t)

=sT ∗(x)(t)sT ∗(y)(t)sZ(t) = tp
∗
xtp
∗
ye
−λt.

Clearly,

tpxy 6= tpxtpy

which shows that T (x) and T (y) are dependent.
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Remark 62.1
The reader is to be alerted that the notation used in this section is a bit con-
fusing. The notation T ∗(x) in this section stands for the remaining lifetime
without the shock-what we would normally call T (x). In this section, T (x)
denotes the lifetime with the shock.
Thus the notation T (x) is used to represent the actual lifetime whether or
not a shock is included.
When (x), (y) and the common shock are exponential, the shock parameter
adds to the force of mortality of (x), (y), (xy), and (xy).

Example 62.1
Two lives, (x) and (y), are subject to a exponential common shock model
with λ = 0.01. You are given:
(i) (x), (y), and the common shock are independent.
(ii) µ(x+ t) = 0.04.
(iii) µ(y + t) = 0.06.
(iv) µ(x+t) and µ(y+t) do not reflect the mortality from the common shock.
(v) δ = 0.03.
Calculate:

(a)sT ∗(x)(t) (b)sT ∗(y)(t) (c)sT (x)(t) (d)sT (y)(t) (e)sT (x)T (y)(t)

(f )̊ex (g)̊ey (h)̊exy (i)̊exy (j)Āxy

(k)Āx (`)Āy (m)Āxy (n)āx (o)āy

(p)āxy (q)āxy

Solution.
We have
(a) sT ∗(x)(t) = tp

∗
x = e−µ(x+t)t = e−0.04t.

(b) sT ∗(y)(t) = tp
∗
y = e−µ(y+t)t = e−0.06t.

(c) sT (x)(t) = tp
∗
xe
−λt = e−0.04te−0.01t = e−0.05t.

(d) sT (y)(t) = tp
∗
ye
−λt = e−0.06te−0.01t = e−0.07t.

(e) sT (x)T (y) = tp
∗
xtp
∗
ye
−λt = e−0.04te−0.06te−0.01t = e−0.11t

(f) e̊x = 1
µ(x+t)+λ

= 1
0.05

= 20.

(g) e̊y = 1
µ(y+t)+λ

= 1
0.07

= 14.28571.

(h) e̊xy = 1
µ(x+t)+µ(y+t)+λ

= 1
0.11

= 9.09091.

(i) e̊xy = e̊x + e̊y − e̊xy = 20 + 14.28571− 9.09091 = 25.1948.
(j) Āxy = µxy

µxy+δ
= 0.11

0.11+0.03
= 0.78571.
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(k) Āx = µ(x+t)+λ
µ(x+t)+λ+δ

= 0.05
0.08

= 0.625.

(`) Āy = µ(y+t)+λ
µ(y+t)+λ+δ

= 0.07
0.10

= 0.7.

(m) Āxy = Āx + Āy − Āxy = 0.625 + 0.7− 0.78571 = 0.53929.
(n) āx = 1

µ(x+t)+λ+δ
= 1

0.08
= 12.5.

(o) āy = 1
µ(y+t)+λ+δ

= 1
0.10

= 10.

(p) āxy = 1−Āxy
δ

= 7.143.
(q) āxy = āx + āy − āxy = 12.5 + 10− 7.143 = 15.357

Example 62.2 ‡
You have calculated the actuarial present value of a last-survivor whole life
insurance of 1 on (x) and (y). You assumed:
(i) The death benefit is payable at the moment of death.
(ii) The future lifetimes of (x) and (y) are independent, and each life has a
constant force of mortality with µ = 0.06.
(iii) δ = 0.05
Your supervisor points out that these are not independent future lifetimes.
Each mortality assumption is correct, but each includes a common shock
component with constant force 0.02.
Calculate the increase in the actuarial present value over what you originally
calculated.

Solution.
First, we calculate the actuarial present value of a last-survivor policy under
independence. We have

µ(xy + t) =µ(x+ t) + µ(y + t) = 0.06 + 0.06 = 0.12

Āx =Āy =
µ(x+ t)

µ(x+ t) + δ
=

0.06

0.06 + 0.05
= 0.54545

Āxy =
µ(xy + t)

µ(xy + t) + δ
=

0.12

0.12 + 0.05
= 0.70588

Āxy =Āx + Āy − Āxy = 0.38502.
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Next, we calculate the actuarial present value of a last-survivor policy under
the common shock model. We have

µT
∗(x)(x+ t) =µ(x+ t)− µ(z + t) = 0.06− 0.02 = 0.04 = µT

∗(y)(y + t)

µ(xy + t) =µT
∗(x)(x+ t) + µT

∗(y)(y + t) + µ(z + t) = 0.04 + 0.04 + 0.02 = 0.10

Āx =Āy = 0.54545

Āxy =
0.10

0.10 + 0.05
= 0.66667

Āxy =0.54545 + 0.54545− 0.66667 = 0.42423.

Hence, the increase in the actuarial present value over what you originally
calculated is 0.42423− 0.38502 = 0.03921



62 DEPENDENT FUTURE LIFETIMESMODEL: THE COMMON SHOCK633

Practice Problems

Problem 62.1
You are given:
(i) µ(x+ t) = 0.02t.
(ii) µ(y + t) = (40− t)−1.
(iii) The lives are subject to an exponential common shock model with λ =
0.015.
(iv) µ(x+ t) and µ(y + t) incorporate deaths from the common shock.
Calculate 3|qxy.

Problem 62.2
Two independent lives (x) and (y) are subject to the following mortality rates
when common shock is ignored.

t qx+t qy+t

0 0.2 0.3
1 0.4 0.3
2 1.0 1.0

The common shock component follows an exponential distribution with pa-
rameter λ = − ln (0.9).
Calculate exy.

Problem 62.3
For a special fully continuous last-survivor whole life insurance of 1 on (x)
and (y), you are given:
(i) The premium is payable until the first death.
(ii) T ∗(x) has an exponential distribution with mean 25.
(iii) T ∗(y) has an exponential distribution with mean 16.66667.
(iv) Z, the common shock random variable, has an exponential distribution
with mean 50.
(v) δ = 0.04.
Calculate the annual benefit premium P.

Problem 62.4
A life insurance is issued to two lives (x) and (y) and pays 2000 at the mo-
ment of the first death and 1000 at the moment of the second death. You
are given:
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(i) µ(x+ t) = 0.02.
(ii) µ(y + t) = 0.03.
(iii) δ = 0.04.
(iv) (x) and (y) are subject to a common shock. The time of shock is expo-
nentially distributed with mean 50.
Calculate the actuarial present value at time 0 of the death benefits under
the common shock model.

Problem 62.5 ‡
The mortality of (x) and (y) follows a common shock model with components
T ∗(x), T ∗(y) and Z.
(i) T ∗(x), T ∗(y) and Z are independent and have exponential distributions
with respective forces µ1, µ2, and λ.
(ii) The probability that x survives year 1 is 0.96.
(iii) The probability that y survives year 1 is 0.97.
(iv) λ = 0.01.
Calculate the probability that both (x) and (y) survive 5 years.
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63 Joint Distributions of Future Lifetimes

Consider two lives (x) and (y) that are not necessarily independent. Let
fT (x)T (y(tx, ty) denote the joint density function of the future lifetime random
variables T (x) and T (y). The marginal density function of T (x) is

fT (x)(tx) =

∫
ty

fT (x)T (y)(tx, ty)dty.

Likewise, the marginal density function of T (y) is

fT (y)(ty) =

∫
tx

fT (x)T (y)(tx, ty)dtx.

The expected value of the random variable T (x)T (y) is

E[T (x)T (y)] =

∫ ∞
0

∫ ∞
0

txtyfT (x)T (y)(tx, t)y)dtxdty.

Example 63.1
For two lives with joint lifetime random variables T (x) and T (y), you are
given

fT (x)T (y)(tx, ty) =

{
tx+ty
216

, 0 < tx < 6, 0 < ty < 6
0, otherwise.

Calculate fT (x)(tx).

Solution.
We have

fT (x)(tx) =

∫ 6

0

fT (x)T (y)(tx, ty)dty =
1

216

∫ 6

0

(tx + ty)dty

=
1

216

[
txty +

1

2
t2y

]6

0

=
6tx + 18

216
=
tx
36

+
1

12

Example 63.2
For the two lives in Example 63.1, find E[T (x)T (y)].

Solution.
We have

E[T (x)T (y)] =
1

216

∫ 6

0

∫ 6

0

(t2xty + txt
2
y)dtxdty =

1

216

∫ 6

0

[
1

3
t3xty +

1

2
t2xt

2
y

]6

0

dty

=
1

216

∫ 6

0

(72ty + 18t2y)dty =
1

216

[
36t2y + 6t3y

]6
0

= 12
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Example 63.3
Find the joint cumulative distribution function for the joint distribution in
Exampe 63.1.

Solution.
Consider Figure 63.1.

Figure 63.1

For (tx, ty) in Region A, we have

FT (x)T (y)(tx, ty) =Pr[(T (x) ≤ tx) ∩ (T (y) ≤ ty)] =

∫ ty

0

∫ tx

0

fT (x)T (y)(r, s)drds

=
1

216

∫ ty

0

∫ tx

0

(r + s)drds =
1

216

∫ ty

0

[
1

2
r2 + rs

]tx
0

ds

=
1

216

∫ ty

0

(
1

2
t2x + txs

)
ds =

1

216

[
1

2
t2xs+

1

2
txs

2

]ty
0

=
t2xty + txt

2
y

432
.

For (tx, ty) in Region B, the event T (x) ≤ tx is certain to occur since tx > 6.
In this case,

FT (x)T (y)(tx, ty) = Pr(T (y) ≤ ty) = FT (y)(ty) =
1

36
.
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For (tx, ty) in Region C, the even T (y) ≤ ty is certain to occur since ty > 6.
In this case,

FT (x)T (y)(tx, ty) = Pr(T (x) ≤ tx) = FT (x)(tx) =
1

36
.

For (tx, ty) in Region D, both events T (x) ≤ tx and T (y) ≤ ty are certain to
occur so that

FT (x)T (y)(tx, ty) = 1.

For (tx, ty) in quadrant II, the event T (x) ≤ tx is impossible so that FT (x)T (y)(tx, ty) =
0. Similar reasoning for (tx, ty) in the third or fourth quadrants

Now, if we evaluate the joint survival function at a common point (n, n)
we find

sT (x)T (y)(n, n) = Pr([T (x) > n] ∩ [T (y) > n]) = Pr(T (xy) > n) = npxy.

Therefore, all joint life functions presented in Section 56 can be evaluated
from the general joint SDF of T (x) and T (y). Furthermore, the SDF of the
joint-life status can be found from the joint SDF of T (x) and T (y).
Likewise, we have

FT (x)T (y)(n, n) = Pr([T (x) ≤ n] ∩ [T (y) ≤ n]) = Pr(T (xy) ≤ n) = nqxy.

Thus, the CDF of the last-survivor status can be found from the joint CDF
of T (x) and T (y).
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Practice Problems

Problem 63.1
For two lives with joint lifetime random variables T (x) and T (y), you are
given

fT (x)T (y)(tx, ty) =

{
tx+ty
216

, 0 < tx < 6, 0 < ty < 6
0, otherwise.

Calculate fT (y)(ty).

Problem 63.2
For the two lives in Problem 63.1, find Var[T (x)].

Problem 63.3
Show that the lives in Problem 63.1 are dependent.

Problem 63.4
For the lives in Problem 63.1, find Cov(T (x), T (y)).

Problem 63.5
For the lives in Problem 63.1, find the coefficient of variation ρT (x),T (y).

Problem 63.6
For the lives in Problem 63.1, find the joint survival function sT (x)T (y)(tx, ty).

Problem 63.7
For the lives in Problem 63.1, find sT (x)T (y)(n, n).

Problem 63.8
For the lives in Problem 63.1, find p2:2.



Multiple Decrement Models

So far in this text we have considered a single life status or a multiple life
status subject to a single contingency of death (or a single decrement.) In
this chapter, we consider a single life status subject to multiple contingen-
cies or multiple decrements. For example, a pension plan provides bene-
fit for death, disability, employment termination and retirement. Multiple-
decrement models also go by the name of competing risk models in other
contexts.

639



640 MULTIPLE DECREMENT MODELS

64 The Continuous Case

Assume that life (x) is a member of a group. Let T (x) = T denote the time of
decrement at which life (x) leaves the group. T is a nonnegative continuous
random variable. Further, assume that there are m causes of decrement. Let
J(x) = J be a discrete random variable and let (J(x) = j) denote cause
j; j = 1, 2, · · · ,m. Then J takes only m possible values of 1, 2, · · · ,m.
Let fT,J(t, j) denote the joint probability distribution function of T (x) and
J(x). This joint PDF can be used to calculate the probabilities of events
defined by T (x) and J(x). For example, the probability of decrement between
times a and b due to cause j is

Pr(a < T ≤ b, J = j) =

∫ b

a

fT,J(t, j)dt.

The probability of decrement between times a and b due to all causes is

Pr(a < T ≤ b) =
m∑
j=1

Pr(a < t ≤ b, J = j) =
m∑
j=1

∫ b

a

fT,J(t, j)dt.

The probability of decrement before time t due to cause j is defined by

tq
(j)
x =

∫ t

0

fT,J(s, j)ds.

The marginal PDF of J is defined by

fJ(j) = Pr(J = j) =

∫ ∞
0

fT,J(s, j)ds = ∞q
(j)
x , j = 1, 2, · · · ,m

which is the probability of decrement due to cause j at any time in the future.
Note that

∑m
j=1 fJ(j) = 1. Also note the unconventional definition of fJ(j).

The marginal PDF of T (x) is defined by

fT (t) =
m∑
j=1

fT,J(t, j).

The marginal CDF of T (x) is defined as

FT (t) =

∫ t

0

fT (s)ds.
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Thus, the probability of decrement before time t due to all causes of decre-
ment is given by

tq
(τ)
x = Pr[T (x) ≤ t] = FT (t) =

∫ t

0

fT (s)ds.

It follows that

tq
(τ)
x =

∫ t

0

fT (s)ds =
m∑
j=1

∫ t

0

fT,J(s, j)ds =
m∑
j=1

tq
(j)
x .

Now, the probability that life (x) is still in the group at age x+ t is given by

tp
(τ)
x = Pr[T (x) > t] = 1− tq

(τ)
x =

∫ ∞
t

fT (s)ds.

Note that we use τ to indicate that a function refers to all causes.
The expected time of decrement due to all causes is:

E(T ) =

∫ ∞
0

tp
(τ)
x dt.

A concept that is parallel to the concept of the force of mortality of a single
life contingency is the total force of mortality denoted by µ(τ)(x+ t).
We have

µ(τ)(x+ t) =
fT (t)

1− FT (t)
=

1

tp
(τ)
x

d

dt
(tq

(τ)
x )

=− 1

tp
(τ)
x

d

dt
(tp

(τ)
x ) = − d

dt
[ln (tp

(τ)
x )].

From this, we can write

tp
(τ)
x = e−

∫ t
0 µ

(τ)(x+s)ds

and
fT (t) = tp

(τ)
x µ(τ)(x+ t).

We define the force of decrement due to cause j by

µ(j)(x+ t) =
fT,J(t, j)

1− fT (t)
=

1

tp
(τ)
x

d

dt
(tq

(j)
x ).
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From this definition, it follows that

fT,J(t, j) = µ(j)(x+ t)tp
(τ)
x

and

tq
(j)
x =

∫ t

0
sp

(τ)
x µ(j)(x+ s)ds.

Moreover,

µ(τ)(x+ t) =
1

tp
(τ)
x

d

dt
(tq

(τ)
x )

=
m∑
j=1

1

tp
(τ)
x

d

dt
(tq

(j)
x )

=
m∑
j=1

µ(j)(x+ t).

Note also the following

tq
(j)
x =

∫ t

0

fT,J(s, j)ds =

∫ t

0
sp

(τ)
x µ(j)(x+ s)ds.

Example 64.1
For a double-decrement model, you are given:
(i) µ(1)(x+ t) = 2

50−t , 0 ≤ t < 50

(ii) µ(2)(x+ t) = 0.02, t ≥ 0.

Calculate tp
(τ)
x and 10q

(1)
x .

Solution.
We have

tp
(τ)
x = e−

∫ t
0 [µ(1)(x+s)+µ(2)(x+s)]ds = e−

∫ t
0( 2

50−s+0.02)ds =

(
50− t

50

)2

e−0.02t

and

10q
(1)
x =

∫ 10

0

(
50− s

50

)2

e−0.02s

(
2

50− s

)
ds = 0.3275

Finally, we define the conditional probability that decrement is due to cause
j, given decrement at time t, by

fJ |T (j|t) =
fT,J(t, j)

fT (t)
=

tp
(τ)
x µ(j)(x+ t)

tp
(τ)
x µ(τ)(x+ t)

=
µ(j)(x+ t)

µ(τ)(x+ t)



64 THE CONTINUOUS CASE 643

and the conditional density function of T, given that the cause of decrement
is j, by

fT,J(t, j)

fJ(j)
.

Example 64.2
For the double-decrement of the previous example, calculate fJ |T (1|t).

Solution.
We have

fJ |T (1|t) =
µ(1)(x+ t)

µ(τ)(x+ t)
=

2
50−t

2
50−t + 0.02

=
1

1.5− 0.01t

Example 64.3
In a triple decrement model you were told that

µ(j)(x+ t) =
j

150
, t ≥ 0, j = 1, 2, 3.

Calculate E[T |J = 3].

Solution.
We have

fT |J(t|3) =
fT,J(t, 3)

fJ(3)

where

fT,J(t, 3) = e−
∫ t
0

6
150

ds

(
3

150

)
=

1

50
e−0.04t

and

fJ(3) =

∫ ∞
0

fT,J(t, 3)dt = 0.5.

Thus,
fT |J(t|3) = 0.04e−0.04t.

Finally,

E[T |J = 3] =

∫ ∞
0

tfT |J(t|3)dt =

∫ ∞
0

0.04te−0.04tdt = 25
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Example 64.4
Find an expression for the deferred probability t|sq

(j)
x .

Solution.
We have

t|sq
(j)
x =

∫ t+s

t

fT,J(r, j)dr =

∫ t+s

t
rp

(τ)
x µ(j)(x+ r)dr

=

∫ t+s

t
tp

(τ)
x r−tp

(τ)
x+tµ

(j)(x+ r)dr = tp
(τ)
x

∫ t+s

t
r−tp

(τ)
x+tµ

(j)(x+ r)dr

=tp
(τ)
x

∫ s

0
rp

(τ)
x+tµ

(j)(x+ t+ r)dr

=tp
(τ)
x sq

(j)
x+t.

In particular,

t|q
(j)
x = tp

(τ)
x q

(j)
x+t
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Practice Problems

Problem 64.1
Consider a double-decrement model with µ(1)(x+t) = 0.055 and µ(2)(x+t) =

0.005. Caculate tp
(τ)
x .

Problem 64.2
A multiple decrement model with two causes of decrement has forces of
decrement given by

µ(1)(x+ t) =
1

100− (x+ t)
, µ(2)(x+ t) =

2

100− (x+ t)
, 0 ≤ t ≤ 100− x.

If x = 50, obtain expressions (in terms of t) for
(a) fT,J(t, j).
(b) fT (t).
(c) fJ(j).
(d fJ |T (j|t).

Problem 64.3
We consider a three-decrement model: (1) death, (2) disability and (3) with-
drawal. Given that
(i) µ(1)(x+ t) = 0.15µ(τ)(x+ t), 0 ≤ t ≤ 20.
(ii) µ(2)(x+ t) = 0.25µ(τ)(x+ t), 0 ≤ t ≤ 20.

(iii) 15q
(2)
x = 0.05.

Calculate 15q
(3)
x .

Problem 64.4
In a triple-decrement model, you are given µ(j)(x+ t) = 0.015j for j = 1, 2, 3.
Calculate E(T ).

Problem 64.5
A double-decrement model has forces of decrement given by
(i) µ(1)(x+ t) = 0.05, t ≥ 0,
(ii)µ(2)(x+ t) = 1

50−t , 0 ≤ t < 50.
(a) Calculate fT,J(30, 2).
(b) Calculate the conditional probability that the decrement is due to cause
2, given decrement at time 10.
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Problem 64.6 ‡
For a triple decrement table, you are given:
(i) µ(1)(x+ t) = 0.3, t > 0
(ii) µ(2)(x+ t) = 0.5, t > 0
(iii) µ(3)(x+ t) = 0.7, t > 0

Calculate q
(2)
x .

Problem 64.7 ‡
(50) is an employee of XY Z Corporation. Future employment with XY Z
follows a double decrement model:
(i) Decrement 1 is retirement.
(ii)

µ(1)(50 + t) =

{
0.00 0 ≤ t < 5
0.02 5 ≤ t.

(iii) Decrement 2 is leaving employment with XY Z for all other causes.
(iv)

µ(2)(50 + t) =

{
0.05 0 ≤ t < 5
0.03 5 ≤ t.

(v) If (50) leaves employment with XY Z, he will never rejoin XY Z.
Calculate the probability that (50) will retire from XY Z before age 60.
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65 Associated Single Decrement Models

For each force of decrement µ(j)(x+ t) in a multiple-decrement model, we de-
fine a single-decrement model where survivorship depends only on the cause
j without competing with other causes. Thus, µ(j)(x+ t) is the force of mor-
tality of the model. This associated model is called the associated single
decrement model or the associated single decrement table.
In the associated single decrement model we define the functions

tp
′(j)
x =e−

∫ t
0 µ

(j)(x+s)ds

tq
′(j)
x =1− tp

′(j)
x .

We call tq
′(j)
x the net probability of decrement, the independent rate

of decrement, or the absolute rate of decrement. The symbol tq
′(j)
x

is the net probability of decrement due to cause j, without competing with
other causes. Thus, the probability represented by q

′(j)
x is the same as the

one represented by the simpler qx in the earlier chapters. For this reason, we
refer to q

′(j)
x as the probability of decrement due to cause j in the associated

single-decrement table. In comparison, tq
(j)
x is the probability of decrement

due to cause j while competing with all other causes.
Now, note the following

tp
(τ)
x =e−

∫ t
0 [µ(1)(x+s)+µ(2)(x+s)+···+µ(m)(x+s)]ds

=e−
∫ t
0 µ

(1)(x+s)dse−
∫ t
0 µ

(2)(x+s)ds · · · e−
∫ t
0 µ

(m)(x+s)ds =
m∏
j=1

tp
′(j)
x .

Thus, for 1 ≤ j ≤ m we have

tp
(τ)
x

tp
′(j)
x

= e−
∫ t
0 µ

(1)(x+s)ds · · · e−
∫ t
0 µ

(j−1)(x+s)dse−
∫ t
0 µ

(j+1)(x+s)ds · · · e−
∫ t
0 µ

(m)(x+s)ds ≤ 1.

Hence,

tp
′(j)
x ≥ tp

(τ)
x .

Now, this last inequality implies

tp
′(j)
x µ(j)(x+ t) ≥ tp

(τ)
x µ(j)(x+ t)

which upon integration gives

q′(j)x =

∫ 1

0
tp
′(j)
x µ(j)(x+ t)dt ≥

∫ 1

0
tp

(τ)
x µ(j)(x+ t)dt = q(j)

x .
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Example 65.1
In a double-increment model you are given the following information:
(i) tp

′(1)
x = 1

2t
. t ≥ 0.

(ii) tp
′(2)
x = 1

3t
. t ≥ 0.

Calculate q
(1)
x .

Solution.
We have

µ(1)(x+ t) = −
d
dt

(tp
′(1)
x )

tp
′(1)
x

= −−2−t ln 2

2−t
= ln 2

and

tp
(τ)
x = e−

∫
0t[ln 2+ln 3]ds = e−t ln 6.

Thus,

q(1)
x =

∫ 1

0
tp

(τ)
x µ(1)(x+ t)dt =

∫ 1

0

e−t ln 6 ln 2dt =
ln 2

ln 6
[1− e− ln 6] = 0.3224

Example 65.2
In a double-decrement model, express q

(τ)
x in terms of q

′(1)
x and q

′(2)
x .

Solution.
We have

q(τ)
x =1− p(τ)

x = 1− p′(1)
x p′(2)

x

=1− (1− q′(1)
x )(1− q′(2)

x ) = q′(1)
x + q′(2)

x − q′(1)
x q′(2)

x

Example 65.3
For a double-decrement table where cause 1 is death and cause 2 is with-
drawal, you are given:
(i) Deaths are uniformly distributed over each year of age in the single-
decrement table.
(ii) Withdrawals occur only at the beginning of each year of age.

(iii) `
(τ)
x = 1000

(iv) q
(2)
x = 0.25

(v) d
(1)
x = 0.04d

(2)
x .

Calculate q
′(1)
x .
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Solution.
Since withdrawals occur at the beginning of the year, the probability of
deaths during the year will not affect the probability of withdrawal. That is,
p
′(2)
x = p

(2)
x . Now, we have

q(1)
x = 0.04q(2)

x = 0.04(0.25) = 0.01

and
p(τ)
x = 1− q(1)

x − q(2)
x = 1− 0.01− 0.25 = 0.74.

Thus,

p′(1)
x =

p
(τ)
x

p
′(2)
x

=
p

(τ)
x

p
(2)
x

=
0.74

0.75
=

74

75

and

q′(1)
x = 1− 74

75
= 0.01333

Example 65.4 ‡
For a double-decrement model:
(i) tp

(1)
40 = 1− t

60
, 0 ≤ t ≤ 60

(ii) tp
(2)
40 = 1− t

40
, 0 ≤ t ≤ 40

Calculate µ(τ)(40 + t).

Solution.
We have

tp
(τ)
40 = tp

(1)
40 tp

(2)
40 =

(
1− t

60

)(
1− t

40

)
and

d

dt
[tp

(τ)
40 ] = − 1

60

(
1− t

40

)
− 1

40

(
1− t

60

)
= − 100

2400
+

t

1200
.

Hence,
d

dt
[tp

(τ)
40 ]

∣∣∣∣
t=20

= − 100

2400
+

20

1200
= −0.025.

Finally, we have

µ(τ)(40 + t) = −
d
dt

[tp
(τ)
40 ]
∣∣∣
t=20

20p
(τ)
40

=
0.025

(1/3)
= 0.075
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Practice Problems

Problem 65.1
For a double-decrement model, you are given:
(i) q

′(2)
x = 2q

′(1)
x .

(ii) q
′(1)
x + q

′(2)
x = q

(τ)
x + 0.18.

Calculate q
′(2)
x .

Problem 65.2
In a double-decrement model, you are given:
(i) 2q

′(2)
50 = 3q

′(1)
50 .

(ii) p
′(1)
50 + p

′(2)
50 = p

(τ)
50 + 0.75.

Calculate the absolute rate of decrement due to cause 1 for age 50.

Problem 65.3
We consider a three-decrement model: (1) death, (2) disability and (3) with-
drawal. Given that
(i) µ(1)(x+ t) = 0.15µ(τ)(x+ t), 0 ≤ t ≤ 20.
(ii) µ(2)(x+ t) = 0.25µ(τ)(x+ t), 0 ≤ t ≤ 20.

(iii) 15q
(2)
x = 0.05.

Calculate 15q
′(3)
x .

Problem 65.4
Peter has an old truck, age x, that faces two forces of decrement (as far as
Peter is concerned). They are (1) breakdown and (2) sale. Both forces of
decrement are constants: µ(1)(x+ t) = 0.02 and µ(2)(x+ t) = 0.03. Calculate

q
′(1)
x .

Problem 65.5 ‡
Don (50) is an actuarial science professor. His career is subject to two decre-
ments.
(i) Decrement 1 is mortality. The associated single decrement table follows
De Moivre’s law with ω = 100.
(ii) Decrement 2 is leaving academic employment with µ(2)(50 + t) = 0.05.
Calculate the probability that Don remains an actuarial science professor for
at least 5 but less than 10 years.
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Problem 65.6 ‡
For a double decrement table, you are given:
(i) µ(1)(x+ t) = 0.2µ(τ)(x+ t)
(i) µ(τ)(x+ t) = kt2

(iii) q
′(1)
x = 0.04

Calculate 2q
(2)
x .

Problem 65.7 ‡
For a double-decrement table where cause 1 is death and cause 2 is with-
drawal, you are given:
(i) Deaths are uniformly distributed over each year of age in the single-
decrement table.
(ii) Withdrawals occur only at the end of each year of age.

(iii) `
(τ)
x = 1000

(iii) q
(2)
x = 0.40

(iv) d
(1)
x = 0.45d

(2)
x .

Calculate p
′(2)
x .
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66 Discrete Multiple-Decrement Models

In this section we illustrate the discrete multiple-decrement model and intro-
duce new notational concepts.
Consider a group of `

(τ)
a lives, each aged a, subject to m causes of decre-

ments. We assume that each member of the group has a joint pdf for time
until decrement and cause of decrement given by

fT,J(t, j) = tp
(τ)
a µ(i)(a+ t), t ≥ 0, j = 1, 2, · · · ,m.

Let L (τ)(x) be the random variable representing the number of remaining

survivors at age x ≥ a (out of the `
(τ)
a lives.) Then the expected number of

individuals remaining in the group at age x is defined by

`(τ)
x =E[L (τ)(x)]

=`(τ)
a × probability that life (a) is still in the group at age x

=`(τ)
a x−ap

(τ)
a .

Suppose that the `
(τ)
x survivors to age x will, at future ages, be fully depleted

by the m causes of decrement. Then the group of `
(τ)
x survivors can be

visualized as consisting of distinct subgroups `
(j)
x , j = 1, 2, · · · ,m, where `

(j)
x

refer to the people in the group who eventually decrement due to cause j.
Clearly,

`(τ)
x =

m∑
j=1

`(j)
x .

Now, let nD
(j)
x denote the number of individuals exiting the group between

ages x and x + n from among the initial `
(τ)
x lives due to cause j. Then the

expected number of individuals exiting the group between ages x and x+ n
due to cause j is defined by

nd
(j)
x =E[nD

(j)
x ]

=`(τ)
a × probability that an individual exit the group in (x, x + n) due to cause j

=`(τ)
a

∫ x−a+n

x−a
tp

(τ)
a µ(j)(t+ a)dt.

That is, nd
(j)
x is the expected number of individuals exiting the group in the

interval (x, x+ n) due to cause j.
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Next, letting

nD
(τ)
x =

m∑
j=1

nD
(j)
x

we define

nd
(τ)
x = E[nD

(τ)
x ] =

m∑
j=1

nd
(j)
x = `(τ)

a

∫ x−a+n

x−a
tp

(τ)
a µ(τ)(t+ a)dt.

The notation d
(j)
x represents the expected number of lives exiting from the

population between ages x and x+ 1 due to decrement j. Clearly,

d(j)
x = `(j)

x − `
(j)
x+1.

Dividing this last formula by `
(τ)
x we find

q(j)
x =

d
(j)
x

`
(τ)
x

which is the probability that a life (x) will leave the group within one year
as a result of decrement j. Also, note that

nd
(j)
x =

n−1∑
t=0

d
(j)
x+t.

The total expected number of exits due to all decrements between the ages
of x and x+ 1 is denoted by d

(τ)
x . Clearly,

d(τ)
x =

m∑
j=1

d(j)
x

Note that
d(τ)
x = `(τ)

x − `
(τ)
x+1 = `(τ)

x q(τ)
x .

From this, we see that the probability that (x) will leave the group within
one year (regardless of decrement) is

q(τ)
x =

d
(τ)
x

`
(τ)
x

=
m∑
j=1

d
(j)
x

`
(τ)
x

=
m∑
j=1

q(j)
x .
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The probability that (x) will remain in the group for at least one year is

p(τ)
x = 1− q(τ)

x =
`

(τ)
x+1

`
(τ)
x

=
`

(τ)
x − d(τ)

x

`
(τ)
x

.

The probability of (x) remaining in the group after n years is

np
(τ)
x =

`
(τ)
x+n

`
(τ)
x

= p(τ)
x p

(τ)
x+1 · · · p

(τ)
x+n−1.

