Th
Pralgérmatic

ograimimers

Practical Programming

An Introduction to Computer Science
Using Python

Jennifer Campbell
Paul Gries

Jason Montogjo
Greg Wilson

H. Steinberd >

Edited by Daniel

What Readers Are Saying About
Practical Programming

Practical Programming is true to its name. The information it presents is organized
around useful tasks rather than abstract constructs, and each chapter addresses
a well-contained and important aspect of programming in Python. A student
wondering “How do I make the computer do X?” would be able to find their answer
very quickly with this book.

» Christine Alvarado
Associate professor of computer science, Harvey Mudd College

Science is about learning by performing experiments. This book encourages
computer science students to experiment with short, interactive Python scripts
and in the process learn fundamental concepts such as data structures, sorting
and searching algorithms, object-oriented programming, accessing databases,
graphical user interfaces, and good program design. Clearly written text along
with numerous compelling examples, diagrams, and images make this an excellent
book for the beginning programmer.

» Ronald Mak
Research staff member, IBM Almaden Research Center

What, no compiler, no sample payroll application? What kind of programming
book is this? A great one, that’'s what. It launches from a “You don’t know anything
yet” premise into a fearless romp through the concepts and techniques of relevant
programming technology. And what fun students will have with the images and
graphics in the exercises!

» Laura Wingerd
Author, Practical Perforce

The debugging section is truly excellent. I know several practicing programmers
who’d be rightfully offended by a suggestion to study the whole book but who
could really do with brushing up on this section (and many others) once in a
while.

» Alex Martelli
Author, Python in a Nutshell

This book succeeds in two different ways. It is both a science-focused CS1 text
and a targeted Python reference. Even as it builds students’ computational insights,
it also empowers and encourages them to immediately apply their newfound
programming skills in the lab or on projects of their own.

» Zachary Dodds
Associate professor of computer science, Harvey Mudd College

Practical Programming
An Introduction to Computer Science Using Python

Jennifer Campbell
Paul Gries

Jason Montojo
Greg Wilson

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http:/pragprog.com.

Copyright © 2009 Jennifer Campbell, Paul Gries, Jason Montojo, and Greg Wilson.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-934356-27-2

Printed on acid-free paper.
Book version: P4.0—October 2011

http://pragprog.com

Introduction

2.1 The Big Picture

2.2 Expressions

2.3 What Is a Type?

2.4 Variables and the Assignment Statement
2.5 When Things Go Wrong
2.6 Function Basics

2.7 Built-in Functions

2.8 Style Notes

2.9 Summary

2.10 Exercises

Strings

3.1 Strings

3.2 Escape Characters

3.3 Multiline Strings

3.4 Print

3.5 Formatted Printing

3.6 UserInput

3.7 Summary

3.8 Exercises

Contents

Ok W

© NN

12
14
17
18
21
22
23
23

27
27
30
30
31
32
33
34
34

Modules . . .

Importing Modules

® vii

37
37
40
46
53
55
62
63
63

67
67
71
72
75
78
79
80
82
83
85
88
89
90

93
93
102
108
110
110

115
115
123
130
131
135
136
137

10.

11.

File Processing

® viii

141
141
152
154
157
159
161
162
163

165
165
170
177
177
178

181
182
188
189
189

191
191
194
198
205
205
209
210

213
213
217
224
229
231
235
235

ix * Contents

15.

Al.

Object-Oriented Programming

245
245
250
253
254
262
266
267

269
270
271
276
281
286
290
291
291

295
295
297
301
303
305
306
307
312
313
317
319

323

325

CHAPTER 1

Introduction

Take a look at the pictures in Figure 1, The Rainforest Retreats, on page 2.
The first one shows forest cover in the Amazon basin in 1975. The second
one shows the same area 26 years later. Anyone can see that much of the

rainforest has been destroyed, but how much is “much”?

Now look at Figure 2, Healthy blood cells---or are they?, on page 3.

Are these blood cells healthy? Do any of them show signs of leukemia? It
would take an expert doctor a few minutes to tell. Multiply those minutes
by the number of people who need to be screened. There simply aren’t
enough human doctors in the world to check everyone.

This is where computers come in. Computer programs can measure the
differences between two pictures and count the number of oddly shaped
platelets in a blood sample. Geneticists use programs to analyze gene se-
quences; statisticians, to analyze the spread of diseases; geologists, to predict
the effects of earthquakes; economists, to analyze fluctuations in the stock
market; and climatologists, to study global warming. More and more
scientists are writing programs to help them do their work. In turn, those
programs are making entirely new kinds of science possible.

Of course, computers are good for a lot more than just science. We used
computers to write this book; you have probably used one today to chat
with friends, find out where your lectures are, or look for a restaurant that
serves pizza and Chinese food. Every day, someone figures out how to make
a computer do something that has never been done before. Together, those
“somethings” are changing the world.

This book will teach you how to make computers do what you want them
to do. You may be planning to be a doctor, linguist, or physicist rather than

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

2 * Chapter 1. Introduction

(Photo credit: NASA/Goddard Space Flight Center Scientific Visualization
Studio)

Figure 1—The Rainforest Retreats

report erratum -« discuss

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

1.1

Programs and Programming * 3

[
(Photo credit: CDC)

Figure 2—Healthy blood cells—or are they?

a full-time programmer, but whatever you do, being able to program is as
important as being able to write a letter or do basic arithmetic.

We begin in this chapter by explaining what programs and programming
are. We then define a few terms and present a few boring-but-necessary
bits of information for course instructors.

Programs and Programming

A program is a set of instructions. When you write down directions to your
house for a friend, you are writing a program. Your friend “executes” that
program by following each instruction in turn.

Every program is written in terms of a few basic operations that its reader
already understands. For example, the set of operations that your friend
can understand might include the following: “Turn left at Darwin Street,”
“Go forward three blocks,” and “If you get to the gas station, turn
around—you've gone too far.”

Computers are similar but have a different set of operations. Some operations
are mathematical, like “Add 10 to a number and take the square root,” while
others include “Read a line from the file named data.txt,” “Make a pixel blue,”
or “Send email to the authors of this book.”

The most important difference between a computer and an old-fashioned
calculator is that you can “teach” a computer new operations by defining
them in terms of old ones. For example, you can teach the computer that
“Take the average” means “Add up the numbers in a set and divide by the
set’s size.” You can then use the operations you have just defined to create
still more operations, each layered on top of the ones that came before. It's

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

1.2

1.3

4 ¢ Chapter 1. Introduction

a lot like creating life by putting atoms together to make proteins and then
combining proteins to build cells and giraffes.

Defining new operations, and combining them to do useful things, is the
heart and soul of programming. It is also a tremendously powerful way to
think about other kinds of problems. As Prof. Jeannette Wing wrote
Computational Thinking [Win06], computational thinking is about the
following:

e Conceptualizing, not programming. Computer science is not computer
programming. Thinking like a computer scientist means more than being
able to program a computer. It requires thinking at multiple levels of
abstraction.

e A way that humans, not computers, think. Computational thinking is a
way humans solve problems; it is not trying to get humans to think like
computers. Computers are dull and boring; humans are clever and
imaginative. We humans make computers exciting. Equipped with
computing devices, we use our cleverness to tackle problems we would
not dare take on before the age of computing and build systems with
functionality limited only by our imaginations.

¢ For everyone, everywhere. Computational thinking will be a reality when
it is so integral to human endeavors it disappears as an explicit
philosophy.

We hope that by the time you have finished reading this book, you will see
the world in a slightly different way.
A Few Definitions

One of the pieces of terminology that causes confusion is what to call certain
characters. The Python style guide (and several dictionaries) use these
names, so this book does too:

() Parentheses
[Brackets
{} Braces

What to Install

For current installation instructions, please download the code from the
book website and open install/index.html in a browser. The book URL is
http://pragprog.com/titles/gwpy/practical-programming.

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

1.4

For Instructors * 5

For Instructors

This book uses the Python programming language to introduce standard
CS1 topics and a handful of useful applications. We chose Python for several
reasons:

e [t is free and well documented. In fact, Python is one of the largest and
best-organized open source projects going.

e [t runs everywhere. The reference implementation, written in C, is used
on everything from cell phones to supercomputers, and it's supported
by professional-quality installers for Windows, Mac OS X, and Linux.

¢ It has a clean syntax. Yes, every language makes this claim, but in the
four years we have been using it at the University of Toronto, we have
found that students make noticeably fewer “punctuation” mistakes with
Python than with C-like languages.

e [t is relevant. Thousands of companies use it every day; it is one of the
three “official languages” at Google, and large portions of the game
Civilization IV are written in Python. It is also widely used by academic
research groups.

e It is well supported by tools. Legacy editors like Vi and Emacs all have
Python editing modes, and several professional-quality IDEs are available.
(We use a free-for-students version of one called Wing IDE.)

We use an “objects first, classes second” approach: students are shown how
to use objects from the standard library early on but do not create their own
classes until after they have learned about flow control and basic data
structures. This compromise avoids the problem of explaining Java’s public
static void main(String[] args) to someone who has never programmed.

We have organized the book into two parts. The first covers fundamental
programming ideas: elementary data types (numbers, strings, lists, sets,
and dictionaries), modules, control flow, functions, testing, debugging, and
algorithms. Depending on the audience, this material can be covered in nine
or ten weeks.

The second part of the book consists of more or less independent chapters
on more advanced topics that assume all the basic material has been cov-
ered. The first of these chapters shows students how to create their own
classes and introduces encapsulation, inheritance, and polymorphism;
courses for computer science majors will want to include this material. The
other chapters cover application areas, such as 3D graphics, databases,
GUI construction, and the basics of web programming; these will appeal to

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

1.5

6 * Chapter 1. Introduction

both computer science majors and students from the sciences and will allow
the book to be used for both.

Lots of other good books on Python programming exist. Some are accessible
to novices Introduction to Computing and Programming in Python: A Multimedia
Approach [Guz04], Python Programming: An Introduction to Computer
Science [Zel03], and others are for anyone with any previous programming
experience How to Think Like a Computer Scientist: Learning with
Python [DEMO02], Object-Oriented Programming in Python [GLO7], and Learning
Python [LAO3]. You may also want to take a look at Python Education Special
Interest Group (EDU-SIG) [Pyt11], the special interest group for educators
using Python.

Summary
In this book, we’ll do the following:

e We will show you how to develop and use programs that solve real-world
problems. Most of its examples will come from science and engineering,
but the ideas can be applied to any domain.

e We start by teaching you the core features of a programming language
called Python. These features are included in every modern programming
language, so you can use what you learn no matter what you work on
next.

e We will also teach you how to think methodically about programming.
In particular, we will show you how to break complex problems into
simple ones and how to combine the solutions to those simpler problems
to create complete applications.

¢ Finally, we will introduce some tools that will help make your program-
ming more productive, as well as some others that will help your
applications cope with larger problems.

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

2.1

CHAPTER 2

Hello, Python

Programs are made up of commands that a computer can understand. These
commands are called statements, which the computer executes. This chapter
describes the simplest of Python’s statements and shows how they can be
used to do basic arithmetic. It isn’t very exciting in its own right, but it's
the basis of almost everything that follows.

The Big Picture

In order to understand what happens when you're programming, you need
to have a basic understanding of how a program gets executed on a comput-
er. The computer itself is assembled from pieces of hardware, including a
processor that can execute instructions and do arithmetic, a place to store
data such as a hard drive, and various other pieces such as computer
monitor, a keyboard, a card for connecting to a network, and so on.

To deal with all these pieces, every computer runs some kind of operating
system, such as Microsoft Windows, Linux, or Mac OS X. An operating
system, or OS, is a program; what makes it special is that it's the only pro-
gram on the computer that’s allowed direct access to the hardware. When
any other program on the computer wants to draw on the screen, find out
what key was just pressed on the keyboard, or fetch data from the hard
drive, it sends a request to the OS (see Figure 3, Talking to the operating
custom, om page 8. e

This may seem a roundabout way of doing things, but it means that only
the people writing the OS have to worry about the differences between one
network card and another. Everyone else—everyone analyzing scientific
data or creating 3D virtual chat rooms—only has to learn their way around
the OS, and their programs will then run on thousands of different kinds
of hardware.

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

8 ¢ Chapter 2. Hello, Python

[User Program }

U

[Operating System

)

Hard Drive Monitor

Figure 3—Talking to the operating system

Twenty-five years ago, that’s how most programmers worked. Today, though,
it’s common to add another layer between the programmer and the comput-
er's hardware. When you write a program in Python, Java, or Visual Basic,
it doesn’t run directly on top of the OS. Instead, another program, called an
interpreter or virtual machine, takes your program and runs it for you,
translating your commands into a language the OS understands. It’s a lot
easier, more secure, and more portable across operating systems than
writing programs directly on top of the OS.

But an interpreter alone isn’'t enough; it needs some way to interact with
the world. One way to do this is to run a text-oriented program called a shell
that reads commands from the keyboard, does what they ask, and shows
their output as text, all in one window. Shells exist for various programming
languages as well as for interacting with the OS; we will be exploring Python
in this chapter using a Python shell.

The more modern way to interact with Python is to use an integrated devel-
opment environment, or IDE. This is a full-blown graphical interface with
menus and windows, much like a web browser, word processor, or drawing
program.

Our favorite IDE for student-sized programs is the free Wing 101, a “lite”
version of the professional tool."

Another fine IDE is IDLE, which comes bundled with Python. We prefer
Wing 101 because it was designed specifically for beginning programmers,
but IDLE is a capable development environment.

The Wing 101 interface is shown in Figure 5, The Wing 101 interface, on

1. See http://www.wingware.com for details.

http://www.wingware.com
http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

2.2

Expressions * 9

Terminal — Python — 80x9

(balvenie:~¥ python 5
Python 2.5.1 (r251:54869, Apr 15 26687, 22:88:64) -
[GCC 4.8.1 (Apple Computer, Inc. build 5367)] on dorwin
Type "help", "copyright", "credits" or "license" for more informoktion.
s

a

RS &

Figure 4—A Python shell

grams. You can run the code you type there by clicking the Run button on
the toolbar. You can also save the contents of that pane into a .py file. The
bottom half of the IDE, labeled as Python Shell, is where we will experiment
with snippets of Python programs. We’'ll use the top pane more when we get
to Chapter 4, Modules, on page 37; for now we’ll stick to the shell.

The >>> part is called a prompt, because it prompts us to type something.

Expressions

As we learned at the beginning of the chapter, Python commands are called
statements. One kind of statement is an expression statement, or expression
for short. You're familiar with mathematical expressions like 3 + 4 and 2 -
3 / 5; each expression is built out of values like 2 and 3 / 5 and operators
like + and -, which combine their operands in different ways.

Like any programming language, Python can evaluate basic mathematical
expressions. For example, the following expression adds 4 and 13:

>>> 4 + 13
17

When an expression is evaluated, it produces a single result. In the previous
expression, 4 + 13 produced the result 17.

Type int

It’s not surprising that 4 + 13 is 17. However, computers do not always play
by the rules you learned in primary school. For example, look at what hap-
pens when we divide 17 by 10:

>>> 17 / 10
1

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

10 * Chapter 2. Hello, Python

o006 X Wing IDE: untitled-1.py
File Edit Source Debug Tools Window Help

D New () Open.. &4 Save () Saveall oto Definition @i search p Run

l',"",l Break * Debug

[untitled-l.py]

iy

_Q Step Into :g Step Ower g Step Out

- E LL - l

1 ~

.

./

b

Debug IfO ’Pvthun Shelll -
Commands execute without debug. Use arrow keys for history. w Options

Python 2.5.1 (r251:54869, Apr 18 2007, 22:08:04)
[GCC 4.0.1 (Apple Computer, Inc. build 5367)]

Type "help", "copyright", "credits" or "license" for more information.
5>

{5

P LinelCol0-

Figure 5—The Wing 101 interface

You would expect the result to be 1.7, but Python produces 1 instead. This
is because every value in Python has a particular type, and the types of
values determine how they behave when they’re combined.

In Python, an expression involving values of a certain type produces a value
of that same type. For example, 17 and 10 are integers—in Python, we say
they are of type int. When we divide one by the other, the result is also an
int.

Notice that Python doesn’t round integer expressions. If it did, the result
would have been 2. Instead, it takes the floor of the intermediate result. If
you want the leftovers, you can use Python’s modulo operator (%) to return
the remainder:

>>> 17 % 10
7

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

Expressions ® 11

In the latest version of Python (Python 3.0), 5 / 2 is 2.5 rather than 2. Python 3.0

is currently less widely used than its predecessors, so the examples in this book
use the “classic” behavior.

Be careful about using % and / with negative operands. Since Python takes
the floor of the result of an integer division, the result is one smaller than
you might expect:

>>> -17 / 10
-2

When using modulo, the sign of the result matches the sign of the second
operand:

>>> -17 % 10

3

>>> 17 % -10
-3

Type float

Python has another type called float to represent numbers with fractional
parts. The word float is short for floating point, which refers to the decimal
point that moves around between digits of the number.

An expression involving two floats produces a float:

>>> 17.0 / 10.0
1.7

When an expression’s operands are an int and a float, Python automatically
converts the int to a float. This is why the following two expressions both re-
turn the same answer as the earlier one:

>>> 17.0 / 10
1.7
>>> 17 / 10.0
1.7

If you want, you can omit the zero after the decimal point when writing a
floating-point number:

>>> 17 / 10.
1.7
>>> 17. / 10
1.7

report erratum -« discuss

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

2.3

12 * Chapter 2. Hello, Python

Operator Symbol Example Result
Negation -5 -5

* Multiplication 8.5%*35 29.75

/ Division 11/3 3

% Remainder 8.5% 3.5 1.5

+ Addition 11 +3 14
Subtraction 5-19 -14

ok Exponentiation 2 %5 32

Table 1—Arithmetic operators

However, most people think this is bad style, since it makes your programs
harder to read: it’s very easy to miss a dot on the screen and see “17” instead
of “17.”

What Is a Type?

We've now seen two types of numbers, so we ought to explain exactly what
we mean by a type. In computing, a type is a set of values, along with a set
of operations that can be performed on those values. For example, the type
int is the values ..., -3, -2, -1, 0, 1, 2, 3, ..., along with the operators +, -, *,
/, and % (and a few others we haven’t introduced yet). On the other hand,
84.2 is a member of the set of float values, but it is not in the set of int values.