The probability that (x) will leave the group within n years (regardless of
decrement) is

nq
(τ)
x = 1− np

(τ)
x =

m∑
j=1

nq
(j)
x

where

nq
(j)
x =

nd
(j)
x

`
(τ)
x

is the probability of failure due to decrement j on the interval (x, x+ n].
The probability that (x) will leave the group between ages x+n and x+n+t
due to decrement j is

n|tq
(j)
x = np

(τ)
x tq

(j)
x+n =

`
(τ)
x+n

`
(τ)
x

× td
(j)
x+n

`
(τ)
x+n

=
td

(j)
x+n

`
(τ)
x

.

The probability that (x) will leave the group between ages x+n and x+n+1
regardless to decrement is

n|q
(j)
x = np

(τ)
x q

(j)
x+n =

d
(j)
x+n

`
(τ)
x

.

An important practical problem is that of constructing a multiple decre-
ment life table. We illustrate the construction of such a table in the fol-
lowing example.

Example 66.1
Complete the following three-decrement table:
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x d
(1)
x d

(2)
x d

(3)
x d

(τ)
x `

(τ)
x q

(1)
x q

(2)
x q

(3)
x q

(τ)
x p

(τ)
x

50 5,168 1,157 4,293 4,832,555
51 5,363 1,206 5,162
52 5,618 1,443 5,960
53 5,929 1,679 6,840
54 6,277 2,152 7,631

Solution.
We use the following formulas:

d(τ)
x =d(1)

x + d(2)
x + d(3)

x

`
(τ)
x+1 =`(τ)

x − d(τ)
x

q(j)
x =

d
(j)
x

`
(τ)
x

p(τ)
x =1− q(τ)

x .

We obtain

x d
(1)
x d

(2)
x d

(3)
x d

(τ)
x `

(τ)
x q

(1)
x q

(2)
x q

(3)
x q

(τ)
x p

(τ)
x

50 5,168 1,157 4,293 10,618 4,832,555 0.00107 0.00024 0.00089 0.00220 0.99780
51 5,363 1,206 5,162 11,731 4,821,937 0.0011 0.00025 0.00107 0.00243 0.99757
52 5,618 1,443 5,960 13,021 4,810,206 0.00117 0.00030 0.00124 0.00271 0.99729
53 5,929 1,679 6,840 14,448 4,797,185 0.00124 0.00035 0.00143 0.00302 0.99698
54 6,277 2,152 7,631 16,060 4,782,737 0.00131 0.00045 0.00160 0.00336 0.99664

Example 66.2
Using the previously given multiple decrement table, compute and interpret
the following:
(a) 2d

(3)
51 (b) 3p

(τ)
50 (c) 2q

(1)
53 (d) 2|2q

(2)
50 (e) 2|q

(τ)
51 .

Solution.
(a) 2d

(3)
51 is the expected number of 51 year-old exiting the group within the

next two years due to decrement 3. We have

2d
(3)
51 = d

(3)
51 + d

(3)
52 = 5, 162 + 5, 960 = 11, 122.

(b) 3p
(τ)
50 is the probability that (50) will survive another 3 years. We have

3p
(τ)
50 =

`
(τ)
53

`
(τ)
50

=
4, 797, 185

4, 832, 555
= 0.99268.
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(c) 2q
(1)
53 is the probability that (53) will exit the group whithin two years due

to decrement 1. We have

2q
(1)
53 =

d
(1)
53 + d

(1)
54

`
(τ)
53

=
5929 + 6277

4, 797, 185
= 0.00254.

(d) 2|2q
(2)
50 is the probability of (50) surviving the next two years and exiting

within the following two years due to decrement 2. We have

2|2q
(2)
50 =

d
(2)
52 + d

(2)
53

`
(τ)
50

=
1443 + 1679

4, 832, 555
= 0.00065.

(e) 2|q
(τ)
51 is the probability of (52) exiting the group between the ages 53 and

54. We have

2|q
(τ)
51 =

d
(1)
53 + d

(2)
53 + d

(3)
53

`
(τ)
51

=
14448

4, 821, 937
= 0.003

Stochastic Analysis of the Model
The discrete multiple-decrement model involves two discrete random vari-
ables: The curtate future lifetime K(x) and the random variable J(x) which
represents the cause of failure. For example, suppose that the cause of a
death is from a heart disease with decrement 1, from an accident with decre-
ment 2, or from other causes with decrement 3. Then J(x) = 1 corresponds
to decrement by a heart disease, J(x) = 2 corresponds to a decrement from
an accident, and J(x) = 3 corresponds to a decrement by other causes.

Example 66.3
Interpret the meaning of the event {K(x) = k, J(x) = j}.

Solution.
The event {K(x) = k, J(x) = j} denotes the joint event of (x) failing in the
interval (x+ k, x+ k + 1) due to the jth cause. The probability of this joint

event will be denoted by k|q
(j)
x

The joint probability function of K(x) and J(x) is

pK(x),J(x)(k, j) = Pr(K(x) = k, J(x) = j) = k|q
(j)
x =

d
(j)
x+k

`
(τ)
x
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giving the probability that (x) survives all decrements for k years and then
fails due to cause j in the (k + 1)st year.

The marginal probability function of K(x) is

pK(x)(k) =Pr(K(x) = k) =
m∑
j=1

pK(x),J(x)(k, j)

=k|q
(τ)
x

=
d

(1)
x+k + d

(2)
x+k + · · ·+ d

(m)
x+k

`
(τ)
x

giving the probability that (x) will fail in the (k+ 1)st year due to any cause.

The marginal probability function of J(x) is

pJ(x)(j) = Pr(J(x) = j) =
∞∑
k=1

pK(x),J(x)(k, j) =
∞∑
k=1

d
(j)
x+k

`
(τ)
x

giving the probability that (x) will eventually fail due to cause j without
restrictions as to time of failure.
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Practice Problems

Problem 66.1
In a double-decrement table you are given

x q
(1)
x q

(2)
x `

(τ)
x

25 0.01 0.15 −
26 0.01 0.10 8400

Calculate the effect on d
(1)
26 if q

(2)
25 changes from 0.15 to 0.25.

Problem 66.2
From a double-decrement table, you are given:
(i) `

(τ)
63 = 500

(ii) q
(1)
63 = 0.050

(iii) q
(2)
63 = 0.500

(iv) 1|q
(1)
63 = 0.070

(v) 2|q
(1)
63 = 0.042

(vi) 2q
(2)
63 = 0.600

(vii) `
(τ)
66 = 0.

Calculate d
(2)
65 .

Problem 66.3
You are given the following information for a triple-decrement table:
(i) `

(τ)
x = 100, 000

(ii) `
(τ)
x+1 = 90, 000

(iii) q
(1)
x = 0.02

(iv) d
(3)
x = 0.6d

(2)
x .

Calculate q
(2)
x .

Problem 66.4

x q
(1)
x q

(2)
x q

(τ)
x `

(τ)
x d

(1)
x d

(2)
x

30 0.075 130
31 0.020 0.05 1850
32 54
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Calculate 3q
(1)
30 .

Problem 66.5
You are given the following portion of a double-decrement table.

x `
(τ)
x d

(1)
x d

(2)
x

50 100 300
51 700 50
52 470 40
53 320

Find the probability that (50) will fail first from cause 2 between the ages of
51 and 53.

Problem 66.6 ‡
For a multiple decrement model on (60):
(i) µ(60 + t)(1), t ≥ 0 follows the Illustrative Life Table.
(ii) µ(60 + t)(τ) = 2µ(60 + t)(1), t ≥ 0
Calcualte 10|q60, the probability that decrement occurs during the 11th year.

Problem 66.7 ‡
For students entering a college, you are given the following from a multiple
decrement model:
(i) 1000 students enter the college at t = 0.
(ii) Students leave the college for failure (1) or all other reasons (2).
(iii) µ(x+ t)(1) = µ, 0 ≤ t < 4.
(iv) µ(x+ t)(2) = 0.040, 0 ≤ t < 4.
(iv) 48 students are expected to leave the college during their first year due
to all causes.
Calculate the expected number of students who will leave because of failure
during their fourth year.

Problem 66.8 ‡
For a double decrement table with `

(τ)
40 = 2000 :

x q
(1)
x q

(2)
x q

′(1)
x q

′(2)
x

40 0.24 0.10 0.25 y
41 0.20 2y
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Calculate `
(τ)
42 .

Problem 66.9 ‡
For students entering a three-year law school, you are given:
(i) The following double decrement table:

For a student at the beginning of that academic year,
Probability of

Withdrawal for Survival
Academic Academic All Other Through

Year Failure Reasons Academic Year
1 0.40 0.20
2 0.30
3 0.60

(ii) Ten times as many students survive year 2 as fail during year 3.
(iii) The number of students who fail during year 2 is 40% of the number of
students who survive year 2.
Calculate the probability that a student entering the school will withdraw
for reasons other than academic failure before graduation.
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67 Uniform Distribution of Decrements

With a given multiple-decrement table, one can calculate tq
(j)
x and tq

(τ)
x for

integral values of t. In this section, we consider the question of nonintegral
t. More importantly, we want to establish a relationship between tq

′(j)
x and

tq
(j)
x .

As in the case of life table of Section 22, some assumptions are needed. One
of them is the assumption of uniform distribution of decrements. That is,
each decrement is observed to occur uniformly throughout the year of age
when other decrements are also present. In a way similar to Section 24.1,
this assumption means

tq
(j)
x = tq(j)

x , 0 < t ≤ 1.

That is, tq
(j)
x is a linear function of t. From this, we can write

tq(j)
x = tq

(j)
x =

∫ t

0
sp

(τ)
x µ(j)(x+ s)ds.

Differentiating both sides with respect to t we obtain

q(j)
x = tp

(τ)
x µ(j)(x+ t)

which implies

µ(j)(x+ t) =
q

(j)
x

tp
(τ)
x

=
q

(j)
x

1− tq(τ)
x

.

We also have,

tp
′(j)
x =e−

∫ t
0 µ

(j)(x+s)ds

=e
−q(j)x

∫ t
0

ds

1−sq(τ)x = e
q
(j)
x

q
(τ)
x

[
ln (1−sq(τ)x )

]t
0

=(1− tq(τ)
x )

q
(j)
x

q
(τ)
x .

This result allows us to compute the absolute rates of decrements q
′(j)
x given

the probabilities of decrements in the multiple decrement model. In partic-
ular, when t = 1, we have

q′(j)x = 1− (1− q(τ)
x )

q
(j)
x

q
(τ)
x .
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Example 67.1
In a double decrement table where cause 1 is death and cause 2 is withdrawal,
you are given:
(i) Both deaths and withdrawals are each uniformly distributed over each
year of age in the double decrement table.
(ii) `

(τ)
x = 1000

(iii) q
(2)
x = 0.48

(iv) d
(1)
x = 0.35d

(2)
x .

Calculate q
′(1)
x and q

′(2)
x .

Solution.
We have

q(1)
x =

d
(1)
x

`
(τ)
x

= 0.35q(2)
x = 0.168

q(τ)
x =q(1)

x + q(2)
x = 0.168 + 0.48 = 0.648

q′(1)
x =1− (1− 0.648)

0.168
0.648 = 0.23715

q′(2)
x =1− (1− 0.648)

0.48
0.648 = 0.53857

Next, we explore a more common assumption than the one made earlier
in this section. The assumption made above assume that each individual
decrement is uniformly distributed in the multiple-decrement context. Now,
we make the assumption that the individual decrements are uniformly dis-
tributed in the associated single-decrement context. That is,

tq
′(j)
x = tq′(j)x , 0 < t ≤ 1.

Taking the derivative of both sides with respect to t we find

q′(j)x = tp
′(j)
x µ(j)(x+ t).

Now, using the result

tp
(τ)
x =

m∏
j=1

tp
′(j)
x
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we have

tq
(j)
x =

∫ t

0
sp

(τ)
x µ(j)(x+ s)ds

=

∫ t

0

∏
i 6=j

sp
′(i)
x sp

′(j)
x µ(j)(x+ s)ds

=q′(j)x

∫ t

0

∏
i 6=j

sp
′(i)
x ds

=q′(j)x

∫ t

0

∏
i 6=j

(1− sq′(i)x )ds.

Thus, by evaluating the integral, we can find the probabilities of decrement
given the absolute rates of decrements. For example, when m = 2 we have

tq
(1)
x = q′(1)

x

∫ t

0

(1− sq′(2)
x )ds = tq′(1)

x

(
1− t

2
q′(2)
x

)
.

Likewise,

tq
(2)
x = q′(2)

x

∫ t

0

(1− sq′(1)
x )ds = tq′(2)

x

(
1− t

2
q′(1)
x

)
.

Example 67.2
In a triple decrement table where each of the decrement in their associated
single decrement tables satisfy the uniform distribution of decrement assump-
tion, you are given:
(i) q

′(1)
x = 0.03 and q

′(2)
x = 0.06

(ii) `
(τ)
x = 1, 000, 000 and `

(τ)
x+1 = 902, 682.

Calculate d
(3)
x .

Solution.
We will use the formula

q(3)
x =

d
(3)
x

`
(τ)
x

where

q(3)
x = q′(3)

x

∫ 1

0

(1−sq′(1)
x )(1−sq′(2)

x )ds = q′(3)
x

∫ 1

0

(1−0.03s)(1−0.06s)ds = 0.9556q′(3)
x .
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But
`

(τ)
x+1

`
(τ)
x

= p(τ)
x = p′(1)

x p′(2)
x p′(3)

x = (1− q′(1)
x )(1− q′(2)

x )(1− q′(3)
x ).

Thus,

(1−0.03)(1−0.06)(1−q′(3)
x ) =

902, 682

1, 000, 000
=⇒ q′(3)

x = 0.01 =⇒ q(3)
x = 0.009556.

Finally,

d(3)
x = 1, 000, 000q(3)

x = 9556

Example 67.3 ‡
For a double decrement model:
(i) In the single decrement table associated with cause (1), q′40

(1) = 0.100 and
decrements are uniformly distributed over the year.
(ii) In the single decrement table associated with cause (2), q′40

(2) = 0.125
and all decrements occur at time 0.7.
Calculate q40

(2).

Solution.
Let `0 denote the original survivorship group of age 40. In the time interval
[0, 0.7), only decrement (1) can reduce the original survivorship group. In
that time interval, cause (1) eliminates

`00.7q
′
40

(1)
= 0.7`0q

′
40

(1)
= 0.07`0.

Now, at exact time t = 0.7, decrement (2) eliminates

(`0 − 0.07`0)q′40
(2)

= (0.93)(0.125)`0 = 0.11625`0.

Hence,

q40
(2) =

0.11625`0

`0

= 0.11625

Example 67.4 ‡
A population of 1000 lives age 60 is subject to 3 decrements, death (1),
disability (2), and retirement (3). You are given:
(i) The following absolute rates of decrement:
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x q
′(1)
x q

′(2)
x q

′(3)
x

60 0.010 0.030 0.100
61 0.013 0.050 0.200

(ii) Decrements are uniformly distributed over each year of age in the multiple
decrement table.
Calculate the expected number of people who will retire before age 62.

Solution.
We are looking for d

(3)
60 + d

(3)
61 . We have

`
(τ)
60 =1000

p
(τ)
60 =p

′(1)
60 p

′(2)
60 p

′(3)
60 = (1− 0.010)(1− 0.030)(1− 0.100) = 0.86427

`
(τ)
61 =`

(τ)
60 p

(τ)
60 = 1000(0.86427) = 864.27

q
(3)
60 =q

(τ)
60

ln p
′(3)
60

ln p
(τ)
60

= (1− 0.86427)

(
ln 0.9

ln 0.86427

)
= 0.09805

d
(3)
60 =`

(τ)
60 q

(3)
60 = 1000(0.09805) = 98.05

p
(τ)
61 =p

′(1)
61 p

′(2)
61 p

′(3)
61 = (1− 0.013)(1− 0.050)(1− 0.200) = 0.75012

q
(3)
61 =q

(τ)
61

ln p
′(3)
61

ln p
(τ)
61

= (1− 0.75012)

(
ln 0.8

ln 0.75012

)
= 0.19393

d
(3)
61 =`

(τ)
61 q

(3)
61 = 864.27(0.19393) = 167.60.

Hence,
d

(3)
60 + d

(3)
61 = 98.05 + 167.60 = 265.65
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Practice Problems

Problem 67.1
You are given the following double-decrement table:

x `
(τ)
x d

(1)
x d

(3)
x

60 1000 150 50
61 800 160 75
62 565 160 85

Calculate q
′(1)
60 assuming each decrement is uniformly distributed over each

year of age in the double decrement table.

Problem 67.2
For a double-decrement table, you are given:
(i) `

(τ)
60 = 5000 and `

(τ)
62 = 4050

(ii) d
(1)
60 = 210; d

(2)
60 = 235; d

(2)
61 = 306

(iii) Each decrement is uniformly distributed over each year of age.

Calculate q
′(1)
61 .

Problem 67.3
In a triple-decrement table you are given:
(i) 0.8q

(1)
x = 0.016 and 0.2q

(2)
x = 0.002

(ii) q
(τ)
x = 0.05.

Assuming that each decrement is uniformly distributed over each year of age,
calculate µ(3)(x+ 0.5).

Problem 67.4
Given the following extract from a triple-decrement table:

z q
′(1)
x q

′(2)
x q

′(3)
x

x 0.02 0.02 0.04
x+ 1 0.025 0.02 0.06

Assume that each decrement is uniformly distributed over each year of age,
calculate 1|q

(1)
x .

Problem 67.5
A group of 500 lives in a suburban community, all age 50, is subject to 3
decrements: death (1), disability (2), and unemployment (3).
You are given:
(i) The following absolute rates of decrement:
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x q
′(1)
x q

′(2)
x q

′(3)
x

50 0.008 0.02 0.10
51 0.010 0.04 0.150

(ii) Decrements are uniformly distributed over each year of age in the multiple
decrement table.
Calculate the expected number of people who become disabled before age
52.

Problem 67.6 ‡
For a double decrement table, you are given:
(i) q

′(1)
x = 0.2

(ii) q
′(2)
x = 0.3

(iii) Each decrement is uniformly distributed over each year of age in the
double decrement table.
Calculate 0.3q

(1)
x+0.1.

Problem 67.7 ‡
You intend to hire 200 employees for a new management-training program.
To predict the number who will complete the program, you build a multiple
decrement table. You decide that the following associated single decrement
assumptions are appropriate:
(i) Of 40 hires, the number who fail to make adequate progress in each of the
first three years is 10, 6, and 8, respectively.
(ii) Of 30 hires, the number who resign from the company in each of the first
three years is 6, 8, and 2, respectively.
(iii) Of 20 hires, the number who leave the program for other reasons in each
of the first three years is 2, 2, and 4, respectively.
(iv) You use the uniform distribution of decrements assumption in each year
in the multiple decrement table.
Calculate the expected number who fail to make adequate progress in the
third year.

Problem 67.8 ‡
For a multiple decrement table, you are given:
(i) Decrement (1) is death, decrement (2) is disability, and decrement (3) is
withdrawal.
(ii) q

′(1)
60 = 0.010
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(iii) q
′(2)
60 = 0.050

(iv) q
′(3)
60 = 0.100

(v) Withdrawals occur only at the end of the year.
(vi) Mortality and disability are uniformly distributed over each year of age
in the associated single decrement tables.
Calculate q

(3)
60 .

Problem 67.9 ‡
For a double decrement table, you are given:

Age `
(τ)
x d

(1)
x d

(1)
x

40 1000 60 55
41 70
42 750

Each decrement is uniformly distributed over each year of age in the double

decrement table. Calculate q
′(1)
41 .

Problem 67.10 ‡
For a triple decrement table, you are given:
(i) Each decrement is uniformly distributed over each year of age in its asso-
ciated single decrement table.

(ii) q
′(1)
x = 0.200

(iii) q
′(2)
x = 0.080

(ii) q
′(3)
x = 0.125

Calculate q
(1)
x .
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68 Valuation of Multiple Decrement Benefits

Multiple Decrement models provide a mathematical framework for the insur-
ance plan with the amount of benefit payment depending on the cause and
time of decrement.
Let B

(j)
x+t denote the value of a benefit at time t if (x) departs due to cause

j at time t (or at age x+ t). The present value of the benefit is

Z(j)
x = B

(j)
x+tν

T .

The APV of this benefit at age x is denoted as Ā
(j)
x and is given by

Ā(j)
x =

∫ ∞
0

B
(j)
x+tν

t
tp

(τ)
x µ(j)(x+ t)dt.

The APV of the total benefits, denoted as Ā (in a m multiple decrement
model) is

Ā =
m∑
j=1

Ā(j)
x =

m∑
j=1

∫ ∞
0

B
(j)
x+tν

t
tp

(τ)
x µ(j)(x+ t)dt.

The corresponding formula in the discrete case is

Ax =
m∑
j=1

∞∑
k=0

B
(j)
x+kν

k+1
kp

(τ)
x q

(j)
x+k.

Example 68.1
You are given the following portion of a double-decrement table:

x `
(τ)
x d

(1)
x d

(2)
x

50 1200 100 300
51 200
52 300

A 2-year insurance contract on (50) provides for benefits paid at the end of
year of death if this occur within 2 years. The benefit payable is one unit if
death is from cause 1 and 2 units if death is from cause 2. Given i = 50%,
find the actuarial present value of the benefits.
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Solution.
The APV of the benefits is

Ax = A(1)
x + A(2)

x

where
A(1)
x = νq

(1)
50 + 2ν2p

(τ)
50 q

(1)
51

and
A(2)
x = νq

(2)
50 + 2ν2p

(τ)
50 q

(2)
51

Now, we have

`
(τ)
51 =`

(τ)
50 − d

(1)
50 − d

(2)
50 = 1200− 100− 300 = 800

`
(τ)
52 =`

(τ)
51 − d

(1)
51 − d

(2)
51

300 =800− 200− d(2)
51

d
(2)
51 =300

q
(1)
50 =

d
(1)
50

`
(τ)
50

=
100

1200
=

1

12

q
(2)
50 =

d
(2)
50

`
(τ)
50

=
300

1200
=

1

4

p
(τ)
50 =1− q(1)

50 − q
(2)
50 = 1− 1

12
− 1

4
=

2

3

q
(1)
51 =

d
(1)
51

`
(τ)
51

=
200

800
=

1

4

q
(2)
51 =

d
(2)
51

`
(τ)
51

=
300

800
=

3

8
.

Thus,

APVB =A(1)
x + A(2)

x =
1

1.5

[
1

12
+ 2× 1

4

]
+

1

1.52

(
2

3

)[
1

4
+ 2× 3

8

]
=0.6852

Example 68.2
An insurance policy to (50) will pay $4 upon death if death is accidental (ad)
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and occurs within 25 years. An additional $1 will be paid regardless of the
time or cause of death.
The force of accidental death at all ages is 0.01, and the force of death for
all other causes is is 0.05 at all ages.
If δ = 0.10, find the actuarial present value of this policy.

Solution.
We have

Ā(τ)
x + 4Ā1

x:25

(ad)
=

µ(τ)

µ(τ) + δ
+ 4

µ(ad)

µ(τ) + δ
(1− e−(µ(τ)+δ)t)

=
0.06

0.16
+ 4

0.01

0.16
(1− e−0.16(25))

=
5

8
− 1

4
e−4

Example 68.3 ‡
A special whole life insurance on (x) pays 10 times salary if the cause of
death is an accident and 500,000 for all other causes of death.
You are given:
(i) µ(x+ t)(τ) = 0.01, t ≥ 0
(ii) µ(x+ t)(Accident) = 0.001, t ≥ 0
(iii) Benefits are payable at the moment of death.
(iv) δ = 0.05
(v) Salary of (x) at time t is 50, 000e0.04t, t ≥ 0.
Calculate the actuarial present value of the benefits at issue.

Solution.
We have

Āx =ĀAccident
x + ĀNon−Accident

x

=10

∫ ∞
0

50, 000e0.04te−0.05te−0.01t(0.001)dt+

∫ ∞
0

500, 000e−0.05te−0.01t(0.009)dt

=500

∫ ∞
0

e−0.02tdt+ 4500

∫ ∞
0

e−0.06tdt

=
[
−25000e−0.02t − 75000e−0.06t

]∞
0

= 100, 000

Example 68.4 ‡
For a special whole life insurance of 100,000 on (x), you are given:
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(i) δ = 0.06
(ii) The death benefit is payable at the moment of death.
(iii) If death occurs by accident during the first 30 years, the death benefit
is doubled.
(iv) µ(τ)(x+ t) = 0.008, t ≥ 0
(v) µ(1)(x+ t) = 0.001, t ≥ 0, where µ(1)(x+ t) is the force of decrement due
to death by accident.
Calculate the single benefit premium for this insurance.

Solution.
The actuarial present value of benefits ia

APVB =100, 000

∫ ∞
0

νttp
(τ)
x µ(τ)(x+ t)dt+ 100, 000

∫ 30

0

νttp
(τ)
x µ(1)(x+ t)dt

=100, 000

∫ ∞
0

e−0.06te−0.008t(0.008)dt+ 100, 000

∫ 30

0

e−0.06te−0.008t(0.001)dt

=11765 + 1279 = 13044.

The death benefit is 100,000 at the time of death, for any reason, at any time
(the first integral) plus another 100,000 at the time of death, if death is by
accident, during the first 30 years (the second integral)

Example 68.5 ‡
A fully discrete 3-year term insurance of 10,000 on (40) is based on a double-
decrement model, death and withdrawal:
(i) Decrement 1 is death.
(ii) µ(1)(40 + t) = 0.02, t > 0
(iii) Decrement 2 is withdrawal, which occurs at the end of the year.

(iv) q
′(2)
40+k = 0.04, k = 0, 1, 2

(v) ν = 0.95
Calculate the actuarial present value of the death benefits for this insurance.
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Solution.
We have

Pr((40) dies in the first year) =q
′(1)
40 = 1− e−0.02 = 0.0198

Pr((40) dies in the second year) =p
(τ)
40 q

′(1)
41 = p

′(1)
40 p

′(2)
40 q

′(1)
41

=(1− 0.0198)(0.96)(0.0198) = 0.01863

Pr((40) dies in the third year) =p
(τ)
40 p

(τ)
41 q

′(1)
42

=p
′(1)
40 p

′(2)
40 p

′(1)
41 p

′(2)
41 q

′(1)
42

=(1− 0.0198)(0.96)e−0.02(0.96)(1− e−0.02) = 0.01753

APVB =10, 000(1 + 0.0198ν + 0.01863ν2 + 0.01753ν3) = 506.53
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Practice Problems

Problem 68.1
A 3-year term issued to (16) pays 20,000 at the end of year of death if death
results from an accident. Let (a) be the death resulting from an accident and
(oc) the death resulting from other causes. You are given:
(i)

x `
(τ)
x d

(a)
x d

(oc)
x

16 20,000 1,300 1,100
17 17,600 1,870 1,210
18 14,520 2,380 1,331

(ii) i = 0.10
Calculate the actuarial present value of this policy.

Problem 68.2
An employer provides his employees aged 62 the following one year term
benefits, payable at the end of the year of decrement:

$1 if decrement results from cause 1
$2 if decrement results from cause 2
$6 if decrement results from cause 3

In their associated single decrement tables, all three decrements follow De
Moivre’s Law with ω = 65; only three decrements exist.
If d = 0.10, find the actuarial present value at age 62 of the benefits.

Problem 68.3
A multiple-decrement table has two causes of decrement: (1) death by acci-
dent and (2) death other than accident. A fully continuous whole life insur-
ance issued to (x) pays 2 if death results by accident and 1 if death results
other than by accident. If µ(1)(x+ t) = δ, the force of interest, calculate tha
actuarial present value of this policy.

Problem 68.4
Austin who is currently age 35 is a professional race car driver. He buys
a three-year term insurance policy which pays $1,000,000 for death from
accidents during a race car competition. The policy pays nothing for death
due to other causes.
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The death benefit is paid at the end of the year of death. Level annual benefit
premiums are payable at the beginning of each year and these premiums are
determined according to the actuarial equivalence principle.
You are given the following double decrement table:

x `
(τ)
x d

(a)
x d

(oc)
x

35 10,000 16 40
36 9,944 20 60
37 9,864 25 80

where d
(a)
x represents deaths from accidents during a race car competition

and d
(oc)
x represents deaths from other causes.

Calculate the actuarial present value of benefits assuming an interest rate of
i = 0.06.

Problem 68.5 ‡
For a 3-year fully discrete term insurance of 1000 on (40), subject to a double
decrement model:
(i)

x `
(τ)
x d

(1)
x d

(2)
x

40 2000 20 60
41 30 50
42 40

(ii) Decrement 1 is death. Decrement 2 is withdrawal.
(iii) There are no withdrawal benefits.
(iv) i = 0.05.
Calculate the actuarial present value of benefits for this insurance.

Problem 68.6 ‡
A whole life policy provides that upon accidental death as a passenger on
an airplane a benefit of 1,000,000 will be paid. If death occurs from other
accidental causes, a death benefit of 500,000 will be paid. If death occurs
from a cause other than an accident, a death benefit of 250,000 will be paid.
You are given:
(i) Death benefits are payable at the moment of death.
(ii) µ(1)(x+ t) = 1

2,000,000
, where (1) indicates accidental death as a passenger
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on an airplane.
(iii) µ(2)(x + t) = 1

250,000
, where (2) indicates death from other accidental

causes.
(iv) µ(3)(x+ t) = 1

10,000
, where (3) indicates non-accidental deaths.

(v) δ = 0.06.
Calculate the single benefit premium for this insurance.

Problem 68.7 ‡
XYZ Paper Mill purchases a 5-year special insurance paying a benefit in the
event its machine breaks down. If the cause is “minor”(1), only a repair is
needed. If the cause is “major” (2), the machine must be replaced.
Given:
(i) The benefit for cause (1) is 2000 payable at the moment of breakdown.
(ii) The benefit for cause (2) is 500,000 payable at the moment of breakdown.
(iii) Once a benefit is paid, the insurance contract is terminated.
(iv) µ(1)(x+ t) = 0.100 and µ(2)(x+ t) = 0.004, for t > 0.
(v) δ = 0.04.
Calculate the actuarial present value of this insurance.



69 VALUATION OFMULTIPLE DECREMENT PREMIUMS AND RESERVES677

69 Valuation of Multiple Decrement Premiums

and Reserves

In multiple decrement context, the premium and reserve are calculated in
much the same way as in the single-decrement case, except that care must
be taken due to the benefits being made according to the mode of decrement
and time of decrement. We will illustrate this point by working out a series
of examples.

Example 69.1
A 3-year term issued to (16) pays 20,000 at the end of year of death if death
results from an accident. Let (a) be the death resulting from an accident and
(oc) the death resulting from other causes. You are given:
(i)

x `
(τ)
x d

(a)
x d

(oc)
x

16 20,000 1,100 1,300
17 17,600 1,210 1,870
18 14,520 1,331 2,380

(ii) i = 0.10
Calculate the level annual premium of this policy.

Solution.
We have

20, 000A 1
16:3

(τ)
=20, 000[νq

(a)
16 + ν2p

(τ)
16 q

(a)
17 + ν3

2p
(τ)
16 q

(a)
18 ]

=
20, 000

`
(τ))
16

[νd
(a)
16 + ν2d

(a)
17 + ν3d

(a)
18 ]

=
1100

1.1
+

1210

1.12
+

1331

1.13
= 3000.

Now,

ä
(τ)

x:3
=1 + νp

(τ)
16 + ν2

2p
(τ)
16 = 1 +

17, 600

20, 000
· 1

1.10
+

14, 520

20, 000
· 1

1.102

=1 + 0.8 + 0.6 = 2.4.

Hence, the level annual premium is

P =
3000

2.4
= 1250
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Example 69.2 ‡
For a fully discrete 4-year term insurance on (40), who is subject to a double-
decrement model:
(i) The benefit is 2000 for decrement 1 and 1000 for decrement 2.
(ii) The following is an extract from the double-decrement table for the last
3 years of this insurance:

x `
(τ)
x d

(1)
x d

(2)
x

41 800 8 16
42 8 16
43 8 16

(iii) ν = 0.95
(iv) The benefit premium, based on the equivalence principle, is 34.
Calculate 2V, the benefit reserve at the end of year 2.

Solution.
We first complete the table using the formula

`
(τ)
x+1 = `(τ)

x − d(1)
x − d(2)

x

to obtain

x `
(τ)
x d

(1)
x d

(2)
x

41 800 8 16
42 776 8 16
43 752 8 16

Next, we have

2V =APV(Future Benefits)− APV(Future Premiums)

=2000[νq
(1)
42 + ν2p

(τ)
42 q

(1)
43 ] + 1000[νq

(2)
42 + ν2p

(τ)
42 q

(2)
43 ]− 34[1 + νp

(τ)
42 ]

=2000

[
0.95

(
8

776

)
+ 0.952

(
8

776

)]
+ 1000

[
0.95

(
16

776

)
+ 0.952

(
16

776

)]
−34

[
1 + 0.95

(
752

776

)]
= 11.091

Example 69.3 ‡
For a special fully discrete 3-year term insurance on (55), whose mortality
follows a double decrement model:
(i) Decrement 1 is accidental death; decrement 2 is all other causes of death.
(ii)
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x q
(1)
x q

(2)
x

55 0.002 0.020
56 0.005 0.040
57 0.008 0.060

(iii) i = 0.06
(iv) The death benefit is 2000 for accidental deaths and 1000 for deaths from
all other causes.
(v) The level annual contract premium is 50.
(vi) 1L is the prospective loss random variable at time 1, based on the contract
premium.
(vii) K(55) is the curtate future lifetime of (55).
Calculate E[1L|K(55) > 1].

Solution.
We have

A 1
56:2

(1)
=νq

(1)
56 + ν2p

(τ)
56 q

(1)
57

=(1.06)−1(0.005) + (1.06)−2(0.955)(0.008) = 0.0115165539

A 1
56:2

(2)
=νq

(2)
56 + ν2p

(τ)
56 q

(2)
57

=(1.06)−1(0.04) + (1.06)−2(0.955)(0.06) = 0.0887326451

APVFB =2000A 1
55:3

(1)
+ 1000A 1

55:3

(2)

=2000(0.0115165539) + 1000(0.0887326451) = 111.77

APVFP =50ä56:2 = 50[1 + νp
(τ)
56 ]

=50[1 + (1.06)−1(0.955)] = 95.05

E[1L|K(55) > 1] =111.77− 95.05 = 16.72

Example 69.4 ‡
A special whole life insurance of 100,000 payable at the moment of death of
(x) includes a double indemnity provision. This provision pays during the
first ten years an additional benefit of 100,000 at the moment of death for
death by accidental means. You are given:
(i) µ(τ)(x+ t) = 0.001, t ≥ 0
(ii) µ(1)(x + t) = 0.0002, t ≥ 0, where µ(1)(x + t) is the force of decrement
due to death by accidental means.
(iii) δ = 0.06
Calculate the single benefit premium for this insurance.
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Solution.
The single benefit premium of this insurance is the sum of the actuarial
present value of the death benefit due to any cause plus the actuarial present
value of the extra benefit due to accidental death.
The actuarial present value of benefit due to any cause is

100, 000

∫ ∞
0

e−δttp
(τ)
x µ(τ)(x+t)dt = 100, 000

∫ ∞
0

e−0.06te−0.001t(0.001)dt = 1639.34.

The actuarial present value of extra benefit due to an accident is

100, 000

∫ 10

0

e−δttp
(τ)
x µ(1)(x+t)dt = 100, 000

∫ 10

0

e−0.06te−0.001t(0.0002)dt = 149.72.

The single benefit premium for this insurance is 1639.34+149.72 = 1789.06
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Practice Problems

Problem 69.1
A life (50) is subject to a double decrement model with

x `
(τ)
x d

(d)
x d

(w)
x

50 1,000 15 35
51 25 30
52 35

where decrement (d) is death while decrement (w) is withdrawal.
For a three-year fully discrete term insurance of $100 on (50), there are no
withdrawal benefits and the interest rate is i = 4%.
Compute the amount of the level annual benefit premium for this insurance.

Problem 69.2
A special whole life insurance of 100,000 payable at the moment of death of
(40) includes a double indemnity rider. This provision pays during the first
ten years an additional benefit of 100,000 at the moment of death for death
by accidental means (decrement J = 1). You are given:
(i) µ(1)(40 + t) = 0.0002, t ≥ 0
(ii) µ(τ)(40 + t) = 0.001, t ≥ 0
(iii) δ = 0.06.
For the policy without the rider the level benefit premium π1 is payable for
life. For the policy with the rider an extra benefit premium π2 in addition
to π1 is charged for the extra benefit for death by accidental means until age
50. Calculate the benefit premiums for the insurance with the rider.

Problem 69.3
The benefit premiums are determined as in the previous problem. Find the
benefit reserve for the insurance with the rider at the end of year 2.

Problem 69.4 ‡
For a 3-year fully discrete term insurance of 1000 on (40), subject to a double
decrement model:
(i)
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x `
(τ)
x d

(1)
x d

(2)
x

40 2000 20 60
41 30 50
42 40

(ii) Decrement 1 is death. Decrement 2 is withdrawal.
(iii) There are no withdrawal benefits.
(iv) i = 0.05.
Calculate the level annual benefit premium for this insurance.

Problem 69.5 ‡
For a special whole life insurance:
(i) The benefit for accidental death is 50,000 in all years.
(ii) The benefit for non-accidental death during the first 2 years is return of
the single benefit premium without interest.
(iii) The benefit for non-accidental death after the first 2 years is 50,000.
(iv) Benefits are payable at the moment of death.
(v) Force of mortality for accidental death: µ(x+ t)(1) = 0.01, t > 0
(vi) Force of mortality for non-accidental death: µ(x+ t)(2) = 2.29, t > 0
(vii) δ = 0.10
Calculate the single benefit premium for this insurance.

Problem 69.6 ‡
Michael, age 45, is a professional motorcycle jumping stuntman who plans to
retire in three years. He purchases a three-year term insurance policy. The
policy pays 500,000 for death from a stunt accident and nothing for death
from other causes. The benefit is paid at the end of the year of death.
You are given:
(i) i = 0.08
(ii)

x `
(τ)
x d

(−s)
x d

(s)
x

45 2500 10 4
46 2486 15 5
47 2466 20 6

where d
(s)
x represents deaths from stunt accidents and d

(−s)
x represents deaths

from other causes.
(iii) Level annual benefit premiums are payable at the beginning of each year.
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(iv) Premiums are determined using the equivalence principle.
Calculate the annual benefit premium.
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Incorporating Expenses in
Insurance Models

Our analysis of benefit premiums in the precedings chapters was based on
the equivalence principle. The premium obtained by this principle does not
incorporate expenses of operations. In practice, the premiums are set higher
than the ones obtained through the equivalence principle in order to generate
revenue to pay the expenses as well as the contingent benefit payments.
In this chapter we explore the theory of determining the annual premium
that includes operating expenses. We refer to such annual premium as the
gross annual premium. Synonymous terms are the contract premium,
the expense-loaded premium or the expense-augmented premium.
The second topic of this chapter is the insurance asset shares.

685
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70 Expense-Augmented Premiums

As pointed out in the introduction, the expense-augmented premium is
the premium necessary to cover both the policy benefits as well as the re-
lated expenses. In practice, expenses are treated as if they are benefits. We
will denote the expense-augmented premium by the letter G. An extended
equivalence principle is used to find G which states that the actuarial present
value of future gross premiums is equal to the actuarial present value of ben-
efits plus the actuarial present value of expenses. This principle is illustrated
in the next example for constant expenses.

Example 70.1
Consider a whole life policy issued to (x) with the following characteristics:
(i) benefit is B payable at the end of the year of death.
(ii) premium is payable once at the beginning of each year for h years.
(iii) annual constant expense E payable at the beginning of the year.
Find an expression for the gross premium G.

Solution.
By the extended equivalence principle, we have

Gäx:h = BAx + Eäx:h .

Solving for G we find

G = BhP (Ax) + E.

In this case, the annual constant expense is a simple addition to the annual
benefit premium

In practice, the first year expense tends to be higher than the continuing
level expense due to agents’ commission from selling the contract and the
cost of preparing new policies and records administration. These expenses
are usually recovered in later years. Non-first year expense is called renewal
expense (used for maintaining and continuing the policy).

Example 70.2
Consider again the previous example. Suppose that the first year expense is
E1 and the renewal expenses are Er. Find an expression of G.
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Solution.
By the extended equivalence principle, we have

Gäx:h = BAx+E1+Erax:h−1 = BAx+E1+Er(äx:h −1) = BAx+(E1−Er)+Eräx:h .

Thus,

G = BhP (Ax) + Er +
E1 − Er
äx:h

.

In this case, the excess of the first-year to renewal expenses is spread through-
out the premium-payment period

Example 70.3 ‡
For a fully discrete whole life insurance of 100,000 on (35) you are given:
(i) Percent of premium expenses are 10% per year.
(ii) Per policy expenses are 25 per year.
(iii) Annual maintenance expense of 2.50 for each 1000 of face value.
(iv) All expenses are paid at the beginning of the year.
(v) 1000P35 = 8.36
Calculate the level annual expense-loaded premium using the equivalence
principle.

Solution.
By the extended equivalence principle we have

APV (Premiums) = APV(Benefits) + APV(Expenses).

That is,
Gä35 = 100, 000A35 + (250 + 25 + 0.10G)ä35.

Now,

8.36 = 1000P35 = 1000

(
A35

ä35

)
=⇒ A35

ä35

= 0.00836.

Hence

G = 100, 000(0.00836) + 275 + 0.10G =⇒ G = 1234.44

With the gross premiums, it is now a simple matter to include the expense
factors, along with the gross premium, to determine gross premium re-
serves or total reserves. The general prospective formula for the tth total
reserves now reads
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tV
E = APV(future benefits) + APV(future expenses) − APV(future gross

premiums).

Example 70.4
For a fully discrete whole life insurance of 1,000 on (45) you are given:
(i) Expenses include 10% per year of gross premium.
(ii) Additional expenses of 3 per year.
(iii) All expenses are paid at the beginning of the year.
(iv) Mortality follows the Illustrative Life Table with interest rate i = 6%.
(a) Calculate the annual benefit premium.
(b) Calculate the annual gross premium.
(c) Calculate the annual expense premium.
(d) Calculate the benefit reserves at the end of year 1.
(e) Calculate the total reserves at the end of year 1.
(f) Calculate the expense reserves at the end of year 1. The expense reserves
is defined as the APV of future expenses minus the APV of future expense
premiums.

Solution.
(a) First we find the benefit premium:

π = 1000P (A45) = 1000
A45

ä45

= 1000

(
0.20120

14.1121

)
= 14.2573.

(b) Next, we find the gross premium. We have

Gä45 = 1000A45 + 0.10Gä45 + 3ä45

or
14.1121G = 1000(0.20120) + 0.10G(14.1121) + 3(14.1121).

Solving for G, we find G = 19.1747.
(c) The annual expense premium is 19.1747− 14.2573 = 4.9174.
(d) The benefit reserves at the end of year 1 is

1V = 1000

(
1− ä46

ä45

)
= 1000

(
1− 13.9546

14.1121

)
= 11.1606.

(e) The total reserve is

1V
E =1000A46 + 0.10Gä46 + 3ä46 −Gä46

=1000(0.21012)− 0.9(19.1747)(13.9546) + 3(13.9546) = 11.1661.

(f) The expense reserve is 0.1(19.1747)ä46 + 3ä46 − 4.9174ä46 = 0.00098
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Example 70.5 ‡
For a fully discrete whole life insurance of 1000 on (60), you are given:
(i) The expenses, payable at the beginning of the year, are:

Expense Type First Year Renewal Years
% of Premium 20% 6%
Per Policy 8 2

(ii) The level expense-loaded premium is 41.20.
(iii) i = 0.05
Calculate the value of the expense augmented loss variable, 0Le, if the insured
dies in the third policy year.

Solution.
We have

0Le =PVB + PVE− PVP

=1000ν3 + (0.20G+ 8) + (0.06G+ 2)ν + (0.06G+ 2)ν2 −Gä3

=1000(1.05)−3 + [0.20(41.20) + 8] + [0.06(41.20) + 2](1.05)−1

+[0.06(41.20) + 2](1.05)−2 − 41.20
1− 1.05−3

0.05(1.05)−1
= 770.815
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Practice Problems

Problem 70.1
For a fully discrete whole life insurance of 1,000 on (45) you are given:
(i) Percent of premium expenses are 40% for first year and 10% thereafter.
(ii) Per policy expenses are 5 for first year and 2.5 thereafter.
(iii) Per thousand expenses are 1.00 for first year and 0.5 for thereafter.
(iv) All expenses are paid at the beginning of the year.
(v) Mortality follows the Illustrative Life Table with interest rate i = 6%.
Calculate the expense-loaded annual premium.

Problem 70.2
For a fully discrete whole life insurance of 1,000 on (40) you are given:
(i) Percent of premium expenses are 10% per year.
(ii) Per policy expenses are 5 per year.
(iii) All expenses are paid at the beginning of the year.
(iv) Mortality follows the Illustrative Life Table with interest rate i = 6%.
(a) Calculate the annual benefit premium.
(b) Calculate the annual gross premium.
(c) Calculate the annual expense premium.
(d) Calculate the benefit reserves at the end of year 10.
(e) Calculate the total reserves at the end of year 10.
(f) Calculate the expense reserves at the end of year 10.

Problem 70.3 ‡
For a special fully discrete whole life insurance on (x), you are given:
(i) The net single premium is 450.
(ii) The level annual expense loaded premium determined by the equivalence
principle is 85.
(iii) Death is the only decrement.
(iv) Expenses, which occur at the beginning of the policy year, are as follows:

First Year renewal Year
% of Premiums 80% 10%
Per policy 25 25

Calculate ax.
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Problem 70.4 ‡
For a fully discrete 15-payment whole life insurance of 100,000 on (x), you
are given:
(i) The expense-loaded level annual premium using the equivalence principle
is 4669.95.
(ii) 100, 000Axx = 51, 481.97
(iii) äx:15 = 11.35
(iv) d = 0.02913
(v) Expenses are incurred at the beginning of the year.
(vi) Percent of premium expenses are 10% in the first year and 2% thereafter.
(vii) Per policy expenses are K in the first year and 5 in each year thereafter
until death.
Calculate K.

Problem 70.5 ‡
For a semicontinuous 20-year endowment insurance of 25,000 on (x), you are
given:
(i) The following expenses are payable at the beginning of the year:

% Premium Per 1000 insurance Per Policy
First Year 25% 2.00 15.00
Renewal Years 5% 0.50 3.00

(ii) Āx:20 = 0.4058
(iii) äx:20 = 12.522.
(iv) Premiums are determined using the equivalence principle.
Calculate the level annual expense-loaded premium.

Problem 70.6 ‡
For a fully continuous whole life insurance of 1 on (x), you are given:
(i) δ = 0.04
(ii) āx = 12
(iii) Var(νT ) = 0.10
(iv) 0Le = 0L+ E is the expense-augmented loss variable, where
• 0L = νT − P̄ (Āx)āT
• E = c0 + (g − e)āT , where c0 = initial expenses, g = 0.0030, is the annual
rate of continuous maintenance expense and e = 0.0066, is the annual expense
loading in the premium.
Calculate Var(0Le).
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Problem 70.7 ‡
For a fully continuous whole life insurance on (x), you are given:
(i) The benefit is 2000 for death by accidental means (decrement 1).
(ii) The benefit is 1000 for death by other means (decrement 2).
(iii) The initial expense at issue is 50.
(iv) Settlement expenses are 5% of the benefit, payable at the moment of
death.
(v) Maintenance expenses are 3 per year, payable continuously.
(vi) The gross or contract premium is 100 per year, payable continuously.
(vii) µ(1)(x+ t) = 0.004, t > 0
(viii) µ(x+t) = 0.040, t > 0
(ix) δ = 0.05
Calculate the actuarial present value at issue of the insurer’s expense-augmented
loss random variable for this insurance.

Problem 70.8 ‡
For a fully discrete 10-year endowment insurance of 1000 on (35), you are
given:
(i) Expenses are paid at the beginning of each year.
(ii) Annual per policy renewal expenses are 5.
(iii) Percent of premium renewal expenses are 10% of the expense-loaded
premium.
(iv) 1000P35:10 = 76.87
(v) The expense reserve at the end of year 9 is negative 1.67.
(vi) Expense-loaded premiums were calculated using the equivalence princi-
ple.
Calculate the expense-loaded premium for this insurance.

Problem 70.9 ‡
For a special single premium 2-year endowment insurance on (x), you are
given:
(i) Death benefits, payable at the end of the year of death, are:

b1 = 3000
b2 = 2000

(ii) The maturity benefit is 1000.
(iii) Expenses, payable at the beginning of the year:
(a) Taxes are 2% of the expense-loaded premium.
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(b) Commissions are 3% of the expense-loaded premium.
(c) Other expenses are 15 in the first year and 2 in the second year.
(iv) i = 0.04
(v) px = 0.9
(vi) px+1 = 0.8
Calculate the expense-loaded premium G using the equivalence principle.

Problem 70.10 ‡
For a fully discrete 2-payment, 3-year term insurance of 10,000 on (x), you
are given:
(i) i = 0.05
(ii)

qx = 0.10
qx+1 = 0.15
qx+2 = 0.20

(iii) Death is the only decrement.
(iv) Expenses, paid at the beginning of the year, are:

Policy Year Per policy Per 1000 of insurance Fraction of premium
1 25 4.50 0.20
2 10 1.50 0.10
3 10 1.50 0.00

(v) Settlement expenses, paid at the end of the year of death, are 20 per
policy plus 1 per 1000 of insurance.
(vi) G is the expense-loaded level annual premium for this insurance.
(vii) The single benefit premium for this insurance is 3499.
Calculate G, using the equivalence principle.

Problem 70.11 ‡
For a fully discrete 20-year endowment insurance of 10,000 on (50), you are
given:
(i) Mortality follows the Illustrative Life Table.
(ii) i = 0.06
(iii) The annual contract premium is 495.
(iv) Expenses are payable at the beginning of the year.
(v) The expenses are:



694 INCORPORATING EXPENSES IN INSURANCE MODELS

% Premium Per 1000 insurance Per Policy
First Year 35% 15.00 20
Renewal Years 5% 1.50 5

Calculate the actuarial present value of amounts available for profit and
contingencies.
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71 Types of Expenses

In the previous section we included expenses without further classifications
of these expenses. In this section, we describe in more detail the types of
expenses that insurance companies encounter.
Expenses are broken into investment expenses and insurance-related ex-
penses:
• Investment-related expenses:
Costs of analyzing, buying, selling, and servicing the investments used to
back insurance company reserves.

• Insurance-related expenses:
1. Acquisition (agents’ commission, underwriting4 costs, preparing new records).
2. Maintenance (premium collection, policyholder correspondence).
3. General (research, actuarial, accounting, taxes).
4. Settlement (claim investigation, legal defense, disbursement).

It is common in practice to call that portion of the gross premium that
is independent of the benefit amount the expense policy fee or simply the
policy fee. It is important to keep in mind that percent-of-premium charges
apply to the policy fee as well as the rest of the gross premium.The following
example illustrates the calculation of policy fee.

Example 71.1
A 1,000 fully discrete whole life policy issued to (45) with level annual pre-
miums is priced with the following expense assumptions:

% of Premium Per 1,000 Per Policy
First Year 40% 1.0 5.0
Renewal Year 10% 0.5 2.5

Mortality follows the Illustrative Life Table with interest i = 6%. Calculate
the expense policy fee for this policy.

Solution.
Let g denote the expense policy fee. Then g satisfies the equation

gä45 = 0.4g + 5 + (0.10g + 2.5)a45.

4Process used by insurance companies to assess the eligibility of a customer to receive
their products.
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That is,
g(14.1121) = 0.4g + 5 + (0.10g + 2.5)(13.1121).

Solving this equation for g we find g = 3.05

Example 71.2
For a fully discrete 10-year endowment insurance on (50), you are given the
following:
(i) Percent of premium expenses consist of commissions equal to 50% of
the gross premium in the first year followed by 5% of gross premium in the
renewal years.
(ii) Expenses include acquisition expense of 20, settlement expenses equal to
10 per 1000 of face amount plus 80, and annual maintenance expenses equal
to 5 plus 2 per 1000 of face amount.
(iii) Acquisition expense is due at time of policy issue, settlement expenses
are due when the benefit is paid, and annual maintenance expenses are due
at the time annual premium is paid.
Find an expression for the expense policy fee.

Solution.
Let g denote the expense policy fee. Then g satisfies the equation

gä50:10 = 0.50g + 0.05ga50:9 + 20 + 80A50:10 + 5ä50:10

or
gä50:10 = 0.45g + 0.05gä50:10 + 20 + 80A50:10 + 5ä50:10 .

Thus,

g =
80A50:10 + 5.05 + ä50:10 + 20

0.95ä50:10 − 0.45

Example 71.3 ‡
For a 10-payment 20-year endowment insurance of 1000 on (40), you are
given:
(i) The following expenses:

First Year Subsequent Year
Percent of Per Policy Percent of Per Policy
Premium Premium

Taxes 4% 0 4% 0
Sales Commission 25% 0 5% 0

Policy Maintenance 0 10 0 5
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(ii) Expenses are paid at the beginning of each policy year.
(iii) Death benefits are payable at the moment of death.
(iv) The expense-loaded premium G is determined using the equivalence
principle.
Find an expression for G.

Solution.
The actuarial present value of benefit is 1000Ā40:20 . The actuarial present
value of premiums is Gä40:10 . The actuarial present value of expenses is

(0.04 + 0.25)G+ 10 + (0.04 + 0.05)Ga40:9 + 5a40:19

which simplifies to

0.2G+ 10 + 0.09Gä40:10 + 5a40:19 .

By the extended equivalence principle, we have

Gä40:10 = 1000Ā40:20 + 0.2G+ 10 + 0.09Gä40:10 + 5a40:19 .

Solving this equation for G we find

G =
1000Ā40:20 + 10 + 5a40:19

0.91ä40:10 − 0.2

Example 71.4 ‡
For a fully discrete whole life insurance of 100,000 on (x), you are given:
(i) Expenses, paid at the beginning of the year, are as follows:

Percentage of Per 1000 Per Policy
Year Premium Expenses Expenses Expenses

1 50% 2.0 150
2+ 4% 0.5 25

(ii) i = 0.04
(iii) äx = 10.8
(iv) Per policy expenses are matched by a level policy fee to be paid in each
year.
Calculate the expense-loaded premium using the equivalence principle.
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Solution.
Let g be the expense policy fee. Then g satisfies the equation

gäx = 0.5g + 0.04gax + 150 + 25ax.

Solving for g, we find

g =
150 + 25ax

äx − 0.04ax − 0.5
=

150 + 25(9.8)

10.8− 0.04(9.8)− 0.5
= 39.87.

Let G∗ denote the expense-loaded premium excluding policy fee. We have

APVB =100, 000Ax = 100, 000(1− däx) = 100, 000

[
1− 0.04

1.04
(10.8)

]
= 58461.54

APVP =G∗äx = 10.8G∗

APVE =0.5G∗ + 2.0(100) + 0.04G∗ax + 0.5(100)ax = 0.892G∗ + 690.

Using the extended equivalence principle, we find

10.8G∗ = 58461.54 + 0.892G∗ + 690 =⇒ G∗ = 5970.08.

Let G be the loaded-expense premium. Then G = 5970.08 + 39.87 =
6009.95
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Practice Problems

Problem 71.1
For a fully discrete whole life insurance of $1,000 on (40), you are given:
(i) Expenses, paid at the beginning of the year, are as follows:

% of Premium Per 1,000 Per Policy
First Year 10% 2.5 15
Renewal Year 3% 0.5 5

(ii) A40 = 0.369.
(iii) i = 0.03.
Calculate:
(a) the level annual expense-loaded premium using the equivalence principle,
and
(b) the policy fee.

Problem 71.2 ‡
For a fully discrete whole life insurance of 1000 on (50), you are given:
(i) The annual per policy expense is 1.
(ii) There is an additional first year expense of 15.
(iii) The claim settlement expense of 50 is payable when the claim is paid.
(iv) All expenses, except the claim settlement expense, are paid at the be-
ginning of the year.
(v) Mortality follows De Moivre’s law with ω = 100.
(vi) i = 0.05
Calculate the level expense-loaded premium using the equivalence principle.

Problem 71.3 ‡
For a semicontinuous 20-year endowment insurance of 25,000 on (x), you are
given:
(i) The following expenses are payable at the beginning of the year:

% Premium Per 1000 insurance Per Policy
First Year 25% 2.00 15.00
Renewal Years 5% 0.50 3.00

(ii) Āx:20 = 0.4058.
(iii) äx:20 = 12.522.
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(iv) Premiums are determined using the equivalence principle.
(a) Calculate the annual expense-loaded premium excluding the per-policy
expense.
(b) Calculate the expense-loaded first-year premium including policy fee as-
suming that per-policy expenses are matched separately by first-year and
renewal policy fees.

Problem 71.4 ‡
For a semicontinuous 20-year endowment insurance of 25,000 on (x), you are
given:
(i) The following expenses are payable at the beginning of the year:

% Premium Per 1000 insurance Per Policy
First Year 25% 2.00 15.00
Renewal Years 5% 0.50 3.00

(ii) Āx:20 = 0.4058.
(iii) äx:20 = 12.522.
(iv) Premiums are determined using the equivalence principle.
Calculate the expense-loaded renewal years premium including policy fee
assuming that per-policy expenses are matched separately by first-year and
renewal policy fees.

Problem 71.5 ‡
For a semicontinuous 20-year endowment insurance of 25,000 on (x), you are
given:
(i) The following expenses are payable at the beginning of the year:

% Premium Per 1000 insurance Per Policy
First Year 25% 2.00 15.00
Renewal Years 5% 0.50 3.00

(ii) äx:20 = 12.522.
(iii) Premiums are determined using the equivalence principle.
Calculate the level annual policy fee to be paid each year.

Problem 71.6 ‡
For a fully discrete 5-payment 10-year deferred 20-year term insurance of
1000 on (30), you are given:
(i) The following expenses:
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Year 1 Year 2-10
Percent of Per Policy Percent of Per Policy
Premium Premium

Taxes 5% 0 5% 0
Sales Commission 25% 0 10% 0

Policy Maintenance 0 20 0 10

(ii) Expenses are paid at the beginning of each policy year.
(iii) The expense-loaded premium is determined using the equivalence prin-
ciple.
Find an expression for the expense-loaded premium G.
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72 The Mathematics of Asset Share

In this section we discuss the mathematical structure of asset share-type
calculations. More specifically, we give a recursive relation for determining
an asset share.
Asset share is a tool used to project the accumulation of assets backing
a block of insurance policies and to assign those assets to each policy. To
illustrate, consider an insurance company who sold `0 policy to a group of
individuals aged x. Let
• `(τ)

x+k denote the number of original policy holders surviving to age x+ k.
• G is the annual gross premium received at the beginning of the year.
• ck denote the fraction of the gross premium paid at time k for expenses.
• ek denote the per policy expenses at time k. All expenses occur at the
beginning of the year.
• bk denote the benefit paid at time k for a death in the kth policy year.
• kCV is the cash value or withdrawal benefit paid to those insureds who
cancel their policy in the kth policy year. This amount is paid at the end of
the year of withdrawal.
• d(d)

x+k denote the number of policy holders dying at age x+ k.

• d(w)
x+k denote the number of policy holders withdrawing at age x+ k.

• q(d)
x+k is the probability of decrement by death before age x + k + 1 for an

insured who is now x+ k;
• q(w)

x+k is the probability of decrement by withdrawal before age x + k + 1
for an insured who is now x+ k. It follows that the probability of staying in
force in the time interval (x+ k, x+ k + 1] is therefore

p
(τ)
x+k = 1− q(d)

x+k − q
(w)
x+k.

Denote the asset share at the end of year k by kAS with an initial asset share
at time 0 of 0AS which may or may not be zero.5 Standard cash flow analysis
gives the fundamental relationship

k+1AS`
(τ)
x+k+1 = (kAS +G− ckG− ek)(1 + i)`

(τ)
x+k − bk+1d

(d)
x+k − k+1CV d

(w)
x+k.

Dividing both sides of this equation by `
(τ)
x+k produces a second useful recur-

sion formula connecting successive asset shares

k+1ASp
(τ)
x+k = (kAS +G− ckG− ek)(1 + i)− bk+1q

(d)
x+k − k+1CV q

(w)
x+k.

5For a new policy/contract, we may assume 0AS = 0.
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Example 72.1
For a portfolio of fully discrete whole life insurances of $1,000 on (30), you
are given:
(i) the contract annual premium is $9.50;
(ii) renewal expenses, payable at the start of the year, are 3% of premium
plus a fixed amount of $2.50;
(iii) 20AS = 145 is the asset share at the end of year 20;
(iv) 21CV = 100 is the cash value payable upon withdrawal at the end of
year 21;
(v) interest rate is i = 7.5% and the applicable decrement table is given
below:

x q
(d)
x q

(w)
x

50 0.0062 0.0415
51 0.0065 0.0400

Calculate the asset share at the end of year 21 (or age 51).

Solution.
We have

21AS =
(20AS +G− c20G− e20)(1 + i)− b21q

(d)
50 − 21CV q

(w)
50

1− q(d)
50 − q

(w)
50

=
(145 + 9.50− 0.03(9.50)− 2.50)(1.075)− 1000(0.0062)− 100(0.0415)

1− 0.0062− 0.0415

=160.39

One natural use of the idea of asset shares is to determine the gross premium
G required in order to achieve a certain asset goal at a future time.

Example 72.2 ‡
For a fully discrete whole life insurance of 1000 on (40), you are given:
(i) Death and withdrawal are the only decrements.
(ii) Mortality follows the Illustrative Life Table.
(iii) i = 0.06

(iv) The probabilities of withdrawal are q
(w)
40 = 0.2 and q

(w)
40+k = 0 for k > 0.

(v) Withdrawals occur only at the end of the year. The following expenses
are payable at the beginning of the year:
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% of Premium Per 1000 insurance
All Years 10% 1.50

(vii) kCV = 1000k
3 kV40, k = 1, 2, 3.

(viii) 2AS = 24.
(ix) The asset share at time 0 is 0.
Calculate the gross premium, G.

Solution.
We use the formula

2ASp
(τ)
41 = (1AS +G− c1G− e1)(1 + i)− b2q

(d)
41 − 1CV q

(w)
41 .

Thus,

24(1− q(d)
41 ) = (1AS +G− 0.10G− 1.5)(1.06)− 1000q

(d)
41

and using ILL we have

24(1− 0.00298) = (1AS + 0.90G− 1.5)(1.06)− 1000(0.00298).

We find 1AS by means of the relation

1ASp
(τ)
40 = (0AS +G− c0G− e0)(1 + i)− b1q

(d)
40 − 1CV q

(w)
40

or

1AS(1−0.2−0.00278) = (0+G−0.10G−1.5)(1.06)−1000(0.00278)−1CV (0.2).

But

1CV =
1000

3
1V =

1000

3

(
1− ä41

ä40

)
=

1000

3

(
1− 14.6864

14.8166

)
= 2.9291.

Hence

1AS(0.79722) = 1.197G− 6.22.

Finally, we have

24(1−0.00298) = (1.187G−6.22+0.90G−1.5)(1.06)−1000(0.00298) =⇒ G = 15.863
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Example 72.3 ‡
For a fully discrete insurance of 1000 on (x), you are given:
(i) 4AS = 396.63
(ii) 5AS = 694.50
(iii) G = 281.77
(iv) 5CV = 572.12
(v) c4 = 0.05 is the fraction of the gross premium paid at time 4 for expenses.
(vi) e4 = 7.0 is the amount of per policy expenses paid at time 4.

(vii) q
(1)
x+4 = 0.09 is the probability of decrement by death.

(viii) q
(2)
x+4 = 0.26 is the probability of decrement by withdrawal.

Calculate i.

Solution.
We have

5AS =
(4AS +G(1− c4)− e4)(1 + i)− 1000q

(1)
x+4 − 5CV q

(2)
x+4

1− q(1)
x+4 − q

(2)
x+4

.

Substituting, we find

694.50 =
(396.63 + 281.77(1− 0.05)− 7.0)(1 + i)− 1000(0.09)− 572.12(0.26)

1− 0.09− 0.26
.