Arithmetic was invented before Python, so the int and float types have exactly
the same operators. We can see what happens when these are applied to
various values in Table 1, Arithmetic operators, on page 12.

Finite Precision

Floating-point numbers are not exactly the fractions you learned in grade
school. For example, take a look at Python's version of the fraction '
(remember to include a decimal point so that the result isn’t truncated):

>>> 1.0 / 3.0
0.33333333333333331

What's that 1 doing at the end? Shouldn’t it be a 3? The problem is that
real computers have a finite amount of memory, which limits how much
information they can store about any single number. The number
0.33333333333333331 turns out to be the closest value to 1/3 that the
computer can actually store.

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

What/saType? * 13

More on Numeric Precision

Computers use the same amount of memory to store an integer regardless of that
integer’s value, which means that -22984, -1, and 100000000 all take up the same
amount of room. Because of this, computers can store int values only in a certain
range. A modern desktop or laptop machine, for example, can store the numbers
only from -2147483648 to 2147483647. (We'll take a closer look in the exercises
at where these bounds come from.)

Computers can store only approximations to real numbers for the same reason. For
example, 1/4 can be stored exactly, but as we've already seen, 1/3 cannot. Using more
memory won't solve the problem, though it will make the approximation closer to
the real value, just as writing a larger number of 3s after the O in 0.333... doesn’t
make it exactly equal to 1/3

The difference between 1/3 and 0.33333333333333331 may look tiny. But if we use
that value in a calculation, then the error may get compounded. For example, if we
add the float to itself, the result ends in ...6662; that is a slightly worse approximation
to 2/3 than 0.666.... As we do more calculations, the rounding errors can get larger
and larger, particularly if we're mixing very large and very small numbers. For ex-
ample, suppose we add 10,000,000,000 and 0.00000000001. The result ought to
have twenty zeroes between the first and last significant digit, but that’s too many
for the computer to store, so the result is just 10,000,000,000—it’s as if the addition
never took place. Adding lots of small numbers to a large one can therefore have
no effect at all, which is not what a bank wants when it totals up the values of its
customers’ savings accounts.

It's important to be aware of the floating-point issue so that your programs don’t
bite you unexpectedly, but the solutions to this problem are beyond the scope of
this text. In fact, numerical analysis, the study of algorithms to approximate contin-
uous mathematics, is one of the largest subfields of computer science and
mathematics.

Operator Precedence

Let’s put our knowledge of ints and floats to use to convert Fahrenheit to
Celsius. To do this, we subtract 32 from the temperature in Fahrenheit and
then multiply by 5/9:

>>> 212 - 32.0 * 5.0 / 9.0
194.22222222222223

Python claims the result is 194.22222222222223 degrees Celsius when in
fact it should be 100. The problem is that * and / have higher precedence
than -; in other words, when an expression contains a mix of operators, the

2. This is another floating-point approximation.

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

24

14 * Chapter 2. Hello, Python

* and / are evaluated before - and +. This means that what we actually cal-
culated was 212 - ((32.0 * 5.0) / 9.0).

We can alter the order of precedence by putting parentheses around parts
of the expression, just as we did in Mrs. Singh’s fourth-grade class:

>>> (212 - 32.0) * 5.0 / 9.0
100.0

The order of precedence for arithmetic operators is listed in Table 2, Arith-

complicated expressions even when you don’t need to, since it helps the eye
read things like 1+1.7+3.2*4.4-16/3.

Variables and the Assignment Statement

Most handheld calculators® have one or more memory buttons. These store
a value so that it can be used later. In Python, we can do this with a variable,
which is just a name that has a value associated with it. Variables’ names
can use letters, digits, and the underscore symbol. For example, X, species5618,
and degrees _celsius are all allowed, but 777 isn’t (it would be confused with a
number), and neither is no-way! (it contains punctuation).

You create a new variable simply by giving it a value:
>>> degrees celsius = 26.0

This statement is called an assignment statement; we say that degrees_celsius
is assigned the value 26.0. An assignment statement is executed as follows:

1. Evaluate the expression on the right of the = sign.
2. Store that value with the variable on the left of the = sign.

In the diagram below, we can see the memory model for the result of the
assignment statement. It’s pretty simple, but we will see more complicated
memory models later.

degrees_celsius —» 26.0

Once a variable has been created, we can use its value in other calculations.
For example, we can calculate the difference between the temperature stored
in degrees_celsius and the boiling point of water like this:

>>> 100 - degrees celsius
74.0

3. And cell phones, and wristwatches, and...

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

Variables and the Assignment Statement ¢ 15

Operator Symbol

*x Exponentiation

- Negation

* 1/, % Multiplication, division, and remainder
+, - Addition and subtraction

Table 2—Arithmetic operators by precedence

Whenever the variable’s name is used in an expression, Python uses the
variable’s value in the calculation. This means that we can create new
variables from old ones:

>>> difference = 100 - degrees celsius

Typing in the name of a variable on its own makes Python display its value:

>>> difference
74.0

What happened here is that we gave Python a very simple expression—one
that had no operators at all—so Python evaluated it and showed us the
result.

It's no more mysterious than asking Python what the value of 3 is:

>>> 3

3

Variables are called variables because their values can change as the pro-
gram executes. For example, we can assign difference a new value:

>>> difference = 100 - 15.5
>>> difference
84.5

This does not change the results of any calculations done with that variable
before its value was changed:

>>> difference 20

>>> double = 2 * difference
>>> double

40

>>> difference
>>> double

40

Il
(6]

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

16 * Chapter 2. Hello, Python

As the memory models illustrate in Figure 6, Changing a variable’s value,

the program explicitly overwrites it. Changes to other variables, like difference,
have no effect.

We can even use a variable on both sides of an assignment statement:

>>> number = 3

>>> number

3

>>> number = 2 * number
>>> number

>>> number = number * number
>>> number
36

This wouldn’t make much sense in mathematics—a number cannot be equal
to twice its own value—but = in Python doesn’t mean “equals to.” Instead,
it means “assign a value to.”

When a statement like number = 2 * number is evaluated, Python does the
following:

1. Gets the value currently associated with number
2. Multiplies it by 2 to create a new value
3. Assigns that value to number

Combined Operators

In the previous example, the variable number appeared on both sides of the
assignment statement. This is so common that Python provides a shorthand
notation for this operation:

>>> number = 100

>>> number -= 80

>>> number
20

Here is how a combined operator is evaluated:

1. Evaluate the expression to the right of the = sign.
Apply the operator attached to the = sign to the variable and the result
of the expression.

3. Assign the result to the variable to the left of the = sign.

Note that the operator is applied after the expression on the right is
evaluated:

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

2.5

When Things Go Wrong ¢ 17

>>> difference = 20 (.' d1fference—>20\

>>> double = 2 * difference d1fference—>20

N

>>> difference = 5 «_ d1fference—>5 _",‘

Figure 6—Changing a variable’s value

>>> d =

>>> d *= 3 + 4
>>> d

14

All the operators in Table 2, Arithmetic operators by precedence, on page 15,

have shorthand versions. For example, we can square a number by multi-
plying it by itself:

>>> number = 10

>>> number *= number
>>> number

100

which is equivalent to this:

>>> number = 10

>>> number = number * number
>>> number

100

When Things Go Wrong

We said earlier that variables are created by assigning them values. What
happens if we try to use a variable that hasn’t been created yet?

>>> 3 + something
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'something' is not defined

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

2.6

18 * Chapter 2. Hello, Python

This is pretty cryptic. In fact, Python’s error messages are one of its few
weaknesses from the point of view of novice programmers. The first two
lines aren’t much use right now, though they’ll be indispensable when we
start writing longer programs. The last line is the one that tells us what
went wrong: the name something wasn’t recognized.

Here’s another error message you might sometimes see:

>>> 2 +
File "<stdin>", line 1
2+

~

SyntaxError: invalid syntax

The rules governing what is and isn’t legal in a programming language (or
any other language) are called its syntax. What this message is telling us is
that we violated Python’s syntax rules—in this case, by asking it to add
something to 2 but not telling it what to add.

Function Basics

Earlier in this chapter, we converted 212 degrees Fahrenheit to Celsius. A
mathematician would write this as ﬂt)=5/9(t-32], where t is the temperature
in Fahrenheit that we want to convert to Celsius. To find out what 80 degrees
Fahrenheit is in Celsius, we replace t with 80, which gives us f{80) = 5/9 (80-
32), or 26 %,

We can write functions in Python, too. As in mathematics, they are used to
define common formulas. Here is the conversion function in Python:

>>> def to celsius(t):
return (t - 32.0) * 5.0 / 9.0

(Press enter to add a blank line so the Python interpreter knows you're done.)
This has these major differences from its mathematical equivalent:

¢ A function definition is another kind of Python statement; it defines a
new name whose value can be rather complicated but is still just a value.

e The keyword def is used to tell Python that we’re defining a new function.

e We use a readable name like to celsius for the function rather than
something like f whose meaning will be hard to remember an hour later.
(This isn’t actually a requirement, but it’s good style.)

e There is a colon instead of an equals sign.

e The actual formula for the function is defined on the next line. The line
is indented four spaces and marked with the keyword return.

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

Function Basics * 19

Python displays a triple-dot prompt automatically when you're in the middle
of defining a new function; you do not type the dots any more than you type
the greater-than signs in the usual >>> prompt. If you're using a smart ed-
itor, like the one in Wing 101, it will automatically indent the body of the
function by the required amount. (This is another reason to use Wing 101
instead of a basic text editor like Notepad or Pico: it saves a lot of wear and
tear on your spacebar and thumb.)

Here is what happens when we ask Python to evaluate to_celsius(80), to_cel-
sius(78.8), and to_celsius(10.4):

>>> to _celsius(80)
26.666666666666668
>>> to celsius(78.8)
26.0

>>> to celsius(10.4)
-12.0

Each of these three statements is called a_function call, because we're calling
up the function to do some work for us. We have to define a function only
once; we can call it any number of times.

The general form of a function definition is as follows:

def <code:bold>function name</code:bold>(<code:bold>parameters</code:bold>):
<code:bold>block</code:bold>

As we've already seen, the def keyword tells Python that we're defining a new
function. The name of the function comes next, followed by zero or more
parameters in parentheses and a colon. A parameter is a variable (like t in
the function to_celsius) that is given a value when the function is called. For
example, 80 was assigned to t in the function call to_celsius(80), and then 78.8
in to_celsius(78.8), and then 10.4 in to_celsius(10.4). Those actual values are called
the arguments to the function.

What the function does is specified by the block of statements inside it.
to_celsius’s block consisted of just one statement, but as we’ll see later, blocks
making up more complicated functions may be many statements long.

to_celsius produces its value using a return statement, which has this general
form:

return <code:bold>expression</code:bold>
and is executed as follows:

1. Evaluate the expression to the right of the keyword return.
2. Use that value as the result of the function.

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

20 ¢ Chapter 2. Hello, Python

It’s important to be clear on the difference between a function definition and
a function call. When a function is defined, Python records it but doesn’t
execute it. When the function is called, Python jumps to the first line of that
function and starts running it (see Figure 7, Function control flow, on page

function was originally called.

Local Variables

Some computations are complex, and breaking them down into separate
steps can lead to clearer code. Here, we break down the evaluation of the
polynomial aé + bx + ¢ into several steps:

>>> def polynomial(a, b, c, x):

first =a * x * x
second = b * x
third = ¢

return first + second + third

>>> polynomial(2, 3, 4, 0.5)
6.0

>>> polynomial(2, 3, 4, 1.5)
13.0

Variables like first, second, and third that are created within a function are
called local variables. These variables exist only during function execution;
when the function finishes executing, the variables no longer exist. This
means that trying to access a local variable from outside the function is an
error, just like trying to access a variable that has never been defined:

>>> polynomial(2, 3, 4, 1.3)

11.280000000000001

>>> first

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'first' is not defined

>>> a

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'a' is not defined

As you can see from this example, a function’s parameters are also local
variables. When a function is called, Python assigns the argument values
given in the call to the function’s parameters. As you might expect, if a

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

2.7

Built-in Functions ¢ 21

def to celsius(t):
return (t - 32.0) * 5.0 / 9.0

to celsius (80)
(rest of program)

Figure 7—Function control flow

function is defined to take a certain number of parameters, it must be passed
the same number of arguments:*

>>> polynomial(l, 2, 3)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: polynomial() takes exactly 4 arguments (3 given)

The scope of a variable is the area of the program that can access it. For
example, the scope of a local variable runs from the line on which it is first
defined to the end of the function.

Built-in Functions

Python comes with many built-in functions that perform common operations.
One example is abs, which produces the absolute value of a number:

>>> abs(-9)
9

Another is round, which rounds a floating-point number to the nearest integer
(represented as a float):

>>> round(3.8)
4.0
>>> round(3.3)
3.0
>>> round(3.5)
4.0

Just like user-defined functions, Python’s built-in functions can take more
than one argument. For example, we can calculate 2* using the power
function pow:

>>> pow(2, 4)
16

4. We'll see later how to create functions that take any number of arguments.

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

2.8

22 * Chapter 2. Hello, Python

Some of the most useful built-in functions are ones that convert from one
type to another. The type names int and float can be used as if they were
functions:

>>> int(34.6)
34

>>> float(21)
21.0

In this example, we see that when a floating-point number is converted to
an integer, it is truncated—not rounded.

Style Notes

Psychologists have discovered that people can keep track of only a handful
of things at any one time (Forty Studies That Changed Psychology [Hoc04]).
Since programs can get quite complicated, it's important that you choose
names for your variables that will help you remember what they're for. X1,
X2, and blah won’t remind you of anything when you come back to look at
your program next week; use names like celsius, average, and final_result instead.

Other studies have shown that your brain automatically notices differences
between things—in fact, there’s no way to stop it from doing this. As a result,
the more inconsistencies there are in a piece of text, the longer it takes to
read. (JuSt thInK a bout how long It w o u 1 d tAKE you to rEa d this
cHaPTer iF IT wAs fORmaTTeD like thls.) It's therefore also important to
use consistent names for variables. If you call something maximum in one
place, don’t call it max_val in another; if you use the name max_val, don’t also
use the name maxVal, and so on.

These rules are so important that many programming teams require members
to follow a style guide for whatever language they’re using, just as newspa-
pers and book publishers specify how to capitalize headings and whether
to use a comma before the last item in a list. If you search the Internet for
programming style guide, you’ll discover links to hundreds of examples.

You will also discover that lots of people have wasted many hours arguing
over what the “best” style for code is. Some of your classmates may have
strong opinions about this as well. If they do, ask them what data they have
to back up their beliefs, in other words, whether they know of any field
studies that prove that spaces after commas make programs easier to read
than no spaces. If they can’t cite any studies, pat them on the back and
send them on their deluded way.

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

Summary ¢ 23

2.9 Summary

In this chapter, we learned the following:

e An operating system is a program that manages your computer’s hard-

ware on behalf of other programs. An interpreter or virtual machine is
a program that sits on top of the operating system and runs your pro-
grams for you. Building layers like this is the best way we have found
so far for constructing complicated systems.

Programs are made up of statements. These can be simple expressions
(which are evaluated immediately), assignment statements (which create
new variables or change the values of existing variables), and function
definitions (which teach Python how to do new things).

Every value in Python has a specific type, which determines what oper-
ations can be applied to it. The two types used to represent numbers
are int and float.

Expressions are evaluated in a particular order. However, you can change
that order by putting parentheses around subexpressions.

Variables must be given values before they are used.

When a function is called, the values of its arguments are assigned to
its parameters, the statements inside the function are executed, and a
value is returned. The values assigned to the function’s parameters, and
the values of any local variables created inside the function, are forgotten
after the function returns.

e Python comes with predefined functions called built-ins.

2.10 Exercises

Here are some exercises for you to try on your own:

1.

For each of the following expressions, what value will the expression
give? Verify your answers by typing the expressions into Python.

a. 9-3
b. 8*25
c. 9/2
d. 9/-2

e. 9%2

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

24 * Chapter 2. Hello, Python

f. 9%-2
g -9%2
h. 9/-20
i. 4+3*%5
j- (4+3)*5

2. Unary minus negates a number. Unary plus exists as well; for example,
Python understands +5. If x has the value -17, what do you think +x
should do? Should it leave the sign of the number alone? Should it act
like absolute value, removing any negation? Use the Python shell to find
out its behavior.

3. a. Create a new variable temp, and assign it the value 24.

b. Convert the value in temp from Celsius to Fahrenheit by multiplying
by 1.8 and adding 32; associate the resulting value with temp. What
is temp’s new value?

4. a. Create a new variable x, and assign it the value 10.5.
b. Create a new variable y, and assign it the value 4.

c. Sum x and y, and associate the resulting value with x. What are x
and y’s new values?

5. Write a bullet list description of what happens when Python evaluates
the statement x += x - x when x has the value 3.

6. The function name to_celsius is problematic: it doesn’t mention the original
unit, and it isn’t a verb phrase. (Many function names are verb phrases
because functions actively do things.) We also assumed the original unit
was Fahrenheit, but Kelvin is a temperature scale too, and there are
many others (see Section 6.5, Exercises, on page 110 for a discussion of
them).

We could use a longer name such as fahrenheit_to_celsius or even convert_fahren-
heit_to_celsius. We could abbreviate it as fahr_to_cel, make it much shorter
and use f2c, or even just use f. Write a paragraph describing which name
you think is best and why. Consider ease of remembering, ease of typing,
and readability. Don’t forget to consider people whose first language
isn’t English.

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

Exercises ® 25

7. In the United States, a car’s fuel efficiency is measured in miles per
gallon. In the metric system, it is usually measured in liters per 100
kilometers.

a.

Write a function called convert mileage that converts from miles per
gallon to liters per 100 kilometers.

Test that your functions returns the right values for 20 and 40 miles
per gallon.

How did you figure out what the right value was? How closely do
the computer’s results match the ones you expected?

8. Explain the difference between a parameter and an argument.

9. a.