Solving this equation for i, we find i = 5%
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Practice Problems

Problem 72.1
For a fully discrete whole life insurance policy of 20,000 on (40) with level
annual premiums, you are given:
(i) 10AS = 2000
(ii) 11AS = 1792.80
(iii) e10 = 10
(iv) c10 = 5%
(v) i = 0.07

(vi) q
(d)
50 = 0.03 and q

(w)
(50) = 0.15

(vii) the contract premium is one cent for every dollar of insurance.
Calculate the cash value payable upon withdrawal at the end of 11 years.

Problem 72.2 ‡
For a fully discrete 3-year endowment insurance of 1000 on (x), you are given:
(i) i = 0.10
(ii) Expenses, which occur at the beginning of the policy year, are as follows:

% Premium Per Policy
First Year 20% 8
Renewal Years 6% 2

(iii) The gross annual premium is equal to 314.
(iv) The following double-decrement table:

k p
(τ)
x+k q

(d)
x+k q

(w)
x+k

0 0.54 0.08 0.38
1 0.62 0.09 0.29
2 0.50 0.50 0.00

(v) The following table of cash values and asset shares:

k k+1CV kAS
0 247 0
1 571 173

Calculate 2AS.
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Problem 72.3 ‡
For a fully discrete whole life insurance of 1000 on (x) :
(i) Death is the only decrement.
(ii) The annual benefit premium is 80.
(iii) The annual goss premium is 100.
(iv) Expenses in year 1, payable at the start of the year, are 40% of gross
premiums.
(v) i = 0.10
(vi) 10001Vx = 40
(vii) The asset share at time 0 is 0.
Calculate the asset share at the end of the first year.

Problem 72.4
(a) Assuming that 0AS = 0. show that

n−1∑
k=0

[k+1ASν
k+1`

(τ)
x+k+1 − kASν

k`
(τ)
x+k] = nASν

n`
(τ)
x+n.

(b) Show that

nASν
n`

(τ)
x+n = G

n−1∑
k=0

(1−ck)νk`(τ)
x+k−

n−1∑
k=0

ekν
k`

(τ)
x+k−

n−1∑
k=0

(bk+1d
(d)
x+k−k+1CV d

(w)
x+k)ν

k+1.

Problem 72.5
If 10AS1 is the asset share at the end of 10 years based on premium G1 and

10AS2 is the asset share at the end of 10 years based on premium G2, find a
formula for 10AS1 − 10AS2.

Problem 72.6 ‡
For a fully discrete whole life insurance of 10,000 on (x), you are given:
(i) 10AS = 1600
(ii) G = 200
(iii) 11CV = 1700
(iv) c10 = 0.04 is the fraction of gross premium paid at time 10 for expenses.
(v) e10 = 70 is the amount of per policy expense paid at time 10.
(vi) Death and withdrawal are the only decrements.

(vii) q
(d)
x+10 = 0.02

(viii) q
(w)
x+10 = 0.18

(ix) i = 0.05
Calculate 11AS.
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Problem 72.7 ‡
For a fully discrete whole life insurance of 1000 on (x), you are given:
(i) G = 30
(ii) ek = 5, k = 1, 2, 3, · · ·
(iii) ck = 0.02, k = 1, 2, 3, · · ·
(iv) i = 0.05
(v) 4CV = 75

(vi) q
(d)
x+3 = 0.013

(vii) q
(w)
x+3 = 0.05

(viii) 3AS = 25.22
If withdrawals and all expenses for year 3 are each 120% of the values shown
above, by how much does 4AS decrease?



Multiple-State Transition
Models

A multi-state transition model is defined as a probability model that
describes the random movement of a subject among various states.
The main objective of the multi-state transition models is to generalize the
formulation of probabilities of contingent events and the valuation of cash
flows related to the occurrence of contingent events. The framework of such
generalization is based on the discrete-time Markov chain model.

709
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73 Introduction to Markov Chains Process

A stochastic process is a collection of random variables {Xt : t ∈ T}. The
index t is often interpreted as time. Xt is called the state of the process at
time t. The set T is called the index set: If T is countable, the stochastic
process is said to be a discrete-time process. If T is an interval of the real
line, the stochastic process is said to be a continuous-time process. The
state space E is the set of all possible values that the random variables can
assume.
An example of a discrete-time stochastic process is the winnings of a gambler
at successive games of blackjack; T = {1, 2, · · · , 10}, E = set of integers. An
example of a time-continuous stochastic process is the hourly temperature
measurement during a specific day: T = {12AM, 1AM, · · · } and E = set of
real numbers.
A discrete time Markov chain {X0, X1, X2, · · · } is a discrete time stochas-
tic process with values in the countable set E = {0, 1, 2, 3 · · · } and with the
properties
(i) Pr(Xn+1 ∈ E|Xn = i) = 1.
(ii) Pr(Xn+1 = j|Xn = i,Xn−1 = in−1, · · · , X0 = i0) = Pr(Xn+1 = j|Xn = i).
This last property is referred to a the Markov property. Intuitively, this
property says that the future probabilistic behavior of the sequence depends
only on the present value of the sequence and not on the entire history of the
sequence. This property is a type of memoryless property.
An example to illustrate the definitions given above, consider a coin that is
thrown out repeatedly. let Xn be the number of heads obtained in the first
n throws, n = 0, 1, 2, · · · . Then {Xn : n = 0, 1, 2, · · · } is a discrete time
Markov chain with state space E = {0, 1, 2, · · · }. Moreover, we have

Pr(Xn+1 = j|Xn = i) =


1
2

if j = i
1
2

if j = i+ 1
0 otherwise.

A finite Markov chain is one with a finite state space E. The probability
of transition from state i to state j at time n will be denoted by Qn(i, j) and
will be referred to as the one-step transition probability. The matrix

Qn =


Qn(0, 0) Qn(0, 1) · · · Qn(0, r)
Qn(1, 0) Qn(1, 1) · · · Qn(1, r)
. . . . . . · · · . . .

Qn(r, 0) Qn(r, 1) · · · Qn(r, r)
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where E = {0, 1, 2, · · · , r}, is called the transition probability matrix at
time n. Notice that the row in the matrix correspond to the departing state
and that of the column corresponds to the arriving state. For example, the
entry Qn(i, j) is the transition probability from state i at time n to state j
at time n+ 1.

Example 73.1
Consider a Markov chain with E = {0, 1} and

Q5 =

(
0.6 0.4
0.3 0.7

)
(i) Calculate Pr(X6 = j|X5 = 1), j = 0, 1.
(ii) Calculate Pr(X6 = 0|X5 = j), j = 0, 1.

Solution.
(i) We have

Pr(X6 = 0|X5 = 1) =0.4

Pr(X6 = 1|X5 = 1) =0.7

(ii) We have

Pr(X6 = 0|X5 = 0) =0.6

Pr(X6 = 0|X5 = 1) =0.4

If the transition probability matrix Qn depends on the time n, it is said to be
a non-homogeneous Markov chain. Othewise, it is called a homogeneous
Markov chain, and we shall simply denote the transition probability matrix
by Q and the ij−th entry by Q(i, j). For a homogeneous Markov chain a
probability such as

Pr(Xn+1 = j|Xn = i)

is independent of n.

Example 73.2 (Drunkard’s Walk)
A man walks along a four-block stretch of Park Avenue. If he is at corner 1,
2, or 3, then he walks to the left or right with equal probability. He continues
until he reaches corner 4, which is a bar, or corner 0, which is his home. If he
reaches either home or the bar, he stays there. Write the transition matrix
of this homogeneous Markov chain.
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Solution.
A transition diagram of this chain is shown below.

From this diagram, the transition matrix is

Q =


1 0 0 0 0
1
2

0 1
2

0 0
0 1

2
0 1

2
0

0 0 1
2

0 1
2

0 0 0 0 1


States 0 and 1 are called absorbing state since Q(0, 0) = Q(4, 4) = 1. In
general, a state i such that Qn(i, i) = 1 for all n is called an absorbing state
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Practice Problems

Problem 73.1
Show that

∑
j∈E Qn(i, j) = 1 for each i.

Problem 73.2
Can the following matrix be a legitimate transition matrix?

Q0 =

(
0.6 0.4
0.5 0.7

)
Problem 73.3
Find the transition matrix of the Markov chain described by the following
transition diagram.

Problem 73.4
A meteorologist studying the weather in a region decides to classify each day
as simply sunny or cloudy. After analyzing several years of weather records,
he finds:
• the day after a sunny day is sunny 80% of the time, and cloudy 20% of the
time; and
• the day after a cloudy day is sunny 60% of the time, and cloudy 40% of
the time.
Find the transition matrix of this Markov chain and draw the corresponding
transition diagram.

Problem 73.5
Consider a basic survival model where state 0 be that (x) is alive and state
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1 be that (x) is dead. Find the transition matrix at time n of this Markov
chain

Problem 73.6
A multiple-decrement survival model is a Markov chain with state 0 repre-
senting death and state j representing the cause of decrement where j =
1, 2, · · · ,m. Find the one-step transition probabilities.

Problem 73.7 ‡
Kevin and Kira are modeling the future lifetime of (60).
(i) Kevin uses a double decrement model:

x `
(τ)
x d

(1)
x d

(2)
x

60 1000 120 80
61 800 160 80
62 560 − −

(ii) Kira uses a non-homogeneous Markov model:
(a) The states are 0 (alive), 1 (death due to cause 1), 2 (death due to cause
2).
(b) Q60 is the transition matrix from age 60 to 61; Q61 is the transition matrix
from age 61 to 62.
(iii) The two models produce equal probabilities of decrement.
Calculate Q61.
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74 Longer Term Transition Probabilities

The transition probabilities Qn(i, j) and the transition probability matrix
Qn only provide information about the probability distribution of the state
one time step in the future. In practice it is often important to know about
longer periods of time.
The one-step transition probability is a special case of the kth step transition
probability which we define next. The probability of going from state i at
time n to state j at time n+ k is denoted by

kQn(i, j) = Pr(Xn+k = j|Xn = i).

We call kQn(i, j) a kth step transition probability. The kth step transition
matrix is denoted by kQn.

Example 74.1
Consider a homogeneous Markov chain with transition matrix Q. Show that

2Q = QQ.

Solution.
The ij− entry of 2Q is Pr(Xn+2 = j|Xn = i). We have

Pr(Xn+2 = j|Xn = i) =Pr ([Xn+2 = j] ∩ [∪∞k=0[Xn+1 = k]] |Xn = i)

=
∞∑
k=0

Pr(Xn+2 = j,Xn+1 = k|Xn = i)

=
∞∑
k=0

Pr(Xn+2 = j|Xn+1 = k,Xn = i)Pr(Xn+1 = k|Xn = i)

=
∞∑
k=0

Pr(Xn+2 = j|Xn+1 = k)Pr(Xn+1 = k|Xn = i)

=
∞∑
k=0

QikQkj

Using induction on k, one can show

kQ = Q×Q× · · · ×Q = Qk.

The argument used in the above example extends easily to the general case
of longer-term probabilities for non-homogeneous Markov chains, resulting
in
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Theorem 74.1
The kth step transition probability kQn(i, j) can b computed as the (i, j)
entry of the matrix product QnQn−1 · · ·Qn+k−1. That is,

kQn = QnQn−1 · · ·Qn+k−1. (74.-5)

Equation (74.1) is a matrix analogue of the survival probability identity

kpx = pxpx+1 · · · px+k−1.

Example 74.2
Consider a basic survival model where state 0 be that (x) is alive and state
1 be that (x) is dead. Calculate 2Q0.

Solution.
From Problem 73.5, we found

Qn =

(
px+n qx+n

0 1

)
Thus,

2Q0 =Q0Q1 =

(
px qx
0 1

)(
px+1 qx+1

0 1

)
=

(
pxpx+1 pxqx+1 + qx

0 1

)
=

(
2px 2qx
0 1

)
Example 74.3
The status of residents in a Continuing Care Retirement Community (CCRC)
is modeled by a non-homogeneous Markov chain with three states: Indepen-
dent Living (1), Health Center (2), and Gone (3). The transition probability
matrices at time t = 0, 1, 2, 3 are

Q0 =

 0.7 0.2 0.1
0.1 0.6 0.3
0 0 1

 Q1 =

 0.5 0.3 0.2
0 0.4 0.6
0 0 1


Q2 =

 0.3 0.2 0.5
0 0.2 0.8
0 0 1

 Q3 =

 0 0 1
0 0 1
0 0 1


Find 2Q0 and 4Q0.
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Solution.
We have

2Q0 =Q0Q1 =

 0.7 0.2 0.1
0.1 0.6 0.3
0 0 1

 0.5 0.3 0.2
0.1 0.4 0.6
0 0 1

 =

 0.35 0.29 0.36
0.05 0.27 0.68

0 0 1


4Q0 =Q0Q1Q2Q3 =

 0 0 1
0 0 1
0 0 1


Example 74.4 ‡
For a homogeneous Markov model with three states, Healthy (0), Disabled
(1), and Dead (2):
(i) The annual transition matrix is given by

0 1 2

0
1
2

 0.70 0.20 0.10
0.10 0.65 0.25

0 0 1


(ii) There are 100 lives at the start, all Healthy. Their future states are
independent.
(iii) Assume that all lives have the same age at the start.
Calculate the variance of the number of the original 100 lives who die within
the first two years.

Solution.
Let N denote the number of the original 100 lives who die within the first
two years. Then N is a binomial random variable with parameters 100 and p
where p = 2qx is the probability of failure within the the first two years. p is
just the (0, 2)−entry of the transition matrix 2Q = Q2. From linear algebra,
it is known that the matrix product e1Q

2 gives the first row of Q2 where
e1 = (1, 0, 0). Hence,

e1Q
2 =

 0.51
0.27
0.22

 =⇒ p = 0.22.

Hence,
Var(N) = np(1− p) = 100(0.22)(0.78) = 17.16
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Practice Problems

Problem 74.1
Consider a critical illness model with 3 states: healthy (H), critically ill (I)
and dead (D).
Suppose you have the homogeneous Markov Chain with transition matrix 0.92 0.05 0.03

0.00 0.76 0.24
0.00 0.00 1.00


What are the probabilities of being in each of the state at times t = 1, 2, 3.

Problem 74.2
Suppose that an auto insurer classifies its policyholders according to Pre-
ferred (State #1) or Standard (State #2) status, starting at time 0 at the
start of the first year when they are first insured, with reclassifications oc-
curring at the start of each new policy year.
You are given the following t−th year non-homogeneous transition matrix:

Qt =

(
0.65 0.35
0.5 0.5

)
+

1

t+ 1

(
0.15 -0.15
-0.20 0.20

)
Given that an insured is Preferred at the start of the second year:
(a) Find the probability that the insured is also Preferred at the start of the
third year.
(b) Find the probability that the insured transitions from being Preferred at
the start of the third year to being Standard at the start of the fourth year.

Problem 74.3
A bond issue has three possible ratings: A, B and C. Transitions to these
various ratings occur only at the end of each year, and are being modeled as
a non-homogeneous Markov chain.
The transition matrices for periods 0, 1 and 2 are given as follows:

Q0 =

 0.7 0.2 0.1
0.5 0.3 0.2
0.8 0.2 0.0

 , Q1 =

 0.6 0.3 0.1
0.5 0.3 0.2
0.9 0.1 0.0

 , Q2 =

 0.6 0.2 0.2
0.5 0.3 0.2
1.0 0.0 0.0


Calculate the probability that a bond issue with an A rating at the start of
period 0 will have a rating of B at the end of period 2 and then a rating of
C at the end of period 3.
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Problem 74.4
For a non-homogeneous Markov model with three states: a, b, and c, you are
given the annual transition matrix Qn as follows:

Qn =

 0.60 0.20 0.20
0.00 0.00 1.00
0.00 0.00 1.00

 , n = 0, 1

and

Qn =

 0.10 0.20 0.70
0.00 0.00 1.00
0.00 0.00 1.00

 , n ≥ 2,

Assuming transitions occur at the end of each year, calculate the probability
that an individual who starts in state a will be in state c at the end of three
years.

Problem 74.5
An automobile insurance company classifies drivers according to various
states:
State 1: Excellent
State 2: Good
State 3: Bad
State 4: Terrible and has to be discontinued
Assume transitions follow a time-homogeneous Markov Chain model with
the following transition matrix:

Q =


0.8 0.10 0.10 0.00
0.20 0.50 0.20 0.10
0.00 0.10 0.60 0.30
0.0 0.0 0.0 1.0


At the start of year 1, ten new drivers are insured and classified as Excellent
drivers.
Calculate the probability that during the first 3 years, half of these new
drivers become Terrible drivers and therefore have to be discontinued.

Problem 74.6 ‡
A certain species of flower has three states: sustainable, endangered and ex-
tinct. Transitions between states are modeled as a non-homogeneous Markov
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chain with transition matrices Qi as follows:

Q0 =
Sustainable
Endagered
Extinct


Sustainable Endangered Extinct

0.85 0.15 0.00
0.00 0.70 0.30
0.00 0.00 1.00


Q1 =

 0.90 0.10 0.00
0.10 0.70 0.20
0.00 0.00 1.00


Q2 =

 0.95 0.05 0.00
0.20 0.70 0.10
0.00 0.00 1.00


Qi =

 0.95 0.05 0.00
0.50 0.50 0.00
0.00 0.00 1.00

 , i = 3, 4, · · ·

Calculate the probability that a species endangered at time 0 will ever become
extinct.

Problem 74.7 ‡
A homogeneous Markov model has three states representing the status of the
members of a population.

State 1 = healthy, no benefits
State 2 = disabled, receiving Home Health Care benefits
State 3 = disabled, receiving Nursing Home benefits

(i) The annual transition matrix is given by:

Q =

 0.80 0.15 0.05
0.05 0.90 0.05
0.00 0.00 1.00


(ii) Transitions occur at the end of each year.
(iii) At the start of year 1, there are 50 members, all in state 1, healthy.
Calculate the variance of the number of those 50 members who will be re-
ceiving Nursing Home benefits during year 3.
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75 Valuation of Cash Flows

The main goal of this section is the generalization of the valuation of insur-
ance and annuity payments, benefit premiums and reserves. That is, we are
concerned with cash flows while the subject is in a particular state or upon
transition from one state to another in non-homogeneous Markov chains.
Events resulting in payments are classified into two categories: Cash flows
upon transitions looks for payments that are made upon transition from
one state to another. Cash flows while in states involves payments made
due to being in a certain state for a particular time period.

75.1 Cash Flows Upon Transitions

The underlying principle by which payments are valued in the Markov chain
context is the same as the one used for valuing insurance and annuity pay-
ments. The principle is described in the following way. Suppose that a
payment of amount Bk is to be made k years from now contingent on event
Ek occurring. If event Ek occurs then the payment will be made, and if
the event does not occur then the payment will not be made. The actuarial
present value now of the payment is

Bk × νk × Pr(Ek).

Take for example, the actuarial present value of a level insurance benefit of
1 for a discrete whole life

Ax =
∞∑
k=0

Cνk+1
kpxqx+k.

If we think in terms of states, payment was made when there was a transition
from state 1 (alive) to state 2 (dead). This was payment that provided a cash
flow upon transition from the state 1 to state 2. We see that each term in
the above sum is of the form

benefit for transition (k, k + 1)× discount factor × probability of transition.

Example 75.1
Show that the actuarial present value of a one year discrete term insurance
of amount b1 at age (x) obeys the principle described above.
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Solution.
The actuarial present value of a one year discrete term insurance of amount
b1 at age (x)

b1 · ν · qx.

So the payment will be made at time k = 1, the payment amount is b1, and
the event leading to the payment being made is the death of (x) within a
year, which has probability qx

Next, we present the general form of the APV of contingent payments to
be made for transfer between specific states in the future. We let `+1C

(i,j)

denote the payment made at time if the chain made the trnasition from state
i at time ` to state j at time ` + 1. Suppose that at time t the chain is in
state s. Suppose that a payment of amount t+k+1C

(i,j) will be made at time
t + k + 1 (k + 1 years from now) if the chain transfers from state i at time
t+ k to state j at time t+ k + 1. See Figure 75.1.

Figure 75.1

The APV of the payment will be

t+k+1C
(i,j) × νk+1 × kQt(S, i)Qt+k(i, j)

where the product kQt(S, i)Qt+k(i, j) is the probability that the chain will
be in state i at time t+ k and then will transfer to state j at time t+ k + 1.
The APV of a series of such payments is

APVs@t =
∞∑
k=0

t+k+1C
(i,j) × νk+1 × kQt(s, i)Qt+k(i, j).

Example 75.2 ‡
An insurance company issues a special 3-year insurance to a high risk indi-
vidual. You are given the following homogeneous Markov chain model: (i)
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State 1 = Active
State 2 = Disabled
State 3 = Withdrawn
State 4 = Dead

Transition probability matrix:

Q =


0.4 0.2 0.3 0.1
0.2 0.5 0 0.3
0 0 1 0
0 0 0 1


(ii) Changes in state occur at the end of the year.
(iii) The death benefit is 1000, payable at the end of the year of death.
(iv) i = 0.05
(v) The insured is disabled at the end of year 1.
Calculate the actuarial present value of the prospective death benefits at the
beginning of year 2.

Solution.
We have
Possible Transition Probability Discounted Death Benefit APV

2→ 4 0.3 1000ν 0.3(1000ν)
2→ 2→ 4 (0.5)(0.3) 1000ν2 (0.5)(0.3)(1000ν2)
2→ 1→ 4 (0.2)(0.1) 1000ν2 (0.2)(0.1)(1000ν2)

The actuarial present value of the prospective death benefits at the beginning
of year 2 is

APV = 0.3(1000ν) + 0.17(1000ν2) = 300(1.05)−1 + 170(1.05)−2 = 439.91
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75.2 Cash Flows while in State

Recall from Section 37.1 that a whole life annuity due is a series of payments
made at the beginning of the year while an annuitant is alive. Its actuarial
present value is given by

äx =
∞∑
k=0

νkkpx.

If we think in terms of states, the annuity payment is made as long as the
annuitant remains in state 1 (alive). This is a payment that provides a cash
flow while in a state. The probability of remaining in state 1 (i.e., sur-
viving) is given by kpx. We see that each term in the above sum is of the form

Payment at time k× discount factor × probability of being in state k.

Next, we present the general formulation for the actuarial present value of a
series of payments to be made when the chain is in state i. Let `C

(i) denote
the payment made at time ` if the chain is in state i at time `. If the chain is
in state s at time t then the actuarial present value at time t of the payment
to be made at time t+ k is

t+kC
(i) × νk × kQt(s, i)

where kQt(s, i) is the probability of being in state i at time t + k if in state
s at time t. The APV of a series of such payments is

APVs@t =
∞∑
k=0

t+kC
(i) × νk × kQt(s, i).

Example 75.3
The status of residents in a Continuing Care Retirement Community (CCRC)
is modeled by a non-homogeneous Markov chain with three states: Indepen-
dent Living (1), Health Center (2), and Gone (3). The transition probability
matrices at time t = 0, 1, 2, 3 are

Q0 =

 0.7 0.2 0.1
0.1 0.6 0.3
0 0 1

 Q1 =

 0.5 0.3 0.2
0 0.4 0.6
0 0 1


Q2 =

 0.3 0.2 0.5
0 0.2 0.8
0 0 1

 Q3 =

 0 0 1
0 0 1
0 0 1
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A CCRC resident begins in independent living at time t = 0. He will pay
a premium of P at the beginning of each year that he is in independent
living, but no premium otherwise. Find the APV of these premiums. Use
the interest rate i = 25%.

Solution.
We have

Time Possible Transition Probability Discounted DB APV
0 IL→ IL 1 P P
1 IL→ IL 0.7 Pν 0.7Pν
2 IL→ IL→ IL (0.7)(0.5) Pν2 0.35ν2

2 IL→ HC → IL (0.2)(0) Pν2 0
3 IL→ IL→ IL→ IL (0.7)(0.5)(0.3) Pν3 0.105Pν3

3 IL→ HC → IL→ IL (0.2)(0)(0.3) Pν3 0
3 IL→ IL→ HC → IL (0.7)(0.3)(0) Pν3 0
3 IL→ HC → HC → IL (0.3)(0.6)(0) Pν3 0

The APV of the premiums is

P [1 + 0.7ν + 0.35ν2 + 0.105ν3] = 1.8378P
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75.3 Benefit Premiums and Reserves

Benefit premiums and reserves can be found by applying the Equivalence
Principle to any contingent payment situation.

Example 75.4
A four-state homogeneous Markov model represents the joint mortality of a
married couple: a husband and a wife. The states are: 1 = husband alive,
wife alive; 2 = husband dead, wife alive; 3 = husband alive, wife dead, and
4 = both husband and wife dead.
The one-year transition probabilities are:

1 2 3 4

1
2
3
4


0.95 0.02 0.02 0.01
0.00 0.90 0.0 0.10
0.00 0.00 0.85 0.15
0.00 0.00 0.00 1.00


A life insurer sells a two-year term insurance contract to a married couple
who are both age 60. The death benefit of 100 is payable at the end of the
year in which the second life dies, if both die within 2 years.
Premiums are payable so long as at least one of them is alive and annually
in advance. Interest rate i = 5%.
Calculate the annual benefit premium

Solution.
Let P denote the annual benefit premium. We have

Year Possible Transition Probability APV
0 − 1 P
1 1→ 1 0.95 0.95Pν
1 1→ 2 0.02 0.02Pν
1 1→ 3 0.02 0.02Pν.

Thus, APVP = P + 0.99νP = 1.943P.
For the benefits, we have
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Year Possible Transition Probability APV
1 1→ 4 0.01 100(0.01)ν
2 1→ 1→ 4 (0.95)(0.01) 100(0.0095)ν2

2 1→ 2→ 4 (0.02)(0.10) 100(0.0002)ν2

2 1→ 3→ 4 (0.02)(0.15) 100(0.003)ν2.

Thus,
APVB = 100(0.01)ν + (100)(0.0145)ν2 = 2.270.

By the equivalence principle, we have

1.943P = 2.270 =⇒ P =
2.270

1.943
= 1.1683

Example 75.5 ‡
The CAS Insurance Company classifies its auto drivers as Preferred (State
#1) or Standard (State #2) starting at time 0 at the start of the first year
when they are first insured, with reclassifications occurring at the start of
each new policy year. The transition-probability matrices Qn from the state
at time n at the start of year n+ 1 to the state at time n+ 1 are

Qn =

(
0.7 0.3
0.4 0.6

)
+

1

n+ 1

(
0.1 −0.1
−0.2 0.2

)
Driver F is Standard now, at the start of the fourth year. For k = 0, 1, there
is a cost of 10(1.1)k at the end of year 4 + k for a transition from Standard
at the start of that year to Preferred at the start of the next year. These
costs will be funded by allocations (“premiums”) P paid at time 3 if Driver
F is Standard at time 3 and paid at time 4 if Driver F is Standard at time 4.
The allocation is determined to be P = 3.1879 by the Equivalence Principle,
using 15% interest. Suppose that Driver F is Standard at the start of the
fifth year; find the benefit reserve.

Solution.
We have

4V =APVFB− APVFP

=Q
(2,1)
4 ν(11)− 3.1879

=0.36(1.15)−1(11)− 3.1879 = 0.25558
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Practice Problems

Problem 75.1 ‡
For a perpetuity-immediate with annual payments of 1:
(i) The sequence of annual discount factors follows a Markov chain with the
following three states:

State Number 0 1 2
Annual Discount Factor, ν 0.95 0.94 0.93

(ii) The transition matrix for the annual discount factors is: 0.0 1.0 0.0
0.9 0.0 0.1
0.0 1.0 0.0


Y is the present value of the perpetuity payments when the initial state is 1.
Calculate E(Y ).

Problem 75.2 ‡
A machine is in one of four states (F,G,H, I) and migrates annually among
them according to a Markov process with transition matrix:

F G H I
F 0.20 0.80 0.00 0.00
G 0.50 0.00 0.50 0.00
H 0.75 0.00 0.00 0.25
I 1.00 0.00 0.00 0.00

At time 0, the machine is in State F. A salvage company will pay 500 at the
end of 3 years if the machine is in State F.
Assuming ν = 0.90, calculate the actuarial present value at time 0 of this
payment. Hint: Recall from linear algebra the fact that eiQ

n is the ith row of
Qn where ei is the unit vector with 1 at the ith component and 0 elsewhere.

Problem 75.3 ‡
For a Markov model for an insured population: (i) Annual transition proba-
bilities between health states of individuals are as follows:

Healthy Sick Terminated
Healthy 0.7 0.1 0.2

Sick 0.3 0.6 0.1
Terminated 0.0 0.0 1.0
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(ii) The mean annual healthcare claim each year for each health state is:

Mean
Healthy 500

Sick 3000
Terminated 0

(iii) Transitions occur at the end of the year.
(iv) i = 0
A contract premium of 800 is paid each year by an insured not in the termi-
nated state.
Calculate the expected value of contract premiums.

Problem 75.4
The status of residents in a Continuing Care Retirement Community (CCRC)
is modeled by a non-homogeneous Markov chain with three states: Indepen-
dent Living (1), Health Center (2), and Gone (3).
(i) The transition probability matrices at time t = 0, 1, 2, 3 are

Q0 =

 0.7 0.2 0.1
0.1 0.6 0.3
0 0 1

 Q1 =

 0.5 0.3 0.2
0 0.4 0.6
0 0 1


Q2 =

 0.3 0.2 0.5
0 0.2 0.8
0 0 1

 Q3 =

 0 0 1
0 0 1
0 0 1


(ii) Transitions oocur at the end of each year.
(iii) The CCRC incurs a cost of 1000 at the end of year k for a transition
from Independent Living at the start of that year to Health Center at the
start of the next year, for all k.
(iv) The CCRC wishes to charge a fee P at the start of each of the first three
years for each resident then in Independent Living.
(v) Nathan enters Independent Living at time 0.
(vi) i = 0.25
Find P using the equivalence principle.

Problem 75.5 ‡
A non-homogenous Markov model has:
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(i) Three states: 0, 1, and 2
(ii) Annual transition matrix Qn as follows:

Qn =

 0.6 0.3 0.1
0 0 1
0 0 1

 , n = 0, 1

Qn =

 0 0.3 0.7
0 0 1
0 0 1

 , n = 2, 3, · · ·

An individual starts out in state 0 and transitions occur mid-year.
An insurance is provided whereby: • A premium of 1 is paid at the beginning
of each year that an individual is in state 0 or 1.
• A benefit of 4 is paid at the end of any year that the individual is in state
1 at the end of the year.
• i = 0.1
Calculate the actuarial present value of premiums minus the actuarial present
value of benefits at the start of this insurance.

Problem 75.6 ‡
For a special 3-year term insurance:
(i) Insureds may be in one of three states at the beginning of each year: active,
disabled, or dead. All insureds are initially active. The annual transition
probabilities are as follows:

Active Disabled Dead
Active 0.8 0.1 0.1

Disabled 0.1 0.7 0.2
Dead 0.0 0.0 1.0

(ii) A 100,000 benefit is payable at the end of the year of death whether the
insured was active or disabled.
(iii) Premiums are paid at the beginning of each year when active. Insureds
do not pay any annual premiums when they are disabled.
(iv) d = 0.10
Calculate the level annual benefit premium for this insurance.

Problem 75.7 ‡
For a Markov model for an insured population: (i) Annual transition proba-
bilities between health states of individuals are as follows:
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Healthy Sick Terminated
Healthy 0.7 0.1 0.2

Sick 0.3 0.6 0.1
Terminated 0.0 0.0 1.0

(ii) The mean annual healthcare claim each year for each health state is:

Mean
Healthy 500

Sick 3000
Terminated 0

(iii) Transitions occur at the end of the year.
(iv) i = 0
A contract premium of 800 is paid each year by an insured not in the termi-
nated state.
Calculate the expected value of contract premiums less healthcare costs over
the first 3 years for a new healthy insured.
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Probability Models: Poisson
Processes

Poisson process is a sepcial case of a continuous Markov chains. It plays an
important role in insurance application: The total insurance claims consists
usually of a sum of individual claim amounts. The number of claims is usually
assumed to occur according to a Poisson process.
Simply put, the Poisson process is a counting process for the number of events
that have occurred up to a particular time. The purpose of this chapter is
to cover the material on Poisson processes needed for Exams MLC/3L.