Define a function called liters_needed that takes a value representing
a distance in kilometers and a value representing gas mileage for a
vehicle and returns the amount of gas needed in liters to travel that
distance. Your definition should call the function convert mileage that
you defined as part of a previous exercise.

Verify that liters needed(150, 30) returns 11.761938367442955 and
liters_needed(100, 30) returns 7.84129224496197.

When liters_needed is called with arguments 100 and 30, what is the
value of the argument to convert_mileage?

The function call liters_needed(100, 30) results in a call to convert_mileage.
Which of those two functions finishes executing first?

10. We've seen built-in functions abs, round, pow, int, and float. Using these
functions, write expressions that do the following:

a.

b.

Calculate 3 to the power of 7.
Convert 34.7 to an integer by truncating.
Convert 34.7 to an integer by rounding.

Take the absolute value of -86, then convert it to a floating-point
number.

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

3.1

CHAPTER 3

Strings

Numbers are fundamental to computing—in fact, crunching numbers is
what computers were invented to do—but there are many other kinds of
data in the world as well, such as addresses, pictures, and music. Each of
these can be represented as a data type, and knowing how to manipulate
those data types is a big part of being able to program. This chapter intro-
duces a non-numeric data type that represents text, such as the words in
this sentence or the sequence of bases in a strand of DNA. Along the way,
we will see how to make programs a little more interactive.

Strings

Computers may have been invented to do arithmetic, but these days, most
of them spend a lot of their time processing text. From desktop chat programs
to Google, computers create text, store it, search it, and move it from one
place to another.

In Python, a piece of text is represented as a string, which is a sequence of
characters (letters, numbers, and symbols). The simplest data type for
storing sequences of characters is str; it can store characters from the Latin
alphabet found on most North American keyboards. Another data type called
unicode can store strings containing any characters at all, including Chinese
ideograms, chemical symbols, and Klingon. We will use the simpler type,
str, in our examples.

In Python, we indicate that a value is a string by putting either single or
double quotes around it:

>>> 'Aristotle’
'Aristotle’

>>> "Isaac Newton"
'Isaac Newton'

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

28 ¢ Chapter 3. Strings

The quotes must match:

>>> 'Charles Darwin"
File "<stdin>", line 1
'Charles Darwin"

~

SyntaxError: EOL while scanning single-quoted string

We can join two strings together by putting them side by side:

>>> 'Albert' 'Einstein’
'AlbertEinstein’

Notice that the words Albert and Einstein run together. If we want a space be-
tween the words, then we can add a space either to the end of Albert or to
the beginning of Einstein:

>>> 'Albert ' 'Einstein’
'Albert Einstein'
>>> 'Albert' ' Einstein'

'Albert Einstein'

It's almost always clearer to join strings with +. When + has two string
operands, then it is referred to as the concatenation operator:

>>> 'Albert' + ' Einstein'
'Albert Einstein'

Since the + operator is used for both numeric addition and for string con-
catenation, we call this an overloaded operator. It performs different functions
based on the type of operands that it is applied to.

The shortest string is the empty string, containing no characters at all.

As the following example shows, it’s the textual equivalent of 0—adding it
to another string has no effect:

>>> !

>>> "Alan Turing" +
'Alan Turing'

"" + 'Grace Hopper'
‘Grace Hopper'

>>>

Here is an interesting question: can the + operator be applied to a string
and numeric value? If so, what function would be applied, addition or con-
catenation? We'll give it a try:

>>> 'NH' + 3

Traceback (most recent call last):
File "<stdin>", line 1, in ?

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

Strings * 29

TypeError: cannot concatenate 'str' and 'int' objects
>>> 9 + ' planets'
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: unsupported operand type(s) for +: 'int' and 'str'

This is the second time Python has told us that we have a type error. The
first time, in Local Variables, on page 20, the problem was not passing the
right numberofparameterstoafunctlon Here, Python took exception to
our attempts to add values of different data types, because it doesn’t know
which version of + we want: the one that adds numbers or the one that

concatenates strings.

In this case, it’s easy for a human being to see what the right answer is.
But what about this example?

>>> '123' + 4

Should Python produce the string '1234' or the integer 127? The answer is
that it shouldn’t do either: if it guesses what we want, it'll be wrong at least
some of the time, and we will have to try to track down the problem without
an error message to guide us.'

If you want to put a number in the middle of a string, the easiest way is to
convert it via the built-in str function and then do the concatenation:

>>> '12' + str(34) + '56'
'123456'

The fact that Python will not combine strings and numbers using + doesn’t
mean that other operators can’t combine strings and integers. In particular,
we can repeat a string using the * operator, like this:

>>> 'AT' * 5

'ATATATATAT'

>>> 4 % .

If the integer is less than or equals to zero, then this operator yields the
empty string (a string containing no characters):
>>> 'GC' * 0

>>> 'TATATATA' * -3

1. Ifyou still aren’t convinced, consider this: in JavaScript (a language used for web
programming), '7'+0 is the string '70', but '7'-0 is 7.

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

3.2

33

30 ¢ Chapter 3. Strings

Escape Characters

Suppose you want to put a single quote inside a string. If you write it directly,
Python will complain:
>>> 'that's not going to work'

File "<stdin>", line 1
'that's not going to work'

N

SyntaxError: invalid syntax

The problem is that when Python sees the second quote—the one that you
think of as being part of the string—it thinks the string is over. It then
doesn’t know what to do with all the stuff that comes after the second quote.

One simple way to fix this is to use double quotes around the string:

>>> "that's better"
"that's better"

If you need to put a double quote in a string, you can use single quotes
around the string. But what if you want to put both kinds of quote in one
string? You could do this:

>>> 'She said, "That' + "'" + 's hard to read."'

Luckily, there’s a better way. If you type the previous expression into Python,
the result is as follows:

'She said, "That\'s hard to read."'

The combination of the backslash and the single quote is called an escape
sequence. The name comes from the fact that we're “escaping” from Python’s
usual syntax rules for a moment. When Python sees a backslash inside a
string, it means that the next character represents something special—in
this case, a single quote, rather than the end of the string. The backslash
is called an escape character, since it signals the start of an escape sequence.

As shown in Table 3, Escape sequences, on page 31, Python recognizes

several escape sequences. In order to see how most are used, we will have
to introduce two more ideas: multiline strings and printing.

Multiline Strings

If you create a string using single or double quotes, the whole string must
fit onto a single line.

Here’s what happens when you try to stretch a string across multiple lines:

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

34

Escape Sequence
\n
\\
v
\"
\t

Description
End of line
Backslash
Single quote
Double quote
Tab

Print * 31

Table 3—Escape sequences

>>> 'one

Traceback (most recent call last):
File "<string>", line 1, in <string>

Could not execute because an error occurred:
EOL while scanning single-quoted string: <string>, line 1, pos 4:
‘one

EOL stands for “end of line,” so in this error report, Python is saying that
it reached the end of the line before it found the end of the string.

To span multiple lines, put three single quotes or three double quotes around
the string instead of one of each. The string can then span as many lines
as you want:

>>> '''one
. two
. three
‘one\ntwo\nthree'

Notice that the string Python creates contains a \n sequence everywhere our
input started a new line. In reality, each of the three major operating systems
uses a different set of characters to indicate the end of a line. This set of
characters is called a newline. On Linux, a newline is one '\n' character; on
version 9 and earlier of Mac OS X, it is one '\r'; and on Windows, the ends
of lines are marked with both characters as '\r\n'.

Python always uses a single \n to indicate a newline, even on operating sys-
tems like Windows that do things other ways. This is called normalizing the
string; Python does this so that you can write exactly the same program no
matter what kind of machine you're running on.

Print

So far, we have been able to display the value of only one variable or expres-
sion at a time. Real programs often want to display more information, such

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

35

32 ¢ Chapter 3. Strings

as the values of multiple variable values. This can be done using a print
statement:

>>> print 1 + 1

2

>>> print "The Latin 'oryctolagus cuniculus' means 'domestic rabbit'.
The Latin 'oryctolagus cuniculus' means 'domestic rabbit'.

The first statement does what you’d expect from the numeric examples we've
seen previously, but the second does something slightly different from pre-
vious string examples: it strips off the quotes around the string and shows
us the string’s contents, rather than its representation. This example makes
the difference between the two even clearer:

>>> print 'In 1859, Charles Darwin revolutionized biology'
In 1859, Charles Darwin revolutionized biology

>>> print 'and our understanding of ourselves'

and our understanding of ourselves

>>> print 'by publishing "On the Origin of Species".'

by publishing "On the Origin of Species".

And the following example shows that when Python prints a string, it prints
the values of any escape sequences in the string, rather than their back-
slashed representations:

>>> print 'one\ttwo\nthree\tfour'

one two
three four

This example shows how the tab character \t can be used to lay values out
in columns. A print statement takes a comma-separated list of items to print
and displays them on a line of their own. If no values are given, print simply
displays a blank line. You can use any mix of types in the list; Python always
inserts a single space between each value:

>>> area = 3.14159 * 5 * 5

>>> print "The area of the circle is", area, "sq cm."
The area of the circle is 78.539750 sq cm.

Formatted Printing

Sometimes, Python’s default printing rules aren’t what we want. In these
cases, we can specify the exact format we want for our output by providing
Python with a format string:

>>> print "The area of the circle is %f sq cm." % area
The area of the circle is 78.539750 sq cm.

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

3.6

User Input * 33

In the previous statement, %f is a conversion specifier. It indicates where the
value of the variable area is to be inserted. Other markers that we might use
are %s, to insert a string value, and %d, to insert an integer. The letter follow-
ing the % is called the conversion type.

The % between the string and the value being inserted is another overloaded
operator. We used % earlier for modulo; here, it is the string formatting oper-
ator. It does not modify the string on its left side, any more than the + in 3
+ 5 changes the value of 3. Instead, the string formatting operator returns
a new string.

We can use the string formatting operator to lay out several values at once.
Here, for example, we are laying out a float and an int at the same time:

>>> rabbits = 17

>>> cage = 10

>>> print "%f rabbits are in cage #%d." % (rabbits, cage)
17.000000 rabbits are in cage #10.

As we said earlier, print automatically puts a newline at the end of a string.
This isn’t necessarily what we want; for example, we might want to print
several pieces of data separately and have them all appear on one line. To
prevent the newline from being added, put a comma at the end of the print
statement:

>>> print rabbits,
17>>>

User Input

In an earlier chapter, we explored some built-in functions. Another built-in
function that you will find useful is raw_input, which reads a single line of text
from the keyboard. The “raw” part means that it returns whatever the user
enters as a string, even if it looks like a number:

>>> line = raw_input()
Galapagos Islands

>>> print line
Galapagos Islands

>>> line = raw_input()
123

>>> print line * 2
123123

If you are expecting the user to enter a number, you must use int or float to
convert the string to the required type:

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

34 ¢ Chapter 3. Strings

>>> value = raw_input()

123

>>> value = int(value)

>>> print value * 2

246

>>> value = float(raw input())
Galapagos

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: invalid literal for float(): Galapagos

Finally, raw_input can be given a string argument, which is used to prompt
the user for input:

>>>

name = raw_input("Please enter a name: ")

Please enter a name: Darwin

>>>

print name

Darwin

3.7 Summary

In this chapter, we learned the following;:

Python uses the string type str to represent text as sequences of
characters.

Strings are usually created by placing pairs of single or double quotes
around the text. Multiline strings can be created using matching pairs
of triple quotes.

Special characters like newline and tab are represented using escape
sequences that begin with a backslash.

e Values can be displayed on the screen using a print statement and input

can be provided by the user using raw_input.

3.8 Exercises

Here are some exercises for you to try on your own:

1.

For each of the following expressions, what value will the expression
give? Verify your answers by typing the expressions into the Python
shell.

'‘Comp' 'Sci'
b. 'Computer' + ' Science'
c. 'H20'*3
d. 'C02'*0

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

Exercises ® 35

For each of the following phrases, express them as Python strings using
the appropriate type of quotation marks (single, double or triple) and,
if necessary, escape sequences:

a. Theyll hibernate during the winter.

b. “Absolutely not,” he said.

c. “He said, 'Absolutely not,” recalled Mel.
d. hydrogen sulfide

e. left\right

Rewrite the following string using single or double quotes instead of
triple quotes:

v
B
cre

Use the built-in function len to find the length of the empty string.

Given variables x and y, which refer to values 3 and 12.5 respectively,
use print to display the following messages. When numbers appear in
the messages, the variables x and y should be used in the print statement.

The rabbit is 3.
b. The rabbit is 3 years old.
c. 12.5is average.
d. 12.5*3
e. 12.5*3is 37.5.

Section 3.5, Formatted Printing, on page 32, introduced the use of the

% operator to format strings for output. Explain what formats you would
use to get the following outputs:

a. " "%345=>"3450"

b. " "%345 =>"3.45e+01"
c. " "%8=>"0008"

d. " "%8=>"8"

Use raw_input to prompt the user for a number and store the number en-
tered as a float in a variable named num, and then print the contents of
num.

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

36 * Chapter 3. Strings

8.

If you enter two strings side by side in Python, it automatically concate-
nates them:

>>> 'abc' 'def'
'abcdef'

If those same strings are stored in variables, though, putting them side
by side is a syntax error:
>>> left = 'abc'
>>> right = 'def'
>>> left right
File "<stdin>", line 1
left right

SyntaxError: invalid syntax
Why do you think Python doesn’t let you do this?

Some people believe that multiplying a string by a negative number
ought to produce an error, rather than an empty string. Explain why
they might think this. If you agree, explain why; if you don’t, explain
why not.

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

4.1

CHAPTER 4

Modules

Mathematicians don’t prove every theorem from scratch. Instead, they build
their proofs on the truths their predecessors have already established. In
the same way, it’s vanishingly rare for someone to write all of a program
herself; it’'s much more common—and productive—to make use of the mil-
lions of lines of code that other programmers have written before.

A module is a collection of functions that are grouped together in a single
file. Functions in a module are usually related to each other in some way;
for example, the math module contains mathematical functions such as cos
(cosine) and sqrt (square root). This chapter shows you how to use some of
the hundreds of modules that come with Python and how to create new
modules of your own. You will also see how you can use Python to explore
and view images.

Importing Modules

When you want to refer to someone else’s work in a scientific paper, you
have to cite it in your bibliography. When you want to use a function from
a module, you have to import it. To tell Python that you want to use functions
in the math module, for example, you use this import statement:

>>> import math

Once you have imported a module, you can use the built-in help function to
see what it contains:'

>>> help(math)
Help on built-in module math:

1. When you do this interactively, Python displays only a screenful of information at a
time. Press the spacebar when you see the “More” prompt to go to the next page.

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

38 ¢ Chapter 4. Modules

NAME
math

FILE
(built-in)

DESCRIPTION
This module is always available. It provides access to the
mathematical functions defined by the C standard.

FUNCTIONS
acos(...)
acos(x)

Return the arc cosine (measured in radians) of x.

asin(...)
asin(x)

Return the arc sine (measured in radians) of x.

Great—our program can now use all the standard mathematical functions.
When we try to calculate a square root, though, we get an error telling us
that Python is still unable to find the function sqrt:

>>> sqrt(9)

Traceback (most recent call last):
File "<string>", line 1, in <string>

NameError: name 'sqrt' is not defined

The solution is to tell Python explicitly to look for the function in the math
module by combining the module’s name with the function’s name using a
dot:

>>> math.sqrt(9)
3.0

The reason we have to join the function’s name with the module’s name is
that several modules might contain functions with the same name. For ex-
ample, does the following call to floor refer to the function from the math
module that rounds a number down or the function from the (completely
fictional) building module that calculates a price given an area (see Figure 8,
How import works, on page 392

>>> import math
>>> import building
>>> floor(22.7)

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

Importing Modules * 39

math building
module module

floor floor
| 3 «

floor (22.7)

Figure 8—How import works

Once a module has been imported, it stays in memory until the program
ends. There are ways to “unimport” a module (in other words, to erase it
from memory) or to reimport a module that has changed while the program
is running, but they are rarely used. In practice, it's almost always simpler
to stop the program and restart it.

Modules can contain more than just functions. The math module, for example,
also defines some variables like pi. Once the module has been imported, you
can use these variables like any others:

>>> math.pi

3.1415926535897931

>>> radius = 5

>>> print 'area is %6f' % (math.pi * radius ** 2)
area is 78.539816

You can even assign to variables imported from modules:

>>> import math

>>> math.pi = 3 # would turn circles into hexagons
>>> radius =5

>>> print 'circumference is', 2 * math.pi * radius
circumference is 30

Don’t do this! Changing the value of 7 is not a good idea. In fact, it's such a
bad idea that many languages allow programmers to define unchangeable
constants as well as variables. As the name suggests, the value of a constant
cannot be changed after it has been defined: = is always 3.14159 and a little
bit, while SECONDS_PER DAY is always 86,400. The fact that Python doesn’t allow
programmers to “freeze” values like this is one of the language’s few signifi-
cant flaws.

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

4.2

40 ¢ Chapter 4. Modules

Combining the module’s name with the names of the things it contains is
safe, but it isn’t always convenient. For this reason, Python lets you specify
exactly what you want to import from a module, like this:

>>> from math import sqrt, pi

>>> sqrt(9)

3.0

>>> radius = 5

>>> print 'circumference is %6f' % (2 * pi * radius)
circumference is 31.415927

This can lead to problems when different modules provide functions that
have the same name. If you import a function called spell from a module
called magic and then you import another function called spell from the
module grammar, the second replaces the first. It's exactly like assigning one
value to a variable, then another: the most recent assignment or import
wins.

This is why it’s usually not a good idea to use import *, which brings in every-
thing from the module at once. It saves some typing:

>>> from math import *
>>> '%6f' % sqrt(8)
'2.828427'

but using it means that every time you add anything to a module, you run
the risk of breaking every program that uses it.

The standard Python library contains several hundred modules to do every-
thing from figuring out what day of the week it is to fetching data from a
website. The full list is online at http://docs.python.org/modindex.html;
although it's far too much to absorb in one sitting (or even one course),
knowing how to use the library well is one of the things that distinguishes

good programmers from poor ones.

Defining Your Own Modules

Section 2.1, The Big Picture, on page 7 explained that in order to save code
for later use, you can put it in a file with a .py extension. You can then tell
Python to run the code in that file, rather than typing commands in at the
interactive prompt. What we didn’t tell you then is that every Python file
can be used as a module. The name of the module is the same as the name

of the file, but without the .py extension.

For example, the following function is taken from Section 2.6, Function Ba-
sics, on page 18:

http://docs.python.org/modindex.html
http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

Defining Your Own Modules ¢ 41

Python’s built-in functions are actually in a module named _ builtins_. The double
underscores before and after the name signal that it’s part of Python; we’ll see this
convention used again later for other things. You can see what's in the module using
help(_builtins_), or if you just want a directory, you can use dir instead (which works
on other modules as well):

>>> dir(_ builtins)
[*ArithmeticError', 'AssertionError', ‘'AttributeError',
'BaseException', 'DeprecationWarning', 'EOFError', 'Ellipsis’,

'EnvironmentError', 'Exception', 'False', 'FloatingPointError',
'FutureWarning', 'GeneratorExit', 'IOError', 'ImportError',
'ImportWarning', 'IndentationError', 'IndexError', 'KeyError',
'KeyboardInterrupt', 'LookupError', 'MemoryError', 'NameError',
'None', 'NotImplemented', 'NotImplementedError', 'OSError',
'OverflowError', 'PendingDeprecationWarning', 'ReferenceError',
'RuntimeError', 'RuntimeWarning', 'StandardError',
'StopIteration', 'SyntaxError', 'SyntaxWarning', 'SystemError',

'SystemExit', 'TabError', 'True', 'TypeError',
‘UnboundLocalError', 'UnicodeDecodeError', 'UnicodeEncodeError',

'UnicodeError', 'UnicodeTranslateError', 'UnicodeWarning',
‘UserWarning', 'ValueError', 'Warning', 'ZeroDivisionError', ' ',
' debug ', ' doc_ ', ' import_ ', ' name_', 'abs', ‘'all',
‘any', 'apply', 'basestring', 'bool', 'buffer', 'callable',
‘chr', 'classmethod', 'cmp', 'coerce', 'compile', 'complex',
‘copyright', 'credits', ‘'delattr', 'dict', ‘'dir', 'divmod',
‘enumerate', 'eval', 'execfile', 'exit', 'file', 'filter',
'float', 'frozenset', 'getattr', 'globals', 'hasattr', 'hash',
'help', 'hex', 'id', 'input', 'int', 'intern', ‘'isinstance',
'issubclass', 'iter', 'len', 'license', 'list', 'locals', 'long',
'map', 'max', 'min', ‘'object', 'oct', 'open', 'ord', 'pow',
'property', 'quit', ‘'range', 'raw input', 'reduce', 'reload',
'repr', 'reversed', 'round', 'set', 'setattr', 'slice', 'sorted',
'staticmethod', 'str', 'sum', ‘'super', 'tuple', 'type', 'unichr'
'unicode', 'vars', 'xrange', 'zip'l]

As of Python 2.5, 32 of the 135 things in _ builtins_ are used to signal errors of par-
ticular kinds, such as SyntaxError and ZeroDivisionError. There are also functions called
copyright, which tells you who holds the copyright on Python, and license, which dis-
plays Python’s rather complicated license. We'll meet some of this module’s other
members in later chapters.

Download modules/convert.py
def to celsius(t):

return (t - 32.0) * 5.0 / 9.0

Put this function definition in a file called temperature.py, and then add another
function called above freezing that returns True if its argument’s value is above
freezing (in Celsius), and False otherwise:

report erratum -« discuss

http://media.pragprog.com/titles/gwpy/code/modules/convert.py
http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

42 * Chapter 4. Modules

Download modules/freezing.py
def above freezing(t):
return t > 0

Congratulations—you have now created a module called temperature:

Download modules/temperature.py
def to celsius(t):
return (t - 32.0) * 5.0 / 9.0

def above freezing(t):
return t > 0

Now that you've created this file, you can now import it like any other
module:

>>> import temperature
>>> temperature.above freezing(temperature.to celsius(33.3))
True

What Happens During Import
Let’s try another experiment. Put the following in a file called experiment.py:

Download modules/experiment.py
print "The panda's scientific name is 'Ailuropoda melanoleuca

and then import it (or click Wing 101’s Run button):

>>> import experiment
The panda's scientific name is 'Ailuropoda melanoleuca'

What this shows is that Python executes modules as it imports them. You
can do anything in a module you would do in any other program, because
as far as Python is concerned, it’s just another bunch of statements to be
run.

Let’s try another experiment. Start a fresh Python session, and try importing
the experiment module twice in a row:

>>> import experiment

The panda's scientific name is 'Ailuropoda melanoleuca'
>>> import experiment

>>>

Notice that the message wasn’t printed the second time. That’s because
Python loads modules only the first time they are imported. Internally,
Python keeps track of the modules it has already seen; when it is asked to
load one that’s already in that list, it just skips over it. This saves time and
will be particularly important when you start writing modules that import
other modules, which in turn import other modules—if Python didn’t keep

http://media.pragprog.com/titles/gwpy/code/modules/freezing.py
http://media.pragprog.com/titles/gwpy/code/modules/temperature.py
http://media.pragprog.com/titles/gwpy/code/modules/experiment.py
http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

eone

Defining Your Own Modules ¢ 43

X Wing IDE: temperature.py (/Users/jay)

File Edit Source Debug Tools Window Help

O MNew (= Open... @ Save §§‘ Save All @Goto Definition & Search
P Run l',"_l Break * Debug & Step Into :‘g Step Over ﬁ Step Out
temperature.py Q
Ol I_Kfahr_to_cel v.\] © - (x Iﬁ?
b W 5
1 def fahr_to_cel(t): -~ x
2 return (t - 32.0) * 5.0 / 9.0 =
3 g
4 def above_freezing(t): =)
5 return t = 0 @
6 W
rSEarchl Stack Data * DebugliD vathnn Shelli hd
Search: - Commands execute without debug. Us w Qptions
Replace: -

[Case sensitive [| Whole words
[1In Selection
$ previous | | 988 Next

Replace Replace All

w Options

% Linel Col0-

Python 2.5.1 (r251:54863, Jan 17 2008, A

[GCC 4.8.1 (Apple Inc. build 5465)]
Type "help", "copyright", "credits" or
==
b
>

(S)

hd

¥

Figure 9—The temperature module in Wing 101

track of what was already in memory, it could wind up loading commonly
used modules like math dozens of times.

Using __main__

As we've now seen, every Python file can be run directly from the command
line or IDE or can be imported and used by another program. It’'s sometimes
useful to be able to tell inside a module which is happening, in other words,
whether the module is the main program that the user asked to execute or
whether some other module has that honor.

Python defines a special variable called _name__ in every module to help us
figure this out. Suppose we put the following into echo.py:

Download modules/echo.py
print "echo: name is", name

If we run this file, its output is as follows:

echo: _ name__ is _ main__

As promised, Python has created the variable _name_. Its value is "_main_",

meaning, “This module is the main program.”

http://media.pragprog.com/titles/gwpy/code/modules/echo.py
http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

44 ¢ Chapter 4. Modules

But look at what happens when we import echo.py, instead of running it
directly:

>>> import echo
echo: name_ is echo

The same thing happens if we write a program that does nothing but import
our echoing module:

Download modules/import_echo.py
import echo
print "After import, name is", name_, "and echo. name is", echo. name

which, when run from the command line, produces this:

echo: name is echo
After import, name_ is main__ and echo. name 1is echo

What's happening here is that when Python imports a module, it sets that
module’s _name__ variable to be the name of the module, rather than the
special string "__main_". This means that a module can tell whether it is the
main program:

Download modules/test_main.py

if name == " main_":
print "I am the main program"
else:
print "Someone is importing me"

Try it. See what happens when you run it directly and when you import it.

Knowing whether a module is being imported or not turns out to allow a
few handy programming tricks. One is to provide help on the command line
whenever someone tries to run a module that’s meant to be used as a library.
For example, think about what happens when you run the following on the
command line vs. importing it into another program:

Download modules/main_help.py

This module guesses whether something is a dinosaur or not.

def is dinosaur(name):
Return True if the named creature is recognized as a dinosaur,
and False otherwise.
i
return name in ['Tyrannosaurus', 'Triceratops']

if name_ == "' main_':
help(_name_)

http://media.pragprog.com/titles/gwpy/code/modules/import_echo.py
http://media.pragprog.com/titles/gwpy/code/modules/test_main.py
http://media.pragprog.com/titles/gwpy/code/modules/main_help.py
http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

Defining Your Own Modules ¢ 45

We will see other uses in the following sections and in later chapters.

Providing Help

Let’s return to the temperature module for a moment and modify it to round
temperatures off. We’ll put the result in temp_round.py:
Download modules/temp_round.py

def to celsius(t):
return round((t - 32.0) * 5.0 / 9.0)

def above freezing(t):
return t > 0

What happens if we ask for help on the function to_celsius?

>>> import temp round
>>> help(temp_round)
Help on module temp round:

NAME
temp_round

FILE
/home/pybook/modules/temp round.py

FUNCTIONS
above freezing(t)

to celsius(t)

That’s not much use: we know the names of the functions and how many
parameters they need, but not much else. To provide something more useful,
we should add docstrings to the module and the functions it contains and
save the result in temp_with_doc.py:

Download modules/temp_with_doc.py
""'Functions for working with temperatures.'''

def to_celsius(t):
'''Convert Fahrenheit to Celsius.'''
return round((t - 32.0) * 5.0 / 9.0)

def above freezing(t):
""'True if temperature in Celsius is above freezing, False otherwise.'''
return t > 0

Asking for help on this module produces a much more useful result.

http://media.pragprog.com/titles/gwpy/code/modules/temp_round.py
http://media.pragprog.com/titles/gwpy/code/modules/temp_with_doc.py
http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

4.3

46 * Chapter 4. Modules

>>> import temp_with_doc
>>> help(temp with doc)
Help on module temp with doc:

NAME
temp with doc - Functions for working with temperatures.

FILE
/home/pybook/modules/temp with doc.py

FUNCTIONS
above freezing(t)
True if temperature in Celsius is above freezing, False otherwise.

to celsius(t)
Convert Fahrenheit to Celsius.

The term docstring is short for “documentation string.” Docstrings are easy
to create: if the first thing in a file or a function is a string that isn’t assigned
to anything, Python saves it so that help can print it later.

You might think that a module this small doesn’t need much documentation.
After all, it has only two functions, and their names are pretty descriptive
of what they do. But writing documentation is more than a way to earn a
few extra marks—it’s essential to making software usable. Small programs
have a way of turning into larger and more complicated ones. If you don’t
document as you go along and keep the documentation in the same file as
the program itself, you will quickly lose track of what does what.

Objects and Methods

Numbers and strings may have been enough to keep programmers happy
back in the twentieth century, but these days, people expect to work with
images, sound, and video as well. A Python module called media provides
functions for manipulating and viewing pictures; it isn’t in the standard
library, but it can be downloaded for free from http://packages.python.

download.)

In order to understand how media works, we first have to introduce two
concepts that are fundamental to modern program design. And to do that,
we have to back up and take another look at strings.

So far, we have seen two operators that work on strings: concatenation (+),
which “adds” strings, and formatting (%), which gives you control over how
values are displayed. There are dozens of other things we might want to do
to strings, such as capitalize them, strip off any leading or trailing blanks,

http://packages.python.org/PyGraphics/
http://packages.python.org/PyGraphics/
http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

Objects and Methods ¢ 47

or find out whether one string is contained inside another. Having single-
character operators such as + and - for all of these is impractical, because
we would quickly run out of letters and have to start using two- and three-
character combinations that would be impossible to remember.

We could put all the functions that work on strings in a module and ask
users to load that module, but there’s a simpler way to solve the problem.
Python strings “own” a set of special functions called methods. These are
called just like the functions inside a module. If we have a string like 'hogwarts',
we can capitalize it by calling 'hogwarts'.capitalize(), which returns 'Hogwarts'.
Similarly, if the variable villain has been assigned the string 'malfoy’, the ex-
pression villain.capitalize() will return the string 'Malfoy'.

Every string we create automatically shares all the methods that belong to
the string data type. The most commonly used ones are listed in Table 4,

Python’s online documentation or type help(str) into the command prompt.

Using methods is almost the same as using functions, though a method
almost always does something to or with the thing that owns it. For example,
let’s call the startswith method on the string 'species":

>>> 'species'.startswith('a')

False

>>> 'species'.startswith('s")
True

The method startswith takes a string argument and returns a bool to tell us
whether the string whose method was called—the one on the left of the
dot—starts with the string that is given as an argument. String also has an
endswith method:

>>> 'species'.endswith('a')

False

>>> 'species'.endswith('s"')

True

We can chain multiple method calls together in a single line by calling a
method of the value returned by another method call. To show how this
works, let’s start by calling swapcase to change lowercase letters to uppercase
and uppercase to lowercase:

>>> 'Computer Science'.swapcase()
'cOMPUTER sCIENCE'

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

48 ¢ Chapter 4. Modules

Method
capitalize()
find(s)

find(s, beg)

find(s, beg, end)

islower()
isupper()
lower()

replace(old, new)
split()

split(del)

strip()

strip(s)

upper()

Description
Returns a copy of the string with the first letter capitalized

Returns the index of the first occurrence of s in the string,
or -1 if s is not in the string

Returns the index of the first occurrence of s after index
beg in the string, or -1 if s is not in the string after index
beg

Returns the index of the first occurrence of s between in-
dices beg and end in the string, or -1 if s is not in the string
between indices beg and end

Tests that all characters are lowercase
Tests that all characters are uppercase

Returns a copy of the string with all characters converted
to lowercase

Returns a copy of the string with all occurrences of the
substring old replaced with new

Returns the space-separated words as a list
Returns the del-separated words as a list

Returns a copy of the string with leading and trailing
whitespace removed

Returns a copy of the string with the characters in s
removed

Returns a copy of the string with all characters converted
to uppercase

Table 4—Common string methods

Since the result of this method is a string, we can immediately call the re-
sult’s endswith method to check that the first call did the right thing to the
last few letters of the original string.

>>> 'Computer Science'.swapcase().endswith('ENCE")

True

In Figure 10, Chaining method calls, on page 49, we can see what’s going

on when we do this. Note that Python automatically creates a temporary
variable to hold the value of the swapcase method call long enough for it to
call that value’s endswith method.

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

Objects and Methods * 49

'Computer Science'.swapcase() .endswith ('ENCE")
L |
[|

'cOMPUTER sCIENCE'.endswith ("ENCE")
| |

| I |

True

Figure 10—Chaining method calls

Something that has methods is called an object. It turns out that everything
in Python is an object, even the number zero:

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

50 ¢ Chapter 4. Modules

>>> help(0)
Help on int object:

class int(object)
| int(x[, base]) -> integer

Convert a string or number to an integer, if possible. A floating point
argument will be truncated towards zero (this does not include a string
representation of a floating point number!) When converting a string, use
the optional base. It is an error to supply a base when converting a
non-string. If the argument is outside the integer range a long object
will be returned instead.

Methods defined here:

abs (...)
X. abs () <==> abs(x)

add (...)
X. add (y) <==> x+y

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Most modern programming languages are structured this way: the “things”

in the program are objects, and most of the code in the program consists
of methods that use the data stored in those objects. Chapter 13, Object-

of objects; for now, let’s take a look at the objects Python uses to store and
manipulate images.

Images

Now that we have seen the basic features of modules, objects, and methods,
let's look at how they can solve real-world problems. For our running
example, we will write some programs that display and manipulate pictures
and other images.

Suppose you have a file called pic207.jpg on your hard drive and want to dis-
play it on your screen. You could double-click to open it, but what does that
actually do? To start to answer that question, type the following into a Python
prompt:

>>> import media

>>> f = media.choose file()

>>> pic = media.load picture(f)
>>> media.show(pic)

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

Objects and Methods ¢ 51

Figure 11—Madeleine

When the file dialog box opens, navigate to pic207.jpg. The result should be
the awesomely cute photo shown in Figure 11, Madeleine, on page 51. Here’s

what the commands shown earlier actually did:

1.
2.

Import the functions from the media module.

Call that module’s choose_file function to open a file-choosing dialog box.
This call returns a string that contains the path to the picture file.

Call the module’s load_picture function to read the contents of the picture
file into memory. This creates a Python object, which is assigned to the
variable pic.

Call that module’s show function, which launches another program to
display the picture. Python has to launch another program because it
can’t print the picture out at the command line.

Double-clicking would definitely have been easier.

But let’s see your mouse do this:

report erratum -« discuss

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

52 ¢ Chapter 4. Modules

>>> pic.get width()
500

>>> pic.get height()
375

>>> pic.title
'modules/pic207.jpg’

The first two commands tell us how wide and high the picture is in pixels.
The third tells us the path to the file containing the picture.

Now try this:

>>> media.crop_picture(pic, 150, 50, 450, 300)
>>> media.show(pic)
>>> media.save as(pic, 'pic207cropped.jpg')

As you can guess from the name, crop crops the picture. The upper-left corner
is (150, 50), and the lower-right corner is (450, 300); the resulting picture
is shown in Figure 12, Madeleine cropped, on page 53.

The code also shows the new picture and then writes it to a new file. This
file is saved in the current working directory, which by default is the directory
in which the program is running. On our system this happens to be
'/Users/pgries/".

Now let’s put Madeleine’s name on her hat. To do that, we use picture’s add_text
function; the result is shown in Figure 13, Madeleine named, on page 53.