733
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76 The Poisson Process

A stochastic process {N(t) : t ≥ 0} is called a counting process if N(t)
represents the total number of events that have occurred up to time t.
A counting process N(t) must satisfy:
(i) N(t) ≥ 0.
(ii) N(t) is integer valued.
(iii) If s < t, then N(s) ≤ N(t), and N(t) − N(s) is the number of events
that have occurred from (after) time s up to (and including) time t.
A counting process {N(t) : t ≥ 0} is said to possess the independent
increments property if for each s < t < u the increments N(t) − N(s)
and N(u)−N(t) are independent random variables. That is, the numbers of
events occurring in disjoint intervals of time are independent of one another.
A counting process has stationary increments if the number of events in
an interval depend only on the length of the interval. In other words, for any
r and s and t ≥ 0, the distribution of N(t + r) − N(r) is the same as the
distribution of N(t+ s)−N(s) (both intervals have time length t).
A counting process {N(t) : t ≥ 0} is said to be a Poisson process with
rate λ if the following conditions are satisfied:
(i) N(0) = 0
(ii) {N(t) : t ≥ 0} satisfies the independent increments property.
(iii) The number of events occurring in a time interval of length t has a
Poisson distribution with mean λt. In other words, for any s ≥ 0 and t ≥ 0
the random variable N(t+ s)−N(s) is a Poisson distribution with mean λt
so that

Pr(N(t+ s)−N(s) = k) = e−λt
(λt)k

k!
, k = 0, 1, 2, · · ·

From this, the expected number (and variance) of events occurring in a time
interval of length t is

Var(N(t+ s)−N(s)) = E[N(t+ s)−N(s)] = λt.

Notice also that in the right hand side of the formula in (iii) , s doesn’t show
up at all. This tells us that no matter when we start a period of time of
length t, the distribution for the number of occurrences is the same. So a
Poisson Process has stationary increments.
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Example 76.1
Let {N(t) : t ≥ 0} be a Poisson process with rate λ = 2. Calculate Pr(N(5) =
4).

Solution.
The answer is

Pr(N(5) = 4) = e−10 104

4!
= 0.0189

Example 76.2
Let {N(t) : t ≥ 0} be a Poisson process with rate per unit time λ = 2.
Calculate
(a) E[2N(3)− 4N(5)]
(b) Var(2N(3)− 4N(5)).

Solution.
(a) We have

E[2N(3)− 4N(5)] = 2E[N(3)]− 4E[N(5)] = 2(2× 3)− 4(2× 5) = −28.

(b) We have

Var(2N(3)− 4N(5)) =Var[−2(N(3)−N(0))− 4(N(5)−N(3)]

=(−2)2Var(N(3)−N(0)) + (−4)2Var(N(5)−N(3))

=4(2× 3) + 16(2× 2) = 88

When finding probabilities involving numbers of events or event times in a
Poisson process it is usually convenient to take advantage of the independent
increments property, if possible. We illustrate this point in the next example.

Example 76.3
Let {N(t) : t ≥ 0} be a Poisson process with rate per unit time λ = 1. Find
Pr(N(2) = 1|N(1) = 0).

Solution.
We have

Pr(N(2) = 1|N(1) = 0) =
Pr([N(1) = 0] ∩ [N(2) = 1])

Pr(N(1) = 0)

=
Pr([N(1) = 0] ∩ [N(2)−N(1) = 1])

Pr(N(1) = 0)

=Pr(N(2)−N(1) = 1) = e−1
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Theorem 76.1
Let {N(t) : t ≥ 0} be a Poisson process with rate per unit time λ. Let
0 ≤ t1 ≤ t2 ≤ · · · ≤ tn and 0 ≤ k1 ≤ k2 ≤ · · · ≤ kn. Then

Pr(N(t1) = k1, N(t2) = k2, · · · , N(tn) = kn) =
e−λt1(λt1)k1

k1!
× e−λ(t2−t1)(λ(t2 − t1))k2

k2!

× · · · × e−λ(tn−tn−1)(λ(tn − tn−1))kn

kn!
.

Proof.
First, note that the events

[N(t1) = k1], [N(t2)−N(t1) = k2 − k1], · · · , [N(tn)−N(tn−1) = kn − kn−1]

are indepedent. Thus,

Pr(N(t1) = k1, N(t2) = k2, · · · , N(tn) = kn) =

Pr(N(t1) = k1, N(t2)−N(t1) = k2 − k1, · · · , N(tn)−N(tn−1) = kn − kn−1) =

Pr(N(t1) = k1)Pr(N(t2)−N(t1) = k2 − k1) · · ·Pr(N(tn)−N(tn−1) = kn − kn−1) =

e−λt1(λt1)k1

k1!
× e−λ(t2−t1)(λ(t2 − t1))k2

k2!
× · · · × e−λ(tn−tn−1)(λ(tn − tn−1))kn

kn!

The following theorem says that a Poisson process is a Markov chain with
continuous time and state space E = {0, 1, · · · }.

Theorem 76.2
Let {N(t) : t ≥ 0} be a Poisson process with rate per unit time λ. Let
0 ≤ t1 ≤ t2 ≤ · · · ≤ tn < s and 0 ≤ k1 ≤ k2 ≤ · · · ≤ kn ≤ j. Then

Pr(N(s) = j|N(t1) = k1, · · · , N(tn) = kn) = Pr(N(s) = j|N(tn) = kn).

Proof.
Using Bayes formula we have

Pr(N(s) = j|N(t1) = k1, · · · , N(tn) = kn) =
Pr([N(t1) = k1, · · · , N(tn) = kn] ∩ [N(s) = j])

Pr(N(t1) = k1, · · · , N(tn) = kn)
.

Let

A = Pr(N(t1) = k1, N(t2)−N(t1) = k2−k1, · · · , N(tn)−N(tn−1) = kn−kn−1).
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Using the independent increments property, we have

Pr(N(t1) = k1, · · · , N(tn) = kn, N(s) = j) = A×Pr(N(s)−N(tn) = j−kn).

Hence,

Pr(N(s) = j|N(t1) = k1, · · · , N(tn) = kn) =Pr(N(s)−N(tn) = j − kn)

=Pr(N(s)−N(tn) = j − kn|N(tn) = kn)

=Pr(N(s) = j|N(tn) = kn)

Theorem 76.3
Let {N(t) : t ≥ 0} be a Poisson process with rate per unit time λ. Let s, t > 0
and k, j ≥ 0. Then

Pr(N(s+ t) = k|N(s) = j) = Pr(N(t) = k − j).

That is, the distribution of N(t + s) given N(s) = j is j+ Poisson (λt).
Hence,

E[N(t+ s)|N(s) = j] = j + λt and Var[N(t+ s)|N(s) = j] = λt.

Proof.
Since N(s) and N(t+ s)−N(s) are independent, we have

Pr[N(s+t) = k|N(s) = j] = Pr[N(s+t)−N(s) = k−j|N(s) = j] = Pr[N(s+t)−N(s) = k−j]

Example 76.4
Let {N(t) : t ≥ 0} be a Poisson process with rate per unit time λ = 3.
Compute E[2N(5)− 3N(7)|N(3) = 2].

Solution.
(a) We have

E[2N(5)− 3N(7)|N(3) = 2] =2E[N(5)|N(3) = 2]− 3E[N(7)|N(3) = 2]

=2[2 + 3(2)]− 3[2 + 3(4)] = −26

Example 76.5 ‡
For a water reservoir:
(i) The present level is 4999 units.
(ii) 1000 units are used uniformly daily.
(iii) The only source of replenishment is rainfall.
(iv) The number of rainfalls follows a Poisson process with λ = 0.2 per day.
(v) The distribution of the amount of a rainfall is as follows:
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Amount Probability
8000 0.2
5000 0.8

(vi) The numbers and amounts of rainfalls are independent. Calculate the
probability that the reservoir will be empty sometime within the next 10
days.

Solution.
The reservoir has initially 4999 units and 1000 units are used per day so that
one way for the reservoir to be empty sometime within the next 10 days is
to have norainfall within the next 5 days. The probability of such thing to
happen is

Pr(0 rainfall in 5 days) = e−0.2(5) = 0.3679.

Another way for the reservoir to be empty sometime within the next 10 days
is to have one rainfall of 1000 units daily for the next five days and no rainfall
in the following five days. The probability of such event to occur is

Pr([1 rainfall and 5000 units in 5 days]and[0 rainfall in 5 days]) =

Pr(1 rainfall in 5 days)Pr(5000 units in 5 days)Pr(0 rainfall in 5 days)

=0.2(5)e−0.2(5)(0.8)e−0.2(5) = 0.1083.

Hence, the probability that the reservoir will be empty sometime within the
next 10 days is 0.3679 + 0.1083 = 0.476
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Practice Problems

Problem 76.1
Show that for each 0 ≤ e ≤ t, we have

Cov(N(s), N(t)) = λs.

Problem 76.2
Let {N(t), t ≥ 0} be a Poisson process with rate λ = 2. Find Pr(N(5) =
4, N(6) = 9, N(10) = 15).

Problem 76.3
Let {N(t) : t ≥ 0} be a Poisson process with rate per unit time λ = 3. Find
Pr(N(5) = 7|N(3) = 2).

Problem 76.4
Let {N(t) : t ≥ 0} be a Poisson process with rate per unit time λ = 2. Find
E[2N(3)− 4N(5)] and Var[2N(3)− 4N(5)].

Problem 76.5
Let {N(t) : t ≥ 0} be a Poisson process with rate per unit time λ. Let
s, t ≥ 0. Show that

Pr(N(t) = k|N(s+ t) = n) =

(
n
k

)(
t

t+ s

)k (
s

t+ s

)n−k
.

That is, the distribution of N(t) given N(s+t) = n is a binomial distribution
with parameters n and t

t+s
. Hence,

E[N(t)|N(s+ t) = n] = nt
t+s

and Var[N(t+ s)|N(s) = j] = n t
t+s

s
t+s
.

Problem 76.6
Customers arrive at a store according to a Poisson process with a rate 40
customers per hour. Assume that three customers arrived during the first 15
minutes. Calculate the probability that no customer arrived during the first
five minutes.

Problem 76.7 ‡
A member of a high school math team is practicing for a contest. Her advisor
has given her three practice problems: #1, #2, and #3.
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She randomly chooses one of the problems, and works on it until she solves
it. Then she randomly chooses one of the remaining unsolved problems, and
works on it until solved. Then she works on the last unsolved problem.
She solves problems at a Poisson rate of 1 problem per 5 minutes.
Calculate the probability that she has solved problem #3 within 10 minutes
of starting the problems.

Problem 76.8 ‡
For a tyrannosaur with 10,000 calories stored:
(i) The tyrannosaur uses calories uniformly at a rate of 10,000 per day. If his
stored calories reach 0, he dies.
(ii) The tyrannosaur eats scientists (10,000 calories each) at a Poisson rate
of 1 per day.
(iii) The tyrannosaur eats only scientists.
(iv) The tyrannosaur can store calories without limit until needed.
(a) Calculate the probability that the tyrannosaur dies within the next 2.5
days.
(b) Calculate the expected calories eaten in the next 2.5 days.
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77 Interarrival and Waiting Time Distributions

Let {N(t) : t ≥ 0} be a Poisson process with rate λ. For each positive integer
n, we define

Sn = inf{t ≥ 0 : N(t) = n}.

We call Sn the waiting time or the arrival time of the nth event. Let
Tn = Sn − Sn−1 be the time elapsed between the (n− 1)st event and the nth

event. We call Tn the interarrival time. Note that Tn is the arrival time
of the nth event from the time of arrival of the (n − 1)st event. A simple
induction on n shows that Sn =

∑n
i=1 Ti.

Next, we establish the following important result.

Theorem 77.1
The interarrival times Tn, n = 1, 2, · · · are identically independent exponen-
tial random variables with mean 1

λ
.

Proof.
We will show the result for n = 2. The general case can be derived by using
mathematical induction on n.
We have

Pr(T1 > t) = Pr(N(t) = 0) = e−λt.

Thus,

fT1(t) = λe−λt =⇒ T1 is exponential with parameter λ.

If n = 2, we have

Pr(T2 > t|T1 = s) =Pr(N(t+ s)−N(s) = 0|N(s)−N(0) = 1)

=Pr(N(t+ s)−N(s) = 0) = e−λt.

Hence

fT2(t) = λe−λt =⇒ T2 is exponential with parameter λ and T1, T2 are
independent

Remark 77.1
This result should not come as a surprise because the assumption of indepen-
dent and stationay increments means that the process from any moment on
is independent of all that occured before and also has the same distribution
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as the process started at 0. In other words the process is memoryless, and we
know from probability theory that any continuous random variable on (0,∞)
with the memoryless property has to have an exponential distribution.
Also, the previous theorem says that if the rate of events is λ events per unit
of time, then the expected waiting time between events is 1

λ
.

Theorem 77.2
The waiting time Sn is a Gamma distribution with parameters n and λ.

Proof.
Let Y = X1 +X2 + · · ·+Xn where each Xi is an exponential random variable
with parameter λ. Then

MY (t) =
n∏
k=1

MXk(t) =
n∏
k=1

(
λ

λ− t

)
=

(
λ

λ− t

)n
, t < λ.

Since this is the mgf of a gamma random variable with parameters n and λ
we can conclude that Y is a gamma random variable with parameters n and
λ
By the previous theorem and Section 14.4, we have E(Sn) = n

λ
and Var(Sn) =

n
λ2
. Moreover, Sn has the density function

fSn(t) = e−λt
λntn−1

(n− 1)!
, t ≥ 0.

Using Problem 77.1 we have

FSn(t) =Pr(Sn ≤ t) = Pr(N(t) ≥ n)

=
∞∑
k=n

Pr(N(t) = k) = e−λt
∞∑
k=n

(λt)k

k!
.

Example 77.1
Up to yesterday a store has 999,856 customers. They are planning to hold
a little party when the 1,000,000th customer comes into the store. From
experience they know that a customer arrives about every 4 minutes, and
the store is open from 9am to 6pm. What is the probability that they will
have the party today?
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Solution.
They will have the party if at least 144 customers come into the store today.
Let’s assume that the customers arrive according to a Poisson process with
rate 0.25 customer per minutes then we want the probability Pr(S144 <
9× 60 = 540). But S144 is the Gamma distribution Γ(144, 0.25). Thus,

Pr(S144 < 540) =

∫ 540

0

0.25144 t
143e−0.25t

143!
dt

Example 77.2
Suppose that people immigrate to a particular territory at a Poisson rate of
λ = 1.5 per day.
(a) What is the expected time until the 100th immigrant arrives?
(b) What is the probability that the elapsed time between the 100th immi-
grant and the next immigrant’s arrival exceeds 2 days?
(c) What is the probability that the 100th immigrant will arrive after one
year? Assume there are 365 days in a year.

Solution.
(a) We have E(S100) = n

λ
= 100

1.5
= 66.7 days.

(b) We have Pr(T101 > 2) = e−1.5(2) = 0.04979.
(c) We have

Pr(S100 > 365) = 1−Pr(S100 < 365) = 1−FS100(365) = 1−e−1.5(365)

∞∑
k=100

[1.5(365)]k

k!

Theorem 77.3
Given that exactly one event of a Poisson process {N(t); t ≥ 0} has occurred
during the interval [0, t], the time of occurrence of this event is uniformly
distributed over [0, t].

Proof.
For 0 ≤ s ≤ t, we have

Pr(S1 ≤ s|N(t) = 1) =
Pr([S1 ≤ s)] ∩ [N(t) = 1])

Pr(N(t) = 1)
.

Using the equivalence {S1 ≤ s} ⇔ {N(s) = 1} we can write

{S1 ≤ s} ∩ {N(t) = 1} ={N(s) = 1} ∩ {N(t) = 1}
={N(s) = 1} ∩ {N(t)−N(s) = 0}.
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Applying the independence of increments over non-overlapping intervals. we
have

Pr(S1 ≤ s|N(t) = 1) =
Pr(N(s) = 1)Pr(N(t)−N(s) = 0)

Pr(N(t) = 1)

=
e−λs(λs)e−λ(t−s)

e−λt(λt)
=
s

t
.

Hence,

fS1|N(t)=1(s) =
1

t
, 0 ≤ s ≤ t.

This, shows that T1|N(t) = 1 is uniformly distributed over [0, t]

The above theorem is immediately generalized to n events. For any set
of real variables sj satisfying 0 = s0 < s1 < s2 < · · · < sn < t and
given that n events of a Poisson process {N(t) : t ≥ 0} have occurred
during the interval [0, t], the probability of the successive occurrence times
0 < S1 < S2 < · · · < Sn < t of these n Poisson events is

Pr(S1 ≤ s1, · · · , Sn ≤ sn|N(t) = n) =
Pr([S1 ≤ s1, · · · , Sn ≤ sn] ∩ [N(t) = n])

Pr(N(t) = n)
.

Using a similar argument as in the proof of the above theorem, we have

p =Pr([S1 ≤ s1, · · · , Sn ≤ sn] ∩ [N(t) = n]))

=Pr(N(s1)−N(s0) = 1, · · · , N(sn)−N(sn−1) = 1, N(t)−N(sn) = 0)

=

(
n∏
i=1

Pr(N(si)−N(si−1) = 1)

)
Pr(N(t)−N(sn) = 0)

=

(
n∏
i=1

λ(si − si−1)e−λ(si−si−1)

)
e−λ(t−sn)

=λn
n∏
i=1

(si − si−1)e−λ[
∑n
i=1(si−si−1)+t−sn] = λne−λt

n∏
i=1

(si − si−1).

Thus,

Pr(S1 ≤ s1, · · · , Sn ≤ sn|N(t) = n) =
λne−λt

∏n
i=1(si − si−1)

(λt)n

n!
e−λt

=
n!

tn

n∏
i=1

(si−si−1)
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from which the density function

fS1,S2,··· ,Sn|N(t)=n(s1, s2, · · · , sn) =
∂n

∂s1 · · · ∂sn
[Pr(S1 ≤ s1, · · · , Sn ≤ sn|N(t) = n)]

follows as

fS1,S2,··· ,Sn|N(t)=n(s1, s2, · · · , sn) =
n!

tn
.

Example 77.3
Show that for 0 ≤ s ≤ t and 0 ≤ k ≤ n we have

Pr(N(s) = k|N(t) = n) =

(
n
k

)
sk

tn
(t− s)n−k.

Solution.
We have

Pr(N(s) = k|N(t) = n) =
Pr([N(s) = k] ∩ [N(t) = n])

Pr(N(t) = n)

=
Pr([N(s) = k] ∩ [N(t)−N(s) = n− k])

Pr(N(t) = n)

=
Pr(N(s) = k)Pr(N(t)−N(s) = n− k)

Pr(N(t) = n)

=
e−λs (λs)k

k!
e−λ(t−s) [λ(t−s)n−k]

(n−k)!

e−λt (λt)n

n!

=

(
n
k

)
sk

tn
(t− s)n−k

=

(
n
k

)
pk(1− p)(n−k)

where p = s
t
. Thus, given N(t) = n, the number of occurrences in the interval

[0, t] has a binomial distribution with n trials and success probability s
t
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Practice Problems

Problem 77.1
Show that if Sn ≤ t then N(t) ≥ n.

Problem 77.2
Let {N(t) : t ≥ 0} be a Poisson process with rate λ = 3. Let Sn denote the
time of the occurrence of the nth event. Calculate Pr(S3 > 5).

Problem 77.3
Let {N(t) : t ≥ 0} be a Poisson process with rate λ = 3. Let Sn denote the
time of the occurrence of the nth event. Calculate the expected value and
the variance of S3.

Problem 77.4
Let {N(t) : t ≥ 0} be a Poisson process with rate λ = 3. Calculate the
density function of T5.

Problem 77.5
Let {N(t) : t ≥ 0} be a Poisson process with rate λ = 3. Find the expected
value and the variance of T5.

Problem 77.6 ‡
The time elapsed between the claims processed is modeled such that Tn
represents the time elapsed between processing the (n − 1)st and nth claim
where T1 is the time until the first claim is processed, etc.
You are given:
(i) T1, T2, · · · are mutually independent; and
(ii) fTn(t) = 0.1e−0.1t, for t > 0, where t is measured in half-hours.
Calculate the probability that at least one claim will be processed in the next
5 hours.

Problem 77.7 ‡
Subway trains arrive at a station at a Poisson rate of 20 per hour. 25% of the
trains are express and 75% are local. The type of each train is independent
of the types of preceding trains. An express gets you to the stop for work in
16 minutes and a local gets you there in 28 minutes. You always take the
first train to arrive. Your co-worker always takes the first express. You both
are waiting at the same station.
Compare your expected arrival time to that of your co-worker.
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78 Superposition and Decomposition of Pois-

son Process

In this section, we will consider two further properties of the Poisson pro-
cess that both have to do with deriving new processes from a given Poisson
process.

Theorem 78.1
Let {N1(t)}, {N2(t)}, · · · , {Nn(t)} be independent Poisson processes with
rates λ1, λ2, · · · , λn, respectively. Then N(t) := N1(t) + N2(t) + + Nn(t)
is a Poisson processes with rate λ = λ1 + λ2 + · · ·+ λn.

Proof.
Let’s check the three Poisson axioms of the definition stated in Section 76.

(i) N(0) = 0.
This is easy to verify since

N(0) =
n∑
i=1

Ni(0) = 0

since each process Ni(t) is Poisson.
(ii) Independent Increments: Consider times 0 < s < t < u and consider the
increments

N(t)−N(s) and N(u)−N(t).

Using the fact that N(t) is defined as
∑n

i=1Ni(t) these become∑n
i=1[Ni(t)−Ni(s)] and

∑n
i=1[Ni(u)−Ni(t)].

Now, each term in the first sum is independent of all terms in the second
sum with a different subscript since the processes {Ni(t)} and {Nj(t)} are,
for i 6= j, independent by assumption. Also, the term Ni(t) − Ni(s) is
independent of Ni(u)−Ni(t) for all i = 1, 2, · · · , n since {Ni(t)} is a Poisson
process. Therefore,∑n

i=1[Ni(t)−Ni(s)] and
∑n

i=1[Ni(u)−Ni(t)]
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are independent.
(iii) N(s + t) − N(s) is a Poisson random variable with parameter λt. See
Section 16.2.
Since all three Poisson axioms are satisfied, we have that {N(t) : t ≥ 0} is a
Poisson process with rate

∑n
i=1 λi

We call {N(t) : t ≥ 0} the superposition of {N1(t) : t ≥ 0}, {N2(t) : t ≥
0}, · · · , {Nn(t) : t ≥ 0}.

Example 78.1
A building can be accessed from two different entrances: The west entrance
and the east entrance. The flows of people arriving to the building from
these two entrances are independent Poisson processes with rates λW = 0.5
per minute and λE = 1.5 per minute, respectively.
Estimate the probability that more than 200 people entered the building
during a fixed 30-minute time interval?

Solution.
Let NE(t) and NW (t) denote the number of people entering the building in
the time interval [0, t] from the East and West entrances respectively. Then
N(t) = NE(t)+NW (t) represents tne number of people entering the building
in that interval. {N(t) : t ≥ 0} is a Poisson process with rate λ = 2 people per
minute. Moreover, E(N(30)) = 30(2) = 60 and Var(N(30)) = 30(2) = 60.
Hence,

Pr(N(30) > 200) ≈ Pr

(
Z >

200− 60√
60

)
= Pr(Z > 18.07) ≈ 0

Theorem 78.2
Let {N1(t) : t ≥ 0} and {N2(t) : t ≥ 0} be two independent Poisson processes
with respective rates λ1 and λ2. Let N(t) = N1(t) + N2(t), t ≥ 0. Let λ =
λ1+λ2. Then, the conditional distribution of N1(t) given N(t) = n is binomial
with parameters n and p = λ1

λ
. That is, given that the total number of

occurrences is n, the probability that a given occurrence is of type 1 is λ1
λ

independently of the rest of the occurrences.
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Proof.
We have

Pr(N1(t) = k|N(t) = n) =
Pr([N1(t) = k] ∩ [N(t) = n])

Pr(N(t) = n)

=
Pr([N1(t) = k] ∩ [N2(t) = n− k])

Pr(N(t) = n)

=
Pr(N1(t) = k)Pr(N2(t) = n− k)

Pr(N(t) = n)

=
e−λ1t (λ1t)k

k!
e−λ2t (λ2t)n−k

(n−k)!

e−(λ1+λ2)t [(λ1+λ2)t]n

n!

=

(
n
k

)
pk(1− p)n−k

Example 78.2
A building can be accessed from two different entrances: The west entrance
and the east entrance. The flows of people arriving to the building from
these two entrances are independent Poisson processes with rates λW = 0.5
per minute and λE = 1.5 per minute, respectively.
What is the probability that a given person actually entered from the East
entrance?

Solution.
The probability that a given person actually entered from the East entrance
is λE

λE+λW
= 1.5

0.5+1.5
= 0.75

Next, we consider the question of splitting or thinning a Poisson pro-
cess. Suppose that {N(t) : t ≥ 0} is a Poisson process with rate λ. Suppose
additionally that each event, independently of the others, is of one of two
types: Type 1 with probability p, Type 2 with probability q = 1 − p. This
is sometimes referred to as splitting a Poisson process. For example, the
arrivals are customers at a service station and each customer is classified as
either male (type I) or female (type II).
Let {Ni(t) : t ≥ 0} be the number of type i events in the interval [0, t] where
i = 1, 2. We have

Theorem 78.3
{N1(t) : t ≥ 0} and {N2(t) : t ≥ 0} are independent Poisson processes with
respective rates λp and λ(1− p).
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Proof.
First, since N(0) = N1(0) + N2(0) = 0, we have N1(0) = N2(0) = 0. Next,
note that for any given non-negative integers n and m and for j 6= n+m we
have

Pr(N1(t+ s)−N1(s) = n,N2(t+ s)−N2(s) = m|N(t+ s)−N(s) = j) = 0

where t, s ≥ 0. Thus, we have

Pr(N1(t+ s)−N1(s)) = n,N2(t+ s)−N2(s) = m) =
∞∑
j=0

Pr(N1(t+ s)−N1(s) = n,N2(t+ s)−N2(s) = m|N(t+ s)−N(s) = j)

×Pr(N(t+ s)−N(s) = j)

=Pr(N1(t+ s)−N1(s) = n,N2(t+ s)−N2(s) = m|N(t+ s)−N(s) = n+m)

×Pr(N(t+ s)−N(s) = n+m)

=

(
n+m
n

)
pn(1− p)me−λt (λt)n+m

(n+m)!

=e−λt
(λt)n

n!
e−λ(1−p) [λ(1− p)]m

m!
.

Hence,

P (N1(t+ s)−N1(s) = n) =
∞∑
m=0

e−λt
(λt)n

n!
e−λ(1−p) [λ(1− p)]m

m!
= e−λt

(λt)n

n!
.

Likewise,

P (N2(t+s)−N2(s) = m) =
∞∑
n=0

e−λt
(λt)n

n!
e−λ(1−p) [λ(1− p)]m

m!
= e−λ(1−p) [λ(1− p)]m

m!
.

It follows that N1(t+s)−N1(s) is a Poisson random variable with parameter
λt and N2(t+s)−N(s) is a Poisson random variable with parameter λ(1−p).
Moreover, the two variables are independent as shown above.
Finally, let 0 < s < t < u. Since all events are independent of each other,
N1(t)−N1(s) and N1(u)−N1(t) are independent random variables. Likewise,
N2(t)−N2(s) and N2(u)−N2(t) are independent random variables. It follows
that {N1(t) : t ≥ 0} and {N2(t) : t ≥ 0} are Poisson processes
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Remark 78.1
This “thinning” can easily be generalized to many event type occurring in-
dependently with probabilities p1, p2, · · · .

Example 78.3
Consider an insurance company that has two types of policy: Policy A and
Policy B. Total claims from the company arrive according to a Poisson process
at the rate of 9 per day. A randomly selected claim has a 1/3 chance that it
is of policy A.
(a) Calculate the probability that claims from policy A will be fewer than 2
on a given day.
(b) Calculate the probability that claims policy B will be fewer than 2 on a
given day.
(c) Calculate the probability that total claims from the company will be fewer
than 2 on a given day.

Solution.
Let NA(t) be the number of policy A claims NB(t) be the number of policy
B claims. NA and NB are two independent Poisson processes with rates 3
and 6 respectively.
(a) We have

Pr(NA(1) < 2) = Pr(NA(1) = 0) + Pr(NA(1) = 1) = e−3 + 3e−3 = 0.19915.

(b) We have

Pr(NB(1) < 2) = Pr(NB(1) = 0) + Pr(NB(1) = 1) = e−6 + 6e−6 = 0.01735.

(c) We have We have

Pr(N(1) < 2) = Pr(N(1) = 0) + Pr(N(1) = 1) = e−9 + 9e−9 = 0.00123

Example 78.4 ‡
Workers’ compensation claims are reported according to a Poisson process
with mean 100 per month. The number of claims reported and the claim
amounts are independently distributed. 2% of the claims exceed 30,000.
Calculate the number of complete months of data that must be gathered
to have at least a 90% chance of observing at least 3 claims each exceeding
30,000.
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Solution.
Let N1(t) be the number of claims exceeding 30000 received until time t
months. Then {N1(t) : t ≥ 0} is a Poisson process with rate λp = 0.02(100) =
2. We have

Pr(N1(2) ≥ 3) =1− Pr(N(2) = 0)− Pr(N(2) = 1)− Pr(N(2) = 2)

=1− e−4 − e−4 4

1!
− e−4 42

2!
= 0.761 < 90%

Pr(N1(3) ≥ 3) =1− Pr(N(3) = 0)− Pr(N(3) = 1)− Pr(N(3) = 2)

=1− e−6 − e−6 6

1!
− e−6 62

2!
= 0.93 > 90%

Thus, the number of months is 2

Consider two independent Poisson processes {N1(t) : t ≥ 0} and {N2(t) :

t ≥ 0} with respective rates λ1 and λ2. Let S
(I)
n be the time of the nth event

for the first Poisson process. Let S
(II)
m be the time of the mth arrival for the

second Poisson process. What is the probability that the nth event of process
I occurs before the mth event of process II?
At the time of the (n + m − 1)th event for both Poisson processes, we have
observed n or more of the first Poisson process. Hence,

Pr(S(I)
n < S(II)

m ) =
n+m−1∑
k=n

(
n
k

)
pk(1− p)n+m−1−k

where

p =
λ1

λ1 + λ2

.

Example 78.5
An insurance company receives two type of claims: car and home. The num-
ber of car insurance claims received follows a Poisson process distribution
with rate 20 claims per day. The number of home insurance claims received
follows a Poisson process distribution with rate 5 claims per day. Both pro-
cesses are independent.
Calculate the probability that at least two car insurance claims arrive before
three home insurance claims arrive.
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Solution.
The probability that a claim is a car insurance is p = 20

20+5
= 0.8. Let S

(C)
2 be

the time of receiving the second car claims. Let S
(H)
3 be the time of receiving

the third home claims. Then

Pr(S
(C)
2 < S

(H)
5 ) =

4∑
k=2

(
4
k

)
(0.8)k(0.2)4−k ≈ 0.9728
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Practice Problems

Problem 78.1
A building can be accessed from two different entrances: The west entrance
and the east entrance. The flows of people arriving to the building from
these two entrances are independent Poisson processes with rates λW = 0.5
per minute and λE = 1.5 per minute, respectively.
What is the probability that no one will enter the building during a fixed
three-minute time interval?

Problem 78.2
An insurance company receives two type of claims: car and home. The num-
ber of car insurance claims received follows a Poisson process distribution
with rate 20 claims per day. The number of home insurance claims received
follows a Poisson process distribution with rate 5 claims per day. Both pro-
cesses are independent. Suppose that in a given day five claims are received.
Calculate the probability that exactly three claims are car insurance claims.

Problem 78.3
Customers arrive to a store according with a Poisson process with rate λ =
20 arrivals per hour. Suppose that the probability that a customer buys
something is p = 0.30.
(a) Find the expected number of sales made during an eight-hour business
day.
(b) Find the probability that 10 or more sales are made in a period of one
hour.
(c) The store opens at 8 a.m. find the expected time of the tenth sale of the
day.