>>> media.add_text(pic, 115, 40, 'Madeleine', media.magenta)
>>> media.show(pic)

Function choose_file is useful for writing interactive programs, but when we
know exactly which files we want or we want more than one file, it’s often
easier to skip that navigation step. As an example, let’s open up all three
pictures of Madeleine in a single program:

Download modules/show_madeleine.py
import media

picl = media.load picture('pic207.jpg"')
media.show(picl)

pic2 = media.load picture('pic207cropped.jpg')
media.show(pic2)

pic3 = media.load picture('pic207named.jpg"')
media.show(pic3)

Since we haven'’t specified what directory to find the files in, the program
looks for them in the current working directory. If the program can’t find
them there, it reports an error.

http://media.pragprog.com/titles/gwpy/code/modules/show_madeleine.py
http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

Pixels and Colors * 53

Figure 13—Madeleine named

Color Value
black Color(0, 0, 0)

report erratum - discuss

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

4.4

54 ¢ Chapter 4. Modules

Color Value

white Color(255, 255, 255)
red Color(255, 0, 0)
green Color(0, 255, 0)

blue Color(0, 0, 255)
magenta Color(255, 0, 255)
yellow Color(255, 255, 0)
aqua Color(0, 255, 255)
pink Color(255, 192, 203)
purple Color(128, 0, 128)

Table 5—Example color values

Pixels and Colors

Most people want to do a lot more to pictures than just display them and
crop them. If you do a lot of digital photography, you may want to remove
the “red-eye” caused by your camera flash. You might also want to convert
pictures to black and white for printing, highlight certain objects, and so
on.

To do these things, you must work with the individual pixels that make up
the image. The media module represents pixels using the RGB color model
discussed in RGB and Hexadecimal, on page 59. Module media provides a
Color type andmorethan100predef1nedCoIorvalues Several of them are
listed in Table 5, Example color values, on page 53; black is represented as

“no blue, no green, no red,” white is the maximum possible amount of all
three, and other colors lie somewhere in between.

The media module provides functions for getting and changing the colors in
pixels (see Table 6, Pixel-manipulation functions, on page 55) and for manip-

To see how these functions are used, let's go through all the pixels in
Madeleine’s cropped and named picture and make it look like it was taken
at sunset. To do this, we're going to remove some of the blue and some of
the green from each pixel, making the picture darker and redder.”

2. We're not actually adding any red, but reducing the amount of blue and green will
fool the eye into thinking we have.

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

4.5

Testing * 55

Function Description

get_red(pixel) Gets the red component of pixel
set_red(pixel, value) Sets the red component of pixel to value
get_blue(pixel) Gets the blue component of pixel
set_blue(pixel, value) Sets the blue component of pixel to value
get_green(pixel) Gets the green component of pixel
set_green(pixel, value) Sets the green component of pixel to value
get_color(pixel) Gets the color of pixel

set_color(pixel, color) Sets the color of pixel to color

Table 6—Pixel-manipulation functions

Download modules/sunset.py
import media

pic = media.load picture('pic207.jpg"')
media.show(pic)
for p in media.get pixels(pic):
new blue = int(0.7 * media.get blue(p))
new green = int(0.7 * media.get green(p))
media.set blue(p, new blue)
media.set green(p, new green)

media.show(pic)
Some things to note:

e Color values are integers, so we need to convert the result of multiplying
the blue and green by 0.7 using the function int.

¢ The for loop does something to each pixel in the picture. We will talk
about for loops in detail in Section 5.4, Processing List Items, on page 75,
but just reading the code aloud will give you the idea that it associates
each pixel in turn with the variable p, extracts the blue and green com-
ponents, calculates new values for them, and then resets the values in

the pixel.

Try this on a picture of your own, and see how convincing the result is.

Testing

Another use for modules in real-world Python programming is to make sure
that programs don’t just run but also produce the right answers. In science,
for example, the programs you use to analyze experimental data must be

http://media.pragprog.com/titles/gwpy/code/modules/sunset.py
http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

56 ¢ Chapter 4. Modules

Function Description

darken(color) Returns a color slightly darker than color
lighten(color) Returns a color slightly lighter than color
create_color(red, green, blue) Returns color (red, green, blue)

distance(cl, c2) Returns how far apart colors cl and c2 are

Table 7—Color functions

at least as reliable as the lab equipment you used to collect that data, or
there’s no point running the experiment. The programs that run CAT scan-
ners and other medical equipment must be even more reliable, since lives
depend on them. As it happens, the tools used to make sure that these
programs are behaving correctly can also be used by instructors to grade
students’ assignments and by students to check their programs before
submitting them.

Checking that software is doing the right thing is called quality assurance,
or QA. Over the last fifty years, programmers have learned that quality isn’t
some kind of magic pixie dust that you can sprinkle on a program after it
has been written. Quality has to be designed in, and software must be
tested and retested to check that it meets standards.

The good news is that putting effort into QA actually makes you more pro-
ductive overall. The reason can be seen in Boehm'’s curve in Figure 14,

is to fix, so catching bugs early reduces overall effort.

Most good programmers today don't just test their software while writing
it; they build their tests so that other people can rerun them months later
and a dozen time zones away. This takes a little more time up front but
makes programmers more productive overall, since every hour invested in
preventing bugs saves two, three, or ten frustrating hours tracking bugs
down.

One popular testing library for Python is called Nose, which can be down-
loaded for free at http://code.google.com/p/python-nose/ °. To show how

it works, we will use it to test our temperature module. To start, create a new
Python file called test_temperature.py. The name is important: when Nose runs,

3. We use Nose because it does not require any knowledge of object-oriented program-
ming. Once you know about classes and objects, you should have a look at the
unittest library that comes with Python.

http://code.google.com/p/python-nose/
http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

Testing * 57

Cost

/

Requirements Design Coding Testing Deployment

/

—

Figure 14—Boehm’s curve

it automatically looks for files whose names start with the letters test . The
second part of the name is up to us—we could call it test hagrid.py if we
wanted to—but a sensible name will make it easier for other people to find
things in our code.

Every Nose test module should contain the following:

e Statements to import Nose and the module to be tested
e Functions that actually test our module
¢ A function call to trigger execution of those test functions

Like the name of the test module, the names of the test functions must start
with test_. Using the structure outlined earlier, our first sketch of a testing
module looks like this:

Download modules/test_temperature.py
import nose
import temperature

def test to celsius():
'"'Test function for to celsius'''
pass # we'll fill this in later

def test above freezing():
''"'Test function for above freezing.'''
pass # we'll fill this in too

if _name == "' main_':
nose.runmodule()

http://media.pragprog.com/titles/gwpy/code/modules/test_temperature.py
http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

58 ¢ Chapter 4. Modules

For now, each test function contains nothing except a docstring and a pass
statement. As the name suggests, this does nothing—it’s just a placeholder
to remind ourselves that we need to come back and write some more code.

If you run the test module, the output starts with two dots to say that two
tests have run successfully. (If a test fails, Nose prints an “F” instead to at-
tract attention to the problem.) The summary after the dashed line tells us
that Nose found and ran two tests, that it took less than a millisecond to
do so, and that everything was OK:

Ran 2 tests in 0.000s
0K

Two successful tests isn’t surprising, since our functions don’t actually test
anything yet. The next step is to fill them in so that they actually do some-
thing useful. The goal of testing is to confirm that our code works properly;
for to_celsius, this means that given a value in Fahrenheit, the function pro-
duces the corresponding value in Celsius.

It’s clearly not practical to try every possible value—after all, there are a lot
of real numbers. Instead, we select a few representative values and make
sure the function does the right thing for them.

For example, let's make sure that the round-off version of to_celsius from
Providing Help, on page 45 returns the right result for two reference values:
32Fahrenhe1t(OCe131us]and 212 Fahrenheit (100 Celsius). Just to be on
the safe side, we should also check a value that doesn’t translate so neatly.
For example, 100 Fahrenheit is 37.777... Celsius, so our function should

return 38 (since it’s rounding off).

We can execute each test by comparing the actual value returned by the
function with the expected value that it’s supposed to return. In this case,
we use an assert statement to let Nose know that to _celsius(100) should be 38:

Download modules/assert.py
import nose
from temp with doc import to celsius

def test freezing():
''"'Test freezing point.'''
assert to_celsius(32) ==

def test boiling():
''"'Test boiling point.'''

http://media.pragprog.com/titles/gwpy/code/modules/assert.py
http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

Testing * 59

In the red-green-blue (or RGB) color system, each pixel in a picture has a certain

amount of the three primary colors in it, and each color component is specified by
a number in the range 0-255 (which is the range of numbers that can be represented
in a single 8-bit byte).

By tradition, RGB values are represented in hexadecimal, or base-16, rather than
in the usual base-10 decimal system. The “digits” in hexadecimal are the usual
0-9, plus the letters A-F (or a—f). This means that the number after 9,4 is not 10,4,
but A,g; the number after A4 is Bg, and so on, up to F,5, which is followed by
10,4. Counting continues to 1F,4, which is followed by 20,4, and so on, up to FF 4
(which is 15,¢3x16,¢ + 15,4, or 255,().

An RGB color is therefore six hexadecimal digits: two for red, two for green, and
two for blue. Black is therefore #000000 (no color of any kind), while white is
#FFFFFF (all colors saturated), and #008080 is a bluish-green (no red, half-strength
green, half-strength blue).

assert to celsius(212) == 100

def test roundoff():
''"'Test that roundoff works.'''
assert to celsius(100) == 38 # NOT 37.777...

if _name == "' main_ ':
nose.runmodule()

When the code is executed, each test will have one of three outcomes:

e Pass. The actual value matches the expected value.

e Fail. The actual value is different from the expected value.

e Error. Something went wrong inside the test itself; in other words, the
test code contains a bug. In this case, the test doesn’t tell us anything
about the system being tested.

Run the test module; the output should be as follows:

report erratum -« discuss

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

60 ¢ Chapter 4. Modules

Ran 3 tests in 0.002s
0K

As before, the dots tell us that the tests are passing.

Just to prove that Nose is doing the right thing, let's compare to_celsius’s result
with 37.8 instead:

Download modules/assert2.py
import nose
from temp_with_doc import to_celsius
def test to_celsius():
''"'Test function for to celsius
assert to celsius(1600) == 37.8
if _name == "'_main_ ':
nose. runmodule()

This causes the test case to fail, so the dot corresponding to it is replaced
by an “F,” an error message is printed, and the number of failures is listed
in place of OK:

F

FAIL: Test function for to celsius
Traceback (most recent call last):
File "/python25/1ib/site-packages/nose/case.py", line 202, in runTest
self.test(*self.arg)
File "assert2.py", line 6, in test to celsius
assert to celsius(100) == 37.8
AssertionError

Ran 1 test in 0.000s

FAILED (failures=1)

The error message tells us that the failure happened in test_to_celsius on line
6. That is helpful, but the reason for failure can be made even clearer by
adding a description of what is being tested to each assert statement.

Download modules/assert3.py
import nose
from temp_with_doc import to_celsius
def test to celsius():
''"'Test function for to celsius
assert to celsius(100) == 37.8, 'Returning an unrounded result'
if _name == "' main_ ':
nose. runmodule()

http://media.pragprog.com/titles/gwpy/code/modules/assert2.py
http://media.pragprog.com/titles/gwpy/code/modules/assert3.py
http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

Testing * 61

That message is then included in the output:

F

FAIL: Test function for to_celsius

Traceback (most recent call last):
File "c:\Python25\Lib\site-packages\nose\case.py", line 202, in runTest
self.test(*self.arg)
File "assert3.py", line 6, in test to celsius
assert to celsius(100) == 37.8, 'Returning an unrounded result'
AssertionError: Returning an unrounded result

Ran 1 test in 0.000s

FAILED (failures=1)

Having tested test_to_celsius with one value, we need to decide whether any
other test cases are needed. The description of that test case states that it
is a positive value, which implies that we may also want to test our code
with a value of O or a negative value. The real question is whether our code
will behave differently for those values. Since all we're doing is some simple
arithmetic, we probably don’t need to bother; in future chapters, though,
we will see functions that are complicated enough to need several tests each.

Let’'s move on to test above_freezing. The function it is supposed to test,
above_freezing, is supposed to return True for any temperature above freezing,
so let’s make sure it does the right thing for 89.4. We should also check
that it does the right thing for a temperature below freezing, so we’ll add a
check for -42.

Finally, we should also test that the function does the right thing for the
dividing case, when the temperature is exactly freezing. Values like this are
often called boundary cases, since they lie on the boundary between two
different possible behaviors of the function. Experience shows that boundary
cases are much more likely to contain bugs than other cases, so it's always
worth figuring out what they are and testing them.

The test module, including comments, is now complete:

Download modules/test_freezing.py
import nose
from temp with doc import above freezing

def test above freezing():
''"'Test function for above freezing.'''
assert above freezing(89.4), 'A temperature above freezing.'

http://media.pragprog.com/titles/gwpy/code/modules/test_freezing.py
http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

4.6

62 ¢ Chapter 4. Modules

assert not above freezing(-42), 'A temperature below freezing.'
assert not above freezing(0), 'A temperature at freezing.'

if __name_ == '_main_ ':
nose. runmodule()

When we run it, its output is as follows:

Ran 1 test in 0.000s

OK

Whoops—Nose believes that only one test was run, even though there are
three assert statements in the file. The reason is that as far as Nose is con-
cerned, each function is one test. If some of those functions want to check
several things, that’s their business. The problem with this is that as soon
as one assertion fails, Python stops executing the function it’s in. As a result,
if the first check in test above_freezing failed, we wouldn't get any information
from the ones after it. It is therefore generally a good idea to write lots of
small test functions, each of which only checks a small number of things,
rather than putting dozens of assertions in each function.

Style Notes

Anything that can go in a Python program can go in a module, but that
doesn’t mean that anything should. If you have functions and variables that
logically belong together, you should put them in the same module. If there
isn’t some logical connection—for example, if one of the functions calculates
how much carbon monoxide different kinds of cars produce, while another
figures out how strong bones are given their diameter and density—then
you shouldn’t put them in one module just because you happen to be the
author of both.

Of course, people often have different opinions about what is logical and
what isn’t. Take Python’s math module, for example; should functions to
multiply matrices go in there too or in a separate linear algebra module?
What about basic statistical functions? Going back to the previous para-
graph, should a function that calculates gas mileage go in the same module
as one that calculates carbon monoxide emissions? You can always find a
reason why two functions should not be in the same module, but 1,000
modules with one function each are going to be hard for people (including
you) to find their way around.

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

4.7

Summary ¢ 63

As a rule of thumb, if a module has less than half a dozen things in it, it's
probably too small, and if you can’t sum up the contents and purpose of a
module in a one- or two-sentence docstring, it's probably too large. These
are just guidelines, though; in the end, you will have to decide based on
how more experienced programmers have organized modules like the ones
in the Python standard library and eventually on your own sense of style.

Summary

In this chapter, we learned the following;:

e A module is a collection of functions and variables grouped together in

a file. To use a module, you must first import it. After it has been import-
ed, you refer to its contents using modulename.thingname.

Put docstrings at the start of modules or functions to describe their
contents and use.

Every “thing” in a Python program is an object. Objects have methods,
which work just like functions but are associated with the object’s type.
Methods are called using object.methodname, just like the functions in a
module.

You can manipulate images using the picture module, which has functions
for loading, displaying, and manipulating entire images, as well as
inspecting and modifying individual pixels and colors.

Programs have to do more than just run to be useful; they have to run
correctly. One way to ensure that they do is to test them, which you can
do in Python using the Nose module. Since you usually can'’t test every
possible case, you should focus your testing on boundary cases.

4.8 Exercises

Here are some exercises for you to try on your own:

Import module math, and use its functions to complete the following
exercises:

a. Write a single expression that rounds the value of -4.3 and then takes
the absolute value of that result.

b. Write an expression that takes the ceiling of sine of 34.5.

In the following exercises, you will work with Python’s calendar module:

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

64 ¢ Chapter 4. Modules

a. Visit the Python documentation website at http://docs.python.

module.
b. Import the calendar module.

c. Read the description of the function isleap. Use isleap to determine the
next leap year.

d. Find and use a function in module calendar to determine how many
leap years there will be between the years 2000 and 2050, inclusive.

e. Find and use a function in module calendar to determine which day
of the week July 29, 2016 will be.

3. Using string methods, write expressions that do the following:
Capitalize 'boolean'.
b. Find the first occurrence of '2' in 'C02 H20'.
c. Find the second occurrence of "2" in 'C02 H20'.
d. Determine whether 'Boolean' begins with a lowercase.
e. Convert "MoNDaY" to lowercase letters and then capitalize the result.
f. Remove the leading whitespace from " Monday".
4. The example used to explain import * was as follows:

>>> from math import *
>>> '%6f' % sqrt(8)
'2.828427'

Explain why there are quotes around the value 2.828427.
5. Why do you think the media module mentioned in Section 4.3, Objects

do you think Python’s developers decide what should be in the standard
library and what shouldn’'t? If you need something that isn’t in the
standard library, where and how can you find it?

6. Write a program that allows the user to choose a file and then shows
the picture twice.

7. Write a program that allows the user to choose a file, sets the red value
of each pixel in the picture to O, and shows the picture.

8. Write a program that allows the user to pick a file, halves the green
value of each pixel in the picture, and shows the picture.

http://docs.python.org/modindex.html
http://docs.python.org/modindex.html
http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

10.

11.

12.

Exercises ® 65

Write a program that allows the user to pick a file and makes it grayscale;
it should calculate the average of red, green, and blue values of each
pixel and then set the red, green, and blue values to that average.

Write a program that allows the user to pick a file, doubles the red value
of each pixel in the picture, and shows the picture. What happens when
a value larger than 255 is calculated?

Media outlets such as newspapers and TV stations sometimes “enhance”
photographs by recoloring them or digitally combine pictures of two
people to make them appear together. Do you think they should be al-
lowed to use only unmodified images? Given that almost all pictures
and TV footage are now digital and have to be processed somehow for
display, what would that rule actually mean in practice?

Suppose we want to test a function that calculates the distance between
two XY points:

Download modules/distance.py
import math

def distance(x0, y0, x1, yl):
''"'Calculate the distance between (x0, y0) and (x1, y1).'"'

return math.sqrt((x1 - x0) ** 2 + (yl - y0) ** 2)

a. Unlike the rounding-off version of to_celsius, this returns a floating-
point number. Explain why this makes testing more difficult.

b. A friend of yours suggests testing the function like this:

Download modules/test_distance.py
import nose
from distance import distance

def close(left, right):
'"'Test if two floating-point values are close enough.'''

return abs(left - right) < 1.0e-6

def test distance():
''"'Test whether the distance function works correctly.'''
assert close(distance(,)

1.0, 0.0, 1.0, 0.0), 0.0
assert close(distance(0.0, 0.0, 1.0, 0.0), 1.0

if name == "' main_':
nose. runmodule()

, 'Identical points fail.'
), 'Unit distance fails.'

http://media.pragprog.com/titles/gwpy/code/modules/distance.py
http://media.pragprog.com/titles/gwpy/code/modules/test_distance.py
http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

66 ¢ Chapter 4. Modules

Explain what your friend is trying to do. As gently as you can, point
out two flaws in his approach.