Problem 78.4 ‡
Lucky Tom finds coins on his way to work at a Poisson rate of 0.5 coins per
minute. The denominations are randomly distributed:
(i) 60% of the coins are worth 1;
(ii) 20% of the coins are worth 5;
(iii) 20% of the coins are worth 10.
Calculate the variance of the value of the coins Tom finds during his one-hour
walk to work.
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Problem 78.5 ‡
A Poisson claims process has two types of claims, Type I and Type II.
(i) The expected number of claims is 3000.
(ii) The probability that a claim is Type I is 1/3.
(iii) Type I claim amounts are exactly 10 each.
(iv) The variance of aggregate claims is 2,100,000.
Calculate the variance of aggregate claims with Type I claims excluded.

Problem 78.6
Customers arrive at a service facility according to a Poisson process with rate
10 per hour. The service facility classifies arriving customers according to
three types, with the probability of the types being p1 = 0.5, p2 = 0.3, p3 =
0.2.
Find the probability that there are 2 type one arrivals before 2 arrivals of
types 2 and 3 combined.

Problem 78.7 ‡
Subway trains arrive at a station at a Poisson rate of 20 per hour. 25% of the
trains are express and 75% are local. The type of each train is independent
of the types of preceding trains. An express gets you to the stop for work in
16 minutes and a local gets you there in 28 minutes. You always take the
first train to arrive. Your co-worker always takes the first express. You both
are waiting at the same station.
Calculate the probability that the train you take will arrive at the stop for
work before the train your co-worker takes.

Problem 78.8 ‡
Lucky Tom finds coins on his way to work at a Poisson rate of 0.5 coins/minute.
The denominations are randomly distributed:
(i) 60% of the coins are worth 1 each
(ii) 20% of the coins are worth 5 each
(iii) 20% of the coins are worth 10 each.
Calculate the probability that in the first ten minutes of his walk he finds at
least 2 coins worth 10 each, and in the first twenty minutes finds at least 3
coins worth 10 each.

Problem 78.9 ‡
Kings of Fredonia drink glasses of wine at a Poisson rate of 2 glasses per day.
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Assassins attempt to poison the king’s wine glasses. There is a 0.01 prob-
ability that any given glass is poisoned. Drinking poisoned wine is always
fatal instantly and is the only cause of death.
The occurrences of poison in the glasses and the number of glasses drunk are
independent events.
Calculate the probability that the current king survives at least 30 days.

Problem 78.10 ‡
Job offers for a college graduate arrive according to a Poisson process with
mean 2 per month. A job offer is acceptable if the wages are at least 28,000.
Wages offered are mutually independent and follow a lognormal distribution
with µ = 10.12 and σ = 0.12. For the lognormal distribution,

F (x) = Φ

(
lnx− µ

σ

)
where Φ(z) is the cdf of the standard normal distribution.
Calculate the probability that it will take a college graduate more than 3
months to receive an acceptable job offer.

Problem 78.11 ‡
Subway trains arrive at your station at a Poisson rate of 20 per hour. 25%
of the trains are express and 75% are local. The types and number of trains
arriving are independent. An express gets you to work in 16 minutes and a
local gets you there in 28 minutes. You always take the first train to arrive.
Your co-worker always takes the first express. You are both waiting at the
same station.
Calculate the conditional probability that you arrive at work before your
co-worker, given that a local arrives first.

Problem 78.12 ‡
Lucky Tom deposits the coins he finds on the way to work according to a
Poisson process with a mean of 22 deposits per month.
5% of the time, Tom deposits coins worth a total of 10.
15% of the time, Tom deposits coins worth a total of 5.
80% of the time, Tom deposits coins worth a total of 1.
The amounts deposited are independent, and are independent of the number
of deposits. Calculate the variance in the total of the monthly deposits.
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Problem 78.13 ‡
A casino has a game that makes payouts at a Poisson rate of 5 per hour and
the payout amounts are 1, 2, 3, · · · without limit. The probability that any
given payout is equal to i is 1

2i
. Payouts are independent.

Calculate the probability that there are no payouts of 1, 2, or 3 in a given
20 minute period.
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79 Non-Homogeneous Poisson Process

Thus far we have considered a Poisson process with a constant intensity λ.
This can be generalized to a so called non-homogeneous Poisson process by
letting the intensity to vary in time.
A counting process {N(t) : t ≥ 0} is called a non-homogeneous Poisson
process with intensity function λ(t), t ≥ 0, if
(i) N(0) = 0
(ii) The process has independent increments.
(iii) N(s+ t)−N(s), the number of events occurring in a time interval from
time s to time t+ s has a Poisson distribution with mean

∫ s+t
s

λ(u)du.
The function m(t), called the mean value function of the process, is defined
to be

m(t) =

∫ t

0

λ(s)ds

so that

E[N(s+ t)−N(s)] = m(s+ t)−m(s).

Some Observations:
• In the non-homogeneous case, the rate parameter λ(t) now depends on t.
• When λ(t) = λ, constant, then it reduces to the homogeneous case.
• A non-homogeneous Poisson process will not have stationary increments,
in general.

Example 79.1
For a non-homogenous Poisson process the intensity function is given by
λ(t) = 1

1+t
, t ≥ 0. Find the probability that the number of observed occur-

rences in the time period [0, 1] is more than 1.

Solution.
We first find the mean function

m(1) =

∫ 1

0

dt

1 + t
= ln (1 + t)|10 = ln 2.

Thus,

Pr(N(1) ≥ 1) = 1− Pr(N(1) = 0) = 1− e− ln 2 =
1

2
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Example 79.2
Suppose that a nonhomogeneous Poisson process has intensity function

λ(t) =

{
10 if t is in (0, 1/2], (1, 3/2], · · ·
2 if t is in (1/2, 1], (3/2, 2], · · ·

Find the probability that the number of observed occurrences in the time
period (1.5, 4] is more than three.

Solution.
N(4)−N(1.5) has a Poisson distribution with mean

m(4)−m(1.5) =

∫ 4

0

λ(t)dt =

∫ 2

1.5

2dt+

∫ 2.5

2

10dt+

∫ 3

2.5

2dt+

∫ 3.5

3

10dt+

∫ 4

3.5

2dt = 13.

Thus,

Pr(N(4)−N(1.5) > 3) =1− Pr(N(4)−N(1.5) = 0)− Pr(N(4)−N(1.5) = 1)

−Pr(N(4)−N(1.5) = 2)− Pr(N(4)−N(1.5) = 3)

=1− e−13

[
1 + 13 +

132

2
+

133

6

]
= 0.9989

Let Sn be the time of the nth occurrence. Then

Pr(Sn > t) = Pr(N(t) ≤ n− 1) =
n−1∑
k=0

e−m(t) (m(t))k

k!
.

Hence,

FSn(t) = 1− Pr(Sn > t) = 1−
n−1∑
k=0

e−m(t) (m(t))k

k!

and

fSn(t) =−
n−1∑
k=0

d

dt

(
e−m(t) (m(t))k

k!

)

=−
n−1∑
k=1

kλ(t)e−m(t) (m(t))k−1

k!
+

n−1∑
k=0

λ(t)e−m(t) (m(t))k

k!

=e−m(t) (m(t))n−1

(n− 1)!
.
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Example 79.3
Suppose that a nonhomogeneous Poisson process has intensity function

λ(t) =

{
10 if t is in (0, 1/2], (1, 3/2], · · ·
2 if t is in (1/2, 1], (3/2, 2], · · ·

If S10 = 0.45 is given, calculate the probability that S11 > 0.75.

Solution.
We have

Pr(S11 > 0.75|S10 = 0.45) =Pr(N(0.75) = 10|S10 = 0.45)

=Pr(N(0.75)−N(0.45) = 0|S10 = 0.45)

=Pr(N(0.75)−N(0.45) = 0|N(0.45)−N(0) = 10)

=Pr(N(0.75)−N(0.45) = 0) = e−[m(0.75)−m(0.45)] = e−1

since

m(0.75)−m(0.45) =

∫ 0.75

0.45

λ(t)dt =

∫ 0.5

0.45

10dt+

∫ 0.75

0.5

2dt = 1

Example 79.4 ‡
For a claims process, you are given:
(i) The number of claims {N(t) : t ≥ 0} is a nonhomogeneous Poisson process
with intensity function:

λ(t) =


1, 0 ≤ t < 1
2, 1 ≤ t < 2
3, 2 ≤ t

(ii) Claims amounts Yi are independently and identically distributed random
variables that are also independent of N(t).
(iii) Each Yi is uniformly distributed on [200,800].
(iv) The random variable P is the number of claims with claim amount less
than 500 by time t = 3.
(v) The random variable Q is the number of claims with claim amount greater
than 500 by time t = 3.
(vi) R is the conditional expected value of P, given Q = 4.
Calculate R.
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Solution.
Since P and Q are independent random variables, we have R = E[P |Q =
4] = E[P ]. N(3) is a Poisson random variable with mean

m(3) =

∫ 3

0

λ(t)dt =

∫ 1

0

dt+

∫ 2

1

2dt+

∫ 3

2

3dt = 6.

Since

P (Yi < 500) =

∫ 500

200

1

600
dt =

1

2

we obtain that P is a Poisson random variable with mean λp = 3. Hence,
R = 3



762 PROBABILITY MODELS: POISSON PROCESSES

Practice Problems

Problem 79.1
Suppose that claims arrive at an insurance company according to a Poisson
process with intensity function λ(t) = 1 + t where t is measured in hours.
Calculate the probability there will be exactly 3 claims arriving within the
first two hours.

Problem 79.2
For a non-homogenous Poisson process the intensity function is given by
λ(t) = 1

1+t
, t ≥ 0. Find the expected time until the first event.

Problem 79.3 ‡
Assume that the customers in a department store arrive at a Poisson rate
that increases linearly from 6 per hour at 1 PM, to 9 per hour at 2 PM.
Calculate the probability that exactly 2 customers arrive between 1 PM and
2 PM.

Problem 79.4
An insurance company finds that for a certain group of insured drives, the
number of accidents over each 24-hour period rises from midnight to noon,
and then declines until the following midnight.
Suppose that the number of accidents can be modeled by a non-homogeneous
Poisson process where the intensity at time t is given by

λ(t) =
1

6
− (12− t)2

1152

where t is the number of hours since midnight.
(a) Calculate the expected number of daily accidents.
(b) Calculate the probability that there will be exactly one accident between
6:00 AM and 6:00 PM.

Problem 79.5
Claims from an insurance company arrive, within a one-month period ac-
cording to a non-homogeneous Poisson process.
The intensity function, λ(t), gives the number of claims per day and varies
with t, the number of days in the month. Assume 30 days in one month.
You are given:

λ(t) =


0.1 0 ≤ t < 8
0.05t 8 ≤ t < 15
0.02 15 ≤ t ≤ 30
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Calculate the probability that there will be fewer than 2 claims in one month.

Problem 79.6 ‡
Beginning with the first full moon in October deer are hit by cars at a Poisson
rate of 20 per day. The time between when a deer is hit and when it is
discovered by highway maintenance has an exponential distribution with a
mean of 7 days. The number hit and the times until they are discovered are
independent.
Calculate the expected number of deer that will be discovered in the first 10
days following the first full moon in October.
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80 Compound Poisson Process

A counting process {X(t) : t ≥ 0} is a compound Poisson process if

X(t) =

N(t)∑
i=1

Yi(t)

where {N(t) : t ≥ 0} is a Poisson process with intensity λ and {Yi : i =
1, 2, · · · } are independent identically distributed random variables indepen-
dent of {N(t) : t ≥ 0}.

Theorem 80.1
If {X(t) : t ≥ 0} is a compound Poisson process then

E[X(t)] = E[N ]E[Y1] = λtE[Y1] and
Var[X(t)] = E(N)Var(Y1) + (E(Y1))2Var(N) = λtE[Y 2

1 ].

Proof.
Using the double expectation theorem, we have that

E[X(t)|N(t) = n] =E[
n∑
i=1

Yi|N(t) = n] = nE[Y1]

E[X(t)] =E[E[X(t)|N(t) = n]] = E[nE[Y1]] = E[N(t)E[Y1]]

=E[N(t)]E[Y1] = λtE[Y1]

Var[X(t)|N(t) = n] =Var[
n∑
i=1

Yi|N(t) = n] = nVar(Y1)

Var[X(t)] =E[Var[X(t)|N(t) = n]] + Var[E[X(t)|N(t) = n]]

=E[N(t)Var(Y1)] + Var[N(t)E[Y1]]

=λtVar(Y1) + λt(E[Y1])2

=λtVar(Y1) + λt[E[Y 2
1 ]− Var(Y1)]

=λtE[Y 2
1 ]

We next discuss an important application of the concept of compound Poisson
process to insurance. Let N(t) denote the number of claims that an insurance
company receives in the time interval [0, t]. Assume that {N(t) : t ≥ 0} is
a Poisson process with rate λ. Let {Yi : i = 1, 2, · · · } denote a sequence of
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claims that the company gets. Assume that {Yi : i = 1, 2, · · · } is a set of
independent identically distributed random variable that is independent of
{N(t) : t ≥ 0}. Let X(t) =

∑N(t)
i=1 Yi be the total amount of claims received

until time t. X(t) is called the aggregate claims.

Example 80.1 ‡
The claims department of an insurance company receives envelopes with
claims for insurance coverage at a Poisson rate of λ = 50 envelopes per week.
For any period of time, the number of envelopes and the numbers of claims
in the envelopes are independent. The numbers of claims in the envelopes
have the following distribution:

# of Claims Probability
1 0.20
2 0.25
3 0.40
4 0.15

Find the mean and variance of the aggregate claims that occur by time 13.

Solution.
Let N(t) be the number of envelopes received until time t. Then N(t) is a
Poisson process with rate λ = 50. Let {Yi : i = 1, 2, · · · } be the number of
claims received in each envelope. {Yi : i = 1, 2, · · · } is an idenpent identically
distributed set of random variables independent of {N(t) : t ≥ 0}. The total
number of claims received by time 13 is

X(13) =

N(13)∑
i=1

Yi.

We have

E[Y1] =1(0.20) + 2(0.25) + 3(0.40) + 4(0.15) = 2.5

E[Y 2
1 ] =12(0.20) + 22(0.25) + 32(0.40) + 42(0.15) = 7.2

E[X(13)] =(50)(13)(2.5) = 1625

Var[X(13)] = (50)(13)(7.2) = 4680

Example 80.2
In the example above, estimate Pr(X(13) > 1800) assuming that X(13) can
be approximated by a normal random variable with mean 1625 and variance
46802.
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Solution.
The usual Normal-variable approximation method gives

Pr(X(13) > 1800) =Pr

(
Z >

1800− 1625√
4680

)
=Pr(Z > 2.57) = 1− 0.9948 = 0.0052

Example 80.3 ‡
Bob is an overworked underwriter. Applications arrive at his desk at a Pois-
son rate of 60 per day. Each application has a 1/3 chance of being a “bad”
risk and a 2/3 chance of being a “good” risk.
Since Bob is overworked, each time he gets an application he flips a fair coin.
If it comes up heads, he accepts the application without looking at it. If the
coin comes up tails, he accepts the application if and only if it is a “good”
risk. The expected profit on a “good” risk is 300 with variance 10,000. The
expected profit on a “bad” risk is −100 with variance 90,000.
Calculate the variance of the profit on the applications he accepts today.

Solution.
Let N be the number of applications received today. Then N is a Poisson
process with rate λ = 60 per day. Let NG denote the number of “good” risk
applications accepted. Then NG is a Poisson process with rate λG = 2

3
(60) =

40. Let XG be the profit per “good” received and SG be the aggregate profit
of “good” received. We have

Var(SG) =E[NG]Var(XG) + Var(NG)(E(XG))2

=(40)(10, 000) + 40(300)2 = 4, 000, 000.

Likewise, let NAB denote the number of “bad” risk applications accepted.
Then NAB is a Poisson process with rate λAB = 1

2
1
3
(60) = 10. Let XAB

be the profit per “bad” accepted and SAB be the aggregate profit of “bad”
accepted. We have

Var(SAB) =E[NAB]Var(XAB) + Var(NAB)(E(XAB))2

=10(90, 000) + 10(−100)2 = 1, 000, 000.

Let S be the profit the applications accepted today. Then S = SG + SAB
with SG and SAB being independent. Thus,

Var(S) = Var(SG) + Var(SAB) = 4, 000, 000 + 1, 000, 000 = 5, 000, 000
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Example 80.4 ‡
Insurance losses are a compound Poisson process where:
(i) The approvals of insurance applications arise in accordance with a Poisson
process at a rate of 1000 per day.
(ii) Each approved application has a 20% chance of being from a smoker and
an 80% chance of being from a non-smoker.
(iii) The insurances are priced so that the expected loss on each approval is
−100.
(iv) The variance of the loss amount is 5000 for a smoker and is 8000 for a
non-smoker.
Calculate the variance for the total losses on one day’s approvals.

Solution.
Let N be the number of approved applications in a day. Then {N(t) : t ≥ 0}
is a Poisson process with rate 1000 per day. Let Ns(t) be the number of
approved smoker applications and Nns that for non-smokers. Then {Ns(t) :
t ≥ 0} is a Poisson process with rate λs = (0.2)(1000) = 200 per day and
{Nns(t) : t ≥ 0} is a Poisson process with rate λns = (0.8)(1000) = 800 per
day. Both processes are independent. Let S be the total loss random variable
for one day approval for smokers and NS that for non-smokers. Then

S = Y 1
1 + Y 1

2 + · · ·+ Y 1
Ns

where Y 1
i is the loss for smoker i. Likewise, we have

NS = Y 2
1 + Y 2

2 + · · ·+ Y 2
Nns .

Hence,

Var(S) = E[Ns]Var(Y 1
i )+E[Y 1

i ]2Var(Ns) = 200[5000+(−100)2] = 3, 000, 000

and

Var(NS) = E[Nns]Var(Y 2
i )+E[Y 2

i ]2Var(Nns) = 800[8000+(−100)2] = 14, 400, 000

Since S and NS are independent, we have

Var(Total loos per day) = Var(S) + Var(NS) = 17, 400, 000
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Example 80.5 ‡
Customers arrive at a bank according to a Poisson process at the rate of 100
per hour. 20% of them make only a deposit, 30% make only a withdrawal
and the remaining 50% are there only to complain. Deposit amounts are dis-
tributed with mean 8000 and standard deviation 1000. Withdrawal amounts
have mean 5000 and standard deviation 2000.
The number of customers and their activities are mutually independent.
Using the normal approximation, calculate the probability that for an 8-hour
day the total withdrawals of the bank will exceed the total deposits.

Solution.
Let N(t) be the number of customers arriving at the bank after t hours. Then
N(t) is a Poisson process with rate 100 per hour. Let Nd(t) be the number
of customers making deposits. Then Nd(t) is a Poisson process with rate
λd = 100(0.2) = 20 per hour. Let Nw(t) be the number of customers making
withdrawals. Then Nw(t) is a Poisson process with rate λw = 100(0.3) = 30
per hour.
For t = 8, Nd(8) is a Poisson distribution with mean λdt = 20(8) = 160
while Nw(8) is a Poisson distribution with mean 30(8) = 240. Let SD be the
aggregate deposits. That is,

SD =

Nd(8)∑
i=1

Di

where Di is the ith deposit. We have

E(SD) =E(D)E[Nd(8)] = 8000(160) = 1, 280, 000

Var(SD) =E[Nd(8)]Var(D) + [E(D)]2Var[Nd(8)]

=(160)(1000)2 + (8000)2(160) = 1.04× 1010.

Likewise, let SW be the aggregate withdrawals where SW =
∑Nw(8)

i=1 Wi with
E(W ) = 5000 and Var(W ) = 20002. Then

E(SW ) =E(W )E[Nw(8)] = 5000(240) = 1, 200, 000

Var(SW ) =E[Nw(8)]Var(W ) + [E(W )]2Var[Nw(8)]

=(240)(2000)2 + (5000)2(240) = 0.696× 1010.
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Hence,

E(SW − SD) =E(SW )− E(SD) = 1, 200, 000− 1, 280, 000 = −80, 000

Var(SW − SD) =Var(SW ) + Var(SD) = 1.736× 1010

σ =
√

1.736× 1010 = 131, 757.

Finally, we have

Pr(SW − SD > 0) =Pr

(
SW − SD + 80, 000

131, 757
>

80, 000

131, 57

)
=Pr(Z > 0.607) = 1− Φ(0.607) = 0.27



770 PROBABILITY MODELS: POISSON PROCESSES

Practice Problems

Problem 80.1
The number of dental claims received by an insurance company follows a
Poisson process with rate λ = 50 claims/day. The claim amounts are inde-
pendent and uniformly distributed over [0, 300].
Find the mean and the standard deviation of the total claim amounts received
in a 30 days period.

Problem 80.2
A company provides insurance to a concert hall for losses due to power failure.
You are given:
(i) The number of power failures in a year has a Poisson distribution with
mean 1.
(ii) The distribution of ground up losses due to a single power failure is:

x Probability
10 0.30
20 0.30
50 0.40

Find the mean of total amount of claims paid by the insurer in one year.

Problem 80.3
Suppose that families migrate to an area at a Poisson rate 2 per week. If
the number of people in each family is independent and takes on the values
1, 2, 3, 4 with respective probabilities 1/6, 1/3, 1/3, 1/6, then what is the
expected value and variance of the number of individuals migrating to this
area during a fixed five-week period?

Problem 80.4
An insurance company pays out claims on its life insurance policies in ac-
cordance with a Poisson Process having rate lambda = 5 per week. If the
amount of money paid on each policy is exponentially distributed with mean
$2000, what is the mean and variance of the amount of money paid by the
insurance company in a four week span?

Problem 80.5
Suppose that health claims are filed with a health insurer at the Poisson rate
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λ = 20 per day, and that the independent severities Y of each claim are
Exponential random variables with mean 500. Let X(10) be the aggegate
claim during the first 10 days.
(a) Find the mean and the variance of X(10).
(b) Suppose that X(10) can be approximated by a Normal random variable
with mean and variance of those of X(10). Estimate Pr(X(10) > 120, 000).

Problem 80.6 ‡
The RIP Life Insurance Company specializes in selling a fully discrete whole
life insurance of 10,000 to 65 year olds by telephone. For each policy:
(i) The annual contract premium is 500.
(ii) Mortality follows the Illustrative Life Table.
(iii) i = 0.06
The number of telephone inquiries RIP received follows a Poisson process
with mean 50 per day. 20% of the inquiries result in the sale of a policy.
The number of inquiries and the future lifetimes of all the insureds who
purchase policies on a particular day are independent.
Using the normal approximation, calculate the probability that S, the total
prospective loss at issue for all the policies sold on a particular day, will be
less than zero.
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81 Conditional Poisson Processes

Let Λ be a continuous positive random variable. Let {N(t) : t ≥ 0} be a
counting process such that {[N(t)|Λ = λ], t ≥ 0} is a Poisson process with
rate λ. We call {N(t) : t ≥ 0} a conditional Poisson process.
If fΛ(λ) is the pdf of Λ, we have

Pr(N(s+ t)−N(s) = n) =

∫ ∞
0

[Pr(N(s+ t)−N(s) = n|Λ = λ)]fΛ(λ)dλ

=

∫ ∞
0

e−λt
(λt)n

n!
fΛ(λ)dλ.

It follows that a conditional Poisson process has stationary increments. How-
ever, a conditional Poisson process does not have independent increments and
thus is not generally a Poisson process.
Now, suppose that Λ is a Gamma random variable with parameters θ and m
with m a positive integer. The pdf of Λ is given by

fΛ(λ) =
θe−θλ(θλ)m−1

(m− 1)!
.

In this case, We have

Pr(N(t) = n) =

∫ ∞
0

e−λt
(λt)n

n!

θe−θλ(θλ)m−1

(m− 1)!
dλ

=
tnθm

n!(m− 1)!

∫ ∞
0

e−(t+θ)λλn+m−1dλ

=
tnθm(n+m− 1)!

n!(m− 1)!(t+ θ)n+m(n+m− 1)!

∫ ∞
0

(t+ θ)e−(t+θ)λ [(t+ θ)λ]n+m−1

(n+m− 1)!
dλ.

Note that the integrand is the density function of a Gamma random variable
with parameters n+m and t+ θ so that the integral value is 1. Hence,

Pr(N(t) = n) =
tnθm(n+m− 1)!

n!(m− 1)!(t+ θ)n+m(n+m− 1)!
=

(
n+m− 1

n

)
pm(1−p)n

where p = θ
t+θ
. Therefore, the number of events in an interval of length t has

the same distribution of the number of failures that occur before reaching a
total of m successes, where the probability of a success is p. In other words,
N(t) is a negative binomial random variable with parameters (m, p).
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Example 81.1
Compute the mean and the variance of a conditional Poisson process {N(t) :
t ≥ 0}.

Solution.
By the law of double expectation, we have

E(N(t)) = E[E[N(t)|Λ]] = E[tΛ] = tE[Λ].

Also, by the law of total variance, we have

Var(N(t)) =E[Var(N(t)|Λ)] + Var[E[N(t)|Λ]]

=E[tΛ] + Var[tΛ]

=tE[Λ] + t2Var(Λ)

Example 81.2 ‡
On his walk to work, Lucky Tom finds coins on the ground at a Poisson
rate. The Poisson rate, expressed in coins per minute, is constant during any
one day, but varies from day to day according to a gamma distribution with
mean 2 and variance 4.
Calculate the probability that Lucky Tom finds exactly one coin during the
sixth minute of today’s walk.

Solution.
We have

fΛ(λ) =
1

2
e−

λ
2 .

Using integration by parts, we find

Pr(N(6)−N(5) = 1) =

∫ ∞
0

e−λλ

(
1

2
e−

λ
2

)
dλ

=

∫ ∞
0

λ

2
e−

3
2
λdλ

=
1

2

[
−2

3
λe−

3
2
λ − 4

9
e−

3
2
λ

]∞
0

=
2

9
= 0.222
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Answer Key

Section 18

18.1 No

18.2 III

18.3 A = 1, B = −1

18.4 0.033

18.5 0.9618

18.6 0.04757

18.7 s(0) = 1, s′(x) < 0, s(∞) = 0

18.8 0.149

18.9 1− e−0.34x, x ≥ 0

18.10 x2

100
, x ≥ 0

18.11 I

18.12 (a 0.3 (b) 0.3

18.13 1− x
108
, x ≥ 0

775
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18.14 (a)

18.15 (x+ 1)e−x

18.16 0.34e−0.34x

18.17 λe−λx

18.18

f(x) =


7
16
, 0 < x < 1

3x
8
, 1 < x < 2

0, x > 2

18.19 Both functions represent the density of death at age x. The probability
density function is unconditional (i.e., given only existence at age 0) whereas
µ(x) is conditional on survival to age x

18.20 1
2
(1− x)−1

18.21 f(x) = µ(x)SX(x) = µ(x)e−Λ(x)

18.22
∫∞

0
µ(x)dx = limR→∞

∫ R
0
µ(x)dx = − limR→∞ ln s(x) = −(−∞) =∞

18.23 0.34

18.24 s(x) = e−
∫ x
0 µ(s)ds = e−µx, F (x) = 1 − s(x) = 1 − e−µx, and f(x) =

F ′(x) = µe−µx

18.25 1
480

18.26 ln (x+ 1), x ≥ 0

18.27 2x
4−x2 , 0 ≤ x < 2
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18.28

s(x) =e−ΛX(x) = e−µx

F (x) =1− e−µx

f(x) =− S ′X(x) = −µe−µx

18.29 1.202553

18.30 0.2

18.31 (I) and (II)

18.32 2

18.33 24(2 + x)−4

18.34 2

18.35 4

18.36 kp

18.37 3
4
k

18.38 45
√

2

18.39 e̊0 = 60 and Var(X) = 450

18.40 (a) 720
7

(b) 0.062

18.41 median = 0.51984 and mode = 0
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Section 19

19.1 675

19.2 50

19.3 (a) µ(x) = − s′(x)
s(x)

= 1
90−x . (b) F (x) = 1 − s(x) = x

90
. (c) f(x) =

F ′(x) = 1
90
. (d) Pr(20 < X < 50) = s(20)− s(50) = 50

90
− 20

90
= 1

3

19.4 (a) F (x) = 1− s(x) = 1−
(
1− x

ω

)α
(b) f(x) = F ′(x) = α

ω

(
1− x

ω

)α−1

(c) µ(x) = f(x)
s(x)

= α
ω

(
1− x

ω

)−1

19.5 t
ω−x , 0 ≤ t ≤ ω − x.

19.6 1− t
ω−x , 0 ≤ t ≤ ω − x.

19.7 40

19.8 4

19.9 ln
(

ω
ω−x

)
19.10 0.449

19.11 0,1481

19.12 0.5

19.13 µ = 0.3054 and median = 2.27

19.14 1− e−µt

19.15 46.67

19.16 e̊0 = 60 and Var(X) = 3600
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19.17 (III)

19.18 0.01837

19.19 s(x) = e−
∫ x
0 Bctdt = e

B
ln c

(1−cx) and F (x) = 1− e B
ln c

(1−cx)

19.20 f(x) = −s′(x) = Bcxe
B
ln c

(1−cx)

19.21 Λ(x) =
∫ x

0
Bctdt = Bct

ln c

∣∣∣x
0

= B
ln c

(cx − 1)

19.22 6.88

19.23 −3.008(1.05)x

19.24 1− e 0.0004
ln 1.07

(1−1.07x)

19.25 f(x) = µ(x)s(x) = (A+Bcx)e−Ax−m(cx−1) where m = B
ln c

19.26 1− e−Ax−m(cx−1)

19.27 f(x) = (0.31+0.45(2x))e−0.31x− 0.43
ln 2

(2x−1) and F (x) = 1−e−0.31x− 0.43
ln 2

(2x−1)

19.28 0.0005131

19.29 µ(x) = 0.31 + 0.43(2x)

19.30 0.111395

19.31 f(x) = kxne−k
xn+1

n+1

19.32 k = 2 and n = 1

19.33 30

19.34 e−225

19.35 e−16
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19.36 0.009831

19.37 n = 5.1285 and k = 1.5198× 10−11.
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Section 20

20.1 sT (x)(t) = 1− t
ω−x , 0 ≤ t ≤ ω − x.