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

5.1

CHAPTER 5

Lists

Up to this point, each variable we have created has referred to a single
number or string. In this chapter, we work with collections of data and use
a Python type named list. Lists contain O or more objects, and they allow us
to store data such as 90 experiment measurements or 10,000 student IDs.
We'll also see how to access files and represent their contents using lists.

Lists and Indices

Table 8, Gray whale census, on page 68, from http://www.acschannelis-

near the Coal Oil Point Natural Reserve in a two-week period in the spring
of 2008.

Using what we have seen so far, we would have to create fourteen variables
to keep track of these numbers (see Figure 15, Life without lists, on page 68).
If we wanted to track an entire yearsworth of observatlonswed need 366
(just in case it was a leap year). Even worse, if we didn’t know in advance
how long we wanted to watch the whales, we wouldn't know how many

variables to create.

The solution is to store all the values together in a list. Lists show up every-
where in the real world: students in a class, the kinds of birds native to New
Guinea, and so on. To create a list in Python, we put the values, separated
by commas, inside square brackets:

Download lists/whalelist.py
Number of whales seen per day
(5, 4,7,3,2,3,2,6,4,2,1,7,1, 3]

A list is an object; like any other object, it can be assigned to a variable:

>>> whales = [5, 4, 7, 3, 2, 3, 2, 6, 4, 2,1, 7, 1, 3]
>>> whales

http://www.acschannelislands.org/2008CountDaily.pdf
http://www.acschannelislands.org/2008CountDaily.pdf
http://media.pragprog.com/titles/gwpy/code/lists/whalelist.py
http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

68 °

Chapter 5. Lists

Day Number of Whales

1 5
2 4
3 7
4 3
5 2
6 3
7 2
8 6
9 4
10 2
11 1
12 7
13 1
14 3

Table 8—Gray whale census

dayl— 5
day2 — 4
day3 —» 7
day4 — 3
day5 — 2
day6 — 3
day7 — 2
day8 — 6
day9 — 4
dayl0 — 2
dayll —»1
dayl2 —» 7
dayl3 —»1
dayl4 —» 3

Figure 15—Life without lists

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

Lists and Indices * 69

[51 4! 7' 3! 2' 3’ 2! 6' 4! 2' 1’ 7! 1' 3]

In Figure 16, List example, on page 70, we can see a memory model of whales

after this assignment. It’s important to keep in mind that the list itself is
one object but may contain references to other objects (shown by the arrows).

So, how do we get at the objects in a list? By providing an index that specifies
the one we want. The first item in a list is at index 0, the second at index
1, and so on.' To refer to a particular item, we put the index in square
brackets after a reference to the list (such as the name of a variable):

>>> whales = [5, 4, 7, 3, 2, 3, 2,6, 4, 2,1, 7, 1, 3]

>>> whales[0]

5
>>> whales[1]

>>> whales[12]

>>> whales[13]
3

We can use only those indices that are in the range from zero up to one less
than the length of the list. In a fourteen-item list, the legal indices are O, 1,
2, and so on, up to 13. Trying to use an out-of-range index is an error, just
like trying to divide by zero.

>>> whales = [5, 4, 7, 3, 2, 3, 2,6, 4, 2,1, 7, 1, 3]

>>> whales[1001]

Traceback (most recent call last):

File "<stdin>", line 1, in ?
IndexError: list index out of range

Unlike most programming languages, Python also lets us index backward
from the end of a list. The last item is at index -1, the one before it at index
-2, and so on:

1. Yes, it would be more natural to use 1 as the first index, as human languages do.
Python, however, uses the same convention as languages like C and Java and starts
counting at zero.

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

70 ¢ Chapter 5. Lists

0 1 2 3 4 5 6 7 8 9 10 11 12 13

whales —» | | |

|
T

~—
- 1
w —

HEREEN
R

Figure 16—List example

>>> whales = [5, 4, 7, 3, 2, 3, 2, 6, 4, 2,1, 7, 1, 3]
>>> whales[-1]

>>> whales[-2]

>>> whales[-14]
5

We can assign the values in a list to other variables:

>>> whales = [5, 4, 7, 3, 2, 3, 2, 6, 4, 2,1, 7, 1, 3]
>>> third = whales[2]

>>> print 'Third day:', third

Third day: 7

The Empty List

Zero is a useful number, and as we saw in Chapter 3, Strings, on page 27,

the empty string is often useful as well. Therelsalsoanemptyltst in other
words, a list with no items in it. As you might guess, it is written []. Trying

to index an empty list always results in an error:

>>> whales = []

>>> whales[0]

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError: list index out of range

>>> whales[-1]

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError: 1list index out of range

This follows from the definition of legal index:

¢ Legal indices for a list of N items are the integers in the set {i: 0 < i< N}.

e The length of the empty list is O.

e Legal indices for the empty list are therefore the elements of the set {i:
O0<i<-1}

¢ Since this set is empty, there are no legal indices for the empty list.

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

5.2

Modifying Lists ¢ 71

Lists Are Heterogeneous

Lists can contain any type of data, including integers, strings, and even
other lists. Here is a list of information about the element Krypton, including
its name, symbol, melting point (in degrees Celsius), and boiling point (also
in degrees Celsius). Using a list to aggregate related information is somewhat
prone to error; a better, but more advanced, way to do this is described in
Chapter 13, Object-Oriented Programming, on page 245.

>>> krypton = ['Krypton', 'Kr', -157.2, -153.4]
>>> krypton[1]

Kr

>>> krypton[2]

-157.19999999999999

Modifying Lists
Suppose we're typing in a list of the noble gases® and our fingers slip:
>>> nobles = ['helium', 'none', 'argon', 'krypton', 'xenon', ‘'radon']

The error here is that we typed 'none' instead of 'neon'. Rather than retyping
the whole list, we can assign a new value to a specific element of the list:

>>> nobles = ['helium', 'none', 'argon', 'krypton', 'xenon', 'radon']
>>> nobles[1] = 'neon'

>>> nobles

['helium', 'neon', ‘'argon', 'krypton', ‘'xenon', 'radon']

In Figure 17, List mutation, on page 72, we show what the assignment to

nobles[1] did. It also shows that lists are mutable, in other words, that their
contents can be changed after they have been created. In contrast, numbers
and strings are immutable. You cannot, for example, change a letter in a
string after you have created it. Methods that appear to, like upper, actually
create new strings:

>>> name = 'Darwin’

>>> capitalized = name.upper()
>>> print capitalized

'DARWIN'

>>> print name

'‘Darwin’

The expression L[i] behaves just like a simple variable (see Section 2.4,

means “Get the value of the item at location i in the list L.” If it’s on the left,

2. A noble gas is one whose outermost electron shell is completely full, which makes it
chemically inert.

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

5.3

72 ¢ Chapter 5. Lists

Before

0 1 2 3 4 5

nobles —

P ey S

'helium' 'none' 'argon' 'krypton' 'xenon' 'radon'

After
o 1 2 3 4 5

// \\ N \\

'argon' 'krypton' 'xenon' 'radon'

'helium' 'none'

'neon'

Figure 17—List mutation

it means “Figure out where item i in the list L is located so that we can
overwrite it.”

Built-in Functions on Lists

Section 2.6, Function Basics, on page 18 introduced a few of Python’s built-

in functions. Some of these, such as len, can be applied to lists as well, as
can others we haven’t seen before (see Table 9, List functions, on page 73).

Here they are in action working on a list of the half-lives® of our plutonium
isotopes:

>>> half_lives = [87.74, 24110.0, 6537.0, 14.4, 376000.0]
>>> len(half lives)

5

>>> max(half lives)

376000.0

>>> min(half_lives)

14.4

>>> sum(half lives)

406749.14000000001

3. The half-life of a radioactive substance is the time taken for half of it to decay. After
twice this time has gone by, three quarters of the material will have decayed; after
three times, seven eighths, and so on.

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

Built-in Functions on Lists ¢ 73

Function Description

len(L) Returns the number of items in list L
max(L) Returns the maximum value in list L
min(L) Returns the minimum value in list L
sum(L) Returns the sum of the values in list L

Table 9—List functions

We can use the results of the built-in functions in expressions; for example,
the following code demonstrates that we can check whether an index is in
range’:

>>> half_lives = [87.74, 24110.0, 6537.0, 14.4, 376000.0]

>>> 1 = 2

>>> i < len(half_lives)

True

>>> half lives[i]

6537.0

>>> j =5

>>> j < len(half_lives)
False

>>> half_lives[j]

Traceback (most recent call last):
File "<stdin>", line 1, in ?

IndexError: list index out of range

Like all other objects, lists have a particular type, and Python complains if
you try to combine types in inappropriate ways. Here’s what happens if you
try to “add” a list and a string:

>>> ['H', 'He', 'Li'l + 'Be’

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: can only concatenate list (not "str") to list

That error report is interesting. It hints that we might be able to concatenate
lists with lists to create new lists, just as we concatenated strings to create
new strings. A little experimentation shows that this does in fact work:

>>> original = ['H', 'He', 'Li'l]
>>> final = original + ['Be']
>>> final

[IHI, IHel, ILil, |Be|]

4. We'll take a closer look at comparisons in the next chapter.

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

74 ¢ Chapter 5. Lists

As shown in Figure 18, List concatenation, on page 75, this doesn’t modify

either of the original lists. Instead, it creates a new list whose entries refer
to the entries of the original lists.

So if + works on lists, will sum work on lists of strings? After all, if sum([1, 2,
3]) is the same as 1 + 2 + 3, shouldn’t sum(‘a’, 'b', 'c') be the same as 'a' + 'b' + 'c',
or 'abc'? The following code shows that the analogy can’t be pushed that far:

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

5.4

Processing List ltems * 75

original —» I

final —» \

Figure 18—List concatenation

>>> sum(['a', 'b', 'c'])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'int' and 'str'

On the other hand, you can multiply a list by an integer to get a new list
containing the elements from the original list repeated a certain number of
times:

>>> metals = 'Fe Ni'.split()

>>> metals * 3

['Fe', 'Ni', 'Fe', 'Ni', 'Fe', 'Ni']

As with concatenation, the original list isn’t modified; instead, a new list is
created. Notice, by the way, how we use string.split to turn the string 'Fe Ni'
into a two-element list ['Fe', 'Ni']. This is a common trick in Python programs.

Processing List Items

Lists were invented so that we wouldn’t have to create 1,000 variables to
store a thousand values. For the same reason, Python has a for loop that
lets us process each element in a list in turn, without having to write one
statement per element. The general form of a for loop is as follows:

for <code:bold>variable</code:bold> in <code:bold>list</code:bold>:
<code:bold>block</code:bold>

As we saw in Section 2.6, Function Basics, on page 18, a block is just a

sequence of one or more statements. variable and list are just a variable and
a list.

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

76 ¢ Chapter 5. Lists

When Python encounters a loop, it executes the loop’s block once for each
value in the list. Each pass through the block is called an iteration, and at
the start of each iteration, Python assigns the next value in the list to the
specified variable. In this way, the program can do something with each
value in turn.

For example, this code prints every velocity of a falling object in metric and
imperial units:

>>> velocities = [0.0, 9.81, 19.62, 29.43]

>>> for v in velocities:

print "Metric:", v, "m/sec;",
print "Imperial:", v * 3.28, "ft/sec"

Metric: 0.0 m/sec; Imperial: 0.0 ft/sec

Metric: 9.81 m/sec; Imperial: 32.1768 ft/sec
Metric: 19.62 m/sec; Imperial: 64.3536 ft/sec
Metric: 29.43 m/sec; Imperial: 96.5304 ft/sec

Here are two other things to notice about this loop:

¢ In English we would say “for each velocity in the list, print the metric
value, and then print the imperial value.” In Python, we said roughly
the same thing.

¢ As with function definitions, the statements in the loop block are indent-
ed. (We use four spaces in this book; check with your instructors to find
out whether they prefer something else.)

In this case, we created a new variable v to store the current value taken
from the list inside the loop. We could equally well have used an existing
variable. If we do this, the loop still starts with the first element of the
list—whatever value the variable had before the loop is lost:

>>> speed = 2

>>> velocities = [0.0, 9.81, 19.62, 29.43]

>>> for speed in velocities:
print "Metric:", speed, "m/sec;",

Metric: 0.0 m/sec

Metric: 9.81 m/sec
Metric: 19.62 m/sec
Metric: 29.43 m/sec

>>> print "Final:", speed
Final: 29.43

Either way, the variable is left holding its last value when the loop finishes.
Notice that the last print statement is not indented, so it is not part of the for
loop. It’s executed after the for loop has finished and is executed only once.

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

Processing List ltems * 77

Nested Loops

We said earlier that the block of statements inside a loop could contain
anything. This means that it can also contain another loop.

This program, for example, loops over the list inner once for each element of
the list outer:

>>> outer = ['Li', 'Na', 'K']
>>> inner = ['F', 'Cl', 'Br']
>>> for metal in outer:
for halogen in inner:
print metal + halogen

LiF
LiCl
LiBr
NaF
NaCl
NaBr
KF
KCl
KBr

If the outer loop has N, iterations and the inner loop executes N; times for
each of them, the inner loop will execute a total of N,N; times. One special
case of this is when the inner and outer loops are running over the same
list of length N, in which case the inner loop executes N 2 times. This can
be used to generate a multiplication table; after printing the header row, we
use a nested loop to print each row of the table in turn, using tabs to make
the columns line up:

Download lists/multiplication_table.py
def print table():
""'Print the multiplication table for numbers 1 through 5.'"'
numbers = [1, 2, 3, 4, 5]
Print the header row.
for i in numbers:
print '\t' + str(i),
print # End the header row.
Print the column number and the contents of the table.
for i in numbers:
print i,
for j in numbers:
print '\t' + str(i * j),
print # End the current row.

http://media.pragprog.com/titles/gwpy/code/lists/multiplication_table.py
http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

5.5

78 ¢ Chapter 5. Lists

Here is print_table’s output:

Download lists/multiplication_out.txt
>>> from multiplication table import *
>>> print_table()

1 2 3 4 5
1 1 2 3 4 5
2 2 4 6 8 10
3 3 6 9 12 15
4 4 8 12 16 20
5 5 10 15 20 25

Notice when the two different kinds of formatting are done: the print statement
at the bottom of the program prints a new line when outer loop advances,
while the inner loop includes a tab in front of each item.

Slicing

Geneticists describe C. elegans (nematodes, or microscopic worms) using
three-letter short-form markers. Examples include Emb (embryonic lethality),
Him (High incidence of males), Unc (Uncoordinated), Dpy (dumpy: short and
fat), Sma (small), and Lon (long). We can thus keep a list:

>>> celegans markers = ['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Sma']

>>> celegans_markers

['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Sma']

It turns out that Dpy worms and Sma worms are difficult to distinguish
from each other, so they are not as useful as markers in complex strains.
We can produce a new list based on celegans_markers, but without Dpy or Sma,
by taking a slice of the list:

>>> celegans markers = ['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Sma']
>>> useful markers = celegans markers[0:4]

This creates a new list consisting of only the four distinguishable markers
(see Figure 19, Slicing doesn’'t modify lists., on page 79).

The first index in the slice is the starting point. The second index is one
more than the index of the last item we want to include. More rigorously,
list[i;j] is a slice of the original list from index i (inclusive) up to, but not in-
cluding, index j (exclusive).®

The first index can be omitted if we want to slice from the beginning of the
list, and the last index can be omitted if we want to slice to the end:

5. Python uses this convention to be consistent with the rule that the legal indices for
a list go from O up to one less than the list’s length.

http://media.pragprog.com/titles/gwpy/code/lists/multiplication_out.txt
http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

5.6

Aliasing * 79

0 1 2 3 4 5

/7T TN

'Emb' 'Him' 'Unc' 'Lon' 'Dpy' 'Sma'

celegans_markers —»

useful markers —» \ \ ‘ /

Figure 19—Slicing doesn’t modify lists.

>>> celegans markers = ['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Sma']
>>> celegans markers[:4]

['Emb', 'Him', 'Unc', 'Lon']

>>> celegans markers[4:]

['Dpy', 'Sma'l

To create a copy of the entire list, we just omit both indices so that the “slice”
runs from the start of the list to its end:

>>> celegans markers = ['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Sma']
>>> celegans copy = celegans markers[:]
>>> celegans markers[5] = 'Lvl'

>>> celegans_markers

['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Lvl']
>>> celegans_copy

['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Sma'l

Aliasing

An alias is an alternative name for something. In Python, two variables are
said to be aliases when they refer to the same value. For example, the fol-
lowing code creates two variables, both of which refer to a single list (see
Figure 20, Aliasing lists, on page 80). When we modify the list using one of

the variables, references through the other variable show the change as

well:

>>> celegans markers = ['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Sma']
>>> celegans copy = celegans markers

>>> celegans markers[5] = 'Lvl'

>>> celegans markers

['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Lvl']
>>> celegans_copy

['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Lvl']

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

5.7

80 ¢ Chapter 5. Lists

0 1 2 3 4 5

celegans_markers —»
celegans_copy — / | /

/TN

'Emb' 'Him' 'Unc' 'Lon' 'Dpy' 'Sma'

Figure 20—Aliasing lists

Aliasing is one of the reasons why the notion of mutability is important. For
example, if x and y refer to the same list, then any changes you make to the
list through x will be “seen” by y, and vice versa. This can lead to all sorts
of hard-to-find errors in which a list’s value changes as if by magic, even
though your program doesn’t appear to assign anything to it. This can’t
happen with immutable values like strings. Since a string can’t be changed
after it has been created, it's safe to have aliases for it.

Aliasing in Function Calls

Aliasing occurs when we use list parameters as well, since parameters are
variables.