20.2 sT (x)(t) = 1− t
75−x , 0 ≤ t ≤ 75− x and fT (t) = 1

75−x

20.3 m+npx = s(x+m+n)
s(x)

= s(x+m+n)
s(x+m)

· s(x+m)
s(x)

= npx+m · mpx

20.4 0.9215

20.5 Induction on n and Problem 20.3

20.6 (a) 17p35 − 38p35 (b) 0.323

20.7 4
t+4

20.8 0.9559

20.9 We have∫ x+t

x

µ(y)dy =

∫ x+t

x

−[ln s(y)]′dy = ln

(
s(x)

s(x+ t)

)
so that

tpx =
s(x+ t)

s(x)
= e−

∫ x+t
x µ(y)dy

20.10 0.59049

20.11 (a) 0.8795 (b) 0.9359

20.12 We have

∂

∂t
tpx =

∂

∂t

(
s(x+ t)

s(x)

)
=
s′(x+ t)

s(x)

=
s′(x+ t)

s(x+ t)

s(x+ t)

s(x)
= −tpxµ(x+ t)

20.13 µ(x) = −0.04 + 0.00189(1.056)x
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20.14 We have

t|uqx =Pr(t < T (x) ≤ t+ u)

=FT (x)(t+ u)− FT (x)(t)

=t+uqx − tqx

=(1− t+upx)− (1− tpx)

=tpx − t+upx

20.15 We have

t|uqx =tpx − t+upx

=
s(x+ t)

s(x)
− s(x+ t+ u)

s(x)

=
s(x+ t)− s(x+ t+ u)

s(x)

=

[
s(x+ t)

s(x)

] [
s(x+ t)− s(x+ t+ u)

s(x+ t)

]
=tpxuqx+t

20.16 0.5714

20.17 0.9841

20.18 0.025

20.19 This follows from tqx = 1− tpx and Problem 20.12

20.20 1−
(

α
α+t

)β
20.21 0.9913

20.22 2|q1 is the probability that a life currently age 1 will die between
ages 3 and 4

20.23 0.23915

20.24 1−
(

120
120+t

)1.1
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20.25 0.1694

20.26 0.6857

20.27 sT (x)(t) = 90−x−t
90−x and fT (x)(t) = 1

90−x , 0 ≤ t ≤ 90− x

20.28 fT (x)(t) = 1
90−x , 0 ≤ t ≤ 90− x

20.29 0.633

20.30 fT (36)(t) = 0.0625

(64−t)
1
2

20.31 fT (2)(t) = 2+t
48

20.32 0.01433

20.33 d
dt

(1− tpx) = d
dt

(tqx) = tpxµ(x+ t)

20.34
∫∞

0 tpxµ(x+ t)dx =
∫∞

0
fT (x)(x)dx = 1

20.35 µT (x)(t) =
fT (x)(t)

tpx
=

F ′
T (x)

(t)

1−tqx =
F ′
T (x)

(t)

1−FT (x)(t)

20.36 µ(x+ t) = 1
100−x−t , 0 ≤ t ≤ 100− x

20.37 µ(x+ t) = µ(x) = µ

20.38 0.015

20.39 5.25

20.40 0.3783

20.41 49.8

20.42 10510.341

20.43 300



784 ANSWER KEY

20.44 50

20.45 pKx(k) = k−1px · qx+k−1 = k−1|qx

20.46 Pr(Kx ≥ k) = Pr(T (x) > k − 1) = sT (x)(k − 1) = k−1px

20.47 pK(x)(k) = kpx − k+1px =
(

100−x−k
100−x

)0.5 −
(

100−x−k−1
100−x

)0.5

20.48 ex = 99−x
2

and
◦
ex=

100−x
2

20.49 1

20.50 2

20.51 We have

ex =
∞∑
k=1

kpx = px +
∞∑
k=2

kpx

=px +
∞∑
k=2

pxk−1px+1

=px +
∞∑
k=1

pxkpx+1

=px(1 + ex+1)

20.52 T (x) = Kx − 1 + Sx = K(x) + Sx

20.53 1.07

20.54 9.5
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Section 21

21.1 1
99.5−x

21.2 We have

nmx =

∫ x+n

x
f(y)dy∫ x+n

x
s(y)dy

=−
∫ x+n

x
s′(y)dy∫ x+n

x
s(y)dy

=
s(x)− s(x+ n)∫ x+n

x
s(t)dt

21.3 nmx = 2n
200−2nx−1

21.4 0.6039

21.5 1
75

21.6 m40 = 0.0096864 and 10m75 = 0.044548.
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Section 22

22.1 (a) `x = 10− x (b) p2 = 7
8
, q3 = 1

7
, 3p7 = 0, 2q7 = 2

3

22.2 F (x) = `0−`x
`0

22.3 t|uqx = `x+t−`x+t+u
`x

22.4 We have

Age `x dx px qx
0 100,000 501 0.99499 0.00501
1 99,499 504 0.99493 0.00506
2 98,995 506 0.99489 0.00511
3 98,489 509 0.99483 0.00517
4 97,980 512 0.99477 0.00523
5 97,468 514 NA NA

22.5 `t+x

22.6 (a) 9734 (b) 50 (c) 200 (d) 0.0211 (e) 0.0055



787

Section 23

23.1 µ(x) = 1
ω−x , 0 ≤ x < ω

23.2 0.05

23.3 Let u = x+ t. Then

µ(x+ t) =µ(u) = −
d`u
du

`u

=−
d`u
dt
· dt
du

`u

=−
d`x+t
dt

`x+t

23.4 `x = 100− x

23.5 µ(x) = 1
3
(90− x)−1

23.6 `x − `x+n =
∫ x+n

x

[
− d
dy
`y

]
dy =

∫ x+n

x
`yµ(y)dy

23.7 d
dx
`xµ(x) = d

dx

[
− d
dx
`x
]

= − d2

dx2
`x

23.8 f(x) = 0.95(100− x)−1

23.9 5000

23.10 Using integration by parts we find∫ ∞
0

xf(x)dx =− 1

`0

∫ ∞
0

x`′xdx

=− [1

`0

[
x`x|∞0 −

∫ ∞
0

`xdx

]
=

1

`0

∫ ∞
0

`xdx

where we used the fact that `∞ = `0s(∞) = 0
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23.11 Using integration by parts we find∫ ∞
0

x2f(x)dx =− 1

`0

∫ ∞
0

x2`′xdx

=− [1

`0

[
x2`x

∣∣∞
0
− 2

∫ ∞
0

x`xdx

]
=

2

`0

∫ ∞
0

x`xdx

where we used the fact that `∞ = `0s(∞) = 0

23.12 fT (x)(t) = d
dt t
qx = d

dt

[
1− `x+t

`x

]
= − 1

`x
d
dt
`x+t

23.13 Tx =
∫ 10

x
100(10− y)0.85dy = −100

[
(10−y)1.85

1.85

]10

x
= 100(10−x)1.85

1.85

23.14 5.405

23.15 48.881

23.16 5000(1 + x)−2

23.17 0.1

23.18 0.123

23.19 npx is the probability of surviving to age x + n + m. If we remove

n+mpx, which is the probability of surviving to x+n+m years, then we have
the probability of surviving to age x+ n but dying by the age of x+ n+m
which is n|mqx

23.20 6|10q64

23.21 m
ω−x

23.22 e−nµ − e−(n+m)µ

23.23 0.3064
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23.24 20

23.25 800

23.26 400

23.27 1+x
3

23.28 (1+x)2

3

23.29 2
9
(1 + x)2

23.30 137
3

23.31 352.083

23.32 The expected number of years (60) is expected to live in the next
25 years is 17.763

23.33 We have

e̊x:m+n =

∫ m+n

0
tpxdt =

∫ m

0
tpxdt+

∫ m+n

m
tpxdt

=

∫ m

0
tpxdt+

∫ n

0
m+ypxdy =

∫ m

0
tpxdt+

∫ n

0
mpx · ypx+mdy

=e̊x:m + mpx · e̊x+m:n

23.34 We have

e̊x =

∫ ∞
0

tpxdt =

∫ n

0
tpxdt+

∫ ∞
n

tpxdt

=

∫ n

0
tpxdt+

∫ ∞
0

y+npxdt =

∫ n

0
tpxdt+

∫ ∞
0

npx · ypx+ndt

=e̊x:n + npx · ◦̊ex+n

23.35 6.968

23.36 15.6
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23.37 E[K(x)2] =
∑∞

k=1(2k − 1)kpx = 1
`x

∑∞
k=1(2k − 1)`x+k

23.38 7.684

23.39 2.394

23.40 pK(20)(k) = kp20 − k+1p20 = e−0.05k − e−0.05(k+1) = e−0.05k(1− e−0.05)

23.41 0.905

23.42 We have Tx =
∫∞
x
`ydy =

∑∞
k=x

∫ k+1

k
`ydy =

∑∞
k=x

∫ 1

0
`k+tdt =

∑∞
k=x Lk

23.43 nLx = Tx − Tx+n = 200e−0.05x(1− e−0.05n)

23.44 nLx = Tx − Tx+n = 1000(x+ 1)−3 − 1000(x+ n+ 1)−3

23.45 577.190

23.46 Recall that

Lx = −(x− ω)− 1

2

so that
n∑
k=1

Lk = L1 − Ln+1 = n

23.47 We have

Lx =

∫ x+1

x

`ydy = −
∫ x

0

`ydy +

∫ x+1

0

`ydy

and therefore
d

dx
Lx = `x+1 − `x = −dx

23.48 We have
d

dt
Lt = −dt = −mtLt.

Separating the variables and integrating both sides from x to x+1 we obtain

ln

(
Lx+1

Lx

)
= −

∫ x+1

x

mydy.
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Solving for Lx+1 we find

Lx+1 = Lxe
−

∫ x+1
x mydy

23.49 (a) We have

dx =`x − `x+1 = 1

Lx =

∫ 1

0

`x+tdt =

∫ 1

0

(ω − x− t)dt = ω − x− 1

2

mx =
dx
Lx

=
1

ω − x− 0.5

(b) For DeMoivre’s Law RV we have µ(x) = 1
ω−x .

(c)We have

mx

1 + 0.5mx

=
1

ω − x− 0.5
· ω − x− 0.5

ω − x
=

1

ω − x
= µ(x)

23.50 (a) 2502.357 (b) 0.0159

23.51 (a) 10L20 = 750, 10d20 = 10 (b) 1
75

23.52 100
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Section 24

24.1

`t =



100, 000− 501t 0 ≤ t ≤ 1
99, 499− 504(t− 1) 1 ≤ t ≤ 2
98, 995− 506(t− 2) 2 ≤ t ≤ 3
98, 489− 509(t− 3) 3 ≤ t ≤ 4
97, 980− 512(t− 4) 4 ≤ t ≤ 5
97, 468− 514(t− 5) 5 ≤ t ≤ 6

24.2

tp0 =



100,000−501t
100,000

0 ≤ t ≤ 1
99,499−504(t−1)

100,000
1 ≤ t ≤ 2

98,995−506(t−2)
100,000

2 ≤ t ≤ 3
98,489−509(t−3)

100,000
3 ≤ t ≤ 4

97,980−512(t−4)
100,000

4 ≤ t ≤ 5
97,468−514(t−5)

100,000
5 ≤ t ≤ 6

24.3 e0 = 4.92431 and e̊0 = 5.42431

24.4 We have

tqx+s =tqx+s =
dx+s

`x+s

= t
`x+s − `x+s+1

`x+1

=t
dx

`x − sdx
= t

dx
`x

1− sdx
`x

=
tqx

1− sqx

24.5 0.95

24.6 (I) and (II)

24.7 1/9

24.8 r|hqx = `x+r−`x+r+h
`x

= (`x−rdx)−(`x−(r+h)dx)
`x

= hdx
`x

= hqx

24.9 0.813

24.10 0.2942
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24.11 0.5447

24.12 We have

t−sqx+s =1− t−spx+s

=1− e−
∫ x+t
x+s µ(y)dy

=1− e−
∫ t
s µ(x+r)dr

=1− e−(t−s)µx

24.13 1
12
q90 = 0.02369 and 1

12
q90+ 11

12
= 0.02369

24.14 0.5qx = 0.0513 and 0.5qx+0.5 = 0.0513

24.15 L95 = 690.437 and m95 = `95−`96
L95

= 200
690.437

= 0.28967

24.16 We have

s−tqx+t =
s(x+ t)− s(x+ s)

s(x+ t)
= 1− s(x+ s)

s(x+ t)

=1− spx

tpx
= 1−

px
s+(1−s)px

px
t+(1−t)px

=1− t+ (1− t)px
s+ (1− s)px

=
(s− t)(1− px)
s+ (1− s)px

=
(s− t)qx

1− (1− s)qx

24.17 0.75p80 = 0.95857 and 2.25p80 = 0.87372

24.18 13440

24.19 0.00057

24.20 (i) 1.475801 (ii) 1.475741
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Section 25

25.1 84

25.2 8.2

25.3 8056

25.4 0.4589

25.5 0.0103
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Section 26

26.1 0.03125

26.2 Ā20 = 0.4988, 2Ā20 = 0.2998, Var(Z̄20) = 0.0501

26.3 3.75

26.4 0.04

26.5 116.09

26.6 14.10573

26.7 Ā 1
25:10

= 0.0885, 2Ā 1
25:10

= 0.0685, Var(Z̄ 1
25:10

) = 0.0607

26.8 Ā 1
30:20

= 0.3167, 2Ā 1
30:20

= 0.1987, Var(Z̄ 1
30:20

) = 0.0984

26.9 0.2378

26.10 0.4305

26.11 1
1+e−(µ+δ)

26.12 0.05

26.13 A 1
30:20

= 0.2628, 2A 1
30:20

= 0.0967, Var(Z̄ 1
30:20

) = 0.0276

26.14 A 1
30:20

= 0.2231, 2A 1
30:20

= 0.0821, Var(Z̄ 1
30:20

) = 0.0323

26.15 0.02497

26.16 0.7409

26.17 mean = 1051.43 and the standard deviation is 197.94

26.18 (a) 590.41 (b) 376.89
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26.19 0.2793

26.20 0.4775

26.21 0.73418

26.22 2Āx:n = 2Ā1
x:n + 2A 1

x:n =
∫ n

0
ν2t

tpxµ(x+ t)dt+ ν2n
npx

26.23 2
m|Āx = ν2m

mpx
2Āx+m

26.24 0.1647

26.25 0.0253

26.26 0.0873

26.27 0.0154
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Section 27

27.1 A30 = 0.3168, 2A30 = 0.1805, Var(Z30) = 0.0801

27.2 A 1
30:10

= 0.2461, 2A 1
30:10

= 0.1657, Var(Z 1
30:10

) = 0.1051

27.3 10|A30 = 0.1544, 2
10|A30 = 0.02981, Var(10|Z30) = 0.00597

27.4 A30:10 = 0.4692, 2A30:10 = 0.2478, Var(Z30:10 ) = 0.0277

27.5 1730.10

27.6 0.19026

27.7 0.9396
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Section 28

28.1 0.671

28.2 We have

Ax =
∞∑
k=0

νk+1
kpxqx+k = A1

x:n +
∞∑
k=n

νk+1
kpxqx+k

=A1
x:n +

∞∑
k=0

νk+1+n
k+npxqx+k+n

=A1
x:n + νnnpx

∞∑
k=0

νk+1
kpx+nqx+k+n

=A1
x:n + νnnpxAx+n

28.3 0.0081

28.4 0.00242

28.5 Using (i) and (ii), we can rewrite the given relation as

u(k − 1) = u(k)νpk−1 + νqk−1.

Now, we have

u(70) =1

u(69) =νp69 + νq69 = A69:1

u(68) =[νp69 + νq69]νp68 + νq68 = ν2p68p69 + ν2p68q69 + νq68 = A68:2

u(67) =[ν2p68p69 + ν2p68q69 + νq68]νp67 + νq67

=ν3p67p68p69 + ν3p67p68q69 + ν2p67q68 + νq67 = A67:3

... =
...

u(40) =A40:30
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28.6 We have

2Ax − νnnEx2Ax+n + νnnEx =
∞∑
k=0

ν2(k+1)
kpxqx+k −

∞∑
k=0

ν2(k+1+n)
npxkpx+nqx+n+k + ν2n

npx

=
∞∑
k=0

ν2(k+1)
kpxqx+k −

∞∑
k=0

ν2(k+1+n)
n+kpxqx+n+k + ν2n

npx

=
∞∑
k=0

ν2(k+1)
kpxqx+k −

∞∑
k=n

ν2(k+1)
kpxqx+k + ν2n

npx

=
n−1∑
k=0

ν2(k+1)
kpxqx+k + ν2n

npx = 2Ax:n

28.7 0.02544

28.8 2.981%
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Section 29

29.1 11772.61

29.2 10416.22

29.3 E(Z) = 20.3201, E(Z2) = 2683.7471, Var(Z) = 2270.8406

29.4 87.35

29.5 12.14

29.6 4

29.7 0.3403

29.8 1

29.9 (IĀ)30 = −
∑29

k=0(k + 1)e−0.02(k+1)

29.10 (ĪĀ)x =
∫∞

0
e−δte−µt(µ)dt = µ

(µ+δ)2
= (µ+ δ)−1Āx

29.11 1.9541

29.12 We have

(ĪĀ)x =

∫ ∞
0

tνttpxµ(x+ t)dt

=

∫ ∞
0

(∫ t

0

ds

)
νttpxµ(x+ t)dt

=

∫ ∞
0

∫ ∞
s

νttpxµ(x+ t)dtds

=

∫ ∞
0

s|Āxds
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29.13 We have

(IĀ)1
x:n + (DĀ)1

x:n =

∫ n

0

bt+ 1cνttpxµ(x+ t)dt+

∫ n

0

(n− btc)νttpxµ(x+ t)dt

=(n+ 1)

∫ n

0

νttpxµ(x+ t)dt

=(n+ 1)Ā1
x:n

where we used the fact that bt+ 1c − btc = 1 for k − 1 ≤ t ≤ k.

29.14 We have

(IA)1
x:n =

n−1∑
k=0

(k + 1)νk+1
k|qx =

n−1∑
k=0

(k + 1)νk+1
kpxqx+k

=
n−1∑
k=0

kνk+1
kpxqx+k +

n−1∑
k=0

νk+1
kpxqx+k

=
n−1∑
k=0

νk+1
kpxqx+k + ν

n−1∑
k=1

kνkpxk−1px+1qx+k

=
n−1∑
k=0

νk+1
kpxqx+k + νpx

n−2∑
k=0

(k + 1)νk+1
kpx+1qx+k+1

=
∞∑
k=0

νk+1
kpxqx+k + νpx

n−2∑
k=0

(k + 1)νk+1
k|qx+1

=A1
x:n + νpx(IA) 1

x+1:n−1 .

29.15 5.0623

29.16 This follows from the two recursion relations

A1
x:n = νqx + νpxA

1
x+1:n−1

and

(IA)1
x:n = A1

x:n + νpx(IA) 1
x+1:n−1 .
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29.17 We have

(IA)1
x:n + (DA)1

x:n =
n−1∑
k=0

(k + 1)νk+1
k|qx +

n−1∑
k=0

(n− k)νk+1
k|qx

=
n−1∑
k=0

[k + 1 + n− k]νk+1
k|qx

=(n+ 1)
n−1∑
k=0

νk+1
k|qx

=(n+ 1)
n−1∑
k=0

νk+1
kpxqx+k

=(n+ 1)A1
x:n .

29.18 12.2665.
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Section 30

30.1 115.10

30.2 543.33

30.3 2758.99

30.4 We have

(IĀ)x =E[bT + 1cνT ] = E[(K + 1)νK+1νS−1]

=E[(K + 1)νK+1]E[νS−1]

=
i

δ
(IA)x.

30.5 We have

E[(S − 1)νS−1] =

∫ 1

0

(s− 1)(1 + i)1−sds

=−
∫ 1

0

s(1 + i)sds

=− 1

δ
esδ
∣∣∣∣1
0

+
1

δ

∫ 1

0

esδds

=−
(

1 + i

δ
− i

δ2

)
.

30.6 We have

(ĪĀ)x =E(TνT ) = E[(K + 1 + S − 1)νT ]

=E[(K + 1)νT ] + E[(S − 1)νT ]

=E[bT + 1cνT ] + E[(S − 1)νT ]

=(IĀ)x + E[(S − 1)νK+1νS−1]

=
i

δ
(IA)x + E[νK+1]E[(S − 1)νS−1]

=
i

δ
(IA)x + AxE[(S − 1)νS−1]

=
i

δ
(IA)x −

(
1 + i

δ
− i

δ2

)
Ax.
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Section 31

31.1 A
(2)
69 = 0.5020 is the actuarial present value of a whole life insurance of

$1 issued to (69) with death benefit paid at the end of the semiannual in the
year of death.

31.2 0.0695

31.3 0.9137

31.4 0.5217

31.5 0.8494
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Section 32

32.1 280.65

32.2 248.67

32.3 0.6614

32.4 FT (20)(t) = 1 + ln t
4
.

32.5 0.8187

32.6 1,430,000
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Section 33

33.1 12

33.2 E(Ȳ 2
x ) = 1

δ2
[1− 2Āx + 2Āx]

33.3 2.8

33.4 7.217

33.5 Pr(Yx > āx) =
(

µ
µ+δ

)µ
δ

33.6 13.027

33.7 1
12µ2

33.8 13.96966

33.9 0.7901

33.10 0.8

33.11 65098.637

33.12 19.0042586
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Section 34

34.1 āx:n = 1−e−(µ+δ)n

µ+δ

34.2 2.16166

34.3 We have

āx =

∫ ∞
0

tExdt

=

∫ n

0
tExdt+

∫ ∞
n

tExdt

=āx:n +

∫ ∞
n

νtnpxt−npx+ndt

=āx:n + νnpx

∫ ∞
0

νttpx+ndt

=āx:n + νnnpxāx+n

34.4 7.8202

34.5 We have

āx:m+n =

∫ m+n

0

νttpxdt

=

∫ m

0

νttpxdt+

∫ m+n

m

νttpxdt

=āx:m +

∫ m+n

m

νtt−mpx+mmpxdt

=āx:m + νmmpx

∫ m+n

m

νt−mt−mpx+mdt

=āx:m + νmmpx

∫ n

0

νttpx+mdt

=āx:m + mExāx+m:n
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Section 35

35.1 We have

n|āx =

∫ ∞
n

e−δte−µtdt =

∫ ∞
n

e−t(δ+µdt

= −e
−(µ+δ)t

µ+ δ

∣∣∣∣∞
n

=
e−n(µ+δ)

µ+ δ

35.2 0.3319

35.3 For T (x) ≤ n, we have

n|Ȳx = Z 1
x:n = n|Z̄x = 0.

For T (x) > n we have Z 1
x:n = νn and n|Z̄x = νT . Thus,

Z 1
x:n − n|Z̄x

δ
=
νn − νT

δ
= νn

1− νT−n

δ
= n|Ȳx.

35.4 We have

E[(n|Ȳx)
2] =

∫ ∞
n

ν2n(āt−n )2
tpxµ(x+ t)dt

=ν2n

[
− (āt−n )2

tpx
∣∣∞
n

+ 2

∫ ∞
n

νt−ntpxdt

]
=2ν2n

npx

∫ ∞
0

νtāt tpx+ndt

35.5 20|āx = 1.2235 and Var(20|Ȳx) = 0.9753
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Section 36

36.1 20|ā50 = 0.3319 and ā
50:20

= 8.9785

36.2 We have

āx:n =E(Ȳx:n )

=

∫ n

0

ān tpxµ(x+ t)dt+

∫ ∞
n

āt tpxµ(x+ t)dt

=ān [−tpx]n0 +

∫ ∞
n

āt tpxµ(x+ t)dt

=ān nqx +

∫ ∞
n

āt tpxµ(x+ t)dt.

36.3 We have

āx:n =ān nqx +

∫ ∞
n

āt tpxµ(x+ t)dt

=ān nqx − āt tpx|∞n +

∫ ∞
n

νttpxdt

=ān + +

∫ ∞
n

νttpxdt.

36.4 This follows from

Var(Ȳx:n ) = Var(ān + n|Ȳx) = Var(n|Ȳx)

36.5 From Section 35, we have that

n|āx = nExāx+n.

Therefore,
āx:n = ān + nExāx+n.

36.6 From Problem 34.3, we have that

āx = āx:n + nExāx+n.

Therefore,
āx:n = ān + (āx − āx:n ).
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Section 37

37.1 0.5235

37.2 13.78

37.3 We have

äx =
∞∑
k=0

νkkpx = 1 +
∞∑
k=1

νkkpx = 1 + νpx

∞∑
k=1

νk−1
k−1px+1

=1 + νpx

∞∑
k=0

νkkpx+1 = 1 + νpxäx+1.

37.4 0.364

37.5 7%

37.6 150,000

37.7 52,297.43

37.8 1296.375

37.9 We have

äx:n =
n−1∑
k=0

νkkpx

=1 +
n−1∑
k=1

νkkpx

=1 + νpx

n−1∑
k=1

νk−1
k−1px+1

=1 + νpx

n−2∑
k=0

νkkpx+1

=1 + νpxäx+1:n−1 .
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37.10 264.2196

37.11 114.1785

37.12 0.2991

37.13 280.41

37.14 49.483

37.15 10.3723

37.16 Recall the following

Ax = A1
x:n + nExAx+n

and
Ax:n = A1

x:n + nEx.

Thus,

äx =
1− Ax
d

=
1− A1

x:n − nExAx+n

d

=
1− Ax:n + nEx − nExAx+n

d

=
1− Ax:n

d
+ nEx

(
1− Ax+n

d

)
=äx:n + nExäx+n.

37.17 Recall that

Z 1
x:n =

{
0 T ≤ n
νn T > n

and

n|Zx =

{
0 K ≤ n− 1

νK+1 K ≥ n

Thus, if K ≤ n − 1 then T ≤ n and therefore Z 1
x:n = n|Zx = n|Z̈x = 0. If

K ≥ n then T > n so that Z 1
x:n = νn and n|Zx = νK+1. Thus,

Z 1
x:n −n|Zx

d
=

νn−νK+1

d
= νäK+1−n = n|Z̈x.
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37.18 This follows from the previous problem by taking expectation of both
sides.

37.19 n|äx = nExäx+n = νn(px)n

1−e−(δ+µ) = e−n(δ+µ)

1−e−(δ+µ) .

37.20 0.4151

37.21 0.45

37.22 16.6087

37.23 15.2736

37.24 58.36

37.25 3.30467

37.26 We have

ex =
∞∑
k=1

kpx =
∞∑
k=1

pxk−1px+1 = px + px

∞∑
k=2

k−1px+1 = p(x)(1 + ex+1).

(b) 0.0789.

37.27 ax = e−(µ+δ)

1−e−(µ+δ)

37.28 We have

ax =
∞∑
k=1

νkkPx =
∞∑
k=1

νkpxk−1px+1 = νpx

∞∑
k=1

νk−1
k−1px+1

=νpx(1 +
∞∑
k=2

νk−1
k−1px+1) = νpx(1 +

∞∑
k=1

νkkpx+1) = νpx(1 + ax+1)

37.29 7.6

37.30 0.1782
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37.31 ax:n = e−(µ+δ)
(

1−e−n(µ+δ)
1−e−(µ+δ)

)
37.32 11.22
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Section 38

38.1 12.885

38.2 13.135

38.3 A80 = 0.8162 and ā80 = 2.5018

38.4 15.5

38.5 8.59

38.6 We have

ä
(m)
x:n =

1

m

mn−1∑
k=0

ν
k
m k
m
px

=
1

m
+

1

m

mn∑
k=1

ν
k
m k
m
px −

1

m
νnnpx

=a
(m)
x:n +

1

m
(1− nEx).

38.7 We have

ä
(m)
x:n =ä(m)

x − n|ä
(m)
x

≈ i

i(m)

d

d(m)
äx −

i− i(m)

i(m)d(m)
− i

i(m)

d

d(m) n|äx +
i− i(m)

i(m)d(m) n
Ex

=
i

i(m)

d

d(m)
(äx − n|äx)−

i− i(m)

i(m)d(m)
(1− nEx)

=
i

i(m)

d

d(m)
äxn −

i− i(m)

i(m)d(m)
(1− nEx).
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38.8 (a) We have

a(m)
x =ä(m)

x − 1

m

≈ i

i(m)

d

d(m)
äx −

i− i(m)

i(m)d(m)
− 1

m

=
i

i(m)

d

d(m)
(ax + 1)− i− i(m)

i(m)d(m)
− 1

m

=
i

i(m)

d

d(m)
ax +

i

i(m)

d

d(m)
− i− i(m)

i(m)d(m)
− (1− ν 1

m )i(m)

i(m)d(m)

=
i

i(m)

d

d(m)
ax +

d(m) − d
i(m)d(m)

.

(b) We have

a
(m)
x:n =ä

(m)
x:n −

1

m
(1− nEx)

≈ i

i(m)

d

d(m)
äxn −

i− i(m)

i(m)d(m)
(1− nEx)−

1

m
(1− nEx)

=
i

i(m)

d

d(m)
(1− nEx + ax:n )− i− i(m)

i(m)d(m)
(1− nEx)−

1

m
(1− nEx)

=
i

i(m)

d

d(m)
ax:n

d(m) − d
i(m)d(m)

(1− nEx).

38.9 (a) We have

ä
(m)
x:n =ä(m)

x − n|ä
(m)
x

≈äx −
m− 1

2m
− n|äx +

m− 1

2m
nEx

=äx:n −
m− 1

2m
(1− nEx).

(b) We have

a(m)
x =ä(m)

x − 1

m

≈äx −
m− 1

2m
− 1

m

=ax + 1− m− 1

2m
− 1

m

=ax +
m− 1

2m
.



816 ANSWER KEY

(c) We have

n|a
(m)
x =nExa

(m)
x+n

≈nEx
(
ax+n +

m− 1

2m

)
=nExax+n +

m− 1

2m
nEx

=n|ax +
m− 1

2m
nEx.

(d) We have

a
(m)
x:n =a(m)

x − n|ax

≈ax +
m− 1

2m
− n|ax −

m− 1

2m
nEx

=ax:n +
m− 1

2m
(1− nEx).

38.10 (a) We have

ä
(m)
x:n =ä(m)

x − nExä
(m)
x+n

≈äx −
m− 1

2m
− m2 − 1

12m
(µ(x) + δ)

−nEx(äx+n −
m− 1

2m
− m2 − 1

12m
(µ(x+ n) + δ)

=äx:n −
(
m− 1

m

)
(1− nEx)−

m2 − 1

12m
(δ + µ(x)− nEx(δ + µ(x+ n))).

(b) The result follows by letting m→∞ in the 3-term Woolhouse formula.
(c) The result follows by letting m→∞ in (a)
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Section 39

39.1 218.79

39.2 8.56

39.3 5.1029

39.4 5.7341

39.5 5.3465

39.6 204.08

39.7 4.4561

39.8 (Iā)x =
∫∞

0
dteνtipxdt

39.9 (Iā)x =
∫ n

0
dteνtipxdt

39.10 (Dā)x:n =
∫ n

0
dn− teνtipxdt
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Section 40

40.1 0.2

40.2 P̄ (Ā75) = 0.02901 and Var(L̄x) = 0.15940

40.3 0.2

40.4 0.7125

40.5 0.1

40.6 0.05137

40.7 P̄ (Ā1
x:n ) = 0.02 and Var(L̄ 1

75:20
) = 0.1553

40.8 P̄ (Ā1
x:n ) =

1
δ(ω−x) (1−e−nδ)

1
δ (1− 1

δ(ω−x) (1−e−nδ)−e−nδ(1− n
ω−x))

and

Var(L̄1
x:n ) =

1 +

1
δ(ω−x)

(1− e−nδ)(
1− 1

δ(ω−x)
(1− e−nδ)− e−nδ

(
1− n

ω−x

))
2

×
[

1

2δ(ω − x)
(1− e−nδ)− 1

δ2(ω − x)2
(1− e−nδ)2

]

40.9 P̄ (Ā 1
75:20

) = 0.02402 and Var(L̄ 1
75:20

) = 0.13694

40.10 0.25285

40.11 0.47355

40.12 0.04291

40.13 0.09998
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40.14 We have

P̄ (Āx:n ) =

[
1

δ(ω−x)
(1− e−nδ) + e−nδ

(
1− n

ω−x

)]
δ

1− 1
δ(ω−x)

(1− e−nδ)− e−nδ
(
1− n

ω−x

)

Var(L̄x:n ) =

1
2δ(ω−x)

(1− e−2nδ) + e−2nδ
(
1− n

ω−x

)
−
(

1
δ(ω−x)

(1− e−nδ) + e−nδ
(
1− n

ω−x

))2

(
1− 1

δ(ω−x)
(1− e−nδ)− e−nδ

(
1− n

ω−x

))2

40.15 0.04498

40.16 0.10775

40.17 0.06626

40.18 0.4661

40.19 0.0229

40.20 0.42341

40.21 We have

P̄ (Ā1
x:n ) + P̄ (Ā 1

x:n )Āx+n =
Ā1
x:n

āx:n

+
Ā 1
x:n

āx:n

Āx+n

=
Ā1
x:n + n|Āx

āx:n

Āx+n

=
Āx
āx:n

=nP̄ (Āx)
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40.22 We have

P̄ (Āx:n ) =
Āx:n

āx:n

=
Ā1
x:n + Ā 1

x:n

āx:n

=
Ā1
x:n

āx:n

+
Ā 1
x:n

āx:n

=P̄ (Ā1
x:n ) + P̄ (Ā 1

x:n )

40.23 0.01657

40.24 0.03363

40.25 0.0498

40.26 1.778

40.27 0.7696

40.28 −5.43

40.29 −14.09

40.30 0.005
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Section 41

41.1 12381.06

41.2 124.33

41.3 P (Ax) = Ax
äx

=
qx
qx+i
1+i
qx+i

= νqx

41.4 16076.12

41.5 33.15

41.6 4
105

41.7 From the definition of P (Ax) and the relation Ax + dax = 1 we can
write

P (Ax) =
Ax
ax

=
1− dax
ax

P (Ax)ax =1− dax
ax(P (Ax) + d) =1

ax =
1

P (Ax) + d

41.8 33.22

41.9 We have

L1
x:n =Z1

x:n − PŸx:n

=Z1
x:n − P

(
1− Zx:n

d

)
=Z1

x:n − P
(

1− Z1
x:n − Z 1

x:n

d

)
=

(
1 +

P

d

)
Z1
x:n +

P

d
Z 1
x:n −

P

d

41.10 0.317
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41.11 2410.53

41.12 0.0368

41.13 281.88

41.14 −10877.55

41.15 261.14

41.16 0.2005

41.17 0.087

41.18 This follows easily by dividing

Ax:n = A1
x:n ) + A 1

x:n

by äx:n

41.19 We have

P (A1
x:n ) + P (A 1

x:n )Ax+n =
A1
x:n

äx:n

+
A 1
x:n

äx:n

Ax+n

=
A1
x:n + A 1

x:n Ax+n

äx:n

=
Ax
äx:n

= nP (Ax)

41.20 0.00435

41.21 0.03196

41.22 0.03524

41.23 0.51711
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41.24 We have

n|Lx =n|Zx − P
(

1− Zx
d

)
= n|Zx −

P

d
+
P

d

(
Z1
x:n + n|Zx

)
=

(
1 +

P

d

)
n|Zx +

P

d
Z1
x:n −

P

d

41.25 Note first that

Z1
x:n n|Zx = νK+1I(K ≥ n)νK+1I(K ≤ n− 1) = 0.

Thus,

E

[(
n|Lx +

P

d

)2
]

=E

[(
P

d

)2

(Z1
x:n )2 +

(
1 +

P

d

)2

(n|Zx)
2

]

=

(
P

d

)2

(2A1
x:n +

(
1 +

P

d

)2
2
n|Ax

41.26 The loss random variable is

νK+1I(K ≥ n)− P ämin (K+1,t) = n|Zx − PŸx:t .

The actuarial present value is

n|Ax − P äx:t

41.27 The benefit premium which satisfies the equivalence principle is

tP (n|Ax) =
n|Ax
äx:t

41.28 0.01567

41.29 13092.43

41.30 0.024969
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Section 42

42.1 0.0193

42.2 0.0256

42.3 0.0347

42.4 This is the benefit premium for a 20-payment, semi-continuous whole
life insurance issued to (40) with face value of 1000

42.5 0.04575

42.6 0.0193

42.7 0.0289

42.8 0.829

42.9 0.0069

42.10 11.183

42.11 −12972.51

42.12 0.0414

42.13 0.0620

42.14 0.0860
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42.15 We have

P (Āx:n − nP (Āx)

P (A 1
x:n )

=
Āx:n − Āx
A 1
x:n

=
Ā1
x:n + A 1

x:n − Āx
A 1
x:n

=
A 1
x:n − nĀx

A 1
x:n

=
A 1
x:n − A 1

x:n Āx+n

A 1
x:n

= 1− Āx+n.

42.16 This follows from the formula Āx:n = Ā1
x:n + A 1

x:n

42.17 0.0096

42.18 0.0092

42.19 We have

P (n|Āx) =
A 1
x:n Āx+n

äx

=
A 1
x:n Āx+n

äx:n + nExäx+n

.

42.20 77079
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Section 43

43.1 231.64

43.2 122.14

43.3 331.83

43.4 493.58

43.5 94.83

43.6 224.45

43.7 117.52

43.8 325.19

43.9 484.32
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Section 44

44.1 7.747π

44.2 102

44.3 0.078π

44.4 0.88π

44.5 15.02

44.6 5.1

44.7 19.07

44.8 73.66

44.9 397.41

44.10 1.276

44.11 478.98

44.12 3362.51

44.13 900.20

44.14 17.346

44.15 3.007986

44.16 15513.82
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Section 45

45.1 0.0363

45.2 0.0259

45.3 0.049

45.4 0.07707

45.5 0.02174

45.6 (a) E(Lx) = bAx − πäx (b) Var(Lx) =
(
b+ π

d

)2
[2Ax − (Ax)

2]

45.7 33023.89

45.8 27

45.9 0.208765

45.10 36.77
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Section 46

46.1 We have

tV̄ (Āx) =Āx+t − P̄ (Āx)āx+t

=(1− δāx+t)−
(

1− δāx
āx

)
āx+t

=1− δāx+t −
āx+t

āx
+ δāx+t

=1− āx+t

āx
.

46.2 8.333

46.3 0.04

46.4 0.0654

46.5 1.6667

46.6 0.1667

46.7 0.47213

46.8 0.20

46.9 0.14375

46.10 0.3

46.11 0.1184

46.12 0.1667

46.13 0.1183

46.14 0.1183
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46.15 we have

tV̄ (Āx) =Āx+t − P̄ (Āx)āx+t

=āx+t

(
Āx+t

āx+t

− P̄ (Āx)

)
=āx+t

(
P̄ (Āx+t)− P̄ (Āx)

)
46.16 0.1183

46.17 0.0654

46.18 The prospective formula is

10V̄ (Ā50) = Ā60 − P̄ (Ā50)ā60.

The retrospective formula is

10V̄ (Ā50) =
P̄ (Ā50)ā50:10 − Ā 1

50:10

10E50

46.19 We have

tV̄ (Āx) =
P̄ (Āx)āx:n − Ā1

x:n

nEx

=
P̄ (Āx)−

Ā1
x:n
āx:n

nEx
āx:n

=
P̄ (Āx)− P̄ (Ā1

x:n )

P̄ (A 1
x:n )

46.20 True

46.21 0.0851
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46.22 We have

tV̄ (Ā1
x:n ) =Ā 1

x+t:n−t − P̄ (Ā1
x:n )āx+t:n−t

=
µ

µ+ δ
(1− e(n−t)(µ+δ))− µ

[
1− Āx:n

δ

]
=

µ

µ+ δ
(1− e(n−t)(µ+δ))− µ

[
1− µ

µ+δ
(1− e(n−t)(µ+δ))− e(n−t)(µ+δ)

δ

]

=

(
µ

µ+ δ
− µ

δ
+

µ2

δ(µ+ δ)

)
(1− e(n−t)(µ+δ))

=0× (1− e(n−t)(µ+δ)) = 0

46.23 Follows from the previous problem.

46.24 0.0294

46.25 tV̄ (Ā1
x:n ) = āx+t,n−t [P̄ (Ā 1

x+t:n−t )− P̄ (Ā1
x:n )]

46.26 tV̄ (Ā1
x:n ) = Ā 1

x+t:n−t

[
1− P̄ (Ā1

x:n )

P̄ (Ā 1
x+t:n−t )

]
46.27 0.4207

46.28 0.3317

46.29 Recall that

āx:n =
1− Āx:n

δ
.

Thus,

tV̄ (Āx:n ) =Āx+t:n−t − P̄ (Āx:n )āx+t:n−t

=Āx+t:n−t −
Āx:n

āx:n

āx+t:n−t

=Āx+t:n−t −
Āx:n

1−Āx:n
δ

·
1− Āx+t:n−t

δ

=
Āx+t:n−t − Āx:n

1− Āx:n
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46.30 0.3431

46.31

tV̄ (A 1
x:n ) =

{
A 1
x+t:n−t − P̄ (A 1

x:n )āx+t:n−t , t < n

1, t = n.

46.32 0.7939

46.33 1

46.34 0.3088

46.35 0.2307

46.36 This is the 10th year benefit reserve for a fully continuous 20-year
pure endowment of unit benefit issued to (75).

46.37 We have

tV̄ (Ā 1
x:n ) =Ā 1

x+t:n−t − P̄ (A 1
x:n )āx+t:n−t

=Āx+t:n−t − Ā 1
x+t:n−t − [P̄ (Āx:n )− P̄ (Ā1

x:n )]āx+t:n−t

=[Āx+t:n−t − P̄ (Āx:n )āx+t:n−t ]− [Ā 1
x+t:n−t − P̄ (Ā1

x:n )āx+t:n−t ]

=tV̄ (Āx:n )− tV̄ (Ā1
x:n )

46.38 This follows from the previous problem and Problem 46.22.

46.39 24

46.40 4.6362

46.41 5.9055

46.42 14.2857

46.43 14.2857
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Section 47

47.1 (a) 0.0533 (b) 0.1251

47.2 We have

kV (Ax) =Ax+k − P (Ax)äx+k

=1− däx+k −
(1− däx)

äx
äx+k

=1− däx+k −
äx+k

äx
+ däx+k

=1− äx+k

äx

47.3 0.053

47.4 We have

kV (Ax) =Ax+k − P (Ax)äx+k

=P (Ax+k)äx+k − P (Ax)äx+k

=(P (Ax+k)− P (Ax))äx+k

47.5 0.0534

47.6 We have

kV (Ax) =Ax+k − P (Ax)äx+k

=Ax+k

(
1− P (Ax)

äx+k

Ax+k

)
=Ax+k

(
1− P (Ax)

P (Ax+k)

)

47.7 0.0534
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47.8 We have

kV (Ax) =1− äx+k

äx

=1−
1−Ax+k

d
1−Ax
d

=1− 1− Ax+k

1− Ax
=
Ax+k − Ax

1− Ax
47.9 0.053

47.10 We have

kV̄ (Ax) =Ax+k − P (Ax)äx+k

=Ax+k − P (Ax)äx+k +
P (Ax)äx − Ax

kEx

=P (Ax)

(
äx − kExäx+k

kEx

)
−
(
Ax − kExAx+k

kEx

)
=P (Ax)

(
äx:k

kEx

)
−

(
A1
x:k

kEx

)

=P (Ax)s̈x:k −
A1
x:k

kEx

47.11 0.053

47.12 We have

P (Ax+k) =
Ax+k

d−1(1− Ax+k)
=⇒ Ax+k

P (Ax+k)
=

1

P (Ax+k) + d
.

Thus,

kV (Ax) =Ax+k

(
1− P (Ax)

P (Ax+k)

)
=

[P (Ax+k)− P (Ax)]Ax+k

P (Ax+k)

=
P (Ax+k)− P (Ax)

P (Ax+k) + d
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47.13 305.651

47.14 114.2984

47.15 0.0851

47.16 171.985

47.17 4420.403

47.18 0.0042

47.19 −0.0826

47.20 0.1587

47.21 0.2757

47.22 0.0138

47.23 629.89

47.24 528.48

47.25 (a) For a fully discrete n−year pure endowment, the insurer’s prospec-
tive loss at time k (or at age x+ k) is:

kL(A 1
x:n ) = νn−kI(K ≥ n)− P (A 1

x:n )ämin{(K−k+1,n−k)} , k < n

and nL(A 1
x:n ) = 1.

(b) The prospective benefit reserve is

kV (A 1
x:n ) =

{
A 1
x+k:n−k − P (A 1

x:n )äx+k:n−k k < n

1 k = n.

47.26 0.23426

47.27 8119.54
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47.28 7.2170

47.29 (a) The prospective formula is

3V (15|ä65) = 12E68ä80 − P (15|ä65)ä68:12 .

(b) The retrospective formula is

3V (15|ä65) =
P (15|ä65)ä65:3

3E65

47.30 kV (n|äx) =
P (n|äx)äx:n

kEx
−

nä
x:k−n
kEx

47.31 3.3086
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Section 48

48.1 0.0828

48.2 (a) The kth terminal prospective loss random variable for an n−year
term insurance contract

kL(Ā1
x:n ) = Z̄ 1

x+k:n−k − P (Ā1
x:n )Ÿx+k:n−k .

(b) The kth terminal prospective reserve is given by

kV (Ā1
x:n ) = Ā 1

x+k:n−k − P (Ā1
x:n )äx+k:n−k

48.3 (a) The prospective loss random variable is

h
kL(Ā1

x:n ) =

{
Z̄ 1
x+k:n−k − hP (Ā1

x:n )Ÿx+k:h−k k < h < n

Z̄ 1
x+k:n−k h < k < n.

(b) The kth terminal prospective reserve for this contract

h
kV (Ā1

x:n ) =

{
Ā 1
x+k:n−k − hP (Ā1

x:n )äx+k:h−k k < h < n

Ā 1
x+k:n−k h < k < n

48.4 (a) The prospective loss random variable is

kL(Āx:n ) = Z̄x+k:n−k − P (Āx:n )Ÿx+k:n−k .

(b) The kth terminal prospective reserve for this contract

kV (Āx:n ) = Āx+k:n−k − P (Āx:n )äx+k:n−k .

48.5 (a) The prospective loss random variable is

h
kL(Āx:n ) =

 Z̄x+k:n−k − hP (Āx:n )Ÿx+k:h−k k < h < n
Z̄x+k:n−k h ≤ k < n
1 k = n.

(b) The kth terminal prospective reserve for this contract is

h
kV (Āx:n ) =


Āx+k:n−k − hP (Āx:n )äx+k:h−k k < h < n
Āx+k:n−k h ≤ k < n
1 k = n



838 ANSWER KEY

48.6 Recall that under UDD, we have

Āx+k:n−k =
i

δ
Ax+k:n−k + n−kEx+k

hP (Āx:n ) =
Āx:n

äx:h

=
Ā1
x:n + nEx

äx:h

=
i
δ
A1
x:n + nEx

äx:h

=
i

δ
hP (A1

x:n ) + hP (A 1
x:n ).

Thus,

Āx+k:n−k − hP (Āx:n )äx+k:h−k =
i

δ
Ax+k:n−k + n−kEx+k

−(
i

δ
hP (A1

x:n ) + hP (A 1
x:n ))äx+k:h−k

=
i

δ
h
kV (A1

x:n ) + h
kV (A 1

x:n ).

48.7 Recall the following expressions:

Āx =Ā1
x:k + kExĀx+k

äx =äx:k + kExäx+k.

Thus,

kV (Āx) =Āx+k − P (Āx)äx+k

=Āx+k − P (Āx)äx+k +
P (Āx)äx − Āx

kEx

=Āx+k − P (Āx)äx+k +
P (Āx)[äx:k + kExäx+k]

kEx
−

[Ā1
x:k

+ kExĀx+k]

kEx

=P (Āx)
äx:k

kEx
−
Ā1
x:k

kEx

=P (Āx)s̈x:k −
Ā1
x:k

kEx
.
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Section 49

49.1 0.342035

49.2 0.0840

49.3 We will prove (b) and leave (a) to the reader. We have

kV
(m)(Ax)− kV (Ax) =P (Ax)äx+k − P (m)(Ax)[α(m)äx+k − β(m)]

=P (m)(Ax)
ä

(m)
x

äx
äx+k − P (m)(Ax)[α(m)äx+k − β(m)]

=P (m)

[
ä

(m)
x

äx
äx+k − α(m)äx+k + β(m)

]

=P (m)

[
α(m)äx − β(m)

äx
äx+k − α(m)äx+k + β(m)

]
=β(m)P (m)

[
1− äx+k

äx

]
=β(m)P (m)(Ax)kV (Ax).

49.4 We have

kV
(m)(Ax)− kV (Ax)

kV (m)(Āx)− kV (Āx)
=
P (m)(Ax)

P (m)(Āx)
=

Ax

ä
(m)
x

Āx

ä
(m)
x

=
Ax
Āx

=
Ax
i
δ
Ax

=
δ

i
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49.5 We have

kV (Ax) =Ax+k − P (m)(Ax)ä
(m)
x+k

=Ax+k − P (m)(Ax)ä
(m)
x+k +

P (m)(Ax)ä
(m)
x − Ax

kEx

=Ax+k − P (m)(Ax)ä
(m)
x+k +

P (m)(Ax)[ä
(m)

x:k
+ kExä

(m)
x+k]

kEx
−

[Ā1
x:k

+ kExAx+k]

kEx

=P (m)(Ax)
ä

(m)

x:k

kEx
−
Ā1
x:k

kEx

=P (m)(Ax)s̈
(m)

x:k
−
Ā1
x:k

kEx
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Section 50

50.1 The insurer’s prospective loss random variable is

hL =

{
0 K(x) < h

bK(x)+1+hν
K(x)+1−h −

∑K(x)
j=h πjν

j−h K(x) ≥ h

50.2 564.46

50.3 1027.42

50.4 30.395

50.5 (a) 30.926 (b) 129.66 (c) 382.44

50.6 255.064

50.7 31.39

50.8 499.102
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Section 51

51.1 The prospective loss of this contract at time t is

tL̄ = PVFB− PVFP =

{
0 T (x) ≤ t

bT (x)ν
T (x)−t −

∫ T (x)

t
πuν

u−tdu T (x) > t.

51.2 We have

tV̄ =E[tL̄|T (x) > t] = E

[
b(T (x)−t)+tν

T (x)−t −
∫ T (x)−t

0

πt+rν
rdr|T (x) > t

]

=E

[
bT (x+t)+tν

T (x+t) −
∫ T (x+t)

0

πt+rν
rdr

]

=

∫ ∞
0

[
bu+tν

u −
∫ u

0

πt+rν
rdr

]
fT (x+t)(u)du

=

∫ ∞
0

[
bu+tν

u −
∫ u

0

πt+rν
rdr

]
upx+tµ(x+ t+ u)du

=

∫ ∞
0

bu+tν
u
upx+tµ(x+ t+ u)du−

∫ ∞
0

∫ u

0

πt+rν
rdrupx+tµ(x+ t+ u)du

=

∫ ∞
0

bu+tν
u
upx+tµ(x+ t+ u)du+

∫ ∞
0

∫ u

0

πt+rν
rdr

d

du
[upx+t]du

=

∫ ∞
0

bu+tν
u
upx+tµ(x+ t+ u)du−

∫ ∞
0

πt+rν
r
upx+tdr

=APV of future benefits− APV of future benefit premiums

51.3 95.96

51.4 1055.79

51.5 we have

0 = 0V̄ =

∫ ∞
0

buν
u
upxµ(x+ u)du−

∫ ∞
0

πuν
u
upxdu.

Thus,∫ t

0

(πuν
u
upx − buνuupxµ(x+ u))du =

∫ ∞
t

(buν
u
upxµ(x+ u)− πuνuupx)du.
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Letting u = t+ y on the right integral, we obtain∫ t

0

(πuν
u
upx − buνuupxµ(x+ u))du =

∫ ∞
0

(bt+yν
t+y

t+ypxµ(x+ t+ y)− πt+yνt+yt+ypx)dy

=νttpx

[∫ ∞
0

(bt+yν
y
ypx+tµ(x+ t+ y)− πt+yνyypx+y)dy

]
=tEx

[∫ ∞
0

(bt+yν
y
ypx+tµ(x+ t+ y)− πt+yνyypx+y)dy

]
.

Now, the result follows by dividing both sides by tEx
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Section 52

52.1 (a) 564.470 (b) 2000

52.2 324.70

52.3 77.66

52.4 −4.33

52.5 0.015

52.6 36657.31

52.7 0.017975

52.8 0.028

52.9 355.87

52.10 For any n, we have

(nV + π)(1 + i) = q25+nn+1V + p25+nn+1V = n+1V.

Thus,
34∑
n=0

(nV + π)(1 + i)35−n =
34∑
n=0

n+1V (1 + i)34−n

which implies

0V (1 + i)35 + πs̈35 = 35V.

But 0V = 0 and 35V = ä60 (actuarial present value of future benefits; there
are no future premiums). Thus,

π =
ä60

s̈35

.

Likewise,
19∑
n=0

(nV + π)(1 + i)20−n =
19∑
n=0

n+1V (1 + i)19−n
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which implies

0V (1 + i)20 + πs̈20 = 20V.

Hence,

20V =

(
ä60

s̈35

)
s̈20 .

52.11 5.28

52.12 9411.01

52.13 296.08

52.14 1027.42

52.15 286.04

52.16 (a) 0.091 (b) 101.05

Section 53

53.1 0
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Section 54

54.1 0.25904

54.2 302.31

54.3 1799.037

54.4 697.27

54.5 495.80

54.6 (a) 0.0505 (b) 110.85
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Section 55

55.1 The expected value is 0.37704 and the variance is 0.03987

55.2 0.458431

55.3 5.4

55.4 0.1296
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Section 56

56.1 We have

tqxy =1− tpxy = 1− tpx tpy

=1− (1− tqx)(1− tqy)

=1− (1− tqx − tqy + tqx tqy)

=tqx + tqy − tqx tqy

56.2 We have

Pr[(T (x) > n) ∪ (T (y) > n)] =Pr[T (x) > n] + Pr[T (y) > n]− Pr[(T (x) > n) ∩ (T (y) > n)]

=npx + npy − npxnpy = npx + npy − npxy

56.3 0.2

56.4 1
3

56.5 0.067375

56.6 We have

tqxy =1− tpxy = 1− tpx tpy

=1− (1− tqx)(1− tqy)

=1− (1− tqx − tqy + tqx tqy)

=tqx + tqy − tqx tqy

56.7 0.10969

56.8 n|mqxy = n+mqxy − tqxy = tpxy − n+mpxy

56.9 0.03436
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56.10 We have

1
3
qxy =1− 1

3
pxy = 1− (1− 1

3
qx)(1− 1

3
qy)

=1−
(

1− 1

3
qx

)(
1− 1

3
qy

)
=

1

3
qx +

1

3
qy −

1

9
qxqy

1
2
qxy =

1

2
qx +

1

2
qy −

1

4
qxqy.

Thus,

18 1
3
qxy − 12 1

2
qxy = 6qx + 6qy − 2qxqy − 6qx − 6qy + 3qxqy = qxqy

56.11 0.08

56.12 2
3

56.13 4× 10−8

56.14 0.06

56.15 0.10

56.16 10.42

56.17 12.5

56.18 0.21337

56.19 0.36913

56.20 2.916667

56.21 160.11
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Section 57

57.1 54.16667

57.2 0.9167

57.3 5.41667

57.4 0.05739

57.5 0.961742

57.6 0.24224

57.7 34

57.8 40.8333

57.9 0.05982

57.10 We have

µxy(t) =−
d
dt t
pxy

tpxy
=

d
dt t
qxy

1− tqxy

=
d
dt t
qxtqy

1− tqxy
=

tpxtqyµ(x+ t) + tpytqxµ(y + t)

1− tqxtqy

57.11 0.0023

57.12 13.17

57.13 30.33

57.14 5

57.15 28.5585

57.16 1/14
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57.17 (a) 0.155 (b) 30

57.18 1.25
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Section 58

58.1 We have

Cov(T (xy), T (xy)) =E[T (xy) · T (xy)]− E[T (xy)]E[T (xy)]

=E[T (x)T (y)]− E[T (xy)]E[T (x) + T (y)− T (xy)]

=E[T (x)T (y)]− E[T (x)E[T (y)]− E[T (xy)](E[T (x)] + E[T (y)]− E[T (xy)])

+E[T (x)E[T (y)]

=Cov(T (x), T (y))− e̊xy (̊ex + e̊y − e̊xy) + e̊xe̊y

=Cov(T (x), T (y)) + (̊ex − e̊xy)(̊ey − e̊xy)

58.2 3.7

58.3 4.3

58.4 400

58.5 We have

Cov(T (xy), T (xy)) =(̊ex − e̊xy)(̊ey − e̊xy)
=e̊xe̊y − e̊xy (̊ex + e̊y − e̊xy)
=e̊xe̊y − e̊xye̊xy
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Section 59

59.1 0.6

59.2 0.030873

59.3 We have

nq
1
xy + n

1
qxy=

∫ n

0
tpxyµ(x+ t)dt+

∫ 10

0
tpxyµ(y + t)dt

=

∫ n

0
tpxy[µ(x+ t) + µ(y + t)]dt =

∫ n

0
tpxyµxy(t)dt

=

∫ n

0

∫ n

0

fT (xy)(t)dt = nqxy

59.4 0.0099

59.5 0.0001467

59.6 0.141

59.7 1−enµ
µ(95−x)

59.8 0.0134
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Section 60

60.1 4.2739

60.2 0.9231

60.3 0.06

60.4 0.1345

60.5 11.27

60.6 0.0549

60.7 0.0817

60.8 0.18

60.9 27927.51

60.10 (a) 115,714.29 (b) 14.4P̄ .

60.11 0.38

60.12 600

60.13 0.191
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Section 61

61.1 12.8767

61.2 12.7182

61.3 5.95238

61.4 4.7

61.5 We know that

āy =
1− Āy
δ

and

āxy =
1− Āxy

δ
.

Hence,

āx|y =
1− Āy
δ
− 1− Āxy

δ
=
Āxy − Āy

δ
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Section 62

62.1 0.069944

62.2 1.441188

62.3 0.082667

62.4 1691.92

62.5 0.736
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Section 63

63.1 ty
36

+ 1
12

63.2 2.75

63.3 We have

fT (x)(tx)fT (y)(ty) =

(
tx
36

+
1

12

)(
ty
36

+
1

12

)
6= tx + ty

216
= fT (x)T (y)(tx, ty)

63.4 4.4375

63.5 1.6136

63.6 1

63.7 (6−n)2(6+n)
216

63.8 0.8102
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Section 64

64.1 e−0.06t

64.2 (a) We have

fT,J(t, j) = tp
(τ)
50 µ

(j)(x+ t) =
j

503
(50− t)2, j = 1, 2.

(b) fT (t) =
∑2

j=1 fT (x),J(x)(t, j) = 3
503

(50− t)2.

(c) fJ(j) =
∫ 50

0
fs,J(x)(t, j)ds = j

503

∫ 50

0
(50− t)2dt = j

3
, j = 1, 2.

(d) fJ |T (j|t) = µ(j)(50+t)

µ(τ)(50+t)
= 1

3
j, j = 1, 2 64.3 0.12

64.4 11.11

64.5 (a) 0.00446 (b) 1/3

64.6 0.259

64.7 0.0689
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Section 65

65.1 0.60

65.2 0.4082483

65.3 0.12531

65.4 0.0198

65.5 0.216

65.6 0.644

65.7 0.512195
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Section 66

66.1 A decrease of 10 in the value of d
(1)
26 .

66.2 119

66.3 0.05

66.4 0.0555

66.5 0.2634

66.6 0.0426

66.7 7.6

66.8 803

66.9 0.38
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Section 67

67.1 0.154103

67.2 0.04525

67.3 0.0205

67.4 0.02214

67.5 25.537

67.6 0.053

67.7 14.1255563

67.8 0.09405

67.9 0.0766

67.10 0.1802
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Section 68

68.1 3000

68.2 1.90

68.3 1

68.4 53,045.10

68.5 40.41

68.6 457.54

68.7 7841.28
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Section 69

69.1 18,837.04

69.2 2.5

69.3 120 is payable for the next 10 years and 100 is payable after 10 years

69.4 0

69.5 14.7

69.6 11,194.0199

69.7 922.014
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Section 70

70.1 19.88

70.2 (a) 10.8915 (b) 17.6572 (c) 6.7657 (d) 104.297 (e) 104.5549 (f) 0.00027

70.3 8.8932

70.4 10.0094

70.5 888.225

70.6 0.472

70.7 −445.75

70.8 92.82

70.9 1371.72

70.10 2302.52

70.11 1177.23
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Section 71

71.1 (a) 23.88 (b) 5.655

71.2 30.88

71.3 (a) 883.9871 (b) 903.9871

71.4 887.145

71.5 4.2379

71.6 G =
100010|20A30+20+10a

30:9
0.85ä

30:5 −0.15
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Section 72

72.1 1750.03

72.2 414.82

72.3 16.8421

72.4 Multiplying the equation

k+1AS`
(τ)
x+k+1 = (kAS +G− ckG− ek)(1 + i)`

(τ)
x+k − bk+1d

(d)
x+k − k+1CV d

(w)
x+k.

by νk+1 we obtain

k+1ASν
k+1`

(τ)
x+k+1−kASν

k`
(τ)
x+k = G(1−ck)νk`(τ)

x+k−ekν
k`

(τ)
x+k−(bk+1d

(d)
x+k+k+1CV d

(w)
x+k)ν

k+1.

Using the fact that 0AS = 0 and summing this telescoping series gives

nASν
n`

(τ)
x+n =

n−1∑
k=0

[k+1ASν
k+1`

(τ)
x+k+1 − kASν

k`
(τ)
x+k]

=G
n−1∑
k=0

(1− ck)νk`(τ)
x+k −

n−1∑
k=0

ekν
k`

(τ)
x+k

−
n−1∑
k=0

(bk+1d
(d)
x+k + k+1CV d

(w)
x+k)ν

k+1

72.5 10AS1 − 10AS2 = (G1 −G2)
∑9

k=0(1− ck)νk−9

(
`
(τ)
x+k

`
(τ)
x+10

)
72.6 1627.63

72.7 1.67
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Section 73

73.1 We have∑
j∈E

Qn(i, j) =
∑
j∈E

Pr(Xn+1 = j|Xn = i) = Pr(Xn+1 ∈ E|Xn = i) = 1

73.2 The entries in the second row do not sum up to 1. Therefore, the given
matrix can not be a transition matrix.

73.3

Q =

 0 1 0
0 1

2
1
2

1
3

0 2
3


73.4 The transition diagram is

The transition matrix is

Q =

(
0.8 0.2
0.6 0.4

)
73.5

Qn =

(
px+n qx+n

0 1

)
73.6 The transition probabilities are Qn(0, 0) = p

(τ)
x+n, Qn(0, j) = q

(j)
x+n for

j = 1, 2, · · · ,m, Qn(j, j) = 1 for j = 1, 2, · · · ,m, Qn(i, j) = 0 for all other
values of i and j

73.7

Q61 =

 0.20 0.10 0.70
0 1 0
0 0 1
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Section 74

74.1 At time t = 1 we have

Q =

 0.92 0.05 0.03
0.00 0.76 0.24
0.00 0.00 1.00


At time t = 2 we have

2Q = Q2 =

 0.8464 0.084 0.0696
0.00 0.5776 0.4224
0.00 0.00 1.00


At time t = 2 we have

3Q = Q3 =

 0.778688 0.106160 0.115152
0.00 0.438976 0.561024
0.00 0.00 1.00


74.2 (a) 0.70 (b) 0.3125

74.3 0.056

74.4 0.892

74.5 0.0016

74.6 0.489

74.7 4.40
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Section 75

75.1 16.82

75.2 170.586

75.3 1960

75.4 185.11

75.5 0.34

75.6 10,694.64

75.7 160
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Section 76

76.1 Since N(s) and N(t)−N(s) are independent, we have Cov(N(s), N(t)−
N(s)) = 0. Thus,

Cov(N(s), N(t)) =Cov(N(s), N(s) +N(t)−N(s)) = Cov(N(s), N(s)) + Cov(N(s), N(t)−N(s))

=Cov(N(s), N(s)) = Var(N(s)) = λs

76.2 8.338× 10−4

76.3 e−6 65

5!

76.4 E[2N(3)− 4N(5)] = −28 and Var[2N(3)− 4N(5)] = 88

76.5 We have

Pr(N(t) = k|N(s+ t) = n) =
Pr(N(t) = k,N(s+ t) = n)

Pr(N(s+ t) = n)

=
Pr(N(t) = k,N(s+ t)−N(t) = n− k)

Pr(N(s+ t) = n)

=
e−λt (λt)k

k!
e−λs (λs)n−k

(n−k)!

e−λ(s+t) [λ(s+t)]n

n!

=

(
n
k

)(
t

t+ s

)k (
s

t+ s

)n−k
76.6 0.2963

76.7 0.593994

76.8 (a) 0.503 (b) 18805
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Section 77

77.1 If Sn ≤ n then the nth event happens before time t. This means that
there are n or more events in the interval [0, t] which implies that N(t) ≥ n

77.2 0.0000393

77.3 The expected value is 1 and the variance is 1/3

77.4 fT5(t) = 3e−3t, t ≥ 0

77.5 1/9

77.6 0.6321

77.7 Both expected arrival time are the same.
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Section 78

78.1 0.0025

78.2 0.2048

78.3 (a) 48 (b)0.04262 (c) 100 minutes

78.4 768

78.5 2,000,000

78.6 0.5

78.7 0.276

78.8 0.1965

78.9 0.55

78.10 0.3859

78.11 0.3679

78.12 210.10

78.13 0.23
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Section 79

79.1 0.1954

79.2 ∞

79.3 0.016

79.4 (a) 3 (b) 1.875

79.5 0.03642

79.6 93.55
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Section 80

80.1 The mean is 225,000 and the variance is 45,000,000

80.2 29

80.3 The mean is 25 and the variance is 215/3

80.4 The mean is 40,000 and the variance is 160,000,000

80.5 (a) 100,000,000 (b) 0.0228

80.6 0.6712
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