Here is a simple function that takes a list, sorts it, and then reverses it:

>>> def sort_and_reverse(L):
''"'Return list L sorted and reversed.'''
L.sort()
L.reverse()
return L

>>> celegans markers = ['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Lvl']

>>> sort and reverse(celegans markers)

['Unc', 'Lvl', 'Lon', 'Him', 'Emb', 'Dpy'l]

>>> celegans_markers

['Unc', 'Lvl', 'Lon', 'Him', 'Emb', 'Dpy']

This function modifies list L, and since L is an alias of celegans_markers, that
list is modified as well.

List Methods

Lists are objects and thus have methods. Some of the most commonly used
are listed in Table 10, List methods, on page 82. Here is a sample interaction

showing how we can use these methods to construct a list containing all
the colors of the rainbow:

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

List Methods ¢ 81

Beginning programmers often forget that many list methods return None rather than
creating and returning a new list. (Experienced programmers sometimes forget too.)
As a result, their lists sometimes seem to disappear:

>>> colors = 'red orange yellow green blue purple'.split()
>>> colors

['blue', 'green', 'orange', 'purple', 'red', 'yellow']

>>> sorted colors = colors.sort()

>>> print sorted colors

None

As we discussed in Section 4.5, Testing, on page 55, mistakes like these can

quickly be caught by writing and running a few tests.

>>> colors = 'red orange green black blue'.split()

>>> colors.append('purple')

>>> colors

['red', 'orange', 'green', 'black', 'blue', 'purple'l]

>>> colors.insert(2, 'yellow')

>>> colors

['red', 'orange', 'yellow',6 'green', 'black', 'blue', 'black', 'purple']
>>> colors.remove('black"')

>>> colors

['red', 'orange', 'yellow', 'green', 'blue', 'purple'l]

It is important to note that all these methods modify the list instead of cre-
ating a new list. They do this because lists can grow very, very large—a
million patient records, for example, or a billion measurements of a magnetic
field. Creating a new list every time someone wanted to make a change to
such a list would slow Python down so much that it would no longer be
useful; having Python guess when it should make a copy, and when it should
operate on the list in place, would make it impossible to figure out.

It’s just as important to remember that all of these methods except pop return
the special value None, which means “There is no useful information” or
“There’s nothing here.” Python doesn’t display anything when asked to dis-
play the value None. Printing it, on the other hand, shows us that it’s there:
>>> X = None

>>> X

>>> print x
None

Finally, a call to append is not the same as using +. First, append appends a
single value, while + expects two lists as operands. Second, append modifies
the list rather than creating a new one.

report erratum -« discuss

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

5.8

82 ¢ Chapter 5. Lists

Method Description
L.append(v) Appends value v to list L
L.insert(i, v) Inserts value v at index i in list L, shifting following items to make room
L.remove(v) Removes the first occurrence of value v from list L
L.reverse() Reverses the order of the values in list L
L.sort() Sorts the values in list L in ascending order (for strings, alphabetical
order)
L.pop() Removes and returns the last element of L (which must be nonempty)

Table 10—List methods

Nested Lists

We said in Lists Are Heterogeneous, on page 71 that lists can contain any

type of data. That means that they can contain other lists, just as the body
of a loop can contain another loop. For example, the following nested list
describes life expectancies in different countries:

Download lists/lifelist.py
[['Canada', 76.5], ['United States', 75.5]1, ['Mexico', 72.0]]

As shown in Figure 21, Nested lists, on page 83, each element of the outer

list is itself a list of two items. We use the standard notation to access the
items in the outer list:

>>> life = [['Canada', 76.5], ['United States', 75.5], ['Mexico', 72.0]]
>>> life[0]

['Canada', 76.5]

>>> life[l]

['United States', 75.5]

>>> life[2]

['Mexico', 72.0]

Since each of these items is also a list, we can immediately index it again,
just as we can chain together method calls or pass the result of one function
call as an argument to another function:

>>> life = [['Canada', 76.5], ['United States', 75.5], ['Mexico', 72.0]]
>>> life[1]

['United States', 75.5]

>>> life[1][0]

'United States'

>>> life[1][1]

75.5

http://media.pragprog.com/titles/gwpy/code/lists/lifelist.py
http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

5.9

Other Kinds of Sequences ¢ 83

life —» \ ~

0 1 0 1 0 1

2 I I 7 I I R A B
Yooy b

'Canada' 80 'Mexico' 72.0

'United States' 75.5

Figure 21—Nested lists

We can also assign sublists to variables:

>>> life = [['Canada', 76.5], ['United States', 75.5], ['Mexico', 72.0]]
>>> canada = life[0]

>>> canada

['Canada', 76.5]

>>> canada[0]

'Canada’

>>> canadall]

76.5

Assigning a sublist to a variable creates an alias for that sublist (see Figure

the sublist reference will show up when we access the main list, and vice
versa:

>>> life = [['Canada', 76.5], ['United States', 75.5], ['Mexico', 72.0]]
>>> canada = life[0]

>>> canada[l] = 80.0

>>> canada

['Canada', 80.0]

>>> life

[['Canada', 80.0], ['United States', 75.5], ['Mexico', 72.0]]

Other Kinds of Sequences

Lists aren’t the only kind of sequence in Python. You've already met one of
the others: strings. Formally, a string is an immutable sequence of charac-
ters. The “sequence” part of this definition means that it can be indexed and
sliced like a list to create new strings:

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

84 ¢ Chapter 5. Lists

life

Y

0o 1 o\ 1 0 1

canada —» / \ / I / \
4 Y v 3
76.

'Canada’ 5 'Mexico' 72.0

'United States' 75.5

Figure 22—Aliasing sublists

>>> rock = 'anthracite'

>>> rock[9]

‘e

>>> rock[0:3]

‘ant'

>>> rock[-5:]

‘acite’

>>> for character in rock[:5]:
print character

5 O+ 35 o -

Python also has an immutable sequence type called a tuple. Tuples are
written using parentheses instead of square brackets; like strings and lists,
they can be subscripted, sliced, and looped over:
>>> bases = ('A', 'C', 'G', 'T')
. for b in bases:

print b

— o0 > -

There is one small catch: although () represents the empty tuple, a tuple
with one element is not written as (x) but instead as (x,) (with a trailing
comma). This has to be done to avoid ambiguity. If the trailing comma weren’t
required, (5 + 3) could mean either 8 (under the normal rules of arithmetic)

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

5.10

Files as Lists * 85

or the tuple containing only the value 8. This is one of the few places where
Python’s syntax leaves something to be desired....

Once a tuple is created, it cannot be changed:

>>> life = (['Canada', 76.5], ['United States', 75.5]1, ['Mexico', 72.0])
>>> life[0] = life[l]
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: object does not support item assignment

However, the objects inside it can still be changed:

>>> life = (['Canada', 76.5], ['United States', 75.5], ['Mexico', 72.01])
>>> life[0][1] = 80.0

>>> life

(['Canada', 80.0], ['United States', 75.5], ['Mexico', 72.0])

This is because it’s actually sloppy English to say that something is “inside”
a tuple. It would be more accurate to say this: “The references contained in
a tuple cannot be changed after the tuple has been created, though the ob-
jects referred to may themselves change.”

Newcomers to Python often ask why tuples exist. The answer is that they
make some operations more efficient and others safer. We won’t get far
enough in this book to explain the former, but we will explore the latter in
Chapter 9, Sets and Dictionaries, on page 165.

Files as Lists

Most data is stored in files, which are just ordered sequences of bytes. Those
bytes may represent characters, pixels, or postal codes; the important thing
is that they're in a particular order, which means that lists are usually a
natural way to work with them.

In order to read data from a file, we must first open it using Python’s built-
in function open:

>>> file = open("data.txt", "r")

The first argument to open is a string containing the name of the file. The
second argument indicates a mode. The three options are "r" for reading, "w"
for writing, and "a" for appending. (The difference between writing and ap-
pending is that writing a file erases anything that was already in it, while
appending adds new data to the end.)

The result of open is not the contents of the file. Instead, open returns a file
object whose methods allow the program to access the contents of the file.

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

86 ¢ Chapter 5. Lists

The most fundamental of these methods is read. When it is called without
any arguments, it reads all the data in the file and returns it as a string of
characters. If we give read a positive integer argument, it reads only up to
that many characters; this is useful when we are working with very large
files. In either case, if there’s no more data in the file, the method returns
an empty string.

Although read gives us access to the bytes in a file, we usually use higher-
level methods to do our work. If the file contains text, for example, we will
probably want to process it one line at a time. To do this, we can use the
file object’s readline method, which reads the next line of text from the file. A
line is defined as being all the characters up to and including the next end-
of-line marker (see Section 3.3, Multiline Strings, on page 30). Like read,

readline returns an empty string when there’s no more data in the file.

The neatest thing about readline is that Python calls it for us automatically
when a file object is used in a for loop. Assume this data is in a file called
data.txt:

Download lists/data.txt
Mercury

Venus

Earth

Mars

This program opens that file and prints the length of each line:

>>> data = open('data.txt',
>>> for line in data:
print len(line)

r')

U o o -

Take a close look at the last line of output. There are only four characters
in the word Mars, but our program is reporting that the line is five characters
long. The reason for this is that each of the lines we read from the file has
an end-of-line character at the end. We can get rid of it using string.strip,
which returns a copy of a string that has leading and trailing whitespace
characters (spaces, tabs, and newlines) stripped away:

>>> data = open('data.txt',
>>> for line in data:
print len(line.strip())

r')

http://media.pragprog.com/titles/gwpy/code/lists/data.txt
http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

Files as Lists ¢ 87

S U1

This example shows the result of applying strip to a string with leading and
trailing whitespace:

>>> compound = " \n Methyl butanol \n"
>>> print compound

Methyl butanol

>>> print compound.strip()
Methyl butanol

Note that the space inside the string is unaffected: string.strip takes whitespace
only off the front and end of the string.

Using string.strip, we can now produce the correct output when reading from
our file:

>>> file = open('data.txt', 'r')
>>> for line in file:
line = line.strip()

print len(line)

S U0

Command-Line Arguments

We said earlier that the file data.txt contains the name of planets. To finish
the example, let’s go back to reading that file but display only a certain
range of the lines. We’'ll provide the start and end line numbers when we
run the program. For example, we might want to read the first three lines
one time and lines 2 to 4 another time.

We can do this using command-line arguments. When we run a program,
we can send arguments to it, much like when we call a function or method.
These values end up in a special variable of the system module sys called
argv, which is just a list of the arguments (as strings).

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

5.11

88 ¢ Chapter 5. Lists

sys.argv[0] always contains the name of the Python program being run. In
this case, it is read_lines_range.py. The rest of the command-line arguments are
in sys.argv[1], sys.argv[2], and so on.

Here, then, is a program that reads all the data from a file and displays lines
with line numbers within the start and end line range:

Download lists/read_lines_range.py
""" Display the lines of data.txt from the given starting line number to the
given end line number.

Usage: read lines range.py start line end line '''

import sys

if _name == "' main_ ':

get the start and end line numbers
start line = int(sys.argv[1])
end line = int(sys.argv[2])

read the lines of the file and store them in a list
data = open('data.txt', 'r')

data list = data.readlines()

data.close()

display lines within start to end range
for line in data list[start line:end line]:
print line.strip()

If you are using Wing 101, you can set the command line arguments for
your script using the Source->Current File Properties... menu item. Then
select the debug tab and type your values into the Run Arguments text box.

Comments

The previous line-reading program is one of the longest we have seen to
date—so long, in fact, that we have added comments as well as a docstring.
The docstring is primarily for people who want to use the program; it de-
scribes what the program does but not how.

Comments, on the other hand, are written for the benefit of future develop-
ers.® Each comment starts with the # character and runs to the end of the
line. We can put whatever we want in comments, because Python ignores
them completely. Here are a few rules for good commenting:

6. Including future versions of ourselves, who might have forgotten the details of this
program by the time a change needs to be made or a bug needs to be fixed.

http://media.pragprog.com/titles/gwpy/code/lists/read_lines_range.py
http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

Summary ¢ 89

e Assume your readers know as much Python as you do (for example,
don’t explain what strings are or what an assignment statement does).

e Don’t comment the obvious—the following comment is not useful:

count = count + 1 # add one to count

e Many programmers leave comments beginning with “TODO” or “FIXME”
in code to remind themselves of things that need to be written or tidied

up.

e If you needed to think hard when you wrote a piece of software, you
should write a comment so that the next person doesn’t have to do the
same thinking all over again. In particular, if you develop a program or
function by writing a simple point-form description in English, then
making the points more and more specific until they turn into code, you
should keep the original points as comments. (We will discuss this style
of development further in Chapter 10, Algorithms, on page 181.)

e Similarly, if a bug was difficult to find or if the fix is complicated, you
should write a comment to explain it. If you don’t, the next programmer
to work on that part of the program might think that the code is need-
lessly complicated and undo your hard work.

¢ On the other hand, if you need lots of comments to explain what a piece
of code does, you should clean up the code. For example, if you have to
keep reminding readers what each of the fifteen lists in a function are
for, you should break the function into smaller pieces, each of which
works only with a few of those lists.

And here’s one more rule:

e An out-of-date comment is worse than no comment at all, so if you
change a piece of software, read the comments carefully and fix any that
are no longer accurate.

5.12 Summary
In this chapter, we learned the following:

e Lists are used to keep track of zero or more objects. We call the objects
in a list its elements and refer to them by position using indices ranging
from zero to one less than the length of the list.

e Lists are mutable, which means that their contents can be modified.
Lists can contain any type of data, including other lists.

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

90 ¢ Chapter 5. Lists

e Slicing is used to create new lists that have the same values or a subset
of the values of the originals.

e When two variables refer to the same object, we call them aliases.

e Tuples are another kind of Python sequence. Tuples are similar to lists,
except they are immutable.

e When files are opened and read, their contents are commonly stored in
lists of strings.

5.13 Exercises

Here are some exercises for you to try on your own:

1.

Assign a list that contains the atomic numbers of the six alkaline earth
metals—beryllium (4), magnesium (12), calcium (20), strontium (38),
barium (56), and radium (88)—to a variable called alkaline_earth_metals.

Which index contains radium’s atomic number? Write the answer in
two ways, one using a positive index and one using a negative index.

Which function tells you how many items there are in alkaline_earth_metals?

Write code that returns the highest atomic number in alkaline_earth_metals.
(Hint: use one of the functions from Table 9, List functions, on page 73.)

What is the difference between print 'a' and print 'a',?

Write a for loop to print all the values in list celegans_markers from Section
5.5, Slicing, on page 78, one per line.

Consider the following statement, which creates a list of populations of
countries in eastern Asia (China, DPR Korea, Hong Kong, Mongolia,
Republic of Korea, and Taiwan), in millions: country_populations = [1295, 23,
7, 3, 47, 21]. Write a for loop that adds up all the values and stores them
in variable total. (Hint: give total an initial value of zero, and, inside the
loop body, add the population of the current country to total.)

Create a list of temperatures in degrees Celsius with the values 25.2,
16.8, 31.4, 23.9, 28, 22.5, and 19.6, and assign it to a variable called
temps.

10. Using one of the list methods, sort temps in ascending order.

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

11.

12.

13.

14.

15.

16.

17.

18.

19.

Exercises * 91

Using slicing, create two new lists, cool_temps and warm_temps, which con-
tain the temperatures below and above 20 degrees celsius, respectively.

Using list arithmetic, recombine cool_temps and warm_temps in into a new
list called temps_in_celsius.

Write a for loop to convert all the values from temps_in_celsius into Fahren-
heit, and store the converted values in a new list temps_in_fahrenheit. The
list temps_in_celsius should remain unchanged.

Create a nested list where each element of the outer list contains the
atomic number and atomic weight for an alkaline earth metal. The values
are beryllium (4 and 9.012), magnesium (12 and 24.305), calcium (20
and 40.078), strontium (38 and 87.62), barium (56 and 137.327), and
radium (88 and 226). Assign the list to a variable alkaline_earth_metals.

Write a for loop to print all the values in alkaline_earth_metals, with the
atomic number and atomic weight for each alkaline earth metal on a
different line.

Write a for loop to create a new list called number_and_weight that contains
the elements of alkaline_earth_metals in the same order but not nested.

Suppose the file alkaline_metals.txt contains this:

4 9.012

12 24.305
20 20.078
38 87.62
56 137.327
88 226

Write a for loop to read the contents of alkaline_metals.txt, and store it in a
nested list with each element of the list contains the atomic number
and atomic weight for an element. (Hint: use string.split.)

Draw a memory model showing the effect of the following statements:

values = [0, 1, 2]
values[1l] = values

The following function does not have a docstring or comments. Write
enough of both to make it easy for the next person to understand what
the function does, and how, and then compare your solution with those
of at least two other people. How similar are they? Why do they differ?
def mystery function(values):

result = []
for sublist in values:

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

92 ¢ Chapter 5. Lists

result.append([sublist[0]])
for 1 in sublist[1l:]:
result[-1].insert(0, i)

return result

20. Section 5.2, Modifying Lists, on page 71 said that strings are immutable.

Why might mutable strings be useful? Why do you think Python made
them immutable?

21. What happens when you sort a list that contains a mix of numbers and
strings, such as [1, 'a', 2, '0']? Is this consistent with the rules given in
Chapter 3, Strings, on page 27 and Chapter 6, Making Choices, on page

Is this the “right” thing for Python to do, or would some other behavior
be more useful?

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

6.1

CHAPTER 6

Making Choices

This chapter introduces another fundamental concepts of programming;:
making choices. We have to do this whenever we want to have our program
behave differently depending on the data it’s working with. For example, we
might want to do different things depending on whether a solution is acidic
or basic.

The statements we’ll meet in this chapter for making choices are called
control flow statements, because they control the way the computer executes
programs. We have already met one control flow statement—the loops intro-
duced in Section 5.4, Processing List Items, on page 75—and we will meet

others in future chapters as well. Together, they are what give programs
their “personalities.”

Before we can explore control flow statements, we must introduce a Python
type that is used to represent truth and falsehood. Unlike the integers,
floating-point numbers, and strings we have already seen, this type has
only two values and three operators, but it is extremely powerful.

Boolean Logic

In the 1840s, the mathematician George Boole showed that the classical
rules of logic could be expressed in purely mathematical form using only
the two values “true” and “false.” A century later, Claude Shannon (later
the inventor of information theory) realized that Boole’s work could be used
to optimize the design of electromechanical telephone switches. His work
led directly to the use of Boolean logic to design computer circuits.

In honor of Boole’s work, most modern programming languages use a type
named after him to keep track of what’s true and what isn’t.

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

94 ¢ Chapter 6. Making Choices

In Python, that type is called bool (without an “e”). Unlike int and float, which
have billions of possible values, bool has only two: True and False. True and
False are values, just as much as the numbers O and -43.7. It feels a little
strange at first to think of them this way, since “true” and “false” in normal
speech are adjectives that we apply to other statements. As we’ll see, though,
treating True and False as nouns is natural in programs.

Boolean Operators

There are only three basic Boolean operators: and, or, and not. not has the
highest precedence, followed by and, followed by or.

not is a unary operator; in other words, it is applied to just one value, like
the negation in the expression -(3 + 2). An expression involving not produces
True if the original value is False, and it produces False if the original value is
True:

>>> not True
False
>>> not False
True

In the previous example, instead of not True, we could simply use False; and
instead of not False, we could use True. Rather than apply not directly to a
Boolean value, we would typically apply not to a Boolean variable or a more
complex Boolean expression. The same goes for the following examples of
Boolean operators and and or, so although we apply them to Boolean con-
stants in the following examples, we’ll give an example of how they are
typically used at the end of this section.

and is a binary operator; the expression left and right is True if both left and right
are True, and it’s False otherwise:

>>> True and True
True

>>> False and False
False

>>> True and False
False

>>> False and True
False

or is also a binary operator. It produces True if either operand is True, and it
produces False only if both are False:
>>> True or True

True
>>> False or False

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

Boolean Logic * 95

False
>>> True or False
True
>>> False or True
True

This definition is called inclusive or, since it allows both possibilities as well
as either. In English, the word or is also sometimes an exclusive or. For ex-
ample, if someone says, “You can have pizza or tandoori chicken,” they
probably don’t mean that you can have both. Like most programming lan-
guages, Python always interprets or as inclusive. We will see in the exercises
how to create an exclusive or.

We mentioned earlier that Boolean operators are usually applied to Boolean
expressions, rather than Boolean constants. If we want to express “It is not
cold and windy” using two variables cold and windy that contain Boolean
values, we first have to decide what the ambiguous English expression
means: is it not cold but at the same time windy, or is it not both cold and
windy? A truth table for each alternative is shown in Figure 23, Relational

what they look like translated into Python:

>>> (not cold) and windy
>>> not (cold and windy)

Relational Operators

We said earlier that True and False are values. The most common way to
produce them in programs is not to write them down directly but rather to
create them in expressions. The most common way to do that is to do a
comparison using a relational operator. For example, 3<5 is a comparison
using the relational operator < whose value is True, while 13277 uses = and
has the value False.

As shown in Table 11, Relational and Equality Operators, on page 97, Python

has all the operators you're used to using. Some of them are represented
using two characters instead of one, like <= instead of <.

The most important representation rule is that Python uses == for equality
instead of just =, because = is used for assignment. Beginners often mix
the two up and type x = 3 when they meant to check whether the variable x
was equal to three. This always produces a syntax error, but if you don’t
know what to look for, it can be hard to spot the reason.

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

96 * Chapter 6. Making Choices

cold |windy| (not cold) and windy | not (cold and windy)
True | True False False
True |False False True
False| True True True
False |[False False True

Figure 23—Relational and equality operators

All relational operators are binary operators: they compare two values and
produce True or False, as appropriate. The “greater than” > and “less than” <
operators work as expected:

>>> 45 > 34
True
>>> 45 > 79
False
>>> 45 < 79
True
>>> 45 < 34
False

We can compare integers to floating-point numbers with any of the relational
operators. Integers are automatically converted to floating point when we
do this, just as they are when we add 14 to 23.3:

>>> 23.1 >= 23
True

>>> 23.1 >= 23.1
True

>>> 23.1 <= 23.1
True

>>> 23.1 <= 23
False

The same holds for “equal to” and “not equal to”:

>>> 67.3 == 87
False
>>> 67.3 == 67
False
>>> 67.0 == 67
True
>>> 67.0 != 67
False
>>> 67.0 !'= 23
True

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

Boolean Logic ¢ 97

Symbol Operation

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to
== Equal to

I= Not equal to

Table 11—Relational and Equality Operators

Of course, it doesn’t make much sense to compare two numbers that you
know in advance, since you would also know the result of the comparison.
Relational operators therefore almost always involve variables, like this:

>>> def positive(x):
return x > 0

>>> positive(3)
True

>>> positive(-2)
False

>>> positive(0)
False

Combining Comparisons

We have now seen three types of operators: arithmetic, Boolean, and
relational.

Here are the rules for combining them:

¢ Arithmetic operators have higher precedence than relational operators.
For example, + and / are evaluated before < or >.

¢ Relational operators have higher precedence than Boolean operators.
For example, comparisons are evaluated before and, or, and not.

¢ All relational operators have the same precedence.

These rules mean that the expression 1+ 3 > 7 is evaluated as (1 + 3) > 7, not
as 1+ (3>7). These rules also mean that you can often skip the parentheses
in complicated expressions:

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

98 ¢ Chapter 6. Making Choices

>>>
>>>
>>>

X N < X
Il

A

>>>
True

and y < z

It's usually a good idea to put the parentheses in, though, since it helps the
eye find the subexpressions and clearly communicates the order to anyone
reading your code:

>>> (x <y) and (y < z)
True

It’s very common in mathematics to check whether a value lies in a certain
range, in other words, that it is between two other values. You can do this
in Python by combining the comparisons with and:

>>> X = 3

>>> (1 < x) and (x <= 5)

True

>>> X =7

>>> (1 < x) and (x <= 5)

False

This comes up so often, however, that Python lets you chain the comparisons:

>>> X = 3
>>> 1 < x <=5
True

Most combinations work as you would expect, but there are cases that may
startle you:

>>> 3 <5 I=True
True

>>> 3 < 5 = False
True

It seems impossible for both of these expressions to be True. However, the
first one is equivalent to this:

(3 <5) and (5 != True)
while the second is equivalent to this:
(3 <5) and (5 != False)

Since 5 is not True or False, the second half of each expression is True, so the
expression as a whole is True as well.

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

Boolean Logic * 99

This kind of expression is an example of something that is a bad idea even
though it is legal.' We strongly recommend that you only chain comparisons
in ways that would seem natural to a mathematician, in other words, that
you use < and <= together, or > and >= together, and nothing else. If you're
tempted to do something else, resist. Use simple comparisons and combine
them with and in order to keep your code readable. It’s also a good idea to
use parentheses whenever you think the expression you are writing may
not be entirely clear.

Applying Boolean Operators to Integers, Floats, and Strings

We have already seen that Python converts ints to floats in mixed expressions.
It also converts numbers to bools, which means that the three Boolean oper-
ators can be applied directly to numbers. When this happens, Python treats
0 and 0.0 as False and treats all other numbers as True:

>>> not 0
True

>>> not 1
False

>>> not 5
False

>>> not 34.2
False

>>> not -87
False

Things are more complicated with and and or. When Python evaluates an
expression containing either of these operators, it always does so from left
to right. As soon as it knows enough to stop evaluating, it stops, even if
some operands haven’t been looked at yet. The result is the last thing that
was evaluated, which is not necessarily either True or False.

This is much easier to demonstrate than explain. Here are three expressions
involving and:

>>> 0 and 3
0
>>> 3 and 0
0
>>> 3 and 5
5

1. Sort of like going on a roller coaster right after eating two extra large ice cream sun-
daes back to back on a dare.

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

100 * Chapter 6. Making Choices

In the first expression, Python sees a 0, which is equivalent to False, and
immediately stops evaluating. It doesn’t need to look at the 3 to know that
the expression as a whole is going to be false, since and is true only if both
operands are true (see Figure 24, Short-circuit evaluation, on page 101).

In the second expression, though, Python has to check both operands, since
knowing that the first one (the 3) isn’t false is not enough to know what the
value of the whole expression will be. Python also checks both operands in
the third expression; as you can see, it takes the value of the last thing it
checked as the value of the expression as a whole (in this case, 5).

With or, if the first operand is considered to be true, or evaluates to that
value immediately, without even checking the second operand. The reason
for this is that Python already knows the answer: True or X is True, regardless
of the value of X.

If the first operand is equivalent to False, though, or has to check the second
operand. Its result is then that operand’s value:

>>> 1 or 0

1

>>> 0 or 1

1

>>> True or 0
True

>>> 0 or False
False

>>> False or 0

0

>>> False or 18.2
18.199999999999999

(Remember, computers can’t represent all fractions exactly: the last value
in the previous code fragment is as close as it can get to 18.2.)

We claimed that if the first operand to the or operator is true, then or evalu-
ates to that value immediately without evaluating the second operand. In
order to show that this is what happens, try an expression that divides by
Z€ero:

>>1/0
Traceback (most recent call last):

File "<string>", line 1, in <string>
ZeroDivisionError: integer division or modulo by zero

Now use that expression as the second operand to or:

>>> True or 1 / 0
True

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

Boolean Logic * 101

0 and 3 3 and O 3 and 5
False True True True True
0 0 5

Figure 24—Short-circuit evaluation

Since the first operand is true, the second operand is not evaluated, so the
computer never actually tries to divide anything by zero.

It’s possible to compare strings with each other, just as you would compare
numbers. The characters in strings are represented by integers: a capital
A, for example, is represented by 65, while a space is 32, and a lowercase
zis 172.” Python decides which string is greater than which by comparing
corresponding characters from left to right. If the character from one string
is greater than the character from the other, the first string is greater than
the second. If all the characters are the same, the two strings are equal; if
one string runs out of characters while the comparison is being done (in
other words, is shorter than the other), then it is less. The following code
fragment shows a few comparisons in action:

>>> 'A<
True

>>> ‘A >
False
>>> !
True
>>> 'abc' < 'abcd'
True

a

z

abc' < 'abd'

Like zero, the empty string is equivalent to False; all other strings are equiv-
alent to True:

>>> '' and False

>>> 'salmon' or True
'salmon'

2. This encoding is called ASCII, which stands for “American Standard Code for Infor-
mation Interchange.” One of its quirks is that all the uppercase letters come before
all the lowercase letters, so a capital Zis less than a small a.

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

6.2

102 ¢ Chapter 6. Making Choices

An expression like y = x and 1/x works, but that doesn’t mean you should use it, any
more than you should use this:

result = test and first or second

as a shorthand for the following:

if test:

result = first
else:

result = second

Programs are meant to be readable. If you have to puzzle over a line of code or if
there’s a high likelihood that someone seeing it for the first time will misunderstand
it, it’s bad code, even if it runs correctly.

Python can also convert Booleans to numbers: True becomes 1, while False
becomes 0:

>>> False ==
True

>>> True == 1
True

>>> True == 2
False

>>> False < True
True

This means that you can add, subtract, multiply, and divide using Boolean
values:

>>> 5 + True
6
>>> 7 - False
7

But “can” isn’t the same as “should”: adding True to 5, or multiplying the
temperature by current_time<NOON, will make your code much harder to read.
In practice, programmers routinely rely on conversion to Booleans but rarely
if ever use conversions in the other direction.

if Statements

The basic form of an if statement is as follows:

if <code:bold>condition</code:bold>:
<code:bold>block</code:bold>

report erratum - discuss

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

if Statements ¢ 103

The condition is an expression, such as name != " or x < y. Note that this
doesn’t have to be a Boolean expression. As we discussed in Applying Boolean

are automatically converted to True or False when required.

In particular, 0, None, the empty string ", and the empty list [] all are consid-
ered to false, while all other values that we have encountered are considered
to be true.

If the condition is true, then the statements in the block are executed;
otherwise, they are not. As with loops and functions, the block of statements
must be indented to show that it belongs to the if statement. If you don’'t
indent properly, Python might raise an error, or worse, might happily execute
the code that you wrote but, because some statements were not indented
properly, do something you didn’t intend. We’'ll briefly explore both problems
in this chapter.

Here is a table of solution categories based on pH level:

pH Level Solution Category
0-4 Strong acid
5-6 Weak acid

7 Neutral

8-9 Weak base

10-14 Strong base

We can use an if statement to print a message only when the pH level given
by the program’s user is acidic:

>>> ph = float(raw input())
6.0
>>> if ph < 7.0:
print "%s is acidic." % (ph)

6.0 is acidic.

(Recall from Section 3.6, User Input, on page 33 that we have to convert

user input from a string to a float before doing the comparison.)
If the condition is false, the statements in the block are not executed:

>>> ph = float(raw_input())
8.0
>>> if ph < 7.0:
print "%s is acidic." % (ph)

>>>

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

104 ¢ Chapter 6. Making Choices

If we don’t indent the block, Python lets us know:

>>> ph = float(raw_input())
6.0
>>> if ph < 7.0:
. print "%s is acidic." % (ph)
File "<stdin>", line 2
print "%s is acidic." % (ph)

~

IndentationError: expected an indented block

Since we’re using a block, we can have multiple statements, which are exe-
cuted only if the condition is true:

>>> ph = float(raw_input())
6.0
>>> if ph < 7.0:
print "%s is acidic." % (ph)
print "You should be careful with that!"

6.0 is acidic.
You should be careful with that!

When we indent the first line of the block, the Python interpreter changes
its prompt to ... until the end of the block, which is signaled by a blank line:

>>> ph = float(raw input())
8.0
>>> if ph < 7.0:
print "%s is acidic." % (ph)

>>> print "You should be careful with that!"
You should be careful with that!

If we don’t indent the code that’s in the block, the interpreter complains:

>>> ph = float(raw input())
8.0
>>> if ph < 7.0:
print "%s is acidic." % (ph)
. print "You should be careful with that!"
File "<stdin>", line 3
print "You should be careful with that!"

N

SyntaxError: invalid syntax

If the program is in a file, then no blank line is needed. As soon as the in-
dentation ends, Python assumes that the block has ended as well. This is
therefore legal:

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

if Statements ¢ 105

ph = 8.0
if ph < 7.0:
print "%s is acidic." % (ph)
print "You should be careful with that!"

In practice, this slight inconsistency is never a problem, and most people
never even notice it.

Of course, sometimes there are situations where a single decision isn’t suf-
ficient. If there are multiple criteria to examine, there are a couple of ways
to handle it. One way is to use multiple if statements. For example, we might
print different messages depending on whether a pH level is acidic or basic:
>>> ph = float(raw input())

8.5

>>> if ph < 7.0:
print "%s is acidic." % (ph)

>>> if ph > 7.0:
print "%s is basic." % (ph)

8.5 is basic.
>>>

In Figure 25, if statement, on page 106, we see that both conditions are always
evaluated even though we know that only one of the blocks can be executed.
We can merge both cases by adding another condition/block pair using the
elif keyword (which stands for “else if”); each condition/block pair is called

a clause:

>>> ph = float(raw input())
8.5
>>> if ph < 7.0:
. print "%s is acidic." % (ph)
. elif ph > 7.0:
print "%s is basic." % (ph)

8.5 is basic.

>>>

The difference between the two is that the elif is checked only when the if
above it was false. In Figure 26, elif statement, on page 106, we can see the

difference pictorially, with conditions drawn as diamonds, other statements
as rectangles, and arrows to show the flow of control.

An if statement can be followed by multiple elif clauses. This longer example
translates a chemical formula into English:

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

106 * Chapter 6. Making Choices

False if-block #1

False if-block #2

rest of
program

Figure 25—if statement

True

ph < 7.0

}

False if-block

elif-block

rest of
program

Figure 26—elif statement

http://pragprog.com/titles/gwpy/errata/add
http://forums.pragprog.com/forums/gwpy

	Cover
	Table of Contents
	1. Introduction
	Programs and Programming
	A Few Definitions
	What to Install
	For Instructors
	Summary

	2. Hello, Python
	The Big Picture
	Expressions
	What Is a Type?
	Variables and the Assignment Statement
	When Things Go Wrong
	Function Basics
	Built-in Functions
	Style Notes
	Summary
	Exercises

	3. Strings
	Strings
	Escape Characters
	Multiline Strings
	Print
	Formatted Printing
	User Input
	Summary
	Exercises

	4. Modules
	Importing Modules
	Defining Your Own Modules
	Objects and Methods
	Pixels and Colors
	Testing
	Style Notes
	Summary
	Exercises

	5. Lists
	Lists and Indices
	Modifying Lists
	Built-in Functions on Lists
	Processing List Items
	Slicing
	Aliasing
	List Methods
	Nested Lists
	Other Kinds of Sequences
	Files as Lists
	Comments
	Summary
	Exercises

	6. Making Choices
	Boolean Logic
	if Statements
	Storing Conditionals
	Summary
	Exercises

	7. Repetition
	Counted Loops
	while Loops
	User Input Loops
	Controlling Loops
	Style Notes
	Summary
	Exercises

	8. File Processing
	One Record per Line
	Records with Multiple Fields
	Positional Data
	Multiline Records
	Looking Ahead
	Writing to Files
	Summary
	Exercises

	9. Sets and Dictionaries
	Sets
	Dictionaries
	Inverting a Dictionary
	Summary
	Exercises

	10. Algorithms
	Searching
	Timing
	Summary
	Exercises

	11. Searching and Sorting
	Linear Search
	Binary Search
	Sorting
	More Efficient Sorting Algorithms
	Mergesort: An NlogN Algorithm
	Summary
	Exercises

	12. Construction
	More on Functions
	Exceptions
	Testing
	Debugging
	Patterns
	Summary
	Exercises

	13. Object-Oriented Programming
	Class Color
	Special Methods
	More About dir and help
	A Little Bit of OO Theory
	A Longer Example
	Summary
	Exercises

	14. Graphical User Interfaces
	The Tkinter Module
	Basic GUI Construction
	Models, Views, and Controllers
	Style
	A Few More Widgets
	Object-Oriented GUIs
	Summary
	Exercises

	15. Databases
	The Big Picture
	First Steps
	Retrieving Data
	Updating and Deleting
	Transactions
	Using NULL for Missing Data
	Using Joins to Combine Tables
	Keys and Constraints
	Advanced Features
	Summary
	Exercises

	A1. Bibliography
	Index

